regmap: add helper macro to set min/max range of register
[deliverable/linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: rxtx.c
20 *
21 * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22 *
23 * Author: Lyndon Chen
24 *
25 * Date: May 20, 2003
26 *
27 * Functions:
28 * s_vGenerateTxParameter - Generate tx dma required parameter.
29 * s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30 * csBeacon_xmit - beacon tx function
31 * csMgmt_xmit - management tx function
32 * s_uGetDataDuration - get tx data required duration
33 * s_uFillDataHead- fulfill tx data duration header
34 * s_uGetRTSCTSDuration- get rtx/cts required duration
35 * s_uGetRTSCTSRsvTime- get rts/cts reserved time
36 * s_uGetTxRsvTime- get frame reserved time
37 * s_vFillCTSHead- fulfill CTS ctl header
38 * s_vFillFragParameter- Set fragment ctl parameter.
39 * s_vFillRTSHead- fulfill RTS ctl header
40 * s_vFillTxKey- fulfill tx encrypt key
41 * s_vSWencryption- Software encrypt header
42 * vDMA0_tx_80211- tx 802.11 frame via dma0
43 * vGenerateFIFOHeader- Generate tx FIFO ctl header
44 *
45 * Revision History:
46 *
47 */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int msglevel = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68 {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69 {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70 };
71
72 const u16 wFB_Opt0[2][5] = {
73 {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75 };
76 const u16 wFB_Opt1[2][5] = {
77 {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79 };
80
81 #define RTSDUR_BB 0
82 #define RTSDUR_BA 1
83 #define RTSDUR_AA 2
84 #define CTSDUR_BA 3
85 #define RTSDUR_BA_F0 4
86 #define RTSDUR_AA_F0 5
87 #define RTSDUR_BA_F1 6
88 #define RTSDUR_AA_F1 7
89 #define CTSDUR_BA_F0 8
90 #define CTSDUR_BA_F1 9
91 #define DATADUR_B 10
92 #define DATADUR_A 11
93 #define DATADUR_A_F0 12
94 #define DATADUR_A_F1 13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102 u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
103 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104 struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108 u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116 struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122 u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125 u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129 int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136 u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139 u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140 int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144 struct vnt_usb_send_context *pContext = NULL;
145 struct vnt_usb_send_context *pReturnContext = NULL;
146 int ii;
147
148 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150 for (ii = 0; ii < pDevice->cbTD; ii++) {
151 pContext = pDevice->apTD[ii];
152 if (pContext->bBoolInUse == false) {
153 pContext->bBoolInUse = true;
154 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155 pReturnContext = pContext;
156 break;
157 }
158 }
159 if ( ii == pDevice->cbTD ) {
160 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161 }
162 return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168 PSStatCounter pStatistic = &pDevice->scStatistic;
169
170 if (is_broadcast_ether_addr(pbyDestAddr))
171 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172 else if (is_multicast_ether_addr(pbyDestAddr))
173 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174 else
175 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177 pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178 pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179 memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180 pbyDestAddr,
181 ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186 u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188 u32 *pdwIV = (u32 *)pbyIVHead;
189 u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191 u32 dwRevIVCounter;
192
193 /* Fill TXKEY */
194 if (pTransmitKey == NULL)
195 return;
196
197 dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198 *pdwIV = pDevice->dwIVCounter;
199 pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201 switch (pTransmitKey->byCipherSuite) {
202 case KEY_CTL_WEP:
203 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204 memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205 memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206 pTransmitKey->uKeyLength);
207 } else {
208 memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209 memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210 pTransmitKey->uKeyLength);
211 if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213 memcpy(pbyBuf+11, pTransmitKey->abyKey,
214 pTransmitKey->uKeyLength);
215 }
216
217 memcpy(pDevice->abyPRNG, pbyBuf, 16);
218 }
219 /* Append IV after Mac Header */
220 *pdwIV &= WEP_IV_MASK;
221 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222 *pdwIV = cpu_to_le32(*pdwIV);
223
224 pDevice->dwIVCounter++;
225 if (pDevice->dwIVCounter > WEP_IV_MASK)
226 pDevice->dwIVCounter = 0;
227
228 break;
229 case KEY_CTL_TKIP:
230 pTransmitKey->wTSC15_0++;
231 if (pTransmitKey->wTSC15_0 == 0)
232 pTransmitKey->dwTSC47_16++;
233
234 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235 pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236 pDevice->abyPRNG);
237 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239 /* Make IV */
240 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243 0xc0) | 0x20);
244 /* Append IV&ExtIV after Mac Header */
245 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248 "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250 break;
251 case KEY_CTL_CCMP:
252 pTransmitKey->wTSC15_0++;
253 if (pTransmitKey->wTSC15_0 == 0)
254 pTransmitKey->dwTSC47_16++;
255
256 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258 /* Make IV */
259 *pdwIV = 0;
260 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261 0xc0) | 0x20);
262
263 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265 /* Append IV&ExtIV after Mac Header */
266 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268 if (!mic_hdr)
269 return;
270
271 /* MICHDR0 */
272 mic_hdr->id = 0x59;
273 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279 /* MICHDR1 */
280 if (pDevice->bLongHeader)
281 mic_hdr->hlen = cpu_to_be16(28);
282 else
283 mic_hdr->hlen = cpu_to_be16(22);
284
285 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288 /* MICHDR2 */
289 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291 & 0xc78f);
292 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294 if (pDevice->bLongHeader)
295 memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296 }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302 u32 cbICVlen = 4;
303 u32 dwICV = 0xffffffff;
304 u32 *pdwICV;
305
306 if (pTransmitKey == NULL)
307 return;
308
309 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310 //=======================================================================
311 // Append ICV after payload
312 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314 // finally, we must invert dwCRC to get the correct answer
315 *pdwICV = cpu_to_le32(~dwICV);
316 // RC4 encryption
317 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319 //=======================================================================
320 } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321 //=======================================================================
322 //Append ICV after payload
323 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325 // finally, we must invert dwCRC to get the correct answer
326 *pdwICV = cpu_to_le32(~dwICV);
327 // RC4 encryption
328 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330 //=======================================================================
331 }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336 return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337 [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A 0
341 PK_TYPE_11B 1
342 PK_TYPE_11GB 2
343 PK_TYPE_11GA 3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346 u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348 u32 uDataTime, uAckTime;
349
350 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351 if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353 } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355 }
356
357 if (bNeedAck) {
358 return (uDataTime + pDevice->uSIFS + uAckTime);
359 }
360 else {
361 return uDataTime;
362 }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366 u32 frame_length, u16 rate, int need_ack)
367 {
368 return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374 u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376 u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378 uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381 if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384 }
385 else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389 }
390 else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393 }
394 else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397 uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398 return uRrvTime;
399 }
400
401 //RTSRrvTime
402 uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403 return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408 u8 byPktType, int bNeedAck)
409 {
410 u32 uAckTime = 0;
411
412 if (bNeedAck) {
413 if (byPktType == PK_TYPE_11B)
414 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415 byPktType, 14, pDevice->byTopCCKBasicRate);
416 else
417 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418 byPktType, 14, pDevice->byTopOFDMBasicRate);
419 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420 }
421
422 return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427 u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428 u8 byFBOption)
429 {
430 u32 uCTSTime = 0, uDurTime = 0;
431
432 switch (byDurType) {
433
434 case RTSDUR_BB: //RTSDuration_bb
435 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437 break;
438
439 case RTSDUR_BA: //RTSDuration_ba
440 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442 break;
443
444 case RTSDUR_AA: //RTSDuration_aa
445 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447 break;
448
449 case CTSDUR_BA: //CTSDuration_ba
450 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451 break;
452
453 case RTSDUR_BA_F0: //RTSDuration_ba_f0
454 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459 }
460 break;
461
462 case RTSDUR_AA_F0: //RTSDuration_aa_f0
463 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468 }
469 break;
470
471 case RTSDUR_BA_F1: //RTSDuration_ba_f1
472 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477 }
478 break;
479
480 case RTSDUR_AA_F1: //RTSDuration_aa_f1
481 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486 }
487 break;
488
489 case CTSDUR_BA_F0: //CTSDuration_ba_f0
490 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494 }
495 break;
496
497 case CTSDUR_BA_F1: //CTSDuration_ba_f1
498 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502 }
503 break;
504
505 default:
506 break;
507 }
508
509 return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514 u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517 if (pTxDataHead == NULL) {
518 return 0;
519 }
520
521 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522 if (byFBOption == AUTO_FB_NONE) {
523 struct vnt_tx_datahead_g *pBuf =
524 (struct vnt_tx_datahead_g *)pTxDataHead;
525 //Get SignalField,ServiceField,Length
526 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527 byPktType, &pBuf->a);
528 BBvCalculateParameter(pDevice, cbFrameLength,
529 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530 //Get Duration and TimeStamp
531 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532 byPktType, bNeedAck);
533 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534 PK_TYPE_11B, bNeedAck);
535
536 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537 wCurrentRate);
538 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539 pDevice->byTopCCKBasicRate);
540 return (pBuf->wDuration_a);
541 } else {
542 // Auto Fallback
543 struct vnt_tx_datahead_g_fb *pBuf =
544 (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545 //Get SignalField,ServiceField,Length
546 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547 byPktType, &pBuf->a);
548 BBvCalculateParameter(pDevice, cbFrameLength,
549 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550 //Get Duration and TimeStamp
551 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552 byPktType, bNeedAck);
553 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554 PK_TYPE_11B, bNeedAck);
555 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556 byPktType, bNeedAck);
557 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558 byPktType, bNeedAck);
559 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560 wCurrentRate);
561 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562 pDevice->byTopCCKBasicRate);
563 return (pBuf->wDuration_a);
564 } //if (byFBOption == AUTO_FB_NONE)
565 }
566 else if (byPktType == PK_TYPE_11A) {
567 if (byFBOption != AUTO_FB_NONE) {
568 struct vnt_tx_datahead_a_fb *pBuf =
569 (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570 //Get SignalField,ServiceField,Length
571 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572 byPktType, &pBuf->a);
573 //Get Duration and TimeStampOff
574 pBuf->wDuration = s_uGetDataDuration(pDevice,
575 byPktType, bNeedAck);
576 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577 byPktType, bNeedAck);
578 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579 byPktType, bNeedAck);
580 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581 wCurrentRate);
582 return (pBuf->wDuration);
583 } else {
584 struct vnt_tx_datahead_ab *pBuf =
585 (struct vnt_tx_datahead_ab *)pTxDataHead;
586 //Get SignalField,ServiceField,Length
587 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588 byPktType, &pBuf->ab);
589 //Get Duration and TimeStampOff
590 pBuf->wDuration = s_uGetDataDuration(pDevice,
591 byPktType, bNeedAck);
592 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593 wCurrentRate);
594 return (pBuf->wDuration);
595 }
596 }
597 else if (byPktType == PK_TYPE_11B) {
598 struct vnt_tx_datahead_ab *pBuf =
599 (struct vnt_tx_datahead_ab *)pTxDataHead;
600 //Get SignalField,ServiceField,Length
601 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602 byPktType, &pBuf->ab);
603 //Get Duration and TimeStampOff
604 pBuf->wDuration = s_uGetDataDuration(pDevice,
605 byPktType, bNeedAck);
606 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607 wCurrentRate);
608 return (pBuf->wDuration);
609 }
610 return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614 struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615 u16 duration)
616 {
617 rts->duration = duration;
618 rts->frame_control = TYPE_CTL_RTS;
619
620 if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622 else
623 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625 if (priv->eOPMode == OP_MODE_AP)
626 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627 else
628 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630 return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634 struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635 u8 pkt_type, u32 frame_len, int need_ack,
636 u16 current_rate, u8 fb_option)
637 {
638 u16 rts_frame_len = 20;
639
640 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641 PK_TYPE_11B, &buf->b);
642 BBvCalculateParameter(priv, rts_frame_len,
643 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648 pkt_type, current_rate, need_ack, fb_option);
649 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650 pkt_type, current_rate, need_ack, fb_option);
651
652 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654 return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658 struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659 u8 pkt_type, u32 frame_len, int need_ack,
660 u16 current_rate, u8 fb_option)
661 {
662 u16 rts_frame_len = 20;
663
664 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665 PK_TYPE_11B, &buf->b);
666 BBvCalculateParameter(priv, rts_frame_len,
667 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673 pkt_type, current_rate, need_ack, fb_option);
674 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675 pkt_type, current_rate, need_ack, fb_option);
676
677
678 buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679 frame_len, pkt_type, current_rate, need_ack, fb_option);
680 buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681 frame_len, pkt_type, current_rate, need_ack, fb_option);
682 buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683 frame_len, pkt_type, current_rate, need_ack, fb_option);
684 buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689 return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693 struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694 u8 pkt_type, u32 frame_len, int need_ack,
695 u16 current_rate, u8 fb_option)
696 {
697 u16 rts_frame_len = 20;
698
699 BBvCalculateParameter(priv, rts_frame_len,
700 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703 pkt_type, current_rate, need_ack, fb_option);
704
705 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707 return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711 struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712 u8 pkt_type, u32 frame_len, int need_ack,
713 u16 current_rate, u8 fb_option)
714 {
715 u16 rts_frame_len = 20;
716
717 BBvCalculateParameter(priv, rts_frame_len,
718 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721 pkt_type, current_rate, need_ack, fb_option);
722
723 buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726 buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731 return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739 if (!head)
740 return;
741
742 /* Note: So far RTSHead doesn't appear in ATIM
743 * & Beacom DMA, so we don't need to take them
744 * into account.
745 * Otherwise, we need to modified codes for them.
746 */
747 switch (byPktType) {
748 case PK_TYPE_11GB:
749 case PK_TYPE_11GA:
750 if (byFBOption == AUTO_FB_NONE)
751 vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752 psEthHeader, byPktType, cbFrameLength,
753 bNeedAck, wCurrentRate, byFBOption);
754 else
755 vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756 psEthHeader, byPktType, cbFrameLength,
757 bNeedAck, wCurrentRate, byFBOption);
758 break;
759 case PK_TYPE_11A:
760 if (byFBOption) {
761 vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762 psEthHeader, byPktType, cbFrameLength,
763 bNeedAck, wCurrentRate, byFBOption);
764 break;
765 }
766 case PK_TYPE_11B:
767 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768 psEthHeader, byPktType, cbFrameLength,
769 bNeedAck, wCurrentRate, byFBOption);
770 }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775 int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777 u32 uCTSFrameLen = 14;
778
779 if (!head)
780 return;
781
782 if (byFBOption != AUTO_FB_NONE) {
783 /* Auto Fall back */
784 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785 /* Get SignalField,ServiceField,Length */
786 BBvCalculateParameter(pDevice, uCTSFrameLen,
787 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789 cbFrameLength, byPktType,
790 wCurrentRate, bNeedAck, byFBOption);
791 /* Get CTSDuration_ba_f0 */
792 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793 CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794 bNeedAck, byFBOption);
795 /* Get CTSDuration_ba_f1 */
796 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797 CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798 bNeedAck, byFBOption);
799 /* Get CTS Frame body */
800 pBuf->data.duration = pBuf->wDuration_ba;
801 pBuf->data.frame_control = TYPE_CTL_CTS;
802 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803 } else {
804 struct vnt_cts *pBuf = &head->cts_g;
805 /* Get SignalField,ServiceField,Length */
806 BBvCalculateParameter(pDevice, uCTSFrameLen,
807 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808 /* Get CTSDuration_ba */
809 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810 CTSDUR_BA, cbFrameLength, byPktType,
811 wCurrentRate, bNeedAck, byFBOption);
812 /*Get CTS Frame body*/
813 pBuf->data.duration = pBuf->wDuration_ba;
814 pBuf->data.frame_control = TYPE_CTL_CTS;
815 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816 }
817 }
818
819 /*+
820 *
821 * Description:
822 * Generate FIFO control for MAC & Baseband controller
823 *
824 * Parameters:
825 * In:
826 * pDevice - Pointer to adpater
827 * pTxDataHead - Transmit Data Buffer
828 * pTxBufHead - pTxBufHead
829 * pvRrvTime - pvRrvTime
830 * pvRTS - RTS Buffer
831 * pCTS - CTS Buffer
832 * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
833 * bNeedACK - If need ACK
834 * uDMAIdx - DMA Index
835 * Out:
836 * none
837 *
838 * Return Value: none
839 *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843 u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
844 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
845 struct ethhdr *psEthHeader, bool need_rts)
846 {
847 union vnt_tx_data_head *head = rts_cts;
848 u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
849 u16 wFifoCtl;
850 u8 byFBOption = AUTO_FB_NONE;
851
852 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
853 PSTxBufHead pFifoHead = (PSTxBufHead)pTxBufHead;
854 pFifoHead->wReserved = wCurrentRate;
855 wFifoCtl = pFifoHead->wFIFOCtl;
856
857 if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
858 byFBOption = AUTO_FB_0;
859 }
860 else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
861 byFBOption = AUTO_FB_1;
862 }
863
864 if (!pvRrvTime)
865 return;
866
867 if (pDevice->bLongHeader)
868 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
869
870 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
871 if (need_rts) {
872 //Fill RsvTime
873 struct vnt_rrv_time_rts *pBuf =
874 (struct vnt_rrv_time_rts *)pvRrvTime;
875 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
876 byPktType, cbFrameSize, wCurrentRate);
877 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
878 byPktType, cbFrameSize, wCurrentRate);
879 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
880 byPktType, cbFrameSize, wCurrentRate);
881 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
882 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
883 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
884 PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
885 bNeedACK);
886 /* Fill RTS */
887 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
888 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
889 }
890 else {//RTS_needless, PCF mode
891 //Fill RsvTime
892 struct vnt_rrv_time_cts *pBuf =
893 (struct vnt_rrv_time_cts *)pvRrvTime;
894 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
895 cbFrameSize, wCurrentRate, bNeedACK);
896 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
897 PK_TYPE_11B, cbFrameSize,
898 pDevice->byTopCCKBasicRate, bNeedACK);
899 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
900 byPktType, cbFrameSize, wCurrentRate);
901 /* Fill CTS */
902 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
903 cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
904 }
905 }
906 else if (byPktType == PK_TYPE_11A) {
907 if (need_rts) {
908 //Fill RsvTime
909 struct vnt_rrv_time_ab *pBuf =
910 (struct vnt_rrv_time_ab *)pvRrvTime;
911 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
912 byPktType, cbFrameSize, wCurrentRate);
913 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
914 cbFrameSize, wCurrentRate, bNeedACK);
915 /* Fill RTS */
916 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
917 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
918 } else {
919 //Fill RsvTime
920 struct vnt_rrv_time_ab *pBuf =
921 (struct vnt_rrv_time_ab *)pvRrvTime;
922 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
923 cbFrameSize, wCurrentRate, bNeedACK);
924 }
925 }
926 else if (byPktType == PK_TYPE_11B) {
927 if (need_rts) {
928 //Fill RsvTime
929 struct vnt_rrv_time_ab *pBuf =
930 (struct vnt_rrv_time_ab *)pvRrvTime;
931 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
932 byPktType, cbFrameSize, wCurrentRate);
933 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
934 cbFrameSize, wCurrentRate, bNeedACK);
935 /* Fill RTS */
936 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
937 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
938 }
939 else { //RTS_needless, non PCF mode
940 //Fill RsvTime
941 struct vnt_rrv_time_ab *pBuf =
942 (struct vnt_rrv_time_ab *)pvRrvTime;
943 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
944 cbFrameSize, wCurrentRate, bNeedACK);
945 }
946 }
947 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
948 }
949 /*
950 u8 * pbyBuffer,//point to pTxBufHead
951 u16 wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
952 unsigned int cbFragmentSize,//Hdr+payoad+FCS
953 */
954
955 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
956 struct vnt_tx_buffer *pTxBufHead, int bNeedEncryption,
957 u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
958 u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
959 u32 *pcbHeaderLen, u32 *pcbTotalLen)
960 {
961 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
962 u32 cbFrameSize, cbFrameBodySize;
963 u32 cb802_1_H_len;
964 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
965 u32 cbFCSlen = 4, cbMICHDR = 0;
966 int bNeedACK;
967 bool bRTS = false;
968 u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
969 u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
970 u8 abySNAP_Bridgetunnel[ETH_ALEN]
971 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
972 u32 uDuration;
973 u32 cbHeaderLength = 0, uPadding = 0;
974 void *pvRrvTime;
975 struct vnt_mic_hdr *pMICHDR;
976 void *rts_cts = NULL;
977 void *pvTxDataHd;
978 u8 byFBOption = AUTO_FB_NONE, byFragType;
979 u16 wTxBufSize;
980 u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
981 u32 *pdwMIC_L, *pdwMIC_R;
982 int bSoftWEP = false;
983
984 pvRrvTime = pMICHDR = pvTxDataHd = NULL;
985
986 if (bNeedEncryption && pTransmitKey->pvKeyTable) {
987 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
988 bSoftWEP = true; /* WEP 256 */
989 }
990
991 // Get pkt type
992 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
993 if (pDevice->dwDiagRefCount == 0) {
994 cb802_1_H_len = 8;
995 } else {
996 cb802_1_H_len = 2;
997 }
998 } else {
999 cb802_1_H_len = 0;
1000 }
1001
1002 cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1003
1004 //Set packet type
1005 pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1006
1007 if (pDevice->dwDiagRefCount != 0) {
1008 bNeedACK = false;
1009 pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1010 } else { //if (pDevice->dwDiagRefCount != 0) {
1011 if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1012 (pDevice->eOPMode == OP_MODE_AP)) {
1013 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1014 bNeedACK = false;
1015 pTxBufHead->wFIFOCtl =
1016 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1017 } else {
1018 bNeedACK = true;
1019 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1020 }
1021 }
1022 else {
1023 // MSDUs in Infra mode always need ACK
1024 bNeedACK = true;
1025 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1026 }
1027 } //if (pDevice->dwDiagRefCount != 0) {
1028
1029 pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1030
1031 //Set FIFOCTL_LHEAD
1032 if (pDevice->bLongHeader)
1033 pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1034
1035 //Set FRAGCTL_MACHDCNT
1036 if (pDevice->bLongHeader) {
1037 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1038 } else {
1039 cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1040 }
1041 pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1042
1043 //Set FIFOCTL_GrpAckPolicy
1044 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1045 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1046 }
1047
1048 //Set Auto Fallback Ctl
1049 if (wCurrentRate >= RATE_18M) {
1050 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1051 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1052 byFBOption = AUTO_FB_0;
1053 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1054 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1055 byFBOption = AUTO_FB_1;
1056 }
1057 }
1058
1059 if (bSoftWEP != true) {
1060 if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
1061 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1062 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1063 }
1064 if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1065 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1066 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1067 }
1068 else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1069 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1070 }
1071 }
1072 }
1073
1074 if ((bNeedEncryption) && (pTransmitKey != NULL)) {
1075 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1076 cbIVlen = 4;
1077 cbICVlen = 4;
1078 }
1079 else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1080 cbIVlen = 8;//IV+ExtIV
1081 cbMIClen = 8;
1082 cbICVlen = 4;
1083 }
1084 if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1085 cbIVlen = 8;//RSN Header
1086 cbICVlen = 8;//MIC
1087 cbMICHDR = sizeof(struct vnt_mic_hdr);
1088 }
1089 if (bSoftWEP == false) {
1090 //MAC Header should be padding 0 to DW alignment.
1091 uPadding = 4 - (cbMACHdLen%4);
1092 uPadding %= 4;
1093 }
1094 }
1095
1096 cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1097
1098 if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1099 bRTS = false;
1100 } else {
1101 bRTS = true;
1102 pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1103 }
1104
1105 pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1106 wTxBufSize = sizeof(STxBufHead);
1107 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1108 if (byFBOption == AUTO_FB_NONE) {
1109 if (bRTS == true) {//RTS_need
1110 pvRrvTime = (struct vnt_rrv_time_rts *)
1111 (pbyTxBufferAddr + wTxBufSize);
1112 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1113 sizeof(struct vnt_rrv_time_rts));
1114 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1115 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1116 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1117 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1118 cbMICHDR + sizeof(struct vnt_rts_g));
1119 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1120 cbMICHDR + sizeof(struct vnt_rts_g) +
1121 sizeof(struct vnt_tx_datahead_g);
1122 }
1123 else { //RTS_needless
1124 pvRrvTime = (struct vnt_rrv_time_cts *)
1125 (pbyTxBufferAddr + wTxBufSize);
1126 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1127 sizeof(struct vnt_rrv_time_cts));
1128 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1129 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1130 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1131 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1132 cbMICHDR + sizeof(struct vnt_cts));
1133 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1134 cbMICHDR + sizeof(struct vnt_cts) +
1135 sizeof(struct vnt_tx_datahead_g);
1136 }
1137 } else {
1138 // Auto Fall Back
1139 if (bRTS == true) {//RTS_need
1140 pvRrvTime = (struct vnt_rrv_time_rts *)(pbyTxBufferAddr +
1141 wTxBufSize);
1142 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1143 sizeof(struct vnt_rrv_time_rts));
1144 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1145 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1146 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1147 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1148 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1149 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1150 cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1151 sizeof(struct vnt_tx_datahead_g_fb);
1152 }
1153 else if (bRTS == false) { //RTS_needless
1154 pvRrvTime = (struct vnt_rrv_time_cts *)
1155 (pbyTxBufferAddr + wTxBufSize);
1156 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1157 sizeof(struct vnt_rrv_time_cts));
1158 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1159 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1160 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1161 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1162 cbMICHDR + sizeof(struct vnt_cts_fb));
1163 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1164 cbMICHDR + sizeof(struct vnt_cts_fb) +
1165 sizeof(struct vnt_tx_datahead_g_fb);
1166 }
1167 } // Auto Fall Back
1168 }
1169 else {//802.11a/b packet
1170 if (byFBOption == AUTO_FB_NONE) {
1171 if (bRTS == true) {//RTS_need
1172 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr +
1173 wTxBufSize);
1174 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1175 sizeof(struct vnt_rrv_time_ab));
1176 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1177 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1178 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1179 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1180 sizeof(struct vnt_rts_ab));
1181 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1182 cbMICHDR + sizeof(struct vnt_rts_ab) +
1183 sizeof(struct vnt_tx_datahead_ab);
1184 }
1185 else if (bRTS == false) { //RTS_needless, no MICHDR
1186 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1187 wTxBufSize);
1188 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1189 sizeof(struct vnt_rrv_time_ab));
1190 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1191 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1192 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1193 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1194 }
1195 } else {
1196 // Auto Fall Back
1197 if (bRTS == true) {//RTS_need
1198 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1199 wTxBufSize);
1200 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1201 sizeof(struct vnt_rrv_time_ab));
1202 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1203 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1204 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1205 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1206 sizeof(struct vnt_rts_a_fb));
1207 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1208 cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1209 sizeof(struct vnt_tx_datahead_a_fb);
1210 }
1211 else if (bRTS == false) { //RTS_needless
1212 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1213 wTxBufSize);
1214 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1215 sizeof(struct vnt_rrv_time_ab));
1216 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1217 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1218 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1219 cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1220 }
1221 } // Auto Fall Back
1222 }
1223
1224 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1225 pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1226 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1227
1228 //=========================
1229 // No Fragmentation
1230 //=========================
1231 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1232 byFragType = FRAGCTL_NONFRAG;
1233 //uDMAIdx = TYPE_AC0DMA;
1234 //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1235
1236 //Fill FIFO,RrvTime,RTS,and CTS
1237 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1238 (void *)pbyTxBufferAddr, pvRrvTime, rts_cts,
1239 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1240 //Fill DataHead
1241 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1242 byFBOption);
1243 // Generate TX MAC Header
1244 s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1245 byFragType, uDMAIdx, 0);
1246
1247 if (bNeedEncryption == true) {
1248 //Fill TXKEY
1249 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1250 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1251
1252 if (pDevice->bEnableHostWEP) {
1253 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1254 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1255 }
1256 }
1257
1258 // 802.1H
1259 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1260 if (pDevice->dwDiagRefCount == 0) {
1261 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1262 (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1263 memcpy((u8 *) (pbyPayloadHead),
1264 abySNAP_Bridgetunnel, 6);
1265 } else {
1266 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1267 }
1268 pbyType = (u8 *) (pbyPayloadHead + 6);
1269 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1270 } else {
1271 memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1272
1273 }
1274
1275 }
1276
1277 if (pPacket != NULL) {
1278 // Copy the Packet into a tx Buffer
1279 memcpy((pbyPayloadHead + cb802_1_H_len),
1280 (pPacket + ETH_HLEN),
1281 uSkbPacketLen - ETH_HLEN
1282 );
1283
1284 } else {
1285 // while bRelayPacketSend psEthHeader is point to header+payload
1286 memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1287 }
1288
1289 if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1290
1291 ///////////////////////////////////////////////////////////////////
1292
1293 if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1294 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1295 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1296 }
1297 else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1298 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1299 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1300 }
1301 else {
1302 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1303 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1304 }
1305 // DO Software Michael
1306 MIC_vInit(dwMICKey0, dwMICKey1);
1307 MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1308 dwMIC_Priority = 0;
1309 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1310 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1311 dwMICKey0, dwMICKey1);
1312
1313 ///////////////////////////////////////////////////////////////////
1314
1315 //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1316 //for (ii = 0; ii < cbFrameBodySize; ii++) {
1317 // DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1318 //}
1319 //DBG_PRN_GRP12(("\n\n\n"));
1320
1321 MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1322
1323 pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1324 pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1325
1326 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1327 MIC_vUnInit();
1328
1329 if (pDevice->bTxMICFail == true) {
1330 *pdwMIC_L = 0;
1331 *pdwMIC_R = 0;
1332 pDevice->bTxMICFail = false;
1333 }
1334 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1335 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1336 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1337 }
1338
1339 if (bSoftWEP == true) {
1340
1341 s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1342
1343 } else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true)) ||
1344 ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true)) ||
1345 ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true)) ) {
1346 cbFrameSize -= cbICVlen;
1347 }
1348
1349 cbFrameSize -= cbFCSlen;
1350
1351 *pcbHeaderLen = cbHeaderLength;
1352 *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1353
1354 //Set FragCtl in TxBufferHead
1355 pTxBufHead->wFragCtl |= (u16)byFragType;
1356
1357 return true;
1358
1359 }
1360
1361 /*+
1362 *
1363 * Description:
1364 * Translate 802.3 to 802.11 header
1365 *
1366 * Parameters:
1367 * In:
1368 * pDevice - Pointer to adapter
1369 * dwTxBufferAddr - Transmit Buffer
1370 * pPacket - Packet from upper layer
1371 * cbPacketSize - Transmit Data Length
1372 * Out:
1373 * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
1374 * pcbAppendPayload - size of append payload for 802.1H translation
1375 *
1376 * Return Value: none
1377 *
1378 -*/
1379
1380 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1381 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1382 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1383 {
1384 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1385
1386 pMACHeader->frame_control = TYPE_802_11_DATA;
1387
1388 if (pDevice->eOPMode == OP_MODE_AP) {
1389 memcpy(&(pMACHeader->addr1[0]),
1390 &(psEthHeader->h_dest[0]),
1391 ETH_ALEN);
1392 memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1393 memcpy(&(pMACHeader->addr3[0]),
1394 &(psEthHeader->h_source[0]),
1395 ETH_ALEN);
1396 pMACHeader->frame_control |= FC_FROMDS;
1397 } else {
1398 if (pDevice->eOPMode == OP_MODE_ADHOC) {
1399 memcpy(&(pMACHeader->addr1[0]),
1400 &(psEthHeader->h_dest[0]),
1401 ETH_ALEN);
1402 memcpy(&(pMACHeader->addr2[0]),
1403 &(psEthHeader->h_source[0]),
1404 ETH_ALEN);
1405 memcpy(&(pMACHeader->addr3[0]),
1406 &(pDevice->abyBSSID[0]),
1407 ETH_ALEN);
1408 } else {
1409 memcpy(&(pMACHeader->addr3[0]),
1410 &(psEthHeader->h_dest[0]),
1411 ETH_ALEN);
1412 memcpy(&(pMACHeader->addr2[0]),
1413 &(psEthHeader->h_source[0]),
1414 ETH_ALEN);
1415 memcpy(&(pMACHeader->addr1[0]),
1416 &(pDevice->abyBSSID[0]),
1417 ETH_ALEN);
1418 pMACHeader->frame_control |= FC_TODS;
1419 }
1420 }
1421
1422 if (bNeedEncrypt)
1423 pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1424
1425 pMACHeader->duration_id = cpu_to_le16(wDuration);
1426
1427 if (pDevice->bLongHeader) {
1428 PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
1429 pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1430 memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1431 }
1432 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1433
1434 //Set FragNumber in Sequence Control
1435 pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1436
1437 if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1438 pDevice->wSeqCounter++;
1439 if (pDevice->wSeqCounter > 0x0fff)
1440 pDevice->wSeqCounter = 0;
1441 }
1442
1443 if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1444 pMACHeader->frame_control |= FC_MOREFRAG;
1445 }
1446 }
1447
1448 /*+
1449 *
1450 * Description:
1451 * Request instructs a MAC to transmit a 802.11 management packet through
1452 * the adapter onto the medium.
1453 *
1454 * Parameters:
1455 * In:
1456 * hDeviceContext - Pointer to the adapter
1457 * pPacket - A pointer to a descriptor for the packet to transmit
1458 * Out:
1459 * none
1460 *
1461 * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1462 *
1463 -*/
1464
1465 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1466 struct vnt_tx_mgmt *pPacket)
1467 {
1468 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1469 struct vnt_tx_buffer *pTX_Buffer;
1470 PSTxBufHead pTxBufHead;
1471 struct vnt_usb_send_context *pContext;
1472 struct ieee80211_hdr *pMACHeader;
1473 struct ethhdr sEthHeader;
1474 u8 byPktType, *pbyTxBufferAddr;
1475 void *rts_cts = NULL;
1476 void *pvTxDataHd, *pvRrvTime, *pMICHDR;
1477 u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1478 int bNeedACK, bIsPSPOLL = false;
1479 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1480 u32 uPadding = 0;
1481 u16 wTxBufSize;
1482 u32 cbMacHdLen;
1483 u16 wCurrentRate = RATE_1M;
1484
1485 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1486
1487 if (NULL == pContext) {
1488 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1489 return CMD_STATUS_RESOURCES;
1490 }
1491
1492 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1493 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->adwTxKey[0]);
1494 cbFrameBodySize = pPacket->cbPayloadLen;
1495 pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1496 wTxBufSize = sizeof(STxBufHead);
1497
1498 if (pDevice->byBBType == BB_TYPE_11A) {
1499 wCurrentRate = RATE_6M;
1500 byPktType = PK_TYPE_11A;
1501 } else {
1502 wCurrentRate = RATE_1M;
1503 byPktType = PK_TYPE_11B;
1504 }
1505
1506 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1507 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1508 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1509 // to set power here.
1510 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1511 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1512 } else {
1513 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1514 }
1515 pDevice->wCurrentRate = wCurrentRate;
1516
1517 //Set packet type
1518 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1519 pTxBufHead->wFIFOCtl = 0;
1520 }
1521 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1522 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1523 }
1524 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1525 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1526 }
1527 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1528 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1529 }
1530
1531 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1532 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1533
1534 if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1535 bNeedACK = false;
1536 }
1537 else {
1538 bNeedACK = true;
1539 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1540 };
1541
1542 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1543 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1544
1545 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1546 //Set Preamble type always long
1547 //pDevice->byPreambleType = PREAMBLE_LONG;
1548 // probe-response don't retry
1549 //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1550 // bNeedACK = false;
1551 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1552 //}
1553 }
1554
1555 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1556
1557 if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1558 bIsPSPOLL = true;
1559 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1560 } else {
1561 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1562 }
1563
1564 //Set FRAGCTL_MACHDCNT
1565 pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1566
1567 // Notes:
1568 // Although spec says MMPDU can be fragmented; In most case,
1569 // no one will send a MMPDU under fragmentation. With RTS may occur.
1570 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1571
1572 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1573 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1574 cbIVlen = 4;
1575 cbICVlen = 4;
1576 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1577 }
1578 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1579 cbIVlen = 8;//IV+ExtIV
1580 cbMIClen = 8;
1581 cbICVlen = 4;
1582 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1583 //We need to get seed here for filling TxKey entry.
1584 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1585 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1586 }
1587 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1588 cbIVlen = 8;//RSN Header
1589 cbICVlen = 8;//MIC
1590 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1591 pDevice->bAES = true;
1592 }
1593 //MAC Header should be padding 0 to DW alignment.
1594 uPadding = 4 - (cbMacHdLen%4);
1595 uPadding %= 4;
1596 }
1597
1598 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1599
1600 //Set FIFOCTL_GrpAckPolicy
1601 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1602 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1603 }
1604 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1605
1606 //Set RrvTime/RTS/CTS Buffer
1607 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1608
1609 pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
1610 pMICHDR = NULL;
1611 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1612 sizeof(struct vnt_rrv_time_cts));
1613 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1614 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1615 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1616 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1617 }
1618 else { // 802.11a/b packet
1619 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
1620 pMICHDR = NULL;
1621 pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1622 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1623 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1624 sizeof(struct vnt_tx_datahead_ab);
1625 }
1626
1627 memcpy(&(sEthHeader.h_dest[0]),
1628 &(pPacket->p80211Header->sA3.abyAddr1[0]),
1629 ETH_ALEN);
1630 memcpy(&(sEthHeader.h_source[0]),
1631 &(pPacket->p80211Header->sA3.abyAddr2[0]),
1632 ETH_ALEN);
1633 //=========================
1634 // No Fragmentation
1635 //=========================
1636 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1637
1638 /* Fill FIFO,RrvTime,RTS,and CTS */
1639 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1640 pbyTxBufferAddr, pvRrvTime, rts_cts,
1641 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1642
1643 //Fill DataHead
1644 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1645 AUTO_FB_NONE);
1646
1647 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1648
1649 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1650
1651 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1652 u8 * pbyIVHead;
1653 u8 * pbyPayloadHead;
1654 u8 * pbyBSSID;
1655 PSKeyItem pTransmitKey = NULL;
1656
1657 pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1658 pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1659 do {
1660 if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1661 (pDevice->bLinkPass == true)) {
1662 pbyBSSID = pDevice->abyBSSID;
1663 // get pairwise key
1664 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1665 // get group key
1666 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1667 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1668 break;
1669 }
1670 } else {
1671 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1672 break;
1673 }
1674 }
1675 // get group key
1676 pbyBSSID = pDevice->abyBroadcastAddr;
1677 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1678 pTransmitKey = NULL;
1679 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1680 } else {
1681 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1682 }
1683 } while(false);
1684 //Fill TXKEY
1685 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1686 (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1687
1688 memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1689 memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1690 cbFrameBodySize);
1691 }
1692 else {
1693 // Copy the Packet into a tx Buffer
1694 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1695 }
1696
1697 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1698 pDevice->wSeqCounter++ ;
1699 if (pDevice->wSeqCounter > 0x0fff)
1700 pDevice->wSeqCounter = 0;
1701
1702 if (bIsPSPOLL) {
1703 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1704 // of FIFO control header.
1705 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1706 // in the same place of other packet's Duration-field).
1707 // And it will cause Cisco-AP to issue Disassociation-packet
1708 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1709 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1710 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1711 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1712 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1713 } else {
1714 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1715 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1716 }
1717 }
1718
1719 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1720 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1721 pTX_Buffer->byType = 0x00;
1722
1723 pContext->pPacket = NULL;
1724 pContext->Type = CONTEXT_MGMT_PACKET;
1725 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1726
1727 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1728 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1729 }
1730 else {
1731 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1732 }
1733
1734 PIPEnsSendBulkOut(pDevice,pContext);
1735 return CMD_STATUS_PENDING;
1736 }
1737
1738 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1739 struct vnt_tx_mgmt *pPacket)
1740 {
1741 struct vnt_beacon_buffer *pTX_Buffer;
1742 u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1743 u32 cbHeaderSize = 0;
1744 u16 wTxBufSize = sizeof(STxShortBufHead);
1745 PSTxShortBufHead pTxBufHead;
1746 struct ieee80211_hdr *pMACHeader;
1747 struct vnt_tx_datahead_ab *pTxDataHead;
1748 u16 wCurrentRate;
1749 u32 cbFrameBodySize;
1750 u32 cbReqCount;
1751 u8 *pbyTxBufferAddr;
1752 struct vnt_usb_send_context *pContext;
1753 CMD_STATUS status;
1754
1755 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1756 if (NULL == pContext) {
1757 status = CMD_STATUS_RESOURCES;
1758 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1759 return status ;
1760 }
1761
1762 pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1763 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1764
1765 cbFrameBodySize = pPacket->cbPayloadLen;
1766
1767 pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1768 wTxBufSize = sizeof(STxShortBufHead);
1769
1770 if (pDevice->byBBType == BB_TYPE_11A) {
1771 wCurrentRate = RATE_6M;
1772 pTxDataHead = (struct vnt_tx_datahead_ab *)
1773 (pbyTxBufferAddr + wTxBufSize);
1774 //Get SignalField,ServiceField,Length
1775 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1776 &pTxDataHead->ab);
1777 //Get Duration and TimeStampOff
1778 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1779 PK_TYPE_11A, false);
1780 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1781 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1782 } else {
1783 wCurrentRate = RATE_1M;
1784 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1785 pTxDataHead = (struct vnt_tx_datahead_ab *)
1786 (pbyTxBufferAddr + wTxBufSize);
1787 //Get SignalField,ServiceField,Length
1788 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1789 &pTxDataHead->ab);
1790 //Get Duration and TimeStampOff
1791 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1792 PK_TYPE_11B, false);
1793 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1794 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1795 }
1796
1797 //Generate Beacon Header
1798 pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1799 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1800
1801 pMACHeader->duration_id = 0;
1802 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1803 pDevice->wSeqCounter++ ;
1804 if (pDevice->wSeqCounter > 0x0fff)
1805 pDevice->wSeqCounter = 0;
1806
1807 cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1808
1809 pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1810 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1811 pTX_Buffer->byType = 0x01;
1812
1813 pContext->pPacket = NULL;
1814 pContext->Type = CONTEXT_MGMT_PACKET;
1815 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1816
1817 PIPEnsSendBulkOut(pDevice,pContext);
1818 return CMD_STATUS_PENDING;
1819
1820 }
1821
1822 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1823 {
1824 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1825 struct vnt_tx_buffer *pTX_Buffer;
1826 u8 byPktType;
1827 u8 *pbyTxBufferAddr;
1828 void *rts_cts = NULL;
1829 void *pvTxDataHd;
1830 u32 uDuration, cbReqCount;
1831 struct ieee80211_hdr *pMACHeader;
1832 u32 cbHeaderSize, cbFrameBodySize;
1833 int bNeedACK, bIsPSPOLL = false;
1834 PSTxBufHead pTxBufHead;
1835 u32 cbFrameSize;
1836 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1837 u32 uPadding = 0;
1838 u32 cbMICHDR = 0, uLength = 0;
1839 u32 dwMICKey0, dwMICKey1;
1840 u32 dwMIC_Priority;
1841 u32 *pdwMIC_L, *pdwMIC_R;
1842 u16 wTxBufSize;
1843 u32 cbMacHdLen;
1844 struct ethhdr sEthHeader;
1845 void *pvRrvTime, *pMICHDR;
1846 u32 wCurrentRate = RATE_1M;
1847 PUWLAN_80211HDR p80211Header;
1848 u32 uNodeIndex = 0;
1849 int bNodeExist = false;
1850 SKeyItem STempKey;
1851 PSKeyItem pTransmitKey = NULL;
1852 u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1853 u32 cbExtSuppRate = 0;
1854 struct vnt_usb_send_context *pContext;
1855
1856 pvRrvTime = pMICHDR = pvTxDataHd = NULL;
1857
1858 if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1859 cbFrameBodySize = 0;
1860 }
1861 else {
1862 cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1863 }
1864 p80211Header = (PUWLAN_80211HDR)skb->data;
1865
1866 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1867
1868 if (NULL == pContext) {
1869 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1870 dev_kfree_skb_irq(skb);
1871 return ;
1872 }
1873
1874 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1875 pbyTxBufferAddr = (u8 *)(&pTX_Buffer->adwTxKey[0]);
1876 pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1877 wTxBufSize = sizeof(STxBufHead);
1878
1879 if (pDevice->byBBType == BB_TYPE_11A) {
1880 wCurrentRate = RATE_6M;
1881 byPktType = PK_TYPE_11A;
1882 } else {
1883 wCurrentRate = RATE_1M;
1884 byPktType = PK_TYPE_11B;
1885 }
1886
1887 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1888 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1889 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1890 // to set power here.
1891 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1892 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1893 } else {
1894 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1895 }
1896
1897 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1898
1899 //Set packet type
1900 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1901 pTxBufHead->wFIFOCtl = 0;
1902 }
1903 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1904 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1905 }
1906 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1907 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1908 }
1909 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1910 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1911 }
1912
1913 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1914 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1915
1916 if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1917 bNeedACK = false;
1918 if (pDevice->bEnableHostWEP) {
1919 uNodeIndex = 0;
1920 bNodeExist = true;
1921 }
1922 }
1923 else {
1924 if (pDevice->bEnableHostWEP) {
1925 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1926 bNodeExist = true;
1927 }
1928 bNeedACK = true;
1929 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1930 };
1931
1932 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1933 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1934
1935 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1936 //Set Preamble type always long
1937 //pDevice->byPreambleType = PREAMBLE_LONG;
1938
1939 // probe-response don't retry
1940 //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1941 // bNeedACK = false;
1942 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1943 //}
1944 }
1945
1946 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1947
1948 if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1949 bIsPSPOLL = true;
1950 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1951 } else {
1952 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1953 }
1954
1955 // hostapd daemon ext support rate patch
1956 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1957
1958 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1959 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1960 }
1961
1962 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1963 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1964 }
1965
1966 if (cbExtSuppRate >0) {
1967 cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1968 }
1969 }
1970
1971 //Set FRAGCTL_MACHDCNT
1972 pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1973
1974 // Notes:
1975 // Although spec says MMPDU can be fragmented; In most case,
1976 // no one will send a MMPDU under fragmentation. With RTS may occur.
1977 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1978
1979 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1980 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1981 cbIVlen = 4;
1982 cbICVlen = 4;
1983 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1984 }
1985 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1986 cbIVlen = 8;//IV+ExtIV
1987 cbMIClen = 8;
1988 cbICVlen = 4;
1989 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1990 //We need to get seed here for filling TxKey entry.
1991 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1992 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1993 }
1994 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1995 cbIVlen = 8;//RSN Header
1996 cbICVlen = 8;//MIC
1997 cbMICHDR = sizeof(struct vnt_mic_hdr);
1998 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1999 pDevice->bAES = true;
2000 }
2001 //MAC Header should be padding 0 to DW alignment.
2002 uPadding = 4 - (cbMacHdLen%4);
2003 uPadding %= 4;
2004 }
2005
2006 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
2007
2008 //Set FIFOCTL_GrpAckPolicy
2009 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2010 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2011 }
2012 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2013
2014 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2015 pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
2016 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2017 sizeof(struct vnt_rrv_time_cts));
2018 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2019 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2020 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2021 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2022 sizeof(struct vnt_cts));
2023 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2024 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2025
2026 }
2027 else {//802.11a/b packet
2028
2029 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
2030 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2031 sizeof(struct vnt_rrv_time_ab));
2032 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2033 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2034 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2035 sizeof(struct vnt_tx_datahead_ab);
2036 }
2037 memcpy(&(sEthHeader.h_dest[0]),
2038 &(p80211Header->sA3.abyAddr1[0]),
2039 ETH_ALEN);
2040 memcpy(&(sEthHeader.h_source[0]),
2041 &(p80211Header->sA3.abyAddr2[0]),
2042 ETH_ALEN);
2043 //=========================
2044 // No Fragmentation
2045 //=========================
2046 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2047
2048 /* Fill FIFO,RrvTime,RTS,and CTS */
2049 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2050 pbyTxBufferAddr, pvRrvTime, rts_cts,
2051 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2052
2053 //Fill DataHead
2054 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2055 AUTO_FB_NONE);
2056
2057 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2058
2059 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2060
2061 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2062 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2063 pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2064
2065 // Copy the Packet into a tx Buffer
2066 memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2067
2068 // version set to 0, patch for hostapd deamon
2069 pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2070 memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2071
2072 // replace support rate, patch for hostapd daemon( only support 11M)
2073 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2074 if (cbExtSuppRate != 0) {
2075 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2076 memcpy((pbyPayloadHead + cbFrameBodySize),
2077 pMgmt->abyCurrSuppRates,
2078 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2079 );
2080 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2081 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2082 pMgmt->abyCurrExtSuppRates,
2083 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2084 );
2085 }
2086 }
2087
2088 // Set wep
2089 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2090
2091 if (pDevice->bEnableHostWEP) {
2092 pTransmitKey = &STempKey;
2093 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2094 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2095 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2096 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2097 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2098 memcpy(pTransmitKey->abyKey,
2099 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2100 pTransmitKey->uKeyLength
2101 );
2102 }
2103
2104 if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2105
2106 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2107 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2108
2109 // DO Software Michael
2110 MIC_vInit(dwMICKey0, dwMICKey1);
2111 MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2112 dwMIC_Priority = 0;
2113 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2114 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2115 " %X, %X\n", dwMICKey0, dwMICKey1);
2116
2117 uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2118
2119 MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2120
2121 pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2122 pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2123
2124 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2125 MIC_vUnInit();
2126
2127 if (pDevice->bTxMICFail == true) {
2128 *pdwMIC_L = 0;
2129 *pdwMIC_R = 0;
2130 pDevice->bTxMICFail = false;
2131 }
2132
2133 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2134 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2135 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2136 *pdwMIC_L, *pdwMIC_R);
2137
2138 }
2139
2140 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2141 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2142
2143 if (pDevice->bEnableHostWEP) {
2144 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2145 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2146 }
2147
2148 if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2149 s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2150 }
2151 }
2152
2153 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2154 pDevice->wSeqCounter++ ;
2155 if (pDevice->wSeqCounter > 0x0fff)
2156 pDevice->wSeqCounter = 0;
2157
2158 if (bIsPSPOLL) {
2159 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2160 // of FIFO control header.
2161 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2162 // in the same place of other packet's Duration-field).
2163 // And it will cause Cisco-AP to issue Disassociation-packet
2164 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2165 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2166 cpu_to_le16(p80211Header->sA2.wDurationID);
2167 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2168 cpu_to_le16(p80211Header->sA2.wDurationID);
2169 } else {
2170 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2171 cpu_to_le16(p80211Header->sA2.wDurationID);
2172 }
2173 }
2174
2175 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2176 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2177 pTX_Buffer->byType = 0x00;
2178
2179 pContext->pPacket = skb;
2180 pContext->Type = CONTEXT_MGMT_PACKET;
2181 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
2182
2183 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2184 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2185 }
2186 else {
2187 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2188 }
2189 PIPEnsSendBulkOut(pDevice,pContext);
2190 return ;
2191
2192 }
2193
2194 //TYPE_AC0DMA data tx
2195 /*
2196 * Description:
2197 * Tx packet via AC0DMA(DMA1)
2198 *
2199 * Parameters:
2200 * In:
2201 * pDevice - Pointer to the adapter
2202 * skb - Pointer to tx skb packet
2203 * Out:
2204 * void
2205 *
2206 * Return Value: NULL
2207 */
2208
2209 int nsDMA_tx_packet(struct vnt_private *pDevice,
2210 u32 uDMAIdx, struct sk_buff *skb)
2211 {
2212 struct net_device_stats *pStats = &pDevice->stats;
2213 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2214 struct vnt_tx_buffer *pTX_Buffer;
2215 u32 BytesToWrite = 0, uHeaderLen = 0;
2216 u32 uNodeIndex = 0;
2217 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2218 u16 wAID;
2219 u8 byPktType;
2220 int bNeedEncryption = false;
2221 PSKeyItem pTransmitKey = NULL;
2222 SKeyItem STempKey;
2223 int ii;
2224 int bTKIP_UseGTK = false;
2225 int bNeedDeAuth = false;
2226 u8 *pbyBSSID;
2227 int bNodeExist = false;
2228 struct vnt_usb_send_context *pContext;
2229 bool fConvertedPacket;
2230 u32 status;
2231 u16 wKeepRate = pDevice->wCurrentRate;
2232 int bTxeapol_key = false;
2233
2234 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2235
2236 if (pDevice->uAssocCount == 0) {
2237 dev_kfree_skb_irq(skb);
2238 return 0;
2239 }
2240
2241 if (is_multicast_ether_addr((u8 *)(skb->data))) {
2242 uNodeIndex = 0;
2243 bNodeExist = true;
2244 if (pMgmt->sNodeDBTable[0].bPSEnable) {
2245
2246 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2247 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2248 // set tx map
2249 pMgmt->abyPSTxMap[0] |= byMask[0];
2250 return 0;
2251 }
2252 // multicast/broadcast data rate
2253
2254 if (pDevice->byBBType != BB_TYPE_11A)
2255 pDevice->wCurrentRate = RATE_2M;
2256 else
2257 pDevice->wCurrentRate = RATE_24M;
2258 // long preamble type
2259 pDevice->byPreambleType = PREAMBLE_SHORT;
2260
2261 }else {
2262
2263 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2264
2265 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2266
2267 skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2268
2269 pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2270 // set tx map
2271 wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2272 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
2273 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2274 (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2275
2276 return 0;
2277 }
2278 // AP rate decided from node
2279 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2280 // tx preamble decided from node
2281
2282 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2283 pDevice->byPreambleType = pDevice->byShortPreamble;
2284
2285 }else {
2286 pDevice->byPreambleType = PREAMBLE_LONG;
2287 }
2288 bNodeExist = true;
2289 }
2290 }
2291
2292 if (bNodeExist == false) {
2293 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2294 dev_kfree_skb_irq(skb);
2295 return 0;
2296 }
2297 }
2298
2299 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2300
2301 if (pContext == NULL) {
2302 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2303 dev_kfree_skb_irq(skb);
2304 return STATUS_RESOURCES;
2305 }
2306
2307 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2308
2309 //mike add:station mode check eapol-key challenge--->
2310 {
2311 u8 Protocol_Version; //802.1x Authentication
2312 u8 Packet_Type; //802.1x Authentication
2313 u8 Descriptor_type;
2314 u16 Key_info;
2315
2316 Protocol_Version = skb->data[ETH_HLEN];
2317 Packet_Type = skb->data[ETH_HLEN+1];
2318 Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2319 Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2320 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2321 /* 802.1x OR eapol-key challenge frame transfer */
2322 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2323 (Packet_Type == 3)) {
2324 bTxeapol_key = true;
2325 if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
2326 (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
2327 if(Descriptor_type==254) {
2328 pDevice->fWPA_Authened = true;
2329 PRINT_K("WPA ");
2330 }
2331 else {
2332 pDevice->fWPA_Authened = true;
2333 PRINT_K("WPA2(re-keying) ");
2334 }
2335 PRINT_K("Authentication completed!!\n");
2336 }
2337 else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairwise-key challenge
2338 (Key_info & BIT8) && (Key_info & BIT9)) {
2339 pDevice->fWPA_Authened = true;
2340 PRINT_K("WPA2 Authentication completed!!\n");
2341 }
2342 }
2343 }
2344 }
2345 //mike add:station mode check eapol-key challenge<---
2346
2347 if (pDevice->bEncryptionEnable == true) {
2348 bNeedEncryption = true;
2349 // get Transmit key
2350 do {
2351 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2352 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2353 pbyBSSID = pDevice->abyBSSID;
2354 // get pairwise key
2355 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2356 // get group key
2357 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2358 bTKIP_UseGTK = true;
2359 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2360 break;
2361 }
2362 } else {
2363 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2364 break;
2365 }
2366 }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2367 /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2368 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2369 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2370 for (ii = 0; ii< 6; ii++)
2371 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2372 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2373
2374 // get pairwise key
2375 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2376 break;
2377 }
2378 // get group key
2379 pbyBSSID = pDevice->abyBroadcastAddr;
2380 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2381 pTransmitKey = NULL;
2382 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2383 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2384 }
2385 else
2386 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2387 } else {
2388 bTKIP_UseGTK = true;
2389 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2390 }
2391 } while(false);
2392 }
2393
2394 if (pDevice->bEnableHostWEP) {
2395 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2396 if (pDevice->bEncryptionEnable == true) {
2397 pTransmitKey = &STempKey;
2398 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2399 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2400 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2401 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2402 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2403 memcpy(pTransmitKey->abyKey,
2404 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2405 pTransmitKey->uKeyLength
2406 );
2407 }
2408 }
2409
2410 byPktType = (u8)pDevice->byPacketType;
2411
2412 if (pDevice->bFixRate) {
2413 if (pDevice->byBBType == BB_TYPE_11B) {
2414 if (pDevice->uConnectionRate >= RATE_11M) {
2415 pDevice->wCurrentRate = RATE_11M;
2416 } else {
2417 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2418 }
2419 } else {
2420 if ((pDevice->byBBType == BB_TYPE_11A) &&
2421 (pDevice->uConnectionRate <= RATE_6M)) {
2422 pDevice->wCurrentRate = RATE_6M;
2423 } else {
2424 if (pDevice->uConnectionRate >= RATE_54M)
2425 pDevice->wCurrentRate = RATE_54M;
2426 else
2427 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2428 }
2429 }
2430 }
2431 else {
2432 if (pDevice->eOPMode == OP_MODE_ADHOC) {
2433 // Adhoc Tx rate decided from node DB
2434 if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2435 // Multicast use highest data rate
2436 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2437 // preamble type
2438 pDevice->byPreambleType = pDevice->byShortPreamble;
2439 }
2440 else {
2441 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2442 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2443 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2444 pDevice->byPreambleType = pDevice->byShortPreamble;
2445
2446 }
2447 else {
2448 pDevice->byPreambleType = PREAMBLE_LONG;
2449 }
2450 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2451 }
2452 else {
2453 if (pDevice->byBBType != BB_TYPE_11A)
2454 pDevice->wCurrentRate = RATE_2M;
2455 else
2456 pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2457 // abyCurrExtSuppRates[]
2458 pDevice->byPreambleType = PREAMBLE_SHORT;
2459 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2460 }
2461 }
2462 }
2463 if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2464 // Infra STA rate decided from AP Node, index = 0
2465 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2466 }
2467 }
2468
2469 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2470 if (pDevice->byBBType != BB_TYPE_11A) {
2471 pDevice->wCurrentRate = RATE_1M;
2472 pDevice->byACKRate = RATE_1M;
2473 pDevice->byTopCCKBasicRate = RATE_1M;
2474 pDevice->byTopOFDMBasicRate = RATE_6M;
2475 } else {
2476 pDevice->wCurrentRate = RATE_6M;
2477 pDevice->byACKRate = RATE_6M;
2478 pDevice->byTopCCKBasicRate = RATE_1M;
2479 pDevice->byTopOFDMBasicRate = RATE_6M;
2480 }
2481 }
2482
2483 DBG_PRT(MSG_LEVEL_DEBUG,
2484 KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2485 pDevice->wCurrentRate);
2486
2487 if (wKeepRate != pDevice->wCurrentRate) {
2488 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2489 }
2490
2491 if (pDevice->wCurrentRate <= RATE_11M) {
2492 byPktType = PK_TYPE_11B;
2493 }
2494
2495 if (bNeedEncryption == true) {
2496 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2497 if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2498 bNeedEncryption = false;
2499 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2500 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2501 if (pTransmitKey == NULL) {
2502 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2503 }
2504 else {
2505 if (bTKIP_UseGTK == true) {
2506 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2507 }
2508 else {
2509 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2510 pTransmitKey->dwKeyIndex);
2511 bNeedEncryption = true;
2512 }
2513 }
2514 }
2515
2516 if (pDevice->bEnableHostWEP) {
2517 if ((uNodeIndex != 0) &&
2518 (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2519 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2520 pTransmitKey->dwKeyIndex);
2521 bNeedEncryption = true;
2522 }
2523 }
2524 }
2525 else {
2526
2527 if (pTransmitKey == NULL) {
2528 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2529 pContext->bBoolInUse = false;
2530 dev_kfree_skb_irq(skb);
2531 pStats->tx_dropped++;
2532 return STATUS_FAILURE;
2533 }
2534 }
2535 }
2536
2537 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2538
2539 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2540 pTX_Buffer, bNeedEncryption,
2541 skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2542 (u8 *)skb->data, pTransmitKey, uNodeIndex,
2543 pDevice->wCurrentRate,
2544 &uHeaderLen, &BytesToWrite
2545 );
2546
2547 if (fConvertedPacket == false) {
2548 pContext->bBoolInUse = false;
2549 dev_kfree_skb_irq(skb);
2550 return STATUS_FAILURE;
2551 }
2552
2553 if ( pDevice->bEnablePSMode == true ) {
2554 if ( !pDevice->bPSModeTxBurst ) {
2555 bScheduleCommand((void *) pDevice,
2556 WLAN_CMD_MAC_DISPOWERSAVING,
2557 NULL);
2558 pDevice->bPSModeTxBurst = true;
2559 }
2560 }
2561
2562 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2563 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2564
2565 pContext->pPacket = skb;
2566 pContext->Type = CONTEXT_DATA_PACKET;
2567 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2568
2569 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2570
2571 status = PIPEnsSendBulkOut(pDevice,pContext);
2572
2573 if (bNeedDeAuth == true) {
2574 u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2575
2576 bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2577 }
2578
2579 if(status!=STATUS_PENDING) {
2580 pContext->bBoolInUse = false;
2581 dev_kfree_skb_irq(skb);
2582 return STATUS_FAILURE;
2583 }
2584 else
2585 return 0;
2586
2587 }
2588
2589 /*
2590 * Description:
2591 * Relay packet send (AC1DMA) from rx dpc.
2592 *
2593 * Parameters:
2594 * In:
2595 * pDevice - Pointer to the adapter
2596 * pPacket - Pointer to rx packet
2597 * cbPacketSize - rx ethernet frame size
2598 * Out:
2599 * TURE, false
2600 *
2601 * Return Value: Return true if packet is copy to dma1; otherwise false
2602 */
2603
2604 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2605 u32 uNodeIndex)
2606 {
2607 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2608 struct vnt_tx_buffer *pTX_Buffer;
2609 u32 BytesToWrite = 0, uHeaderLen = 0;
2610 u8 byPktType = PK_TYPE_11B;
2611 int bNeedEncryption = false;
2612 SKeyItem STempKey;
2613 PSKeyItem pTransmitKey = NULL;
2614 u8 *pbyBSSID;
2615 struct vnt_usb_send_context *pContext;
2616 u8 byPktTyp;
2617 int fConvertedPacket;
2618 u32 status;
2619 u16 wKeepRate = pDevice->wCurrentRate;
2620
2621 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2622
2623 if (NULL == pContext) {
2624 return false;
2625 }
2626
2627 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2628
2629 if (pDevice->bEncryptionEnable == true) {
2630 bNeedEncryption = true;
2631 // get group key
2632 pbyBSSID = pDevice->abyBroadcastAddr;
2633 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2634 pTransmitKey = NULL;
2635 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2636 } else {
2637 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2638 }
2639 }
2640
2641 if (pDevice->bEnableHostWEP) {
2642 if (uNodeIndex < MAX_NODE_NUM + 1) {
2643 pTransmitKey = &STempKey;
2644 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2645 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2646 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2647 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2648 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2649 memcpy(pTransmitKey->abyKey,
2650 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2651 pTransmitKey->uKeyLength
2652 );
2653 }
2654 }
2655
2656 if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2657 pContext->bBoolInUse = false;
2658 return false;
2659 }
2660
2661 byPktTyp = (u8)pDevice->byPacketType;
2662
2663 if (pDevice->bFixRate) {
2664 if (pDevice->byBBType == BB_TYPE_11B) {
2665 if (pDevice->uConnectionRate >= RATE_11M) {
2666 pDevice->wCurrentRate = RATE_11M;
2667 } else {
2668 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2669 }
2670 } else {
2671 if ((pDevice->byBBType == BB_TYPE_11A) &&
2672 (pDevice->uConnectionRate <= RATE_6M)) {
2673 pDevice->wCurrentRate = RATE_6M;
2674 } else {
2675 if (pDevice->uConnectionRate >= RATE_54M)
2676 pDevice->wCurrentRate = RATE_54M;
2677 else
2678 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2679 }
2680 }
2681 }
2682 else {
2683 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2684 }
2685
2686 if (wKeepRate != pDevice->wCurrentRate) {
2687 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2688 }
2689
2690 if (pDevice->wCurrentRate <= RATE_11M)
2691 byPktType = PK_TYPE_11B;
2692
2693 BytesToWrite = uDataLen + ETH_FCS_LEN;
2694
2695 // Convert the packet to an usb frame and copy into our buffer
2696 // and send the irp.
2697
2698 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2699
2700 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2701 pTX_Buffer, bNeedEncryption,
2702 uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2703 pbySkbData, pTransmitKey, uNodeIndex,
2704 pDevice->wCurrentRate,
2705 &uHeaderLen, &BytesToWrite
2706 );
2707
2708 if (fConvertedPacket == false) {
2709 pContext->bBoolInUse = false;
2710 return false;
2711 }
2712
2713 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2714 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2715
2716 pContext->pPacket = NULL;
2717 pContext->Type = CONTEXT_DATA_PACKET;
2718 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2719
2720 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2721
2722 status = PIPEnsSendBulkOut(pDevice,pContext);
2723
2724 return true;
2725 }
2726
This page took 0.143783 seconds and 5 git commands to generate.