staging: vt6656: rxtx.c s_vGenerateTxParameter Create vnt_mic_hdr structure
[deliverable/linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: rxtx.c
20 *
21 * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22 *
23 * Author: Lyndon Chen
24 *
25 * Date: May 20, 2003
26 *
27 * Functions:
28 * s_vGenerateTxParameter - Generate tx dma required parameter.
29 * s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30 * csBeacon_xmit - beacon tx function
31 * csMgmt_xmit - management tx function
32 * s_uGetDataDuration - get tx data required duration
33 * s_uFillDataHead- fulfill tx data duration header
34 * s_uGetRTSCTSDuration- get rtx/cts required duration
35 * s_uGetRTSCTSRsvTime- get rts/cts reserved time
36 * s_uGetTxRsvTime- get frame reserved time
37 * s_vFillCTSHead- fulfill CTS ctl header
38 * s_vFillFragParameter- Set fragment ctl parameter.
39 * s_vFillRTSHead- fulfill RTS ctl header
40 * s_vFillTxKey- fulfill tx encrypt key
41 * s_vSWencryption- Software encrypt header
42 * vDMA0_tx_80211- tx 802.11 frame via dma0
43 * vGenerateFIFOHeader- Generate tx FIFO ctl header
44 *
45 * Revision History:
46 *
47 */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int msglevel = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68 {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69 {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70 };
71
72 const u16 wFB_Opt0[2][5] = {
73 {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75 };
76 const u16 wFB_Opt1[2][5] = {
77 {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79 };
80
81 #define RTSDUR_BB 0
82 #define RTSDUR_BA 1
83 #define RTSDUR_AA 2
84 #define CTSDUR_BA 3
85 #define RTSDUR_BA_F0 4
86 #define RTSDUR_AA_F0 5
87 #define RTSDUR_BA_F1 6
88 #define RTSDUR_AA_F1 7
89 #define CTSDUR_BA_F0 8
90 #define CTSDUR_BA_F1 9
91 #define DATADUR_B 10
92 #define DATADUR_A 11
93 #define DATADUR_A_F0 12
94 #define DATADUR_A_F1 13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102 u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103 struct vnt_mic_hdr **mic_hdr, u32 need_mic,
104 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
105 struct ethhdr *psEthHeader, bool need_rts);
106
107 static u32 s_uFillDataHead(struct vnt_private *pDevice,
108 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
109 u32 uDMAIdx, int bNeedAck, u8 byFBOption);
110
111 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
112 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
113 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
114
115 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
116 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
117 struct vnt_mic_hdr *mic_hdr);
118
119 static void s_vSWencryption(struct vnt_private *pDevice,
120 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
121
122 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
123 u32 cbFrameLength, u16 wRate, int bNeedAck);
124
125 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
126 u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
127
128 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
129 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
130 int bNeedAck, u16 wCurrentRate, u8 byFBOption);
131
132 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
133 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
134 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
135
136 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
137 u8 byPktType, int bNeedAck);
138
139 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
140 u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
141 int bNeedAck, u8 byFBOption);
142
143 static void *s_vGetFreeContext(struct vnt_private *pDevice)
144 {
145 struct vnt_usb_send_context *pContext = NULL;
146 struct vnt_usb_send_context *pReturnContext = NULL;
147 int ii;
148
149 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
150
151 for (ii = 0; ii < pDevice->cbTD; ii++) {
152 pContext = pDevice->apTD[ii];
153 if (pContext->bBoolInUse == false) {
154 pContext->bBoolInUse = true;
155 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
156 pReturnContext = pContext;
157 break;
158 }
159 }
160 if ( ii == pDevice->cbTD ) {
161 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
162 }
163 return (void *) pReturnContext;
164 }
165
166 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
167 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
168 {
169 PSStatCounter pStatistic = &pDevice->scStatistic;
170
171 if (is_broadcast_ether_addr(pbyDestAddr))
172 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
173 else if (is_multicast_ether_addr(pbyDestAddr))
174 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
175 else
176 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
177
178 pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
179 pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
180 memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
181 pbyDestAddr,
182 ETH_ALEN);
183 }
184
185 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
186 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
187 u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
188 {
189 u32 *pdwIV = (u32 *)pbyIVHead;
190 u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
191 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
192 u32 dwRevIVCounter;
193
194 /* Fill TXKEY */
195 if (pTransmitKey == NULL)
196 return;
197
198 dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
199 *pdwIV = pDevice->dwIVCounter;
200 pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
201
202 switch (pTransmitKey->byCipherSuite) {
203 case KEY_CTL_WEP:
204 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
205 memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
206 memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
207 pTransmitKey->uKeyLength);
208 } else {
209 memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
210 memcpy(pbyBuf + 3, pTransmitKey->abyKey,
211 pTransmitKey->uKeyLength);
212 if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
213 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
214 memcpy(pbyBuf+11, pTransmitKey->abyKey,
215 pTransmitKey->uKeyLength);
216 }
217
218 memcpy(pDevice->abyPRNG, pbyBuf, 16);
219 }
220 /* Append IV after Mac Header */
221 *pdwIV &= WEP_IV_MASK;
222 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
223 *pdwIV = cpu_to_le32(*pdwIV);
224
225 pDevice->dwIVCounter++;
226 if (pDevice->dwIVCounter > WEP_IV_MASK)
227 pDevice->dwIVCounter = 0;
228
229 break;
230 case KEY_CTL_TKIP:
231 pTransmitKey->wTSC15_0++;
232 if (pTransmitKey->wTSC15_0 == 0)
233 pTransmitKey->dwTSC47_16++;
234
235 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
236 pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
237 pDevice->abyPRNG);
238 memcpy(pbyBuf, pDevice->abyPRNG, 16);
239
240 /* Make IV */
241 memcpy(pdwIV, pDevice->abyPRNG, 3);
242
243 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
244 0xc0) | 0x20);
245 /* Append IV&ExtIV after Mac Header */
246 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
247
248 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
249 "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
250
251 break;
252 case KEY_CTL_CCMP:
253 pTransmitKey->wTSC15_0++;
254 if (pTransmitKey->wTSC15_0 == 0)
255 pTransmitKey->dwTSC47_16++;
256
257 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
258
259 /* Make IV */
260 *pdwIV = 0;
261 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
262 0xc0) | 0x20);
263
264 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
265
266 /* Append IV&ExtIV after Mac Header */
267 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
268
269 if (!mic_hdr)
270 return;
271
272 /* MICHDR0 */
273 mic_hdr->id = 0x59;
274 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
275 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
276
277 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
278 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
279
280 /* MICHDR1 */
281 if (pDevice->bLongHeader)
282 mic_hdr->hlen = cpu_to_be16(28);
283 else
284 mic_hdr->hlen = cpu_to_be16(22);
285
286 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
287 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
288
289 /* MICHDR2 */
290 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
291 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
292 & 0xc78f);
293 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
294
295 if (pDevice->bLongHeader)
296 memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
297 }
298 }
299
300 static void s_vSWencryption(struct vnt_private *pDevice,
301 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
302 {
303 u32 cbICVlen = 4;
304 u32 dwICV = 0xffffffff;
305 u32 *pdwICV;
306
307 if (pTransmitKey == NULL)
308 return;
309
310 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
311 //=======================================================================
312 // Append ICV after payload
313 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
314 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
315 // finally, we must invert dwCRC to get the correct answer
316 *pdwICV = cpu_to_le32(~dwICV);
317 // RC4 encryption
318 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
319 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
320 //=======================================================================
321 } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
322 //=======================================================================
323 //Append ICV after payload
324 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
325 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
326 // finally, we must invert dwCRC to get the correct answer
327 *pdwICV = cpu_to_le32(~dwICV);
328 // RC4 encryption
329 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
330 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
331 //=======================================================================
332 }
333 }
334
335 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
336 {
337 return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
338 [rate % MAX_RATE]);
339 }
340
341 /*byPktType : PK_TYPE_11A 0
342 PK_TYPE_11B 1
343 PK_TYPE_11GB 2
344 PK_TYPE_11GA 3
345 */
346 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
347 u32 cbFrameLength, u16 wRate, int bNeedAck)
348 {
349 u32 uDataTime, uAckTime;
350
351 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
352 if (byPktType == PK_TYPE_11B) {//llb,CCK mode
353 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
354 } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
355 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
356 }
357
358 if (bNeedAck) {
359 return (uDataTime + pDevice->uSIFS + uAckTime);
360 }
361 else {
362 return uDataTime;
363 }
364 }
365
366 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
367 u32 frame_length, u16 rate, int need_ack)
368 {
369 return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
370 frame_length, rate, need_ack));
371 }
372
373 //byFreqType: 0=>5GHZ 1=>2.4GHZ
374 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
375 u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
376 {
377 u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
378
379 uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
380
381 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
382 if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
383 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
384 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
385 }
386 else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
387 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
388 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
389 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
390 }
391 else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
392 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
393 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
394 }
395 else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
396 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
397 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
398 uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
399 return uRrvTime;
400 }
401
402 //RTSRrvTime
403 uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
404 return cpu_to_le16((u16)uRrvTime);
405 }
406
407 //byFreqType 0: 5GHz, 1:2.4Ghz
408 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
409 u8 byPktType, int bNeedAck)
410 {
411 u32 uAckTime = 0;
412
413 if (bNeedAck) {
414 if (byPktType == PK_TYPE_11B)
415 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
416 byPktType, 14, pDevice->byTopCCKBasicRate);
417 else
418 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
419 byPktType, 14, pDevice->byTopOFDMBasicRate);
420 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
421 }
422
423 return 0;
424 }
425
426 //byFreqType: 0=>5GHZ 1=>2.4GHZ
427 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
428 u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
429 u8 byFBOption)
430 {
431 u32 uCTSTime = 0, uDurTime = 0;
432
433 switch (byDurType) {
434
435 case RTSDUR_BB: //RTSDuration_bb
436 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
437 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
438 break;
439
440 case RTSDUR_BA: //RTSDuration_ba
441 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
442 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
443 break;
444
445 case RTSDUR_AA: //RTSDuration_aa
446 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
447 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
448 break;
449
450 case CTSDUR_BA: //CTSDuration_ba
451 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
452 break;
453
454 case RTSDUR_BA_F0: //RTSDuration_ba_f0
455 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
456 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
457 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
458 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
459 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
460 }
461 break;
462
463 case RTSDUR_AA_F0: //RTSDuration_aa_f0
464 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
465 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
466 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
467 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
468 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
469 }
470 break;
471
472 case RTSDUR_BA_F1: //RTSDuration_ba_f1
473 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
474 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
475 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
476 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
477 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
478 }
479 break;
480
481 case RTSDUR_AA_F1: //RTSDuration_aa_f1
482 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
483 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
484 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
485 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
486 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
487 }
488 break;
489
490 case CTSDUR_BA_F0: //CTSDuration_ba_f0
491 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
492 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
493 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
494 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
495 }
496 break;
497
498 case CTSDUR_BA_F1: //CTSDuration_ba_f1
499 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
500 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
501 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
502 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
503 }
504 break;
505
506 default:
507 break;
508 }
509
510 return cpu_to_le16((u16)uDurTime);
511 }
512
513 static u32 s_uFillDataHead(struct vnt_private *pDevice,
514 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
515 u32 uDMAIdx, int bNeedAck, u8 byFBOption)
516 {
517
518 if (pTxDataHead == NULL) {
519 return 0;
520 }
521
522 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
523 if (byFBOption == AUTO_FB_NONE) {
524 struct vnt_tx_datahead_g *pBuf =
525 (struct vnt_tx_datahead_g *)pTxDataHead;
526 //Get SignalField,ServiceField,Length
527 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
528 byPktType, &pBuf->a);
529 BBvCalculateParameter(pDevice, cbFrameLength,
530 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
531 //Get Duration and TimeStamp
532 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
533 byPktType, bNeedAck);
534 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
535 PK_TYPE_11B, bNeedAck);
536
537 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
538 wCurrentRate);
539 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
540 pDevice->byTopCCKBasicRate);
541 return (pBuf->wDuration_a);
542 } else {
543 // Auto Fallback
544 struct vnt_tx_datahead_g_fb *pBuf =
545 (struct vnt_tx_datahead_g_fb *)pTxDataHead;
546 //Get SignalField,ServiceField,Length
547 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
548 byPktType, &pBuf->a);
549 BBvCalculateParameter(pDevice, cbFrameLength,
550 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
551 //Get Duration and TimeStamp
552 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
553 byPktType, bNeedAck);
554 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
555 PK_TYPE_11B, bNeedAck);
556 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
557 byPktType, bNeedAck);
558 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
559 byPktType, bNeedAck);
560 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
561 wCurrentRate);
562 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
563 pDevice->byTopCCKBasicRate);
564 return (pBuf->wDuration_a);
565 } //if (byFBOption == AUTO_FB_NONE)
566 }
567 else if (byPktType == PK_TYPE_11A) {
568 if (byFBOption != AUTO_FB_NONE) {
569 struct vnt_tx_datahead_a_fb *pBuf =
570 (struct vnt_tx_datahead_a_fb *)pTxDataHead;
571 //Get SignalField,ServiceField,Length
572 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
573 byPktType, &pBuf->a);
574 //Get Duration and TimeStampOff
575 pBuf->wDuration = s_uGetDataDuration(pDevice,
576 byPktType, bNeedAck);
577 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
578 byPktType, bNeedAck);
579 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
580 byPktType, bNeedAck);
581 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
582 wCurrentRate);
583 return (pBuf->wDuration);
584 } else {
585 struct vnt_tx_datahead_ab *pBuf =
586 (struct vnt_tx_datahead_ab *)pTxDataHead;
587 //Get SignalField,ServiceField,Length
588 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
589 byPktType, &pBuf->ab);
590 //Get Duration and TimeStampOff
591 pBuf->wDuration = s_uGetDataDuration(pDevice,
592 byPktType, bNeedAck);
593 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
594 wCurrentRate);
595 return (pBuf->wDuration);
596 }
597 }
598 else if (byPktType == PK_TYPE_11B) {
599 struct vnt_tx_datahead_ab *pBuf =
600 (struct vnt_tx_datahead_ab *)pTxDataHead;
601 //Get SignalField,ServiceField,Length
602 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
603 byPktType, &pBuf->ab);
604 //Get Duration and TimeStampOff
605 pBuf->wDuration = s_uGetDataDuration(pDevice,
606 byPktType, bNeedAck);
607 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
608 wCurrentRate);
609 return (pBuf->wDuration);
610 }
611 return 0;
612 }
613
614 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
615 struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
616 u16 duration)
617 {
618 rts->duration = duration;
619 rts->frame_control = TYPE_CTL_RTS;
620
621 if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
622 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
623 else
624 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
625
626 if (priv->eOPMode == OP_MODE_AP)
627 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
628 else
629 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
630
631 return 0;
632 }
633
634 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
635 struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
636 u8 pkt_type, u32 frame_len, int need_ack,
637 u16 current_rate, u8 fb_option)
638 {
639 u16 rts_frame_len = 20;
640
641 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
642 PK_TYPE_11B, &buf->b);
643 BBvCalculateParameter(priv, rts_frame_len,
644 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
645
646 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
647 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
648 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
649 pkt_type, current_rate, need_ack, fb_option);
650 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
651 pkt_type, current_rate, need_ack, fb_option);
652
653 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
654
655 return 0;
656 }
657
658 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
659 struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
660 u8 pkt_type, u32 frame_len, int need_ack,
661 u16 current_rate, u8 fb_option)
662 {
663 u16 rts_frame_len = 20;
664
665 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
666 PK_TYPE_11B, &buf->b);
667 BBvCalculateParameter(priv, rts_frame_len,
668 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
669
670
671 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
672 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
673 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
674 pkt_type, current_rate, need_ack, fb_option);
675 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
676 pkt_type, current_rate, need_ack, fb_option);
677
678
679 buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
680 frame_len, pkt_type, current_rate, need_ack, fb_option);
681 buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
682 frame_len, pkt_type, current_rate, need_ack, fb_option);
683 buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
684 frame_len, pkt_type, current_rate, need_ack, fb_option);
685 buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
686 frame_len, pkt_type, current_rate, need_ack, fb_option);
687
688 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
689
690 return 0;
691 }
692
693 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
694 struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
695 u8 pkt_type, u32 frame_len, int need_ack,
696 u16 current_rate, u8 fb_option)
697 {
698 u16 rts_frame_len = 20;
699
700 BBvCalculateParameter(priv, rts_frame_len,
701 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
702
703 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
704 pkt_type, current_rate, need_ack, fb_option);
705
706 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
707
708 return 0;
709 }
710
711 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
712 struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
713 u8 pkt_type, u32 frame_len, int need_ack,
714 u16 current_rate, u8 fb_option)
715 {
716 u16 rts_frame_len = 20;
717
718 BBvCalculateParameter(priv, rts_frame_len,
719 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
720
721 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
722 pkt_type, current_rate, need_ack, fb_option);
723
724 buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
725 frame_len, pkt_type, current_rate, need_ack, fb_option);
726
727 buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
728 frame_len, pkt_type, current_rate, need_ack, fb_option);
729
730 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
731
732 return 0;
733 }
734
735 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
736 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
737 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
738 {
739
740 if (!head)
741 return;
742
743 /* Note: So far RTSHead doesn't appear in ATIM
744 * & Beacom DMA, so we don't need to take them
745 * into account.
746 * Otherwise, we need to modified codes for them.
747 */
748 switch (byPktType) {
749 case PK_TYPE_11GB:
750 case PK_TYPE_11GA:
751 if (byFBOption == AUTO_FB_NONE)
752 vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
753 psEthHeader, byPktType, cbFrameLength,
754 bNeedAck, wCurrentRate, byFBOption);
755 else
756 vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
757 psEthHeader, byPktType, cbFrameLength,
758 bNeedAck, wCurrentRate, byFBOption);
759 break;
760 case PK_TYPE_11A:
761 if (byFBOption) {
762 vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
763 psEthHeader, byPktType, cbFrameLength,
764 bNeedAck, wCurrentRate, byFBOption);
765 break;
766 }
767 case PK_TYPE_11B:
768 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
769 psEthHeader, byPktType, cbFrameLength,
770 bNeedAck, wCurrentRate, byFBOption);
771 }
772 }
773
774 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
775 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
776 int bNeedAck, u16 wCurrentRate, u8 byFBOption)
777 {
778 u32 uCTSFrameLen = 14;
779
780 if (!head)
781 return;
782
783 if (byFBOption != AUTO_FB_NONE) {
784 /* Auto Fall back */
785 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
786 /* Get SignalField,ServiceField,Length */
787 BBvCalculateParameter(pDevice, uCTSFrameLen,
788 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
789 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
790 cbFrameLength, byPktType,
791 wCurrentRate, bNeedAck, byFBOption);
792 /* Get CTSDuration_ba_f0 */
793 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
794 CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
795 bNeedAck, byFBOption);
796 /* Get CTSDuration_ba_f1 */
797 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
798 CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
799 bNeedAck, byFBOption);
800 /* Get CTS Frame body */
801 pBuf->data.duration = pBuf->wDuration_ba;
802 pBuf->data.frame_control = TYPE_CTL_CTS;
803 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
804 } else {
805 struct vnt_cts *pBuf = &head->cts_g;
806 /* Get SignalField,ServiceField,Length */
807 BBvCalculateParameter(pDevice, uCTSFrameLen,
808 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
809 /* Get CTSDuration_ba */
810 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
811 CTSDUR_BA, cbFrameLength, byPktType,
812 wCurrentRate, bNeedAck, byFBOption);
813 /*Get CTS Frame body*/
814 pBuf->data.duration = pBuf->wDuration_ba;
815 pBuf->data.frame_control = TYPE_CTL_CTS;
816 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
817 }
818 }
819
820 /*+
821 *
822 * Description:
823 * Generate FIFO control for MAC & Baseband controller
824 *
825 * Parameters:
826 * In:
827 * pDevice - Pointer to adpater
828 * pTxDataHead - Transmit Data Buffer
829 * pTxBufHead - pTxBufHead
830 * pvRrvTime - pvRrvTime
831 * pvRTS - RTS Buffer
832 * pCTS - CTS Buffer
833 * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
834 * bNeedACK - If need ACK
835 * uDMAIdx - DMA Index
836 * Out:
837 * none
838 *
839 * Return Value: none
840 *
841 -*/
842
843 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
844 u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
845 struct vnt_mic_hdr **mic_hdr, u32 need_mic,
846 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
847 struct ethhdr *psEthHeader, bool need_rts)
848 {
849 struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
850 union vnt_tx_data_head *head = rts_cts;
851 u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
852 u16 wFifoCtl;
853 u8 byFBOption = AUTO_FB_NONE;
854
855 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
856 pFifoHead->wReserved = wCurrentRate;
857 wFifoCtl = pFifoHead->wFIFOCtl;
858
859 if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
860 byFBOption = AUTO_FB_0;
861 }
862 else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
863 byFBOption = AUTO_FB_1;
864 }
865
866 if (!pFifoHead)
867 return;
868
869 if (pDevice->bLongHeader)
870 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
871
872 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
873 if (need_rts) {
874 //Fill RsvTime
875 struct vnt_rrv_time_rts *pBuf = &tx_buffer->tx_head.tx_rts.rts;
876
877 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
878 byPktType, cbFrameSize, wCurrentRate);
879 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
880 byPktType, cbFrameSize, wCurrentRate);
881 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
882 byPktType, cbFrameSize, wCurrentRate);
883 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
884 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
885 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
886 PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
887 bNeedACK);
888 if (need_mic)
889 *mic_hdr = &tx_buffer->tx_head.tx_rts.tx.mic.hdr;
890
891 /* Fill RTS */
892 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
893 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
894 }
895 else {//RTS_needless, PCF mode
896 //Fill RsvTime
897 struct vnt_rrv_time_cts *pBuf = &tx_buffer->tx_head.tx_cts.cts;
898
899 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
900 cbFrameSize, wCurrentRate, bNeedACK);
901 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
902 PK_TYPE_11B, cbFrameSize,
903 pDevice->byTopCCKBasicRate, bNeedACK);
904 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
905 byPktType, cbFrameSize, wCurrentRate);
906
907 if (need_mic)
908 *mic_hdr = &tx_buffer->tx_head.tx_cts.tx.mic.hdr;
909
910 /* Fill CTS */
911 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
912 cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
913 }
914 }
915 else if (byPktType == PK_TYPE_11A) {
916 if (need_rts) {
917 //Fill RsvTime
918 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
919
920 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
921 byPktType, cbFrameSize, wCurrentRate);
922 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
923 cbFrameSize, wCurrentRate, bNeedACK);
924 if (need_mic)
925 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
926
927 /* Fill RTS */
928 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
929 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
930 } else {
931 //Fill RsvTime
932 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
933
934 if (need_mic)
935 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
936
937 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
938 cbFrameSize, wCurrentRate, bNeedACK);
939 }
940 }
941 else if (byPktType == PK_TYPE_11B) {
942 if (need_rts) {
943 //Fill RsvTime
944 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
945
946 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
947 byPktType, cbFrameSize, wCurrentRate);
948 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
949 cbFrameSize, wCurrentRate, bNeedACK);
950
951 if (need_mic)
952 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
953
954 /* Fill RTS */
955 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
956 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
957 }
958 else { //RTS_needless, non PCF mode
959 //Fill RsvTime
960 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
961
962 if (need_mic)
963 *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
964
965 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
966 cbFrameSize, wCurrentRate, bNeedACK);
967 }
968 }
969 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
970 }
971 /*
972 u8 * pbyBuffer,//point to pTxBufHead
973 u16 wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
974 unsigned int cbFragmentSize,//Hdr+payoad+FCS
975 */
976
977 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
978 struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
979 u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
980 u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
981 u32 *pcbHeaderLen, u32 *pcbTotalLen)
982 {
983 struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
984 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
985 u32 cbFrameSize, cbFrameBodySize;
986 u32 cb802_1_H_len;
987 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
988 u32 cbFCSlen = 4, cbMICHDR = 0;
989 int bNeedACK;
990 bool bRTS = false;
991 u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
992 u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
993 u8 abySNAP_Bridgetunnel[ETH_ALEN]
994 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
995 u32 uDuration;
996 u32 cbHeaderLength = 0, uPadding = 0;
997 struct vnt_mic_hdr *pMICHDR;
998 void *rts_cts = NULL;
999 void *pvTxDataHd;
1000 u8 byFBOption = AUTO_FB_NONE, byFragType;
1001 u16 wTxBufSize;
1002 u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
1003 u32 *pdwMIC_L, *pdwMIC_R;
1004 int bSoftWEP = false;
1005
1006 pMICHDR = pvTxDataHd = NULL;
1007
1008 if (bNeedEncryption && pTransmitKey->pvKeyTable) {
1009 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
1010 bSoftWEP = true; /* WEP 256 */
1011 }
1012
1013 // Get pkt type
1014 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1015 if (pDevice->dwDiagRefCount == 0) {
1016 cb802_1_H_len = 8;
1017 } else {
1018 cb802_1_H_len = 2;
1019 }
1020 } else {
1021 cb802_1_H_len = 0;
1022 }
1023
1024 cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1025
1026 //Set packet type
1027 pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1028
1029 if (pDevice->dwDiagRefCount != 0) {
1030 bNeedACK = false;
1031 pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1032 } else { //if (pDevice->dwDiagRefCount != 0) {
1033 if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1034 (pDevice->eOPMode == OP_MODE_AP)) {
1035 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1036 bNeedACK = false;
1037 pTxBufHead->wFIFOCtl =
1038 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1039 } else {
1040 bNeedACK = true;
1041 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1042 }
1043 }
1044 else {
1045 // MSDUs in Infra mode always need ACK
1046 bNeedACK = true;
1047 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1048 }
1049 } //if (pDevice->dwDiagRefCount != 0) {
1050
1051 pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1052
1053 //Set FIFOCTL_LHEAD
1054 if (pDevice->bLongHeader)
1055 pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1056
1057 //Set FRAGCTL_MACHDCNT
1058 if (pDevice->bLongHeader) {
1059 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1060 } else {
1061 cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1062 }
1063 pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1064
1065 //Set FIFOCTL_GrpAckPolicy
1066 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1067 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1068 }
1069
1070 //Set Auto Fallback Ctl
1071 if (wCurrentRate >= RATE_18M) {
1072 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1073 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1074 byFBOption = AUTO_FB_0;
1075 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1076 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1077 byFBOption = AUTO_FB_1;
1078 }
1079 }
1080
1081 if (bSoftWEP != true) {
1082 if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
1083 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1084 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1085 }
1086 if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1087 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1088 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1089 }
1090 else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1091 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1092 }
1093 }
1094 }
1095
1096 if ((bNeedEncryption) && (pTransmitKey != NULL)) {
1097 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1098 cbIVlen = 4;
1099 cbICVlen = 4;
1100 }
1101 else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1102 cbIVlen = 8;//IV+ExtIV
1103 cbMIClen = 8;
1104 cbICVlen = 4;
1105 }
1106 if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1107 cbIVlen = 8;//RSN Header
1108 cbICVlen = 8;//MIC
1109 cbMICHDR = sizeof(struct vnt_mic_hdr);
1110 }
1111 if (bSoftWEP == false) {
1112 //MAC Header should be padding 0 to DW alignment.
1113 uPadding = 4 - (cbMACHdLen%4);
1114 uPadding %= 4;
1115 }
1116 }
1117
1118 cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1119
1120 if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1121 bRTS = false;
1122 } else {
1123 bRTS = true;
1124 pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1125 }
1126
1127 pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1128 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1129
1130 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1131 if (byFBOption == AUTO_FB_NONE) {
1132 if (bRTS == true) {//RTS_need
1133 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1134 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1135 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1136 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1137 cbMICHDR + sizeof(struct vnt_rts_g));
1138 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1139 cbMICHDR + sizeof(struct vnt_rts_g) +
1140 sizeof(struct vnt_tx_datahead_g);
1141 }
1142 else { //RTS_needless
1143 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1144 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1145 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1146 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1147 cbMICHDR + sizeof(struct vnt_cts));
1148 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1149 cbMICHDR + sizeof(struct vnt_cts) +
1150 sizeof(struct vnt_tx_datahead_g);
1151 }
1152 } else {
1153 // Auto Fall Back
1154 if (bRTS == true) {//RTS_need
1155 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1156 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1157 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1158 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1159 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1160 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1161 cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1162 sizeof(struct vnt_tx_datahead_g_fb);
1163 }
1164 else if (bRTS == false) { //RTS_needless
1165 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1166 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1167 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1168 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1169 cbMICHDR + sizeof(struct vnt_cts_fb));
1170 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1171 cbMICHDR + sizeof(struct vnt_cts_fb) +
1172 sizeof(struct vnt_tx_datahead_g_fb);
1173 }
1174 } // Auto Fall Back
1175 }
1176 else {//802.11a/b packet
1177 if (byFBOption == AUTO_FB_NONE) {
1178 if (bRTS == true) {//RTS_need
1179 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1180 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1181 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1182 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1183 sizeof(struct vnt_rts_ab));
1184 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1185 cbMICHDR + sizeof(struct vnt_rts_ab) +
1186 sizeof(struct vnt_tx_datahead_ab);
1187 }
1188 else if (bRTS == false) { //RTS_needless, no MICHDR
1189 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1190 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1191 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1192 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1193 }
1194 } else {
1195 // Auto Fall Back
1196 if (bRTS == true) {//RTS_need
1197 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1198 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1199 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1200 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1201 sizeof(struct vnt_rts_a_fb));
1202 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1203 cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1204 sizeof(struct vnt_tx_datahead_a_fb);
1205 }
1206 else if (bRTS == false) { //RTS_needless
1207 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1208 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1209 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1210 cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1211 }
1212 } // Auto Fall Back
1213 }
1214
1215 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1216 pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1217 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1218
1219 //=========================
1220 // No Fragmentation
1221 //=========================
1222 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1223 byFragType = FRAGCTL_NONFRAG;
1224 //uDMAIdx = TYPE_AC0DMA;
1225 //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1226
1227 //Fill FIFO,RrvTime,RTS,and CTS
1228 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1229 tx_buffer, &pMICHDR, cbMICHDR, rts_cts,
1230 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1231 //Fill DataHead
1232 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1233 byFBOption);
1234 // Generate TX MAC Header
1235 s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1236 byFragType, uDMAIdx, 0);
1237
1238 if (bNeedEncryption == true) {
1239 //Fill TXKEY
1240 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1241 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1242
1243 if (pDevice->bEnableHostWEP) {
1244 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1245 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1246 }
1247 }
1248
1249 // 802.1H
1250 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1251 if (pDevice->dwDiagRefCount == 0) {
1252 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1253 (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1254 memcpy((u8 *) (pbyPayloadHead),
1255 abySNAP_Bridgetunnel, 6);
1256 } else {
1257 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1258 }
1259 pbyType = (u8 *) (pbyPayloadHead + 6);
1260 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1261 } else {
1262 memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1263
1264 }
1265
1266 }
1267
1268 if (pPacket != NULL) {
1269 // Copy the Packet into a tx Buffer
1270 memcpy((pbyPayloadHead + cb802_1_H_len),
1271 (pPacket + ETH_HLEN),
1272 uSkbPacketLen - ETH_HLEN
1273 );
1274
1275 } else {
1276 // while bRelayPacketSend psEthHeader is point to header+payload
1277 memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1278 }
1279
1280 if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1281
1282 ///////////////////////////////////////////////////////////////////
1283
1284 if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1285 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1286 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1287 }
1288 else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1289 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1290 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1291 }
1292 else {
1293 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1294 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1295 }
1296 // DO Software Michael
1297 MIC_vInit(dwMICKey0, dwMICKey1);
1298 MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1299 dwMIC_Priority = 0;
1300 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1301 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1302 dwMICKey0, dwMICKey1);
1303
1304 ///////////////////////////////////////////////////////////////////
1305
1306 //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1307 //for (ii = 0; ii < cbFrameBodySize; ii++) {
1308 // DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1309 //}
1310 //DBG_PRN_GRP12(("\n\n\n"));
1311
1312 MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1313
1314 pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1315 pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1316
1317 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1318 MIC_vUnInit();
1319
1320 if (pDevice->bTxMICFail == true) {
1321 *pdwMIC_L = 0;
1322 *pdwMIC_R = 0;
1323 pDevice->bTxMICFail = false;
1324 }
1325 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1326 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1327 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1328 }
1329
1330 if (bSoftWEP == true) {
1331
1332 s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1333
1334 } else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true)) ||
1335 ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true)) ||
1336 ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true)) ) {
1337 cbFrameSize -= cbICVlen;
1338 }
1339
1340 cbFrameSize -= cbFCSlen;
1341
1342 *pcbHeaderLen = cbHeaderLength;
1343 *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1344
1345 //Set FragCtl in TxBufferHead
1346 pTxBufHead->wFragCtl |= (u16)byFragType;
1347
1348 return true;
1349
1350 }
1351
1352 /*+
1353 *
1354 * Description:
1355 * Translate 802.3 to 802.11 header
1356 *
1357 * Parameters:
1358 * In:
1359 * pDevice - Pointer to adapter
1360 * dwTxBufferAddr - Transmit Buffer
1361 * pPacket - Packet from upper layer
1362 * cbPacketSize - Transmit Data Length
1363 * Out:
1364 * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
1365 * pcbAppendPayload - size of append payload for 802.1H translation
1366 *
1367 * Return Value: none
1368 *
1369 -*/
1370
1371 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1372 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1373 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1374 {
1375 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1376
1377 pMACHeader->frame_control = TYPE_802_11_DATA;
1378
1379 if (pDevice->eOPMode == OP_MODE_AP) {
1380 memcpy(&(pMACHeader->addr1[0]),
1381 &(psEthHeader->h_dest[0]),
1382 ETH_ALEN);
1383 memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1384 memcpy(&(pMACHeader->addr3[0]),
1385 &(psEthHeader->h_source[0]),
1386 ETH_ALEN);
1387 pMACHeader->frame_control |= FC_FROMDS;
1388 } else {
1389 if (pDevice->eOPMode == OP_MODE_ADHOC) {
1390 memcpy(&(pMACHeader->addr1[0]),
1391 &(psEthHeader->h_dest[0]),
1392 ETH_ALEN);
1393 memcpy(&(pMACHeader->addr2[0]),
1394 &(psEthHeader->h_source[0]),
1395 ETH_ALEN);
1396 memcpy(&(pMACHeader->addr3[0]),
1397 &(pDevice->abyBSSID[0]),
1398 ETH_ALEN);
1399 } else {
1400 memcpy(&(pMACHeader->addr3[0]),
1401 &(psEthHeader->h_dest[0]),
1402 ETH_ALEN);
1403 memcpy(&(pMACHeader->addr2[0]),
1404 &(psEthHeader->h_source[0]),
1405 ETH_ALEN);
1406 memcpy(&(pMACHeader->addr1[0]),
1407 &(pDevice->abyBSSID[0]),
1408 ETH_ALEN);
1409 pMACHeader->frame_control |= FC_TODS;
1410 }
1411 }
1412
1413 if (bNeedEncrypt)
1414 pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1415
1416 pMACHeader->duration_id = cpu_to_le16(wDuration);
1417
1418 if (pDevice->bLongHeader) {
1419 PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
1420 pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1421 memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1422 }
1423 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1424
1425 //Set FragNumber in Sequence Control
1426 pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1427
1428 if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1429 pDevice->wSeqCounter++;
1430 if (pDevice->wSeqCounter > 0x0fff)
1431 pDevice->wSeqCounter = 0;
1432 }
1433
1434 if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1435 pMACHeader->frame_control |= FC_MOREFRAG;
1436 }
1437 }
1438
1439 /*+
1440 *
1441 * Description:
1442 * Request instructs a MAC to transmit a 802.11 management packet through
1443 * the adapter onto the medium.
1444 *
1445 * Parameters:
1446 * In:
1447 * hDeviceContext - Pointer to the adapter
1448 * pPacket - A pointer to a descriptor for the packet to transmit
1449 * Out:
1450 * none
1451 *
1452 * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1453 *
1454 -*/
1455
1456 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1457 struct vnt_tx_mgmt *pPacket)
1458 {
1459 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1460 struct vnt_tx_buffer *pTX_Buffer;
1461 struct vnt_usb_send_context *pContext;
1462 struct vnt_tx_fifo_head *pTxBufHead;
1463 struct ieee80211_hdr *pMACHeader;
1464 struct ethhdr sEthHeader;
1465 u8 byPktType, *pbyTxBufferAddr;
1466 void *rts_cts = NULL;
1467 void *pvTxDataHd;
1468 struct vnt_mic_hdr *pMICHDR = NULL;
1469 u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1470 int bNeedACK, bIsPSPOLL = false;
1471 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1472 u32 uPadding = 0;
1473 u16 wTxBufSize;
1474 u32 cbMacHdLen;
1475 u16 wCurrentRate = RATE_1M;
1476
1477 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1478
1479 if (NULL == pContext) {
1480 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1481 return CMD_STATUS_RESOURCES;
1482 }
1483
1484 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1485 cbFrameBodySize = pPacket->cbPayloadLen;
1486 pTxBufHead = &pTX_Buffer->fifo_head;
1487 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1488 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1489
1490 if (pDevice->byBBType == BB_TYPE_11A) {
1491 wCurrentRate = RATE_6M;
1492 byPktType = PK_TYPE_11A;
1493 } else {
1494 wCurrentRate = RATE_1M;
1495 byPktType = PK_TYPE_11B;
1496 }
1497
1498 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1499 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1500 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1501 // to set power here.
1502 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1503 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1504 } else {
1505 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1506 }
1507 pDevice->wCurrentRate = wCurrentRate;
1508
1509 //Set packet type
1510 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1511 pTxBufHead->wFIFOCtl = 0;
1512 }
1513 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1514 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1515 }
1516 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1517 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1518 }
1519 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1520 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1521 }
1522
1523 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1524 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1525
1526 if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1527 bNeedACK = false;
1528 }
1529 else {
1530 bNeedACK = true;
1531 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1532 };
1533
1534 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1535 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1536
1537 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1538 //Set Preamble type always long
1539 //pDevice->byPreambleType = PREAMBLE_LONG;
1540 // probe-response don't retry
1541 //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1542 // bNeedACK = false;
1543 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1544 //}
1545 }
1546
1547 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1548
1549 if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1550 bIsPSPOLL = true;
1551 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1552 } else {
1553 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1554 }
1555
1556 //Set FRAGCTL_MACHDCNT
1557 pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1558
1559 // Notes:
1560 // Although spec says MMPDU can be fragmented; In most case,
1561 // no one will send a MMPDU under fragmentation. With RTS may occur.
1562 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1563
1564 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1565 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1566 cbIVlen = 4;
1567 cbICVlen = 4;
1568 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1569 }
1570 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1571 cbIVlen = 8;//IV+ExtIV
1572 cbMIClen = 8;
1573 cbICVlen = 4;
1574 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1575 //We need to get seed here for filling TxKey entry.
1576 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1577 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1578 }
1579 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1580 cbIVlen = 8;//RSN Header
1581 cbICVlen = 8;//MIC
1582 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1583 pDevice->bAES = true;
1584 }
1585 //MAC Header should be padding 0 to DW alignment.
1586 uPadding = 4 - (cbMacHdLen%4);
1587 uPadding %= 4;
1588 }
1589
1590 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1591
1592 //Set FIFOCTL_GrpAckPolicy
1593 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1594 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1595 }
1596 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1597
1598 //Set RrvTime/RTS/CTS Buffer
1599 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1600 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1601 sizeof(struct vnt_rrv_time_cts));
1602 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1603 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1604 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1605 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1606 }
1607 else { // 802.11a/b packet
1608 pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1609 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1610 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1611 sizeof(struct vnt_tx_datahead_ab);
1612 }
1613
1614 memcpy(&(sEthHeader.h_dest[0]),
1615 &(pPacket->p80211Header->sA3.abyAddr1[0]),
1616 ETH_ALEN);
1617 memcpy(&(sEthHeader.h_source[0]),
1618 &(pPacket->p80211Header->sA3.abyAddr2[0]),
1619 ETH_ALEN);
1620 //=========================
1621 // No Fragmentation
1622 //=========================
1623 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1624
1625 /* Fill FIFO,RrvTime,RTS,and CTS */
1626 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1627 pTX_Buffer, &pMICHDR, 0, rts_cts,
1628 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1629
1630 //Fill DataHead
1631 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1632 AUTO_FB_NONE);
1633
1634 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1635
1636 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1637
1638 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1639 u8 * pbyIVHead;
1640 u8 * pbyPayloadHead;
1641 u8 * pbyBSSID;
1642 PSKeyItem pTransmitKey = NULL;
1643
1644 pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1645 pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1646 do {
1647 if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1648 (pDevice->bLinkPass == true)) {
1649 pbyBSSID = pDevice->abyBSSID;
1650 // get pairwise key
1651 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1652 // get group key
1653 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1654 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1655 break;
1656 }
1657 } else {
1658 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1659 break;
1660 }
1661 }
1662 // get group key
1663 pbyBSSID = pDevice->abyBroadcastAddr;
1664 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1665 pTransmitKey = NULL;
1666 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1667 } else {
1668 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1669 }
1670 } while(false);
1671 //Fill TXKEY
1672 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1673 (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1674
1675 memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1676 memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1677 cbFrameBodySize);
1678 }
1679 else {
1680 // Copy the Packet into a tx Buffer
1681 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1682 }
1683
1684 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1685 pDevice->wSeqCounter++ ;
1686 if (pDevice->wSeqCounter > 0x0fff)
1687 pDevice->wSeqCounter = 0;
1688
1689 if (bIsPSPOLL) {
1690 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1691 // of FIFO control header.
1692 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1693 // in the same place of other packet's Duration-field).
1694 // And it will cause Cisco-AP to issue Disassociation-packet
1695 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1696 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1697 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1698 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1699 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1700 } else {
1701 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1702 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1703 }
1704 }
1705
1706 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1707 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1708 pTX_Buffer->byType = 0x00;
1709
1710 pContext->pPacket = NULL;
1711 pContext->Type = CONTEXT_MGMT_PACKET;
1712 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1713
1714 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1715 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1716 &pMACHeader->addr1[0], (u16)cbFrameSize,
1717 pTxBufHead->wFIFOCtl);
1718 }
1719 else {
1720 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1721 &pMACHeader->addr3[0], (u16)cbFrameSize,
1722 pTxBufHead->wFIFOCtl);
1723 }
1724
1725 PIPEnsSendBulkOut(pDevice,pContext);
1726 return CMD_STATUS_PENDING;
1727 }
1728
1729 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1730 struct vnt_tx_mgmt *pPacket)
1731 {
1732 struct vnt_beacon_buffer *pTX_Buffer;
1733 u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1734 u32 cbHeaderSize = 0;
1735 u16 wTxBufSize = sizeof(STxShortBufHead);
1736 PSTxShortBufHead pTxBufHead;
1737 struct ieee80211_hdr *pMACHeader;
1738 struct vnt_tx_datahead_ab *pTxDataHead;
1739 u16 wCurrentRate;
1740 u32 cbFrameBodySize;
1741 u32 cbReqCount;
1742 u8 *pbyTxBufferAddr;
1743 struct vnt_usb_send_context *pContext;
1744 CMD_STATUS status;
1745
1746 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1747 if (NULL == pContext) {
1748 status = CMD_STATUS_RESOURCES;
1749 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1750 return status ;
1751 }
1752
1753 pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1754 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1755
1756 cbFrameBodySize = pPacket->cbPayloadLen;
1757
1758 pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1759 wTxBufSize = sizeof(STxShortBufHead);
1760
1761 if (pDevice->byBBType == BB_TYPE_11A) {
1762 wCurrentRate = RATE_6M;
1763 pTxDataHead = (struct vnt_tx_datahead_ab *)
1764 (pbyTxBufferAddr + wTxBufSize);
1765 //Get SignalField,ServiceField,Length
1766 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1767 &pTxDataHead->ab);
1768 //Get Duration and TimeStampOff
1769 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1770 PK_TYPE_11A, false);
1771 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1772 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1773 } else {
1774 wCurrentRate = RATE_1M;
1775 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1776 pTxDataHead = (struct vnt_tx_datahead_ab *)
1777 (pbyTxBufferAddr + wTxBufSize);
1778 //Get SignalField,ServiceField,Length
1779 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1780 &pTxDataHead->ab);
1781 //Get Duration and TimeStampOff
1782 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1783 PK_TYPE_11B, false);
1784 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1785 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1786 }
1787
1788 //Generate Beacon Header
1789 pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1790 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1791
1792 pMACHeader->duration_id = 0;
1793 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1794 pDevice->wSeqCounter++ ;
1795 if (pDevice->wSeqCounter > 0x0fff)
1796 pDevice->wSeqCounter = 0;
1797
1798 cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1799
1800 pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1801 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1802 pTX_Buffer->byType = 0x01;
1803
1804 pContext->pPacket = NULL;
1805 pContext->Type = CONTEXT_MGMT_PACKET;
1806 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1807
1808 PIPEnsSendBulkOut(pDevice,pContext);
1809 return CMD_STATUS_PENDING;
1810
1811 }
1812
1813 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1814 {
1815 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1816 struct vnt_tx_buffer *pTX_Buffer;
1817 struct vnt_tx_fifo_head *pTxBufHead;
1818 u8 byPktType;
1819 u8 *pbyTxBufferAddr;
1820 void *rts_cts = NULL;
1821 void *pvTxDataHd;
1822 u32 uDuration, cbReqCount;
1823 struct ieee80211_hdr *pMACHeader;
1824 u32 cbHeaderSize, cbFrameBodySize;
1825 int bNeedACK, bIsPSPOLL = false;
1826 u32 cbFrameSize;
1827 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1828 u32 uPadding = 0;
1829 u32 cbMICHDR = 0, uLength = 0;
1830 u32 dwMICKey0, dwMICKey1;
1831 u32 dwMIC_Priority;
1832 u32 *pdwMIC_L, *pdwMIC_R;
1833 u16 wTxBufSize;
1834 u32 cbMacHdLen;
1835 struct ethhdr sEthHeader;
1836 struct vnt_mic_hdr *pMICHDR;
1837 u32 wCurrentRate = RATE_1M;
1838 PUWLAN_80211HDR p80211Header;
1839 u32 uNodeIndex = 0;
1840 int bNodeExist = false;
1841 SKeyItem STempKey;
1842 PSKeyItem pTransmitKey = NULL;
1843 u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1844 u32 cbExtSuppRate = 0;
1845 struct vnt_usb_send_context *pContext;
1846
1847 pMICHDR = pvTxDataHd = NULL;
1848
1849 if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1850 cbFrameBodySize = 0;
1851 }
1852 else {
1853 cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1854 }
1855 p80211Header = (PUWLAN_80211HDR)skb->data;
1856
1857 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1858
1859 if (NULL == pContext) {
1860 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1861 dev_kfree_skb_irq(skb);
1862 return ;
1863 }
1864
1865 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1866 pTxBufHead = &pTX_Buffer->fifo_head;
1867 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1868 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1869
1870 if (pDevice->byBBType == BB_TYPE_11A) {
1871 wCurrentRate = RATE_6M;
1872 byPktType = PK_TYPE_11A;
1873 } else {
1874 wCurrentRate = RATE_1M;
1875 byPktType = PK_TYPE_11B;
1876 }
1877
1878 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1879 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1880 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1881 // to set power here.
1882 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1883 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1884 } else {
1885 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1886 }
1887
1888 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1889
1890 //Set packet type
1891 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1892 pTxBufHead->wFIFOCtl = 0;
1893 }
1894 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1895 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1896 }
1897 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1898 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1899 }
1900 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1901 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1902 }
1903
1904 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1905 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1906
1907 if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1908 bNeedACK = false;
1909 if (pDevice->bEnableHostWEP) {
1910 uNodeIndex = 0;
1911 bNodeExist = true;
1912 }
1913 }
1914 else {
1915 if (pDevice->bEnableHostWEP) {
1916 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1917 bNodeExist = true;
1918 }
1919 bNeedACK = true;
1920 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1921 };
1922
1923 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1924 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1925
1926 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1927 //Set Preamble type always long
1928 //pDevice->byPreambleType = PREAMBLE_LONG;
1929
1930 // probe-response don't retry
1931 //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1932 // bNeedACK = false;
1933 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1934 //}
1935 }
1936
1937 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1938
1939 if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1940 bIsPSPOLL = true;
1941 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1942 } else {
1943 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1944 }
1945
1946 // hostapd daemon ext support rate patch
1947 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1948
1949 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1950 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1951 }
1952
1953 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1954 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1955 }
1956
1957 if (cbExtSuppRate >0) {
1958 cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1959 }
1960 }
1961
1962 //Set FRAGCTL_MACHDCNT
1963 pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1964
1965 // Notes:
1966 // Although spec says MMPDU can be fragmented; In most case,
1967 // no one will send a MMPDU under fragmentation. With RTS may occur.
1968 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1969
1970 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1971 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1972 cbIVlen = 4;
1973 cbICVlen = 4;
1974 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1975 }
1976 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1977 cbIVlen = 8;//IV+ExtIV
1978 cbMIClen = 8;
1979 cbICVlen = 4;
1980 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1981 //We need to get seed here for filling TxKey entry.
1982 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1983 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1984 }
1985 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1986 cbIVlen = 8;//RSN Header
1987 cbICVlen = 8;//MIC
1988 cbMICHDR = sizeof(struct vnt_mic_hdr);
1989 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1990 pDevice->bAES = true;
1991 }
1992 //MAC Header should be padding 0 to DW alignment.
1993 uPadding = 4 - (cbMacHdLen%4);
1994 uPadding %= 4;
1995 }
1996
1997 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
1998
1999 //Set FIFOCTL_GrpAckPolicy
2000 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2001 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2002 }
2003 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2004
2005 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2006 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2007 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2008 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2009 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2010 sizeof(struct vnt_cts));
2011 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2012 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2013
2014 }
2015 else {//802.11a/b packet
2016 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2017 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2018 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2019 sizeof(struct vnt_tx_datahead_ab);
2020 }
2021 memcpy(&(sEthHeader.h_dest[0]),
2022 &(p80211Header->sA3.abyAddr1[0]),
2023 ETH_ALEN);
2024 memcpy(&(sEthHeader.h_source[0]),
2025 &(p80211Header->sA3.abyAddr2[0]),
2026 ETH_ALEN);
2027 //=========================
2028 // No Fragmentation
2029 //=========================
2030 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2031
2032 /* Fill FIFO,RrvTime,RTS,and CTS */
2033 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2034 pTX_Buffer, &pMICHDR, cbMICHDR, rts_cts,
2035 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2036
2037 //Fill DataHead
2038 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2039 AUTO_FB_NONE);
2040
2041 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2042
2043 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2044
2045 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2046 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2047 pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2048
2049 // Copy the Packet into a tx Buffer
2050 memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2051
2052 // version set to 0, patch for hostapd deamon
2053 pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2054 memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2055
2056 // replace support rate, patch for hostapd daemon( only support 11M)
2057 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2058 if (cbExtSuppRate != 0) {
2059 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2060 memcpy((pbyPayloadHead + cbFrameBodySize),
2061 pMgmt->abyCurrSuppRates,
2062 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2063 );
2064 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2065 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2066 pMgmt->abyCurrExtSuppRates,
2067 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2068 );
2069 }
2070 }
2071
2072 // Set wep
2073 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2074
2075 if (pDevice->bEnableHostWEP) {
2076 pTransmitKey = &STempKey;
2077 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2078 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2079 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2080 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2081 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2082 memcpy(pTransmitKey->abyKey,
2083 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2084 pTransmitKey->uKeyLength
2085 );
2086 }
2087
2088 if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2089
2090 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2091 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2092
2093 // DO Software Michael
2094 MIC_vInit(dwMICKey0, dwMICKey1);
2095 MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2096 dwMIC_Priority = 0;
2097 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2098 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2099 " %X, %X\n", dwMICKey0, dwMICKey1);
2100
2101 uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2102
2103 MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2104
2105 pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2106 pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2107
2108 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2109 MIC_vUnInit();
2110
2111 if (pDevice->bTxMICFail == true) {
2112 *pdwMIC_L = 0;
2113 *pdwMIC_R = 0;
2114 pDevice->bTxMICFail = false;
2115 }
2116
2117 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2118 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2119 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2120 *pdwMIC_L, *pdwMIC_R);
2121
2122 }
2123
2124 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2125 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2126
2127 if (pDevice->bEnableHostWEP) {
2128 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2129 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2130 }
2131
2132 if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2133 s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2134 }
2135 }
2136
2137 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2138 pDevice->wSeqCounter++ ;
2139 if (pDevice->wSeqCounter > 0x0fff)
2140 pDevice->wSeqCounter = 0;
2141
2142 if (bIsPSPOLL) {
2143 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2144 // of FIFO control header.
2145 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2146 // in the same place of other packet's Duration-field).
2147 // And it will cause Cisco-AP to issue Disassociation-packet
2148 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2149 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2150 cpu_to_le16(p80211Header->sA2.wDurationID);
2151 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2152 cpu_to_le16(p80211Header->sA2.wDurationID);
2153 } else {
2154 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2155 cpu_to_le16(p80211Header->sA2.wDurationID);
2156 }
2157 }
2158
2159 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2160 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2161 pTX_Buffer->byType = 0x00;
2162
2163 pContext->pPacket = skb;
2164 pContext->Type = CONTEXT_MGMT_PACKET;
2165 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
2166
2167 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2168 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2169 &pMACHeader->addr1[0], (u16)cbFrameSize,
2170 pTxBufHead->wFIFOCtl);
2171 }
2172 else {
2173 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2174 &pMACHeader->addr3[0], (u16)cbFrameSize,
2175 pTxBufHead->wFIFOCtl);
2176 }
2177 PIPEnsSendBulkOut(pDevice,pContext);
2178 return ;
2179
2180 }
2181
2182 //TYPE_AC0DMA data tx
2183 /*
2184 * Description:
2185 * Tx packet via AC0DMA(DMA1)
2186 *
2187 * Parameters:
2188 * In:
2189 * pDevice - Pointer to the adapter
2190 * skb - Pointer to tx skb packet
2191 * Out:
2192 * void
2193 *
2194 * Return Value: NULL
2195 */
2196
2197 int nsDMA_tx_packet(struct vnt_private *pDevice,
2198 u32 uDMAIdx, struct sk_buff *skb)
2199 {
2200 struct net_device_stats *pStats = &pDevice->stats;
2201 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2202 struct vnt_tx_buffer *pTX_Buffer;
2203 u32 BytesToWrite = 0, uHeaderLen = 0;
2204 u32 uNodeIndex = 0;
2205 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2206 u16 wAID;
2207 u8 byPktType;
2208 int bNeedEncryption = false;
2209 PSKeyItem pTransmitKey = NULL;
2210 SKeyItem STempKey;
2211 int ii;
2212 int bTKIP_UseGTK = false;
2213 int bNeedDeAuth = false;
2214 u8 *pbyBSSID;
2215 int bNodeExist = false;
2216 struct vnt_usb_send_context *pContext;
2217 bool fConvertedPacket;
2218 u32 status;
2219 u16 wKeepRate = pDevice->wCurrentRate;
2220 int bTxeapol_key = false;
2221
2222 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2223
2224 if (pDevice->uAssocCount == 0) {
2225 dev_kfree_skb_irq(skb);
2226 return 0;
2227 }
2228
2229 if (is_multicast_ether_addr((u8 *)(skb->data))) {
2230 uNodeIndex = 0;
2231 bNodeExist = true;
2232 if (pMgmt->sNodeDBTable[0].bPSEnable) {
2233
2234 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2235 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2236 // set tx map
2237 pMgmt->abyPSTxMap[0] |= byMask[0];
2238 return 0;
2239 }
2240 // multicast/broadcast data rate
2241
2242 if (pDevice->byBBType != BB_TYPE_11A)
2243 pDevice->wCurrentRate = RATE_2M;
2244 else
2245 pDevice->wCurrentRate = RATE_24M;
2246 // long preamble type
2247 pDevice->byPreambleType = PREAMBLE_SHORT;
2248
2249 }else {
2250
2251 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2252
2253 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2254
2255 skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2256
2257 pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2258 // set tx map
2259 wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2260 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
2261 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2262 (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2263
2264 return 0;
2265 }
2266 // AP rate decided from node
2267 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2268 // tx preamble decided from node
2269
2270 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2271 pDevice->byPreambleType = pDevice->byShortPreamble;
2272
2273 }else {
2274 pDevice->byPreambleType = PREAMBLE_LONG;
2275 }
2276 bNodeExist = true;
2277 }
2278 }
2279
2280 if (bNodeExist == false) {
2281 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2282 dev_kfree_skb_irq(skb);
2283 return 0;
2284 }
2285 }
2286
2287 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2288
2289 if (pContext == NULL) {
2290 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2291 dev_kfree_skb_irq(skb);
2292 return STATUS_RESOURCES;
2293 }
2294
2295 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2296
2297 //mike add:station mode check eapol-key challenge--->
2298 {
2299 u8 Protocol_Version; //802.1x Authentication
2300 u8 Packet_Type; //802.1x Authentication
2301 u8 Descriptor_type;
2302 u16 Key_info;
2303
2304 Protocol_Version = skb->data[ETH_HLEN];
2305 Packet_Type = skb->data[ETH_HLEN+1];
2306 Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2307 Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2308 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2309 /* 802.1x OR eapol-key challenge frame transfer */
2310 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2311 (Packet_Type == 3)) {
2312 bTxeapol_key = true;
2313 if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
2314 (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
2315 if(Descriptor_type==254) {
2316 pDevice->fWPA_Authened = true;
2317 PRINT_K("WPA ");
2318 }
2319 else {
2320 pDevice->fWPA_Authened = true;
2321 PRINT_K("WPA2(re-keying) ");
2322 }
2323 PRINT_K("Authentication completed!!\n");
2324 }
2325 else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairwise-key challenge
2326 (Key_info & BIT8) && (Key_info & BIT9)) {
2327 pDevice->fWPA_Authened = true;
2328 PRINT_K("WPA2 Authentication completed!!\n");
2329 }
2330 }
2331 }
2332 }
2333 //mike add:station mode check eapol-key challenge<---
2334
2335 if (pDevice->bEncryptionEnable == true) {
2336 bNeedEncryption = true;
2337 // get Transmit key
2338 do {
2339 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2340 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2341 pbyBSSID = pDevice->abyBSSID;
2342 // get pairwise key
2343 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2344 // get group key
2345 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2346 bTKIP_UseGTK = true;
2347 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2348 break;
2349 }
2350 } else {
2351 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2352 break;
2353 }
2354 }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2355 /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2356 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2357 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2358 for (ii = 0; ii< 6; ii++)
2359 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2360 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2361
2362 // get pairwise key
2363 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2364 break;
2365 }
2366 // get group key
2367 pbyBSSID = pDevice->abyBroadcastAddr;
2368 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2369 pTransmitKey = NULL;
2370 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2371 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2372 }
2373 else
2374 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2375 } else {
2376 bTKIP_UseGTK = true;
2377 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2378 }
2379 } while(false);
2380 }
2381
2382 if (pDevice->bEnableHostWEP) {
2383 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2384 if (pDevice->bEncryptionEnable == true) {
2385 pTransmitKey = &STempKey;
2386 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2387 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2388 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2389 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2390 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2391 memcpy(pTransmitKey->abyKey,
2392 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2393 pTransmitKey->uKeyLength
2394 );
2395 }
2396 }
2397
2398 byPktType = (u8)pDevice->byPacketType;
2399
2400 if (pDevice->bFixRate) {
2401 if (pDevice->byBBType == BB_TYPE_11B) {
2402 if (pDevice->uConnectionRate >= RATE_11M) {
2403 pDevice->wCurrentRate = RATE_11M;
2404 } else {
2405 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2406 }
2407 } else {
2408 if ((pDevice->byBBType == BB_TYPE_11A) &&
2409 (pDevice->uConnectionRate <= RATE_6M)) {
2410 pDevice->wCurrentRate = RATE_6M;
2411 } else {
2412 if (pDevice->uConnectionRate >= RATE_54M)
2413 pDevice->wCurrentRate = RATE_54M;
2414 else
2415 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2416 }
2417 }
2418 }
2419 else {
2420 if (pDevice->eOPMode == OP_MODE_ADHOC) {
2421 // Adhoc Tx rate decided from node DB
2422 if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2423 // Multicast use highest data rate
2424 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2425 // preamble type
2426 pDevice->byPreambleType = pDevice->byShortPreamble;
2427 }
2428 else {
2429 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2430 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2431 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2432 pDevice->byPreambleType = pDevice->byShortPreamble;
2433
2434 }
2435 else {
2436 pDevice->byPreambleType = PREAMBLE_LONG;
2437 }
2438 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2439 }
2440 else {
2441 if (pDevice->byBBType != BB_TYPE_11A)
2442 pDevice->wCurrentRate = RATE_2M;
2443 else
2444 pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2445 // abyCurrExtSuppRates[]
2446 pDevice->byPreambleType = PREAMBLE_SHORT;
2447 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2448 }
2449 }
2450 }
2451 if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2452 // Infra STA rate decided from AP Node, index = 0
2453 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2454 }
2455 }
2456
2457 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2458 if (pDevice->byBBType != BB_TYPE_11A) {
2459 pDevice->wCurrentRate = RATE_1M;
2460 pDevice->byACKRate = RATE_1M;
2461 pDevice->byTopCCKBasicRate = RATE_1M;
2462 pDevice->byTopOFDMBasicRate = RATE_6M;
2463 } else {
2464 pDevice->wCurrentRate = RATE_6M;
2465 pDevice->byACKRate = RATE_6M;
2466 pDevice->byTopCCKBasicRate = RATE_1M;
2467 pDevice->byTopOFDMBasicRate = RATE_6M;
2468 }
2469 }
2470
2471 DBG_PRT(MSG_LEVEL_DEBUG,
2472 KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2473 pDevice->wCurrentRate);
2474
2475 if (wKeepRate != pDevice->wCurrentRate) {
2476 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2477 }
2478
2479 if (pDevice->wCurrentRate <= RATE_11M) {
2480 byPktType = PK_TYPE_11B;
2481 }
2482
2483 if (bNeedEncryption == true) {
2484 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2485 if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2486 bNeedEncryption = false;
2487 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2488 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2489 if (pTransmitKey == NULL) {
2490 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2491 }
2492 else {
2493 if (bTKIP_UseGTK == true) {
2494 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2495 }
2496 else {
2497 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2498 pTransmitKey->dwKeyIndex);
2499 bNeedEncryption = true;
2500 }
2501 }
2502 }
2503
2504 if (pDevice->bEnableHostWEP) {
2505 if ((uNodeIndex != 0) &&
2506 (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2507 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2508 pTransmitKey->dwKeyIndex);
2509 bNeedEncryption = true;
2510 }
2511 }
2512 }
2513 else {
2514
2515 if (pTransmitKey == NULL) {
2516 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2517 pContext->bBoolInUse = false;
2518 dev_kfree_skb_irq(skb);
2519 pStats->tx_dropped++;
2520 return STATUS_FAILURE;
2521 }
2522 }
2523 }
2524
2525 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2526
2527 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2528 pTX_Buffer, bNeedEncryption,
2529 skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2530 (u8 *)skb->data, pTransmitKey, uNodeIndex,
2531 pDevice->wCurrentRate,
2532 &uHeaderLen, &BytesToWrite
2533 );
2534
2535 if (fConvertedPacket == false) {
2536 pContext->bBoolInUse = false;
2537 dev_kfree_skb_irq(skb);
2538 return STATUS_FAILURE;
2539 }
2540
2541 if ( pDevice->bEnablePSMode == true ) {
2542 if ( !pDevice->bPSModeTxBurst ) {
2543 bScheduleCommand((void *) pDevice,
2544 WLAN_CMD_MAC_DISPOWERSAVING,
2545 NULL);
2546 pDevice->bPSModeTxBurst = true;
2547 }
2548 }
2549
2550 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2551 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2552
2553 pContext->pPacket = skb;
2554 pContext->Type = CONTEXT_DATA_PACKET;
2555 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2556
2557 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2558 &pContext->sEthHeader.h_dest[0],
2559 (u16)(BytesToWrite-uHeaderLen),
2560 pTX_Buffer->fifo_head.wFIFOCtl);
2561
2562 status = PIPEnsSendBulkOut(pDevice,pContext);
2563
2564 if (bNeedDeAuth == true) {
2565 u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2566
2567 bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2568 }
2569
2570 if(status!=STATUS_PENDING) {
2571 pContext->bBoolInUse = false;
2572 dev_kfree_skb_irq(skb);
2573 return STATUS_FAILURE;
2574 }
2575 else
2576 return 0;
2577
2578 }
2579
2580 /*
2581 * Description:
2582 * Relay packet send (AC1DMA) from rx dpc.
2583 *
2584 * Parameters:
2585 * In:
2586 * pDevice - Pointer to the adapter
2587 * pPacket - Pointer to rx packet
2588 * cbPacketSize - rx ethernet frame size
2589 * Out:
2590 * TURE, false
2591 *
2592 * Return Value: Return true if packet is copy to dma1; otherwise false
2593 */
2594
2595 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2596 u32 uNodeIndex)
2597 {
2598 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2599 struct vnt_tx_buffer *pTX_Buffer;
2600 u32 BytesToWrite = 0, uHeaderLen = 0;
2601 u8 byPktType = PK_TYPE_11B;
2602 int bNeedEncryption = false;
2603 SKeyItem STempKey;
2604 PSKeyItem pTransmitKey = NULL;
2605 u8 *pbyBSSID;
2606 struct vnt_usb_send_context *pContext;
2607 u8 byPktTyp;
2608 int fConvertedPacket;
2609 u32 status;
2610 u16 wKeepRate = pDevice->wCurrentRate;
2611
2612 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2613
2614 if (NULL == pContext) {
2615 return false;
2616 }
2617
2618 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2619
2620 if (pDevice->bEncryptionEnable == true) {
2621 bNeedEncryption = true;
2622 // get group key
2623 pbyBSSID = pDevice->abyBroadcastAddr;
2624 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2625 pTransmitKey = NULL;
2626 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2627 } else {
2628 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2629 }
2630 }
2631
2632 if (pDevice->bEnableHostWEP) {
2633 if (uNodeIndex < MAX_NODE_NUM + 1) {
2634 pTransmitKey = &STempKey;
2635 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2636 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2637 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2638 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2639 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2640 memcpy(pTransmitKey->abyKey,
2641 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2642 pTransmitKey->uKeyLength
2643 );
2644 }
2645 }
2646
2647 if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2648 pContext->bBoolInUse = false;
2649 return false;
2650 }
2651
2652 byPktTyp = (u8)pDevice->byPacketType;
2653
2654 if (pDevice->bFixRate) {
2655 if (pDevice->byBBType == BB_TYPE_11B) {
2656 if (pDevice->uConnectionRate >= RATE_11M) {
2657 pDevice->wCurrentRate = RATE_11M;
2658 } else {
2659 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2660 }
2661 } else {
2662 if ((pDevice->byBBType == BB_TYPE_11A) &&
2663 (pDevice->uConnectionRate <= RATE_6M)) {
2664 pDevice->wCurrentRate = RATE_6M;
2665 } else {
2666 if (pDevice->uConnectionRate >= RATE_54M)
2667 pDevice->wCurrentRate = RATE_54M;
2668 else
2669 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2670 }
2671 }
2672 }
2673 else {
2674 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2675 }
2676
2677 if (wKeepRate != pDevice->wCurrentRate) {
2678 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2679 }
2680
2681 if (pDevice->wCurrentRate <= RATE_11M)
2682 byPktType = PK_TYPE_11B;
2683
2684 BytesToWrite = uDataLen + ETH_FCS_LEN;
2685
2686 // Convert the packet to an usb frame and copy into our buffer
2687 // and send the irp.
2688
2689 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2690
2691 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2692 pTX_Buffer, bNeedEncryption,
2693 uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2694 pbySkbData, pTransmitKey, uNodeIndex,
2695 pDevice->wCurrentRate,
2696 &uHeaderLen, &BytesToWrite
2697 );
2698
2699 if (fConvertedPacket == false) {
2700 pContext->bBoolInUse = false;
2701 return false;
2702 }
2703
2704 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2705 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2706
2707 pContext->pPacket = NULL;
2708 pContext->Type = CONTEXT_DATA_PACKET;
2709 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2710
2711 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2712 &pContext->sEthHeader.h_dest[0],
2713 (u16)(BytesToWrite - uHeaderLen),
2714 pTX_Buffer->fifo_head.wFIFOCtl);
2715
2716 status = PIPEnsSendBulkOut(pDevice,pContext);
2717
2718 return true;
2719 }
2720
This page took 0.146888 seconds and 5 git commands to generate.