c80a809d4a41099bfd2447cf9ceabf758e21257d
[deliverable/linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: rxtx.c
20 *
21 * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22 *
23 * Author: Lyndon Chen
24 *
25 * Date: May 20, 2003
26 *
27 * Functions:
28 * s_vGenerateTxParameter - Generate tx dma required parameter.
29 * s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30 * csBeacon_xmit - beacon tx function
31 * csMgmt_xmit - management tx function
32 * s_uGetDataDuration - get tx data required duration
33 * s_uFillDataHead- fulfill tx data duration header
34 * s_uGetRTSCTSDuration- get rtx/cts required duration
35 * s_uGetRTSCTSRsvTime- get rts/cts reserved time
36 * s_uGetTxRsvTime- get frame reserved time
37 * s_vFillCTSHead- fulfill CTS ctl header
38 * s_vFillFragParameter- Set fragment ctl parameter.
39 * s_vFillRTSHead- fulfill RTS ctl header
40 * s_vFillTxKey- fulfill tx encrypt key
41 * s_vSWencryption- Software encrypt header
42 * vDMA0_tx_80211- tx 802.11 frame via dma0
43 * vGenerateFIFOHeader- Generate tx FIFO ctl header
44 *
45 * Revision History:
46 *
47 */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int msglevel = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68 {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69 {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70 };
71
72 const u16 wFB_Opt0[2][5] = {
73 {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75 };
76 const u16 wFB_Opt1[2][5] = {
77 {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79 };
80
81 #define RTSDUR_BB 0
82 #define RTSDUR_BA 1
83 #define RTSDUR_AA 2
84 #define CTSDUR_BA 3
85 #define RTSDUR_BA_F0 4
86 #define RTSDUR_AA_F0 5
87 #define RTSDUR_BA_F1 6
88 #define RTSDUR_AA_F1 7
89 #define CTSDUR_BA_F0 8
90 #define CTSDUR_BA_F1 9
91 #define DATADUR_B 10
92 #define DATADUR_A 11
93 #define DATADUR_A_F0 12
94 #define DATADUR_A_F1 13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102 u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104 struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108 u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116 struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122 u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125 u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129 int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136 u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139 u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140 int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144 struct vnt_usb_send_context *pContext = NULL;
145 struct vnt_usb_send_context *pReturnContext = NULL;
146 int ii;
147
148 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150 for (ii = 0; ii < pDevice->cbTD; ii++) {
151 pContext = pDevice->apTD[ii];
152 if (pContext->bBoolInUse == false) {
153 pContext->bBoolInUse = true;
154 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155 pReturnContext = pContext;
156 break;
157 }
158 }
159 if ( ii == pDevice->cbTD ) {
160 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161 }
162 return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168 PSStatCounter pStatistic = &pDevice->scStatistic;
169
170 if (is_broadcast_ether_addr(pbyDestAddr))
171 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172 else if (is_multicast_ether_addr(pbyDestAddr))
173 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174 else
175 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177 pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178 pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179 memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180 pbyDestAddr,
181 ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186 u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188 u32 *pdwIV = (u32 *)pbyIVHead;
189 u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191 u32 dwRevIVCounter;
192
193 /* Fill TXKEY */
194 if (pTransmitKey == NULL)
195 return;
196
197 dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198 *pdwIV = pDevice->dwIVCounter;
199 pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201 switch (pTransmitKey->byCipherSuite) {
202 case KEY_CTL_WEP:
203 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204 memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205 memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206 pTransmitKey->uKeyLength);
207 } else {
208 memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209 memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210 pTransmitKey->uKeyLength);
211 if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213 memcpy(pbyBuf+11, pTransmitKey->abyKey,
214 pTransmitKey->uKeyLength);
215 }
216
217 memcpy(pDevice->abyPRNG, pbyBuf, 16);
218 }
219 /* Append IV after Mac Header */
220 *pdwIV &= WEP_IV_MASK;
221 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222 *pdwIV = cpu_to_le32(*pdwIV);
223
224 pDevice->dwIVCounter++;
225 if (pDevice->dwIVCounter > WEP_IV_MASK)
226 pDevice->dwIVCounter = 0;
227
228 break;
229 case KEY_CTL_TKIP:
230 pTransmitKey->wTSC15_0++;
231 if (pTransmitKey->wTSC15_0 == 0)
232 pTransmitKey->dwTSC47_16++;
233
234 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235 pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236 pDevice->abyPRNG);
237 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239 /* Make IV */
240 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243 0xc0) | 0x20);
244 /* Append IV&ExtIV after Mac Header */
245 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248 "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250 break;
251 case KEY_CTL_CCMP:
252 pTransmitKey->wTSC15_0++;
253 if (pTransmitKey->wTSC15_0 == 0)
254 pTransmitKey->dwTSC47_16++;
255
256 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258 /* Make IV */
259 *pdwIV = 0;
260 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261 0xc0) | 0x20);
262
263 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265 /* Append IV&ExtIV after Mac Header */
266 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268 if (!mic_hdr)
269 return;
270
271 /* MICHDR0 */
272 mic_hdr->id = 0x59;
273 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279 /* MICHDR1 */
280 if (pDevice->bLongHeader)
281 mic_hdr->hlen = cpu_to_be16(28);
282 else
283 mic_hdr->hlen = cpu_to_be16(22);
284
285 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288 /* MICHDR2 */
289 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291 & 0xc78f);
292 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294 if (pDevice->bLongHeader)
295 memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296 }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302 u32 cbICVlen = 4;
303 u32 dwICV = 0xffffffff;
304 u32 *pdwICV;
305
306 if (pTransmitKey == NULL)
307 return;
308
309 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310 //=======================================================================
311 // Append ICV after payload
312 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314 // finally, we must invert dwCRC to get the correct answer
315 *pdwICV = cpu_to_le32(~dwICV);
316 // RC4 encryption
317 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319 //=======================================================================
320 } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321 //=======================================================================
322 //Append ICV after payload
323 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325 // finally, we must invert dwCRC to get the correct answer
326 *pdwICV = cpu_to_le32(~dwICV);
327 // RC4 encryption
328 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330 //=======================================================================
331 }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336 return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337 [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A 0
341 PK_TYPE_11B 1
342 PK_TYPE_11GB 2
343 PK_TYPE_11GA 3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346 u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348 u32 uDataTime, uAckTime;
349
350 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351 if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353 } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355 }
356
357 if (bNeedAck) {
358 return (uDataTime + pDevice->uSIFS + uAckTime);
359 }
360 else {
361 return uDataTime;
362 }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366 u32 frame_length, u16 rate, int need_ack)
367 {
368 return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374 u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376 u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378 uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381 if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384 }
385 else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389 }
390 else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393 }
394 else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397 uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398 return uRrvTime;
399 }
400
401 //RTSRrvTime
402 uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403 return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408 u8 byPktType, int bNeedAck)
409 {
410 u32 uAckTime = 0;
411
412 if (bNeedAck) {
413 if (byPktType == PK_TYPE_11B)
414 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415 byPktType, 14, pDevice->byTopCCKBasicRate);
416 else
417 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418 byPktType, 14, pDevice->byTopOFDMBasicRate);
419 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420 }
421
422 return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427 u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428 u8 byFBOption)
429 {
430 u32 uCTSTime = 0, uDurTime = 0;
431
432 switch (byDurType) {
433
434 case RTSDUR_BB: //RTSDuration_bb
435 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437 break;
438
439 case RTSDUR_BA: //RTSDuration_ba
440 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442 break;
443
444 case RTSDUR_AA: //RTSDuration_aa
445 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447 break;
448
449 case CTSDUR_BA: //CTSDuration_ba
450 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451 break;
452
453 case RTSDUR_BA_F0: //RTSDuration_ba_f0
454 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459 }
460 break;
461
462 case RTSDUR_AA_F0: //RTSDuration_aa_f0
463 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468 }
469 break;
470
471 case RTSDUR_BA_F1: //RTSDuration_ba_f1
472 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477 }
478 break;
479
480 case RTSDUR_AA_F1: //RTSDuration_aa_f1
481 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486 }
487 break;
488
489 case CTSDUR_BA_F0: //CTSDuration_ba_f0
490 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494 }
495 break;
496
497 case CTSDUR_BA_F1: //CTSDuration_ba_f1
498 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502 }
503 break;
504
505 default:
506 break;
507 }
508
509 return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514 u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517 if (pTxDataHead == NULL) {
518 return 0;
519 }
520
521 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522 if (byFBOption == AUTO_FB_NONE) {
523 struct vnt_tx_datahead_g *pBuf =
524 (struct vnt_tx_datahead_g *)pTxDataHead;
525 //Get SignalField,ServiceField,Length
526 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527 byPktType, &pBuf->a);
528 BBvCalculateParameter(pDevice, cbFrameLength,
529 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530 //Get Duration and TimeStamp
531 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532 byPktType, bNeedAck);
533 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534 PK_TYPE_11B, bNeedAck);
535
536 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537 wCurrentRate);
538 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539 pDevice->byTopCCKBasicRate);
540 return (pBuf->wDuration_a);
541 } else {
542 // Auto Fallback
543 struct vnt_tx_datahead_g_fb *pBuf =
544 (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545 //Get SignalField,ServiceField,Length
546 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547 byPktType, &pBuf->a);
548 BBvCalculateParameter(pDevice, cbFrameLength,
549 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550 //Get Duration and TimeStamp
551 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552 byPktType, bNeedAck);
553 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554 PK_TYPE_11B, bNeedAck);
555 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556 byPktType, bNeedAck);
557 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558 byPktType, bNeedAck);
559 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560 wCurrentRate);
561 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562 pDevice->byTopCCKBasicRate);
563 return (pBuf->wDuration_a);
564 } //if (byFBOption == AUTO_FB_NONE)
565 }
566 else if (byPktType == PK_TYPE_11A) {
567 if (byFBOption != AUTO_FB_NONE) {
568 struct vnt_tx_datahead_a_fb *pBuf =
569 (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570 //Get SignalField,ServiceField,Length
571 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572 byPktType, &pBuf->a);
573 //Get Duration and TimeStampOff
574 pBuf->wDuration = s_uGetDataDuration(pDevice,
575 byPktType, bNeedAck);
576 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577 byPktType, bNeedAck);
578 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579 byPktType, bNeedAck);
580 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581 wCurrentRate);
582 return (pBuf->wDuration);
583 } else {
584 struct vnt_tx_datahead_ab *pBuf =
585 (struct vnt_tx_datahead_ab *)pTxDataHead;
586 //Get SignalField,ServiceField,Length
587 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588 byPktType, &pBuf->ab);
589 //Get Duration and TimeStampOff
590 pBuf->wDuration = s_uGetDataDuration(pDevice,
591 byPktType, bNeedAck);
592 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593 wCurrentRate);
594 return (pBuf->wDuration);
595 }
596 }
597 else if (byPktType == PK_TYPE_11B) {
598 struct vnt_tx_datahead_ab *pBuf =
599 (struct vnt_tx_datahead_ab *)pTxDataHead;
600 //Get SignalField,ServiceField,Length
601 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602 byPktType, &pBuf->ab);
603 //Get Duration and TimeStampOff
604 pBuf->wDuration = s_uGetDataDuration(pDevice,
605 byPktType, bNeedAck);
606 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607 wCurrentRate);
608 return (pBuf->wDuration);
609 }
610 return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614 struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615 u16 duration)
616 {
617 rts->duration = duration;
618 rts->frame_control = TYPE_CTL_RTS;
619
620 if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622 else
623 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625 if (priv->eOPMode == OP_MODE_AP)
626 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627 else
628 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630 return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634 struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635 u8 pkt_type, u32 frame_len, int need_ack,
636 u16 current_rate, u8 fb_option)
637 {
638 u16 rts_frame_len = 20;
639
640 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641 PK_TYPE_11B, &buf->b);
642 BBvCalculateParameter(priv, rts_frame_len,
643 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648 pkt_type, current_rate, need_ack, fb_option);
649 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650 pkt_type, current_rate, need_ack, fb_option);
651
652 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654 return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658 struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659 u8 pkt_type, u32 frame_len, int need_ack,
660 u16 current_rate, u8 fb_option)
661 {
662 u16 rts_frame_len = 20;
663
664 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665 PK_TYPE_11B, &buf->b);
666 BBvCalculateParameter(priv, rts_frame_len,
667 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673 pkt_type, current_rate, need_ack, fb_option);
674 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675 pkt_type, current_rate, need_ack, fb_option);
676
677
678 buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679 frame_len, pkt_type, current_rate, need_ack, fb_option);
680 buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681 frame_len, pkt_type, current_rate, need_ack, fb_option);
682 buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683 frame_len, pkt_type, current_rate, need_ack, fb_option);
684 buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689 return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693 struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694 u8 pkt_type, u32 frame_len, int need_ack,
695 u16 current_rate, u8 fb_option)
696 {
697 u16 rts_frame_len = 20;
698
699 BBvCalculateParameter(priv, rts_frame_len,
700 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703 pkt_type, current_rate, need_ack, fb_option);
704
705 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707 return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711 struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712 u8 pkt_type, u32 frame_len, int need_ack,
713 u16 current_rate, u8 fb_option)
714 {
715 u16 rts_frame_len = 20;
716
717 BBvCalculateParameter(priv, rts_frame_len,
718 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721 pkt_type, current_rate, need_ack, fb_option);
722
723 buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726 buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731 return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739 if (!head)
740 return;
741
742 /* Note: So far RTSHead doesn't appear in ATIM
743 * & Beacom DMA, so we don't need to take them
744 * into account.
745 * Otherwise, we need to modified codes for them.
746 */
747 switch (byPktType) {
748 case PK_TYPE_11GB:
749 case PK_TYPE_11GA:
750 if (byFBOption == AUTO_FB_NONE)
751 vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752 psEthHeader, byPktType, cbFrameLength,
753 bNeedAck, wCurrentRate, byFBOption);
754 else
755 vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756 psEthHeader, byPktType, cbFrameLength,
757 bNeedAck, wCurrentRate, byFBOption);
758 break;
759 case PK_TYPE_11A:
760 if (byFBOption) {
761 vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762 psEthHeader, byPktType, cbFrameLength,
763 bNeedAck, wCurrentRate, byFBOption);
764 break;
765 }
766 case PK_TYPE_11B:
767 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768 psEthHeader, byPktType, cbFrameLength,
769 bNeedAck, wCurrentRate, byFBOption);
770 }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775 int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777 u32 uCTSFrameLen = 14;
778
779 if (!head)
780 return;
781
782 if (byFBOption != AUTO_FB_NONE) {
783 /* Auto Fall back */
784 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785 /* Get SignalField,ServiceField,Length */
786 BBvCalculateParameter(pDevice, uCTSFrameLen,
787 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789 cbFrameLength, byPktType,
790 wCurrentRate, bNeedAck, byFBOption);
791 /* Get CTSDuration_ba_f0 */
792 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793 CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794 bNeedAck, byFBOption);
795 /* Get CTSDuration_ba_f1 */
796 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797 CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798 bNeedAck, byFBOption);
799 /* Get CTS Frame body */
800 pBuf->data.duration = pBuf->wDuration_ba;
801 pBuf->data.frame_control = TYPE_CTL_CTS;
802 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803 } else {
804 struct vnt_cts *pBuf = &head->cts_g;
805 /* Get SignalField,ServiceField,Length */
806 BBvCalculateParameter(pDevice, uCTSFrameLen,
807 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808 /* Get CTSDuration_ba */
809 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810 CTSDUR_BA, cbFrameLength, byPktType,
811 wCurrentRate, bNeedAck, byFBOption);
812 /*Get CTS Frame body*/
813 pBuf->data.duration = pBuf->wDuration_ba;
814 pBuf->data.frame_control = TYPE_CTL_CTS;
815 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816 }
817 }
818
819 /*+
820 *
821 * Description:
822 * Generate FIFO control for MAC & Baseband controller
823 *
824 * Parameters:
825 * In:
826 * pDevice - Pointer to adpater
827 * pTxDataHead - Transmit Data Buffer
828 * pTxBufHead - pTxBufHead
829 * pvRrvTime - pvRrvTime
830 * pvRTS - RTS Buffer
831 * pCTS - CTS Buffer
832 * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
833 * bNeedACK - If need ACK
834 * uDMAIdx - DMA Index
835 * Out:
836 * none
837 *
838 * Return Value: none
839 *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843 u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
844 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
845 struct ethhdr *psEthHeader, bool need_rts)
846 {
847 struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
848 union vnt_tx_data_head *head = rts_cts;
849 u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
850 u16 wFifoCtl;
851 u8 byFBOption = AUTO_FB_NONE;
852
853 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
854 pFifoHead->wReserved = wCurrentRate;
855 wFifoCtl = pFifoHead->wFIFOCtl;
856
857 if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
858 byFBOption = AUTO_FB_0;
859 }
860 else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
861 byFBOption = AUTO_FB_1;
862 }
863
864 if (!pFifoHead)
865 return;
866
867 if (pDevice->bLongHeader)
868 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
869
870 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
871 if (need_rts) {
872 //Fill RsvTime
873 struct vnt_rrv_time_rts *pBuf = &tx_buffer->tx_head.tx_rts.rts;
874
875 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
876 byPktType, cbFrameSize, wCurrentRate);
877 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
878 byPktType, cbFrameSize, wCurrentRate);
879 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
880 byPktType, cbFrameSize, wCurrentRate);
881 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
882 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
883 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
884 PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
885 bNeedACK);
886 /* Fill RTS */
887 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
888 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
889 }
890 else {//RTS_needless, PCF mode
891 //Fill RsvTime
892 struct vnt_rrv_time_cts *pBuf = &tx_buffer->tx_head.tx_cts.cts;
893
894 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
895 cbFrameSize, wCurrentRate, bNeedACK);
896 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
897 PK_TYPE_11B, cbFrameSize,
898 pDevice->byTopCCKBasicRate, bNeedACK);
899 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
900 byPktType, cbFrameSize, wCurrentRate);
901 /* Fill CTS */
902 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
903 cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
904 }
905 }
906 else if (byPktType == PK_TYPE_11A) {
907 if (need_rts) {
908 //Fill RsvTime
909 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
910
911 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
912 byPktType, cbFrameSize, wCurrentRate);
913 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
914 cbFrameSize, wCurrentRate, bNeedACK);
915 /* Fill RTS */
916 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
917 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
918 } else {
919 //Fill RsvTime
920 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
921
922 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
923 cbFrameSize, wCurrentRate, bNeedACK);
924 }
925 }
926 else if (byPktType == PK_TYPE_11B) {
927 if (need_rts) {
928 //Fill RsvTime
929 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
930
931 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
932 byPktType, cbFrameSize, wCurrentRate);
933 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
934 cbFrameSize, wCurrentRate, bNeedACK);
935 /* Fill RTS */
936 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
937 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
938 }
939 else { //RTS_needless, non PCF mode
940 //Fill RsvTime
941 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
942
943 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
944 cbFrameSize, wCurrentRate, bNeedACK);
945 }
946 }
947 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
948 }
949 /*
950 u8 * pbyBuffer,//point to pTxBufHead
951 u16 wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
952 unsigned int cbFragmentSize,//Hdr+payoad+FCS
953 */
954
955 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
956 struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
957 u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
958 u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
959 u32 *pcbHeaderLen, u32 *pcbTotalLen)
960 {
961 struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
962 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
963 u32 cbFrameSize, cbFrameBodySize;
964 u32 cb802_1_H_len;
965 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
966 u32 cbFCSlen = 4, cbMICHDR = 0;
967 int bNeedACK;
968 bool bRTS = false;
969 u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
970 u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
971 u8 abySNAP_Bridgetunnel[ETH_ALEN]
972 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
973 u32 uDuration;
974 u32 cbHeaderLength = 0, uPadding = 0;
975 struct vnt_mic_hdr *pMICHDR;
976 void *rts_cts = NULL;
977 void *pvTxDataHd;
978 u8 byFBOption = AUTO_FB_NONE, byFragType;
979 u16 wTxBufSize;
980 u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
981 u32 *pdwMIC_L, *pdwMIC_R;
982 int bSoftWEP = false;
983
984 pMICHDR = pvTxDataHd = NULL;
985
986 if (bNeedEncryption && pTransmitKey->pvKeyTable) {
987 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
988 bSoftWEP = true; /* WEP 256 */
989 }
990
991 // Get pkt type
992 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
993 if (pDevice->dwDiagRefCount == 0) {
994 cb802_1_H_len = 8;
995 } else {
996 cb802_1_H_len = 2;
997 }
998 } else {
999 cb802_1_H_len = 0;
1000 }
1001
1002 cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1003
1004 //Set packet type
1005 pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1006
1007 if (pDevice->dwDiagRefCount != 0) {
1008 bNeedACK = false;
1009 pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1010 } else { //if (pDevice->dwDiagRefCount != 0) {
1011 if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1012 (pDevice->eOPMode == OP_MODE_AP)) {
1013 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1014 bNeedACK = false;
1015 pTxBufHead->wFIFOCtl =
1016 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1017 } else {
1018 bNeedACK = true;
1019 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1020 }
1021 }
1022 else {
1023 // MSDUs in Infra mode always need ACK
1024 bNeedACK = true;
1025 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1026 }
1027 } //if (pDevice->dwDiagRefCount != 0) {
1028
1029 pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1030
1031 //Set FIFOCTL_LHEAD
1032 if (pDevice->bLongHeader)
1033 pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1034
1035 //Set FRAGCTL_MACHDCNT
1036 if (pDevice->bLongHeader) {
1037 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1038 } else {
1039 cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1040 }
1041 pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1042
1043 //Set FIFOCTL_GrpAckPolicy
1044 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1045 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1046 }
1047
1048 //Set Auto Fallback Ctl
1049 if (wCurrentRate >= RATE_18M) {
1050 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1051 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1052 byFBOption = AUTO_FB_0;
1053 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1054 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1055 byFBOption = AUTO_FB_1;
1056 }
1057 }
1058
1059 if (bSoftWEP != true) {
1060 if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
1061 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1062 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1063 }
1064 if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1065 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1066 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1067 }
1068 else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1069 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1070 }
1071 }
1072 }
1073
1074 if ((bNeedEncryption) && (pTransmitKey != NULL)) {
1075 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1076 cbIVlen = 4;
1077 cbICVlen = 4;
1078 }
1079 else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1080 cbIVlen = 8;//IV+ExtIV
1081 cbMIClen = 8;
1082 cbICVlen = 4;
1083 }
1084 if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1085 cbIVlen = 8;//RSN Header
1086 cbICVlen = 8;//MIC
1087 cbMICHDR = sizeof(struct vnt_mic_hdr);
1088 }
1089 if (bSoftWEP == false) {
1090 //MAC Header should be padding 0 to DW alignment.
1091 uPadding = 4 - (cbMACHdLen%4);
1092 uPadding %= 4;
1093 }
1094 }
1095
1096 cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1097
1098 if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1099 bRTS = false;
1100 } else {
1101 bRTS = true;
1102 pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1103 }
1104
1105 pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1106 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1107
1108 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1109 if (byFBOption == AUTO_FB_NONE) {
1110 if (bRTS == true) {//RTS_need
1111 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1112 sizeof(struct vnt_rrv_time_rts));
1113 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1114 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1115 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1116 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1117 cbMICHDR + sizeof(struct vnt_rts_g));
1118 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1119 cbMICHDR + sizeof(struct vnt_rts_g) +
1120 sizeof(struct vnt_tx_datahead_g);
1121 }
1122 else { //RTS_needless
1123 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1124 sizeof(struct vnt_rrv_time_cts));
1125 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1126 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1127 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1128 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1129 cbMICHDR + sizeof(struct vnt_cts));
1130 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1131 cbMICHDR + sizeof(struct vnt_cts) +
1132 sizeof(struct vnt_tx_datahead_g);
1133 }
1134 } else {
1135 // Auto Fall Back
1136 if (bRTS == true) {//RTS_need
1137 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1138 sizeof(struct vnt_rrv_time_rts));
1139 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1140 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1141 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1142 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1143 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1144 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1145 cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1146 sizeof(struct vnt_tx_datahead_g_fb);
1147 }
1148 else if (bRTS == false) { //RTS_needless
1149 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1150 sizeof(struct vnt_rrv_time_cts));
1151 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1152 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1153 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1154 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1155 cbMICHDR + sizeof(struct vnt_cts_fb));
1156 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1157 cbMICHDR + sizeof(struct vnt_cts_fb) +
1158 sizeof(struct vnt_tx_datahead_g_fb);
1159 }
1160 } // Auto Fall Back
1161 }
1162 else {//802.11a/b packet
1163 if (byFBOption == AUTO_FB_NONE) {
1164 if (bRTS == true) {//RTS_need
1165 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1166 sizeof(struct vnt_rrv_time_ab));
1167 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1168 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1169 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1170 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1171 sizeof(struct vnt_rts_ab));
1172 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1173 cbMICHDR + sizeof(struct vnt_rts_ab) +
1174 sizeof(struct vnt_tx_datahead_ab);
1175 }
1176 else if (bRTS == false) { //RTS_needless, no MICHDR
1177 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1178 sizeof(struct vnt_rrv_time_ab));
1179 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1180 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1181 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1182 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1183 }
1184 } else {
1185 // Auto Fall Back
1186 if (bRTS == true) {//RTS_need
1187 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1188 sizeof(struct vnt_rrv_time_ab));
1189 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1190 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1191 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1192 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1193 sizeof(struct vnt_rts_a_fb));
1194 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1195 cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1196 sizeof(struct vnt_tx_datahead_a_fb);
1197 }
1198 else if (bRTS == false) { //RTS_needless
1199 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1200 sizeof(struct vnt_rrv_time_ab));
1201 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1202 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1203 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1204 cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1205 }
1206 } // Auto Fall Back
1207 }
1208
1209 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1210 pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1211 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1212
1213 //=========================
1214 // No Fragmentation
1215 //=========================
1216 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1217 byFragType = FRAGCTL_NONFRAG;
1218 //uDMAIdx = TYPE_AC0DMA;
1219 //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1220
1221 //Fill FIFO,RrvTime,RTS,and CTS
1222 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1223 tx_buffer, rts_cts,
1224 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1225 //Fill DataHead
1226 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1227 byFBOption);
1228 // Generate TX MAC Header
1229 s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1230 byFragType, uDMAIdx, 0);
1231
1232 if (bNeedEncryption == true) {
1233 //Fill TXKEY
1234 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1235 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1236
1237 if (pDevice->bEnableHostWEP) {
1238 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1239 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1240 }
1241 }
1242
1243 // 802.1H
1244 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1245 if (pDevice->dwDiagRefCount == 0) {
1246 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1247 (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1248 memcpy((u8 *) (pbyPayloadHead),
1249 abySNAP_Bridgetunnel, 6);
1250 } else {
1251 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1252 }
1253 pbyType = (u8 *) (pbyPayloadHead + 6);
1254 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1255 } else {
1256 memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1257
1258 }
1259
1260 }
1261
1262 if (pPacket != NULL) {
1263 // Copy the Packet into a tx Buffer
1264 memcpy((pbyPayloadHead + cb802_1_H_len),
1265 (pPacket + ETH_HLEN),
1266 uSkbPacketLen - ETH_HLEN
1267 );
1268
1269 } else {
1270 // while bRelayPacketSend psEthHeader is point to header+payload
1271 memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1272 }
1273
1274 if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1275
1276 ///////////////////////////////////////////////////////////////////
1277
1278 if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1279 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1280 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1281 }
1282 else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1283 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1284 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1285 }
1286 else {
1287 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1288 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1289 }
1290 // DO Software Michael
1291 MIC_vInit(dwMICKey0, dwMICKey1);
1292 MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1293 dwMIC_Priority = 0;
1294 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1295 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1296 dwMICKey0, dwMICKey1);
1297
1298 ///////////////////////////////////////////////////////////////////
1299
1300 //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1301 //for (ii = 0; ii < cbFrameBodySize; ii++) {
1302 // DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1303 //}
1304 //DBG_PRN_GRP12(("\n\n\n"));
1305
1306 MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1307
1308 pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1309 pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1310
1311 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1312 MIC_vUnInit();
1313
1314 if (pDevice->bTxMICFail == true) {
1315 *pdwMIC_L = 0;
1316 *pdwMIC_R = 0;
1317 pDevice->bTxMICFail = false;
1318 }
1319 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1320 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1321 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1322 }
1323
1324 if (bSoftWEP == true) {
1325
1326 s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1327
1328 } else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true)) ||
1329 ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true)) ||
1330 ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true)) ) {
1331 cbFrameSize -= cbICVlen;
1332 }
1333
1334 cbFrameSize -= cbFCSlen;
1335
1336 *pcbHeaderLen = cbHeaderLength;
1337 *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1338
1339 //Set FragCtl in TxBufferHead
1340 pTxBufHead->wFragCtl |= (u16)byFragType;
1341
1342 return true;
1343
1344 }
1345
1346 /*+
1347 *
1348 * Description:
1349 * Translate 802.3 to 802.11 header
1350 *
1351 * Parameters:
1352 * In:
1353 * pDevice - Pointer to adapter
1354 * dwTxBufferAddr - Transmit Buffer
1355 * pPacket - Packet from upper layer
1356 * cbPacketSize - Transmit Data Length
1357 * Out:
1358 * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
1359 * pcbAppendPayload - size of append payload for 802.1H translation
1360 *
1361 * Return Value: none
1362 *
1363 -*/
1364
1365 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1366 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1367 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1368 {
1369 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1370
1371 pMACHeader->frame_control = TYPE_802_11_DATA;
1372
1373 if (pDevice->eOPMode == OP_MODE_AP) {
1374 memcpy(&(pMACHeader->addr1[0]),
1375 &(psEthHeader->h_dest[0]),
1376 ETH_ALEN);
1377 memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1378 memcpy(&(pMACHeader->addr3[0]),
1379 &(psEthHeader->h_source[0]),
1380 ETH_ALEN);
1381 pMACHeader->frame_control |= FC_FROMDS;
1382 } else {
1383 if (pDevice->eOPMode == OP_MODE_ADHOC) {
1384 memcpy(&(pMACHeader->addr1[0]),
1385 &(psEthHeader->h_dest[0]),
1386 ETH_ALEN);
1387 memcpy(&(pMACHeader->addr2[0]),
1388 &(psEthHeader->h_source[0]),
1389 ETH_ALEN);
1390 memcpy(&(pMACHeader->addr3[0]),
1391 &(pDevice->abyBSSID[0]),
1392 ETH_ALEN);
1393 } else {
1394 memcpy(&(pMACHeader->addr3[0]),
1395 &(psEthHeader->h_dest[0]),
1396 ETH_ALEN);
1397 memcpy(&(pMACHeader->addr2[0]),
1398 &(psEthHeader->h_source[0]),
1399 ETH_ALEN);
1400 memcpy(&(pMACHeader->addr1[0]),
1401 &(pDevice->abyBSSID[0]),
1402 ETH_ALEN);
1403 pMACHeader->frame_control |= FC_TODS;
1404 }
1405 }
1406
1407 if (bNeedEncrypt)
1408 pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1409
1410 pMACHeader->duration_id = cpu_to_le16(wDuration);
1411
1412 if (pDevice->bLongHeader) {
1413 PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
1414 pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1415 memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1416 }
1417 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1418
1419 //Set FragNumber in Sequence Control
1420 pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1421
1422 if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1423 pDevice->wSeqCounter++;
1424 if (pDevice->wSeqCounter > 0x0fff)
1425 pDevice->wSeqCounter = 0;
1426 }
1427
1428 if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1429 pMACHeader->frame_control |= FC_MOREFRAG;
1430 }
1431 }
1432
1433 /*+
1434 *
1435 * Description:
1436 * Request instructs a MAC to transmit a 802.11 management packet through
1437 * the adapter onto the medium.
1438 *
1439 * Parameters:
1440 * In:
1441 * hDeviceContext - Pointer to the adapter
1442 * pPacket - A pointer to a descriptor for the packet to transmit
1443 * Out:
1444 * none
1445 *
1446 * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1447 *
1448 -*/
1449
1450 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1451 struct vnt_tx_mgmt *pPacket)
1452 {
1453 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1454 struct vnt_tx_buffer *pTX_Buffer;
1455 struct vnt_usb_send_context *pContext;
1456 struct vnt_tx_fifo_head *pTxBufHead;
1457 struct ieee80211_hdr *pMACHeader;
1458 struct ethhdr sEthHeader;
1459 u8 byPktType, *pbyTxBufferAddr;
1460 void *rts_cts = NULL;
1461 void *pvTxDataHd, *pMICHDR;
1462 u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1463 int bNeedACK, bIsPSPOLL = false;
1464 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1465 u32 uPadding = 0;
1466 u16 wTxBufSize;
1467 u32 cbMacHdLen;
1468 u16 wCurrentRate = RATE_1M;
1469
1470 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1471
1472 if (NULL == pContext) {
1473 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1474 return CMD_STATUS_RESOURCES;
1475 }
1476
1477 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1478 cbFrameBodySize = pPacket->cbPayloadLen;
1479 pTxBufHead = &pTX_Buffer->fifo_head;
1480 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1481 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1482
1483 if (pDevice->byBBType == BB_TYPE_11A) {
1484 wCurrentRate = RATE_6M;
1485 byPktType = PK_TYPE_11A;
1486 } else {
1487 wCurrentRate = RATE_1M;
1488 byPktType = PK_TYPE_11B;
1489 }
1490
1491 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1492 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1493 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1494 // to set power here.
1495 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1496 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1497 } else {
1498 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1499 }
1500 pDevice->wCurrentRate = wCurrentRate;
1501
1502 //Set packet type
1503 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1504 pTxBufHead->wFIFOCtl = 0;
1505 }
1506 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1507 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1508 }
1509 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1510 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1511 }
1512 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1513 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1514 }
1515
1516 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1517 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1518
1519 if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1520 bNeedACK = false;
1521 }
1522 else {
1523 bNeedACK = true;
1524 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1525 };
1526
1527 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1528 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1529
1530 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1531 //Set Preamble type always long
1532 //pDevice->byPreambleType = PREAMBLE_LONG;
1533 // probe-response don't retry
1534 //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1535 // bNeedACK = false;
1536 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1537 //}
1538 }
1539
1540 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1541
1542 if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1543 bIsPSPOLL = true;
1544 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1545 } else {
1546 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1547 }
1548
1549 //Set FRAGCTL_MACHDCNT
1550 pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1551
1552 // Notes:
1553 // Although spec says MMPDU can be fragmented; In most case,
1554 // no one will send a MMPDU under fragmentation. With RTS may occur.
1555 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1556
1557 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1558 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1559 cbIVlen = 4;
1560 cbICVlen = 4;
1561 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1562 }
1563 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1564 cbIVlen = 8;//IV+ExtIV
1565 cbMIClen = 8;
1566 cbICVlen = 4;
1567 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1568 //We need to get seed here for filling TxKey entry.
1569 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1570 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1571 }
1572 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1573 cbIVlen = 8;//RSN Header
1574 cbICVlen = 8;//MIC
1575 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1576 pDevice->bAES = true;
1577 }
1578 //MAC Header should be padding 0 to DW alignment.
1579 uPadding = 4 - (cbMacHdLen%4);
1580 uPadding %= 4;
1581 }
1582
1583 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1584
1585 //Set FIFOCTL_GrpAckPolicy
1586 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1587 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1588 }
1589 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1590
1591 //Set RrvTime/RTS/CTS Buffer
1592 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1593 pMICHDR = NULL;
1594 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1595 sizeof(struct vnt_rrv_time_cts));
1596 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1597 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1598 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1599 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1600 }
1601 else { // 802.11a/b packet
1602 pMICHDR = NULL;
1603 pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1604 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1605 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1606 sizeof(struct vnt_tx_datahead_ab);
1607 }
1608
1609 memcpy(&(sEthHeader.h_dest[0]),
1610 &(pPacket->p80211Header->sA3.abyAddr1[0]),
1611 ETH_ALEN);
1612 memcpy(&(sEthHeader.h_source[0]),
1613 &(pPacket->p80211Header->sA3.abyAddr2[0]),
1614 ETH_ALEN);
1615 //=========================
1616 // No Fragmentation
1617 //=========================
1618 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1619
1620 /* Fill FIFO,RrvTime,RTS,and CTS */
1621 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1622 pTX_Buffer, rts_cts,
1623 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1624
1625 //Fill DataHead
1626 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1627 AUTO_FB_NONE);
1628
1629 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1630
1631 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1632
1633 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1634 u8 * pbyIVHead;
1635 u8 * pbyPayloadHead;
1636 u8 * pbyBSSID;
1637 PSKeyItem pTransmitKey = NULL;
1638
1639 pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1640 pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1641 do {
1642 if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1643 (pDevice->bLinkPass == true)) {
1644 pbyBSSID = pDevice->abyBSSID;
1645 // get pairwise key
1646 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1647 // get group key
1648 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1649 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1650 break;
1651 }
1652 } else {
1653 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1654 break;
1655 }
1656 }
1657 // get group key
1658 pbyBSSID = pDevice->abyBroadcastAddr;
1659 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1660 pTransmitKey = NULL;
1661 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1662 } else {
1663 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1664 }
1665 } while(false);
1666 //Fill TXKEY
1667 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1668 (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1669
1670 memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1671 memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1672 cbFrameBodySize);
1673 }
1674 else {
1675 // Copy the Packet into a tx Buffer
1676 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1677 }
1678
1679 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1680 pDevice->wSeqCounter++ ;
1681 if (pDevice->wSeqCounter > 0x0fff)
1682 pDevice->wSeqCounter = 0;
1683
1684 if (bIsPSPOLL) {
1685 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1686 // of FIFO control header.
1687 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1688 // in the same place of other packet's Duration-field).
1689 // And it will cause Cisco-AP to issue Disassociation-packet
1690 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1691 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1692 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1693 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1694 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1695 } else {
1696 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1697 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1698 }
1699 }
1700
1701 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1702 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1703 pTX_Buffer->byType = 0x00;
1704
1705 pContext->pPacket = NULL;
1706 pContext->Type = CONTEXT_MGMT_PACKET;
1707 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1708
1709 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1710 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1711 &pMACHeader->addr1[0], (u16)cbFrameSize,
1712 pTxBufHead->wFIFOCtl);
1713 }
1714 else {
1715 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1716 &pMACHeader->addr3[0], (u16)cbFrameSize,
1717 pTxBufHead->wFIFOCtl);
1718 }
1719
1720 PIPEnsSendBulkOut(pDevice,pContext);
1721 return CMD_STATUS_PENDING;
1722 }
1723
1724 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1725 struct vnt_tx_mgmt *pPacket)
1726 {
1727 struct vnt_beacon_buffer *pTX_Buffer;
1728 u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1729 u32 cbHeaderSize = 0;
1730 u16 wTxBufSize = sizeof(STxShortBufHead);
1731 PSTxShortBufHead pTxBufHead;
1732 struct ieee80211_hdr *pMACHeader;
1733 struct vnt_tx_datahead_ab *pTxDataHead;
1734 u16 wCurrentRate;
1735 u32 cbFrameBodySize;
1736 u32 cbReqCount;
1737 u8 *pbyTxBufferAddr;
1738 struct vnt_usb_send_context *pContext;
1739 CMD_STATUS status;
1740
1741 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1742 if (NULL == pContext) {
1743 status = CMD_STATUS_RESOURCES;
1744 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1745 return status ;
1746 }
1747
1748 pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1749 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1750
1751 cbFrameBodySize = pPacket->cbPayloadLen;
1752
1753 pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1754 wTxBufSize = sizeof(STxShortBufHead);
1755
1756 if (pDevice->byBBType == BB_TYPE_11A) {
1757 wCurrentRate = RATE_6M;
1758 pTxDataHead = (struct vnt_tx_datahead_ab *)
1759 (pbyTxBufferAddr + wTxBufSize);
1760 //Get SignalField,ServiceField,Length
1761 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1762 &pTxDataHead->ab);
1763 //Get Duration and TimeStampOff
1764 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1765 PK_TYPE_11A, false);
1766 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1767 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1768 } else {
1769 wCurrentRate = RATE_1M;
1770 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1771 pTxDataHead = (struct vnt_tx_datahead_ab *)
1772 (pbyTxBufferAddr + wTxBufSize);
1773 //Get SignalField,ServiceField,Length
1774 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1775 &pTxDataHead->ab);
1776 //Get Duration and TimeStampOff
1777 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1778 PK_TYPE_11B, false);
1779 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1780 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1781 }
1782
1783 //Generate Beacon Header
1784 pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1785 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1786
1787 pMACHeader->duration_id = 0;
1788 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1789 pDevice->wSeqCounter++ ;
1790 if (pDevice->wSeqCounter > 0x0fff)
1791 pDevice->wSeqCounter = 0;
1792
1793 cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1794
1795 pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1796 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1797 pTX_Buffer->byType = 0x01;
1798
1799 pContext->pPacket = NULL;
1800 pContext->Type = CONTEXT_MGMT_PACKET;
1801 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1802
1803 PIPEnsSendBulkOut(pDevice,pContext);
1804 return CMD_STATUS_PENDING;
1805
1806 }
1807
1808 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1809 {
1810 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1811 struct vnt_tx_buffer *pTX_Buffer;
1812 struct vnt_tx_fifo_head *pTxBufHead;
1813 u8 byPktType;
1814 u8 *pbyTxBufferAddr;
1815 void *rts_cts = NULL;
1816 void *pvTxDataHd;
1817 u32 uDuration, cbReqCount;
1818 struct ieee80211_hdr *pMACHeader;
1819 u32 cbHeaderSize, cbFrameBodySize;
1820 int bNeedACK, bIsPSPOLL = false;
1821 u32 cbFrameSize;
1822 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1823 u32 uPadding = 0;
1824 u32 cbMICHDR = 0, uLength = 0;
1825 u32 dwMICKey0, dwMICKey1;
1826 u32 dwMIC_Priority;
1827 u32 *pdwMIC_L, *pdwMIC_R;
1828 u16 wTxBufSize;
1829 u32 cbMacHdLen;
1830 struct ethhdr sEthHeader;
1831 void *pMICHDR;
1832 u32 wCurrentRate = RATE_1M;
1833 PUWLAN_80211HDR p80211Header;
1834 u32 uNodeIndex = 0;
1835 int bNodeExist = false;
1836 SKeyItem STempKey;
1837 PSKeyItem pTransmitKey = NULL;
1838 u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1839 u32 cbExtSuppRate = 0;
1840 struct vnt_usb_send_context *pContext;
1841
1842 pMICHDR = pvTxDataHd = NULL;
1843
1844 if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1845 cbFrameBodySize = 0;
1846 }
1847 else {
1848 cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1849 }
1850 p80211Header = (PUWLAN_80211HDR)skb->data;
1851
1852 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1853
1854 if (NULL == pContext) {
1855 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1856 dev_kfree_skb_irq(skb);
1857 return ;
1858 }
1859
1860 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1861 pTxBufHead = &pTX_Buffer->fifo_head;
1862 pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1863 wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1864
1865 if (pDevice->byBBType == BB_TYPE_11A) {
1866 wCurrentRate = RATE_6M;
1867 byPktType = PK_TYPE_11A;
1868 } else {
1869 wCurrentRate = RATE_1M;
1870 byPktType = PK_TYPE_11B;
1871 }
1872
1873 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1874 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1875 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1876 // to set power here.
1877 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1878 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1879 } else {
1880 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1881 }
1882
1883 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1884
1885 //Set packet type
1886 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1887 pTxBufHead->wFIFOCtl = 0;
1888 }
1889 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1890 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1891 }
1892 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1893 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1894 }
1895 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1896 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1897 }
1898
1899 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1900 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1901
1902 if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1903 bNeedACK = false;
1904 if (pDevice->bEnableHostWEP) {
1905 uNodeIndex = 0;
1906 bNodeExist = true;
1907 }
1908 }
1909 else {
1910 if (pDevice->bEnableHostWEP) {
1911 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1912 bNodeExist = true;
1913 }
1914 bNeedACK = true;
1915 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1916 };
1917
1918 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1919 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1920
1921 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1922 //Set Preamble type always long
1923 //pDevice->byPreambleType = PREAMBLE_LONG;
1924
1925 // probe-response don't retry
1926 //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1927 // bNeedACK = false;
1928 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1929 //}
1930 }
1931
1932 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1933
1934 if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1935 bIsPSPOLL = true;
1936 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1937 } else {
1938 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1939 }
1940
1941 // hostapd daemon ext support rate patch
1942 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1943
1944 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1945 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1946 }
1947
1948 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1949 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1950 }
1951
1952 if (cbExtSuppRate >0) {
1953 cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1954 }
1955 }
1956
1957 //Set FRAGCTL_MACHDCNT
1958 pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1959
1960 // Notes:
1961 // Although spec says MMPDU can be fragmented; In most case,
1962 // no one will send a MMPDU under fragmentation. With RTS may occur.
1963 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1964
1965 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1966 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1967 cbIVlen = 4;
1968 cbICVlen = 4;
1969 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1970 }
1971 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1972 cbIVlen = 8;//IV+ExtIV
1973 cbMIClen = 8;
1974 cbICVlen = 4;
1975 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1976 //We need to get seed here for filling TxKey entry.
1977 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1978 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1979 }
1980 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1981 cbIVlen = 8;//RSN Header
1982 cbICVlen = 8;//MIC
1983 cbMICHDR = sizeof(struct vnt_mic_hdr);
1984 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1985 pDevice->bAES = true;
1986 }
1987 //MAC Header should be padding 0 to DW alignment.
1988 uPadding = 4 - (cbMacHdLen%4);
1989 uPadding %= 4;
1990 }
1991
1992 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
1993
1994 //Set FIFOCTL_GrpAckPolicy
1995 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1996 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1997 }
1998 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1999
2000 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2001 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2002 sizeof(struct vnt_rrv_time_cts));
2003 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2004 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2005 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2006 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2007 sizeof(struct vnt_cts));
2008 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2009 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2010
2011 }
2012 else {//802.11a/b packet
2013 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2014 sizeof(struct vnt_rrv_time_ab));
2015 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2016 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2017 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2018 sizeof(struct vnt_tx_datahead_ab);
2019 }
2020 memcpy(&(sEthHeader.h_dest[0]),
2021 &(p80211Header->sA3.abyAddr1[0]),
2022 ETH_ALEN);
2023 memcpy(&(sEthHeader.h_source[0]),
2024 &(p80211Header->sA3.abyAddr2[0]),
2025 ETH_ALEN);
2026 //=========================
2027 // No Fragmentation
2028 //=========================
2029 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2030
2031 /* Fill FIFO,RrvTime,RTS,and CTS */
2032 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2033 pTX_Buffer, rts_cts,
2034 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2035
2036 //Fill DataHead
2037 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2038 AUTO_FB_NONE);
2039
2040 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2041
2042 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2043
2044 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2045 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2046 pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2047
2048 // Copy the Packet into a tx Buffer
2049 memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2050
2051 // version set to 0, patch for hostapd deamon
2052 pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2053 memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2054
2055 // replace support rate, patch for hostapd daemon( only support 11M)
2056 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2057 if (cbExtSuppRate != 0) {
2058 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2059 memcpy((pbyPayloadHead + cbFrameBodySize),
2060 pMgmt->abyCurrSuppRates,
2061 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2062 );
2063 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2064 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2065 pMgmt->abyCurrExtSuppRates,
2066 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2067 );
2068 }
2069 }
2070
2071 // Set wep
2072 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2073
2074 if (pDevice->bEnableHostWEP) {
2075 pTransmitKey = &STempKey;
2076 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2077 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2078 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2079 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2080 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2081 memcpy(pTransmitKey->abyKey,
2082 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2083 pTransmitKey->uKeyLength
2084 );
2085 }
2086
2087 if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2088
2089 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2090 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2091
2092 // DO Software Michael
2093 MIC_vInit(dwMICKey0, dwMICKey1);
2094 MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2095 dwMIC_Priority = 0;
2096 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2097 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2098 " %X, %X\n", dwMICKey0, dwMICKey1);
2099
2100 uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2101
2102 MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2103
2104 pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2105 pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2106
2107 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2108 MIC_vUnInit();
2109
2110 if (pDevice->bTxMICFail == true) {
2111 *pdwMIC_L = 0;
2112 *pdwMIC_R = 0;
2113 pDevice->bTxMICFail = false;
2114 }
2115
2116 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2117 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2118 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2119 *pdwMIC_L, *pdwMIC_R);
2120
2121 }
2122
2123 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2124 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2125
2126 if (pDevice->bEnableHostWEP) {
2127 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2128 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2129 }
2130
2131 if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2132 s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2133 }
2134 }
2135
2136 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2137 pDevice->wSeqCounter++ ;
2138 if (pDevice->wSeqCounter > 0x0fff)
2139 pDevice->wSeqCounter = 0;
2140
2141 if (bIsPSPOLL) {
2142 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2143 // of FIFO control header.
2144 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2145 // in the same place of other packet's Duration-field).
2146 // And it will cause Cisco-AP to issue Disassociation-packet
2147 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2148 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2149 cpu_to_le16(p80211Header->sA2.wDurationID);
2150 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2151 cpu_to_le16(p80211Header->sA2.wDurationID);
2152 } else {
2153 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2154 cpu_to_le16(p80211Header->sA2.wDurationID);
2155 }
2156 }
2157
2158 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2159 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2160 pTX_Buffer->byType = 0x00;
2161
2162 pContext->pPacket = skb;
2163 pContext->Type = CONTEXT_MGMT_PACKET;
2164 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
2165
2166 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2167 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2168 &pMACHeader->addr1[0], (u16)cbFrameSize,
2169 pTxBufHead->wFIFOCtl);
2170 }
2171 else {
2172 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2173 &pMACHeader->addr3[0], (u16)cbFrameSize,
2174 pTxBufHead->wFIFOCtl);
2175 }
2176 PIPEnsSendBulkOut(pDevice,pContext);
2177 return ;
2178
2179 }
2180
2181 //TYPE_AC0DMA data tx
2182 /*
2183 * Description:
2184 * Tx packet via AC0DMA(DMA1)
2185 *
2186 * Parameters:
2187 * In:
2188 * pDevice - Pointer to the adapter
2189 * skb - Pointer to tx skb packet
2190 * Out:
2191 * void
2192 *
2193 * Return Value: NULL
2194 */
2195
2196 int nsDMA_tx_packet(struct vnt_private *pDevice,
2197 u32 uDMAIdx, struct sk_buff *skb)
2198 {
2199 struct net_device_stats *pStats = &pDevice->stats;
2200 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2201 struct vnt_tx_buffer *pTX_Buffer;
2202 u32 BytesToWrite = 0, uHeaderLen = 0;
2203 u32 uNodeIndex = 0;
2204 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2205 u16 wAID;
2206 u8 byPktType;
2207 int bNeedEncryption = false;
2208 PSKeyItem pTransmitKey = NULL;
2209 SKeyItem STempKey;
2210 int ii;
2211 int bTKIP_UseGTK = false;
2212 int bNeedDeAuth = false;
2213 u8 *pbyBSSID;
2214 int bNodeExist = false;
2215 struct vnt_usb_send_context *pContext;
2216 bool fConvertedPacket;
2217 u32 status;
2218 u16 wKeepRate = pDevice->wCurrentRate;
2219 int bTxeapol_key = false;
2220
2221 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2222
2223 if (pDevice->uAssocCount == 0) {
2224 dev_kfree_skb_irq(skb);
2225 return 0;
2226 }
2227
2228 if (is_multicast_ether_addr((u8 *)(skb->data))) {
2229 uNodeIndex = 0;
2230 bNodeExist = true;
2231 if (pMgmt->sNodeDBTable[0].bPSEnable) {
2232
2233 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2234 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2235 // set tx map
2236 pMgmt->abyPSTxMap[0] |= byMask[0];
2237 return 0;
2238 }
2239 // multicast/broadcast data rate
2240
2241 if (pDevice->byBBType != BB_TYPE_11A)
2242 pDevice->wCurrentRate = RATE_2M;
2243 else
2244 pDevice->wCurrentRate = RATE_24M;
2245 // long preamble type
2246 pDevice->byPreambleType = PREAMBLE_SHORT;
2247
2248 }else {
2249
2250 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2251
2252 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2253
2254 skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2255
2256 pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2257 // set tx map
2258 wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2259 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
2260 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2261 (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2262
2263 return 0;
2264 }
2265 // AP rate decided from node
2266 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2267 // tx preamble decided from node
2268
2269 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2270 pDevice->byPreambleType = pDevice->byShortPreamble;
2271
2272 }else {
2273 pDevice->byPreambleType = PREAMBLE_LONG;
2274 }
2275 bNodeExist = true;
2276 }
2277 }
2278
2279 if (bNodeExist == false) {
2280 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2281 dev_kfree_skb_irq(skb);
2282 return 0;
2283 }
2284 }
2285
2286 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2287
2288 if (pContext == NULL) {
2289 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2290 dev_kfree_skb_irq(skb);
2291 return STATUS_RESOURCES;
2292 }
2293
2294 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2295
2296 //mike add:station mode check eapol-key challenge--->
2297 {
2298 u8 Protocol_Version; //802.1x Authentication
2299 u8 Packet_Type; //802.1x Authentication
2300 u8 Descriptor_type;
2301 u16 Key_info;
2302
2303 Protocol_Version = skb->data[ETH_HLEN];
2304 Packet_Type = skb->data[ETH_HLEN+1];
2305 Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2306 Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2307 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2308 /* 802.1x OR eapol-key challenge frame transfer */
2309 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2310 (Packet_Type == 3)) {
2311 bTxeapol_key = true;
2312 if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
2313 (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
2314 if(Descriptor_type==254) {
2315 pDevice->fWPA_Authened = true;
2316 PRINT_K("WPA ");
2317 }
2318 else {
2319 pDevice->fWPA_Authened = true;
2320 PRINT_K("WPA2(re-keying) ");
2321 }
2322 PRINT_K("Authentication completed!!\n");
2323 }
2324 else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairwise-key challenge
2325 (Key_info & BIT8) && (Key_info & BIT9)) {
2326 pDevice->fWPA_Authened = true;
2327 PRINT_K("WPA2 Authentication completed!!\n");
2328 }
2329 }
2330 }
2331 }
2332 //mike add:station mode check eapol-key challenge<---
2333
2334 if (pDevice->bEncryptionEnable == true) {
2335 bNeedEncryption = true;
2336 // get Transmit key
2337 do {
2338 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2339 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2340 pbyBSSID = pDevice->abyBSSID;
2341 // get pairwise key
2342 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2343 // get group key
2344 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2345 bTKIP_UseGTK = true;
2346 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2347 break;
2348 }
2349 } else {
2350 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2351 break;
2352 }
2353 }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2354 /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2355 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2356 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2357 for (ii = 0; ii< 6; ii++)
2358 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2359 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2360
2361 // get pairwise key
2362 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2363 break;
2364 }
2365 // get group key
2366 pbyBSSID = pDevice->abyBroadcastAddr;
2367 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2368 pTransmitKey = NULL;
2369 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2370 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2371 }
2372 else
2373 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2374 } else {
2375 bTKIP_UseGTK = true;
2376 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2377 }
2378 } while(false);
2379 }
2380
2381 if (pDevice->bEnableHostWEP) {
2382 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2383 if (pDevice->bEncryptionEnable == true) {
2384 pTransmitKey = &STempKey;
2385 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2386 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2387 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2388 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2389 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2390 memcpy(pTransmitKey->abyKey,
2391 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2392 pTransmitKey->uKeyLength
2393 );
2394 }
2395 }
2396
2397 byPktType = (u8)pDevice->byPacketType;
2398
2399 if (pDevice->bFixRate) {
2400 if (pDevice->byBBType == BB_TYPE_11B) {
2401 if (pDevice->uConnectionRate >= RATE_11M) {
2402 pDevice->wCurrentRate = RATE_11M;
2403 } else {
2404 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2405 }
2406 } else {
2407 if ((pDevice->byBBType == BB_TYPE_11A) &&
2408 (pDevice->uConnectionRate <= RATE_6M)) {
2409 pDevice->wCurrentRate = RATE_6M;
2410 } else {
2411 if (pDevice->uConnectionRate >= RATE_54M)
2412 pDevice->wCurrentRate = RATE_54M;
2413 else
2414 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2415 }
2416 }
2417 }
2418 else {
2419 if (pDevice->eOPMode == OP_MODE_ADHOC) {
2420 // Adhoc Tx rate decided from node DB
2421 if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2422 // Multicast use highest data rate
2423 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2424 // preamble type
2425 pDevice->byPreambleType = pDevice->byShortPreamble;
2426 }
2427 else {
2428 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2429 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2430 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2431 pDevice->byPreambleType = pDevice->byShortPreamble;
2432
2433 }
2434 else {
2435 pDevice->byPreambleType = PREAMBLE_LONG;
2436 }
2437 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2438 }
2439 else {
2440 if (pDevice->byBBType != BB_TYPE_11A)
2441 pDevice->wCurrentRate = RATE_2M;
2442 else
2443 pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2444 // abyCurrExtSuppRates[]
2445 pDevice->byPreambleType = PREAMBLE_SHORT;
2446 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2447 }
2448 }
2449 }
2450 if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2451 // Infra STA rate decided from AP Node, index = 0
2452 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2453 }
2454 }
2455
2456 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2457 if (pDevice->byBBType != BB_TYPE_11A) {
2458 pDevice->wCurrentRate = RATE_1M;
2459 pDevice->byACKRate = RATE_1M;
2460 pDevice->byTopCCKBasicRate = RATE_1M;
2461 pDevice->byTopOFDMBasicRate = RATE_6M;
2462 } else {
2463 pDevice->wCurrentRate = RATE_6M;
2464 pDevice->byACKRate = RATE_6M;
2465 pDevice->byTopCCKBasicRate = RATE_1M;
2466 pDevice->byTopOFDMBasicRate = RATE_6M;
2467 }
2468 }
2469
2470 DBG_PRT(MSG_LEVEL_DEBUG,
2471 KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2472 pDevice->wCurrentRate);
2473
2474 if (wKeepRate != pDevice->wCurrentRate) {
2475 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2476 }
2477
2478 if (pDevice->wCurrentRate <= RATE_11M) {
2479 byPktType = PK_TYPE_11B;
2480 }
2481
2482 if (bNeedEncryption == true) {
2483 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2484 if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2485 bNeedEncryption = false;
2486 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2487 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2488 if (pTransmitKey == NULL) {
2489 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2490 }
2491 else {
2492 if (bTKIP_UseGTK == true) {
2493 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2494 }
2495 else {
2496 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2497 pTransmitKey->dwKeyIndex);
2498 bNeedEncryption = true;
2499 }
2500 }
2501 }
2502
2503 if (pDevice->bEnableHostWEP) {
2504 if ((uNodeIndex != 0) &&
2505 (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2506 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2507 pTransmitKey->dwKeyIndex);
2508 bNeedEncryption = true;
2509 }
2510 }
2511 }
2512 else {
2513
2514 if (pTransmitKey == NULL) {
2515 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2516 pContext->bBoolInUse = false;
2517 dev_kfree_skb_irq(skb);
2518 pStats->tx_dropped++;
2519 return STATUS_FAILURE;
2520 }
2521 }
2522 }
2523
2524 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2525
2526 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2527 pTX_Buffer, bNeedEncryption,
2528 skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2529 (u8 *)skb->data, pTransmitKey, uNodeIndex,
2530 pDevice->wCurrentRate,
2531 &uHeaderLen, &BytesToWrite
2532 );
2533
2534 if (fConvertedPacket == false) {
2535 pContext->bBoolInUse = false;
2536 dev_kfree_skb_irq(skb);
2537 return STATUS_FAILURE;
2538 }
2539
2540 if ( pDevice->bEnablePSMode == true ) {
2541 if ( !pDevice->bPSModeTxBurst ) {
2542 bScheduleCommand((void *) pDevice,
2543 WLAN_CMD_MAC_DISPOWERSAVING,
2544 NULL);
2545 pDevice->bPSModeTxBurst = true;
2546 }
2547 }
2548
2549 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2550 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2551
2552 pContext->pPacket = skb;
2553 pContext->Type = CONTEXT_DATA_PACKET;
2554 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2555
2556 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2557 &pContext->sEthHeader.h_dest[0],
2558 (u16)(BytesToWrite-uHeaderLen),
2559 pTX_Buffer->fifo_head.wFIFOCtl);
2560
2561 status = PIPEnsSendBulkOut(pDevice,pContext);
2562
2563 if (bNeedDeAuth == true) {
2564 u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2565
2566 bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2567 }
2568
2569 if(status!=STATUS_PENDING) {
2570 pContext->bBoolInUse = false;
2571 dev_kfree_skb_irq(skb);
2572 return STATUS_FAILURE;
2573 }
2574 else
2575 return 0;
2576
2577 }
2578
2579 /*
2580 * Description:
2581 * Relay packet send (AC1DMA) from rx dpc.
2582 *
2583 * Parameters:
2584 * In:
2585 * pDevice - Pointer to the adapter
2586 * pPacket - Pointer to rx packet
2587 * cbPacketSize - rx ethernet frame size
2588 * Out:
2589 * TURE, false
2590 *
2591 * Return Value: Return true if packet is copy to dma1; otherwise false
2592 */
2593
2594 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2595 u32 uNodeIndex)
2596 {
2597 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2598 struct vnt_tx_buffer *pTX_Buffer;
2599 u32 BytesToWrite = 0, uHeaderLen = 0;
2600 u8 byPktType = PK_TYPE_11B;
2601 int bNeedEncryption = false;
2602 SKeyItem STempKey;
2603 PSKeyItem pTransmitKey = NULL;
2604 u8 *pbyBSSID;
2605 struct vnt_usb_send_context *pContext;
2606 u8 byPktTyp;
2607 int fConvertedPacket;
2608 u32 status;
2609 u16 wKeepRate = pDevice->wCurrentRate;
2610
2611 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2612
2613 if (NULL == pContext) {
2614 return false;
2615 }
2616
2617 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2618
2619 if (pDevice->bEncryptionEnable == true) {
2620 bNeedEncryption = true;
2621 // get group key
2622 pbyBSSID = pDevice->abyBroadcastAddr;
2623 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2624 pTransmitKey = NULL;
2625 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2626 } else {
2627 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2628 }
2629 }
2630
2631 if (pDevice->bEnableHostWEP) {
2632 if (uNodeIndex < MAX_NODE_NUM + 1) {
2633 pTransmitKey = &STempKey;
2634 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2635 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2636 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2637 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2638 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2639 memcpy(pTransmitKey->abyKey,
2640 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2641 pTransmitKey->uKeyLength
2642 );
2643 }
2644 }
2645
2646 if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2647 pContext->bBoolInUse = false;
2648 return false;
2649 }
2650
2651 byPktTyp = (u8)pDevice->byPacketType;
2652
2653 if (pDevice->bFixRate) {
2654 if (pDevice->byBBType == BB_TYPE_11B) {
2655 if (pDevice->uConnectionRate >= RATE_11M) {
2656 pDevice->wCurrentRate = RATE_11M;
2657 } else {
2658 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2659 }
2660 } else {
2661 if ((pDevice->byBBType == BB_TYPE_11A) &&
2662 (pDevice->uConnectionRate <= RATE_6M)) {
2663 pDevice->wCurrentRate = RATE_6M;
2664 } else {
2665 if (pDevice->uConnectionRate >= RATE_54M)
2666 pDevice->wCurrentRate = RATE_54M;
2667 else
2668 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2669 }
2670 }
2671 }
2672 else {
2673 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2674 }
2675
2676 if (wKeepRate != pDevice->wCurrentRate) {
2677 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2678 }
2679
2680 if (pDevice->wCurrentRate <= RATE_11M)
2681 byPktType = PK_TYPE_11B;
2682
2683 BytesToWrite = uDataLen + ETH_FCS_LEN;
2684
2685 // Convert the packet to an usb frame and copy into our buffer
2686 // and send the irp.
2687
2688 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2689
2690 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2691 pTX_Buffer, bNeedEncryption,
2692 uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2693 pbySkbData, pTransmitKey, uNodeIndex,
2694 pDevice->wCurrentRate,
2695 &uHeaderLen, &BytesToWrite
2696 );
2697
2698 if (fConvertedPacket == false) {
2699 pContext->bBoolInUse = false;
2700 return false;
2701 }
2702
2703 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2704 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2705
2706 pContext->pPacket = NULL;
2707 pContext->Type = CONTEXT_DATA_PACKET;
2708 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2709
2710 s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2711 &pContext->sEthHeader.h_dest[0],
2712 (u16)(BytesToWrite - uHeaderLen),
2713 pTX_Buffer->fifo_head.wFIFOCtl);
2714
2715 status = PIPEnsSendBulkOut(pDevice,pContext);
2716
2717 return true;
2718 }
2719
This page took 0.141728 seconds and 4 git commands to generate.