staging: vt6656: s_uCalculateLinkQual use netstats rx values
[deliverable/linux.git] / drivers / staging / vt6656 / bssdb.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: bssdb.c
20 *
21 * Purpose: Handles the Basic Service Set & Node Database functions
22 *
23 * Functions:
24 * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
25 * BSSvClearBSSList - Clear BSS List
26 * BSSbInsertToBSSList - Insert a BSS set into known BSS list
27 * BSSbUpdateToBSSList - Update BSS set in known BSS list
28 * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
29 * BSSvCreateOneNode - Allocate an Node for Node DB
30 * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
31 * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
32 * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control
33 *
34 * Revision History:
35 *
36 * Author: Lyndon Chen
37 *
38 * Date: July 17, 2002
39 *
40 */
41
42 #include "tmacro.h"
43 #include "tether.h"
44 #include "device.h"
45 #include "80211hdr.h"
46 #include "bssdb.h"
47 #include "wmgr.h"
48 #include "datarate.h"
49 #include "desc.h"
50 #include "wcmd.h"
51 #include "wpa.h"
52 #include "baseband.h"
53 #include "rf.h"
54 #include "card.h"
55 #include "mac.h"
56 #include "wpa2.h"
57 #include "control.h"
58 #include "rndis.h"
59 #include "iowpa.h"
60 #include "power.h"
61
62 static int msglevel =MSG_LEVEL_INFO;
63 //static int msglevel =MSG_LEVEL_DEBUG;
64
65 static const u16 awHWRetry0[5][5] = {
66 {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
67 {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
68 {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
69 {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
70 {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
71 };
72 static const u16 awHWRetry1[5][5] = {
73 {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
74 {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
75 {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
76 {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
77 {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
78 };
79
80 static void s_vCheckSensitivity(struct vnt_private *pDevice);
81 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
82 static void s_uCalculateLinkQual(struct vnt_private *pDevice);
83
84 /*+
85 *
86 * Routine Description:
87 * Search known BSS list for Desire SSID or BSSID.
88 *
89 * Return Value:
90 * PTR to KnownBSS or NULL
91 *
92 -*/
93
94 PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
95 u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
96 CARD_PHY_TYPE ePhyType)
97 {
98 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
99 u8 *pbyBSSID = NULL;
100 PWLAN_IE_SSID pSSID = NULL;
101 PKnownBSS pCurrBSS = NULL;
102 PKnownBSS pSelect = NULL;
103 u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
104 int ii = 0;
105 int jj = 0;
106
107 if (pbyDesireBSSID != NULL) {
108 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
109 "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
110 if ((!is_broadcast_ether_addr(pbyDesireBSSID)) &&
111 (memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){
112 pbyBSSID = pbyDesireBSSID;
113 }
114 }
115 if (pbyDesireSSID != NULL) {
116 if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
117 pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
118 }
119 }
120
121 if ((pbyBSSID != NULL)&&(pDevice->bRoaming == false)) {
122 // match BSSID first
123 for (ii = 0; ii <MAX_BSS_NUM; ii++) {
124 pCurrBSS = &(pMgmt->sBSSList[ii]);
125
126 pCurrBSS->bSelected = false;
127
128 if ((pCurrBSS->bActive) &&
129 (pCurrBSS->bSelected == false)) {
130 if (ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) {
131 if (pSSID != NULL) {
132 // compare ssid
133 if ( !memcmp(pSSID->abySSID,
134 ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
135 pSSID->len)) {
136 if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
137 ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
138 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
139 ) {
140 pCurrBSS->bSelected = true;
141 return(pCurrBSS);
142 }
143 }
144 } else {
145 if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
146 ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
147 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
148 ) {
149 pCurrBSS->bSelected = true;
150 return(pCurrBSS);
151 }
152 }
153 }
154 }
155 }
156 } else {
157 // ignore BSSID
158 for (ii = 0; ii <MAX_BSS_NUM; ii++) {
159 pCurrBSS = &(pMgmt->sBSSList[ii]);
160
161 //2007-0721-01<Mark>by MikeLiu
162 // if ((pCurrBSS->bActive) &&
163 // (pCurrBSS->bSelected == false)) {
164
165 pCurrBSS->bSelected = false;
166 if (pCurrBSS->bActive) {
167
168 if (pSSID != NULL) {
169 // matched SSID
170 if (memcmp(pSSID->abySSID,
171 ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
172 pSSID->len) ||
173 (pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
174 // SSID not match skip this BSS
175 continue;
176 }
177 }
178 if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
179 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
180 ){
181 // Type not match skip this BSS
182 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
183 continue;
184 }
185
186 if (ePhyType != PHY_TYPE_AUTO) {
187 if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
188 ((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
189 // PhyType not match skip this BSS
190 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
191 continue;
192 }
193 }
194
195 pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
196 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
197 "BSSpSearchBSSList pSelect1[%pM]\n",
198 pCurrBSS->abyBSSID);
199 jj++;
200
201 if (pSelect == NULL) {
202 pSelect = pCurrBSS;
203 } else {
204 // compare RSSI, select the strongest signal
205 if (pCurrBSS->uRSSI < pSelect->uRSSI) {
206 pSelect = pCurrBSS;
207 }
208 }
209 }
210 }
211
212 pDevice->bSameBSSMaxNum = jj;
213
214 if (pSelect != NULL) {
215 pSelect->bSelected = true;
216 if (pDevice->bRoaming == false) {
217 // Einsn Add @20070907
218 memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ;
219 }
220
221 return(pSelect);
222 }
223 }
224 return(NULL);
225
226 }
227
228 /*+
229 *
230 * Routine Description:
231 * Clear BSS List
232 *
233 * Return Value:
234 * None.
235 *
236 -*/
237
238 void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
239 {
240 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
241 int ii;
242
243 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
244 if (bKeepCurrBSSID) {
245 if (pMgmt->sBSSList[ii].bActive &&
246 ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
247 pMgmt->abyCurrBSSID)) {
248 //mike mark: there are two BSSID's in list. If that AP is in hidden ssid mode, one SSID is null,
249 // but other's might not be obvious, so if it associate's with your STA,
250 // you must keep the two of them!!
251 // bKeepCurrBSSID = false;
252 continue;
253 }
254 }
255
256 pMgmt->sBSSList[ii].bActive = false;
257 memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
258 }
259 BSSvClearAnyBSSJoinRecord(pDevice);
260 }
261
262 /*+
263 *
264 * Routine Description:
265 * search BSS list by BSSID & SSID if matched
266 *
267 * Return Value:
268 * true if found.
269 *
270 -*/
271 PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
272 u8 *abyBSSID, PWLAN_IE_SSID pSSID)
273 {
274 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
275 PKnownBSS pBSSList = NULL;
276 int ii;
277
278 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
279 pBSSList = &(pMgmt->sBSSList[ii]);
280 if (pBSSList->bActive) {
281 if (ether_addr_equal(pBSSList->abyBSSID, abyBSSID)) {
282 if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){
283 if (memcmp(pSSID->abySSID,
284 ((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
285 pSSID->len) == 0)
286 return pBSSList;
287 }
288 }
289 }
290 }
291
292 return NULL;
293 };
294
295 /*+
296 *
297 * Routine Description:
298 * Insert a BSS set into known BSS list
299 *
300 * Return Value:
301 * true if success.
302 *
303 -*/
304
305 int BSSbInsertToBSSList(struct vnt_private *pDevice,
306 u8 *abyBSSIDAddr,
307 u64 qwTimestamp,
308 u16 wBeaconInterval,
309 u16 wCapInfo,
310 u8 byCurrChannel,
311 PWLAN_IE_SSID pSSID,
312 PWLAN_IE_SUPP_RATES pSuppRates,
313 PWLAN_IE_SUPP_RATES pExtSuppRates,
314 PERPObject psERP,
315 PWLAN_IE_RSN pRSN,
316 PWLAN_IE_RSN_EXT pRSNWPA,
317 PWLAN_IE_COUNTRY pIE_Country,
318 PWLAN_IE_QUIET pIE_Quiet,
319 u32 uIELength,
320 u8 *pbyIEs,
321 void *pRxPacketContext)
322 {
323 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
324 struct vnt_rx_mgmt *pRxPacket =
325 (struct vnt_rx_mgmt *)pRxPacketContext;
326 PKnownBSS pBSSList = NULL;
327 unsigned int ii;
328 bool bParsingQuiet = false;
329
330 pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
331
332 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
333 pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
334 if (!pBSSList->bActive)
335 break;
336 }
337
338 if (ii == MAX_BSS_NUM){
339 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
340 return false;
341 }
342 // save the BSS info
343 pBSSList->bActive = true;
344 memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
345 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
346 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
347 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
348 pBSSList->uClearCount = 0;
349
350 if (pSSID->len > WLAN_SSID_MAXLEN)
351 pSSID->len = WLAN_SSID_MAXLEN;
352 memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
353
354 pBSSList->uChannel = byCurrChannel;
355
356 if (pSuppRates->len > WLAN_RATES_MAXLEN)
357 pSuppRates->len = WLAN_RATES_MAXLEN;
358 memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
359
360 if (pExtSuppRates != NULL) {
361 if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
362 pExtSuppRates->len = WLAN_RATES_MAXLEN;
363 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
364 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
365
366 } else {
367 memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
368 }
369 pBSSList->sERP.byERP = psERP->byERP;
370 pBSSList->sERP.bERPExist = psERP->bERPExist;
371
372 // Check if BSS is 802.11a/b/g
373 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
374 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
375 } else {
376 if (pBSSList->sERP.bERPExist == true) {
377 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
378 } else {
379 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
380 }
381 }
382
383 pBSSList->byRxRate = pRxPacket->byRxRate;
384 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
385 pBSSList->uRSSI = pRxPacket->uRSSI;
386 pBSSList->bySQ = pRxPacket->bySQ;
387
388 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
389 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
390 // assoc with BSS
391 if (pBSSList == pMgmt->pCurrBSS) {
392 bParsingQuiet = true;
393 }
394 }
395
396 WPA_ClearRSN(pBSSList);
397
398 if (pRSNWPA != NULL) {
399 unsigned int uLen = pRSNWPA->len + 2;
400
401 if (uLen <= (uIELength -
402 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
403 pBSSList->wWPALen = uLen;
404 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
405 WPA_ParseRSN(pBSSList, pRSNWPA);
406 }
407 }
408
409 WPA2_ClearRSN(pBSSList);
410
411 if (pRSN != NULL) {
412 unsigned int uLen = pRSN->len + 2;
413
414 if (uLen <= (uIELength -
415 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
416 pBSSList->wRSNLen = uLen;
417 memcpy(pBSSList->byRSNIE, pRSN, uLen);
418 WPA2vParseRSN(pBSSList, pRSN);
419 }
420 }
421
422 if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == true)) {
423
424 PSKeyItem pTransmitKey = NULL;
425 bool bIs802_1x = false;
426
427 for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) {
428 if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
429 bIs802_1x = true;
430 break;
431 }
432 }
433 if ((bIs802_1x == true) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
434 ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
435
436 bAdd_PMKID_Candidate((void *) pDevice,
437 pBSSList->abyBSSID,
438 &pBSSList->sRSNCapObj);
439
440 if ((pDevice->bLinkPass == true) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
441 if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) ||
442 (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) {
443 pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList;
444 pDevice->gsPMKIDCandidate.Version = 1;
445
446 }
447
448 }
449 }
450 }
451
452 if (pDevice->bUpdateBBVGA) {
453 // Monitor if RSSI is too strong.
454 pBSSList->byRSSIStatCnt = 0;
455 RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
456 pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
457 pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
458 for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
459 pBSSList->ldBmAverage[ii] = 0;
460 }
461
462 pBSSList->uIELength = uIELength;
463 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
464 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
465 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
466
467 return true;
468 }
469
470 /*+
471 *
472 * Routine Description:
473 * Update BSS set in known BSS list
474 *
475 * Return Value:
476 * true if success.
477 *
478 -*/
479 // TODO: input structure modify
480
481 int BSSbUpdateToBSSList(struct vnt_private *pDevice,
482 u64 qwTimestamp,
483 u16 wBeaconInterval,
484 u16 wCapInfo,
485 u8 byCurrChannel,
486 int bChannelHit,
487 PWLAN_IE_SSID pSSID,
488 PWLAN_IE_SUPP_RATES pSuppRates,
489 PWLAN_IE_SUPP_RATES pExtSuppRates,
490 PERPObject psERP,
491 PWLAN_IE_RSN pRSN,
492 PWLAN_IE_RSN_EXT pRSNWPA,
493 PWLAN_IE_COUNTRY pIE_Country,
494 PWLAN_IE_QUIET pIE_Quiet,
495 PKnownBSS pBSSList,
496 u32 uIELength,
497 u8 *pbyIEs,
498 void *pRxPacketContext)
499 {
500 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
501 struct vnt_rx_mgmt *pRxPacket =
502 (struct vnt_rx_mgmt *)pRxPacketContext;
503 int ii, jj;
504 signed long ldBm, ldBmSum;
505 bool bParsingQuiet = false;
506
507 if (pBSSList == NULL)
508 return false;
509
510 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
511
512 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
513 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
514 pBSSList->uClearCount = 0;
515 pBSSList->uChannel = byCurrChannel;
516
517 if (pSSID->len > WLAN_SSID_MAXLEN)
518 pSSID->len = WLAN_SSID_MAXLEN;
519
520 if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
521 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
522 memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN);
523
524 if (pExtSuppRates != NULL) {
525 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN);
526 } else {
527 memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
528 }
529 pBSSList->sERP.byERP = psERP->byERP;
530 pBSSList->sERP.bERPExist = psERP->bERPExist;
531
532 // Check if BSS is 802.11a/b/g
533 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
534 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
535 } else {
536 if (pBSSList->sERP.bERPExist == true) {
537 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
538 } else {
539 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
540 }
541 }
542
543 pBSSList->byRxRate = pRxPacket->byRxRate;
544 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
545 if(bChannelHit)
546 pBSSList->uRSSI = pRxPacket->uRSSI;
547 pBSSList->bySQ = pRxPacket->bySQ;
548
549 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
550 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
551 // assoc with BSS
552 if (pBSSList == pMgmt->pCurrBSS) {
553 bParsingQuiet = true;
554 }
555 }
556
557 WPA_ClearRSN(pBSSList); //mike update
558
559 if (pRSNWPA != NULL) {
560 unsigned int uLen = pRSNWPA->len + 2;
561 if (uLen <= (uIELength -
562 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
563 pBSSList->wWPALen = uLen;
564 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
565 WPA_ParseRSN(pBSSList, pRSNWPA);
566 }
567 }
568
569 WPA2_ClearRSN(pBSSList); //mike update
570
571 if (pRSN != NULL) {
572 unsigned int uLen = pRSN->len + 2;
573 if (uLen <= (uIELength -
574 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
575 pBSSList->wRSNLen = uLen;
576 memcpy(pBSSList->byRSNIE, pRSN, uLen);
577 WPA2vParseRSN(pBSSList, pRSN);
578 }
579 }
580
581 if (pRxPacket->uRSSI != 0) {
582 RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &ldBm);
583 // Monitor if RSSI is too strong.
584 pBSSList->byRSSIStatCnt++;
585 pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
586 pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
587 ldBmSum = 0;
588 for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
589 if (pBSSList->ldBmAverage[ii] != 0) {
590 pBSSList->ldBmMAX =
591 max(pBSSList->ldBmAverage[ii], ldBm);
592 ldBmSum +=
593 pBSSList->ldBmAverage[ii];
594 jj++;
595 }
596 }
597 pBSSList->ldBmAverRange = ldBmSum /jj;
598 }
599
600 pBSSList->uIELength = uIELength;
601 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
602 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
603 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
604
605 return true;
606 }
607
608 /*+
609 *
610 * Routine Description:
611 * Search Node DB table to find the index of matched DstAddr
612 *
613 * Return Value:
614 * None
615 *
616 -*/
617
618 int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
619 u8 *abyDstAddr, u32 *puNodeIndex)
620 {
621 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
622 unsigned int ii;
623
624 // Index = 0 reserved for AP Node
625 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
626 if (pMgmt->sNodeDBTable[ii].bActive) {
627 if (ether_addr_equal(abyDstAddr,
628 pMgmt->sNodeDBTable[ii].abyMACAddr)) {
629 *puNodeIndex = ii;
630 return true;
631 }
632 }
633 }
634
635 return false;
636 };
637
638 /*+
639 *
640 * Routine Description:
641 * Find an empty node and allocate it; if no empty node
642 * is found, then use the most inactive one.
643 *
644 * Return Value:
645 * None
646 *
647 -*/
648 void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
649 {
650 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
651 int ii;
652 u32 BigestCount = 0;
653 u32 SelectIndex;
654 struct sk_buff *skb;
655
656 // Index = 0 reserved for AP Node (In STA mode)
657 // Index = 0 reserved for Broadcast/MultiCast (In AP mode)
658 SelectIndex = 1;
659 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
660 if (pMgmt->sNodeDBTable[ii].bActive) {
661 if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
662 BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
663 SelectIndex = ii;
664 }
665 }
666 else {
667 break;
668 }
669 }
670
671 // if not found replace uInActiveCount with the largest one.
672 if ( ii == (MAX_NODE_NUM + 1)) {
673 *puNodeIndex = SelectIndex;
674 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
675 // clear ps buffer
676 if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
677 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
678 dev_kfree_skb(skb);
679 }
680 }
681 else {
682 *puNodeIndex = ii;
683 }
684
685 memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
686 pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
687 pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
688 // for AP mode PS queue
689 skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
690 pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
691 pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
692 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
693 };
694
695 /*+
696 *
697 * Routine Description:
698 * Remove Node by NodeIndex
699 *
700 *
701 * Return Value:
702 * None
703 *
704 -*/
705
706 void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
707 {
708 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
709 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
710 struct sk_buff *skb;
711
712 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
713 dev_kfree_skb(skb);
714 // clear context
715 memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
716 // clear tx bit map
717 pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
718 };
719 /*+
720 *
721 * Routine Description:
722 * Update AP Node content in Index 0 of KnownNodeDB
723 *
724 *
725 * Return Value:
726 * None
727 *
728 -*/
729
730 void BSSvUpdateAPNode(struct vnt_private *pDevice, u16 *pwCapInfo,
731 PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates)
732 {
733 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
734 u32 uRateLen = WLAN_RATES_MAXLEN;
735
736 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
737
738 pMgmt->sNodeDBTable[0].bActive = true;
739 if (pDevice->byBBType == BB_TYPE_11B) {
740 uRateLen = WLAN_RATES_MAXLEN_11B;
741 }
742 pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
743 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
744 uRateLen);
745 pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
746 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
747 uRateLen);
748 RATEvParseMaxRate((void *) pDevice,
749 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
750 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
751 true,
752 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
753 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
754 &(pMgmt->sNodeDBTable[0].wSuppRate),
755 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
756 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
757 );
758 memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN);
759 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
760 pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
761 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
762 // Auto rate fallback function initiation.
763 // RATEbInit(pDevice);
764 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
765
766 };
767
768 /*+
769 *
770 * Routine Description:
771 * Add Multicast Node content in Index 0 of KnownNodeDB
772 *
773 *
774 * Return Value:
775 * None
776 *
777 -*/
778
779 void BSSvAddMulticastNode(struct vnt_private *pDevice)
780 {
781 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
782
783 if (!pDevice->bEnableHostWEP)
784 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
785 memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
786 pMgmt->sNodeDBTable[0].bActive = true;
787 pMgmt->sNodeDBTable[0].bPSEnable = false;
788 skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
789 RATEvParseMaxRate((void *) pDevice,
790 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
791 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
792 true,
793 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
794 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
795 &(pMgmt->sNodeDBTable[0].wSuppRate),
796 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
797 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
798 );
799 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
800 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
801
802 };
803
804 /*+
805 *
806 * Routine Description:
807 *
808 *
809 * Second call back function to update Node DB info & AP link status
810 *
811 *
812 * Return Value:
813 * none.
814 *
815 -*/
816
817 void BSSvSecondCallBack(struct work_struct *work)
818 {
819 struct vnt_private *pDevice = container_of(work,
820 struct vnt_private, second_callback_work.work);
821 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
822 int ii;
823 PWLAN_IE_SSID pItemSSID, pCurrSSID;
824 u32 uSleepySTACnt = 0;
825 u32 uNonShortSlotSTACnt = 0;
826 u32 uLongPreambleSTACnt = 0;
827
828 if (pDevice->Flags & fMP_DISCONNECTED)
829 return;
830
831 spin_lock_irq(&pDevice->lock);
832
833 pDevice->uAssocCount = 0;
834
835 //Power Saving Mode Tx Burst
836 if ( pDevice->bEnablePSMode == true ) {
837 pDevice->ulPSModeWaitTx++;
838 if ( pDevice->ulPSModeWaitTx >= 2 ) {
839 pDevice->ulPSModeWaitTx = 0;
840 pDevice->bPSModeTxBurst = false;
841 }
842 }
843
844 pDevice->byERPFlag &=
845 ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
846
847 if (pDevice->wUseProtectCntDown > 0) {
848 pDevice->wUseProtectCntDown --;
849 }
850 else {
851 // disable protect mode
852 pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
853 }
854
855 if(pDevice->byReAssocCount > 0) {
856 pDevice->byReAssocCount++;
857 if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != true)) { //10 sec timeout
858 printk("Re-association timeout!!!\n");
859 pDevice->byReAssocCount = 0;
860 // if(pDevice->bWPASuppWextEnabled == true)
861 {
862 union iwreq_data wrqu;
863 memset(&wrqu, 0, sizeof (wrqu));
864 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
865 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
866 wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
867 }
868 }
869 else if(pDevice->bLinkPass == true)
870 pDevice->byReAssocCount = 0;
871 }
872
873 pMgmt->eLastState = pMgmt->eCurrState ;
874
875 s_uCalculateLinkQual(pDevice);
876
877 for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
878
879 if (pMgmt->sNodeDBTable[ii].bActive) {
880 // Increase in-activity counter
881 pMgmt->sNodeDBTable[ii].uInActiveCount++;
882
883 if (ii > 0) {
884 if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) {
885 BSSvRemoveOneNode(pDevice, ii);
886 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
887 "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
888 continue;
889 }
890
891 if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
892
893 pDevice->uAssocCount++;
894
895 // check if Non ERP exist
896 if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
897 if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
898 pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
899 uLongPreambleSTACnt ++;
900 }
901 if (!pMgmt->sNodeDBTable[ii].bERPExist) {
902 pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
903 pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
904 }
905 if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
906 uNonShortSlotSTACnt++;
907 }
908 }
909
910 // check if any STA in PS mode
911 if (pMgmt->sNodeDBTable[ii].bPSEnable)
912 uSleepySTACnt++;
913
914 }
915
916 // Rate fallback check
917 if (!pDevice->bFixRate) {
918 if (ii > 0) {
919 // ii = 0 for multicast node (AP & Adhoc)
920 RATEvTxRateFallBack((void *)pDevice,
921 &(pMgmt->sNodeDBTable[ii]));
922 }
923 else {
924 // ii = 0 reserved for unicast AP node (Infra STA)
925 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
926 RATEvTxRateFallBack((void *)pDevice,
927 &(pMgmt->sNodeDBTable[ii]));
928 }
929
930 }
931
932 // check if pending PS queue
933 if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
934 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
935 ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
936 if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
937 BSSvRemoveOneNode(pDevice, ii);
938 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
939 continue;
940 }
941 }
942 }
943
944 }
945
946 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
947
948 // on/off protect mode
949 if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
950 if (!pDevice->bProtectMode) {
951 MACvEnableProtectMD(pDevice);
952 pDevice->bProtectMode = true;
953 }
954 }
955 else {
956 if (pDevice->bProtectMode) {
957 MACvDisableProtectMD(pDevice);
958 pDevice->bProtectMode = false;
959 }
960 }
961 // on/off short slot time
962
963 if (uNonShortSlotSTACnt > 0) {
964 if (pDevice->bShortSlotTime) {
965 pDevice->bShortSlotTime = false;
966 BBvSetShortSlotTime(pDevice);
967 vUpdateIFS((void *)pDevice);
968 }
969 }
970 else {
971 if (!pDevice->bShortSlotTime) {
972 pDevice->bShortSlotTime = true;
973 BBvSetShortSlotTime(pDevice);
974 vUpdateIFS((void *)pDevice);
975 }
976 }
977
978 // on/off barker long preamble mode
979
980 if (uLongPreambleSTACnt > 0) {
981 if (!pDevice->bBarkerPreambleMd) {
982 MACvEnableBarkerPreambleMd(pDevice);
983 pDevice->bBarkerPreambleMd = true;
984 }
985 }
986 else {
987 if (pDevice->bBarkerPreambleMd) {
988 MACvDisableBarkerPreambleMd(pDevice);
989 pDevice->bBarkerPreambleMd = false;
990 }
991 }
992
993 }
994
995 // Check if any STA in PS mode, enable DTIM multicast deliver
996 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
997 if (uSleepySTACnt > 0)
998 pMgmt->sNodeDBTable[0].bPSEnable = true;
999 else
1000 pMgmt->sNodeDBTable[0].bPSEnable = false;
1001 }
1002
1003 pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
1004 pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
1005
1006 if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
1007 (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
1008
1009 if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
1010
1011 if (pDevice->bUpdateBBVGA) {
1012 s_vCheckSensitivity(pDevice);
1013 s_vCheckPreEDThreshold(pDevice);
1014 }
1015
1016 if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
1017 (pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
1018 pDevice->byBBVGANew = pDevice->abyBBVGA[0];
1019 bScheduleCommand((void *) pDevice,
1020 WLAN_CMD_CHANGE_BBSENSITIVITY,
1021 NULL);
1022 }
1023
1024 if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
1025 pMgmt->sNodeDBTable[0].bActive = false;
1026 pMgmt->eCurrMode = WMAC_MODE_STANDBY;
1027 pMgmt->eCurrState = WMAC_STATE_IDLE;
1028 netif_stop_queue(pDevice->dev);
1029 pDevice->bLinkPass = false;
1030 ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
1031 pDevice->bRoaming = true;
1032 pDevice->bIsRoaming = false;
1033
1034 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1035 /* let wpa supplicant know AP may disconnect */
1036 {
1037 union iwreq_data wrqu;
1038 memset(&wrqu, 0, sizeof (wrqu));
1039 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1040 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
1041 wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
1042 }
1043 }
1044 }
1045 else if (pItemSSID->len != 0) {
1046 //Davidwang
1047 if ((pDevice->bEnableRoaming == true)&&(!(pMgmt->Cisco_cckm))) {
1048 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
1049 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
1050 if ((pDevice->bRoaming == true)&&(pDevice->bIsRoaming == true)){
1051 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
1052 BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1053 bScheduleCommand((void *) pDevice,
1054 WLAN_CMD_BSSID_SCAN,
1055 pMgmt->abyDesireSSID);
1056 bScheduleCommand((void *) pDevice,
1057 WLAN_CMD_SSID,
1058 pMgmt->abyDesireSSID);
1059 pDevice->uAutoReConnectTime = 0;
1060 pDevice->uIsroamingTime = 0;
1061 pDevice->bRoaming = false;
1062 }
1063 else if ((pDevice->bRoaming == false)&&(pDevice->bIsRoaming == true)) {
1064 pDevice->uIsroamingTime++;
1065 if (pDevice->uIsroamingTime >= 20)
1066 pDevice->bIsRoaming = false;
1067 }
1068
1069 }
1070 else {
1071 if (pDevice->uAutoReConnectTime < 10) {
1072 pDevice->uAutoReConnectTime++;
1073 //network manager support need not do Roaming scan???
1074 if(pDevice->bWPASuppWextEnabled ==true)
1075 pDevice->uAutoReConnectTime = 0;
1076 }
1077 else {
1078 //mike use old encryption status for wpa reauthen
1079 if(pDevice->bWPADEVUp)
1080 pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
1081
1082 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
1083 BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1084 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1085 bScheduleCommand((void *) pDevice,
1086 WLAN_CMD_BSSID_SCAN,
1087 pMgmt->abyDesireSSID);
1088 bScheduleCommand((void *) pDevice,
1089 WLAN_CMD_SSID,
1090 pMgmt->abyDesireSSID);
1091 pDevice->uAutoReConnectTime = 0;
1092 }
1093 }
1094 }
1095 }
1096
1097 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
1098 // if adhoc started which essid is NULL string, rescanning.
1099 if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
1100 if (pDevice->uAutoReConnectTime < 10) {
1101 pDevice->uAutoReConnectTime++;
1102 }
1103 else {
1104 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n");
1105 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1106 bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
1107 bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
1108 pDevice->uAutoReConnectTime = 0;
1109 };
1110 }
1111 if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
1112
1113 if (pDevice->bUpdateBBVGA) {
1114 s_vCheckSensitivity(pDevice);
1115 s_vCheckPreEDThreshold(pDevice);
1116 }
1117 if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) {
1118 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1119 pMgmt->sNodeDBTable[0].uInActiveCount = 0;
1120 pMgmt->eCurrState = WMAC_STATE_STARTED;
1121 netif_stop_queue(pDevice->dev);
1122 pDevice->bLinkPass = false;
1123 ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
1124 }
1125 }
1126 }
1127
1128 if (pDevice->bLinkPass == true) {
1129 if (pMgmt->eAuthenMode < WMAC_AUTH_WPA ||
1130 pDevice->fWPA_Authened == true) {
1131 if (++pDevice->tx_data_time_out > 40) {
1132 pDevice->tx_trigger = true;
1133
1134 PSbSendNullPacket(pDevice);
1135
1136 pDevice->tx_trigger = false;
1137 pDevice->tx_data_time_out = 0;
1138 }
1139 }
1140
1141 if (netif_queue_stopped(pDevice->dev))
1142 netif_wake_queue(pDevice->dev);
1143 }
1144
1145 spin_unlock_irq(&pDevice->lock);
1146
1147 schedule_delayed_work(&pDevice->second_callback_work, HZ);
1148 }
1149
1150 /*+
1151 *
1152 * Routine Description:
1153 *
1154 *
1155 * Update Tx attemps, Tx failure counter in Node DB
1156 *
1157 *
1158 * Return Value:
1159 * none.
1160 *
1161 -*/
1162
1163 void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice,
1164 PSStatCounter pStatistic, u8 byTSR, u8 byPktNO)
1165 {
1166 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1167 u32 uNodeIndex = 0;
1168 u8 byTxRetry;
1169 u16 wRate;
1170 u16 wFallBackRate = RATE_1M;
1171 u8 byFallBack;
1172 int ii;
1173 u8 *pbyDestAddr;
1174 u8 byPktNum;
1175 u16 wFIFOCtl;
1176
1177 byPktNum = (byPktNO & 0x0F) >> 4;
1178 byTxRetry = (byTSR & 0xF0) >> 4;
1179 wRate = (u16) (byPktNO & 0xF0) >> 4;
1180 wFIFOCtl = pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl;
1181 pbyDestAddr = (u8 *) &( pStatistic->abyTxPktInfo[byPktNum].abyDestAddr[0]);
1182
1183 if (wFIFOCtl & FIFOCTL_AUTO_FB_0) {
1184 byFallBack = AUTO_FB_0;
1185 } else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) {
1186 byFallBack = AUTO_FB_1;
1187 } else {
1188 byFallBack = AUTO_FB_NONE;
1189 }
1190
1191 // Only Unicast using support rates
1192 if (wFIFOCtl & FIFOCTL_NEEDACK) {
1193 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1194 pMgmt->sNodeDBTable[0].uTxAttempts += 1;
1195 if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1196 // transmit success, TxAttempts at least plus one
1197 pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
1198 if ( (byFallBack == AUTO_FB_NONE) ||
1199 (wRate < RATE_18M) ) {
1200 wFallBackRate = wRate;
1201 } else if (byFallBack == AUTO_FB_0) {
1202 if (byTxRetry < 5)
1203 wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1204 else
1205 wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1206 } else if (byFallBack == AUTO_FB_1) {
1207 if (byTxRetry < 5)
1208 wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1209 else
1210 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1211 }
1212 pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
1213 } else {
1214 pMgmt->sNodeDBTable[0].uTxFailures ++;
1215 }
1216 pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
1217 if (byTxRetry != 0) {
1218 pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
1219 if ( (byFallBack == AUTO_FB_NONE) ||
1220 (wRate < RATE_18M) ) {
1221 pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
1222 } else if (byFallBack == AUTO_FB_0) {
1223 for (ii = 0; ii < byTxRetry; ii++) {
1224 if (ii < 5)
1225 wFallBackRate =
1226 awHWRetry0[wRate-RATE_18M][ii];
1227 else
1228 wFallBackRate =
1229 awHWRetry0[wRate-RATE_18M][4];
1230 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1231 }
1232 } else if (byFallBack == AUTO_FB_1) {
1233 for (ii = 0; ii < byTxRetry; ii++) {
1234 if (ii < 5)
1235 wFallBackRate =
1236 awHWRetry1[wRate-RATE_18M][ii];
1237 else
1238 wFallBackRate =
1239 awHWRetry1[wRate-RATE_18M][4];
1240 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1241 }
1242 }
1243 }
1244 }
1245
1246 if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
1247 (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
1248
1249 if (BSSbIsSTAInNodeDB((void *) pDevice,
1250 pbyDestAddr,
1251 &uNodeIndex)) {
1252 pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
1253 if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1254 // transmit success, TxAttempts at least plus one
1255 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
1256 if ( (byFallBack == AUTO_FB_NONE) ||
1257 (wRate < RATE_18M) ) {
1258 wFallBackRate = wRate;
1259 } else if (byFallBack == AUTO_FB_0) {
1260 if (byTxRetry < 5)
1261 wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1262 else
1263 wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1264 } else if (byFallBack == AUTO_FB_1) {
1265 if (byTxRetry < 5)
1266 wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1267 else
1268 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1269 }
1270 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
1271 } else {
1272 pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
1273 }
1274 pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
1275 if (byTxRetry != 0) {
1276 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
1277 if ( (byFallBack == AUTO_FB_NONE) ||
1278 (wRate < RATE_18M) ) {
1279 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
1280 } else if (byFallBack == AUTO_FB_0) {
1281 for (ii = 0; ii < byTxRetry; ii++) {
1282 if (ii < 5)
1283 wFallBackRate =
1284 awHWRetry0[wRate-RATE_18M][ii];
1285 else
1286 wFallBackRate =
1287 awHWRetry0[wRate-RATE_18M][4];
1288 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1289 }
1290 } else if (byFallBack == AUTO_FB_1) {
1291 for (ii = 0; ii < byTxRetry; ii++) {
1292 if (ii < 5)
1293 wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
1294 else
1295 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1296 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1297 }
1298 }
1299 }
1300 }
1301 }
1302 }
1303 }
1304
1305 /*+
1306 *
1307 * Routine Description:
1308 * Clear Nodes & skb in DB Table
1309 *
1310 *
1311 * Parameters:
1312 * In:
1313 * hDeviceContext - The adapter context.
1314 * uStartIndex - starting index
1315 * Out:
1316 * none
1317 *
1318 * Return Value:
1319 * None.
1320 *
1321 -*/
1322
1323 void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
1324 {
1325 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1326 struct sk_buff *skb;
1327 int ii;
1328
1329 for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
1330 if (pMgmt->sNodeDBTable[ii].bActive) {
1331 // check if sTxPSQueue has been initial
1332 if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
1333 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){
1334 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
1335 dev_kfree_skb(skb);
1336 }
1337 }
1338 memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
1339 }
1340 }
1341 };
1342
1343 static void s_vCheckSensitivity(struct vnt_private *pDevice)
1344 {
1345 PKnownBSS pBSSList = NULL;
1346 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1347 int ii;
1348
1349 if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1350 ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1351 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1352 if (pBSSList != NULL) {
1353 /* Update BB register if RSSI is too strong */
1354 signed long LocalldBmAverage = 0;
1355 signed long uNumofdBm = 0;
1356 for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
1357 if (pBSSList->ldBmAverage[ii] != 0) {
1358 uNumofdBm ++;
1359 LocalldBmAverage += pBSSList->ldBmAverage[ii];
1360 }
1361 }
1362 if (uNumofdBm > 0) {
1363 LocalldBmAverage = LocalldBmAverage/uNumofdBm;
1364 for (ii=0;ii<BB_VGA_LEVEL;ii++) {
1365 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
1366 if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
1367 pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
1368 break;
1369 }
1370 }
1371 if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
1372 pDevice->uBBVGADiffCount++;
1373 if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
1374 bScheduleCommand(pDevice,
1375 WLAN_CMD_CHANGE_BBSENSITIVITY,
1376 NULL);
1377 } else {
1378 pDevice->uBBVGADiffCount = 0;
1379 }
1380 }
1381 }
1382 }
1383 }
1384
1385 static void s_uCalculateLinkQual(struct vnt_private *pDevice)
1386 {
1387 struct net_device_stats *stats = &pDevice->stats;
1388 unsigned long TxOkRatio, TxCnt;
1389 unsigned long RxOkRatio, RxCnt;
1390 unsigned long RssiRatio;
1391 unsigned long qual;
1392 long ldBm;
1393
1394 TxCnt = stats->tx_packets + pDevice->wstats.discard.retries;
1395
1396 RxCnt = stats->rx_packets + stats->rx_frame_errors;
1397
1398 TxOkRatio = (TxCnt < 6) ? 4000:((stats->tx_packets * 4000) / TxCnt);
1399
1400 RxOkRatio = (RxCnt < 6) ? 2000 :
1401 ((stats->rx_packets * 2000) / RxCnt);
1402
1403 /* decide link quality */
1404 if (pDevice->bLinkPass != true) {
1405 pDevice->wstats.qual.qual = 0;
1406 pDevice->scStatistic.SignalStren = 0;
1407 } else {
1408 RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm);
1409 if (-ldBm < 50)
1410 RssiRatio = 4000;
1411 else if (-ldBm > 90)
1412 RssiRatio = 0;
1413 else
1414 RssiRatio = (40-(-ldBm-50)) * 4000 / 40;
1415
1416 pDevice->scStatistic.SignalStren = RssiRatio / 40;
1417 qual = (RssiRatio + TxOkRatio + RxOkRatio) / 100;
1418 if (qual < 100)
1419 pDevice->wstats.qual.qual = (u8)qual;
1420 else
1421 pDevice->wstats.qual.qual = 100;
1422 }
1423
1424 pDevice->scStatistic.RxFcsErrCnt = 0;
1425 pDevice->scStatistic.RxOkCnt = 0;
1426 pDevice->scStatistic.TxFailCount = 0;
1427 pDevice->scStatistic.TxNoRetryOkCount = 0;
1428 pDevice->scStatistic.TxRetryOkCount = 0;
1429 }
1430
1431 void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice)
1432 {
1433 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1434 int ii;
1435
1436 for (ii = 0; ii < MAX_BSS_NUM; ii++)
1437 pMgmt->sBSSList[ii].bSelected = false;
1438
1439 return;
1440 }
1441
1442 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
1443 {
1444 PKnownBSS pBSSList = NULL;
1445 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1446
1447 if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1448 ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1449 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1450 if (pBSSList != NULL) {
1451 pDevice->byBBPreEDRSSI = (u8) (~(pBSSList->ldBmAverRange) + 1);
1452 BBvUpdatePreEDThreshold(pDevice, false);
1453 }
1454 }
1455 }
1456
This page took 0.060811 seconds and 5 git commands to generate.