Merge branch 'parisc-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[deliverable/linux.git] / drivers / staging / rtl8821ae / base.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2010 Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
25 *
26 * Larry Finger <Larry.Finger@lwfinger.net>
27 *
28 *****************************************************************************/
29
30 #include <linux/ip.h>
31 #include <linux/module.h>
32 #include "wifi.h"
33 #include "rc.h"
34 #include "base.h"
35 #include "efuse.h"
36 #include "cam.h"
37 #include "ps.h"
38 #include "regd.h"
39 #include "pci.h"
40
41 /*
42 *NOTICE!!!: This file will be very big, we should
43 *keep it clear under following roles:
44 *
45 *This file include following part, so, if you add new
46 *functions into this file, please check which part it
47 *should includes. or check if you should add new part
48 *for this file:
49 *
50 *1) mac80211 init functions
51 *2) tx information functions
52 *3) functions called by core.c
53 *4) wq & timer callback functions
54 *5) frame process functions
55 *6) IOT functions
56 *7) sysfs functions
57 *8) vif functions
58 *9) ...
59 */
60
61 /*********************************************************
62 *
63 * mac80211 init functions
64 *
65 *********************************************************/
66 static struct ieee80211_channel rtl_channeltable_2g[] = {
67 {.center_freq = 2412, .hw_value = 1,},
68 {.center_freq = 2417, .hw_value = 2,},
69 {.center_freq = 2422, .hw_value = 3,},
70 {.center_freq = 2427, .hw_value = 4,},
71 {.center_freq = 2432, .hw_value = 5,},
72 {.center_freq = 2437, .hw_value = 6,},
73 {.center_freq = 2442, .hw_value = 7,},
74 {.center_freq = 2447, .hw_value = 8,},
75 {.center_freq = 2452, .hw_value = 9,},
76 {.center_freq = 2457, .hw_value = 10,},
77 {.center_freq = 2462, .hw_value = 11,},
78 {.center_freq = 2467, .hw_value = 12,},
79 {.center_freq = 2472, .hw_value = 13,},
80 {.center_freq = 2484, .hw_value = 14,},
81 };
82
83 static struct ieee80211_channel rtl_channeltable_5g[] = {
84 {.center_freq = 5180, .hw_value = 36,},
85 {.center_freq = 5200, .hw_value = 40,},
86 {.center_freq = 5220, .hw_value = 44,},
87 {.center_freq = 5240, .hw_value = 48,},
88 {.center_freq = 5260, .hw_value = 52,},
89 {.center_freq = 5280, .hw_value = 56,},
90 {.center_freq = 5300, .hw_value = 60,},
91 {.center_freq = 5320, .hw_value = 64,},
92 {.center_freq = 5500, .hw_value = 100,},
93 {.center_freq = 5520, .hw_value = 104,},
94 {.center_freq = 5540, .hw_value = 108,},
95 {.center_freq = 5560, .hw_value = 112,},
96 {.center_freq = 5580, .hw_value = 116,},
97 {.center_freq = 5600, .hw_value = 120,},
98 {.center_freq = 5620, .hw_value = 124,},
99 {.center_freq = 5640, .hw_value = 128,},
100 {.center_freq = 5660, .hw_value = 132,},
101 {.center_freq = 5680, .hw_value = 136,},
102 {.center_freq = 5700, .hw_value = 140,},
103 {.center_freq = 5745, .hw_value = 149,},
104 {.center_freq = 5765, .hw_value = 153,},
105 {.center_freq = 5785, .hw_value = 157,},
106 {.center_freq = 5805, .hw_value = 161,},
107 {.center_freq = 5825, .hw_value = 165,},
108 };
109
110 static struct ieee80211_rate rtl_ratetable_2g[] = {
111 {.bitrate = 10, .hw_value = 0x00,},
112 {.bitrate = 20, .hw_value = 0x01,},
113 {.bitrate = 55, .hw_value = 0x02,},
114 {.bitrate = 110, .hw_value = 0x03,},
115 {.bitrate = 60, .hw_value = 0x04,},
116 {.bitrate = 90, .hw_value = 0x05,},
117 {.bitrate = 120, .hw_value = 0x06,},
118 {.bitrate = 180, .hw_value = 0x07,},
119 {.bitrate = 240, .hw_value = 0x08,},
120 {.bitrate = 360, .hw_value = 0x09,},
121 {.bitrate = 480, .hw_value = 0x0a,},
122 {.bitrate = 540, .hw_value = 0x0b,},
123 };
124
125 static struct ieee80211_rate rtl_ratetable_5g[] = {
126 {.bitrate = 60, .hw_value = 0x04,},
127 {.bitrate = 90, .hw_value = 0x05,},
128 {.bitrate = 120, .hw_value = 0x06,},
129 {.bitrate = 180, .hw_value = 0x07,},
130 {.bitrate = 240, .hw_value = 0x08,},
131 {.bitrate = 360, .hw_value = 0x09,},
132 {.bitrate = 480, .hw_value = 0x0a,},
133 {.bitrate = 540, .hw_value = 0x0b,},
134 };
135
136 static const struct ieee80211_supported_band rtl_band_2ghz = {
137 .band = IEEE80211_BAND_2GHZ,
138
139 .channels = rtl_channeltable_2g,
140 .n_channels = ARRAY_SIZE(rtl_channeltable_2g),
141
142 .bitrates = rtl_ratetable_2g,
143 .n_bitrates = ARRAY_SIZE(rtl_ratetable_2g),
144
145 .ht_cap = {0},
146 };
147
148 static struct ieee80211_supported_band rtl_band_5ghz = {
149 .band = IEEE80211_BAND_5GHZ,
150
151 .channels = rtl_channeltable_5g,
152 .n_channels = ARRAY_SIZE(rtl_channeltable_5g),
153
154 .bitrates = rtl_ratetable_5g,
155 .n_bitrates = ARRAY_SIZE(rtl_ratetable_5g),
156
157 .ht_cap = {0},
158 };
159
160 static const u8 tid_to_ac[] = {
161 2, /* IEEE80211_AC_BE */
162 3, /* IEEE80211_AC_BK */
163 3, /* IEEE80211_AC_BK */
164 2, /* IEEE80211_AC_BE */
165 1, /* IEEE80211_AC_VI */
166 1, /* IEEE80211_AC_VI */
167 0, /* IEEE80211_AC_VO */
168 0, /* IEEE80211_AC_VO */
169 };
170
171 u8 rtl_tid_to_ac(struct ieee80211_hw *hw, u8 tid)
172 {
173 return tid_to_ac[tid];
174 }
175
176 static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw,
177 struct ieee80211_sta_ht_cap *ht_cap)
178 {
179 struct rtl_priv *rtlpriv = rtl_priv(hw);
180 struct rtl_phy *rtlphy = &(rtlpriv->phy);
181
182 ht_cap->ht_supported = true;
183 ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
184 IEEE80211_HT_CAP_SGI_40 |
185 IEEE80211_HT_CAP_SGI_20 |
186 IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU;
187
188 if (rtlpriv->rtlhal.disable_amsdu_8k)
189 ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU;
190
191 /*
192 *Maximum length of AMPDU that the STA can receive.
193 *Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
194 */
195 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
196
197 /*Minimum MPDU start spacing , */
198 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
199
200 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
201
202 /*
203 *hw->wiphy->bands[IEEE80211_BAND_2GHZ]
204 *base on ant_num
205 *rx_mask: RX mask
206 *if rx_ant =1 rx_mask[0]=0xff;==>MCS0-MCS7
207 *if rx_ant =2 rx_mask[1]=0xff;==>MCS8-MCS15
208 *if rx_ant >=3 rx_mask[2]=0xff;
209 *if BW_40 rx_mask[4]=0x01;
210 *highest supported RX rate
211 */
212 if (rtlpriv->dm.supp_phymode_switch) {
213 RT_TRACE(COMP_INIT, DBG_EMERG, ("Support phy mode switch\n"));
214
215 ht_cap->mcs.rx_mask[0] = 0xFF;
216 ht_cap->mcs.rx_mask[1] = 0xFF;
217 ht_cap->mcs.rx_mask[4] = 0x01;
218
219 ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS15;
220 } else {
221 if (get_rf_type(rtlphy) == RF_1T2R ||
222 get_rf_type(rtlphy) == RF_2T2R) {
223
224 RT_TRACE(COMP_INIT, DBG_DMESG, ("1T2R or 2T2R\n"));
225
226 ht_cap->mcs.rx_mask[0] = 0xFF;
227 ht_cap->mcs.rx_mask[1] = 0xFF;
228 ht_cap->mcs.rx_mask[4] = 0x01;
229
230 ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS15;
231 } else if (get_rf_type(rtlphy) == RF_1T1R) {
232
233 RT_TRACE(COMP_INIT, DBG_DMESG, ("1T1R\n"));
234
235 ht_cap->mcs.rx_mask[0] = 0xFF;
236 ht_cap->mcs.rx_mask[1] = 0x00;
237 ht_cap->mcs.rx_mask[4] = 0x01;
238
239 ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS7;
240 }
241 }
242 }
243
244 static void _rtl_init_mac80211(struct ieee80211_hw *hw)
245 {
246 struct rtl_priv *rtlpriv = rtl_priv(hw);
247 struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
248 struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
249 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
250 struct ieee80211_supported_band *sband;
251
252
253 if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
254 rtlhal->bandset == BAND_ON_BOTH) {
255 /* 1: 2.4 G bands */
256 /* <1> use mac->bands as mem for hw->wiphy->bands */
257 sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
258
259 /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
260 * to default value(1T1R) */
261 memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz,
262 sizeof(struct ieee80211_supported_band));
263
264 /* <3> init ht cap base on ant_num */
265 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
266
267 /* <4> set mac->sband to wiphy->sband */
268 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
269
270 /* 2: 5 G bands */
271 /* <1> use mac->bands as mem for hw->wiphy->bands */
272 sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
273
274 /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
275 * to default value(1T1R) */
276 memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz,
277 sizeof(struct ieee80211_supported_band));
278
279 /* <3> init ht cap base on ant_num */
280 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
281
282 /* <4> set mac->sband to wiphy->sband */
283 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
284 } else {
285 if (rtlhal->current_bandtype == BAND_ON_2_4G) {
286 /* <1> use mac->bands as mem for hw->wiphy->bands */
287 sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
288
289 /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
290 * to default value(1T1R) */
291 memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]),
292 &rtl_band_2ghz,
293 sizeof(struct ieee80211_supported_band));
294
295 /* <3> init ht cap base on ant_num */
296 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
297
298 /* <4> set mac->sband to wiphy->sband */
299 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
300 } else if (rtlhal->current_bandtype == BAND_ON_5G) {
301 /* <1> use mac->bands as mem for hw->wiphy->bands */
302 sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
303
304 /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
305 * to default value(1T1R) */
306 memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]),
307 &rtl_band_5ghz,
308 sizeof(struct ieee80211_supported_band));
309
310 /* <3> init ht cap base on ant_num */
311 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
312
313 /* <4> set mac->sband to wiphy->sband */
314 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
315 } else {
316 RT_TRACE(COMP_INIT, DBG_EMERG, ("Err BAND %d\n",
317 rtlhal->current_bandtype));
318 }
319 }
320 /* <5> set hw caps */
321 hw->flags = IEEE80211_HW_SIGNAL_DBM |
322 IEEE80211_HW_RX_INCLUDES_FCS |
323 #if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0))
324 IEEE80211_HW_BEACON_FILTER |
325 #endif
326 IEEE80211_HW_AMPDU_AGGREGATION |
327 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
328 IEEE80211_HW_CONNECTION_MONITOR |
329 /* IEEE80211_HW_SUPPORTS_CQM_RSSI | */
330 IEEE80211_HW_MFP_CAPABLE | 0;
331
332 /* swlps or hwlps has been set in diff chip in init_sw_vars */
333 if (rtlpriv->psc.b_swctrl_lps)
334 hw->flags |= IEEE80211_HW_SUPPORTS_PS |
335 IEEE80211_HW_PS_NULLFUNC_STACK |
336 /* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */
337 0;
338 /*<delete in kernel start>*/
339 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
340 hw->wiphy->interface_modes =
341 BIT(NL80211_IFTYPE_AP) |
342 BIT(NL80211_IFTYPE_STATION) |
343 BIT(NL80211_IFTYPE_ADHOC) |
344 BIT(NL80211_IFTYPE_MESH_POINT) |
345 BIT(NL80211_IFTYPE_P2P_CLIENT) |
346 BIT(NL80211_IFTYPE_P2P_GO);
347 #else
348 /*<delete in kernel end>*/
349 hw->wiphy->interface_modes =
350 BIT(NL80211_IFTYPE_AP) |
351 BIT(NL80211_IFTYPE_STATION) |
352 BIT(NL80211_IFTYPE_ADHOC) |
353 BIT(NL80211_IFTYPE_MESH_POINT) ;
354 /*<delete in kernel start>*/
355 #endif
356 /*<delete in kernel end>*/
357 #if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39))
358 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
359 #endif
360
361 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0))
362 hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
363 #endif
364
365 hw->wiphy->rts_threshold = 2347;
366
367 hw->queues = AC_MAX;
368 hw->extra_tx_headroom = RTL_TX_HEADER_SIZE;
369
370 /* TODO: Correct this value for our hw */
371 /* TODO: define these hard code value */
372 hw->max_listen_interval = 10;
373 hw->max_rate_tries = 4;
374 /* hw->max_rates = 1; */
375 hw->sta_data_size = sizeof(struct rtl_sta_info);
376 #ifdef VIF_TODO
377 hw->vif_data_size = sizeof(struct rtl_vif_info);
378 #endif
379
380 /* <6> mac address */
381 if (is_valid_ether_addr(rtlefuse->dev_addr)) {
382 SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
383 } else {
384 u8 rtlmac[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
385 get_random_bytes((rtlmac + (ETH_ALEN - 1)), 1);
386 SET_IEEE80211_PERM_ADDR(hw, rtlmac);
387 }
388
389 }
390
391 static void _rtl_init_deferred_work(struct ieee80211_hw *hw)
392 {
393 struct rtl_priv *rtlpriv = rtl_priv(hw);
394
395 /* <1> timer */
396 init_timer(&rtlpriv->works.watchdog_timer);
397 setup_timer(&rtlpriv->works.watchdog_timer,
398 rtl_watch_dog_timer_callback, (unsigned long)hw);
399 init_timer(&rtlpriv->works.dualmac_easyconcurrent_retrytimer);
400 setup_timer(&rtlpriv->works.dualmac_easyconcurrent_retrytimer,
401 rtl_easy_concurrent_retrytimer_callback, (unsigned long)hw);
402 /* <2> work queue */
403 rtlpriv->works.hw = hw;
404 /*<delete in kernel start>*/
405 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
406 /*<delete in kernel end>*/
407 rtlpriv->works.rtl_wq = alloc_workqueue(rtlpriv->cfg->name, 0, 0);
408 /*<delete in kernel start>*/
409 #else
410 rtlpriv->works.rtl_wq = create_workqueue(rtlpriv->cfg->name);
411 #endif
412 /*<delete in kernel end>*/
413 INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq,
414 (void *)rtl_watchdog_wq_callback);
415 INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq,
416 (void *)rtl_ips_nic_off_wq_callback);
417 INIT_DELAYED_WORK(&rtlpriv->works.ps_work,
418 (void *)rtl_swlps_wq_callback);
419 INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq,
420 (void *)rtl_swlps_rfon_wq_callback);
421 INIT_DELAYED_WORK(&rtlpriv->works.fwevt_wq,
422 (void *)rtl_fwevt_wq_callback);
423
424 }
425
426 void rtl_deinit_deferred_work(struct ieee80211_hw *hw)
427 {
428 struct rtl_priv *rtlpriv = rtl_priv(hw);
429
430 del_timer_sync(&rtlpriv->works.watchdog_timer);
431
432 cancel_delayed_work(&rtlpriv->works.watchdog_wq);
433 cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq);
434 cancel_delayed_work(&rtlpriv->works.ps_work);
435 cancel_delayed_work(&rtlpriv->works.ps_rfon_wq);
436 cancel_delayed_work(&rtlpriv->works.fwevt_wq);
437 }
438
439 void rtl_init_rfkill(struct ieee80211_hw *hw)
440 {
441 struct rtl_priv *rtlpriv = rtl_priv(hw);
442
443 bool radio_state;
444 bool blocked;
445 u8 valid = 0;
446
447 /*set init state to on */
448 rtlpriv->rfkill.rfkill_state = 1;
449 wiphy_rfkill_set_hw_state(hw->wiphy, 0);
450
451 radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid);
452
453 if (valid) {
454 printk(KERN_INFO "rtlwifi: wireless switch is %s\n",
455 rtlpriv->rfkill.rfkill_state ? "on" : "off");
456
457 rtlpriv->rfkill.rfkill_state = radio_state;
458
459 blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1;
460 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
461 }
462
463 wiphy_rfkill_start_polling(hw->wiphy);
464 }
465
466 void rtl_deinit_rfkill(struct ieee80211_hw *hw)
467 {
468 wiphy_rfkill_stop_polling(hw->wiphy);
469 }
470
471 #ifdef VIF_TODO
472 static void rtl_init_vif(struct ieee80211_hw *hw)
473 {
474 struct rtl_priv *rtlpriv = rtl_priv(hw);
475
476 INIT_LIST_HEAD(&rtlpriv->vif_priv.vif_list);
477
478 rtlpriv->vif_priv.vifs = 0;
479 }
480 #endif
481
482 int rtl_init_core(struct ieee80211_hw *hw)
483 {
484 struct rtl_priv *rtlpriv = rtl_priv(hw);
485 struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
486
487 /* <1> init mac80211 */
488 _rtl_init_mac80211(hw);
489 rtlmac->hw = hw;
490 rtlmac->link_state = MAC80211_NOLINK;
491
492 /* <2> rate control register */
493 hw->rate_control_algorithm = "rtl_rc";
494
495 /*
496 * <3> init CRDA must come after init
497 * mac80211 hw in _rtl_init_mac80211.
498 */
499 if (rtl_regd_init(hw, rtl_reg_notifier)) {
500 RT_TRACE(COMP_ERR, DBG_EMERG, ("REGD init failed\n"));
501 return 1;
502 }
503
504 /* <4> locks */
505 mutex_init(&rtlpriv->locks.conf_mutex);
506 spin_lock_init(&rtlpriv->locks.ips_lock);
507 spin_lock_init(&rtlpriv->locks.irq_th_lock);
508 spin_lock_init(&rtlpriv->locks.h2c_lock);
509 spin_lock_init(&rtlpriv->locks.rf_ps_lock);
510 spin_lock_init(&rtlpriv->locks.rf_lock);
511 spin_lock_init(&rtlpriv->locks.lps_lock);
512 spin_lock_init(&rtlpriv->locks.waitq_lock);
513 spin_lock_init(&rtlpriv->locks.entry_list_lock);
514 spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock);
515 spin_lock_init(&rtlpriv->locks.check_sendpkt_lock);
516 spin_lock_init(&rtlpriv->locks.fw_ps_lock);
517 spin_lock_init(&rtlpriv->locks.iqk_lock);
518 /* <5> init list */
519 INIT_LIST_HEAD(&rtlpriv->entry_list);
520
521 /* <6> init deferred work */
522 _rtl_init_deferred_work(hw);
523
524 /* <7> */
525 #ifdef VIF_TODO
526 rtl_init_vif(hw);
527 #endif
528
529 return 0;
530 }
531
532 void rtl_deinit_core(struct ieee80211_hw *hw)
533 {
534 }
535
536 void rtl_init_rx_config(struct ieee80211_hw *hw)
537 {
538 struct rtl_priv *rtlpriv = rtl_priv(hw);
539 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
540
541 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf));
542 }
543
544 /*********************************************************
545 *
546 * tx information functions
547 *
548 *********************************************************/
549 static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw,
550 struct rtl_tcb_desc *tcb_desc,
551 struct ieee80211_tx_info *info)
552 {
553 struct rtl_priv *rtlpriv = rtl_priv(hw);
554 u8 rate_flag = info->control.rates[0].flags;
555
556 tcb_desc->use_shortpreamble = false;
557
558 /* 1M can only use Long Preamble. 11B spec */
559 if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M])
560 return;
561 else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
562 tcb_desc->use_shortpreamble = true;
563
564 return;
565 }
566
567 static void _rtl_query_shortgi(struct ieee80211_hw *hw,
568 struct ieee80211_sta *sta,
569 struct rtl_tcb_desc *tcb_desc,
570 struct ieee80211_tx_info *info)
571 {
572 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
573 u8 rate_flag = info->control.rates[0].flags;
574 u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0;
575 tcb_desc->use_shortgi = false;
576
577 if (sta == NULL)
578 return;
579
580 sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
581 sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
582
583 if (!(sta->ht_cap.ht_supported))
584 return;
585
586 if (!sgi_40 && !sgi_20)
587 return;
588
589 if (mac->opmode == NL80211_IFTYPE_STATION)
590 bw_40 = mac->bw_40;
591 else if (mac->opmode == NL80211_IFTYPE_AP ||
592 mac->opmode == NL80211_IFTYPE_ADHOC ||
593 mac->opmode == NL80211_IFTYPE_MESH_POINT)
594 bw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
595
596 if ((bw_40 == true) && sgi_40)
597 tcb_desc->use_shortgi = true;
598 else if ((bw_40 == false) && sgi_20)
599 tcb_desc->use_shortgi = true;
600
601 if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI))
602 tcb_desc->use_shortgi = false;
603 }
604
605 static void _rtl_query_protection_mode(struct ieee80211_hw *hw,
606 struct rtl_tcb_desc *tcb_desc,
607 struct ieee80211_tx_info *info)
608 {
609 struct rtl_priv *rtlpriv = rtl_priv(hw);
610 u8 rate_flag = info->control.rates[0].flags;
611
612 /* Common Settings */
613 tcb_desc->b_rts_stbc = false;
614 tcb_desc->b_cts_enable = false;
615 tcb_desc->rts_sc = 0;
616 tcb_desc->b_rts_bw = false;
617 tcb_desc->b_rts_use_shortpreamble = false;
618 tcb_desc->b_rts_use_shortgi = false;
619
620 if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) {
621 /* Use CTS-to-SELF in protection mode. */
622 tcb_desc->b_rts_enable = true;
623 tcb_desc->b_cts_enable = true;
624 tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
625 } else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) {
626 /* Use RTS-CTS in protection mode. */
627 tcb_desc->b_rts_enable = true;
628 tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
629 }
630 }
631
632 static void _rtl_txrate_selectmode(struct ieee80211_hw *hw,
633 struct ieee80211_sta *sta,
634 struct rtl_tcb_desc *tcb_desc)
635 {
636 struct rtl_priv *rtlpriv = rtl_priv(hw);
637 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
638 struct rtl_sta_info *sta_entry = NULL;
639 u8 ratr_index = 7;
640
641 if (sta) {
642 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
643 ratr_index = sta_entry->ratr_index;
644 }
645 if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) {
646 if (mac->opmode == NL80211_IFTYPE_STATION) {
647 tcb_desc->ratr_index = 0;
648 } else if (mac->opmode == NL80211_IFTYPE_ADHOC ||
649 mac->opmode == NL80211_IFTYPE_MESH_POINT) {
650 if (tcb_desc->b_multicast || tcb_desc->b_broadcast) {
651 tcb_desc->hw_rate =
652 rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M];
653 tcb_desc->use_driver_rate = 1;
654 tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
655 } else {
656 tcb_desc->ratr_index = ratr_index;
657 }
658 } else if (mac->opmode == NL80211_IFTYPE_AP) {
659 tcb_desc->ratr_index = ratr_index;
660 }
661 }
662
663 if (rtlpriv->dm.b_useramask) {
664 tcb_desc->ratr_index = ratr_index;
665 /* TODO we will differentiate adhoc and station future */
666 if (mac->opmode == NL80211_IFTYPE_STATION ||
667 mac->opmode == NL80211_IFTYPE_MESH_POINT) {
668 tcb_desc->mac_id = 0;
669 if (mac->mode == WIRELESS_MODE_N_24G)
670 tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB;
671 else if (mac->mode == WIRELESS_MODE_N_5G)
672 tcb_desc->ratr_index = RATR_INX_WIRELESS_NG;
673 else if (mac->mode & WIRELESS_MODE_G)
674 tcb_desc->ratr_index = RATR_INX_WIRELESS_GB;
675 else if (mac->mode & WIRELESS_MODE_B)
676 tcb_desc->ratr_index = RATR_INX_WIRELESS_B;
677 else if (mac->mode & WIRELESS_MODE_A)
678 tcb_desc->ratr_index = RATR_INX_WIRELESS_G;
679 } else if (mac->opmode == NL80211_IFTYPE_AP ||
680 mac->opmode == NL80211_IFTYPE_ADHOC) {
681 if (NULL != sta) {
682 if (sta->aid > 0)
683 tcb_desc->mac_id = sta->aid + 1;
684 else
685 tcb_desc->mac_id = 1;
686 } else {
687 tcb_desc->mac_id = 0;
688 }
689 }
690 }
691 }
692
693 static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw,
694 struct ieee80211_sta *sta,
695 struct rtl_tcb_desc *tcb_desc)
696 {
697 struct rtl_priv *rtlpriv = rtl_priv(hw);
698 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
699
700 tcb_desc->b_packet_bw = false;
701 if (!sta)
702 return;
703 if (mac->opmode == NL80211_IFTYPE_AP ||
704 mac->opmode == NL80211_IFTYPE_ADHOC ||
705 mac->opmode == NL80211_IFTYPE_MESH_POINT) {
706 if (!(sta->ht_cap.ht_supported) ||
707 !(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40))
708 return;
709 } else if (mac->opmode == NL80211_IFTYPE_STATION) {
710 if (!mac->bw_40 || !(sta->ht_cap.ht_supported))
711 return;
712 }
713 if (tcb_desc->b_multicast || tcb_desc->b_broadcast)
714 return;
715
716 /*use legency rate, shall use 20MHz */
717 if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M])
718 return;
719
720 tcb_desc->b_packet_bw = true;
721 }
722
723 static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw,
724 struct ieee80211_sta *sta)
725 {
726 struct rtl_priv *rtlpriv = rtl_priv(hw);
727 struct rtl_phy *rtlphy = &(rtlpriv->phy);
728 u8 hw_rate;
729
730 if ((get_rf_type(rtlphy) == RF_2T2R) && (sta->ht_cap.mcs.rx_mask[1] != 0))
731 hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15];
732 else
733 hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7];
734
735 return hw_rate;
736 }
737
738 void rtl_get_tcb_desc(struct ieee80211_hw *hw,
739 struct ieee80211_tx_info *info,
740 struct ieee80211_sta *sta,
741 struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc)
742 {
743 struct rtl_priv *rtlpriv = rtl_priv(hw);
744 struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
745 struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
746 struct ieee80211_rate *txrate;
747 u16 fc = rtl_get_fc(skb);
748
749 txrate = ieee80211_get_tx_rate(hw, info);
750 if (txrate != NULL)
751 tcb_desc->hw_rate = txrate->hw_value;
752
753 if (ieee80211_is_data(fc)) {
754 /*
755 *we set data rate INX 0
756 *in rtl_rc.c if skb is special data or
757 *mgt which need low data rate.
758 */
759
760 /*
761 *So tcb_desc->hw_rate is just used for
762 *special data and mgt frames
763 */
764 if (info->control.rates[0].idx == 0 ||
765 ieee80211_is_nullfunc(fc)) {
766 tcb_desc->use_driver_rate = true;
767 tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
768
769 tcb_desc->disable_ratefallback = 1;
770 } else {
771 /*
772 *because hw will never use hw_rate
773 *when tcb_desc->use_driver_rate = false
774 *so we never set highest N rate here,
775 *and N rate will all be controlled by FW
776 *when tcb_desc->use_driver_rate = false
777 */
778 if (sta && (sta->ht_cap.ht_supported)) {
779 tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw, sta);
780 } else {
781 if (rtlmac->mode == WIRELESS_MODE_B) {
782 tcb_desc->hw_rate =
783 rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M];
784 } else {
785 tcb_desc->hw_rate =
786 rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M];
787 }
788 }
789 }
790
791 if (is_multicast_ether_addr(ieee80211_get_DA(hdr)))
792 tcb_desc->b_multicast = 1;
793 else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr)))
794 tcb_desc->b_broadcast = 1;
795
796 _rtl_txrate_selectmode(hw, sta, tcb_desc);
797 _rtl_query_bandwidth_mode(hw, sta, tcb_desc);
798 _rtl_qurey_shortpreamble_mode(hw, tcb_desc, info);
799 _rtl_query_shortgi(hw, sta, tcb_desc, info);
800 _rtl_query_protection_mode(hw, tcb_desc, info);
801 } else {
802 tcb_desc->use_driver_rate = true;
803 tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
804 tcb_desc->disable_ratefallback = 1;
805 tcb_desc->mac_id = 0;
806 tcb_desc->b_packet_bw = false;
807 }
808 }
809 /* EXPORT_SYMBOL(rtl_get_tcb_desc); */
810
811 bool rtl_tx_mgmt_proc(struct ieee80211_hw *hw, struct sk_buff *skb)
812 {
813 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
814 struct rtl_priv *rtlpriv = rtl_priv(hw);
815 u16 fc = rtl_get_fc(skb);
816
817 if (rtlpriv->dm.supp_phymode_switch &&
818 mac->link_state < MAC80211_LINKED &&
819 (ieee80211_is_auth(fc) || ieee80211_is_probe_req(fc))) {
820 if (rtlpriv->cfg->ops->check_switch_to_dmdp)
821 rtlpriv->cfg->ops->check_switch_to_dmdp(hw);
822 }
823 if (ieee80211_is_auth(fc)) {
824 RT_TRACE(COMP_SEND, DBG_DMESG, ("MAC80211_LINKING\n"));
825 rtl_ips_nic_on(hw);
826
827 mac->link_state = MAC80211_LINKING;
828 /* Dul mac */
829 rtlpriv->phy.b_need_iqk = true;
830
831 }
832
833 return true;
834 }
835
836 struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw, u8 *sa,
837 u8 *bssid, u16 tid);
838 bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
839 {
840 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
841 struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
842 struct rtl_priv *rtlpriv = rtl_priv(hw);
843 u16 fc = rtl_get_fc(skb);
844 u8 *act = (u8 *) (((u8 *) skb->data + MAC80211_3ADDR_LEN));
845 u8 category;
846
847 if (!ieee80211_is_action(fc))
848 return true;
849
850 category = *act;
851 act++;
852 switch (category) {
853 case ACT_CAT_BA:
854 switch (*act) {
855 case ACT_ADDBAREQ:
856 if (mac->act_scanning)
857 return false;
858
859 RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG,
860 ("%s ACT_ADDBAREQ From :%pM\n",
861 is_tx ? "Tx" : "Rx", hdr->addr2));
862 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("req\n"),
863 skb->data, skb->len);
864 if (!is_tx) {
865 struct ieee80211_sta *sta = NULL;
866 struct rtl_sta_info *sta_entry = NULL;
867 struct ieee80211_mgmt *mgmt = (void *)skb->data;
868 u16 capab = 0, tid = 0;
869 struct rtl_tid_data *tid_data;
870 struct sk_buff *skb_delba = NULL;
871 struct ieee80211_rx_status rx_status = { 0 };
872
873 rcu_read_lock();
874 sta = rtl_find_sta(hw, hdr->addr3);
875 if (sta == NULL) {
876 RT_TRACE((COMP_SEND | COMP_RECV),
877 DBG_EMERG, ("sta is NULL\n"));
878 rcu_read_unlock();
879 return true;
880 }
881
882 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
883 if (!sta_entry) {
884 rcu_read_unlock();
885 return true;
886 }
887 capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
888 tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
889 tid_data = &sta_entry->tids[tid];
890 if (tid_data->agg.rx_agg_state ==
891 RTL_RX_AGG_START) {
892 skb_delba = rtl_make_del_ba(hw,
893 hdr->addr2,
894 hdr->addr3,
895 tid);
896 if (skb_delba) {
897 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
898 rx_status.freq = hw->conf.chandef.chan->center_freq;
899 rx_status.band = hw->conf.chandef.chan->band;
900 #else
901 rx_status.freq = hw->conf.channel->center_freq;
902 rx_status.band = hw->conf.channel->band;
903 #endif
904 rx_status.flag |= RX_FLAG_DECRYPTED;
905 rx_status.flag |= RX_FLAG_MACTIME_MPDU;
906 rx_status.rate_idx = 0;
907 rx_status.signal = 50 + 10;
908 memcpy(IEEE80211_SKB_RXCB(skb_delba), &rx_status,
909 sizeof(rx_status));
910 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG,
911 ("fake del\n"), skb_delba->data,
912 skb_delba->len);
913 ieee80211_rx_irqsafe(hw, skb_delba);
914 }
915 }
916 rcu_read_unlock();
917 }
918 break;
919 case ACT_ADDBARSP:
920 RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG,
921 ("%s ACT_ADDBARSP From :%pM\n",
922 is_tx ? "Tx" : "Rx", hdr->addr2));
923 break;
924 case ACT_DELBA:
925 RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG,
926 ("ACT_ADDBADEL From :%pM\n", hdr->addr2));
927 break;
928 }
929 break;
930 default:
931 break;
932 }
933
934 return true;
935 }
936
937 /*should call before software enc*/
938 u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
939 {
940 struct rtl_priv *rtlpriv = rtl_priv(hw);
941 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
942 u16 fc = rtl_get_fc(skb);
943 u16 ether_type;
944 u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb);
945 const struct iphdr *ip;
946
947 if (!ieee80211_is_data(fc))
948 goto end;
949
950
951 ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len +
952 SNAP_SIZE + PROTOC_TYPE_SIZE);
953 ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE);
954 ether_type = ntohs(ether_type);
955
956 if (ETH_P_IP == ether_type) {
957 if (IPPROTO_UDP == ip->protocol) {
958 struct udphdr *udp = (struct udphdr *)((u8 *) ip +
959 (ip->ihl << 2));
960 if (((((u8 *) udp)[1] == 68) &&
961 (((u8 *) udp)[3] == 67)) ||
962 ((((u8 *) udp)[1] == 67) &&
963 (((u8 *) udp)[3] == 68))) {
964 /*
965 * 68 : UDP BOOTP client
966 * 67 : UDP BOOTP server
967 */
968 RT_TRACE((COMP_SEND | COMP_RECV),
969 DBG_DMESG, ("dhcp %s !!\n",
970 (is_tx) ? "Tx" : "Rx"));
971
972 if (is_tx) {
973 rtlpriv->ra.is_special_data = true;
974 rtl_lps_leave(hw);
975 ppsc->last_delaylps_stamp_jiffies =
976 jiffies;
977 }
978
979 return true;
980 }
981 }
982 } else if (ETH_P_ARP == ether_type) {
983 if (is_tx) {
984 rtlpriv->ra.is_special_data = true;
985 rtl_lps_leave(hw);
986 ppsc->last_delaylps_stamp_jiffies = jiffies;
987 }
988
989 return true;
990 } else if (ETH_P_PAE == ether_type) {
991 RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG,
992 ("802.1X %s EAPOL pkt!!\n", (is_tx) ? "Tx" : "Rx"));
993
994 if (is_tx) {
995 rtlpriv->ra.is_special_data = true;
996 rtl_lps_leave(hw);
997 ppsc->last_delaylps_stamp_jiffies = jiffies;
998 }
999
1000 return true;
1001 } else if (0x86DD == ether_type) {
1002 return true;
1003 }
1004
1005 end:
1006 rtlpriv->ra.is_special_data = false;
1007 return false;
1008 }
1009
1010 /*********************************************************
1011 *
1012 * functions called by core.c
1013 *
1014 *********************************************************/
1015 int rtl_tx_agg_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1016 struct ieee80211_sta *sta, u16 tid, u16 *ssn)
1017 {
1018 struct rtl_priv *rtlpriv = rtl_priv(hw);
1019 struct rtl_tid_data *tid_data;
1020 struct rtl_sta_info *sta_entry = NULL;
1021
1022 if (sta == NULL)
1023 return -EINVAL;
1024
1025 if (unlikely(tid >= MAX_TID_COUNT))
1026 return -EINVAL;
1027
1028 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1029 if (!sta_entry)
1030 return -ENXIO;
1031 tid_data = &sta_entry->tids[tid];
1032
1033 RT_TRACE(COMP_SEND, DBG_DMESG,
1034 ("on ra = %pM tid = %d seq:%d\n", sta->addr, tid,
1035 tid_data->seq_number));
1036
1037 *ssn = tid_data->seq_number;
1038 tid_data->agg.agg_state = RTL_AGG_START;
1039
1040 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1041 return 0;
1042 }
1043
1044 int rtl_tx_agg_stop(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1045 struct ieee80211_sta *sta, u16 tid)
1046 {
1047 struct rtl_priv *rtlpriv = rtl_priv(hw);
1048 struct rtl_tid_data *tid_data;
1049 struct rtl_sta_info *sta_entry = NULL;
1050
1051 if (sta == NULL)
1052 return -EINVAL;
1053
1054 if (!sta->addr) {
1055 RT_TRACE(COMP_ERR, DBG_EMERG, ("ra = NULL\n"));
1056 return -EINVAL;
1057 }
1058
1059 RT_TRACE(COMP_SEND, DBG_DMESG,
1060 ("on ra = %pM tid = %d\n", sta->addr, tid));
1061
1062 if (unlikely(tid >= MAX_TID_COUNT))
1063 return -EINVAL;
1064
1065 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1066 tid_data = &sta_entry->tids[tid];
1067 sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP;
1068
1069 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1070 return 0;
1071 }
1072
1073 int rtl_rx_agg_start(struct ieee80211_hw *hw,
1074 struct ieee80211_sta *sta, u16 tid)
1075 {
1076 struct rtl_priv *rtlpriv = rtl_priv(hw);
1077 struct rtl_tid_data *tid_data;
1078 struct rtl_sta_info *sta_entry = NULL;
1079
1080 if (sta == NULL)
1081 return -EINVAL;
1082
1083 if (unlikely(tid >= MAX_TID_COUNT))
1084 return -EINVAL;
1085
1086 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1087 if (!sta_entry)
1088 return -ENXIO;
1089 tid_data = &sta_entry->tids[tid];
1090
1091 RT_TRACE(COMP_RECV, DBG_DMESG,
1092 ("on ra = %pM tid = %d seq:%d\n", sta->addr, tid,
1093 tid_data->seq_number));
1094
1095 tid_data->agg.rx_agg_state = RTL_RX_AGG_START;
1096 return 0;
1097 }
1098
1099 int rtl_rx_agg_stop(struct ieee80211_hw *hw,
1100 struct ieee80211_sta *sta, u16 tid)
1101 {
1102 struct rtl_priv *rtlpriv = rtl_priv(hw);
1103 struct rtl_tid_data *tid_data;
1104 struct rtl_sta_info *sta_entry = NULL;
1105
1106 if (sta == NULL)
1107 return -EINVAL;
1108
1109 if (!sta->addr) {
1110 RT_TRACE(COMP_ERR, DBG_EMERG, ("ra = NULL\n"));
1111 return -EINVAL;
1112 }
1113
1114 RT_TRACE(COMP_SEND, DBG_DMESG,
1115 ("on ra = %pM tid = %d\n", sta->addr, tid));
1116
1117 if (unlikely(tid >= MAX_TID_COUNT))
1118 return -EINVAL;
1119
1120 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1121 tid_data = &sta_entry->tids[tid];
1122 sta_entry->tids[tid].agg.rx_agg_state = RTL_RX_AGG_STOP;
1123
1124 return 0;
1125 }
1126 int rtl_tx_agg_oper(struct ieee80211_hw *hw,
1127 struct ieee80211_sta *sta, u16 tid)
1128 {
1129 struct rtl_priv *rtlpriv = rtl_priv(hw);
1130 struct rtl_tid_data *tid_data;
1131 struct rtl_sta_info *sta_entry = NULL;
1132
1133 if (sta == NULL)
1134 return -EINVAL;
1135
1136 if (!sta->addr) {
1137 RT_TRACE(COMP_ERR, DBG_EMERG, ("ra = NULL\n"));
1138 return -EINVAL;
1139 }
1140
1141 RT_TRACE(COMP_SEND, DBG_DMESG,
1142 ("on ra = %pM tid = %d\n", sta->addr, tid));
1143
1144 if (unlikely(tid >= MAX_TID_COUNT))
1145 return -EINVAL;
1146
1147 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1148 tid_data = &sta_entry->tids[tid];
1149 sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL;
1150
1151 return 0;
1152 }
1153
1154 /*********************************************************
1155 *
1156 * wq & timer callback functions
1157 *
1158 *********************************************************/
1159 /* this function is used for roaming */
1160 void rtl_beacon_statistic(struct ieee80211_hw *hw, struct sk_buff *skb)
1161 {
1162 struct rtl_priv *rtlpriv = rtl_priv(hw);
1163 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1164
1165 if (rtlpriv->mac80211.opmode != NL80211_IFTYPE_STATION)
1166 return;
1167
1168 if (rtlpriv->mac80211.link_state < MAC80211_LINKED)
1169 return;
1170
1171 /* check if this really is a beacon */
1172 if (!ieee80211_is_beacon(hdr->frame_control) &&
1173 !ieee80211_is_probe_resp(hdr->frame_control))
1174 return;
1175
1176 /* min. beacon length + FCS_LEN */
1177 if (skb->len <= 40 + FCS_LEN)
1178 return;
1179
1180 /* and only beacons from the associated BSSID, please */
1181 if (ether_addr_equal(hdr->addr3, rtlpriv->mac80211.bssid))
1182 return;
1183
1184 rtlpriv->link_info.bcn_rx_inperiod++;
1185 }
1186
1187 void rtl_watchdog_wq_callback(void *data)
1188 {
1189 struct rtl_works *rtlworks = container_of_dwork_rtl(data,
1190 struct rtl_works,
1191 watchdog_wq);
1192 struct ieee80211_hw *hw = rtlworks->hw;
1193 struct rtl_priv *rtlpriv = rtl_priv(hw);
1194 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1195 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1196 bool b_busytraffic = false;
1197 bool b_tx_busy_traffic = false;
1198 bool b_rx_busy_traffic = false;
1199 bool b_higher_busytraffic = false;
1200 bool b_higher_busyrxtraffic = false;
1201 u8 idx, tid;
1202 u32 rx_cnt_inp4eriod = 0;
1203 u32 tx_cnt_inp4eriod = 0;
1204 u32 aver_rx_cnt_inperiod = 0;
1205 u32 aver_tx_cnt_inperiod = 0;
1206 u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0};
1207 u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0};
1208 bool benter_ps = false;
1209
1210 if (is_hal_stop(rtlhal))
1211 return;
1212
1213 /* <1> Determine if action frame is allowed */
1214 if (mac->link_state > MAC80211_NOLINK) {
1215 if (mac->cnt_after_linked < 20)
1216 mac->cnt_after_linked++;
1217 } else {
1218 mac->cnt_after_linked = 0;
1219 }
1220
1221 /* <2> to check if traffic busy, if
1222 * busytraffic we don't change channel */
1223 if (mac->link_state >= MAC80211_LINKED) {
1224
1225 /* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */
1226 for (idx = 0; idx <= 2; idx++) {
1227 rtlpriv->link_info.num_rx_in4period[idx] =
1228 rtlpriv->link_info.num_rx_in4period[idx + 1];
1229 rtlpriv->link_info.num_tx_in4period[idx] =
1230 rtlpriv->link_info.num_tx_in4period[idx + 1];
1231 }
1232 rtlpriv->link_info.num_rx_in4period[3] =
1233 rtlpriv->link_info.num_rx_inperiod;
1234 rtlpriv->link_info.num_tx_in4period[3] =
1235 rtlpriv->link_info.num_tx_inperiod;
1236 for (idx = 0; idx <= 3; idx++) {
1237 rx_cnt_inp4eriod +=
1238 rtlpriv->link_info.num_rx_in4period[idx];
1239 tx_cnt_inp4eriod +=
1240 rtlpriv->link_info.num_tx_in4period[idx];
1241 }
1242 aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4;
1243 aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4;
1244
1245 /* (2) check traffic busy */
1246 if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100) {
1247 b_busytraffic = true;
1248 if (aver_rx_cnt_inperiod > aver_tx_cnt_inperiod)
1249 b_rx_busy_traffic = true;
1250 else
1251 b_tx_busy_traffic = false;
1252 }
1253
1254 /* Higher Tx/Rx data. */
1255 if (aver_rx_cnt_inperiod > 4000 ||
1256 aver_tx_cnt_inperiod > 4000) {
1257 b_higher_busytraffic = true;
1258
1259 /* Extremely high Rx data. */
1260 if (aver_rx_cnt_inperiod > 5000)
1261 b_higher_busyrxtraffic = true;
1262 }
1263
1264 /* check every tid's tx traffic */
1265 for (tid = 0; tid <= 7; tid++) {
1266 for (idx = 0; idx <= 2; idx++)
1267 rtlpriv->link_info.tidtx_in4period[tid][idx] =
1268 rtlpriv->link_info.tidtx_in4period[tid]
1269 [idx + 1];
1270 rtlpriv->link_info.tidtx_in4period[tid][3] =
1271 rtlpriv->link_info.tidtx_inperiod[tid];
1272
1273 for (idx = 0; idx <= 3; idx++)
1274 tidtx_inp4eriod[tid] +=
1275 rtlpriv->link_info.tidtx_in4period[tid][idx];
1276 aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4;
1277 if (aver_tidtx_inperiod[tid] > 5000)
1278 rtlpriv->link_info.higher_busytxtraffic[tid] =
1279 true;
1280 else
1281 rtlpriv->link_info.higher_busytxtraffic[tid] =
1282 false;
1283 }
1284
1285 if (((rtlpriv->link_info.num_rx_inperiod +
1286 rtlpriv->link_info.num_tx_inperiod) > 8) ||
1287 (rtlpriv->link_info.num_rx_inperiod > 2))
1288 benter_ps = false;
1289 else
1290 benter_ps = true;
1291
1292 /* LeisurePS only work in infra mode. */
1293 if (benter_ps)
1294 rtl_lps_enter(hw);
1295 else
1296 rtl_lps_leave(hw);
1297 }
1298
1299 rtlpriv->link_info.num_rx_inperiod = 0;
1300 rtlpriv->link_info.num_tx_inperiod = 0;
1301 for (tid = 0; tid <= 7; tid++)
1302 rtlpriv->link_info.tidtx_inperiod[tid] = 0;
1303
1304 rtlpriv->link_info.b_busytraffic = b_busytraffic;
1305 rtlpriv->link_info.b_rx_busy_traffic = b_rx_busy_traffic;
1306 rtlpriv->link_info.b_tx_busy_traffic = b_tx_busy_traffic;
1307 rtlpriv->link_info.b_higher_busytraffic = b_higher_busytraffic;
1308 rtlpriv->link_info.b_higher_busyrxtraffic = b_higher_busyrxtraffic;
1309
1310 /* <3> DM */
1311 rtlpriv->cfg->ops->dm_watchdog(hw);
1312
1313 /* <4> roaming */
1314 if (mac->link_state == MAC80211_LINKED &&
1315 mac->opmode == NL80211_IFTYPE_STATION) {
1316 if ((rtlpriv->link_info.bcn_rx_inperiod +
1317 rtlpriv->link_info.num_rx_inperiod) == 0) {
1318 rtlpriv->link_info.roam_times++;
1319 RT_TRACE(COMP_ERR, DBG_DMESG, ("AP off for %d s\n",
1320 (rtlpriv->link_info.roam_times * 2)));
1321
1322 /* if we can't recv beacon for 10s,
1323 * we should reconnect this AP */
1324 if (rtlpriv->link_info.roam_times >= 5) {
1325 RT_TRACE(COMP_ERR, DBG_EMERG,
1326 ("AP off, try to reconnect now\n"));
1327 rtlpriv->link_info.roam_times = 0;
1328 ieee80211_connection_loss(rtlpriv->mac80211.vif);
1329 }
1330 } else {
1331 rtlpriv->link_info.roam_times = 0;
1332 }
1333 }
1334 rtlpriv->link_info.bcn_rx_inperiod = 0;
1335 }
1336
1337 void rtl_watch_dog_timer_callback(unsigned long data)
1338 {
1339 struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
1340 struct rtl_priv *rtlpriv = rtl_priv(hw);
1341
1342 queue_delayed_work(rtlpriv->works.rtl_wq,
1343 &rtlpriv->works.watchdog_wq, 0);
1344
1345 mod_timer(&rtlpriv->works.watchdog_timer,
1346 jiffies + MSECS(RTL_WATCH_DOG_TIME));
1347 }
1348 void rtl_fwevt_wq_callback(void *data)
1349 {
1350 struct rtl_works *rtlworks =
1351 container_of_dwork_rtl(data, struct rtl_works, fwevt_wq);
1352 struct ieee80211_hw *hw = rtlworks->hw;
1353 struct rtl_priv *rtlpriv = rtl_priv(hw);
1354
1355 rtlpriv->cfg->ops->c2h_command_handle(hw);
1356 }
1357 void rtl_easy_concurrent_retrytimer_callback(unsigned long data)
1358 {
1359 struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
1360 struct rtl_priv *rtlpriv = rtl_priv(hw);
1361 struct rtl_priv *buddy_priv = rtlpriv->buddy_priv;
1362
1363 if (buddy_priv == NULL)
1364 return;
1365
1366 rtlpriv->cfg->ops->dualmac_easy_concurrent(hw);
1367 }
1368 /*********************************************************
1369 *
1370 * frame process functions
1371 *
1372 *********************************************************/
1373 u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie)
1374 {
1375 struct ieee80211_mgmt *mgmt = (void *)data;
1376 u8 *pos, *end;
1377
1378 pos = (u8 *)mgmt->u.beacon.variable;
1379 end = data + len;
1380 while (pos < end) {
1381 if (pos + 2 + pos[1] > end)
1382 return NULL;
1383
1384 if (pos[0] == ie)
1385 return pos;
1386
1387 pos += 2 + pos[1];
1388 }
1389 return NULL;
1390 }
1391
1392 /* when we use 2 rx ants we send IEEE80211_SMPS_OFF */
1393 /* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */
1394 struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw,
1395 enum ieee80211_smps_mode smps,
1396 u8 *da, u8 *bssid)
1397 {
1398 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1399 struct sk_buff *skb;
1400 struct ieee80211_mgmt_compat *action_frame;
1401
1402 /* 27 = header + category + action + smps mode */
1403 skb = dev_alloc_skb(27 + hw->extra_tx_headroom);
1404 if (!skb)
1405 return NULL;
1406
1407 skb_reserve(skb, hw->extra_tx_headroom);
1408 action_frame = (void *)skb_put(skb, 27);
1409 memset(action_frame, 0, 27);
1410 memcpy(action_frame->da, da, ETH_ALEN);
1411 memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN);
1412 memcpy(action_frame->bssid, bssid, ETH_ALEN);
1413 action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1414 IEEE80211_STYPE_ACTION);
1415 action_frame->u.action.category = WLAN_CATEGORY_HT;
1416 action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
1417 switch (smps) {
1418 case IEEE80211_SMPS_AUTOMATIC:/* 0 */
1419 case IEEE80211_SMPS_NUM_MODES:/* 4 */
1420 WARN_ON(1);
1421 case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/
1422 action_frame->u.action.u.ht_smps.smps_control =
1423 WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */
1424 break;
1425 case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/
1426 action_frame->u.action.u.ht_smps.smps_control =
1427 WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */
1428 break;
1429 case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/
1430 action_frame->u.action.u.ht_smps.smps_control =
1431 WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */
1432 break;
1433 }
1434
1435 return skb;
1436 }
1437
1438 int rtl_send_smps_action(struct ieee80211_hw *hw,
1439 struct ieee80211_sta *sta,
1440 enum ieee80211_smps_mode smps)
1441 {
1442 struct rtl_priv *rtlpriv = rtl_priv(hw);
1443 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1444 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1445 struct sk_buff *skb = NULL;
1446 struct rtl_tcb_desc tcb_desc;
1447 u8 bssid[ETH_ALEN] = {0};
1448
1449 memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
1450
1451 if (rtlpriv->mac80211.act_scanning)
1452 goto err_free;
1453
1454 if (!sta)
1455 goto err_free;
1456
1457 if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON))
1458 goto err_free;
1459
1460 if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status))
1461 goto err_free;
1462
1463 if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP)
1464 memcpy(bssid, rtlpriv->efuse.dev_addr, ETH_ALEN);
1465 else
1466 memcpy(bssid, rtlpriv->mac80211.bssid, ETH_ALEN);
1467
1468 skb = rtl_make_smps_action(hw, smps, sta->addr, bssid);
1469 /* this is a type = mgmt * stype = action frame */
1470 if (skb) {
1471 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1472 struct rtl_sta_info *sta_entry =
1473 (struct rtl_sta_info *) sta->drv_priv;
1474 sta_entry->mimo_ps = smps;
1475 /* rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0); */
1476
1477 info->control.rates[0].idx = 0;
1478 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
1479 info->band = hw->conf.chandef.chan->band;
1480 #else
1481 info->band = hw->conf.channel->band;
1482 #endif
1483 /*<delete in kernel start>*/
1484 #if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0))
1485 info->control.sta = sta;
1486 rtlpriv->intf_ops->adapter_tx(hw, skb, &tcb_desc);
1487 #else
1488 /*<delete in kernel end>*/
1489 rtlpriv->intf_ops->adapter_tx(hw, sta, skb, &tcb_desc);
1490 /*<delete in kernel start>*/
1491 #endif
1492 /*<delete in kernel end>*/
1493 }
1494 return 1;
1495
1496 err_free:
1497 return 0;
1498 }
1499 /* EXPORT_SYMBOL(rtl_send_smps_action); */
1500
1501 /* because mac80211 have issues when can receive del ba
1502 * so here we just make a fake del_ba if we receive a ba_req
1503 * but rx_agg was opened to let mac80211 release some ba
1504 * related resources, so please this del_ba for tx */
1505 struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw,
1506 u8 *sa, u8 *bssid, u16 tid)
1507 {
1508 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1509 struct sk_buff *skb;
1510 struct ieee80211_mgmt *action_frame;
1511 u16 params;
1512
1513 /* 27 = header + category + action + smps mode */
1514 skb = dev_alloc_skb(34 + hw->extra_tx_headroom);
1515 if (!skb)
1516 return NULL;
1517
1518 skb_reserve(skb, hw->extra_tx_headroom);
1519 action_frame = (void *)skb_put(skb, 34);
1520 memset(action_frame, 0, 34);
1521 memcpy(action_frame->sa, sa, ETH_ALEN);
1522 memcpy(action_frame->da, rtlefuse->dev_addr, ETH_ALEN);
1523 memcpy(action_frame->bssid, bssid, ETH_ALEN);
1524 action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1525 IEEE80211_STYPE_ACTION);
1526 action_frame->u.action.category = WLAN_CATEGORY_BACK;
1527 action_frame->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
1528 params = (u16)(1 << 11); /* bit 11 initiator */
1529 params |= (u16)(tid << 12); /* bit 15:12 TID number */
1530
1531 action_frame->u.action.u.delba.params = cpu_to_le16(params);
1532 action_frame->u.action.u.delba.reason_code =
1533 cpu_to_le16(WLAN_REASON_QSTA_TIMEOUT);
1534
1535 return skb;
1536 }
1537
1538 /*********************************************************
1539 *
1540 * IOT functions
1541 *
1542 *********************************************************/
1543 static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw,
1544 struct octet_string vendor_ie)
1545 {
1546 struct rtl_priv *rtlpriv = rtl_priv(hw);
1547 bool matched = false;
1548 static u8 athcap_1[] = { 0x00, 0x03, 0x7F };
1549 static u8 athcap_2[] = { 0x00, 0x13, 0x74 };
1550 static u8 broadcap_1[] = { 0x00, 0x10, 0x18 };
1551 static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 };
1552 static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 };
1553 static u8 racap[] = { 0x00, 0x0c, 0x43 };
1554 static u8 ciscocap[] = { 0x00, 0x40, 0x96 };
1555 static u8 marvcap[] = { 0x00, 0x50, 0x43 };
1556
1557 if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 ||
1558 memcmp(vendor_ie.octet, athcap_2, 3) == 0) {
1559 rtlpriv->mac80211.vendor = PEER_ATH;
1560 matched = true;
1561 } else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 ||
1562 memcmp(vendor_ie.octet, broadcap_2, 3) == 0 ||
1563 memcmp(vendor_ie.octet, broadcap_3, 3) == 0) {
1564 rtlpriv->mac80211.vendor = PEER_BROAD;
1565 matched = true;
1566 } else if (memcmp(vendor_ie.octet, racap, 3) == 0) {
1567 rtlpriv->mac80211.vendor = PEER_RAL;
1568 matched = true;
1569 } else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) {
1570 rtlpriv->mac80211.vendor = PEER_CISCO;
1571 matched = true;
1572 } else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) {
1573 rtlpriv->mac80211.vendor = PEER_MARV;
1574 matched = true;
1575 }
1576
1577 return matched;
1578 }
1579
1580 bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data,
1581 unsigned int len)
1582 {
1583 struct ieee80211_mgmt *mgmt = (void *)data;
1584 struct octet_string vendor_ie;
1585 u8 *pos, *end;
1586
1587 pos = (u8 *)mgmt->u.beacon.variable;
1588 end = data + len;
1589 while (pos < end) {
1590 if (pos[0] == 221) {
1591 vendor_ie.length = pos[1];
1592 vendor_ie.octet = &pos[2];
1593 if (rtl_chk_vendor_ouisub(hw, vendor_ie))
1594 return true;
1595 }
1596
1597 if (pos + 2 + pos[1] > end)
1598 return false;
1599
1600 pos += 2 + pos[1];
1601 }
1602 return false;
1603 }
1604
1605 void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len)
1606 {
1607 struct rtl_priv *rtlpriv = rtl_priv(hw);
1608 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1609 struct ieee80211_hdr *hdr = (void *)data;
1610 u32 vendor = PEER_UNKNOWN;
1611
1612 static u8 ap3_1[3] = { 0x00, 0x14, 0xbf };
1613 static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 };
1614 static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e };
1615 static u8 ap4_1[3] = { 0x00, 0x90, 0xcc };
1616 static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e };
1617 static u8 ap4_3[3] = { 0x00, 0x18, 0x02 };
1618 static u8 ap4_4[3] = { 0x00, 0x17, 0x3f };
1619 static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf };
1620 static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 };
1621 static u8 ap5_2[3] = { 0x00, 0x21, 0x91 };
1622 static u8 ap5_3[3] = { 0x00, 0x24, 0x01 };
1623 static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 };
1624 static u8 ap5_5[3] = { 0x00, 0x17, 0x9A };
1625 static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 };
1626 static u8 ap6_1[3] = { 0x00, 0x17, 0x94 };
1627 static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 };
1628
1629 if (mac->opmode != NL80211_IFTYPE_STATION)
1630 return;
1631
1632 if (mac->link_state == MAC80211_NOLINK) {
1633 mac->vendor = PEER_UNKNOWN;
1634 return;
1635 }
1636
1637 if (mac->cnt_after_linked > 2)
1638 return;
1639
1640 /* check if this really is a beacon */
1641 if (!ieee80211_is_beacon(hdr->frame_control))
1642 return;
1643
1644 /* min. beacon length + FCS_LEN */
1645 if (len <= 40 + FCS_LEN)
1646 return;
1647
1648 /* and only beacons from the associated BSSID, please */
1649 if (ether_addr_equal(hdr->addr3, rtlpriv->mac80211.bssid))
1650 return;
1651
1652 if (rtl_find_221_ie(hw, data, len))
1653 vendor = mac->vendor;
1654
1655 if ((memcmp(mac->bssid, ap5_1, 3) == 0) ||
1656 (memcmp(mac->bssid, ap5_2, 3) == 0) ||
1657 (memcmp(mac->bssid, ap5_3, 3) == 0) ||
1658 (memcmp(mac->bssid, ap5_4, 3) == 0) ||
1659 (memcmp(mac->bssid, ap5_5, 3) == 0) ||
1660 (memcmp(mac->bssid, ap5_6, 3) == 0) ||
1661 vendor == PEER_ATH) {
1662 vendor = PEER_ATH;
1663 RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>ath find\n"));
1664 } else if ((memcmp(mac->bssid, ap4_4, 3) == 0) ||
1665 (memcmp(mac->bssid, ap4_5, 3) == 0) ||
1666 (memcmp(mac->bssid, ap4_1, 3) == 0) ||
1667 (memcmp(mac->bssid, ap4_2, 3) == 0) ||
1668 (memcmp(mac->bssid, ap4_3, 3) == 0) ||
1669 vendor == PEER_RAL) {
1670 RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>ral find\n"));
1671 vendor = PEER_RAL;
1672 } else if (memcmp(mac->bssid, ap6_1, 3) == 0 ||
1673 vendor == PEER_CISCO) {
1674 vendor = PEER_CISCO;
1675 RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>cisco find\n"));
1676 } else if ((memcmp(mac->bssid, ap3_1, 3) == 0) ||
1677 (memcmp(mac->bssid, ap3_2, 3) == 0) ||
1678 (memcmp(mac->bssid, ap3_3, 3) == 0) ||
1679 vendor == PEER_BROAD) {
1680 RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>broad find\n"));
1681 vendor = PEER_BROAD;
1682 } else if (memcmp(mac->bssid, ap7_1, 3) == 0 ||
1683 vendor == PEER_MARV) {
1684 vendor = PEER_MARV;
1685 RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>marv find\n"));
1686 }
1687
1688 mac->vendor = vendor;
1689 }
1690
1691 /*********************************************************
1692 *
1693 * sysfs functions
1694 *
1695 *********************************************************/
1696 static ssize_t rtl_show_debug_level(struct device *d,
1697 struct device_attribute *attr, char *buf)
1698 {
1699 struct ieee80211_hw *hw = dev_get_drvdata(d);
1700 struct rtl_priv *rtlpriv = rtl_priv(hw);
1701
1702 return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel);
1703 }
1704
1705 static ssize_t rtl_store_debug_level(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708 {
1709 struct ieee80211_hw *hw = dev_get_drvdata(d);
1710 struct rtl_priv *rtlpriv = rtl_priv(hw);
1711 unsigned long val;
1712 int ret;
1713
1714 ret = kstrtoul(buf, 0, &val);
1715 if (ret) {
1716 printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf);
1717 } else {
1718 rtlpriv->dbg.global_debuglevel = val;
1719 printk(KERN_DEBUG "debuglevel:%x\n",
1720 rtlpriv->dbg.global_debuglevel);
1721 }
1722
1723 return strnlen(buf, count);
1724 }
1725
1726 static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO,
1727 rtl_show_debug_level, rtl_store_debug_level);
1728
1729 static struct attribute *rtl_sysfs_entries[] = {
1730
1731 &dev_attr_debug_level.attr,
1732
1733 NULL
1734 };
1735
1736 /*
1737 * "name" is folder name witch will be
1738 * put in device directory like :
1739 * sys/devices/pci0000:00/0000:00:1c.4/
1740 * 0000:06:00.0/rtl_sysfs
1741 */
1742 struct attribute_group rtl_attribute_group = {
1743 .name = "rtlsysfs",
1744 .attrs = rtl_sysfs_entries,
1745 };
1746
1747 #ifdef VIF_TODO
1748 /*********************************************************
1749 *
1750 * vif functions
1751 *
1752 *********************************************************/
1753 static inline struct ieee80211_vif *
1754 rtl_get_vif(struct rtl_vif_info *vif_priv)
1755 {
1756 return container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1757 }
1758
1759 /* Protected by ar->mutex or RCU */
1760 struct ieee80211_vif *rtl_get_main_vif(struct ieee80211_hw *hw)
1761 {
1762 struct rtl_priv *rtlpriv = rtl_priv(hw);
1763 struct rtl_vif_info *cvif;
1764
1765 list_for_each_entry_rcu(cvif, &rtlpriv->vif_priv.vif_list, list) {
1766 if (cvif->active)
1767 return rtl_get_vif(cvif);
1768 }
1769
1770 return NULL;
1771 }
1772
1773 static inline bool is_main_vif(struct ieee80211_hw *hw,
1774 struct ieee80211_vif *vif)
1775 {
1776 bool ret;
1777
1778 rcu_read_lock();
1779 ret = (rtl_get_main_vif(hw) == vif);
1780 rcu_read_unlock();
1781 return ret;
1782 }
1783
1784 bool rtl_set_vif_info(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1785 {
1786 struct rtl_vif_info *vif_info = (void *) vif->drv_priv;
1787 struct rtl_priv *rtlpriv = rtl_priv(hw);
1788 int vif_id = -1;
1789
1790 if (rtlpriv->vif_priv.vifs >= MAX_VIRTUAL_MAC) {
1791 RT_TRACE(COMP_ERR, DBG_WARNING,
1792 ("vif number can not bigger than %d, now vifs is:%d\n",
1793 MAX_VIRTUAL_MAC, rtlpriv->vif_priv.vifs));
1794 return false;
1795 }
1796
1797 rcu_read_lock();
1798 vif_id = bitmap_find_free_region(&rtlpriv->vif_priv.vif_bitmap,
1799 MAX_VIRTUAL_MAC, 0);
1800 RT_TRACE(COMP_MAC80211, DBG_DMESG,
1801 ("%s vid_id:%d\n", __func__, vif_id));
1802
1803 if (vif_id < 0) {
1804 rcu_read_unlock();
1805 return false;
1806 }
1807
1808 BUG_ON(rtlpriv->vif_priv.vif[vif_id].id != vif_id);
1809 vif_info->active = true;
1810 vif_info->id = vif_id;
1811 vif_info->enable_beacon = false;
1812 rtlpriv->vif_priv.vifs++;
1813 if (rtlpriv->vif_priv.vifs > 1) {
1814 rtlpriv->psc.b_inactiveps = false;
1815 rtlpriv->psc.b_swctrl_lps = false;
1816 rtlpriv->psc.b_fwctrl_lps = false;
1817 }
1818
1819 list_add_tail_rcu(&vif_info->list, &rtlpriv->vif_priv.vif_list);
1820 rcu_assign_pointer(rtlpriv->vif_priv.vif[vif_id].vif, vif);
1821
1822 RT_TRACE(COMP_MAC80211, DBG_DMESG, ("vifaddress:%p %p %p\n",
1823 rtlpriv->vif_priv.vif[vif_id].vif, vif, rtl_get_main_vif(hw)));
1824
1825 rcu_read_unlock();
1826
1827 return true;
1828 }
1829 #endif
1830
1831
1832 #if 0
1833 MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>");
1834 MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>");
1835 MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>");
1836 MODULE_LICENSE("GPL");
1837 MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core");
1838 #endif
1839 struct rtl_global_var global_var = {};
1840
1841 int rtl_core_module_init(void)
1842 {
1843 if (rtl_rate_control_register())
1844 printk(KERN_DEBUG "rtl: Unable to register rtl_rc, use default RC !!\n");
1845
1846 /* add proc for debug */
1847 rtl_proc_add_topdir();
1848
1849 /* init some global vars */
1850 INIT_LIST_HEAD(&global_var.glb_priv_list);
1851 spin_lock_init(&global_var.glb_list_lock);
1852
1853 return 0;
1854 }
1855
1856 void rtl_core_module_exit(void)
1857 {
1858 /*RC*/
1859 rtl_rate_control_unregister();
1860
1861 /* add proc for debug */
1862 rtl_proc_remove_topdir();
1863 }
1864
1865 #if 0
1866 module_init(rtl_core_module_init);
1867 module_exit(rtl_core_module_exit);
1868 #endif
This page took 0.074033 seconds and 6 git commands to generate.