Merge branch 'next/drivers' into HEAD
[deliverable/linux.git] / drivers / staging / vme / devices / vme_user.c
1 /*
2 * VMEbus User access driver
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by:
8 * Tom Armistead and Ajit Prem
9 * Copyright 2004 Motorola Inc.
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 */
17
18 #include <linux/cdev.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/ioctl.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/pci.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/syscalls.h>
34 #include <linux/types.h>
35
36 #include <linux/io.h>
37 #include <linux/uaccess.h>
38 #include <linux/vme.h>
39
40 #include "vme_user.h"
41
42 static DEFINE_MUTEX(vme_user_mutex);
43 static const char driver_name[] = "vme_user";
44
45 static int bus[VME_USER_BUS_MAX];
46 static unsigned int bus_num;
47
48 /* Currently Documentation/devices.txt defines the following for VME:
49 *
50 * 221 char VME bus
51 * 0 = /dev/bus/vme/m0 First master image
52 * 1 = /dev/bus/vme/m1 Second master image
53 * 2 = /dev/bus/vme/m2 Third master image
54 * 3 = /dev/bus/vme/m3 Fourth master image
55 * 4 = /dev/bus/vme/s0 First slave image
56 * 5 = /dev/bus/vme/s1 Second slave image
57 * 6 = /dev/bus/vme/s2 Third slave image
58 * 7 = /dev/bus/vme/s3 Fourth slave image
59 * 8 = /dev/bus/vme/ctl Control
60 *
61 * It is expected that all VME bus drivers will use the
62 * same interface. For interface documentation see
63 * http://www.vmelinux.org/.
64 *
65 * However the VME driver at http://www.vmelinux.org/ is rather old and doesn't
66 * even support the tsi148 chipset (which has 8 master and 8 slave windows).
67 * We'll run with this for now as far as possible, however it probably makes
68 * sense to get rid of the old mappings and just do everything dynamically.
69 *
70 * So for now, we'll restrict the driver to providing 4 masters and 4 slaves as
71 * defined above and try to support at least some of the interface from
72 * http://www.vmelinux.org/ as an alternative the driver can be written
73 * providing a saner interface later.
74 *
75 * The vmelinux.org driver never supported slave images, the devices reserved
76 * for slaves were repurposed to support all 8 master images on the UniverseII!
77 * We shall support 4 masters and 4 slaves with this driver.
78 */
79 #define VME_MAJOR 221 /* VME Major Device Number */
80 #define VME_DEVS 9 /* Number of dev entries */
81
82 #define MASTER_MINOR 0
83 #define MASTER_MAX 3
84 #define SLAVE_MINOR 4
85 #define SLAVE_MAX 7
86 #define CONTROL_MINOR 8
87
88 #define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */
89
90 /*
91 * Structure to handle image related parameters.
92 */
93 struct image_desc {
94 void *kern_buf; /* Buffer address in kernel space */
95 dma_addr_t pci_buf; /* Buffer address in PCI address space */
96 unsigned long long size_buf; /* Buffer size */
97 struct mutex mutex; /* Mutex for locking image */
98 struct device *device; /* Sysfs device */
99 struct vme_resource *resource; /* VME resource */
100 int users; /* Number of current users */
101 };
102 static struct image_desc image[VME_DEVS];
103
104 struct driver_stats {
105 unsigned long reads;
106 unsigned long writes;
107 unsigned long ioctls;
108 unsigned long irqs;
109 unsigned long berrs;
110 unsigned long dmaErrors;
111 unsigned long timeouts;
112 unsigned long external;
113 };
114 static struct driver_stats statistics;
115
116 static struct cdev *vme_user_cdev; /* Character device */
117 static struct class *vme_user_sysfs_class; /* Sysfs class */
118 static struct vme_dev *vme_user_bridge; /* Pointer to user device */
119
120
121 static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR,
122 MASTER_MINOR, MASTER_MINOR,
123 SLAVE_MINOR, SLAVE_MINOR,
124 SLAVE_MINOR, SLAVE_MINOR,
125 CONTROL_MINOR
126 };
127
128
129 static int vme_user_open(struct inode *, struct file *);
130 static int vme_user_release(struct inode *, struct file *);
131 static ssize_t vme_user_read(struct file *, char __user *, size_t, loff_t *);
132 static ssize_t vme_user_write(struct file *, const char __user *, size_t,
133 loff_t *);
134 static loff_t vme_user_llseek(struct file *, loff_t, int);
135 static long vme_user_unlocked_ioctl(struct file *, unsigned int, unsigned long);
136
137 static int vme_user_match(struct vme_dev *);
138 static int __devinit vme_user_probe(struct vme_dev *);
139 static int __devexit vme_user_remove(struct vme_dev *);
140
141 static const struct file_operations vme_user_fops = {
142 .open = vme_user_open,
143 .release = vme_user_release,
144 .read = vme_user_read,
145 .write = vme_user_write,
146 .llseek = vme_user_llseek,
147 .unlocked_ioctl = vme_user_unlocked_ioctl,
148 };
149
150
151 /*
152 * Reset all the statistic counters
153 */
154 static void reset_counters(void)
155 {
156 statistics.reads = 0;
157 statistics.writes = 0;
158 statistics.ioctls = 0;
159 statistics.irqs = 0;
160 statistics.berrs = 0;
161 statistics.dmaErrors = 0;
162 statistics.timeouts = 0;
163 }
164
165 static int vme_user_open(struct inode *inode, struct file *file)
166 {
167 int err;
168 unsigned int minor = MINOR(inode->i_rdev);
169
170 mutex_lock(&image[minor].mutex);
171 /* Allow device to be opened if a resource is needed and allocated. */
172 if (minor < CONTROL_MINOR && image[minor].resource == NULL) {
173 printk(KERN_ERR "No resources allocated for device\n");
174 err = -EINVAL;
175 goto err_res;
176 }
177
178 /* Increment user count */
179 image[minor].users++;
180
181 mutex_unlock(&image[minor].mutex);
182
183 return 0;
184
185 err_res:
186 mutex_unlock(&image[minor].mutex);
187
188 return err;
189 }
190
191 static int vme_user_release(struct inode *inode, struct file *file)
192 {
193 unsigned int minor = MINOR(inode->i_rdev);
194
195 mutex_lock(&image[minor].mutex);
196
197 /* Decrement user count */
198 image[minor].users--;
199
200 mutex_unlock(&image[minor].mutex);
201
202 return 0;
203 }
204
205 /*
206 * We are going ot alloc a page during init per window for small transfers.
207 * Small transfers will go VME -> buffer -> user space. Larger (more than a
208 * page) transfers will lock the user space buffer into memory and then
209 * transfer the data directly into the user space buffers.
210 */
211 static ssize_t resource_to_user(int minor, char __user *buf, size_t count,
212 loff_t *ppos)
213 {
214 ssize_t retval;
215 ssize_t copied = 0;
216
217 if (count <= image[minor].size_buf) {
218 /* We copy to kernel buffer */
219 copied = vme_master_read(image[minor].resource,
220 image[minor].kern_buf, count, *ppos);
221 if (copied < 0)
222 return (int)copied;
223
224 retval = __copy_to_user(buf, image[minor].kern_buf,
225 (unsigned long)copied);
226 if (retval != 0) {
227 copied = (copied - retval);
228 printk(KERN_INFO "User copy failed\n");
229 return -EINVAL;
230 }
231
232 } else {
233 /* XXX Need to write this */
234 printk(KERN_INFO "Currently don't support large transfers\n");
235 /* Map in pages from userspace */
236
237 /* Call vme_master_read to do the transfer */
238 return -EINVAL;
239 }
240
241 return copied;
242 }
243
244 /*
245 * We are going to alloc a page during init per window for small transfers.
246 * Small transfers will go user space -> buffer -> VME. Larger (more than a
247 * page) transfers will lock the user space buffer into memory and then
248 * transfer the data directly from the user space buffers out to VME.
249 */
250 static ssize_t resource_from_user(unsigned int minor, const char __user *buf,
251 size_t count, loff_t *ppos)
252 {
253 ssize_t retval;
254 ssize_t copied = 0;
255
256 if (count <= image[minor].size_buf) {
257 retval = __copy_from_user(image[minor].kern_buf, buf,
258 (unsigned long)count);
259 if (retval != 0)
260 copied = (copied - retval);
261 else
262 copied = count;
263
264 copied = vme_master_write(image[minor].resource,
265 image[minor].kern_buf, copied, *ppos);
266 } else {
267 /* XXX Need to write this */
268 printk(KERN_INFO "Currently don't support large transfers\n");
269 /* Map in pages from userspace */
270
271 /* Call vme_master_write to do the transfer */
272 return -EINVAL;
273 }
274
275 return copied;
276 }
277
278 static ssize_t buffer_to_user(unsigned int minor, char __user *buf,
279 size_t count, loff_t *ppos)
280 {
281 void *image_ptr;
282 ssize_t retval;
283
284 image_ptr = image[minor].kern_buf + *ppos;
285
286 retval = __copy_to_user(buf, image_ptr, (unsigned long)count);
287 if (retval != 0) {
288 retval = (count - retval);
289 printk(KERN_WARNING "Partial copy to userspace\n");
290 } else
291 retval = count;
292
293 /* Return number of bytes successfully read */
294 return retval;
295 }
296
297 static ssize_t buffer_from_user(unsigned int minor, const char __user *buf,
298 size_t count, loff_t *ppos)
299 {
300 void *image_ptr;
301 size_t retval;
302
303 image_ptr = image[minor].kern_buf + *ppos;
304
305 retval = __copy_from_user(image_ptr, buf, (unsigned long)count);
306 if (retval != 0) {
307 retval = (count - retval);
308 printk(KERN_WARNING "Partial copy to userspace\n");
309 } else
310 retval = count;
311
312 /* Return number of bytes successfully read */
313 return retval;
314 }
315
316 static ssize_t vme_user_read(struct file *file, char __user *buf, size_t count,
317 loff_t *ppos)
318 {
319 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
320 ssize_t retval;
321 size_t image_size;
322 size_t okcount;
323
324 if (minor == CONTROL_MINOR)
325 return 0;
326
327 mutex_lock(&image[minor].mutex);
328
329 /* XXX Do we *really* want this helper - we can use vme_*_get ? */
330 image_size = vme_get_size(image[minor].resource);
331
332 /* Ensure we are starting at a valid location */
333 if ((*ppos < 0) || (*ppos > (image_size - 1))) {
334 mutex_unlock(&image[minor].mutex);
335 return 0;
336 }
337
338 /* Ensure not reading past end of the image */
339 if (*ppos + count > image_size)
340 okcount = image_size - *ppos;
341 else
342 okcount = count;
343
344 switch (type[minor]) {
345 case MASTER_MINOR:
346 retval = resource_to_user(minor, buf, okcount, ppos);
347 break;
348 case SLAVE_MINOR:
349 retval = buffer_to_user(minor, buf, okcount, ppos);
350 break;
351 default:
352 retval = -EINVAL;
353 }
354
355 mutex_unlock(&image[minor].mutex);
356 if (retval > 0)
357 *ppos += retval;
358
359 return retval;
360 }
361
362 static ssize_t vme_user_write(struct file *file, const char __user *buf,
363 size_t count, loff_t *ppos)
364 {
365 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
366 ssize_t retval;
367 size_t image_size;
368 size_t okcount;
369
370 if (minor == CONTROL_MINOR)
371 return 0;
372
373 mutex_lock(&image[minor].mutex);
374
375 image_size = vme_get_size(image[minor].resource);
376
377 /* Ensure we are starting at a valid location */
378 if ((*ppos < 0) || (*ppos > (image_size - 1))) {
379 mutex_unlock(&image[minor].mutex);
380 return 0;
381 }
382
383 /* Ensure not reading past end of the image */
384 if (*ppos + count > image_size)
385 okcount = image_size - *ppos;
386 else
387 okcount = count;
388
389 switch (type[minor]) {
390 case MASTER_MINOR:
391 retval = resource_from_user(minor, buf, okcount, ppos);
392 break;
393 case SLAVE_MINOR:
394 retval = buffer_from_user(minor, buf, okcount, ppos);
395 break;
396 default:
397 retval = -EINVAL;
398 }
399
400 mutex_unlock(&image[minor].mutex);
401
402 if (retval > 0)
403 *ppos += retval;
404
405 return retval;
406 }
407
408 static loff_t vme_user_llseek(struct file *file, loff_t off, int whence)
409 {
410 loff_t absolute = -1;
411 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
412 size_t image_size;
413
414 if (minor == CONTROL_MINOR)
415 return -EINVAL;
416
417 mutex_lock(&image[minor].mutex);
418 image_size = vme_get_size(image[minor].resource);
419
420 switch (whence) {
421 case SEEK_SET:
422 absolute = off;
423 break;
424 case SEEK_CUR:
425 absolute = file->f_pos + off;
426 break;
427 case SEEK_END:
428 absolute = image_size + off;
429 break;
430 default:
431 mutex_unlock(&image[minor].mutex);
432 return -EINVAL;
433 break;
434 }
435
436 if ((absolute < 0) || (absolute >= image_size)) {
437 mutex_unlock(&image[minor].mutex);
438 return -EINVAL;
439 }
440
441 file->f_pos = absolute;
442
443 mutex_unlock(&image[minor].mutex);
444
445 return absolute;
446 }
447
448 /*
449 * The ioctls provided by the old VME access method (the one at vmelinux.org)
450 * are most certainly wrong as the effectively push the registers layout
451 * through to user space. Given that the VME core can handle multiple bridges,
452 * with different register layouts this is most certainly not the way to go.
453 *
454 * We aren't using the structures defined in the Motorola driver either - these
455 * are also quite low level, however we should use the definitions that have
456 * already been defined.
457 */
458 static int vme_user_ioctl(struct inode *inode, struct file *file,
459 unsigned int cmd, unsigned long arg)
460 {
461 struct vme_master master;
462 struct vme_slave slave;
463 struct vme_irq_id irq_req;
464 unsigned long copied;
465 unsigned int minor = MINOR(inode->i_rdev);
466 int retval;
467 dma_addr_t pci_addr;
468 void __user *argp = (void __user *)arg;
469
470 statistics.ioctls++;
471
472 switch (type[minor]) {
473 case CONTROL_MINOR:
474 switch (cmd) {
475 case VME_IRQ_GEN:
476 copied = copy_from_user(&irq_req, argp,
477 sizeof(struct vme_irq_id));
478 if (copied != 0) {
479 printk(KERN_WARNING "Partial copy from userspace\n");
480 return -EFAULT;
481 }
482
483 retval = vme_irq_generate(vme_user_bridge,
484 irq_req.level,
485 irq_req.statid);
486
487 return retval;
488 }
489 break;
490 case MASTER_MINOR:
491 switch (cmd) {
492 case VME_GET_MASTER:
493 memset(&master, 0, sizeof(struct vme_master));
494
495 /* XXX We do not want to push aspace, cycle and width
496 * to userspace as they are
497 */
498 retval = vme_master_get(image[minor].resource,
499 &master.enable, &master.vme_addr,
500 &master.size, &master.aspace,
501 &master.cycle, &master.dwidth);
502
503 copied = copy_to_user(argp, &master,
504 sizeof(struct vme_master));
505 if (copied != 0) {
506 printk(KERN_WARNING "Partial copy to "
507 "userspace\n");
508 return -EFAULT;
509 }
510
511 return retval;
512 break;
513
514 case VME_SET_MASTER:
515
516 copied = copy_from_user(&master, argp, sizeof(master));
517 if (copied != 0) {
518 printk(KERN_WARNING "Partial copy from "
519 "userspace\n");
520 return -EFAULT;
521 }
522
523 /* XXX We do not want to push aspace, cycle and width
524 * to userspace as they are
525 */
526 return vme_master_set(image[minor].resource,
527 master.enable, master.vme_addr, master.size,
528 master.aspace, master.cycle, master.dwidth);
529
530 break;
531 }
532 break;
533 case SLAVE_MINOR:
534 switch (cmd) {
535 case VME_GET_SLAVE:
536 memset(&slave, 0, sizeof(struct vme_slave));
537
538 /* XXX We do not want to push aspace, cycle and width
539 * to userspace as they are
540 */
541 retval = vme_slave_get(image[minor].resource,
542 &slave.enable, &slave.vme_addr,
543 &slave.size, &pci_addr, &slave.aspace,
544 &slave.cycle);
545
546 copied = copy_to_user(argp, &slave,
547 sizeof(struct vme_slave));
548 if (copied != 0) {
549 printk(KERN_WARNING "Partial copy to "
550 "userspace\n");
551 return -EFAULT;
552 }
553
554 return retval;
555 break;
556
557 case VME_SET_SLAVE:
558
559 copied = copy_from_user(&slave, argp, sizeof(slave));
560 if (copied != 0) {
561 printk(KERN_WARNING "Partial copy from "
562 "userspace\n");
563 return -EFAULT;
564 }
565
566 /* XXX We do not want to push aspace, cycle and width
567 * to userspace as they are
568 */
569 return vme_slave_set(image[minor].resource,
570 slave.enable, slave.vme_addr, slave.size,
571 image[minor].pci_buf, slave.aspace,
572 slave.cycle);
573
574 break;
575 }
576 break;
577 }
578
579 return -EINVAL;
580 }
581
582 static long
583 vme_user_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
584 {
585 int ret;
586
587 mutex_lock(&vme_user_mutex);
588 ret = vme_user_ioctl(file->f_path.dentry->d_inode, file, cmd, arg);
589 mutex_unlock(&vme_user_mutex);
590
591 return ret;
592 }
593
594
595 /*
596 * Unallocate a previously allocated buffer
597 */
598 static void buf_unalloc(int num)
599 {
600 if (image[num].kern_buf) {
601 #ifdef VME_DEBUG
602 printk(KERN_DEBUG "UniverseII:Releasing buffer at %p\n",
603 image[num].pci_buf);
604 #endif
605
606 vme_free_consistent(image[num].resource, image[num].size_buf,
607 image[num].kern_buf, image[num].pci_buf);
608
609 image[num].kern_buf = NULL;
610 image[num].pci_buf = 0;
611 image[num].size_buf = 0;
612
613 #ifdef VME_DEBUG
614 } else {
615 printk(KERN_DEBUG "UniverseII: Buffer not allocated\n");
616 #endif
617 }
618 }
619
620 static struct vme_driver vme_user_driver = {
621 .name = driver_name,
622 .match = vme_user_match,
623 .probe = vme_user_probe,
624 .remove = __devexit_p(vme_user_remove),
625 };
626
627
628 static int __init vme_user_init(void)
629 {
630 int retval = 0;
631
632 printk(KERN_INFO "VME User Space Access Driver\n");
633
634 if (bus_num == 0) {
635 printk(KERN_ERR "%s: No cards, skipping registration\n",
636 driver_name);
637 retval = -ENODEV;
638 goto err_nocard;
639 }
640
641 /* Let's start by supporting one bus, we can support more than one
642 * in future revisions if that ever becomes necessary.
643 */
644 if (bus_num > VME_USER_BUS_MAX) {
645 printk(KERN_ERR "%s: Driver only able to handle %d buses\n",
646 driver_name, VME_USER_BUS_MAX);
647 bus_num = VME_USER_BUS_MAX;
648 }
649
650 /*
651 * Here we just register the maximum number of devices we can and
652 * leave vme_user_match() to allow only 1 to go through to probe().
653 * This way, if we later want to allow multiple user access devices,
654 * we just change the code in vme_user_match().
655 */
656 retval = vme_register_driver(&vme_user_driver, VME_MAX_SLOTS);
657 if (retval != 0)
658 goto err_reg;
659
660 return retval;
661
662 err_reg:
663 err_nocard:
664 return retval;
665 }
666
667 static int vme_user_match(struct vme_dev *vdev)
668 {
669 if (vdev->num >= VME_USER_BUS_MAX)
670 return 0;
671 return 1;
672 }
673
674 /*
675 * In this simple access driver, the old behaviour is being preserved as much
676 * as practical. We will therefore reserve the buffers and request the images
677 * here so that we don't have to do it later.
678 */
679 static int __devinit vme_user_probe(struct vme_dev *vdev)
680 {
681 int i, err;
682 char name[12];
683
684 /* Save pointer to the bridge device */
685 if (vme_user_bridge != NULL) {
686 printk(KERN_ERR "%s: Driver can only be loaded for 1 device\n",
687 driver_name);
688 err = -EINVAL;
689 goto err_dev;
690 }
691 vme_user_bridge = vdev;
692
693 /* Initialise descriptors */
694 for (i = 0; i < VME_DEVS; i++) {
695 image[i].kern_buf = NULL;
696 image[i].pci_buf = 0;
697 mutex_init(&image[i].mutex);
698 image[i].device = NULL;
699 image[i].resource = NULL;
700 image[i].users = 0;
701 }
702
703 /* Initialise statistics counters */
704 reset_counters();
705
706 /* Assign major and minor numbers for the driver */
707 err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS,
708 driver_name);
709 if (err) {
710 printk(KERN_WARNING "%s: Error getting Major Number %d for "
711 "driver.\n", driver_name, VME_MAJOR);
712 goto err_region;
713 }
714
715 /* Register the driver as a char device */
716 vme_user_cdev = cdev_alloc();
717 vme_user_cdev->ops = &vme_user_fops;
718 vme_user_cdev->owner = THIS_MODULE;
719 err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS);
720 if (err) {
721 printk(KERN_WARNING "%s: cdev_all failed\n", driver_name);
722 goto err_char;
723 }
724
725 /* Request slave resources and allocate buffers (128kB wide) */
726 for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
727 /* XXX Need to properly request attributes */
728 /* For ca91cx42 bridge there are only two slave windows
729 * supporting A16 addressing, so we request A24 supported
730 * by all windows.
731 */
732 image[i].resource = vme_slave_request(vme_user_bridge,
733 VME_A24, VME_SCT);
734 if (image[i].resource == NULL) {
735 printk(KERN_WARNING "Unable to allocate slave "
736 "resource\n");
737 goto err_slave;
738 }
739 image[i].size_buf = PCI_BUF_SIZE;
740 image[i].kern_buf = vme_alloc_consistent(image[i].resource,
741 image[i].size_buf, &image[i].pci_buf);
742 if (image[i].kern_buf == NULL) {
743 printk(KERN_WARNING "Unable to allocate memory for "
744 "buffer\n");
745 image[i].pci_buf = 0;
746 vme_slave_free(image[i].resource);
747 err = -ENOMEM;
748 goto err_slave;
749 }
750 }
751
752 /*
753 * Request master resources allocate page sized buffers for small
754 * reads and writes
755 */
756 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) {
757 /* XXX Need to properly request attributes */
758 image[i].resource = vme_master_request(vme_user_bridge,
759 VME_A32, VME_SCT, VME_D32);
760 if (image[i].resource == NULL) {
761 printk(KERN_WARNING "Unable to allocate master "
762 "resource\n");
763 goto err_master;
764 }
765 image[i].size_buf = PCI_BUF_SIZE;
766 image[i].kern_buf = kmalloc(image[i].size_buf, GFP_KERNEL);
767 if (image[i].kern_buf == NULL) {
768 printk(KERN_WARNING "Unable to allocate memory for "
769 "master window buffers\n");
770 err = -ENOMEM;
771 goto err_master_buf;
772 }
773 }
774
775 /* Create sysfs entries - on udev systems this creates the dev files */
776 vme_user_sysfs_class = class_create(THIS_MODULE, driver_name);
777 if (IS_ERR(vme_user_sysfs_class)) {
778 printk(KERN_ERR "Error creating vme_user class.\n");
779 err = PTR_ERR(vme_user_sysfs_class);
780 goto err_class;
781 }
782
783 /* Add sysfs Entries */
784 for (i = 0; i < VME_DEVS; i++) {
785 int num;
786 switch (type[i]) {
787 case MASTER_MINOR:
788 sprintf(name, "bus/vme/m%%d");
789 break;
790 case CONTROL_MINOR:
791 sprintf(name, "bus/vme/ctl");
792 break;
793 case SLAVE_MINOR:
794 sprintf(name, "bus/vme/s%%d");
795 break;
796 default:
797 err = -EINVAL;
798 goto err_sysfs;
799 break;
800 }
801
802 num = (type[i] == SLAVE_MINOR) ? i - (MASTER_MAX + 1) : i;
803 image[i].device = device_create(vme_user_sysfs_class, NULL,
804 MKDEV(VME_MAJOR, i), NULL, name, num);
805 if (IS_ERR(image[i].device)) {
806 printk(KERN_INFO "%s: Error creating sysfs device\n",
807 driver_name);
808 err = PTR_ERR(image[i].device);
809 goto err_sysfs;
810 }
811 }
812
813 return 0;
814
815 /* Ensure counter set correcty to destroy all sysfs devices */
816 i = VME_DEVS;
817 err_sysfs:
818 while (i > 0) {
819 i--;
820 device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
821 }
822 class_destroy(vme_user_sysfs_class);
823
824 /* Ensure counter set correcty to unalloc all master windows */
825 i = MASTER_MAX + 1;
826 err_master_buf:
827 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++)
828 kfree(image[i].kern_buf);
829 err_master:
830 while (i > MASTER_MINOR) {
831 i--;
832 vme_master_free(image[i].resource);
833 }
834
835 /*
836 * Ensure counter set correcty to unalloc all slave windows and buffers
837 */
838 i = SLAVE_MAX + 1;
839 err_slave:
840 while (i > SLAVE_MINOR) {
841 i--;
842 buf_unalloc(i);
843 vme_slave_free(image[i].resource);
844 }
845 err_class:
846 cdev_del(vme_user_cdev);
847 err_char:
848 unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
849 err_region:
850 err_dev:
851 return err;
852 }
853
854 static int __devexit vme_user_remove(struct vme_dev *dev)
855 {
856 int i;
857
858 /* Remove sysfs Entries */
859 for (i = 0; i < VME_DEVS; i++) {
860 mutex_destroy(&image[i].mutex);
861 device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
862 }
863 class_destroy(vme_user_sysfs_class);
864
865 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) {
866 kfree(image[i].kern_buf);
867 vme_master_free(image[i].resource);
868 }
869
870 for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
871 vme_slave_set(image[i].resource, 0, 0, 0, 0, VME_A32, 0);
872 buf_unalloc(i);
873 vme_slave_free(image[i].resource);
874 }
875
876 /* Unregister device driver */
877 cdev_del(vme_user_cdev);
878
879 /* Unregiser the major and minor device numbers */
880 unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
881
882 return 0;
883 }
884
885 static void __exit vme_user_exit(void)
886 {
887 vme_unregister_driver(&vme_user_driver);
888 }
889
890
891 MODULE_PARM_DESC(bus, "Enumeration of VMEbus to which the driver is connected");
892 module_param_array(bus, int, &bus_num, 0);
893
894 MODULE_DESCRIPTION("VME User Space Access Driver");
895 MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
896 MODULE_LICENSE("GPL");
897
898 module_init(vme_user_init);
899 module_exit(vme_user_exit);
This page took 0.050273 seconds and 5 git commands to generate.