a733e3b7f36a494b9f324fbe38e66d215e0e5b89
[deliverable/linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: rxtx.c
20 *
21 * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22 *
23 * Author: Lyndon Chen
24 *
25 * Date: May 20, 2003
26 *
27 * Functions:
28 * s_vGenerateTxParameter - Generate tx dma required parameter.
29 * s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30 * csBeacon_xmit - beacon tx function
31 * csMgmt_xmit - management tx function
32 * s_uGetDataDuration - get tx data required duration
33 * s_uFillDataHead- fulfill tx data duration header
34 * s_uGetRTSCTSDuration- get rtx/cts required duration
35 * s_uGetRTSCTSRsvTime- get rts/cts reserved time
36 * s_uGetTxRsvTime- get frame reserved time
37 * s_vFillCTSHead- fulfill CTS ctl header
38 * s_vFillFragParameter- Set fragment ctl parameter.
39 * s_vFillRTSHead- fulfill RTS ctl header
40 * s_vFillTxKey- fulfill tx encrypt key
41 * s_vSWencryption- Software encrypt header
42 * vDMA0_tx_80211- tx 802.11 frame via dma0
43 * vGenerateFIFOHeader- Generate tx FIFO ctl header
44 *
45 * Revision History:
46 *
47 */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int msglevel = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68 {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69 {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70 };
71
72 const u16 wFB_Opt0[2][5] = {
73 {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75 };
76 const u16 wFB_Opt1[2][5] = {
77 {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79 };
80
81 #define RTSDUR_BB 0
82 #define RTSDUR_BA 1
83 #define RTSDUR_AA 2
84 #define CTSDUR_BA 3
85 #define RTSDUR_BA_F0 4
86 #define RTSDUR_AA_F0 5
87 #define RTSDUR_BA_F1 6
88 #define RTSDUR_AA_F1 7
89 #define CTSDUR_BA_F0 8
90 #define CTSDUR_BA_F1 9
91 #define DATADUR_B 10
92 #define DATADUR_A 11
93 #define DATADUR_A_F0 12
94 #define DATADUR_A_F1 13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102 u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
103 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104 struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108 u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116 struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122 u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125 u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129 int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136 u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139 u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140 int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144 struct vnt_usb_send_context *pContext = NULL;
145 struct vnt_usb_send_context *pReturnContext = NULL;
146 int ii;
147
148 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150 for (ii = 0; ii < pDevice->cbTD; ii++) {
151 pContext = pDevice->apTD[ii];
152 if (pContext->bBoolInUse == false) {
153 pContext->bBoolInUse = true;
154 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155 pReturnContext = pContext;
156 break;
157 }
158 }
159 if ( ii == pDevice->cbTD ) {
160 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161 }
162 return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168 PSStatCounter pStatistic = &pDevice->scStatistic;
169
170 if (is_broadcast_ether_addr(pbyDestAddr))
171 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172 else if (is_multicast_ether_addr(pbyDestAddr))
173 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174 else
175 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177 pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178 pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179 memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180 pbyDestAddr,
181 ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186 u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188 u32 *pdwIV = (u32 *)pbyIVHead;
189 u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191 u32 dwRevIVCounter;
192
193 /* Fill TXKEY */
194 if (pTransmitKey == NULL)
195 return;
196
197 dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198 *pdwIV = pDevice->dwIVCounter;
199 pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201 switch (pTransmitKey->byCipherSuite) {
202 case KEY_CTL_WEP:
203 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204 memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205 memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206 pTransmitKey->uKeyLength);
207 } else {
208 memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209 memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210 pTransmitKey->uKeyLength);
211 if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213 memcpy(pbyBuf+11, pTransmitKey->abyKey,
214 pTransmitKey->uKeyLength);
215 }
216
217 memcpy(pDevice->abyPRNG, pbyBuf, 16);
218 }
219 /* Append IV after Mac Header */
220 *pdwIV &= WEP_IV_MASK;
221 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222 *pdwIV = cpu_to_le32(*pdwIV);
223
224 pDevice->dwIVCounter++;
225 if (pDevice->dwIVCounter > WEP_IV_MASK)
226 pDevice->dwIVCounter = 0;
227
228 break;
229 case KEY_CTL_TKIP:
230 pTransmitKey->wTSC15_0++;
231 if (pTransmitKey->wTSC15_0 == 0)
232 pTransmitKey->dwTSC47_16++;
233
234 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235 pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236 pDevice->abyPRNG);
237 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239 /* Make IV */
240 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243 0xc0) | 0x20);
244 /* Append IV&ExtIV after Mac Header */
245 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248 "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250 break;
251 case KEY_CTL_CCMP:
252 pTransmitKey->wTSC15_0++;
253 if (pTransmitKey->wTSC15_0 == 0)
254 pTransmitKey->dwTSC47_16++;
255
256 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258 /* Make IV */
259 *pdwIV = 0;
260 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261 0xc0) | 0x20);
262
263 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265 /* Append IV&ExtIV after Mac Header */
266 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268 if (!mic_hdr)
269 return;
270
271 /* MICHDR0 */
272 mic_hdr->id = 0x59;
273 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279 /* MICHDR1 */
280 if (pDevice->bLongHeader)
281 mic_hdr->hlen = cpu_to_be16(28);
282 else
283 mic_hdr->hlen = cpu_to_be16(22);
284
285 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288 /* MICHDR2 */
289 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291 & 0xc78f);
292 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294 if (pDevice->bLongHeader)
295 memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296 }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302 u32 cbICVlen = 4;
303 u32 dwICV = 0xffffffff;
304 u32 *pdwICV;
305
306 if (pTransmitKey == NULL)
307 return;
308
309 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310 //=======================================================================
311 // Append ICV after payload
312 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314 // finally, we must invert dwCRC to get the correct answer
315 *pdwICV = cpu_to_le32(~dwICV);
316 // RC4 encryption
317 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319 //=======================================================================
320 } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321 //=======================================================================
322 //Append ICV after payload
323 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325 // finally, we must invert dwCRC to get the correct answer
326 *pdwICV = cpu_to_le32(~dwICV);
327 // RC4 encryption
328 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330 //=======================================================================
331 }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336 return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337 [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A 0
341 PK_TYPE_11B 1
342 PK_TYPE_11GB 2
343 PK_TYPE_11GA 3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346 u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348 u32 uDataTime, uAckTime;
349
350 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351 if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353 } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355 }
356
357 if (bNeedAck) {
358 return (uDataTime + pDevice->uSIFS + uAckTime);
359 }
360 else {
361 return uDataTime;
362 }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366 u32 frame_length, u16 rate, int need_ack)
367 {
368 return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374 u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376 u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378 uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381 if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384 }
385 else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389 }
390 else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393 }
394 else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397 uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398 return uRrvTime;
399 }
400
401 //RTSRrvTime
402 uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403 return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408 u8 byPktType, int bNeedAck)
409 {
410 u32 uAckTime = 0;
411
412 if (bNeedAck) {
413 if (byPktType == PK_TYPE_11B)
414 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415 byPktType, 14, pDevice->byTopCCKBasicRate);
416 else
417 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418 byPktType, 14, pDevice->byTopOFDMBasicRate);
419 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420 }
421
422 return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427 u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428 u8 byFBOption)
429 {
430 u32 uCTSTime = 0, uDurTime = 0;
431
432 switch (byDurType) {
433
434 case RTSDUR_BB: //RTSDuration_bb
435 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437 break;
438
439 case RTSDUR_BA: //RTSDuration_ba
440 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442 break;
443
444 case RTSDUR_AA: //RTSDuration_aa
445 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447 break;
448
449 case CTSDUR_BA: //CTSDuration_ba
450 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451 break;
452
453 case RTSDUR_BA_F0: //RTSDuration_ba_f0
454 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459 }
460 break;
461
462 case RTSDUR_AA_F0: //RTSDuration_aa_f0
463 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468 }
469 break;
470
471 case RTSDUR_BA_F1: //RTSDuration_ba_f1
472 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477 }
478 break;
479
480 case RTSDUR_AA_F1: //RTSDuration_aa_f1
481 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486 }
487 break;
488
489 case CTSDUR_BA_F0: //CTSDuration_ba_f0
490 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494 }
495 break;
496
497 case CTSDUR_BA_F1: //CTSDuration_ba_f1
498 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502 }
503 break;
504
505 default:
506 break;
507 }
508
509 return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514 u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517 if (pTxDataHead == NULL) {
518 return 0;
519 }
520
521 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522 if (byFBOption == AUTO_FB_NONE) {
523 struct vnt_tx_datahead_g *pBuf =
524 (struct vnt_tx_datahead_g *)pTxDataHead;
525 //Get SignalField,ServiceField,Length
526 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527 byPktType, &pBuf->a);
528 BBvCalculateParameter(pDevice, cbFrameLength,
529 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530 //Get Duration and TimeStamp
531 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532 byPktType, bNeedAck);
533 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534 PK_TYPE_11B, bNeedAck);
535
536 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537 wCurrentRate);
538 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539 pDevice->byTopCCKBasicRate);
540 return (pBuf->wDuration_a);
541 } else {
542 // Auto Fallback
543 struct vnt_tx_datahead_g_fb *pBuf =
544 (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545 //Get SignalField,ServiceField,Length
546 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547 byPktType, &pBuf->a);
548 BBvCalculateParameter(pDevice, cbFrameLength,
549 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550 //Get Duration and TimeStamp
551 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552 byPktType, bNeedAck);
553 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554 PK_TYPE_11B, bNeedAck);
555 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556 byPktType, bNeedAck);
557 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558 byPktType, bNeedAck);
559 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560 wCurrentRate);
561 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562 pDevice->byTopCCKBasicRate);
563 return (pBuf->wDuration_a);
564 } //if (byFBOption == AUTO_FB_NONE)
565 }
566 else if (byPktType == PK_TYPE_11A) {
567 if (byFBOption != AUTO_FB_NONE) {
568 struct vnt_tx_datahead_a_fb *pBuf =
569 (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570 //Get SignalField,ServiceField,Length
571 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572 byPktType, &pBuf->a);
573 //Get Duration and TimeStampOff
574 pBuf->wDuration = s_uGetDataDuration(pDevice,
575 byPktType, bNeedAck);
576 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577 byPktType, bNeedAck);
578 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579 byPktType, bNeedAck);
580 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581 wCurrentRate);
582 return (pBuf->wDuration);
583 } else {
584 struct vnt_tx_datahead_ab *pBuf =
585 (struct vnt_tx_datahead_ab *)pTxDataHead;
586 //Get SignalField,ServiceField,Length
587 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588 byPktType, &pBuf->ab);
589 //Get Duration and TimeStampOff
590 pBuf->wDuration = s_uGetDataDuration(pDevice,
591 byPktType, bNeedAck);
592 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593 wCurrentRate);
594 return (pBuf->wDuration);
595 }
596 }
597 else if (byPktType == PK_TYPE_11B) {
598 struct vnt_tx_datahead_ab *pBuf =
599 (struct vnt_tx_datahead_ab *)pTxDataHead;
600 //Get SignalField,ServiceField,Length
601 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602 byPktType, &pBuf->ab);
603 //Get Duration and TimeStampOff
604 pBuf->wDuration = s_uGetDataDuration(pDevice,
605 byPktType, bNeedAck);
606 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607 wCurrentRate);
608 return (pBuf->wDuration);
609 }
610 return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614 struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615 u16 duration)
616 {
617 rts->duration = duration;
618 rts->frame_control = TYPE_CTL_RTS;
619
620 if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622 else
623 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625 if (priv->eOPMode == OP_MODE_AP)
626 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627 else
628 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630 return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634 struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635 u8 pkt_type, u32 frame_len, int need_ack,
636 u16 current_rate, u8 fb_option)
637 {
638 u16 rts_frame_len = 20;
639
640 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641 PK_TYPE_11B, &buf->b);
642 BBvCalculateParameter(priv, rts_frame_len,
643 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648 pkt_type, current_rate, need_ack, fb_option);
649 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650 pkt_type, current_rate, need_ack, fb_option);
651
652 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654 return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658 struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659 u8 pkt_type, u32 frame_len, int need_ack,
660 u16 current_rate, u8 fb_option)
661 {
662 u16 rts_frame_len = 20;
663
664 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665 PK_TYPE_11B, &buf->b);
666 BBvCalculateParameter(priv, rts_frame_len,
667 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673 pkt_type, current_rate, need_ack, fb_option);
674 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675 pkt_type, current_rate, need_ack, fb_option);
676
677
678 buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679 frame_len, pkt_type, current_rate, need_ack, fb_option);
680 buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681 frame_len, pkt_type, current_rate, need_ack, fb_option);
682 buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683 frame_len, pkt_type, current_rate, need_ack, fb_option);
684 buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689 return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693 struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694 u8 pkt_type, u32 frame_len, int need_ack,
695 u16 current_rate, u8 fb_option)
696 {
697 u16 rts_frame_len = 20;
698
699 BBvCalculateParameter(priv, rts_frame_len,
700 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703 pkt_type, current_rate, need_ack, fb_option);
704
705 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707 return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711 struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712 u8 pkt_type, u32 frame_len, int need_ack,
713 u16 current_rate, u8 fb_option)
714 {
715 u16 rts_frame_len = 20;
716
717 BBvCalculateParameter(priv, rts_frame_len,
718 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721 pkt_type, current_rate, need_ack, fb_option);
722
723 buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726 buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731 return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739 if (!head)
740 return;
741
742 /* Note: So far RTSHead doesn't appear in ATIM
743 * & Beacom DMA, so we don't need to take them
744 * into account.
745 * Otherwise, we need to modified codes for them.
746 */
747 switch (byPktType) {
748 case PK_TYPE_11GB:
749 case PK_TYPE_11GA:
750 if (byFBOption == AUTO_FB_NONE)
751 vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752 psEthHeader, byPktType, cbFrameLength,
753 bNeedAck, wCurrentRate, byFBOption);
754 else
755 vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756 psEthHeader, byPktType, cbFrameLength,
757 bNeedAck, wCurrentRate, byFBOption);
758 break;
759 case PK_TYPE_11A:
760 if (byFBOption) {
761 vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762 psEthHeader, byPktType, cbFrameLength,
763 bNeedAck, wCurrentRate, byFBOption);
764 break;
765 }
766 case PK_TYPE_11B:
767 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768 psEthHeader, byPktType, cbFrameLength,
769 bNeedAck, wCurrentRate, byFBOption);
770 }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775 int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777 u32 uCTSFrameLen = 14;
778
779 if (!head)
780 return;
781
782 if (byFBOption != AUTO_FB_NONE) {
783 /* Auto Fall back */
784 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785 /* Get SignalField,ServiceField,Length */
786 BBvCalculateParameter(pDevice, uCTSFrameLen,
787 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789 cbFrameLength, byPktType,
790 wCurrentRate, bNeedAck, byFBOption);
791 /* Get CTSDuration_ba_f0 */
792 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793 CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794 bNeedAck, byFBOption);
795 /* Get CTSDuration_ba_f1 */
796 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797 CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798 bNeedAck, byFBOption);
799 /* Get CTS Frame body */
800 pBuf->data.duration = pBuf->wDuration_ba;
801 pBuf->data.frame_control = TYPE_CTL_CTS;
802 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803 } else {
804 struct vnt_cts *pBuf = &head->cts_g;
805 /* Get SignalField,ServiceField,Length */
806 BBvCalculateParameter(pDevice, uCTSFrameLen,
807 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808 /* Get CTSDuration_ba */
809 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810 CTSDUR_BA, cbFrameLength, byPktType,
811 wCurrentRate, bNeedAck, byFBOption);
812 /*Get CTS Frame body*/
813 pBuf->data.duration = pBuf->wDuration_ba;
814 pBuf->data.frame_control = TYPE_CTL_CTS;
815 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816 }
817 }
818
819 /*+
820 *
821 * Description:
822 * Generate FIFO control for MAC & Baseband controller
823 *
824 * Parameters:
825 * In:
826 * pDevice - Pointer to adpater
827 * pTxDataHead - Transmit Data Buffer
828 * pTxBufHead - pTxBufHead
829 * pvRrvTime - pvRrvTime
830 * pvRTS - RTS Buffer
831 * pCTS - CTS Buffer
832 * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
833 * bNeedACK - If need ACK
834 * uDMAIdx - DMA Index
835 * Out:
836 * none
837 *
838 * Return Value: none
839 *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843 u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
844 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
845 struct ethhdr *psEthHeader, bool need_rts)
846 {
847 struct vnt_tx_fifo_head *pFifoHead =
848 (struct vnt_tx_fifo_head *)pTxBufHead;
849 union vnt_tx_data_head *head = rts_cts;
850 u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
851 u16 wFifoCtl;
852 u8 byFBOption = AUTO_FB_NONE;
853
854 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
855 pFifoHead->wReserved = wCurrentRate;
856 wFifoCtl = pFifoHead->wFIFOCtl;
857
858 if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
859 byFBOption = AUTO_FB_0;
860 }
861 else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
862 byFBOption = AUTO_FB_1;
863 }
864
865 if (!pvRrvTime)
866 return;
867
868 if (pDevice->bLongHeader)
869 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
870
871 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
872 if (need_rts) {
873 //Fill RsvTime
874 struct vnt_rrv_time_rts *pBuf =
875 (struct vnt_rrv_time_rts *)pvRrvTime;
876 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
877 byPktType, cbFrameSize, wCurrentRate);
878 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
879 byPktType, cbFrameSize, wCurrentRate);
880 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
881 byPktType, cbFrameSize, wCurrentRate);
882 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
883 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
884 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
885 PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
886 bNeedACK);
887 /* Fill RTS */
888 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
889 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
890 }
891 else {//RTS_needless, PCF mode
892 //Fill RsvTime
893 struct vnt_rrv_time_cts *pBuf =
894 (struct vnt_rrv_time_cts *)pvRrvTime;
895 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
896 cbFrameSize, wCurrentRate, bNeedACK);
897 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
898 PK_TYPE_11B, cbFrameSize,
899 pDevice->byTopCCKBasicRate, bNeedACK);
900 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
901 byPktType, cbFrameSize, wCurrentRate);
902 /* Fill CTS */
903 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
904 cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
905 }
906 }
907 else if (byPktType == PK_TYPE_11A) {
908 if (need_rts) {
909 //Fill RsvTime
910 struct vnt_rrv_time_ab *pBuf =
911 (struct vnt_rrv_time_ab *)pvRrvTime;
912 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
913 byPktType, cbFrameSize, wCurrentRate);
914 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
915 cbFrameSize, wCurrentRate, bNeedACK);
916 /* Fill RTS */
917 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
918 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
919 } else {
920 //Fill RsvTime
921 struct vnt_rrv_time_ab *pBuf =
922 (struct vnt_rrv_time_ab *)pvRrvTime;
923 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
924 cbFrameSize, wCurrentRate, bNeedACK);
925 }
926 }
927 else if (byPktType == PK_TYPE_11B) {
928 if (need_rts) {
929 //Fill RsvTime
930 struct vnt_rrv_time_ab *pBuf =
931 (struct vnt_rrv_time_ab *)pvRrvTime;
932 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
933 byPktType, cbFrameSize, wCurrentRate);
934 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
935 cbFrameSize, wCurrentRate, bNeedACK);
936 /* Fill RTS */
937 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
938 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
939 }
940 else { //RTS_needless, non PCF mode
941 //Fill RsvTime
942 struct vnt_rrv_time_ab *pBuf =
943 (struct vnt_rrv_time_ab *)pvRrvTime;
944 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
945 cbFrameSize, wCurrentRate, bNeedACK);
946 }
947 }
948 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
949 }
950 /*
951 u8 * pbyBuffer,//point to pTxBufHead
952 u16 wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
953 unsigned int cbFragmentSize,//Hdr+payoad+FCS
954 */
955
956 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
957 struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
958 u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
959 u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
960 u32 *pcbHeaderLen, u32 *pcbTotalLen)
961 {
962 struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
963 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
964 u32 cbFrameSize, cbFrameBodySize;
965 u32 cb802_1_H_len;
966 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
967 u32 cbFCSlen = 4, cbMICHDR = 0;
968 int bNeedACK;
969 bool bRTS = false;
970 u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
971 u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
972 u8 abySNAP_Bridgetunnel[ETH_ALEN]
973 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
974 u32 uDuration;
975 u32 cbHeaderLength = 0, uPadding = 0;
976 void *pvRrvTime;
977 struct vnt_mic_hdr *pMICHDR;
978 void *rts_cts = NULL;
979 void *pvTxDataHd;
980 u8 byFBOption = AUTO_FB_NONE, byFragType;
981 u16 wTxBufSize;
982 u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
983 u32 *pdwMIC_L, *pdwMIC_R;
984 int bSoftWEP = false;
985 pvRrvTime = pMICHDR = pvTxDataHd = NULL;
986
987 if (bNeedEncryption && pTransmitKey->pvKeyTable) {
988 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
989 bSoftWEP = true; /* WEP 256 */
990 }
991
992 // Get pkt type
993 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
994 if (pDevice->dwDiagRefCount == 0) {
995 cb802_1_H_len = 8;
996 } else {
997 cb802_1_H_len = 2;
998 }
999 } else {
1000 cb802_1_H_len = 0;
1001 }
1002
1003 cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1004
1005 //Set packet type
1006 pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1007
1008 if (pDevice->dwDiagRefCount != 0) {
1009 bNeedACK = false;
1010 pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1011 } else { //if (pDevice->dwDiagRefCount != 0) {
1012 if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1013 (pDevice->eOPMode == OP_MODE_AP)) {
1014 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1015 bNeedACK = false;
1016 pTxBufHead->wFIFOCtl =
1017 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1018 } else {
1019 bNeedACK = true;
1020 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1021 }
1022 }
1023 else {
1024 // MSDUs in Infra mode always need ACK
1025 bNeedACK = true;
1026 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1027 }
1028 } //if (pDevice->dwDiagRefCount != 0) {
1029
1030 pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1031
1032 //Set FIFOCTL_LHEAD
1033 if (pDevice->bLongHeader)
1034 pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1035
1036 //Set FRAGCTL_MACHDCNT
1037 if (pDevice->bLongHeader) {
1038 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1039 } else {
1040 cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1041 }
1042 pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1043
1044 //Set FIFOCTL_GrpAckPolicy
1045 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1046 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1047 }
1048
1049 //Set Auto Fallback Ctl
1050 if (wCurrentRate >= RATE_18M) {
1051 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1052 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1053 byFBOption = AUTO_FB_0;
1054 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1055 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1056 byFBOption = AUTO_FB_1;
1057 }
1058 }
1059
1060 if (bSoftWEP != true) {
1061 if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
1062 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1063 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1064 }
1065 if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1066 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1067 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1068 }
1069 else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1070 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1071 }
1072 }
1073 }
1074
1075 if ((bNeedEncryption) && (pTransmitKey != NULL)) {
1076 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1077 cbIVlen = 4;
1078 cbICVlen = 4;
1079 }
1080 else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1081 cbIVlen = 8;//IV+ExtIV
1082 cbMIClen = 8;
1083 cbICVlen = 4;
1084 }
1085 if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1086 cbIVlen = 8;//RSN Header
1087 cbICVlen = 8;//MIC
1088 cbMICHDR = sizeof(struct vnt_mic_hdr);
1089 }
1090 if (bSoftWEP == false) {
1091 //MAC Header should be padding 0 to DW alignment.
1092 uPadding = 4 - (cbMACHdLen%4);
1093 uPadding %= 4;
1094 }
1095 }
1096
1097 cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1098
1099 if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1100 bRTS = false;
1101 } else {
1102 bRTS = true;
1103 pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1104 }
1105
1106 pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1107 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1108
1109 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1110 if (byFBOption == AUTO_FB_NONE) {
1111 if (bRTS == true) {//RTS_need
1112 pvRrvTime = (struct vnt_rrv_time_rts *)
1113 (pbyTxBufferAddr + wTxBufSize);
1114 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1115 sizeof(struct vnt_rrv_time_rts));
1116 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1117 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1118 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1119 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1120 cbMICHDR + sizeof(struct vnt_rts_g));
1121 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1122 cbMICHDR + sizeof(struct vnt_rts_g) +
1123 sizeof(struct vnt_tx_datahead_g);
1124 }
1125 else { //RTS_needless
1126 pvRrvTime = (struct vnt_rrv_time_cts *)
1127 (pbyTxBufferAddr + wTxBufSize);
1128 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1129 sizeof(struct vnt_rrv_time_cts));
1130 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1131 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1132 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1133 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1134 cbMICHDR + sizeof(struct vnt_cts));
1135 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1136 cbMICHDR + sizeof(struct vnt_cts) +
1137 sizeof(struct vnt_tx_datahead_g);
1138 }
1139 } else {
1140 // Auto Fall Back
1141 if (bRTS == true) {//RTS_need
1142 pvRrvTime = (struct vnt_rrv_time_rts *)(pbyTxBufferAddr +
1143 wTxBufSize);
1144 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1145 sizeof(struct vnt_rrv_time_rts));
1146 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1147 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1148 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1149 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1150 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1151 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1152 cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1153 sizeof(struct vnt_tx_datahead_g_fb);
1154 }
1155 else if (bRTS == false) { //RTS_needless
1156 pvRrvTime = (struct vnt_rrv_time_cts *)
1157 (pbyTxBufferAddr + wTxBufSize);
1158 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1159 sizeof(struct vnt_rrv_time_cts));
1160 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1161 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1162 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1163 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1164 cbMICHDR + sizeof(struct vnt_cts_fb));
1165 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1166 cbMICHDR + sizeof(struct vnt_cts_fb) +
1167 sizeof(struct vnt_tx_datahead_g_fb);
1168 }
1169 } // Auto Fall Back
1170 }
1171 else {//802.11a/b packet
1172 if (byFBOption == AUTO_FB_NONE) {
1173 if (bRTS == true) {//RTS_need
1174 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr +
1175 wTxBufSize);
1176 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1177 sizeof(struct vnt_rrv_time_ab));
1178 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1179 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1180 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1181 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1182 sizeof(struct vnt_rts_ab));
1183 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1184 cbMICHDR + sizeof(struct vnt_rts_ab) +
1185 sizeof(struct vnt_tx_datahead_ab);
1186 }
1187 else if (bRTS == false) { //RTS_needless, no MICHDR
1188 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1189 wTxBufSize);
1190 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1191 sizeof(struct vnt_rrv_time_ab));
1192 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1193 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1194 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1195 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1196 }
1197 } else {
1198 // Auto Fall Back
1199 if (bRTS == true) {//RTS_need
1200 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1201 wTxBufSize);
1202 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1203 sizeof(struct vnt_rrv_time_ab));
1204 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1205 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1206 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1207 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1208 sizeof(struct vnt_rts_a_fb));
1209 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1210 cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1211 sizeof(struct vnt_tx_datahead_a_fb);
1212 }
1213 else if (bRTS == false) { //RTS_needless
1214 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1215 wTxBufSize);
1216 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1217 sizeof(struct vnt_rrv_time_ab));
1218 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1219 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1220 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1221 cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1222 }
1223 } // Auto Fall Back
1224 }
1225
1226 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1227 pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1228 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1229
1230 //=========================
1231 // No Fragmentation
1232 //=========================
1233 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1234 byFragType = FRAGCTL_NONFRAG;
1235 //uDMAIdx = TYPE_AC0DMA;
1236 //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1237
1238 //Fill FIFO,RrvTime,RTS,and CTS
1239 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1240 (void *)pbyTxBufferAddr, pvRrvTime, rts_cts,
1241 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1242 //Fill DataHead
1243 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1244 byFBOption);
1245 // Generate TX MAC Header
1246 s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1247 byFragType, uDMAIdx, 0);
1248
1249 if (bNeedEncryption == true) {
1250 //Fill TXKEY
1251 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1252 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1253
1254 if (pDevice->bEnableHostWEP) {
1255 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1256 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1257 }
1258 }
1259
1260 // 802.1H
1261 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1262 if (pDevice->dwDiagRefCount == 0) {
1263 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1264 (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1265 memcpy((u8 *) (pbyPayloadHead),
1266 abySNAP_Bridgetunnel, 6);
1267 } else {
1268 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1269 }
1270 pbyType = (u8 *) (pbyPayloadHead + 6);
1271 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1272 } else {
1273 memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1274
1275 }
1276
1277 }
1278
1279 if (pPacket != NULL) {
1280 // Copy the Packet into a tx Buffer
1281 memcpy((pbyPayloadHead + cb802_1_H_len),
1282 (pPacket + ETH_HLEN),
1283 uSkbPacketLen - ETH_HLEN
1284 );
1285
1286 } else {
1287 // while bRelayPacketSend psEthHeader is point to header+payload
1288 memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1289 }
1290
1291 if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1292
1293 ///////////////////////////////////////////////////////////////////
1294
1295 if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1296 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1297 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1298 }
1299 else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1300 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1301 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1302 }
1303 else {
1304 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1305 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1306 }
1307 // DO Software Michael
1308 MIC_vInit(dwMICKey0, dwMICKey1);
1309 MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1310 dwMIC_Priority = 0;
1311 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1312 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1313 dwMICKey0, dwMICKey1);
1314
1315 ///////////////////////////////////////////////////////////////////
1316
1317 //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1318 //for (ii = 0; ii < cbFrameBodySize; ii++) {
1319 // DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1320 //}
1321 //DBG_PRN_GRP12(("\n\n\n"));
1322
1323 MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1324
1325 pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1326 pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1327
1328 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1329 MIC_vUnInit();
1330
1331 if (pDevice->bTxMICFail == true) {
1332 *pdwMIC_L = 0;
1333 *pdwMIC_R = 0;
1334 pDevice->bTxMICFail = false;
1335 }
1336 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1337 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1338 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1339 }
1340
1341 if (bSoftWEP == true) {
1342
1343 s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1344
1345 } else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true)) ||
1346 ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true)) ||
1347 ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true)) ) {
1348 cbFrameSize -= cbICVlen;
1349 }
1350
1351 cbFrameSize -= cbFCSlen;
1352
1353 *pcbHeaderLen = cbHeaderLength;
1354 *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1355
1356 //Set FragCtl in TxBufferHead
1357 pTxBufHead->wFragCtl |= (u16)byFragType;
1358
1359 return true;
1360
1361 }
1362
1363 /*+
1364 *
1365 * Description:
1366 * Translate 802.3 to 802.11 header
1367 *
1368 * Parameters:
1369 * In:
1370 * pDevice - Pointer to adapter
1371 * dwTxBufferAddr - Transmit Buffer
1372 * pPacket - Packet from upper layer
1373 * cbPacketSize - Transmit Data Length
1374 * Out:
1375 * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
1376 * pcbAppendPayload - size of append payload for 802.1H translation
1377 *
1378 * Return Value: none
1379 *
1380 -*/
1381
1382 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1383 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1384 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1385 {
1386 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1387
1388 pMACHeader->frame_control = TYPE_802_11_DATA;
1389
1390 if (pDevice->eOPMode == OP_MODE_AP) {
1391 memcpy(&(pMACHeader->addr1[0]),
1392 &(psEthHeader->h_dest[0]),
1393 ETH_ALEN);
1394 memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1395 memcpy(&(pMACHeader->addr3[0]),
1396 &(psEthHeader->h_source[0]),
1397 ETH_ALEN);
1398 pMACHeader->frame_control |= FC_FROMDS;
1399 } else {
1400 if (pDevice->eOPMode == OP_MODE_ADHOC) {
1401 memcpy(&(pMACHeader->addr1[0]),
1402 &(psEthHeader->h_dest[0]),
1403 ETH_ALEN);
1404 memcpy(&(pMACHeader->addr2[0]),
1405 &(psEthHeader->h_source[0]),
1406 ETH_ALEN);
1407 memcpy(&(pMACHeader->addr3[0]),
1408 &(pDevice->abyBSSID[0]),
1409 ETH_ALEN);
1410 } else {
1411 memcpy(&(pMACHeader->addr3[0]),
1412 &(psEthHeader->h_dest[0]),
1413 ETH_ALEN);
1414 memcpy(&(pMACHeader->addr2[0]),
1415 &(psEthHeader->h_source[0]),
1416 ETH_ALEN);
1417 memcpy(&(pMACHeader->addr1[0]),
1418 &(pDevice->abyBSSID[0]),
1419 ETH_ALEN);
1420 pMACHeader->frame_control |= FC_TODS;
1421 }
1422 }
1423
1424 if (bNeedEncrypt)
1425 pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1426
1427 pMACHeader->duration_id = cpu_to_le16(wDuration);
1428
1429 if (pDevice->bLongHeader) {
1430 PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
1431 pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1432 memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1433 }
1434 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1435
1436 //Set FragNumber in Sequence Control
1437 pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1438
1439 if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1440 pDevice->wSeqCounter++;
1441 if (pDevice->wSeqCounter > 0x0fff)
1442 pDevice->wSeqCounter = 0;
1443 }
1444
1445 if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1446 pMACHeader->frame_control |= FC_MOREFRAG;
1447 }
1448 }
1449
1450 /*+
1451 *
1452 * Description:
1453 * Request instructs a MAC to transmit a 802.11 management packet through
1454 * the adapter onto the medium.
1455 *
1456 * Parameters:
1457 * In:
1458 * hDeviceContext - Pointer to the adapter
1459 * pPacket - A pointer to a descriptor for the packet to transmit
1460 * Out:
1461 * none
1462 *
1463 * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1464 *
1465 -*/
1466
1467 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1468 struct vnt_tx_mgmt *pPacket)
1469 {
1470 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1471 struct vnt_tx_buffer *pTX_Buffer;
1472 struct vnt_usb_send_context *pContext;
1473 struct vnt_tx_fifo_head *pTxBufHead;
1474 struct ieee80211_hdr *pMACHeader;
1475 struct ethhdr sEthHeader;
1476 u8 byPktType, *pbyTxBufferAddr;
1477 void *rts_cts = NULL;
1478 void *pvTxDataHd, *pvRrvTime, *pMICHDR;
1479 u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1480 int bNeedACK, bIsPSPOLL = false;
1481 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1482 u32 uPadding = 0;
1483 u16 wTxBufSize;
1484 u32 cbMacHdLen;
1485 u16 wCurrentRate = RATE_1M;
1486
1487 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1488
1489 if (NULL == pContext) {
1490 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1491 return CMD_STATUS_RESOURCES;
1492 }
1493
1494 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1495 cbFrameBodySize = pPacket->cbPayloadLen;
1496 pTxBufHead = &pTX_Buffer->fifo_head;
1497 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1498 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1499
1500 if (pDevice->byBBType == BB_TYPE_11A) {
1501 wCurrentRate = RATE_6M;
1502 byPktType = PK_TYPE_11A;
1503 } else {
1504 wCurrentRate = RATE_1M;
1505 byPktType = PK_TYPE_11B;
1506 }
1507
1508 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1509 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1510 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1511 // to set power here.
1512 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1513 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1514 } else {
1515 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1516 }
1517 pDevice->wCurrentRate = wCurrentRate;
1518
1519 //Set packet type
1520 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1521 pTxBufHead->wFIFOCtl = 0;
1522 }
1523 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1524 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1525 }
1526 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1527 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1528 }
1529 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1530 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1531 }
1532
1533 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1534 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1535
1536 if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1537 bNeedACK = false;
1538 }
1539 else {
1540 bNeedACK = true;
1541 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1542 };
1543
1544 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1545 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1546
1547 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1548 //Set Preamble type always long
1549 //pDevice->byPreambleType = PREAMBLE_LONG;
1550 // probe-response don't retry
1551 //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1552 // bNeedACK = false;
1553 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1554 //}
1555 }
1556
1557 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1558
1559 if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1560 bIsPSPOLL = true;
1561 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1562 } else {
1563 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1564 }
1565
1566 //Set FRAGCTL_MACHDCNT
1567 pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1568
1569 // Notes:
1570 // Although spec says MMPDU can be fragmented; In most case,
1571 // no one will send a MMPDU under fragmentation. With RTS may occur.
1572 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1573
1574 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1575 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1576 cbIVlen = 4;
1577 cbICVlen = 4;
1578 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1579 }
1580 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1581 cbIVlen = 8;//IV+ExtIV
1582 cbMIClen = 8;
1583 cbICVlen = 4;
1584 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1585 //We need to get seed here for filling TxKey entry.
1586 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1587 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1588 }
1589 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1590 cbIVlen = 8;//RSN Header
1591 cbICVlen = 8;//MIC
1592 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1593 pDevice->bAES = true;
1594 }
1595 //MAC Header should be padding 0 to DW alignment.
1596 uPadding = 4 - (cbMacHdLen%4);
1597 uPadding %= 4;
1598 }
1599
1600 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1601
1602 //Set FIFOCTL_GrpAckPolicy
1603 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1604 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1605 }
1606 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1607
1608 //Set RrvTime/RTS/CTS Buffer
1609 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1610
1611 pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
1612 pMICHDR = NULL;
1613 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1614 sizeof(struct vnt_rrv_time_cts));
1615 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1616 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1617 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1618 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1619 }
1620 else { // 802.11a/b packet
1621 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
1622 pMICHDR = NULL;
1623 pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1624 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1625 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1626 sizeof(struct vnt_tx_datahead_ab);
1627 }
1628
1629 memcpy(&(sEthHeader.h_dest[0]),
1630 &(pPacket->p80211Header->sA3.abyAddr1[0]),
1631 ETH_ALEN);
1632 memcpy(&(sEthHeader.h_source[0]),
1633 &(pPacket->p80211Header->sA3.abyAddr2[0]),
1634 ETH_ALEN);
1635 //=========================
1636 // No Fragmentation
1637 //=========================
1638 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1639
1640 /* Fill FIFO,RrvTime,RTS,and CTS */
1641 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1642 pbyTxBufferAddr, pvRrvTime, rts_cts,
1643 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1644
1645 //Fill DataHead
1646 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1647 AUTO_FB_NONE);
1648
1649 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1650
1651 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1652
1653 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1654 u8 * pbyIVHead;
1655 u8 * pbyPayloadHead;
1656 u8 * pbyBSSID;
1657 PSKeyItem pTransmitKey = NULL;
1658
1659 pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1660 pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1661 do {
1662 if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1663 (pDevice->bLinkPass == true)) {
1664 pbyBSSID = pDevice->abyBSSID;
1665 // get pairwise key
1666 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1667 // get group key
1668 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1669 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1670 break;
1671 }
1672 } else {
1673 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1674 break;
1675 }
1676 }
1677 // get group key
1678 pbyBSSID = pDevice->abyBroadcastAddr;
1679 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1680 pTransmitKey = NULL;
1681 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1682 } else {
1683 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1684 }
1685 } while(false);
1686 //Fill TXKEY
1687 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1688 (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1689
1690 memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1691 memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1692 cbFrameBodySize);
1693 }
1694 else {
1695 // Copy the Packet into a tx Buffer
1696 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1697 }
1698
1699 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1700 pDevice->wSeqCounter++ ;
1701 if (pDevice->wSeqCounter > 0x0fff)
1702 pDevice->wSeqCounter = 0;
1703
1704 if (bIsPSPOLL) {
1705 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1706 // of FIFO control header.
1707 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1708 // in the same place of other packet's Duration-field).
1709 // And it will cause Cisco-AP to issue Disassociation-packet
1710 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1711 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1712 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1713 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1714 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1715 } else {
1716 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1717 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1718 }
1719 }
1720
1721 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1722 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1723 pTX_Buffer->byType = 0x00;
1724
1725 pContext->pPacket = NULL;
1726 pContext->Type = CONTEXT_MGMT_PACKET;
1727 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1728
1729 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1730 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1731 &pMACHeader->addr1[0], (u16)cbFrameSize,
1732 pTxBufHead->wFIFOCtl);
1733 }
1734 else {
1735 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1736 &pMACHeader->addr3[0], (u16)cbFrameSize,
1737 pTxBufHead->wFIFOCtl);
1738 }
1739
1740 PIPEnsSendBulkOut(pDevice,pContext);
1741 return CMD_STATUS_PENDING;
1742 }
1743
1744 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1745 struct vnt_tx_mgmt *pPacket)
1746 {
1747 struct vnt_beacon_buffer *pTX_Buffer;
1748 u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1749 u32 cbHeaderSize = 0;
1750 u16 wTxBufSize = sizeof(STxShortBufHead);
1751 PSTxShortBufHead pTxBufHead;
1752 struct ieee80211_hdr *pMACHeader;
1753 struct vnt_tx_datahead_ab *pTxDataHead;
1754 u16 wCurrentRate;
1755 u32 cbFrameBodySize;
1756 u32 cbReqCount;
1757 u8 *pbyTxBufferAddr;
1758 struct vnt_usb_send_context *pContext;
1759 CMD_STATUS status;
1760
1761 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1762 if (NULL == pContext) {
1763 status = CMD_STATUS_RESOURCES;
1764 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1765 return status ;
1766 }
1767
1768 pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1769 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1770
1771 cbFrameBodySize = pPacket->cbPayloadLen;
1772
1773 pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1774 wTxBufSize = sizeof(STxShortBufHead);
1775
1776 if (pDevice->byBBType == BB_TYPE_11A) {
1777 wCurrentRate = RATE_6M;
1778 pTxDataHead = (struct vnt_tx_datahead_ab *)
1779 (pbyTxBufferAddr + wTxBufSize);
1780 //Get SignalField,ServiceField,Length
1781 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1782 &pTxDataHead->ab);
1783 //Get Duration and TimeStampOff
1784 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1785 PK_TYPE_11A, false);
1786 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1787 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1788 } else {
1789 wCurrentRate = RATE_1M;
1790 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1791 pTxDataHead = (struct vnt_tx_datahead_ab *)
1792 (pbyTxBufferAddr + wTxBufSize);
1793 //Get SignalField,ServiceField,Length
1794 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1795 &pTxDataHead->ab);
1796 //Get Duration and TimeStampOff
1797 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1798 PK_TYPE_11B, false);
1799 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1800 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1801 }
1802
1803 //Generate Beacon Header
1804 pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1805 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1806
1807 pMACHeader->duration_id = 0;
1808 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1809 pDevice->wSeqCounter++ ;
1810 if (pDevice->wSeqCounter > 0x0fff)
1811 pDevice->wSeqCounter = 0;
1812
1813 cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1814
1815 pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1816 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1817 pTX_Buffer->byType = 0x01;
1818
1819 pContext->pPacket = NULL;
1820 pContext->Type = CONTEXT_MGMT_PACKET;
1821 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1822
1823 PIPEnsSendBulkOut(pDevice,pContext);
1824 return CMD_STATUS_PENDING;
1825
1826 }
1827
1828 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1829 {
1830 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1831 struct vnt_tx_buffer *pTX_Buffer;
1832 struct vnt_tx_fifo_head *pTxBufHead;
1833 u8 byPktType;
1834 u8 *pbyTxBufferAddr;
1835 void *rts_cts = NULL;
1836 void *pvTxDataHd;
1837 u32 uDuration, cbReqCount;
1838 struct ieee80211_hdr *pMACHeader;
1839 u32 cbHeaderSize, cbFrameBodySize;
1840 int bNeedACK, bIsPSPOLL = false;
1841 u32 cbFrameSize;
1842 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1843 u32 uPadding = 0;
1844 u32 cbMICHDR = 0, uLength = 0;
1845 u32 dwMICKey0, dwMICKey1;
1846 u32 dwMIC_Priority;
1847 u32 *pdwMIC_L, *pdwMIC_R;
1848 u16 wTxBufSize;
1849 u32 cbMacHdLen;
1850 struct ethhdr sEthHeader;
1851 void *pvRrvTime, *pMICHDR;
1852 u32 wCurrentRate = RATE_1M;
1853 PUWLAN_80211HDR p80211Header;
1854 u32 uNodeIndex = 0;
1855 int bNodeExist = false;
1856 SKeyItem STempKey;
1857 PSKeyItem pTransmitKey = NULL;
1858 u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1859 u32 cbExtSuppRate = 0;
1860 struct vnt_usb_send_context *pContext;
1861
1862 pvRrvTime = pMICHDR = pvTxDataHd = NULL;
1863
1864 if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1865 cbFrameBodySize = 0;
1866 }
1867 else {
1868 cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1869 }
1870 p80211Header = (PUWLAN_80211HDR)skb->data;
1871
1872 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1873
1874 if (NULL == pContext) {
1875 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1876 dev_kfree_skb_irq(skb);
1877 return ;
1878 }
1879
1880 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1881 pTxBufHead = &pTX_Buffer->fifo_head;
1882 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1883 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1884
1885 if (pDevice->byBBType == BB_TYPE_11A) {
1886 wCurrentRate = RATE_6M;
1887 byPktType = PK_TYPE_11A;
1888 } else {
1889 wCurrentRate = RATE_1M;
1890 byPktType = PK_TYPE_11B;
1891 }
1892
1893 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1894 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1895 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1896 // to set power here.
1897 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1898 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1899 } else {
1900 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1901 }
1902
1903 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1904
1905 //Set packet type
1906 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1907 pTxBufHead->wFIFOCtl = 0;
1908 }
1909 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1910 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1911 }
1912 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1913 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1914 }
1915 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1916 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1917 }
1918
1919 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1920 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1921
1922 if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1923 bNeedACK = false;
1924 if (pDevice->bEnableHostWEP) {
1925 uNodeIndex = 0;
1926 bNodeExist = true;
1927 }
1928 }
1929 else {
1930 if (pDevice->bEnableHostWEP) {
1931 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1932 bNodeExist = true;
1933 }
1934 bNeedACK = true;
1935 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1936 };
1937
1938 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1939 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1940
1941 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1942 //Set Preamble type always long
1943 //pDevice->byPreambleType = PREAMBLE_LONG;
1944
1945 // probe-response don't retry
1946 //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1947 // bNeedACK = false;
1948 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1949 //}
1950 }
1951
1952 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1953
1954 if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1955 bIsPSPOLL = true;
1956 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1957 } else {
1958 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1959 }
1960
1961 // hostapd daemon ext support rate patch
1962 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1963
1964 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1965 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1966 }
1967
1968 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1969 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1970 }
1971
1972 if (cbExtSuppRate >0) {
1973 cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1974 }
1975 }
1976
1977 //Set FRAGCTL_MACHDCNT
1978 pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1979
1980 // Notes:
1981 // Although spec says MMPDU can be fragmented; In most case,
1982 // no one will send a MMPDU under fragmentation. With RTS may occur.
1983 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1984
1985 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1986 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1987 cbIVlen = 4;
1988 cbICVlen = 4;
1989 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1990 }
1991 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1992 cbIVlen = 8;//IV+ExtIV
1993 cbMIClen = 8;
1994 cbICVlen = 4;
1995 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1996 //We need to get seed here for filling TxKey entry.
1997 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1998 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1999 }
2000 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
2001 cbIVlen = 8;//RSN Header
2002 cbICVlen = 8;//MIC
2003 cbMICHDR = sizeof(struct vnt_mic_hdr);
2004 pTxBufHead->wFragCtl |= FRAGCTL_AES;
2005 pDevice->bAES = true;
2006 }
2007 //MAC Header should be padding 0 to DW alignment.
2008 uPadding = 4 - (cbMacHdLen%4);
2009 uPadding %= 4;
2010 }
2011
2012 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
2013
2014 //Set FIFOCTL_GrpAckPolicy
2015 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2016 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2017 }
2018 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2019
2020 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2021 pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
2022 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2023 sizeof(struct vnt_rrv_time_cts));
2024 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2025 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2026 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2027 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2028 sizeof(struct vnt_cts));
2029 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2030 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2031
2032 }
2033 else {//802.11a/b packet
2034
2035 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
2036 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2037 sizeof(struct vnt_rrv_time_ab));
2038 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2039 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2040 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2041 sizeof(struct vnt_tx_datahead_ab);
2042 }
2043 memcpy(&(sEthHeader.h_dest[0]),
2044 &(p80211Header->sA3.abyAddr1[0]),
2045 ETH_ALEN);
2046 memcpy(&(sEthHeader.h_source[0]),
2047 &(p80211Header->sA3.abyAddr2[0]),
2048 ETH_ALEN);
2049 //=========================
2050 // No Fragmentation
2051 //=========================
2052 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2053
2054 /* Fill FIFO,RrvTime,RTS,and CTS */
2055 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2056 pbyTxBufferAddr, pvRrvTime, rts_cts,
2057 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2058
2059 //Fill DataHead
2060 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2061 AUTO_FB_NONE);
2062
2063 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2064
2065 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2066
2067 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2068 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2069 pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2070
2071 // Copy the Packet into a tx Buffer
2072 memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2073
2074 // version set to 0, patch for hostapd deamon
2075 pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2076 memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2077
2078 // replace support rate, patch for hostapd daemon( only support 11M)
2079 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2080 if (cbExtSuppRate != 0) {
2081 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2082 memcpy((pbyPayloadHead + cbFrameBodySize),
2083 pMgmt->abyCurrSuppRates,
2084 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2085 );
2086 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2087 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2088 pMgmt->abyCurrExtSuppRates,
2089 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2090 );
2091 }
2092 }
2093
2094 // Set wep
2095 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2096
2097 if (pDevice->bEnableHostWEP) {
2098 pTransmitKey = &STempKey;
2099 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2100 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2101 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2102 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2103 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2104 memcpy(pTransmitKey->abyKey,
2105 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2106 pTransmitKey->uKeyLength
2107 );
2108 }
2109
2110 if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2111
2112 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2113 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2114
2115 // DO Software Michael
2116 MIC_vInit(dwMICKey0, dwMICKey1);
2117 MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2118 dwMIC_Priority = 0;
2119 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2120 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2121 " %X, %X\n", dwMICKey0, dwMICKey1);
2122
2123 uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2124
2125 MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2126
2127 pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2128 pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2129
2130 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2131 MIC_vUnInit();
2132
2133 if (pDevice->bTxMICFail == true) {
2134 *pdwMIC_L = 0;
2135 *pdwMIC_R = 0;
2136 pDevice->bTxMICFail = false;
2137 }
2138
2139 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2140 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2141 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2142 *pdwMIC_L, *pdwMIC_R);
2143
2144 }
2145
2146 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2147 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2148
2149 if (pDevice->bEnableHostWEP) {
2150 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2151 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2152 }
2153
2154 if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2155 s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2156 }
2157 }
2158
2159 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2160 pDevice->wSeqCounter++ ;
2161 if (pDevice->wSeqCounter > 0x0fff)
2162 pDevice->wSeqCounter = 0;
2163
2164 if (bIsPSPOLL) {
2165 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2166 // of FIFO control header.
2167 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2168 // in the same place of other packet's Duration-field).
2169 // And it will cause Cisco-AP to issue Disassociation-packet
2170 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2171 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2172 cpu_to_le16(p80211Header->sA2.wDurationID);
2173 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2174 cpu_to_le16(p80211Header->sA2.wDurationID);
2175 } else {
2176 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2177 cpu_to_le16(p80211Header->sA2.wDurationID);
2178 }
2179 }
2180
2181 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2182 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2183 pTX_Buffer->byType = 0x00;
2184
2185 pContext->pPacket = skb;
2186 pContext->Type = CONTEXT_MGMT_PACKET;
2187 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
2188
2189 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2190 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2191 &pMACHeader->addr1[0], (u16)cbFrameSize,
2192 pTxBufHead->wFIFOCtl);
2193 }
2194 else {
2195 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2196 &pMACHeader->addr3[0], (u16)cbFrameSize,
2197 pTxBufHead->wFIFOCtl);
2198 }
2199 PIPEnsSendBulkOut(pDevice,pContext);
2200 return ;
2201
2202 }
2203
2204 //TYPE_AC0DMA data tx
2205 /*
2206 * Description:
2207 * Tx packet via AC0DMA(DMA1)
2208 *
2209 * Parameters:
2210 * In:
2211 * pDevice - Pointer to the adapter
2212 * skb - Pointer to tx skb packet
2213 * Out:
2214 * void
2215 *
2216 * Return Value: NULL
2217 */
2218
2219 int nsDMA_tx_packet(struct vnt_private *pDevice,
2220 u32 uDMAIdx, struct sk_buff *skb)
2221 {
2222 struct net_device_stats *pStats = &pDevice->stats;
2223 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2224 struct vnt_tx_buffer *pTX_Buffer;
2225 u32 BytesToWrite = 0, uHeaderLen = 0;
2226 u32 uNodeIndex = 0;
2227 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2228 u16 wAID;
2229 u8 byPktType;
2230 int bNeedEncryption = false;
2231 PSKeyItem pTransmitKey = NULL;
2232 SKeyItem STempKey;
2233 int ii;
2234 int bTKIP_UseGTK = false;
2235 int bNeedDeAuth = false;
2236 u8 *pbyBSSID;
2237 int bNodeExist = false;
2238 struct vnt_usb_send_context *pContext;
2239 bool fConvertedPacket;
2240 u32 status;
2241 u16 wKeepRate = pDevice->wCurrentRate;
2242 int bTxeapol_key = false;
2243
2244 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2245
2246 if (pDevice->uAssocCount == 0) {
2247 dev_kfree_skb_irq(skb);
2248 return 0;
2249 }
2250
2251 if (is_multicast_ether_addr((u8 *)(skb->data))) {
2252 uNodeIndex = 0;
2253 bNodeExist = true;
2254 if (pMgmt->sNodeDBTable[0].bPSEnable) {
2255
2256 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2257 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2258 // set tx map
2259 pMgmt->abyPSTxMap[0] |= byMask[0];
2260 return 0;
2261 }
2262 // multicast/broadcast data rate
2263
2264 if (pDevice->byBBType != BB_TYPE_11A)
2265 pDevice->wCurrentRate = RATE_2M;
2266 else
2267 pDevice->wCurrentRate = RATE_24M;
2268 // long preamble type
2269 pDevice->byPreambleType = PREAMBLE_SHORT;
2270
2271 }else {
2272
2273 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2274
2275 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2276
2277 skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2278
2279 pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2280 // set tx map
2281 wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2282 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
2283 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2284 (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2285
2286 return 0;
2287 }
2288 // AP rate decided from node
2289 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2290 // tx preamble decided from node
2291
2292 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2293 pDevice->byPreambleType = pDevice->byShortPreamble;
2294
2295 }else {
2296 pDevice->byPreambleType = PREAMBLE_LONG;
2297 }
2298 bNodeExist = true;
2299 }
2300 }
2301
2302 if (bNodeExist == false) {
2303 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2304 dev_kfree_skb_irq(skb);
2305 return 0;
2306 }
2307 }
2308
2309 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2310
2311 if (pContext == NULL) {
2312 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2313 dev_kfree_skb_irq(skb);
2314 return STATUS_RESOURCES;
2315 }
2316
2317 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2318
2319 //mike add:station mode check eapol-key challenge--->
2320 {
2321 u8 Protocol_Version; //802.1x Authentication
2322 u8 Packet_Type; //802.1x Authentication
2323 u8 Descriptor_type;
2324 u16 Key_info;
2325
2326 Protocol_Version = skb->data[ETH_HLEN];
2327 Packet_Type = skb->data[ETH_HLEN+1];
2328 Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2329 Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2330 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2331 /* 802.1x OR eapol-key challenge frame transfer */
2332 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2333 (Packet_Type == 3)) {
2334 bTxeapol_key = true;
2335 if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
2336 (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
2337 if(Descriptor_type==254) {
2338 pDevice->fWPA_Authened = true;
2339 PRINT_K("WPA ");
2340 }
2341 else {
2342 pDevice->fWPA_Authened = true;
2343 PRINT_K("WPA2(re-keying) ");
2344 }
2345 PRINT_K("Authentication completed!!\n");
2346 }
2347 else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairwise-key challenge
2348 (Key_info & BIT8) && (Key_info & BIT9)) {
2349 pDevice->fWPA_Authened = true;
2350 PRINT_K("WPA2 Authentication completed!!\n");
2351 }
2352 }
2353 }
2354 }
2355 //mike add:station mode check eapol-key challenge<---
2356
2357 if (pDevice->bEncryptionEnable == true) {
2358 bNeedEncryption = true;
2359 // get Transmit key
2360 do {
2361 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2362 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2363 pbyBSSID = pDevice->abyBSSID;
2364 // get pairwise key
2365 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2366 // get group key
2367 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2368 bTKIP_UseGTK = true;
2369 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2370 break;
2371 }
2372 } else {
2373 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2374 break;
2375 }
2376 }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2377 /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2378 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2379 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2380 for (ii = 0; ii< 6; ii++)
2381 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2382 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2383
2384 // get pairwise key
2385 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2386 break;
2387 }
2388 // get group key
2389 pbyBSSID = pDevice->abyBroadcastAddr;
2390 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2391 pTransmitKey = NULL;
2392 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2393 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2394 }
2395 else
2396 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2397 } else {
2398 bTKIP_UseGTK = true;
2399 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2400 }
2401 } while(false);
2402 }
2403
2404 if (pDevice->bEnableHostWEP) {
2405 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2406 if (pDevice->bEncryptionEnable == true) {
2407 pTransmitKey = &STempKey;
2408 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2409 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2410 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2411 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2412 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2413 memcpy(pTransmitKey->abyKey,
2414 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2415 pTransmitKey->uKeyLength
2416 );
2417 }
2418 }
2419
2420 byPktType = (u8)pDevice->byPacketType;
2421
2422 if (pDevice->bFixRate) {
2423 if (pDevice->byBBType == BB_TYPE_11B) {
2424 if (pDevice->uConnectionRate >= RATE_11M) {
2425 pDevice->wCurrentRate = RATE_11M;
2426 } else {
2427 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2428 }
2429 } else {
2430 if ((pDevice->byBBType == BB_TYPE_11A) &&
2431 (pDevice->uConnectionRate <= RATE_6M)) {
2432 pDevice->wCurrentRate = RATE_6M;
2433 } else {
2434 if (pDevice->uConnectionRate >= RATE_54M)
2435 pDevice->wCurrentRate = RATE_54M;
2436 else
2437 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2438 }
2439 }
2440 }
2441 else {
2442 if (pDevice->eOPMode == OP_MODE_ADHOC) {
2443 // Adhoc Tx rate decided from node DB
2444 if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2445 // Multicast use highest data rate
2446 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2447 // preamble type
2448 pDevice->byPreambleType = pDevice->byShortPreamble;
2449 }
2450 else {
2451 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2452 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2453 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2454 pDevice->byPreambleType = pDevice->byShortPreamble;
2455
2456 }
2457 else {
2458 pDevice->byPreambleType = PREAMBLE_LONG;
2459 }
2460 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2461 }
2462 else {
2463 if (pDevice->byBBType != BB_TYPE_11A)
2464 pDevice->wCurrentRate = RATE_2M;
2465 else
2466 pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2467 // abyCurrExtSuppRates[]
2468 pDevice->byPreambleType = PREAMBLE_SHORT;
2469 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2470 }
2471 }
2472 }
2473 if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2474 // Infra STA rate decided from AP Node, index = 0
2475 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2476 }
2477 }
2478
2479 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2480 if (pDevice->byBBType != BB_TYPE_11A) {
2481 pDevice->wCurrentRate = RATE_1M;
2482 pDevice->byACKRate = RATE_1M;
2483 pDevice->byTopCCKBasicRate = RATE_1M;
2484 pDevice->byTopOFDMBasicRate = RATE_6M;
2485 } else {
2486 pDevice->wCurrentRate = RATE_6M;
2487 pDevice->byACKRate = RATE_6M;
2488 pDevice->byTopCCKBasicRate = RATE_1M;
2489 pDevice->byTopOFDMBasicRate = RATE_6M;
2490 }
2491 }
2492
2493 DBG_PRT(MSG_LEVEL_DEBUG,
2494 KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2495 pDevice->wCurrentRate);
2496
2497 if (wKeepRate != pDevice->wCurrentRate) {
2498 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2499 }
2500
2501 if (pDevice->wCurrentRate <= RATE_11M) {
2502 byPktType = PK_TYPE_11B;
2503 }
2504
2505 if (bNeedEncryption == true) {
2506 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2507 if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2508 bNeedEncryption = false;
2509 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2510 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2511 if (pTransmitKey == NULL) {
2512 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2513 }
2514 else {
2515 if (bTKIP_UseGTK == true) {
2516 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2517 }
2518 else {
2519 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2520 pTransmitKey->dwKeyIndex);
2521 bNeedEncryption = true;
2522 }
2523 }
2524 }
2525
2526 if (pDevice->bEnableHostWEP) {
2527 if ((uNodeIndex != 0) &&
2528 (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2529 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2530 pTransmitKey->dwKeyIndex);
2531 bNeedEncryption = true;
2532 }
2533 }
2534 }
2535 else {
2536
2537 if (pTransmitKey == NULL) {
2538 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2539 pContext->bBoolInUse = false;
2540 dev_kfree_skb_irq(skb);
2541 pStats->tx_dropped++;
2542 return STATUS_FAILURE;
2543 }
2544 }
2545 }
2546
2547 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2548
2549 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2550 pTX_Buffer, bNeedEncryption,
2551 skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2552 (u8 *)skb->data, pTransmitKey, uNodeIndex,
2553 pDevice->wCurrentRate,
2554 &uHeaderLen, &BytesToWrite
2555 );
2556
2557 if (fConvertedPacket == false) {
2558 pContext->bBoolInUse = false;
2559 dev_kfree_skb_irq(skb);
2560 return STATUS_FAILURE;
2561 }
2562
2563 if ( pDevice->bEnablePSMode == true ) {
2564 if ( !pDevice->bPSModeTxBurst ) {
2565 bScheduleCommand((void *) pDevice,
2566 WLAN_CMD_MAC_DISPOWERSAVING,
2567 NULL);
2568 pDevice->bPSModeTxBurst = true;
2569 }
2570 }
2571
2572 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2573 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2574
2575 pContext->pPacket = skb;
2576 pContext->Type = CONTEXT_DATA_PACKET;
2577 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2578
2579 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2580 &pContext->sEthHeader.h_dest[0],
2581 (u16)(BytesToWrite-uHeaderLen),
2582 pTX_Buffer->fifo_head.wFIFOCtl);
2583
2584 status = PIPEnsSendBulkOut(pDevice,pContext);
2585
2586 if (bNeedDeAuth == true) {
2587 u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2588
2589 bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2590 }
2591
2592 if(status!=STATUS_PENDING) {
2593 pContext->bBoolInUse = false;
2594 dev_kfree_skb_irq(skb);
2595 return STATUS_FAILURE;
2596 }
2597 else
2598 return 0;
2599
2600 }
2601
2602 /*
2603 * Description:
2604 * Relay packet send (AC1DMA) from rx dpc.
2605 *
2606 * Parameters:
2607 * In:
2608 * pDevice - Pointer to the adapter
2609 * pPacket - Pointer to rx packet
2610 * cbPacketSize - rx ethernet frame size
2611 * Out:
2612 * TURE, false
2613 *
2614 * Return Value: Return true if packet is copy to dma1; otherwise false
2615 */
2616
2617 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2618 u32 uNodeIndex)
2619 {
2620 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2621 struct vnt_tx_buffer *pTX_Buffer;
2622 u32 BytesToWrite = 0, uHeaderLen = 0;
2623 u8 byPktType = PK_TYPE_11B;
2624 int bNeedEncryption = false;
2625 SKeyItem STempKey;
2626 PSKeyItem pTransmitKey = NULL;
2627 u8 *pbyBSSID;
2628 struct vnt_usb_send_context *pContext;
2629 u8 byPktTyp;
2630 int fConvertedPacket;
2631 u32 status;
2632 u16 wKeepRate = pDevice->wCurrentRate;
2633
2634 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2635
2636 if (NULL == pContext) {
2637 return false;
2638 }
2639
2640 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2641
2642 if (pDevice->bEncryptionEnable == true) {
2643 bNeedEncryption = true;
2644 // get group key
2645 pbyBSSID = pDevice->abyBroadcastAddr;
2646 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2647 pTransmitKey = NULL;
2648 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2649 } else {
2650 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2651 }
2652 }
2653
2654 if (pDevice->bEnableHostWEP) {
2655 if (uNodeIndex < MAX_NODE_NUM + 1) {
2656 pTransmitKey = &STempKey;
2657 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2658 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2659 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2660 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2661 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2662 memcpy(pTransmitKey->abyKey,
2663 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2664 pTransmitKey->uKeyLength
2665 );
2666 }
2667 }
2668
2669 if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2670 pContext->bBoolInUse = false;
2671 return false;
2672 }
2673
2674 byPktTyp = (u8)pDevice->byPacketType;
2675
2676 if (pDevice->bFixRate) {
2677 if (pDevice->byBBType == BB_TYPE_11B) {
2678 if (pDevice->uConnectionRate >= RATE_11M) {
2679 pDevice->wCurrentRate = RATE_11M;
2680 } else {
2681 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2682 }
2683 } else {
2684 if ((pDevice->byBBType == BB_TYPE_11A) &&
2685 (pDevice->uConnectionRate <= RATE_6M)) {
2686 pDevice->wCurrentRate = RATE_6M;
2687 } else {
2688 if (pDevice->uConnectionRate >= RATE_54M)
2689 pDevice->wCurrentRate = RATE_54M;
2690 else
2691 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2692 }
2693 }
2694 }
2695 else {
2696 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2697 }
2698
2699 if (wKeepRate != pDevice->wCurrentRate) {
2700 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2701 }
2702
2703 if (pDevice->wCurrentRate <= RATE_11M)
2704 byPktType = PK_TYPE_11B;
2705
2706 BytesToWrite = uDataLen + ETH_FCS_LEN;
2707
2708 // Convert the packet to an usb frame and copy into our buffer
2709 // and send the irp.
2710
2711 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2712
2713 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2714 pTX_Buffer, bNeedEncryption,
2715 uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2716 pbySkbData, pTransmitKey, uNodeIndex,
2717 pDevice->wCurrentRate,
2718 &uHeaderLen, &BytesToWrite
2719 );
2720
2721 if (fConvertedPacket == false) {
2722 pContext->bBoolInUse = false;
2723 return false;
2724 }
2725
2726 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2727 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2728
2729 pContext->pPacket = NULL;
2730 pContext->Type = CONTEXT_DATA_PACKET;
2731 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2732
2733 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2734 &pContext->sEthHeader.h_dest[0],
2735 (u16)(BytesToWrite - uHeaderLen),
2736 pTX_Buffer->fifo_head.wFIFOCtl);
2737
2738 status = PIPEnsSendBulkOut(pDevice,pContext);
2739
2740 return true;
2741 }
2742
This page took 0.141785 seconds and 4 git commands to generate.