370d588a849037c44d0e092ded2f69d8ccb2ba0c
[deliverable/linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: rxtx.c
20 *
21 * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22 *
23 * Author: Lyndon Chen
24 *
25 * Date: May 20, 2003
26 *
27 * Functions:
28 * s_vGenerateTxParameter - Generate tx dma required parameter.
29 * s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30 * csBeacon_xmit - beacon tx function
31 * csMgmt_xmit - management tx function
32 * s_uGetDataDuration - get tx data required duration
33 * s_uFillDataHead- fulfill tx data duration header
34 * s_uGetRTSCTSDuration- get rtx/cts required duration
35 * s_uGetRTSCTSRsvTime- get rts/cts reserved time
36 * s_uGetTxRsvTime- get frame reserved time
37 * s_vFillCTSHead- fulfill CTS ctl header
38 * s_vFillFragParameter- Set fragment ctl parameter.
39 * s_vFillRTSHead- fulfill RTS ctl header
40 * s_vFillTxKey- fulfill tx encrypt key
41 * s_vSWencryption- Software encrypt header
42 * vDMA0_tx_80211- tx 802.11 frame via dma0
43 * vGenerateFIFOHeader- Generate tx FIFO ctl header
44 *
45 * Revision History:
46 *
47 */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int msglevel = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68 {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69 {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70 };
71
72 const u16 wFB_Opt0[2][5] = {
73 {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75 };
76 const u16 wFB_Opt1[2][5] = {
77 {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79 };
80
81 #define RTSDUR_BB 0
82 #define RTSDUR_BA 1
83 #define RTSDUR_AA 2
84 #define CTSDUR_BA 3
85 #define RTSDUR_BA_F0 4
86 #define RTSDUR_AA_F0 5
87 #define RTSDUR_BA_F1 6
88 #define RTSDUR_AA_F1 7
89 #define CTSDUR_BA_F0 8
90 #define CTSDUR_BA_F1 9
91 #define DATADUR_B 10
92 #define DATADUR_A 11
93 #define DATADUR_A_F0 12
94 #define DATADUR_A_F1 13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static u16 s_vGenerateTxParameter(struct vnt_private *pDevice,
102 u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103 struct vnt_mic_hdr **mic_hdr, u32 need_mic, u32 cbFrameSize,
104 int bNeedACK, u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108 u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116 struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122 u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125 u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static u16 s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129 int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static u16 s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136 u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139 u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140 int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144 struct vnt_usb_send_context *pContext = NULL;
145 struct vnt_usb_send_context *pReturnContext = NULL;
146 int ii;
147
148 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150 for (ii = 0; ii < pDevice->cbTD; ii++) {
151 if (!pDevice->apTD[ii])
152 return NULL;
153 pContext = pDevice->apTD[ii];
154 if (pContext->bBoolInUse == false) {
155 pContext->bBoolInUse = true;
156 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
157 pReturnContext = pContext;
158 break;
159 }
160 }
161 if ( ii == pDevice->cbTD ) {
162 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
163 }
164 return (void *) pReturnContext;
165 }
166
167 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
168 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
169 {
170 PSStatCounter pStatistic = &pDevice->scStatistic;
171
172 if (is_broadcast_ether_addr(pbyDestAddr))
173 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
174 else if (is_multicast_ether_addr(pbyDestAddr))
175 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
176 else
177 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
178
179 pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
180 pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
181 memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
182 pbyDestAddr,
183 ETH_ALEN);
184 }
185
186 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
187 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
188 u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
189 {
190 u32 *pdwIV = (u32 *)pbyIVHead;
191 u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
192 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
193 u32 dwRevIVCounter;
194
195 /* Fill TXKEY */
196 if (pTransmitKey == NULL)
197 return;
198
199 dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
200 *pdwIV = pDevice->dwIVCounter;
201 pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
202
203 switch (pTransmitKey->byCipherSuite) {
204 case KEY_CTL_WEP:
205 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
206 memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
207 memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
208 pTransmitKey->uKeyLength);
209 } else {
210 memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
211 memcpy(pbyBuf + 3, pTransmitKey->abyKey,
212 pTransmitKey->uKeyLength);
213 if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
214 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
215 memcpy(pbyBuf+11, pTransmitKey->abyKey,
216 pTransmitKey->uKeyLength);
217 }
218
219 memcpy(pDevice->abyPRNG, pbyBuf, 16);
220 }
221 /* Append IV after Mac Header */
222 *pdwIV &= WEP_IV_MASK;
223 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
224 *pdwIV = cpu_to_le32(*pdwIV);
225
226 pDevice->dwIVCounter++;
227 if (pDevice->dwIVCounter > WEP_IV_MASK)
228 pDevice->dwIVCounter = 0;
229
230 break;
231 case KEY_CTL_TKIP:
232 pTransmitKey->wTSC15_0++;
233 if (pTransmitKey->wTSC15_0 == 0)
234 pTransmitKey->dwTSC47_16++;
235
236 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
237 pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
238 pDevice->abyPRNG);
239 memcpy(pbyBuf, pDevice->abyPRNG, 16);
240
241 /* Make IV */
242 memcpy(pdwIV, pDevice->abyPRNG, 3);
243
244 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
245 0xc0) | 0x20);
246 /* Append IV&ExtIV after Mac Header */
247 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
248
249 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
250 "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
251
252 break;
253 case KEY_CTL_CCMP:
254 pTransmitKey->wTSC15_0++;
255 if (pTransmitKey->wTSC15_0 == 0)
256 pTransmitKey->dwTSC47_16++;
257
258 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
259
260 /* Make IV */
261 *pdwIV = 0;
262 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
263 0xc0) | 0x20);
264
265 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
266
267 /* Append IV&ExtIV after Mac Header */
268 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
269
270 if (!mic_hdr)
271 return;
272
273 /* MICHDR0 */
274 mic_hdr->id = 0x59;
275 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
276 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
277
278 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
279 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
280
281 /* MICHDR1 */
282 if (pDevice->bLongHeader)
283 mic_hdr->hlen = cpu_to_be16(28);
284 else
285 mic_hdr->hlen = cpu_to_be16(22);
286
287 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
288 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
289
290 /* MICHDR2 */
291 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
292 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
293 & 0xc78f);
294 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
295
296 if (pDevice->bLongHeader)
297 memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
298 }
299 }
300
301 static void s_vSWencryption(struct vnt_private *pDevice,
302 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
303 {
304 u32 cbICVlen = 4;
305 u32 dwICV = 0xffffffff;
306 u32 *pdwICV;
307
308 if (pTransmitKey == NULL)
309 return;
310
311 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
312 //=======================================================================
313 // Append ICV after payload
314 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
315 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
316 // finally, we must invert dwCRC to get the correct answer
317 *pdwICV = cpu_to_le32(~dwICV);
318 // RC4 encryption
319 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
320 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
321 //=======================================================================
322 } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
323 //=======================================================================
324 //Append ICV after payload
325 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
326 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
327 // finally, we must invert dwCRC to get the correct answer
328 *pdwICV = cpu_to_le32(~dwICV);
329 // RC4 encryption
330 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
331 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
332 //=======================================================================
333 }
334 }
335
336 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
337 {
338 return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
339 [rate % MAX_RATE]);
340 }
341
342 /*byPktType : PK_TYPE_11A 0
343 PK_TYPE_11B 1
344 PK_TYPE_11GB 2
345 PK_TYPE_11GA 3
346 */
347 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
348 u32 cbFrameLength, u16 wRate, int bNeedAck)
349 {
350 u32 uDataTime, uAckTime;
351
352 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
353 if (byPktType == PK_TYPE_11B) {//llb,CCK mode
354 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
355 } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
356 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
357 }
358
359 if (bNeedAck) {
360 return (uDataTime + pDevice->uSIFS + uAckTime);
361 }
362 else {
363 return uDataTime;
364 }
365 }
366
367 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
368 u32 frame_length, u16 rate, int need_ack)
369 {
370 return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
371 frame_length, rate, need_ack));
372 }
373
374 //byFreqType: 0=>5GHZ 1=>2.4GHZ
375 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
376 u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
377 {
378 u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
379
380 uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
381
382 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
383 if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
384 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
385 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
386 }
387 else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
388 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
389 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
390 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
391 }
392 else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
393 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
394 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
395 }
396 else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
397 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
398 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
399 uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
400 return uRrvTime;
401 }
402
403 //RTSRrvTime
404 uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
405 return cpu_to_le16((u16)uRrvTime);
406 }
407
408 //byFreqType 0: 5GHz, 1:2.4Ghz
409 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
410 u8 byPktType, int bNeedAck)
411 {
412 u32 uAckTime = 0;
413
414 if (bNeedAck) {
415 if (byPktType == PK_TYPE_11B)
416 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
417 byPktType, 14, pDevice->byTopCCKBasicRate);
418 else
419 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
420 byPktType, 14, pDevice->byTopOFDMBasicRate);
421 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
422 }
423
424 return 0;
425 }
426
427 //byFreqType: 0=>5GHZ 1=>2.4GHZ
428 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
429 u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
430 u8 byFBOption)
431 {
432 u32 uCTSTime = 0, uDurTime = 0;
433
434 switch (byDurType) {
435
436 case RTSDUR_BB: //RTSDuration_bb
437 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
438 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
439 break;
440
441 case RTSDUR_BA: //RTSDuration_ba
442 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
443 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
444 break;
445
446 case RTSDUR_AA: //RTSDuration_aa
447 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
448 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
449 break;
450
451 case CTSDUR_BA: //CTSDuration_ba
452 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
453 break;
454
455 case RTSDUR_BA_F0: //RTSDuration_ba_f0
456 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
457 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
459 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
460 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
461 }
462 break;
463
464 case RTSDUR_AA_F0: //RTSDuration_aa_f0
465 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
466 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
468 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
469 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
470 }
471 break;
472
473 case RTSDUR_BA_F1: //RTSDuration_ba_f1
474 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
475 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
477 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
478 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
479 }
480 break;
481
482 case RTSDUR_AA_F1: //RTSDuration_aa_f1
483 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
484 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
486 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
487 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
488 }
489 break;
490
491 case CTSDUR_BA_F0: //CTSDuration_ba_f0
492 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
494 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
495 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
496 }
497 break;
498
499 case CTSDUR_BA_F1: //CTSDuration_ba_f1
500 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
502 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
503 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
504 }
505 break;
506
507 default:
508 break;
509 }
510
511 return cpu_to_le16((u16)uDurTime);
512 }
513
514 static u16 vnt_rxtx_datahead_g(struct vnt_private *priv, u8 pkt_type, u16 rate,
515 struct vnt_tx_datahead_g *buf, u32 frame_len, int need_ack)
516 {
517 /* Get SignalField,ServiceField,Length */
518 BBvCalculateParameter(priv, frame_len, rate, pkt_type, &buf->a);
519 BBvCalculateParameter(priv, frame_len, priv->byTopCCKBasicRate,
520 PK_TYPE_11B, &buf->b);
521
522 /* Get Duration and TimeStamp */
523 buf->wDuration_a = s_uGetDataDuration(priv, pkt_type, need_ack);
524 buf->wDuration_b = s_uGetDataDuration(priv, PK_TYPE_11B, need_ack);
525
526 buf->wTimeStampOff_a = vnt_time_stamp_off(priv, rate);
527 buf->wTimeStampOff_b = vnt_time_stamp_off(priv,
528 priv->byTopCCKBasicRate);
529
530 return buf->wDuration_a;
531 }
532
533 static u16 vnt_rxtx_datahead_g_fb(struct vnt_private *priv, u8 pkt_type,
534 u16 rate, struct vnt_tx_datahead_g_fb *buf,
535 u32 frame_len, int need_ack)
536 {
537 /* Get SignalField,ServiceField,Length */
538 BBvCalculateParameter(priv, frame_len, rate, pkt_type, &buf->a);
539
540 BBvCalculateParameter(priv, frame_len, priv->byTopCCKBasicRate,
541 PK_TYPE_11B, &buf->b);
542
543 /* Get Duration and TimeStamp */
544 buf->wDuration_a = s_uGetDataDuration(priv, pkt_type, need_ack);
545 buf->wDuration_b = s_uGetDataDuration(priv, PK_TYPE_11B, need_ack);
546
547 buf->wDuration_a_f0 = s_uGetDataDuration(priv, pkt_type, need_ack);
548 buf->wDuration_a_f1 = s_uGetDataDuration(priv, pkt_type, need_ack);
549
550 buf->wTimeStampOff_a = vnt_time_stamp_off(priv, rate);
551 buf->wTimeStampOff_b = vnt_time_stamp_off(priv,
552 priv->byTopCCKBasicRate);
553
554 return buf->wDuration_a;
555 }
556
557 static u32 s_uFillDataHead(struct vnt_private *pDevice,
558 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
559 u32 uDMAIdx, int bNeedAck, u8 byFBOption)
560 {
561
562 if (pTxDataHead == NULL) {
563 return 0;
564 }
565
566 if (byPktType == PK_TYPE_11A) {
567 if (byFBOption != AUTO_FB_NONE) {
568 struct vnt_tx_datahead_a_fb *pBuf =
569 (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570 //Get SignalField,ServiceField,Length
571 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572 byPktType, &pBuf->a);
573 //Get Duration and TimeStampOff
574 pBuf->wDuration = s_uGetDataDuration(pDevice,
575 byPktType, bNeedAck);
576 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577 byPktType, bNeedAck);
578 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579 byPktType, bNeedAck);
580 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581 wCurrentRate);
582 return (pBuf->wDuration);
583 } else {
584 struct vnt_tx_datahead_ab *pBuf =
585 (struct vnt_tx_datahead_ab *)pTxDataHead;
586 //Get SignalField,ServiceField,Length
587 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588 byPktType, &pBuf->ab);
589 //Get Duration and TimeStampOff
590 pBuf->wDuration = s_uGetDataDuration(pDevice,
591 byPktType, bNeedAck);
592 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593 wCurrentRate);
594 return (pBuf->wDuration);
595 }
596 }
597 else if (byPktType == PK_TYPE_11B) {
598 struct vnt_tx_datahead_ab *pBuf =
599 (struct vnt_tx_datahead_ab *)pTxDataHead;
600 //Get SignalField,ServiceField,Length
601 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602 byPktType, &pBuf->ab);
603 //Get Duration and TimeStampOff
604 pBuf->wDuration = s_uGetDataDuration(pDevice,
605 byPktType, bNeedAck);
606 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607 wCurrentRate);
608 return (pBuf->wDuration);
609 }
610 return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614 struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615 u16 duration)
616 {
617 rts->duration = duration;
618 rts->frame_control = TYPE_CTL_RTS;
619
620 if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622 else
623 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625 if (priv->eOPMode == OP_MODE_AP)
626 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627 else
628 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630 return 0;
631 }
632
633 static u16 vnt_rxtx_rts_g_head(struct vnt_private *priv,
634 struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635 u8 pkt_type, u32 frame_len, int need_ack,
636 u16 current_rate, u8 fb_option)
637 {
638 u16 rts_frame_len = 20;
639
640 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641 PK_TYPE_11B, &buf->b);
642 BBvCalculateParameter(priv, rts_frame_len,
643 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648 pkt_type, current_rate, need_ack, fb_option);
649 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650 pkt_type, current_rate, need_ack, fb_option);
651
652 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654 return vnt_rxtx_datahead_g(priv, pkt_type, current_rate,
655 &buf->data_head, frame_len, need_ack);
656 }
657
658 static u16 vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
659 struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
660 u8 pkt_type, u32 frame_len, int need_ack,
661 u16 current_rate, u8 fb_option)
662 {
663 u16 rts_frame_len = 20;
664
665 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
666 PK_TYPE_11B, &buf->b);
667 BBvCalculateParameter(priv, rts_frame_len,
668 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
669
670
671 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
672 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
673 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
674 pkt_type, current_rate, need_ack, fb_option);
675 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
676 pkt_type, current_rate, need_ack, fb_option);
677
678
679 buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
680 frame_len, pkt_type, current_rate, need_ack, fb_option);
681 buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
682 frame_len, pkt_type, current_rate, need_ack, fb_option);
683 buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
684 frame_len, pkt_type, current_rate, need_ack, fb_option);
685 buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
686 frame_len, pkt_type, current_rate, need_ack, fb_option);
687
688 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
689
690 return vnt_rxtx_datahead_g_fb(priv, pkt_type, current_rate,
691 &buf->data_head, frame_len, need_ack);
692 }
693
694 static u16 vnt_rxtx_rts_ab_head(struct vnt_private *priv,
695 struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
696 u8 pkt_type, u32 frame_len, int need_ack,
697 u16 current_rate, u8 fb_option)
698 {
699 u16 rts_frame_len = 20;
700
701 BBvCalculateParameter(priv, rts_frame_len,
702 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
703
704 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
705 pkt_type, current_rate, need_ack, fb_option);
706
707 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
708
709 return 0;
710 }
711
712 static u16 vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
713 struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
714 u8 pkt_type, u32 frame_len, int need_ack,
715 u16 current_rate, u8 fb_option)
716 {
717 u16 rts_frame_len = 20;
718
719 BBvCalculateParameter(priv, rts_frame_len,
720 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
721
722 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
723 pkt_type, current_rate, need_ack, fb_option);
724
725 buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
726 frame_len, pkt_type, current_rate, need_ack, fb_option);
727
728 buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
729 frame_len, pkt_type, current_rate, need_ack, fb_option);
730
731 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
732
733 return 0;
734 }
735
736 static u16 s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
737 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
738 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
739 {
740
741 if (!head)
742 return 0;
743
744 /* Note: So far RTSHead doesn't appear in ATIM
745 * & Beacom DMA, so we don't need to take them
746 * into account.
747 * Otherwise, we need to modified codes for them.
748 */
749 switch (byPktType) {
750 case PK_TYPE_11GB:
751 case PK_TYPE_11GA:
752 if (byFBOption == AUTO_FB_NONE)
753 return vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
754 psEthHeader, byPktType, cbFrameLength,
755 bNeedAck, wCurrentRate, byFBOption);
756 else
757 return vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
758 psEthHeader, byPktType, cbFrameLength,
759 bNeedAck, wCurrentRate, byFBOption);
760 break;
761 case PK_TYPE_11A:
762 if (byFBOption) {
763 vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
764 psEthHeader, byPktType, cbFrameLength,
765 bNeedAck, wCurrentRate, byFBOption);
766 break;
767 }
768 case PK_TYPE_11B:
769 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
770 psEthHeader, byPktType, cbFrameLength,
771 bNeedAck, wCurrentRate, byFBOption);
772 }
773
774 return 0;
775 }
776
777 static u16 s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
778 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
779 int bNeedAck, u16 wCurrentRate, u8 byFBOption)
780 {
781 u32 uCTSFrameLen = 14;
782
783 if (!head)
784 return 0;
785
786 if (byFBOption != AUTO_FB_NONE) {
787 /* Auto Fall back */
788 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
789 /* Get SignalField,ServiceField,Length */
790 BBvCalculateParameter(pDevice, uCTSFrameLen,
791 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
792 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
793 cbFrameLength, byPktType,
794 wCurrentRate, bNeedAck, byFBOption);
795 /* Get CTSDuration_ba_f0 */
796 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
797 CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
798 bNeedAck, byFBOption);
799 /* Get CTSDuration_ba_f1 */
800 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
801 CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
802 bNeedAck, byFBOption);
803 /* Get CTS Frame body */
804 pBuf->data.duration = pBuf->wDuration_ba;
805 pBuf->data.frame_control = TYPE_CTL_CTS;
806 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
807
808 return vnt_rxtx_datahead_g_fb(pDevice, byPktType, wCurrentRate,
809 &pBuf->data_head, cbFrameLength, bNeedAck);
810 } else {
811 struct vnt_cts *pBuf = &head->cts_g;
812 /* Get SignalField,ServiceField,Length */
813 BBvCalculateParameter(pDevice, uCTSFrameLen,
814 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
815 /* Get CTSDuration_ba */
816 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
817 CTSDUR_BA, cbFrameLength, byPktType,
818 wCurrentRate, bNeedAck, byFBOption);
819 /*Get CTS Frame body*/
820 pBuf->data.duration = pBuf->wDuration_ba;
821 pBuf->data.frame_control = TYPE_CTL_CTS;
822 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
823
824 return vnt_rxtx_datahead_g(pDevice, byPktType, wCurrentRate,
825 &pBuf->data_head, cbFrameLength, bNeedAck);
826 }
827
828 return 0;
829 }
830
831 /*+
832 *
833 * Description:
834 * Generate FIFO control for MAC & Baseband controller
835 *
836 * Parameters:
837 * In:
838 * pDevice - Pointer to adpater
839 * pTxDataHead - Transmit Data Buffer
840 * pTxBufHead - pTxBufHead
841 * pvRrvTime - pvRrvTime
842 * pvRTS - RTS Buffer
843 * pCTS - CTS Buffer
844 * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
845 * bNeedACK - If need ACK
846 * uDMAIdx - DMA Index
847 * Out:
848 * none
849 *
850 * Return Value: none
851 *
852 -*/
853
854 static u16 s_vGenerateTxParameter(struct vnt_private *pDevice,
855 u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
856 struct vnt_mic_hdr **mic_hdr, u32 need_mic, u32 cbFrameSize,
857 int bNeedACK, u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts)
858 {
859 struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
860 union vnt_tx_data_head *head = NULL;
861 u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
862 u16 wFifoCtl;
863 u8 byFBOption = AUTO_FB_NONE;
864
865 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
866 pFifoHead->wReserved = wCurrentRate;
867 wFifoCtl = pFifoHead->wFIFOCtl;
868
869 if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
870 byFBOption = AUTO_FB_0;
871 }
872 else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
873 byFBOption = AUTO_FB_1;
874 }
875
876 if (!pFifoHead)
877 return 0;
878
879 if (pDevice->bLongHeader)
880 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
881
882 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
883 if (need_rts) {
884 //Fill RsvTime
885 struct vnt_rrv_time_rts *pBuf = &tx_buffer->tx_head.tx_rts.rts;
886
887 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
888 byPktType, cbFrameSize, wCurrentRate);
889 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
890 byPktType, cbFrameSize, wCurrentRate);
891 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
892 byPktType, cbFrameSize, wCurrentRate);
893 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
894 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
895 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
896 PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
897 bNeedACK);
898
899 if (need_mic) {
900 *mic_hdr = &tx_buffer->tx_head.tx_rts.tx.mic.hdr;
901 head = &tx_buffer->tx_head.tx_rts.tx.mic.head;
902 } else {
903 head = &tx_buffer->tx_head.tx_rts.tx.head;
904 }
905
906 /* Fill RTS */
907 return s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
908 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
909 }
910 else {//RTS_needless, PCF mode
911 //Fill RsvTime
912 struct vnt_rrv_time_cts *pBuf = &tx_buffer->tx_head.tx_cts.cts;
913
914 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
915 cbFrameSize, wCurrentRate, bNeedACK);
916 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
917 PK_TYPE_11B, cbFrameSize,
918 pDevice->byTopCCKBasicRate, bNeedACK);
919 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
920 byPktType, cbFrameSize, wCurrentRate);
921
922 if (need_mic) {
923 *mic_hdr = &tx_buffer->tx_head.tx_cts.tx.mic.hdr;
924 head = &tx_buffer->tx_head.tx_cts.tx.mic.head;
925 } else {
926 head = &tx_buffer->tx_head.tx_cts.tx.head;
927 }
928
929 /* Fill CTS */
930 return s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
931 cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
932 }
933 }
934 else if (byPktType == PK_TYPE_11A) {
935 if (need_rts) {
936 //Fill RsvTime
937 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
938
939 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
940 byPktType, cbFrameSize, wCurrentRate);
941 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
942 cbFrameSize, wCurrentRate, bNeedACK);
943
944 if (need_mic) {
945 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
946 head = &tx_buffer->tx_head.tx_ab.tx.mic.head;
947 } else {
948 head = &tx_buffer->tx_head.tx_ab.tx.head;
949 }
950
951 /* Fill RTS */
952 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
953 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
954 } else {
955 //Fill RsvTime
956 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
957
958 if (need_mic)
959 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
960
961 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
962 cbFrameSize, wCurrentRate, bNeedACK);
963 }
964 }
965 else if (byPktType == PK_TYPE_11B) {
966 if (need_rts) {
967 //Fill RsvTime
968 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
969
970 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
971 byPktType, cbFrameSize, wCurrentRate);
972 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
973 cbFrameSize, wCurrentRate, bNeedACK);
974
975 if (need_mic) {
976 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
977 head = &tx_buffer->tx_head.tx_ab.tx.mic.head;
978 } else {
979 head = &tx_buffer->tx_head.tx_ab.tx.head;
980 }
981
982 /* Fill RTS */
983 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
984 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
985 }
986 else { //RTS_needless, non PCF mode
987 //Fill RsvTime
988 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
989
990 if (need_mic)
991 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
992
993 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
994 cbFrameSize, wCurrentRate, bNeedACK);
995 }
996 }
997 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
998
999 return 0;
1000 }
1001 /*
1002 u8 * pbyBuffer,//point to pTxBufHead
1003 u16 wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
1004 unsigned int cbFragmentSize,//Hdr+payoad+FCS
1005 */
1006
1007 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
1008 struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
1009 u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
1010 u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
1011 u32 *pcbHeaderLen, u32 *pcbTotalLen)
1012 {
1013 struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
1014 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1015 u32 cbFrameSize, cbFrameBodySize;
1016 u32 cb802_1_H_len;
1017 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
1018 u32 cbFCSlen = 4, cbMICHDR = 0;
1019 int bNeedACK;
1020 bool bRTS = false;
1021 u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
1022 u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
1023 u8 abySNAP_Bridgetunnel[ETH_ALEN]
1024 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
1025 u32 uDuration;
1026 u32 cbHeaderLength = 0, uPadding = 0;
1027 struct vnt_mic_hdr *pMICHDR;
1028 void *pvTxDataHd;
1029 u8 byFBOption = AUTO_FB_NONE, byFragType;
1030 u16 wTxBufSize;
1031 u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
1032 u32 *pdwMIC_L, *pdwMIC_R;
1033 int bSoftWEP = false;
1034
1035 pMICHDR = pvTxDataHd = NULL;
1036
1037 if (bNeedEncryption && pTransmitKey->pvKeyTable) {
1038 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
1039 bSoftWEP = true; /* WEP 256 */
1040 }
1041
1042 // Get pkt type
1043 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1044 if (pDevice->dwDiagRefCount == 0) {
1045 cb802_1_H_len = 8;
1046 } else {
1047 cb802_1_H_len = 2;
1048 }
1049 } else {
1050 cb802_1_H_len = 0;
1051 }
1052
1053 cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1054
1055 //Set packet type
1056 pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1057
1058 if (pDevice->dwDiagRefCount != 0) {
1059 bNeedACK = false;
1060 pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1061 } else { //if (pDevice->dwDiagRefCount != 0) {
1062 if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1063 (pDevice->eOPMode == OP_MODE_AP)) {
1064 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1065 bNeedACK = false;
1066 pTxBufHead->wFIFOCtl =
1067 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1068 } else {
1069 bNeedACK = true;
1070 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1071 }
1072 }
1073 else {
1074 // MSDUs in Infra mode always need ACK
1075 bNeedACK = true;
1076 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1077 }
1078 } //if (pDevice->dwDiagRefCount != 0) {
1079
1080 pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1081
1082 //Set FIFOCTL_LHEAD
1083 if (pDevice->bLongHeader)
1084 pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1085
1086 //Set FRAGCTL_MACHDCNT
1087 if (pDevice->bLongHeader) {
1088 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1089 } else {
1090 cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1091 }
1092 pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1093
1094 //Set FIFOCTL_GrpAckPolicy
1095 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1096 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1097 }
1098
1099 //Set Auto Fallback Ctl
1100 if (wCurrentRate >= RATE_18M) {
1101 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1102 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1103 byFBOption = AUTO_FB_0;
1104 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1105 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1106 byFBOption = AUTO_FB_1;
1107 }
1108 }
1109
1110 if (bSoftWEP != true) {
1111 if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
1112 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1113 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1114 }
1115 if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1116 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1117 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1118 }
1119 else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1120 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1121 }
1122 }
1123 }
1124
1125 if ((bNeedEncryption) && (pTransmitKey != NULL)) {
1126 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1127 cbIVlen = 4;
1128 cbICVlen = 4;
1129 }
1130 else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1131 cbIVlen = 8;//IV+ExtIV
1132 cbMIClen = 8;
1133 cbICVlen = 4;
1134 }
1135 if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1136 cbIVlen = 8;//RSN Header
1137 cbICVlen = 8;//MIC
1138 cbMICHDR = sizeof(struct vnt_mic_hdr);
1139 }
1140 if (bSoftWEP == false) {
1141 //MAC Header should be padding 0 to DW alignment.
1142 uPadding = 4 - (cbMACHdLen%4);
1143 uPadding %= 4;
1144 }
1145 }
1146
1147 cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1148
1149 if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1150 bRTS = false;
1151 } else {
1152 bRTS = true;
1153 pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1154 }
1155
1156 pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1157 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1158
1159 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1160 if (byFBOption == AUTO_FB_NONE) {
1161 if (bRTS == true) {//RTS_need
1162 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1163 cbMICHDR + sizeof(struct vnt_rts_g);
1164 }
1165 else { //RTS_needless
1166 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1167 cbMICHDR + sizeof(struct vnt_cts);
1168 }
1169 } else {
1170 // Auto Fall Back
1171 if (bRTS == true) {//RTS_need
1172 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1173 cbMICHDR + sizeof(struct vnt_rts_g_fb);
1174 }
1175 else if (bRTS == false) { //RTS_needless
1176 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1177 cbMICHDR + sizeof(struct vnt_cts_fb);
1178 }
1179 } // Auto Fall Back
1180 }
1181 else {//802.11a/b packet
1182 if (byFBOption == AUTO_FB_NONE) {
1183 if (bRTS == true) {//RTS_need
1184 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1185 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1186 sizeof(struct vnt_rts_ab));
1187 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1188 cbMICHDR + sizeof(struct vnt_rts_ab) +
1189 sizeof(struct vnt_tx_datahead_ab);
1190 }
1191 else if (bRTS == false) { //RTS_needless, no MICHDR
1192 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1193 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1194 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1195 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1196 }
1197 } else {
1198 // Auto Fall Back
1199 if (bRTS == true) {//RTS_need
1200 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1201 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1202 sizeof(struct vnt_rts_a_fb));
1203 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1204 cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1205 sizeof(struct vnt_tx_datahead_a_fb);
1206 }
1207 else if (bRTS == false) { //RTS_needless
1208 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1209 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1210 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1211 cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1212 }
1213 } // Auto Fall Back
1214 }
1215
1216 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1217 pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1218 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1219
1220 //=========================
1221 // No Fragmentation
1222 //=========================
1223 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1224 byFragType = FRAGCTL_NONFRAG;
1225 //uDMAIdx = TYPE_AC0DMA;
1226 //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1227
1228 /* Fill FIFO, RrvTime, RTS and CTS */
1229 uDuration = s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1230 tx_buffer, &pMICHDR, cbMICHDR,
1231 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1232 //Fill DataHead
1233 uDuration |= s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd,
1234 cbFrameSize, uDMAIdx, bNeedACK, byFBOption);
1235 // Generate TX MAC Header
1236 s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1237 byFragType, uDMAIdx, 0);
1238
1239 if (bNeedEncryption == true) {
1240 //Fill TXKEY
1241 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1242 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1243
1244 if (pDevice->bEnableHostWEP) {
1245 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1246 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1247 }
1248 }
1249
1250 // 802.1H
1251 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1252 if (pDevice->dwDiagRefCount == 0) {
1253 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1254 (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1255 memcpy((u8 *) (pbyPayloadHead),
1256 abySNAP_Bridgetunnel, 6);
1257 } else {
1258 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1259 }
1260 pbyType = (u8 *) (pbyPayloadHead + 6);
1261 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1262 } else {
1263 memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1264
1265 }
1266
1267 }
1268
1269 if (pPacket != NULL) {
1270 // Copy the Packet into a tx Buffer
1271 memcpy((pbyPayloadHead + cb802_1_H_len),
1272 (pPacket + ETH_HLEN),
1273 uSkbPacketLen - ETH_HLEN
1274 );
1275
1276 } else {
1277 // while bRelayPacketSend psEthHeader is point to header+payload
1278 memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1279 }
1280
1281 if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1282
1283 ///////////////////////////////////////////////////////////////////
1284
1285 if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1286 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1287 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1288 }
1289 else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1290 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1291 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1292 }
1293 else {
1294 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1295 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1296 }
1297 // DO Software Michael
1298 MIC_vInit(dwMICKey0, dwMICKey1);
1299 MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1300 dwMIC_Priority = 0;
1301 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1302 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1303 dwMICKey0, dwMICKey1);
1304
1305 ///////////////////////////////////////////////////////////////////
1306
1307 //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1308 //for (ii = 0; ii < cbFrameBodySize; ii++) {
1309 // DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1310 //}
1311 //DBG_PRN_GRP12(("\n\n\n"));
1312
1313 MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1314
1315 pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1316 pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1317
1318 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1319 MIC_vUnInit();
1320
1321 if (pDevice->bTxMICFail == true) {
1322 *pdwMIC_L = 0;
1323 *pdwMIC_R = 0;
1324 pDevice->bTxMICFail = false;
1325 }
1326 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1327 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1328 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1329 }
1330
1331 if (bSoftWEP == true) {
1332
1333 s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1334
1335 } else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true)) ||
1336 ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true)) ||
1337 ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true)) ) {
1338 cbFrameSize -= cbICVlen;
1339 }
1340
1341 cbFrameSize -= cbFCSlen;
1342
1343 *pcbHeaderLen = cbHeaderLength;
1344 *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1345
1346 //Set FragCtl in TxBufferHead
1347 pTxBufHead->wFragCtl |= (u16)byFragType;
1348
1349 return true;
1350
1351 }
1352
1353 /*+
1354 *
1355 * Description:
1356 * Translate 802.3 to 802.11 header
1357 *
1358 * Parameters:
1359 * In:
1360 * pDevice - Pointer to adapter
1361 * dwTxBufferAddr - Transmit Buffer
1362 * pPacket - Packet from upper layer
1363 * cbPacketSize - Transmit Data Length
1364 * Out:
1365 * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
1366 * pcbAppendPayload - size of append payload for 802.1H translation
1367 *
1368 * Return Value: none
1369 *
1370 -*/
1371
1372 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1373 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1374 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1375 {
1376 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1377
1378 pMACHeader->frame_control = TYPE_802_11_DATA;
1379
1380 if (pDevice->eOPMode == OP_MODE_AP) {
1381 memcpy(&(pMACHeader->addr1[0]),
1382 &(psEthHeader->h_dest[0]),
1383 ETH_ALEN);
1384 memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1385 memcpy(&(pMACHeader->addr3[0]),
1386 &(psEthHeader->h_source[0]),
1387 ETH_ALEN);
1388 pMACHeader->frame_control |= FC_FROMDS;
1389 } else {
1390 if (pDevice->eOPMode == OP_MODE_ADHOC) {
1391 memcpy(&(pMACHeader->addr1[0]),
1392 &(psEthHeader->h_dest[0]),
1393 ETH_ALEN);
1394 memcpy(&(pMACHeader->addr2[0]),
1395 &(psEthHeader->h_source[0]),
1396 ETH_ALEN);
1397 memcpy(&(pMACHeader->addr3[0]),
1398 &(pDevice->abyBSSID[0]),
1399 ETH_ALEN);
1400 } else {
1401 memcpy(&(pMACHeader->addr3[0]),
1402 &(psEthHeader->h_dest[0]),
1403 ETH_ALEN);
1404 memcpy(&(pMACHeader->addr2[0]),
1405 &(psEthHeader->h_source[0]),
1406 ETH_ALEN);
1407 memcpy(&(pMACHeader->addr1[0]),
1408 &(pDevice->abyBSSID[0]),
1409 ETH_ALEN);
1410 pMACHeader->frame_control |= FC_TODS;
1411 }
1412 }
1413
1414 if (bNeedEncrypt)
1415 pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1416
1417 pMACHeader->duration_id = cpu_to_le16(wDuration);
1418
1419 if (pDevice->bLongHeader) {
1420 PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
1421 pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1422 memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1423 }
1424 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1425
1426 //Set FragNumber in Sequence Control
1427 pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1428
1429 if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1430 pDevice->wSeqCounter++;
1431 if (pDevice->wSeqCounter > 0x0fff)
1432 pDevice->wSeqCounter = 0;
1433 }
1434
1435 if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1436 pMACHeader->frame_control |= FC_MOREFRAG;
1437 }
1438 }
1439
1440 /*+
1441 *
1442 * Description:
1443 * Request instructs a MAC to transmit a 802.11 management packet through
1444 * the adapter onto the medium.
1445 *
1446 * Parameters:
1447 * In:
1448 * hDeviceContext - Pointer to the adapter
1449 * pPacket - A pointer to a descriptor for the packet to transmit
1450 * Out:
1451 * none
1452 *
1453 * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1454 *
1455 -*/
1456
1457 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1458 struct vnt_tx_mgmt *pPacket)
1459 {
1460 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1461 struct vnt_tx_buffer *pTX_Buffer;
1462 struct vnt_usb_send_context *pContext;
1463 struct vnt_tx_fifo_head *pTxBufHead;
1464 struct ieee80211_hdr *pMACHeader;
1465 struct ethhdr sEthHeader;
1466 u8 byPktType, *pbyTxBufferAddr;
1467 void *pvTxDataHd;
1468 struct vnt_mic_hdr *pMICHDR = NULL;
1469 u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1470 int bNeedACK, bIsPSPOLL = false;
1471 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1472 u32 uPadding = 0;
1473 u16 wTxBufSize;
1474 u32 cbMacHdLen;
1475 u16 wCurrentRate = RATE_1M;
1476
1477 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1478
1479 if (NULL == pContext) {
1480 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1481 return CMD_STATUS_RESOURCES;
1482 }
1483
1484 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1485 cbFrameBodySize = pPacket->cbPayloadLen;
1486 pTxBufHead = &pTX_Buffer->fifo_head;
1487 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1488 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1489
1490 if (pDevice->byBBType == BB_TYPE_11A) {
1491 wCurrentRate = RATE_6M;
1492 byPktType = PK_TYPE_11A;
1493 } else {
1494 wCurrentRate = RATE_1M;
1495 byPktType = PK_TYPE_11B;
1496 }
1497
1498 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1499 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1500 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1501 // to set power here.
1502 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1503 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1504 } else {
1505 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1506 }
1507 pDevice->wCurrentRate = wCurrentRate;
1508
1509 //Set packet type
1510 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1511 pTxBufHead->wFIFOCtl = 0;
1512 }
1513 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1514 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1515 }
1516 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1517 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1518 }
1519 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1520 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1521 }
1522
1523 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1524 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1525
1526 if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1527 bNeedACK = false;
1528 }
1529 else {
1530 bNeedACK = true;
1531 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1532 };
1533
1534 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1535 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1536
1537 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1538 //Set Preamble type always long
1539 //pDevice->byPreambleType = PREAMBLE_LONG;
1540 // probe-response don't retry
1541 //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1542 // bNeedACK = false;
1543 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1544 //}
1545 }
1546
1547 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1548
1549 if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1550 bIsPSPOLL = true;
1551 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1552 } else {
1553 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1554 }
1555
1556 //Set FRAGCTL_MACHDCNT
1557 pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1558
1559 // Notes:
1560 // Although spec says MMPDU can be fragmented; In most case,
1561 // no one will send a MMPDU under fragmentation. With RTS may occur.
1562 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1563
1564 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1565 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1566 cbIVlen = 4;
1567 cbICVlen = 4;
1568 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1569 }
1570 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1571 cbIVlen = 8;//IV+ExtIV
1572 cbMIClen = 8;
1573 cbICVlen = 4;
1574 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1575 //We need to get seed here for filling TxKey entry.
1576 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1577 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1578 }
1579 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1580 cbIVlen = 8;//RSN Header
1581 cbICVlen = 8;//MIC
1582 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1583 pDevice->bAES = true;
1584 }
1585 //MAC Header should be padding 0 to DW alignment.
1586 uPadding = 4 - (cbMacHdLen%4);
1587 uPadding %= 4;
1588 }
1589
1590 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1591
1592 //Set FIFOCTL_GrpAckPolicy
1593 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1594 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1595 }
1596 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1597
1598 //Set RrvTime/RTS/CTS Buffer
1599 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1600 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1601 sizeof(struct vnt_cts);
1602 }
1603 else { // 802.11a/b packet
1604 pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1605 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1606 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1607 sizeof(struct vnt_tx_datahead_ab);
1608 }
1609
1610 memcpy(&(sEthHeader.h_dest[0]),
1611 &(pPacket->p80211Header->sA3.abyAddr1[0]),
1612 ETH_ALEN);
1613 memcpy(&(sEthHeader.h_source[0]),
1614 &(pPacket->p80211Header->sA3.abyAddr2[0]),
1615 ETH_ALEN);
1616 //=========================
1617 // No Fragmentation
1618 //=========================
1619 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1620
1621 /* Fill FIFO,RrvTime,RTS,and CTS */
1622 uDuration = s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1623 pTX_Buffer, &pMICHDR, 0,
1624 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1625
1626 //Fill DataHead
1627 uDuration |= s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd,
1628 cbFrameSize, TYPE_TXDMA0, bNeedACK, AUTO_FB_NONE);
1629
1630 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1631
1632 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1633
1634 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1635 u8 * pbyIVHead;
1636 u8 * pbyPayloadHead;
1637 u8 * pbyBSSID;
1638 PSKeyItem pTransmitKey = NULL;
1639
1640 pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1641 pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1642 do {
1643 if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1644 (pDevice->bLinkPass == true)) {
1645 pbyBSSID = pDevice->abyBSSID;
1646 // get pairwise key
1647 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1648 // get group key
1649 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1650 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1651 break;
1652 }
1653 } else {
1654 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1655 break;
1656 }
1657 }
1658 // get group key
1659 pbyBSSID = pDevice->abyBroadcastAddr;
1660 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1661 pTransmitKey = NULL;
1662 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1663 } else {
1664 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1665 }
1666 } while(false);
1667 //Fill TXKEY
1668 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1669 (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1670
1671 memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1672 memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1673 cbFrameBodySize);
1674 }
1675 else {
1676 // Copy the Packet into a tx Buffer
1677 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1678 }
1679
1680 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1681 pDevice->wSeqCounter++ ;
1682 if (pDevice->wSeqCounter > 0x0fff)
1683 pDevice->wSeqCounter = 0;
1684
1685 if (bIsPSPOLL) {
1686 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1687 // of FIFO control header.
1688 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1689 // in the same place of other packet's Duration-field).
1690 // And it will cause Cisco-AP to issue Disassociation-packet
1691 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1692 struct vnt_tx_datahead_g *data_head = &pTX_Buffer->tx_head.
1693 tx_cts.tx.head.cts_g.data_head;
1694 data_head->wDuration_a =
1695 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1696 data_head->wDuration_b =
1697 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1698 } else {
1699 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1700 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1701 }
1702 }
1703
1704 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1705 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1706 pTX_Buffer->byType = 0x00;
1707
1708 pContext->pPacket = NULL;
1709 pContext->Type = CONTEXT_MGMT_PACKET;
1710 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1711
1712 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1713 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1714 &pMACHeader->addr1[0], (u16)cbFrameSize,
1715 pTxBufHead->wFIFOCtl);
1716 }
1717 else {
1718 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1719 &pMACHeader->addr3[0], (u16)cbFrameSize,
1720 pTxBufHead->wFIFOCtl);
1721 }
1722
1723 PIPEnsSendBulkOut(pDevice,pContext);
1724 return CMD_STATUS_PENDING;
1725 }
1726
1727 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1728 struct vnt_tx_mgmt *pPacket)
1729 {
1730 struct vnt_beacon_buffer *pTX_Buffer;
1731 u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1732 u32 cbHeaderSize = 0;
1733 u16 wTxBufSize = sizeof(STxShortBufHead);
1734 PSTxShortBufHead pTxBufHead;
1735 struct ieee80211_hdr *pMACHeader;
1736 struct vnt_tx_datahead_ab *pTxDataHead;
1737 u16 wCurrentRate;
1738 u32 cbFrameBodySize;
1739 u32 cbReqCount;
1740 u8 *pbyTxBufferAddr;
1741 struct vnt_usb_send_context *pContext;
1742 CMD_STATUS status;
1743
1744 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1745 if (NULL == pContext) {
1746 status = CMD_STATUS_RESOURCES;
1747 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1748 return status ;
1749 }
1750
1751 pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1752 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1753
1754 cbFrameBodySize = pPacket->cbPayloadLen;
1755
1756 pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1757 wTxBufSize = sizeof(STxShortBufHead);
1758
1759 if (pDevice->byBBType == BB_TYPE_11A) {
1760 wCurrentRate = RATE_6M;
1761 pTxDataHead = (struct vnt_tx_datahead_ab *)
1762 (pbyTxBufferAddr + wTxBufSize);
1763 //Get SignalField,ServiceField,Length
1764 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1765 &pTxDataHead->ab);
1766 //Get Duration and TimeStampOff
1767 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1768 PK_TYPE_11A, false);
1769 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1770 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1771 } else {
1772 wCurrentRate = RATE_1M;
1773 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1774 pTxDataHead = (struct vnt_tx_datahead_ab *)
1775 (pbyTxBufferAddr + wTxBufSize);
1776 //Get SignalField,ServiceField,Length
1777 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1778 &pTxDataHead->ab);
1779 //Get Duration and TimeStampOff
1780 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1781 PK_TYPE_11B, false);
1782 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1783 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1784 }
1785
1786 //Generate Beacon Header
1787 pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1788 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1789
1790 pMACHeader->duration_id = 0;
1791 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1792 pDevice->wSeqCounter++ ;
1793 if (pDevice->wSeqCounter > 0x0fff)
1794 pDevice->wSeqCounter = 0;
1795
1796 cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1797
1798 pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1799 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1800 pTX_Buffer->byType = 0x01;
1801
1802 pContext->pPacket = NULL;
1803 pContext->Type = CONTEXT_MGMT_PACKET;
1804 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1805
1806 PIPEnsSendBulkOut(pDevice,pContext);
1807 return CMD_STATUS_PENDING;
1808
1809 }
1810
1811 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1812 {
1813 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1814 struct vnt_tx_buffer *pTX_Buffer;
1815 struct vnt_tx_fifo_head *pTxBufHead;
1816 u8 byPktType;
1817 u8 *pbyTxBufferAddr;
1818 void *pvTxDataHd;
1819 u32 uDuration, cbReqCount;
1820 struct ieee80211_hdr *pMACHeader;
1821 u32 cbHeaderSize, cbFrameBodySize;
1822 int bNeedACK, bIsPSPOLL = false;
1823 u32 cbFrameSize;
1824 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1825 u32 uPadding = 0;
1826 u32 cbMICHDR = 0, uLength = 0;
1827 u32 dwMICKey0, dwMICKey1;
1828 u32 dwMIC_Priority;
1829 u32 *pdwMIC_L, *pdwMIC_R;
1830 u16 wTxBufSize;
1831 u32 cbMacHdLen;
1832 struct ethhdr sEthHeader;
1833 struct vnt_mic_hdr *pMICHDR;
1834 u32 wCurrentRate = RATE_1M;
1835 PUWLAN_80211HDR p80211Header;
1836 u32 uNodeIndex = 0;
1837 int bNodeExist = false;
1838 SKeyItem STempKey;
1839 PSKeyItem pTransmitKey = NULL;
1840 u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1841 u32 cbExtSuppRate = 0;
1842 struct vnt_usb_send_context *pContext;
1843
1844 pMICHDR = pvTxDataHd = NULL;
1845
1846 if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1847 cbFrameBodySize = 0;
1848 }
1849 else {
1850 cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1851 }
1852 p80211Header = (PUWLAN_80211HDR)skb->data;
1853
1854 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1855
1856 if (NULL == pContext) {
1857 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1858 dev_kfree_skb_irq(skb);
1859 return ;
1860 }
1861
1862 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1863 pTxBufHead = &pTX_Buffer->fifo_head;
1864 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1865 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1866
1867 if (pDevice->byBBType == BB_TYPE_11A) {
1868 wCurrentRate = RATE_6M;
1869 byPktType = PK_TYPE_11A;
1870 } else {
1871 wCurrentRate = RATE_1M;
1872 byPktType = PK_TYPE_11B;
1873 }
1874
1875 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1876 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1877 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1878 // to set power here.
1879 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1880 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1881 } else {
1882 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1883 }
1884
1885 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1886
1887 //Set packet type
1888 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1889 pTxBufHead->wFIFOCtl = 0;
1890 }
1891 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1892 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1893 }
1894 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1895 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1896 }
1897 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1898 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1899 }
1900
1901 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1902 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1903
1904 if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1905 bNeedACK = false;
1906 if (pDevice->bEnableHostWEP) {
1907 uNodeIndex = 0;
1908 bNodeExist = true;
1909 }
1910 }
1911 else {
1912 if (pDevice->bEnableHostWEP) {
1913 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1914 bNodeExist = true;
1915 }
1916 bNeedACK = true;
1917 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1918 };
1919
1920 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1921 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1922
1923 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1924 //Set Preamble type always long
1925 //pDevice->byPreambleType = PREAMBLE_LONG;
1926
1927 // probe-response don't retry
1928 //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1929 // bNeedACK = false;
1930 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1931 //}
1932 }
1933
1934 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1935
1936 if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1937 bIsPSPOLL = true;
1938 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1939 } else {
1940 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1941 }
1942
1943 // hostapd daemon ext support rate patch
1944 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1945
1946 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1947 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1948 }
1949
1950 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1951 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1952 }
1953
1954 if (cbExtSuppRate >0) {
1955 cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1956 }
1957 }
1958
1959 //Set FRAGCTL_MACHDCNT
1960 pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1961
1962 // Notes:
1963 // Although spec says MMPDU can be fragmented; In most case,
1964 // no one will send a MMPDU under fragmentation. With RTS may occur.
1965 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1966
1967 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1968 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1969 cbIVlen = 4;
1970 cbICVlen = 4;
1971 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1972 }
1973 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1974 cbIVlen = 8;//IV+ExtIV
1975 cbMIClen = 8;
1976 cbICVlen = 4;
1977 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1978 //We need to get seed here for filling TxKey entry.
1979 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1980 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1981 }
1982 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1983 cbIVlen = 8;//RSN Header
1984 cbICVlen = 8;//MIC
1985 cbMICHDR = sizeof(struct vnt_mic_hdr);
1986 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1987 pDevice->bAES = true;
1988 }
1989 //MAC Header should be padding 0 to DW alignment.
1990 uPadding = 4 - (cbMacHdLen%4);
1991 uPadding %= 4;
1992 }
1993
1994 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
1995
1996 //Set FIFOCTL_GrpAckPolicy
1997 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1998 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1999 }
2000 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2001
2002 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2003 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2004 sizeof(struct vnt_cts);
2005
2006 }
2007 else {//802.11a/b packet
2008 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2009 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2010 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2011 sizeof(struct vnt_tx_datahead_ab);
2012 }
2013 memcpy(&(sEthHeader.h_dest[0]),
2014 &(p80211Header->sA3.abyAddr1[0]),
2015 ETH_ALEN);
2016 memcpy(&(sEthHeader.h_source[0]),
2017 &(p80211Header->sA3.abyAddr2[0]),
2018 ETH_ALEN);
2019 //=========================
2020 // No Fragmentation
2021 //=========================
2022 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2023
2024 /* Fill FIFO,RrvTime,RTS,and CTS */
2025 uDuration = s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2026 pTX_Buffer, &pMICHDR, cbMICHDR,
2027 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2028
2029 //Fill DataHead
2030 uDuration |= s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd,
2031 cbFrameSize, TYPE_TXDMA0, bNeedACK, AUTO_FB_NONE);
2032
2033 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2034
2035 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2036
2037 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2038 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2039 pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2040
2041 // Copy the Packet into a tx Buffer
2042 memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2043
2044 // version set to 0, patch for hostapd deamon
2045 pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2046 memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2047
2048 // replace support rate, patch for hostapd daemon( only support 11M)
2049 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2050 if (cbExtSuppRate != 0) {
2051 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2052 memcpy((pbyPayloadHead + cbFrameBodySize),
2053 pMgmt->abyCurrSuppRates,
2054 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2055 );
2056 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2057 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2058 pMgmt->abyCurrExtSuppRates,
2059 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2060 );
2061 }
2062 }
2063
2064 // Set wep
2065 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2066
2067 if (pDevice->bEnableHostWEP) {
2068 pTransmitKey = &STempKey;
2069 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2070 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2071 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2072 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2073 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2074 memcpy(pTransmitKey->abyKey,
2075 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2076 pTransmitKey->uKeyLength
2077 );
2078 }
2079
2080 if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2081
2082 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2083 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2084
2085 // DO Software Michael
2086 MIC_vInit(dwMICKey0, dwMICKey1);
2087 MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2088 dwMIC_Priority = 0;
2089 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2090 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2091 " %X, %X\n", dwMICKey0, dwMICKey1);
2092
2093 uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2094
2095 MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2096
2097 pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2098 pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2099
2100 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2101 MIC_vUnInit();
2102
2103 if (pDevice->bTxMICFail == true) {
2104 *pdwMIC_L = 0;
2105 *pdwMIC_R = 0;
2106 pDevice->bTxMICFail = false;
2107 }
2108
2109 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2110 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2111 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2112 *pdwMIC_L, *pdwMIC_R);
2113
2114 }
2115
2116 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2117 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2118
2119 if (pDevice->bEnableHostWEP) {
2120 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2121 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2122 }
2123
2124 if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2125 s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2126 }
2127 }
2128
2129 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2130 pDevice->wSeqCounter++ ;
2131 if (pDevice->wSeqCounter > 0x0fff)
2132 pDevice->wSeqCounter = 0;
2133
2134 if (bIsPSPOLL) {
2135 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2136 // of FIFO control header.
2137 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2138 // in the same place of other packet's Duration-field).
2139 // And it will cause Cisco-AP to issue Disassociation-packet
2140 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2141 struct vnt_tx_datahead_g *data_head = &pTX_Buffer->tx_head.
2142 tx_cts.tx.head.cts_g.data_head;
2143 data_head->wDuration_a =
2144 cpu_to_le16(p80211Header->sA2.wDurationID);
2145 data_head->wDuration_b =
2146 cpu_to_le16(p80211Header->sA2.wDurationID);
2147 } else {
2148 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2149 cpu_to_le16(p80211Header->sA2.wDurationID);
2150 }
2151 }
2152
2153 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2154 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2155 pTX_Buffer->byType = 0x00;
2156
2157 pContext->pPacket = skb;
2158 pContext->Type = CONTEXT_MGMT_PACKET;
2159 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
2160
2161 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2162 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2163 &pMACHeader->addr1[0], (u16)cbFrameSize,
2164 pTxBufHead->wFIFOCtl);
2165 }
2166 else {
2167 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2168 &pMACHeader->addr3[0], (u16)cbFrameSize,
2169 pTxBufHead->wFIFOCtl);
2170 }
2171 PIPEnsSendBulkOut(pDevice,pContext);
2172 return ;
2173
2174 }
2175
2176 //TYPE_AC0DMA data tx
2177 /*
2178 * Description:
2179 * Tx packet via AC0DMA(DMA1)
2180 *
2181 * Parameters:
2182 * In:
2183 * pDevice - Pointer to the adapter
2184 * skb - Pointer to tx skb packet
2185 * Out:
2186 * void
2187 *
2188 * Return Value: NULL
2189 */
2190
2191 int nsDMA_tx_packet(struct vnt_private *pDevice,
2192 u32 uDMAIdx, struct sk_buff *skb)
2193 {
2194 struct net_device_stats *pStats = &pDevice->stats;
2195 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2196 struct vnt_tx_buffer *pTX_Buffer;
2197 u32 BytesToWrite = 0, uHeaderLen = 0;
2198 u32 uNodeIndex = 0;
2199 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2200 u16 wAID;
2201 u8 byPktType;
2202 int bNeedEncryption = false;
2203 PSKeyItem pTransmitKey = NULL;
2204 SKeyItem STempKey;
2205 int ii;
2206 int bTKIP_UseGTK = false;
2207 int bNeedDeAuth = false;
2208 u8 *pbyBSSID;
2209 int bNodeExist = false;
2210 struct vnt_usb_send_context *pContext;
2211 bool fConvertedPacket;
2212 u32 status;
2213 u16 wKeepRate = pDevice->wCurrentRate;
2214 int bTxeapol_key = false;
2215
2216 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2217
2218 if (pDevice->uAssocCount == 0) {
2219 dev_kfree_skb_irq(skb);
2220 return 0;
2221 }
2222
2223 if (is_multicast_ether_addr((u8 *)(skb->data))) {
2224 uNodeIndex = 0;
2225 bNodeExist = true;
2226 if (pMgmt->sNodeDBTable[0].bPSEnable) {
2227
2228 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2229 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2230 // set tx map
2231 pMgmt->abyPSTxMap[0] |= byMask[0];
2232 return 0;
2233 }
2234 // multicast/broadcast data rate
2235
2236 if (pDevice->byBBType != BB_TYPE_11A)
2237 pDevice->wCurrentRate = RATE_2M;
2238 else
2239 pDevice->wCurrentRate = RATE_24M;
2240 // long preamble type
2241 pDevice->byPreambleType = PREAMBLE_SHORT;
2242
2243 }else {
2244
2245 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2246
2247 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2248
2249 skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2250
2251 pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2252 // set tx map
2253 wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2254 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
2255 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2256 (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2257
2258 return 0;
2259 }
2260 // AP rate decided from node
2261 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2262 // tx preamble decided from node
2263
2264 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2265 pDevice->byPreambleType = pDevice->byShortPreamble;
2266
2267 }else {
2268 pDevice->byPreambleType = PREAMBLE_LONG;
2269 }
2270 bNodeExist = true;
2271 }
2272 }
2273
2274 if (bNodeExist == false) {
2275 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2276 dev_kfree_skb_irq(skb);
2277 return 0;
2278 }
2279 }
2280
2281 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2282
2283 if (pContext == NULL) {
2284 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2285 dev_kfree_skb_irq(skb);
2286 return STATUS_RESOURCES;
2287 }
2288
2289 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2290
2291 //mike add:station mode check eapol-key challenge--->
2292 {
2293 u8 Protocol_Version; //802.1x Authentication
2294 u8 Packet_Type; //802.1x Authentication
2295 u8 Descriptor_type;
2296 u16 Key_info;
2297
2298 Protocol_Version = skb->data[ETH_HLEN];
2299 Packet_Type = skb->data[ETH_HLEN+1];
2300 Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2301 Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2302 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2303 /* 802.1x OR eapol-key challenge frame transfer */
2304 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2305 (Packet_Type == 3)) {
2306 bTxeapol_key = true;
2307 if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
2308 (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
2309 if(Descriptor_type==254) {
2310 pDevice->fWPA_Authened = true;
2311 PRINT_K("WPA ");
2312 }
2313 else {
2314 pDevice->fWPA_Authened = true;
2315 PRINT_K("WPA2(re-keying) ");
2316 }
2317 PRINT_K("Authentication completed!!\n");
2318 }
2319 else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairwise-key challenge
2320 (Key_info & BIT8) && (Key_info & BIT9)) {
2321 pDevice->fWPA_Authened = true;
2322 PRINT_K("WPA2 Authentication completed!!\n");
2323 }
2324 }
2325 }
2326 }
2327 //mike add:station mode check eapol-key challenge<---
2328
2329 if (pDevice->bEncryptionEnable == true) {
2330 bNeedEncryption = true;
2331 // get Transmit key
2332 do {
2333 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2334 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2335 pbyBSSID = pDevice->abyBSSID;
2336 // get pairwise key
2337 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2338 // get group key
2339 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2340 bTKIP_UseGTK = true;
2341 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2342 break;
2343 }
2344 } else {
2345 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2346 break;
2347 }
2348 }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2349 /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2350 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2351 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2352 for (ii = 0; ii< 6; ii++)
2353 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2354 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2355
2356 // get pairwise key
2357 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2358 break;
2359 }
2360 // get group key
2361 pbyBSSID = pDevice->abyBroadcastAddr;
2362 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2363 pTransmitKey = NULL;
2364 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2365 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2366 }
2367 else
2368 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2369 } else {
2370 bTKIP_UseGTK = true;
2371 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2372 }
2373 } while(false);
2374 }
2375
2376 if (pDevice->bEnableHostWEP) {
2377 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2378 if (pDevice->bEncryptionEnable == true) {
2379 pTransmitKey = &STempKey;
2380 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2381 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2382 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2383 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2384 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2385 memcpy(pTransmitKey->abyKey,
2386 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2387 pTransmitKey->uKeyLength
2388 );
2389 }
2390 }
2391
2392 byPktType = (u8)pDevice->byPacketType;
2393
2394 if (pDevice->bFixRate) {
2395 if (pDevice->byBBType == BB_TYPE_11B) {
2396 if (pDevice->uConnectionRate >= RATE_11M) {
2397 pDevice->wCurrentRate = RATE_11M;
2398 } else {
2399 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2400 }
2401 } else {
2402 if ((pDevice->byBBType == BB_TYPE_11A) &&
2403 (pDevice->uConnectionRate <= RATE_6M)) {
2404 pDevice->wCurrentRate = RATE_6M;
2405 } else {
2406 if (pDevice->uConnectionRate >= RATE_54M)
2407 pDevice->wCurrentRate = RATE_54M;
2408 else
2409 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2410 }
2411 }
2412 }
2413 else {
2414 if (pDevice->eOPMode == OP_MODE_ADHOC) {
2415 // Adhoc Tx rate decided from node DB
2416 if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2417 // Multicast use highest data rate
2418 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2419 // preamble type
2420 pDevice->byPreambleType = pDevice->byShortPreamble;
2421 }
2422 else {
2423 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2424 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2425 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2426 pDevice->byPreambleType = pDevice->byShortPreamble;
2427
2428 }
2429 else {
2430 pDevice->byPreambleType = PREAMBLE_LONG;
2431 }
2432 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2433 }
2434 else {
2435 if (pDevice->byBBType != BB_TYPE_11A)
2436 pDevice->wCurrentRate = RATE_2M;
2437 else
2438 pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2439 // abyCurrExtSuppRates[]
2440 pDevice->byPreambleType = PREAMBLE_SHORT;
2441 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2442 }
2443 }
2444 }
2445 if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2446 // Infra STA rate decided from AP Node, index = 0
2447 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2448 }
2449 }
2450
2451 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2452 if (pDevice->byBBType != BB_TYPE_11A) {
2453 pDevice->wCurrentRate = RATE_1M;
2454 pDevice->byACKRate = RATE_1M;
2455 pDevice->byTopCCKBasicRate = RATE_1M;
2456 pDevice->byTopOFDMBasicRate = RATE_6M;
2457 } else {
2458 pDevice->wCurrentRate = RATE_6M;
2459 pDevice->byACKRate = RATE_6M;
2460 pDevice->byTopCCKBasicRate = RATE_1M;
2461 pDevice->byTopOFDMBasicRate = RATE_6M;
2462 }
2463 }
2464
2465 DBG_PRT(MSG_LEVEL_DEBUG,
2466 KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2467 pDevice->wCurrentRate);
2468
2469 if (wKeepRate != pDevice->wCurrentRate) {
2470 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2471 }
2472
2473 if (pDevice->wCurrentRate <= RATE_11M) {
2474 byPktType = PK_TYPE_11B;
2475 }
2476
2477 if (bNeedEncryption == true) {
2478 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2479 if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2480 bNeedEncryption = false;
2481 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2482 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2483 if (pTransmitKey == NULL) {
2484 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2485 }
2486 else {
2487 if (bTKIP_UseGTK == true) {
2488 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2489 }
2490 else {
2491 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2492 pTransmitKey->dwKeyIndex);
2493 bNeedEncryption = true;
2494 }
2495 }
2496 }
2497
2498 if (pDevice->bEnableHostWEP) {
2499 if ((uNodeIndex != 0) &&
2500 (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2501 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2502 pTransmitKey->dwKeyIndex);
2503 bNeedEncryption = true;
2504 }
2505 }
2506 }
2507 else {
2508
2509 if (pTransmitKey == NULL) {
2510 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2511 pContext->bBoolInUse = false;
2512 dev_kfree_skb_irq(skb);
2513 pStats->tx_dropped++;
2514 return STATUS_FAILURE;
2515 }
2516 }
2517 }
2518
2519 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2520
2521 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2522 pTX_Buffer, bNeedEncryption,
2523 skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2524 (u8 *)skb->data, pTransmitKey, uNodeIndex,
2525 pDevice->wCurrentRate,
2526 &uHeaderLen, &BytesToWrite
2527 );
2528
2529 if (fConvertedPacket == false) {
2530 pContext->bBoolInUse = false;
2531 dev_kfree_skb_irq(skb);
2532 return STATUS_FAILURE;
2533 }
2534
2535 if ( pDevice->bEnablePSMode == true ) {
2536 if ( !pDevice->bPSModeTxBurst ) {
2537 bScheduleCommand((void *) pDevice,
2538 WLAN_CMD_MAC_DISPOWERSAVING,
2539 NULL);
2540 pDevice->bPSModeTxBurst = true;
2541 }
2542 }
2543
2544 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2545 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2546
2547 pContext->pPacket = skb;
2548 pContext->Type = CONTEXT_DATA_PACKET;
2549 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2550
2551 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2552 &pContext->sEthHeader.h_dest[0],
2553 (u16)(BytesToWrite-uHeaderLen),
2554 pTX_Buffer->fifo_head.wFIFOCtl);
2555
2556 status = PIPEnsSendBulkOut(pDevice,pContext);
2557
2558 if (bNeedDeAuth == true) {
2559 u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2560
2561 bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2562 }
2563
2564 if(status!=STATUS_PENDING) {
2565 pContext->bBoolInUse = false;
2566 dev_kfree_skb_irq(skb);
2567 return STATUS_FAILURE;
2568 }
2569 else
2570 return 0;
2571
2572 }
2573
2574 /*
2575 * Description:
2576 * Relay packet send (AC1DMA) from rx dpc.
2577 *
2578 * Parameters:
2579 * In:
2580 * pDevice - Pointer to the adapter
2581 * pPacket - Pointer to rx packet
2582 * cbPacketSize - rx ethernet frame size
2583 * Out:
2584 * TURE, false
2585 *
2586 * Return Value: Return true if packet is copy to dma1; otherwise false
2587 */
2588
2589 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2590 u32 uNodeIndex)
2591 {
2592 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2593 struct vnt_tx_buffer *pTX_Buffer;
2594 u32 BytesToWrite = 0, uHeaderLen = 0;
2595 u8 byPktType = PK_TYPE_11B;
2596 int bNeedEncryption = false;
2597 SKeyItem STempKey;
2598 PSKeyItem pTransmitKey = NULL;
2599 u8 *pbyBSSID;
2600 struct vnt_usb_send_context *pContext;
2601 u8 byPktTyp;
2602 int fConvertedPacket;
2603 u32 status;
2604 u16 wKeepRate = pDevice->wCurrentRate;
2605
2606 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2607
2608 if (NULL == pContext) {
2609 return false;
2610 }
2611
2612 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2613
2614 if (pDevice->bEncryptionEnable == true) {
2615 bNeedEncryption = true;
2616 // get group key
2617 pbyBSSID = pDevice->abyBroadcastAddr;
2618 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2619 pTransmitKey = NULL;
2620 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2621 } else {
2622 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2623 }
2624 }
2625
2626 if (pDevice->bEnableHostWEP) {
2627 if (uNodeIndex < MAX_NODE_NUM + 1) {
2628 pTransmitKey = &STempKey;
2629 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2630 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2631 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2632 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2633 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2634 memcpy(pTransmitKey->abyKey,
2635 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2636 pTransmitKey->uKeyLength
2637 );
2638 }
2639 }
2640
2641 if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2642 pContext->bBoolInUse = false;
2643 return false;
2644 }
2645
2646 byPktTyp = (u8)pDevice->byPacketType;
2647
2648 if (pDevice->bFixRate) {
2649 if (pDevice->byBBType == BB_TYPE_11B) {
2650 if (pDevice->uConnectionRate >= RATE_11M) {
2651 pDevice->wCurrentRate = RATE_11M;
2652 } else {
2653 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2654 }
2655 } else {
2656 if ((pDevice->byBBType == BB_TYPE_11A) &&
2657 (pDevice->uConnectionRate <= RATE_6M)) {
2658 pDevice->wCurrentRate = RATE_6M;
2659 } else {
2660 if (pDevice->uConnectionRate >= RATE_54M)
2661 pDevice->wCurrentRate = RATE_54M;
2662 else
2663 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2664 }
2665 }
2666 }
2667 else {
2668 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2669 }
2670
2671 if (wKeepRate != pDevice->wCurrentRate) {
2672 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2673 }
2674
2675 if (pDevice->wCurrentRate <= RATE_11M)
2676 byPktType = PK_TYPE_11B;
2677
2678 BytesToWrite = uDataLen + ETH_FCS_LEN;
2679
2680 // Convert the packet to an usb frame and copy into our buffer
2681 // and send the irp.
2682
2683 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2684
2685 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2686 pTX_Buffer, bNeedEncryption,
2687 uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2688 pbySkbData, pTransmitKey, uNodeIndex,
2689 pDevice->wCurrentRate,
2690 &uHeaderLen, &BytesToWrite
2691 );
2692
2693 if (fConvertedPacket == false) {
2694 pContext->bBoolInUse = false;
2695 return false;
2696 }
2697
2698 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2699 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2700
2701 pContext->pPacket = NULL;
2702 pContext->Type = CONTEXT_DATA_PACKET;
2703 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2704
2705 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2706 &pContext->sEthHeader.h_dest[0],
2707 (u16)(BytesToWrite - uHeaderLen),
2708 pTX_Buffer->fifo_head.wFIFOCtl);
2709
2710 status = PIPEnsSendBulkOut(pDevice,pContext);
2711
2712 return true;
2713 }
2714
This page took 0.094367 seconds and 4 git commands to generate.