staging: vt6656: Remove unused scStatistic data/functions from driver.
[deliverable/linux.git] / drivers / staging / vt6656 / dpc.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: dpc.c
20 *
21 * Purpose: handle dpc rx functions
22 *
23 * Author: Lyndon Chen
24 *
25 * Date: May 20, 2003
26 *
27 * Functions:
28 * device_receive_frame - Rcv 802.11 frame function
29 * s_bAPModeRxCtl- AP Rcv frame filer Ctl.
30 * s_bAPModeRxData- AP Rcv data frame handle
31 * s_bHandleRxEncryption- Rcv decrypted data via on-fly
32 * s_bHostWepRxEncryption- Rcv encrypted data via host
33 * s_byGetRateIdx- get rate index
34 * s_vGetDASA- get data offset
35 * s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
36 *
37 * Revision History:
38 *
39 */
40
41 #include "device.h"
42 #include "rxtx.h"
43 #include "tether.h"
44 #include "card.h"
45 #include "bssdb.h"
46 #include "mac.h"
47 #include "baseband.h"
48 #include "michael.h"
49 #include "tkip.h"
50 #include "tcrc.h"
51 #include "wctl.h"
52 #include "hostap.h"
53 #include "rf.h"
54 #include "iowpa.h"
55 #include "aes_ccmp.h"
56 #include "datarate.h"
57 #include "usbpipe.h"
58
59 //static int msglevel =MSG_LEVEL_DEBUG;
60 static int msglevel =MSG_LEVEL_INFO;
61
62 static const u8 acbyRxRate[MAX_RATE] =
63 {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
64
65 static u8 s_byGetRateIdx(u8 byRate);
66
67 static
68 void
69 s_vGetDASA(
70 u8 * pbyRxBufferAddr,
71 unsigned int *pcbHeaderSize,
72 struct ethhdr *psEthHeader
73 );
74
75 static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
76 u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
77 u32 *pcbHeadSize);
78
79 static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
80 s32 iSANodeIndex);
81
82 static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
83 u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex);
84
85 static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
86 u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
87 s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
88
89 static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
90 u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
91 s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
92
93 /*+
94 *
95 * Description:
96 * Translate Rcv 802.11 header to 802.3 header with Rx buffer
97 *
98 * Parameters:
99 * In:
100 * pDevice
101 * dwRxBufferAddr - Address of Rcv Buffer
102 * cbPacketSize - Rcv Packet size
103 * bIsWEP - If Rcv with WEP
104 * Out:
105 * pcbHeaderSize - 802.11 header size
106 *
107 * Return Value: None
108 *
109 -*/
110
111 static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
112 u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
113 u32 *pcbHeadSize)
114 {
115 u8 *pbyRxBuffer;
116 u32 cbHeaderSize = 0;
117 u16 *pwType;
118 struct ieee80211_hdr *pMACHeader;
119 int ii;
120
121 pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
122
123 s_vGetDASA((u8 *)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);
124
125 if (bIsWEP) {
126 if (bExtIV) {
127 // strip IV&ExtIV , add 8 byte
128 cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
129 } else {
130 // strip IV , add 4 byte
131 cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
132 }
133 }
134 else {
135 cbHeaderSize += WLAN_HDR_ADDR3_LEN;
136 };
137
138 pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
139 if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_Bridgetunnel)) {
140 cbHeaderSize += 6;
141 } else if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_RFC1042)) {
142 cbHeaderSize += 6;
143 pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
144 if ((*pwType == cpu_to_be16(ETH_P_IPX)) ||
145 (*pwType == cpu_to_le16(0xF380))) {
146 cbHeaderSize -= 8;
147 pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
148 if (bIsWEP) {
149 if (bExtIV) {
150 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
151 } else {
152 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
153 }
154 }
155 else {
156 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
157 }
158 }
159 }
160 else {
161 cbHeaderSize -= 2;
162 pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
163 if (bIsWEP) {
164 if (bExtIV) {
165 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
166 } else {
167 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
168 }
169 }
170 else {
171 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
172 }
173 }
174
175 cbHeaderSize -= (ETH_ALEN * 2);
176 pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
177 for (ii = 0; ii < ETH_ALEN; ii++)
178 *pbyRxBuffer++ = pDevice->sRxEthHeader.h_dest[ii];
179 for (ii = 0; ii < ETH_ALEN; ii++)
180 *pbyRxBuffer++ = pDevice->sRxEthHeader.h_source[ii];
181
182 *pcbHeadSize = cbHeaderSize;
183 }
184
185 static u8 s_byGetRateIdx(u8 byRate)
186 {
187 u8 byRateIdx;
188
189 for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
190 if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
191 return byRateIdx;
192 }
193 return 0;
194 }
195
196 static
197 void
198 s_vGetDASA (
199 u8 * pbyRxBufferAddr,
200 unsigned int *pcbHeaderSize,
201 struct ethhdr *psEthHeader
202 )
203 {
204 unsigned int cbHeaderSize = 0;
205 struct ieee80211_hdr *pMACHeader;
206 int ii;
207
208 pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
209
210 if ((pMACHeader->frame_control & FC_TODS) == 0) {
211 if (pMACHeader->frame_control & FC_FROMDS) {
212 for (ii = 0; ii < ETH_ALEN; ii++) {
213 psEthHeader->h_dest[ii] =
214 pMACHeader->addr1[ii];
215 psEthHeader->h_source[ii] =
216 pMACHeader->addr3[ii];
217 }
218 } else {
219 /* IBSS mode */
220 for (ii = 0; ii < ETH_ALEN; ii++) {
221 psEthHeader->h_dest[ii] =
222 pMACHeader->addr1[ii];
223 psEthHeader->h_source[ii] =
224 pMACHeader->addr2[ii];
225 }
226 }
227 } else {
228 /* Is AP mode.. */
229 if (pMACHeader->frame_control & FC_FROMDS) {
230 for (ii = 0; ii < ETH_ALEN; ii++) {
231 psEthHeader->h_dest[ii] =
232 pMACHeader->addr3[ii];
233 psEthHeader->h_source[ii] =
234 pMACHeader->addr4[ii];
235 cbHeaderSize += 6;
236 }
237 } else {
238 for (ii = 0; ii < ETH_ALEN; ii++) {
239 psEthHeader->h_dest[ii] =
240 pMACHeader->addr3[ii];
241 psEthHeader->h_source[ii] =
242 pMACHeader->addr2[ii];
243 }
244 }
245 };
246 *pcbHeaderSize = cbHeaderSize;
247 }
248
249 int RXbBulkInProcessData(struct vnt_private *pDevice, struct vnt_rcb *pRCB,
250 unsigned long BytesToIndicate)
251 {
252 struct net_device_stats *pStats = &pDevice->stats;
253 struct sk_buff *skb;
254 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
255 struct vnt_rx_mgmt *pRxPacket = &pMgmt->sRxPacket;
256 struct ieee80211_hdr *p802_11Header;
257 u8 *pbyRsr, *pbyNewRsr, *pbyRSSI, *pbyFrame;
258 u64 *pqwTSFTime;
259 u32 bDeFragRx = false;
260 u32 cbHeaderOffset, cbIVOffset;
261 u32 FrameSize;
262 u16 wEtherType = 0;
263 s32 iSANodeIndex = -1, iDANodeIndex = -1;
264 int ii;
265 u8 *pbyRxSts, *pbyRxRate, *pbySQ, *pby3SQ;
266 u32 cbHeaderSize;
267 PSKeyItem pKey = NULL;
268 u16 wRxTSC15_0 = 0;
269 u32 dwRxTSC47_16 = 0;
270 SKeyItem STempKey;
271 /* signed long ldBm = 0; */
272 int bIsWEP = false; int bExtIV = false;
273 u32 dwWbkStatus;
274 struct vnt_rcb *pRCBIndicate = pRCB;
275 u8 *pbyDAddress;
276 u16 *pwPLCP_Length;
277 u8 abyVaildRate[MAX_RATE]
278 = {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
279 u16 wPLCPwithPadding;
280 struct ieee80211_hdr *pMACHeader;
281 int bRxeapol_key = false;
282
283 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- RXbBulkInProcessData---\n");
284
285 skb = pRCB->skb;
286
287 /* [31:16]RcvByteCount ( not include 4-byte Status ) */
288 dwWbkStatus = *((u32 *)(skb->data));
289 FrameSize = dwWbkStatus >> 16;
290 FrameSize += 4;
291
292 if (BytesToIndicate != FrameSize) {
293 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"------- WRONG Length 1\n");
294 pStats->rx_frame_errors++;
295 return false;
296 }
297
298 if ((BytesToIndicate > 2372) || (BytesToIndicate <= 40)) {
299 // Frame Size error drop this packet.
300 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2\n");
301 pStats->rx_frame_errors++;
302 return false;
303 }
304
305 pbyDAddress = (u8 *)(skb->data);
306 pbyRxSts = pbyDAddress+4;
307 pbyRxRate = pbyDAddress+5;
308
309 //real Frame Size = USBFrameSize -4WbkStatus - 4RxStatus - 8TSF - 4RSR - 4SQ3 - ?Padding
310 //if SQ3 the range is 24~27, if no SQ3 the range is 20~23
311 //real Frame size in PLCPLength field.
312 pwPLCP_Length = (u16 *) (pbyDAddress + 6);
313 //Fix hardware bug => PLCP_Length error
314 if ( ((BytesToIndicate - (*pwPLCP_Length)) > 27) ||
315 ((BytesToIndicate - (*pwPLCP_Length)) < 24) ||
316 (BytesToIndicate < (*pwPLCP_Length)) ) {
317
318 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong PLCP Length %x\n", (int) *pwPLCP_Length);
319 pStats->rx_frame_errors++;
320 return false;
321 }
322 for ( ii=RATE_1M;ii<MAX_RATE;ii++) {
323 if ( *pbyRxRate == abyVaildRate[ii] ) {
324 break;
325 }
326 }
327 if ( ii==MAX_RATE ) {
328 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong RxRate %x\n",(int) *pbyRxRate);
329 return false;
330 }
331
332 wPLCPwithPadding = ( (*pwPLCP_Length / 4) + ( (*pwPLCP_Length % 4) ? 1:0 ) ) *4;
333
334 pqwTSFTime = (u64 *)(pbyDAddress + 8 + wPLCPwithPadding);
335 if(pDevice->byBBType == BB_TYPE_11G) {
336 pby3SQ = pbyDAddress + 8 + wPLCPwithPadding + 12;
337 pbySQ = pby3SQ;
338 }
339 else {
340 pbySQ = pbyDAddress + 8 + wPLCPwithPadding + 8;
341 pby3SQ = pbySQ;
342 }
343 pbyNewRsr = pbyDAddress + 8 + wPLCPwithPadding + 9;
344 pbyRSSI = pbyDAddress + 8 + wPLCPwithPadding + 10;
345 pbyRsr = pbyDAddress + 8 + wPLCPwithPadding + 11;
346
347 FrameSize = *pwPLCP_Length;
348
349 pbyFrame = pbyDAddress + 8;
350
351 pMACHeader = (struct ieee80211_hdr *) pbyFrame;
352
353 //mike add: to judge if current AP is activated?
354 if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
355 (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
356 if (pMgmt->sNodeDBTable[0].bActive) {
357 if (ether_addr_equal(pMgmt->abyCurrBSSID, pMACHeader->addr2)) {
358 if (pMgmt->sNodeDBTable[0].uInActiveCount != 0)
359 pMgmt->sNodeDBTable[0].uInActiveCount = 0;
360 }
361 }
362 }
363
364 if (!is_multicast_ether_addr(pMACHeader->addr1)) {
365 if (WCTLbIsDuplicate(&(pDevice->sDupRxCache), (struct ieee80211_hdr *) pbyFrame)) {
366 return false;
367 }
368
369 if (!ether_addr_equal(pDevice->abyCurrentNetAddr, pMACHeader->addr1)) {
370 return false;
371 }
372 }
373
374 // Use for TKIP MIC
375 s_vGetDASA(pbyFrame, &cbHeaderSize, &pDevice->sRxEthHeader);
376
377 if (ether_addr_equal((u8 *)pDevice->sRxEthHeader.h_source,
378 pDevice->abyCurrentNetAddr))
379 return false;
380
381 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
382 if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
383 p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
384 // get SA NodeIndex
385 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p802_11Header->addr2), &iSANodeIndex)) {
386 pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
387 pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
388 }
389 }
390 }
391
392 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
393 if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == true) {
394 return false;
395 }
396 }
397
398 if (IS_FC_WEP(pbyFrame)) {
399 bool bRxDecryOK = false;
400
401 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
402 bIsWEP = true;
403 if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
404 pKey = &STempKey;
405 pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
406 pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
407 pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
408 pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
409 pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
410 memcpy(pKey->abyKey,
411 &pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
412 pKey->uKeyLength
413 );
414
415 bRxDecryOK = s_bHostWepRxEncryption(pDevice,
416 pbyFrame,
417 FrameSize,
418 pbyRsr,
419 pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
420 pKey,
421 pbyNewRsr,
422 &bExtIV,
423 &wRxTSC15_0,
424 &dwRxTSC47_16);
425 } else {
426 bRxDecryOK = s_bHandleRxEncryption(pDevice,
427 pbyFrame,
428 FrameSize,
429 pbyRsr,
430 pbyNewRsr,
431 &pKey,
432 &bExtIV,
433 &wRxTSC15_0,
434 &dwRxTSC47_16);
435 }
436
437 if (bRxDecryOK) {
438 if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
439 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
440 if ( (pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
441 (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
442 (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
443 (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
444 (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
445 }
446 return false;
447 }
448 } else {
449 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
450 return false;
451 }
452 if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
453 FrameSize -= 8; // Message Integrity Code
454 else
455 FrameSize -= 4; // 4 is ICV
456 }
457
458 //
459 // RX OK
460 //
461 /* remove the FCS/CRC length */
462 FrameSize -= ETH_FCS_LEN;
463
464 if ( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) && // unicast address
465 (IS_FRAGMENT_PKT((pbyFrame)))
466 ) {
467 // defragment
468 bDeFragRx = WCTLbHandleFragment(pDevice, (struct ieee80211_hdr *) (pbyFrame), FrameSize, bIsWEP, bExtIV);
469 if (bDeFragRx) {
470 // defrag complete
471 // TODO skb, pbyFrame
472 skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
473 FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
474 pbyFrame = skb->data + 8;
475 }
476 else {
477 return false;
478 }
479 }
480
481 //
482 // Management & Control frame Handle
483 //
484 if ((IS_TYPE_DATA((pbyFrame))) == false) {
485 // Handle Control & Manage Frame
486
487 if (IS_TYPE_MGMT((pbyFrame))) {
488 u8 * pbyData1;
489 u8 * pbyData2;
490
491 pRxPacket = &(pRCB->sMngPacket);
492 pRxPacket->p80211Header = (PUWLAN_80211HDR)(pbyFrame);
493 pRxPacket->cbMPDULen = FrameSize;
494 pRxPacket->uRSSI = *pbyRSSI;
495 pRxPacket->bySQ = *pbySQ;
496 pRxPacket->qwLocalTSF = cpu_to_le64(*pqwTSFTime);
497 if (bIsWEP) {
498 // strip IV
499 pbyData1 = WLAN_HDR_A3_DATA_PTR(pbyFrame);
500 pbyData2 = WLAN_HDR_A3_DATA_PTR(pbyFrame) + 4;
501 for (ii = 0; ii < (FrameSize - 4); ii++) {
502 *pbyData1 = *pbyData2;
503 pbyData1++;
504 pbyData2++;
505 }
506 }
507
508 pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
509
510 if ( *pbyRxSts == 0 ) {
511 //Discard beacon packet which channel is 0
512 if ( (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_BEACON) ||
513 (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_PROBERESP) ) {
514 return false;
515 }
516 }
517 pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
518
519 // hostap Deamon handle 802.11 management
520 if (pDevice->bEnableHostapd) {
521 skb->dev = pDevice->apdev;
522 //skb->data += 4;
523 //skb->tail += 4;
524 skb->data += 8;
525 skb->tail += 8;
526 skb_put(skb, FrameSize);
527 skb_reset_mac_header(skb);
528 skb->pkt_type = PACKET_OTHERHOST;
529 skb->protocol = htons(ETH_P_802_2);
530 memset(skb->cb, 0, sizeof(skb->cb));
531 netif_rx(skb);
532 return true;
533 }
534
535 //
536 // Insert the RCB in the Recv Mng list
537 //
538 EnqueueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList, pRCBIndicate);
539 pDevice->NumRecvMngList++;
540 if ( bDeFragRx == false) {
541 pRCB->Ref++;
542 }
543 if (pDevice->bIsRxMngWorkItemQueued == false) {
544 pDevice->bIsRxMngWorkItemQueued = true;
545 schedule_work(&pDevice->rx_mng_work_item);
546 }
547
548 }
549 else {
550 // Control Frame
551 };
552 return false;
553 }
554 else {
555 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
556 //In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
557 if ( !(*pbyRsr & RSR_BSSIDOK)) {
558 if (bDeFragRx) {
559 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
560 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
561 pDevice->dev->name);
562 }
563 }
564 return false;
565 }
566 }
567 else {
568 // discard DATA packet while not associate || BSSID error
569 if ((pDevice->bLinkPass == false) ||
570 !(*pbyRsr & RSR_BSSIDOK)) {
571 if (bDeFragRx) {
572 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
573 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
574 pDevice->dev->name);
575 }
576 }
577 return false;
578 }
579 //mike add:station mode check eapol-key challenge--->
580 {
581 u8 Protocol_Version; //802.1x Authentication
582 u8 Packet_Type; //802.1x Authentication
583 u8 Descriptor_type;
584 u16 Key_info;
585 if (bIsWEP)
586 cbIVOffset = 8;
587 else
588 cbIVOffset = 0;
589 wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
590 skb->data[cbIVOffset + 8 + 24 + 6 + 1];
591 Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
592 Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
593 if (wEtherType == ETH_P_PAE) { //Protocol Type in LLC-Header
594 if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
595 (Packet_Type==3)) { //802.1x OR eapol-key challenge frame receive
596 bRxeapol_key = true;
597 Descriptor_type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2];
598 Key_info = (skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+1]<<8) |skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+2] ;
599 if(Descriptor_type==2) { //RSN
600 // printk("WPA2_Rx_eapol-key_info<-----:%x\n",Key_info);
601 }
602 else if(Descriptor_type==254) {
603 // printk("WPA_Rx_eapol-key_info<-----:%x\n",Key_info);
604 }
605 }
606 }
607 }
608 //mike add:station mode check eapol-key challenge<---
609 }
610 }
611
612 // Data frame Handle
613
614 if (pDevice->bEnablePSMode) {
615 if (IS_FC_MOREDATA((pbyFrame))) {
616 if (*pbyRsr & RSR_ADDROK) {
617 //PSbSendPSPOLL((PSDevice)pDevice);
618 }
619 }
620 else {
621 if (pMgmt->bInTIMWake == true) {
622 pMgmt->bInTIMWake = false;
623 }
624 }
625 }
626
627 // Now it only supports 802.11g Infrastructure Mode, and support rate must up to 54 Mbps
628 if (pDevice->bDiversityEnable && (FrameSize>50) &&
629 (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
630 (pDevice->bLinkPass == true)) {
631 BBvAntennaDiversity(pDevice, s_byGetRateIdx(*pbyRxRate), 0);
632 }
633
634 // ++++++++ For BaseBand Algorithm +++++++++++++++
635 pDevice->uCurrRSSI = *pbyRSSI;
636 pDevice->byCurrSQ = *pbySQ;
637
638 // todo
639 /*
640 if ((*pbyRSSI != 0) &&
641 (pMgmt->pCurrBSS!=NULL)) {
642 RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
643 // Monitor if RSSI is too strong.
644 pMgmt->pCurrBSS->byRSSIStatCnt++;
645 pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
646 pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
647 for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
648 if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
649 pMgmt->pCurrBSS->ldBmMAX =
650 max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
651 }
652 }
653 }
654 */
655
656 // -----------------------------------------------
657
658 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->bEnable8021x == true)){
659 u8 abyMacHdr[24];
660
661 // Only 802.1x packet incoming allowed
662 if (bIsWEP)
663 cbIVOffset = 8;
664 else
665 cbIVOffset = 0;
666 wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
667 skb->data[cbIVOffset + 8 + 24 + 6 + 1];
668
669 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"wEtherType = %04x \n", wEtherType);
670 if (wEtherType == ETH_P_PAE) {
671 skb->dev = pDevice->apdev;
672
673 if (bIsWEP == true) {
674 // strip IV header(8)
675 memcpy(&abyMacHdr[0], (skb->data + 8), 24);
676 memcpy((skb->data + 8 + cbIVOffset), &abyMacHdr[0], 24);
677 }
678
679 skb->data += (cbIVOffset + 8);
680 skb->tail += (cbIVOffset + 8);
681 skb_put(skb, FrameSize);
682 skb_reset_mac_header(skb);
683 skb->pkt_type = PACKET_OTHERHOST;
684 skb->protocol = htons(ETH_P_802_2);
685 memset(skb->cb, 0, sizeof(skb->cb));
686 netif_rx(skb);
687 return true;
688
689 }
690 // check if 802.1x authorized
691 if (!(pMgmt->sNodeDBTable[iSANodeIndex].dwFlags & WLAN_STA_AUTHORIZED))
692 return false;
693 }
694
695 if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
696 if (bIsWEP) {
697 FrameSize -= 8; //MIC
698 }
699 }
700
701 //--------------------------------------------------------------------------------
702 // Soft MIC
703 if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
704 if (bIsWEP) {
705 u32 * pdwMIC_L;
706 u32 * pdwMIC_R;
707 u32 dwMIC_Priority;
708 u32 dwMICKey0 = 0, dwMICKey1 = 0;
709 u32 dwLocalMIC_L = 0;
710 u32 dwLocalMIC_R = 0;
711
712 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
713 dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
714 dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
715 }
716 else {
717 if (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
718 dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
719 dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
720 } else if ((pKey->dwKeyIndex & BIT28) == 0) {
721 dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
722 dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
723 } else {
724 dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
725 dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
726 }
727 }
728
729 MIC_vInit(dwMICKey0, dwMICKey1);
730 MIC_vAppend((u8 *)&(pDevice->sRxEthHeader.h_dest[0]), 12);
731 dwMIC_Priority = 0;
732 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
733 // 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
734 MIC_vAppend((u8 *)(skb->data + 8 + WLAN_HDR_ADDR3_LEN + 8),
735 FrameSize - WLAN_HDR_ADDR3_LEN - 8);
736 MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
737 MIC_vUnInit();
738
739 pdwMIC_L = (u32 *)(skb->data + 8 + FrameSize);
740 pdwMIC_R = (u32 *)(skb->data + 8 + FrameSize + 4);
741
742 if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
743 (pDevice->bRxMICFail == true)) {
744 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
745 pDevice->bRxMICFail = false;
746 if (bDeFragRx) {
747 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
748 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
749 pDevice->dev->name);
750 }
751 }
752 //send event to wpa_supplicant
753 //if(pDevice->bWPASuppWextEnabled == true)
754 {
755 union iwreq_data wrqu;
756 struct iw_michaelmicfailure ev;
757 int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
758 memset(&ev, 0, sizeof(ev));
759 ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
760 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
761 (pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
762 (*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
763 ev.flags |= IW_MICFAILURE_PAIRWISE;
764 } else {
765 ev.flags |= IW_MICFAILURE_GROUP;
766 }
767
768 ev.src_addr.sa_family = ARPHRD_ETHER;
769 memcpy(ev.src_addr.sa_data, pMACHeader->addr2, ETH_ALEN);
770 memset(&wrqu, 0, sizeof(wrqu));
771 wrqu.data.length = sizeof(ev);
772 PRINT_K("wireless_send_event--->IWEVMICHAELMICFAILURE\n");
773 wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
774
775 }
776
777 return false;
778
779 }
780 }
781 } //---end of SOFT MIC-----------------------------------------------------------------------
782
783 // ++++++++++ Reply Counter Check +++++++++++++
784
785 if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
786 (pKey->byCipherSuite == KEY_CTL_CCMP))) {
787 if (bIsWEP) {
788 u16 wLocalTSC15_0 = 0;
789 u32 dwLocalTSC47_16 = 0;
790 unsigned long long RSC = 0;
791 // endian issues
792 RSC = *((unsigned long long *) &(pKey->KeyRSC));
793 wLocalTSC15_0 = (u16) RSC;
794 dwLocalTSC47_16 = (u32) (RSC>>16);
795
796 RSC = dwRxTSC47_16;
797 RSC <<= 16;
798 RSC += wRxTSC15_0;
799 memcpy(&(pKey->KeyRSC), &RSC, sizeof(u64));
800
801 if (pDevice->vnt_mgmt.eCurrMode == WMAC_MODE_ESS_STA &&
802 pDevice->vnt_mgmt.eCurrState == WMAC_STATE_ASSOC) {
803 /* check RSC */
804 if ( (wRxTSC15_0 < wLocalTSC15_0) &&
805 (dwRxTSC47_16 <= dwLocalTSC47_16) &&
806 !((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
807 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
808
809 if (bDeFragRx) {
810 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
811 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
812 pDevice->dev->name);
813 }
814 }
815 return false;
816 }
817 }
818 }
819 } // ----- End of Reply Counter Check --------------------------
820
821 s_vProcessRxMACHeader(pDevice, (u8 *)(skb->data+8), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
822 FrameSize -= cbHeaderOffset;
823 cbHeaderOffset += 8; // 8 is Rcv buffer header
824
825 // Null data, framesize = 12
826 if (FrameSize < 12)
827 return false;
828
829 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
830 if (s_bAPModeRxData(pDevice,
831 skb,
832 FrameSize,
833 cbHeaderOffset,
834 iSANodeIndex,
835 iDANodeIndex
836 ) == false) {
837
838 if (bDeFragRx) {
839 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
840 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
841 pDevice->dev->name);
842 }
843 }
844 return false;
845 }
846
847 }
848
849 skb->data += cbHeaderOffset;
850 skb->tail += cbHeaderOffset;
851 skb_put(skb, FrameSize);
852 skb->protocol=eth_type_trans(skb, skb->dev);
853 skb->ip_summed=CHECKSUM_NONE;
854 pStats->rx_bytes +=skb->len;
855 pStats->rx_packets++;
856 netif_rx(skb);
857 if (bDeFragRx) {
858 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
859 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
860 pDevice->dev->name);
861 }
862 return false;
863 }
864
865 return true;
866 }
867
868 static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
869 s32 iSANodeIndex)
870 {
871 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
872 struct ieee80211_hdr *p802_11Header;
873 CMD_STATUS Status;
874
875 if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
876
877 p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
878 if (!IS_TYPE_MGMT(pbyFrame)) {
879
880 // Data & PS-Poll packet
881 // check frame class
882 if (iSANodeIndex > 0) {
883 // frame class 3 fliter & checking
884 if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_AUTH) {
885 // send deauth notification
886 // reason = (6) class 2 received from nonauth sta
887 vMgrDeAuthenBeginSta(pDevice,
888 pMgmt,
889 (u8 *)(p802_11Header->addr2),
890 (WLAN_MGMT_REASON_CLASS2_NONAUTH),
891 &Status
892 );
893 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 1\n");
894 return true;
895 }
896 if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_ASSOC) {
897 // send deassoc notification
898 // reason = (7) class 3 received from nonassoc sta
899 vMgrDisassocBeginSta(pDevice,
900 pMgmt,
901 (u8 *)(p802_11Header->addr2),
902 (WLAN_MGMT_REASON_CLASS3_NONASSOC),
903 &Status
904 );
905 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDisassocBeginSta 2\n");
906 return true;
907 }
908
909 if (pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable) {
910 // delcare received ps-poll event
911 if (IS_CTL_PSPOLL(pbyFrame)) {
912 pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
913 bScheduleCommand((void *) pDevice,
914 WLAN_CMD_RX_PSPOLL,
915 NULL);
916 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 1\n");
917 }
918 else {
919 // check Data PS state
920 // if PW bit off, send out all PS bufferring packets.
921 if (!IS_FC_POWERMGT(pbyFrame)) {
922 pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
923 pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
924 bScheduleCommand((void *) pDevice,
925 WLAN_CMD_RX_PSPOLL,
926 NULL);
927 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 2\n");
928 }
929 }
930 }
931 else {
932 if (IS_FC_POWERMGT(pbyFrame)) {
933 pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = true;
934 // Once if STA in PS state, enable multicast bufferring
935 pMgmt->sNodeDBTable[0].bPSEnable = true;
936 }
937 else {
938 // clear all pending PS frame.
939 if (pMgmt->sNodeDBTable[iSANodeIndex].wEnQueueCnt > 0) {
940 pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
941 pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
942 bScheduleCommand((void *) pDevice,
943 WLAN_CMD_RX_PSPOLL,
944 NULL);
945 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 3\n");
946
947 }
948 }
949 }
950 }
951 else {
952 vMgrDeAuthenBeginSta(pDevice,
953 pMgmt,
954 (u8 *)(p802_11Header->addr2),
955 (WLAN_MGMT_REASON_CLASS2_NONAUTH),
956 &Status
957 );
958 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 3\n");
959 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSID:%pM\n",
960 p802_11Header->addr3);
961 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR2:%pM\n",
962 p802_11Header->addr2);
963 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR1:%pM\n",
964 p802_11Header->addr1);
965 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: frame_control= %x\n", p802_11Header->frame_control);
966 return true;
967 }
968 }
969 }
970 return false;
971
972 }
973
974 static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
975 u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
976 s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
977 {
978 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
979 u32 PayloadLen = FrameSize;
980 u8 *pbyIV;
981 u8 byKeyIdx;
982 PSKeyItem pKey = NULL;
983 u8 byDecMode = KEY_CTL_WEP;
984
985 *pwRxTSC15_0 = 0;
986 *pdwRxTSC47_16 = 0;
987
988 pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
989 if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
990 WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
991 pbyIV += 6; // 6 is 802.11 address4
992 PayloadLen -= 6;
993 }
994 byKeyIdx = (*(pbyIV+3) & 0xc0);
995 byKeyIdx >>= 6;
996 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
997
998 if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
999 (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
1000 (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
1001 (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
1002 (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
1003 if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
1004 (pMgmt->byCSSPK != KEY_CTL_NONE)) {
1005 // unicast pkt use pairwise key
1006 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
1007 if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == true) {
1008 if (pMgmt->byCSSPK == KEY_CTL_TKIP)
1009 byDecMode = KEY_CTL_TKIP;
1010 else if (pMgmt->byCSSPK == KEY_CTL_CCMP)
1011 byDecMode = KEY_CTL_CCMP;
1012 }
1013 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
1014 } else {
1015 // use group key
1016 KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
1017 if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1018 byDecMode = KEY_CTL_TKIP;
1019 else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1020 byDecMode = KEY_CTL_CCMP;
1021 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
1022 }
1023 }
1024 // our WEP only support Default Key
1025 if (pKey == NULL) {
1026 // use default group key
1027 KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
1028 if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1029 byDecMode = KEY_CTL_TKIP;
1030 else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1031 byDecMode = KEY_CTL_CCMP;
1032 }
1033 *pKeyOut = pKey;
1034
1035 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
1036
1037 if (pKey == NULL) {
1038 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
1039 return false;
1040 }
1041 if (byDecMode != pKey->byCipherSuite) {
1042 *pKeyOut = NULL;
1043 return false;
1044 }
1045 if (byDecMode == KEY_CTL_WEP) {
1046 // handle WEP
1047 if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
1048 (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true)) {
1049 // Software WEP
1050 // 1. 3253A
1051 // 2. WEP 256
1052
1053 PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
1054 memcpy(pDevice->abyPRNG, pbyIV, 3);
1055 memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
1056 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
1057 rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
1058
1059 if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
1060 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1061 }
1062 }
1063 } else if ((byDecMode == KEY_CTL_TKIP) ||
1064 (byDecMode == KEY_CTL_CCMP)) {
1065 // TKIP/AES
1066
1067 PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
1068 *pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
1069 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
1070 if (byDecMode == KEY_CTL_TKIP) {
1071 *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
1072 } else {
1073 *pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
1074 }
1075 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
1076
1077 if ((byDecMode == KEY_CTL_TKIP) &&
1078 (pDevice->byLocalID <= REV_ID_VT3253_A1)) {
1079 // Software TKIP
1080 // 1. 3253 A
1081 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
1082 TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
1083 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
1084 rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
1085 if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
1086 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1087 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
1088 } else {
1089 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
1090 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
1091 }
1092 }
1093 }// end of TKIP/AES
1094
1095 if ((*(pbyIV+3) & 0x20) != 0)
1096 *pbExtIV = true;
1097 return true;
1098 }
1099
1100 static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
1101 u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
1102 s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
1103 {
1104 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1105 struct ieee80211_hdr *pMACHeader;
1106 u32 PayloadLen = FrameSize;
1107 u8 *pbyIV;
1108 u8 byKeyIdx;
1109 u8 byDecMode = KEY_CTL_WEP;
1110
1111 *pwRxTSC15_0 = 0;
1112 *pdwRxTSC47_16 = 0;
1113
1114 pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
1115 if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
1116 WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
1117 pbyIV += 6; // 6 is 802.11 address4
1118 PayloadLen -= 6;
1119 }
1120 byKeyIdx = (*(pbyIV+3) & 0xc0);
1121 byKeyIdx >>= 6;
1122 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
1123
1124 if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1125 byDecMode = KEY_CTL_TKIP;
1126 else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1127 byDecMode = KEY_CTL_CCMP;
1128
1129 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
1130
1131 if (byDecMode != pKey->byCipherSuite) {
1132 return false;
1133 }
1134
1135 if (byDecMode == KEY_CTL_WEP) {
1136 // handle WEP
1137 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"byDecMode == KEY_CTL_WEP\n");
1138 if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
1139 (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true) ||
1140 (bOnFly == false)) {
1141 // Software WEP
1142 // 1. 3253A
1143 // 2. WEP 256
1144 // 3. NotOnFly
1145
1146 PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
1147 memcpy(pDevice->abyPRNG, pbyIV, 3);
1148 memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
1149 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
1150 rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
1151
1152 if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
1153 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1154 }
1155 }
1156 } else if ((byDecMode == KEY_CTL_TKIP) ||
1157 (byDecMode == KEY_CTL_CCMP)) {
1158 // TKIP/AES
1159
1160 PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
1161 *pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
1162 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
1163
1164 if (byDecMode == KEY_CTL_TKIP) {
1165 *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
1166 } else {
1167 *pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
1168 }
1169 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
1170
1171 if (byDecMode == KEY_CTL_TKIP) {
1172
1173 if ((pDevice->byLocalID <= REV_ID_VT3253_A1) || (bOnFly == false)) {
1174 // Software TKIP
1175 // 1. 3253 A
1176 // 2. NotOnFly
1177 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_TKIP \n");
1178 pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
1179 TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
1180 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
1181 rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
1182 if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
1183 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1184 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
1185 } else {
1186 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
1187 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
1188 }
1189 }
1190 }
1191
1192 if (byDecMode == KEY_CTL_CCMP) {
1193 if (bOnFly == false) {
1194 // Software CCMP
1195 // NotOnFly
1196 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_CCMP\n");
1197 if (AESbGenCCMP(pKey->abyKey, pbyFrame, FrameSize)) {
1198 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1199 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC compare OK!\n");
1200 } else {
1201 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC fail!\n");
1202 }
1203 }
1204 }
1205
1206 }// end of TKIP/AES
1207
1208 if ((*(pbyIV+3) & 0x20) != 0)
1209 *pbExtIV = true;
1210 return true;
1211 }
1212
1213 static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
1214 u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex)
1215 {
1216 struct sk_buff *skbcpy;
1217 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1218 int bRelayAndForward = false;
1219 int bRelayOnly = false;
1220 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
1221 u16 wAID;
1222
1223 if (FrameSize > CB_MAX_BUF_SIZE)
1224 return false;
1225 // check DA
1226 if (is_multicast_ether_addr((u8 *)(skb->data+cbHeaderOffset))) {
1227 if (pMgmt->sNodeDBTable[0].bPSEnable) {
1228
1229 skbcpy = dev_alloc_skb((int)pDevice->rx_buf_sz);
1230
1231 // if any node in PS mode, buffer packet until DTIM.
1232 if (skbcpy == NULL) {
1233 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "relay multicast no skb available \n");
1234 }
1235 else {
1236 skbcpy->dev = pDevice->dev;
1237 skbcpy->len = FrameSize;
1238 memcpy(skbcpy->data, skb->data+cbHeaderOffset, FrameSize);
1239 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skbcpy);
1240 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
1241 // set tx map
1242 pMgmt->abyPSTxMap[0] |= byMask[0];
1243 }
1244 }
1245 else {
1246 bRelayAndForward = true;
1247 }
1248 }
1249 else {
1250 // check if relay
1251 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data+cbHeaderOffset), &iDANodeIndex)) {
1252 if (pMgmt->sNodeDBTable[iDANodeIndex].eNodeState >= NODE_ASSOC) {
1253 if (pMgmt->sNodeDBTable[iDANodeIndex].bPSEnable) {
1254 // queue this skb until next PS tx, and then release.
1255
1256 skb->data += cbHeaderOffset;
1257 skb->tail += cbHeaderOffset;
1258 skb_put(skb, FrameSize);
1259 skb_queue_tail(&pMgmt->sNodeDBTable[iDANodeIndex].sTxPSQueue, skb);
1260
1261 pMgmt->sNodeDBTable[iDANodeIndex].wEnQueueCnt++;
1262 wAID = pMgmt->sNodeDBTable[iDANodeIndex].wAID;
1263 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
1264 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "relay: index= %d, pMgmt->abyPSTxMap[%d]= %d\n",
1265 iDANodeIndex, (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
1266 return true;
1267 }
1268 else {
1269 bRelayOnly = true;
1270 }
1271 }
1272 }
1273 }
1274
1275 if (bRelayOnly || bRelayAndForward) {
1276 // relay this packet right now
1277 if (bRelayAndForward)
1278 iDANodeIndex = 0;
1279
1280 if ((pDevice->uAssocCount > 1) && (iDANodeIndex >= 0)) {
1281 bRelayPacketSend(pDevice, (u8 *) (skb->data + cbHeaderOffset),
1282 FrameSize, (unsigned int) iDANodeIndex);
1283 }
1284
1285 if (bRelayOnly)
1286 return false;
1287 }
1288 // none associate, don't forward
1289 if (pDevice->uAssocCount == 0)
1290 return false;
1291
1292 return true;
1293 }
1294
1295 void RXvWorkItem(struct work_struct *work)
1296 {
1297 struct vnt_private *pDevice =
1298 container_of(work, struct vnt_private, read_work_item);
1299 int ntStatus;
1300 struct vnt_rcb *pRCB = NULL;
1301
1302 if (pDevice->Flags & fMP_DISCONNECTED)
1303 return;
1304
1305 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Polling Thread\n");
1306 spin_lock_irq(&pDevice->lock);
1307
1308 while ((pDevice->Flags & fMP_POST_READS) &&
1309 MP_IS_READY(pDevice) &&
1310 (pDevice->NumRecvFreeList != 0) ) {
1311 pRCB = pDevice->FirstRecvFreeList;
1312 pDevice->NumRecvFreeList--;
1313 DequeueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList);
1314 ntStatus = PIPEnsBulkInUsbRead(pDevice, pRCB);
1315 }
1316 pDevice->bIsRxWorkItemQueued = false;
1317 spin_unlock_irq(&pDevice->lock);
1318
1319 }
1320
1321 void RXvFreeRCB(struct vnt_rcb *pRCB, int bReAllocSkb)
1322 {
1323 struct vnt_private *pDevice = pRCB->pDevice;
1324
1325 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->RXvFreeRCB\n");
1326
1327 if (bReAllocSkb == false) {
1328 kfree_skb(pRCB->skb);
1329 bReAllocSkb = true;
1330 }
1331
1332 if (bReAllocSkb == true) {
1333 pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1334 // todo error handling
1335 if (pRCB->skb == NULL) {
1336 DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to re-alloc rx skb\n");
1337 }else {
1338 pRCB->skb->dev = pDevice->dev;
1339 }
1340 }
1341 //
1342 // Insert the RCB back in the Recv free list
1343 //
1344 EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB);
1345 pDevice->NumRecvFreeList++;
1346
1347 if ((pDevice->Flags & fMP_POST_READS) && MP_IS_READY(pDevice) &&
1348 (pDevice->bIsRxWorkItemQueued == false) ) {
1349
1350 pDevice->bIsRxWorkItemQueued = true;
1351 schedule_work(&pDevice->read_work_item);
1352 }
1353 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----RXFreeRCB %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
1354 }
1355
1356 void RXvMngWorkItem(struct work_struct *work)
1357 {
1358 struct vnt_private *pDevice =
1359 container_of(work, struct vnt_private, rx_mng_work_item);
1360 struct vnt_rcb *pRCB = NULL;
1361 struct vnt_rx_mgmt *pRxPacket;
1362 int bReAllocSkb = false;
1363
1364 if (pDevice->Flags & fMP_DISCONNECTED)
1365 return;
1366
1367 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Mng Thread\n");
1368
1369 spin_lock_irq(&pDevice->lock);
1370 while (pDevice->NumRecvMngList!=0)
1371 {
1372 pRCB = pDevice->FirstRecvMngList;
1373 pDevice->NumRecvMngList--;
1374 DequeueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList);
1375 if(!pRCB){
1376 break;
1377 }
1378 pRxPacket = &(pRCB->sMngPacket);
1379 vMgrRxManagePacket(pDevice, &pDevice->vnt_mgmt, pRxPacket);
1380 pRCB->Ref--;
1381 if(pRCB->Ref == 0) {
1382 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"RxvFreeMng %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
1383 RXvFreeRCB(pRCB, bReAllocSkb);
1384 } else {
1385 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Rx Mng Only we have the right to free RCB\n");
1386 }
1387 }
1388
1389 pDevice->bIsRxMngWorkItemQueued = false;
1390 spin_unlock_irq(&pDevice->lock);
1391
1392 }
1393
This page took 0.083592 seconds and 5 git commands to generate.