Merge tag 'wireless-drivers-for-davem-2016-06-04' of git://git.kernel.org/pub/scm...
[deliverable/linux.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
14 *
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
19 *
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
103 * .
104 * . Do interesting things w/ the hardware
105 * .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #include "p80211types.h"
130 #include "p80211hdr.h"
131 #include "p80211mgmt.h"
132 #include "p80211conv.h"
133 #include "p80211msg.h"
134 #include "p80211netdev.h"
135 #include "p80211req.h"
136 #include "p80211metadef.h"
137 #include "p80211metastruct.h"
138 #include "hfa384x.h"
139 #include "prism2mgmt.h"
140
141 enum cmd_mode {
142 DOWAIT = 0,
143 DOASYNC
144 };
145
146 #define THROTTLE_JIFFIES (HZ / 8)
147 #define URB_ASYNC_UNLINK 0
148 #define USB_QUEUE_BULK 0
149
150 #define ROUNDUP64(a) (((a) + 63) & ~63)
151
152 #ifdef DEBUG_USB
153 static void dbprint_urb(struct urb *urb);
154 #endif
155
156 static void
157 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
158
159 static void hfa384x_usb_defer(struct work_struct *data);
160
161 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
162
163 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
164
165 /*---------------------------------------------------*/
166 /* Callbacks */
167 static void hfa384x_usbout_callback(struct urb *urb);
168 static void hfa384x_ctlxout_callback(struct urb *urb);
169 static void hfa384x_usbin_callback(struct urb *urb);
170
171 static void
172 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
173
174 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
175
176 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
177
178 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
179 int urb_status);
180
181 /*---------------------------------------------------*/
182 /* Functions to support the prism2 usb command queue */
183
184 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
185
186 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
187
188 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
189
190 static void hfa384x_usb_throttlefn(unsigned long data);
191
192 static void hfa384x_usbctlx_completion_task(unsigned long data);
193
194 static void hfa384x_usbctlx_reaper_task(unsigned long data);
195
196 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
197
198 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
199
200 struct usbctlx_completor {
201 int (*complete)(struct usbctlx_completor *);
202 };
203
204 static int
205 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
206 hfa384x_usbctlx_t *ctlx,
207 struct usbctlx_completor *completor);
208
209 static int
210 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
211
212 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
213
214 static int
215 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
216 hfa384x_cmdresult_t *result);
217
218 static void
219 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
220 hfa384x_rridresult_t *result);
221
222 /*---------------------------------------------------*/
223 /* Low level req/resp CTLX formatters and submitters */
224 static int
225 hfa384x_docmd(hfa384x_t *hw,
226 enum cmd_mode mode,
227 hfa384x_metacmd_t *cmd,
228 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
229
230 static int
231 hfa384x_dorrid(hfa384x_t *hw,
232 enum cmd_mode mode,
233 u16 rid,
234 void *riddata,
235 unsigned int riddatalen,
236 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
237
238 static int
239 hfa384x_dowrid(hfa384x_t *hw,
240 enum cmd_mode mode,
241 u16 rid,
242 void *riddata,
243 unsigned int riddatalen,
244 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
245
246 static int
247 hfa384x_dormem(hfa384x_t *hw,
248 enum cmd_mode mode,
249 u16 page,
250 u16 offset,
251 void *data,
252 unsigned int len,
253 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
254
255 static int
256 hfa384x_dowmem(hfa384x_t *hw,
257 enum cmd_mode mode,
258 u16 page,
259 u16 offset,
260 void *data,
261 unsigned int len,
262 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
263
264 static int hfa384x_isgood_pdrcode(u16 pdrcode);
265
266 static inline const char *ctlxstr(CTLX_STATE s)
267 {
268 static const char * const ctlx_str[] = {
269 "Initial state",
270 "Complete",
271 "Request failed",
272 "Request pending",
273 "Request packet submitted",
274 "Request packet completed",
275 "Response packet completed"
276 };
277
278 return ctlx_str[s];
279 };
280
281 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
282 {
283 return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
284 }
285
286 #ifdef DEBUG_USB
287 void dbprint_urb(struct urb *urb)
288 {
289 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
290 pr_debug("urb->status=0x%08x\n", urb->status);
291 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
292 pr_debug("urb->transfer_buffer=0x%08x\n",
293 (unsigned int)urb->transfer_buffer);
294 pr_debug("urb->transfer_buffer_length=0x%08x\n",
295 urb->transfer_buffer_length);
296 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
297 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
298 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
299 (unsigned int)urb->setup_packet);
300 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
301 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
302 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
303 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
304 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
305 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
306 }
307 #endif
308
309 /*----------------------------------------------------------------
310 * submit_rx_urb
311 *
312 * Listen for input data on the BULK-IN pipe. If the pipe has
313 * stalled then schedule it to be reset.
314 *
315 * Arguments:
316 * hw device struct
317 * memflags memory allocation flags
318 *
319 * Returns:
320 * error code from submission
321 *
322 * Call context:
323 * Any
324 ----------------------------------------------------------------*/
325 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
326 {
327 struct sk_buff *skb;
328 int result;
329
330 skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
331 if (!skb) {
332 result = -ENOMEM;
333 goto done;
334 }
335
336 /* Post the IN urb */
337 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
338 hw->endp_in,
339 skb->data, sizeof(hfa384x_usbin_t),
340 hfa384x_usbin_callback, hw->wlandev);
341
342 hw->rx_urb_skb = skb;
343
344 result = -ENOLINK;
345 if (!hw->wlandev->hwremoved &&
346 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
347 result = usb_submit_urb(&hw->rx_urb, memflags);
348
349 /* Check whether we need to reset the RX pipe */
350 if (result == -EPIPE) {
351 netdev_warn(hw->wlandev->netdev,
352 "%s rx pipe stalled: requesting reset\n",
353 hw->wlandev->netdev->name);
354 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
355 schedule_work(&hw->usb_work);
356 }
357 }
358
359 /* Don't leak memory if anything should go wrong */
360 if (result != 0) {
361 dev_kfree_skb(skb);
362 hw->rx_urb_skb = NULL;
363 }
364
365 done:
366 return result;
367 }
368
369 /*----------------------------------------------------------------
370 * submit_tx_urb
371 *
372 * Prepares and submits the URB of transmitted data. If the
373 * submission fails then it will schedule the output pipe to
374 * be reset.
375 *
376 * Arguments:
377 * hw device struct
378 * tx_urb URB of data for transmission
379 * memflags memory allocation flags
380 *
381 * Returns:
382 * error code from submission
383 *
384 * Call context:
385 * Any
386 ----------------------------------------------------------------*/
387 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
388 {
389 struct net_device *netdev = hw->wlandev->netdev;
390 int result;
391
392 result = -ENOLINK;
393 if (netif_running(netdev)) {
394 if (!hw->wlandev->hwremoved &&
395 !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
396 result = usb_submit_urb(tx_urb, memflags);
397
398 /* Test whether we need to reset the TX pipe */
399 if (result == -EPIPE) {
400 netdev_warn(hw->wlandev->netdev,
401 "%s tx pipe stalled: requesting reset\n",
402 netdev->name);
403 set_bit(WORK_TX_HALT, &hw->usb_flags);
404 schedule_work(&hw->usb_work);
405 } else if (result == 0) {
406 netif_stop_queue(netdev);
407 }
408 }
409 }
410
411 return result;
412 }
413
414 /*----------------------------------------------------------------
415 * hfa394x_usb_defer
416 *
417 * There are some things that the USB stack cannot do while
418 * in interrupt context, so we arrange this function to run
419 * in process context.
420 *
421 * Arguments:
422 * hw device structure
423 *
424 * Returns:
425 * nothing
426 *
427 * Call context:
428 * process (by design)
429 ----------------------------------------------------------------*/
430 static void hfa384x_usb_defer(struct work_struct *data)
431 {
432 hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
433 struct net_device *netdev = hw->wlandev->netdev;
434
435 /* Don't bother trying to reset anything if the plug
436 * has been pulled ...
437 */
438 if (hw->wlandev->hwremoved)
439 return;
440
441 /* Reception has stopped: try to reset the input pipe */
442 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
443 int ret;
444
445 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
446
447 ret = usb_clear_halt(hw->usb, hw->endp_in);
448 if (ret != 0) {
449 netdev_err(hw->wlandev->netdev,
450 "Failed to clear rx pipe for %s: err=%d\n",
451 netdev->name, ret);
452 } else {
453 netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
454 netdev->name);
455 clear_bit(WORK_RX_HALT, &hw->usb_flags);
456 set_bit(WORK_RX_RESUME, &hw->usb_flags);
457 }
458 }
459
460 /* Resume receiving data back from the device. */
461 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
462 int ret;
463
464 ret = submit_rx_urb(hw, GFP_KERNEL);
465 if (ret != 0) {
466 netdev_err(hw->wlandev->netdev,
467 "Failed to resume %s rx pipe.\n",
468 netdev->name);
469 } else {
470 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
471 }
472 }
473
474 /* Transmission has stopped: try to reset the output pipe */
475 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
476 int ret;
477
478 usb_kill_urb(&hw->tx_urb);
479 ret = usb_clear_halt(hw->usb, hw->endp_out);
480 if (ret != 0) {
481 netdev_err(hw->wlandev->netdev,
482 "Failed to clear tx pipe for %s: err=%d\n",
483 netdev->name, ret);
484 } else {
485 netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
486 netdev->name);
487 clear_bit(WORK_TX_HALT, &hw->usb_flags);
488 set_bit(WORK_TX_RESUME, &hw->usb_flags);
489
490 /* Stopping the BULK-OUT pipe also blocked
491 * us from sending any more CTLX URBs, so
492 * we need to re-run our queue ...
493 */
494 hfa384x_usbctlxq_run(hw);
495 }
496 }
497
498 /* Resume transmitting. */
499 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
500 netif_wake_queue(hw->wlandev->netdev);
501 }
502
503 /*----------------------------------------------------------------
504 * hfa384x_create
505 *
506 * Sets up the hfa384x_t data structure for use. Note this
507 * does _not_ initialize the actual hardware, just the data structures
508 * we use to keep track of its state.
509 *
510 * Arguments:
511 * hw device structure
512 * irq device irq number
513 * iobase i/o base address for register access
514 * membase memory base address for register access
515 *
516 * Returns:
517 * nothing
518 *
519 * Side effects:
520 *
521 * Call context:
522 * process
523 ----------------------------------------------------------------*/
524 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
525 {
526 memset(hw, 0, sizeof(hfa384x_t));
527 hw->usb = usb;
528
529 /* set up the endpoints */
530 hw->endp_in = usb_rcvbulkpipe(usb, 1);
531 hw->endp_out = usb_sndbulkpipe(usb, 2);
532
533 /* Set up the waitq */
534 init_waitqueue_head(&hw->cmdq);
535
536 /* Initialize the command queue */
537 spin_lock_init(&hw->ctlxq.lock);
538 INIT_LIST_HEAD(&hw->ctlxq.pending);
539 INIT_LIST_HEAD(&hw->ctlxq.active);
540 INIT_LIST_HEAD(&hw->ctlxq.completing);
541 INIT_LIST_HEAD(&hw->ctlxq.reapable);
542
543 /* Initialize the authentication queue */
544 skb_queue_head_init(&hw->authq);
545
546 tasklet_init(&hw->reaper_bh,
547 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
548 tasklet_init(&hw->completion_bh,
549 hfa384x_usbctlx_completion_task, (unsigned long)hw);
550 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
551 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
552
553 setup_timer(&hw->throttle, hfa384x_usb_throttlefn, (unsigned long)hw);
554
555 setup_timer(&hw->resptimer, hfa384x_usbctlx_resptimerfn,
556 (unsigned long)hw);
557
558 setup_timer(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn,
559 (unsigned long)hw);
560
561 usb_init_urb(&hw->rx_urb);
562 usb_init_urb(&hw->tx_urb);
563 usb_init_urb(&hw->ctlx_urb);
564
565 hw->link_status = HFA384x_LINK_NOTCONNECTED;
566 hw->state = HFA384x_STATE_INIT;
567
568 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
569 setup_timer(&hw->commsqual_timer, prism2sta_commsqual_timer,
570 (unsigned long)hw);
571 }
572
573 /*----------------------------------------------------------------
574 * hfa384x_destroy
575 *
576 * Partner to hfa384x_create(). This function cleans up the hw
577 * structure so that it can be freed by the caller using a simple
578 * kfree. Currently, this function is just a placeholder. If, at some
579 * point in the future, an hw in the 'shutdown' state requires a 'deep'
580 * kfree, this is where it should be done. Note that if this function
581 * is called on a _running_ hw structure, the drvr_stop() function is
582 * called.
583 *
584 * Arguments:
585 * hw device structure
586 *
587 * Returns:
588 * nothing, this function is not allowed to fail.
589 *
590 * Side effects:
591 *
592 * Call context:
593 * process
594 ----------------------------------------------------------------*/
595 void hfa384x_destroy(hfa384x_t *hw)
596 {
597 struct sk_buff *skb;
598
599 if (hw->state == HFA384x_STATE_RUNNING)
600 hfa384x_drvr_stop(hw);
601 hw->state = HFA384x_STATE_PREINIT;
602
603 kfree(hw->scanresults);
604 hw->scanresults = NULL;
605
606 /* Now to clean out the auth queue */
607 while ((skb = skb_dequeue(&hw->authq)))
608 dev_kfree_skb(skb);
609 }
610
611 static hfa384x_usbctlx_t *usbctlx_alloc(void)
612 {
613 hfa384x_usbctlx_t *ctlx;
614
615 ctlx = kzalloc(sizeof(*ctlx),
616 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
617 if (ctlx)
618 init_completion(&ctlx->done);
619
620 return ctlx;
621 }
622
623 static int
624 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
625 hfa384x_cmdresult_t *result)
626 {
627 result->status = le16_to_cpu(cmdresp->status);
628 result->resp0 = le16_to_cpu(cmdresp->resp0);
629 result->resp1 = le16_to_cpu(cmdresp->resp1);
630 result->resp2 = le16_to_cpu(cmdresp->resp2);
631
632 pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
633 result->status, result->resp0, result->resp1, result->resp2);
634
635 return result->status & HFA384x_STATUS_RESULT;
636 }
637
638 static void
639 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
640 hfa384x_rridresult_t *result)
641 {
642 result->rid = le16_to_cpu(rridresp->rid);
643 result->riddata = rridresp->data;
644 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
645 }
646
647 /*----------------------------------------------------------------
648 * Completor object:
649 * This completor must be passed to hfa384x_usbctlx_complete_sync()
650 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
651 ----------------------------------------------------------------*/
652 struct usbctlx_cmd_completor {
653 struct usbctlx_completor head;
654
655 const hfa384x_usb_cmdresp_t *cmdresp;
656 hfa384x_cmdresult_t *result;
657 };
658
659 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
660 {
661 struct usbctlx_cmd_completor *complete;
662
663 complete = (struct usbctlx_cmd_completor *)head;
664 return usbctlx_get_status(complete->cmdresp, complete->result);
665 }
666
667 static inline struct usbctlx_completor *init_cmd_completor(
668 struct usbctlx_cmd_completor
669 *completor,
670 const hfa384x_usb_cmdresp_t
671 *cmdresp,
672 hfa384x_cmdresult_t *result)
673 {
674 completor->head.complete = usbctlx_cmd_completor_fn;
675 completor->cmdresp = cmdresp;
676 completor->result = result;
677 return &(completor->head);
678 }
679
680 /*----------------------------------------------------------------
681 * Completor object:
682 * This completor must be passed to hfa384x_usbctlx_complete_sync()
683 * when processing a CTLX that reads a RID.
684 ----------------------------------------------------------------*/
685 struct usbctlx_rrid_completor {
686 struct usbctlx_completor head;
687
688 const hfa384x_usb_rridresp_t *rridresp;
689 void *riddata;
690 unsigned int riddatalen;
691 };
692
693 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
694 {
695 struct usbctlx_rrid_completor *complete;
696 hfa384x_rridresult_t rridresult;
697
698 complete = (struct usbctlx_rrid_completor *)head;
699 usbctlx_get_rridresult(complete->rridresp, &rridresult);
700
701 /* Validate the length, note body len calculation in bytes */
702 if (rridresult.riddata_len != complete->riddatalen) {
703 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
704 rridresult.rid,
705 complete->riddatalen, rridresult.riddata_len);
706 return -ENODATA;
707 }
708
709 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
710 return 0;
711 }
712
713 static inline struct usbctlx_completor *init_rrid_completor(
714 struct usbctlx_rrid_completor
715 *completor,
716 const hfa384x_usb_rridresp_t
717 *rridresp,
718 void *riddata,
719 unsigned int riddatalen)
720 {
721 completor->head.complete = usbctlx_rrid_completor_fn;
722 completor->rridresp = rridresp;
723 completor->riddata = riddata;
724 completor->riddatalen = riddatalen;
725 return &(completor->head);
726 }
727
728 /*----------------------------------------------------------------
729 * Completor object:
730 * Interprets the results of a synchronous RID-write
731 ----------------------------------------------------------------*/
732 #define init_wrid_completor init_cmd_completor
733
734 /*----------------------------------------------------------------
735 * Completor object:
736 * Interprets the results of a synchronous memory-write
737 ----------------------------------------------------------------*/
738 #define init_wmem_completor init_cmd_completor
739
740 /*----------------------------------------------------------------
741 * Completor object:
742 * Interprets the results of a synchronous memory-read
743 ----------------------------------------------------------------*/
744 struct usbctlx_rmem_completor {
745 struct usbctlx_completor head;
746
747 const hfa384x_usb_rmemresp_t *rmemresp;
748 void *data;
749 unsigned int len;
750 };
751
752 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
753 {
754 struct usbctlx_rmem_completor *complete =
755 (struct usbctlx_rmem_completor *)head;
756
757 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
758 memcpy(complete->data, complete->rmemresp->data, complete->len);
759 return 0;
760 }
761
762 static inline struct usbctlx_completor *init_rmem_completor(
763 struct usbctlx_rmem_completor
764 *completor,
765 hfa384x_usb_rmemresp_t
766 *rmemresp,
767 void *data,
768 unsigned int len)
769 {
770 completor->head.complete = usbctlx_rmem_completor_fn;
771 completor->rmemresp = rmemresp;
772 completor->data = data;
773 completor->len = len;
774 return &(completor->head);
775 }
776
777 /*----------------------------------------------------------------
778 * hfa384x_cb_status
779 *
780 * Ctlx_complete handler for async CMD type control exchanges.
781 * mark the hw struct as such.
782 *
783 * Note: If the handling is changed here, it should probably be
784 * changed in docmd as well.
785 *
786 * Arguments:
787 * hw hw struct
788 * ctlx completed CTLX
789 *
790 * Returns:
791 * nothing
792 *
793 * Side effects:
794 *
795 * Call context:
796 * interrupt
797 ----------------------------------------------------------------*/
798 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
799 {
800 if (ctlx->usercb) {
801 hfa384x_cmdresult_t cmdresult;
802
803 if (ctlx->state != CTLX_COMPLETE) {
804 memset(&cmdresult, 0, sizeof(cmdresult));
805 cmdresult.status =
806 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
807 } else {
808 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
809 }
810
811 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
812 }
813 }
814
815 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
816 {
817 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
818 }
819
820 static inline int
821 hfa384x_docmd_async(hfa384x_t *hw,
822 hfa384x_metacmd_t *cmd,
823 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
824 {
825 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
826 }
827
828 static inline int
829 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
830 unsigned int riddatalen)
831 {
832 return hfa384x_dorrid(hw, DOWAIT,
833 rid, riddata, riddatalen, NULL, NULL, NULL);
834 }
835
836 static inline int
837 hfa384x_dorrid_async(hfa384x_t *hw,
838 u16 rid, void *riddata, unsigned int riddatalen,
839 ctlx_cmdcb_t cmdcb,
840 ctlx_usercb_t usercb, void *usercb_data)
841 {
842 return hfa384x_dorrid(hw, DOASYNC,
843 rid, riddata, riddatalen,
844 cmdcb, usercb, usercb_data);
845 }
846
847 static inline int
848 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
849 unsigned int riddatalen)
850 {
851 return hfa384x_dowrid(hw, DOWAIT,
852 rid, riddata, riddatalen, NULL, NULL, NULL);
853 }
854
855 static inline int
856 hfa384x_dowrid_async(hfa384x_t *hw,
857 u16 rid, void *riddata, unsigned int riddatalen,
858 ctlx_cmdcb_t cmdcb,
859 ctlx_usercb_t usercb, void *usercb_data)
860 {
861 return hfa384x_dowrid(hw, DOASYNC,
862 rid, riddata, riddatalen,
863 cmdcb, usercb, usercb_data);
864 }
865
866 static inline int
867 hfa384x_dormem_wait(hfa384x_t *hw,
868 u16 page, u16 offset, void *data, unsigned int len)
869 {
870 return hfa384x_dormem(hw, DOWAIT,
871 page, offset, data, len, NULL, NULL, NULL);
872 }
873
874 static inline int
875 hfa384x_dormem_async(hfa384x_t *hw,
876 u16 page, u16 offset, void *data, unsigned int len,
877 ctlx_cmdcb_t cmdcb,
878 ctlx_usercb_t usercb, void *usercb_data)
879 {
880 return hfa384x_dormem(hw, DOASYNC,
881 page, offset, data, len,
882 cmdcb, usercb, usercb_data);
883 }
884
885 static inline int
886 hfa384x_dowmem_wait(hfa384x_t *hw,
887 u16 page, u16 offset, void *data, unsigned int len)
888 {
889 return hfa384x_dowmem(hw, DOWAIT,
890 page, offset, data, len, NULL, NULL, NULL);
891 }
892
893 static inline int
894 hfa384x_dowmem_async(hfa384x_t *hw,
895 u16 page,
896 u16 offset,
897 void *data,
898 unsigned int len,
899 ctlx_cmdcb_t cmdcb,
900 ctlx_usercb_t usercb, void *usercb_data)
901 {
902 return hfa384x_dowmem(hw, DOASYNC,
903 page, offset, data, len,
904 cmdcb, usercb, usercb_data);
905 }
906
907 /*----------------------------------------------------------------
908 * hfa384x_cmd_initialize
909 *
910 * Issues the initialize command and sets the hw->state based
911 * on the result.
912 *
913 * Arguments:
914 * hw device structure
915 *
916 * Returns:
917 * 0 success
918 * >0 f/w reported error - f/w status code
919 * <0 driver reported error
920 *
921 * Side effects:
922 *
923 * Call context:
924 * process
925 ----------------------------------------------------------------*/
926 int hfa384x_cmd_initialize(hfa384x_t *hw)
927 {
928 int result = 0;
929 int i;
930 hfa384x_metacmd_t cmd;
931
932 cmd.cmd = HFA384x_CMDCODE_INIT;
933 cmd.parm0 = 0;
934 cmd.parm1 = 0;
935 cmd.parm2 = 0;
936
937 result = hfa384x_docmd_wait(hw, &cmd);
938
939 pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
940 cmd.result.status,
941 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
942 if (result == 0) {
943 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
944 hw->port_enabled[i] = 0;
945 }
946
947 hw->link_status = HFA384x_LINK_NOTCONNECTED;
948
949 return result;
950 }
951
952 /*----------------------------------------------------------------
953 * hfa384x_cmd_disable
954 *
955 * Issues the disable command to stop communications on one of
956 * the MACs 'ports'.
957 *
958 * Arguments:
959 * hw device structure
960 * macport MAC port number (host order)
961 *
962 * Returns:
963 * 0 success
964 * >0 f/w reported failure - f/w status code
965 * <0 driver reported error (timeout|bad arg)
966 *
967 * Side effects:
968 *
969 * Call context:
970 * process
971 ----------------------------------------------------------------*/
972 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
973 {
974 hfa384x_metacmd_t cmd;
975
976 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
977 HFA384x_CMD_MACPORT_SET(macport);
978 cmd.parm0 = 0;
979 cmd.parm1 = 0;
980 cmd.parm2 = 0;
981
982 return hfa384x_docmd_wait(hw, &cmd);
983 }
984
985 /*----------------------------------------------------------------
986 * hfa384x_cmd_enable
987 *
988 * Issues the enable command to enable communications on one of
989 * the MACs 'ports'.
990 *
991 * Arguments:
992 * hw device structure
993 * macport MAC port number
994 *
995 * Returns:
996 * 0 success
997 * >0 f/w reported failure - f/w status code
998 * <0 driver reported error (timeout|bad arg)
999 *
1000 * Side effects:
1001 *
1002 * Call context:
1003 * process
1004 ----------------------------------------------------------------*/
1005 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1006 {
1007 hfa384x_metacmd_t cmd;
1008
1009 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1010 HFA384x_CMD_MACPORT_SET(macport);
1011 cmd.parm0 = 0;
1012 cmd.parm1 = 0;
1013 cmd.parm2 = 0;
1014
1015 return hfa384x_docmd_wait(hw, &cmd);
1016 }
1017
1018 /*----------------------------------------------------------------
1019 * hfa384x_cmd_monitor
1020 *
1021 * Enables the 'monitor mode' of the MAC. Here's the description of
1022 * monitor mode that I've received thus far:
1023 *
1024 * "The "monitor mode" of operation is that the MAC passes all
1025 * frames for which the PLCP checks are correct. All received
1026 * MPDUs are passed to the host with MAC Port = 7, with a
1027 * receive status of good, FCS error, or undecryptable. Passing
1028 * certain MPDUs is a violation of the 802.11 standard, but useful
1029 * for a debugging tool." Normal communication is not possible
1030 * while monitor mode is enabled.
1031 *
1032 * Arguments:
1033 * hw device structure
1034 * enable a code (0x0b|0x0f) that enables/disables
1035 * monitor mode. (host order)
1036 *
1037 * Returns:
1038 * 0 success
1039 * >0 f/w reported failure - f/w status code
1040 * <0 driver reported error (timeout|bad arg)
1041 *
1042 * Side effects:
1043 *
1044 * Call context:
1045 * process
1046 ----------------------------------------------------------------*/
1047 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1048 {
1049 hfa384x_metacmd_t cmd;
1050
1051 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1052 HFA384x_CMD_AINFO_SET(enable);
1053 cmd.parm0 = 0;
1054 cmd.parm1 = 0;
1055 cmd.parm2 = 0;
1056
1057 return hfa384x_docmd_wait(hw, &cmd);
1058 }
1059
1060 /*----------------------------------------------------------------
1061 * hfa384x_cmd_download
1062 *
1063 * Sets the controls for the MAC controller code/data download
1064 * process. The arguments set the mode and address associated
1065 * with a download. Note that the aux registers should be enabled
1066 * prior to setting one of the download enable modes.
1067 *
1068 * Arguments:
1069 * hw device structure
1070 * mode 0 - Disable programming and begin code exec
1071 * 1 - Enable volatile mem programming
1072 * 2 - Enable non-volatile mem programming
1073 * 3 - Program non-volatile section from NV download
1074 * buffer.
1075 * (host order)
1076 * lowaddr
1077 * highaddr For mode 1, sets the high & low order bits of
1078 * the "destination address". This address will be
1079 * the execution start address when download is
1080 * subsequently disabled.
1081 * For mode 2, sets the high & low order bits of
1082 * the destination in NV ram.
1083 * For modes 0 & 3, should be zero. (host order)
1084 * NOTE: these are CMD format.
1085 * codelen Length of the data to write in mode 2,
1086 * zero otherwise. (host order)
1087 *
1088 * Returns:
1089 * 0 success
1090 * >0 f/w reported failure - f/w status code
1091 * <0 driver reported error (timeout|bad arg)
1092 *
1093 * Side effects:
1094 *
1095 * Call context:
1096 * process
1097 ----------------------------------------------------------------*/
1098 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1099 u16 highaddr, u16 codelen)
1100 {
1101 hfa384x_metacmd_t cmd;
1102
1103 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1104 mode, lowaddr, highaddr, codelen);
1105
1106 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1107 HFA384x_CMD_PROGMODE_SET(mode));
1108
1109 cmd.parm0 = lowaddr;
1110 cmd.parm1 = highaddr;
1111 cmd.parm2 = codelen;
1112
1113 return hfa384x_docmd_wait(hw, &cmd);
1114 }
1115
1116 /*----------------------------------------------------------------
1117 * hfa384x_corereset
1118 *
1119 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1120 * structure is in its "created" state. That is, it is initialized
1121 * with proper values. Note that if a reset is done after the
1122 * device has been active for awhile, the caller might have to clean
1123 * up some leftover cruft in the hw structure.
1124 *
1125 * Arguments:
1126 * hw device structure
1127 * holdtime how long (in ms) to hold the reset
1128 * settletime how long (in ms) to wait after releasing
1129 * the reset
1130 *
1131 * Returns:
1132 * nothing
1133 *
1134 * Side effects:
1135 *
1136 * Call context:
1137 * process
1138 ----------------------------------------------------------------*/
1139 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1140 {
1141 int result;
1142
1143 result = usb_reset_device(hw->usb);
1144 if (result < 0) {
1145 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1146 result);
1147 }
1148
1149 return result;
1150 }
1151
1152 /*----------------------------------------------------------------
1153 * hfa384x_usbctlx_complete_sync
1154 *
1155 * Waits for a synchronous CTLX object to complete,
1156 * and then handles the response.
1157 *
1158 * Arguments:
1159 * hw device structure
1160 * ctlx CTLX ptr
1161 * completor functor object to decide what to
1162 * do with the CTLX's result.
1163 *
1164 * Returns:
1165 * 0 Success
1166 * -ERESTARTSYS Interrupted by a signal
1167 * -EIO CTLX failed
1168 * -ENODEV Adapter was unplugged
1169 * ??? Result from completor
1170 *
1171 * Side effects:
1172 *
1173 * Call context:
1174 * process
1175 ----------------------------------------------------------------*/
1176 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1177 hfa384x_usbctlx_t *ctlx,
1178 struct usbctlx_completor *completor)
1179 {
1180 unsigned long flags;
1181 int result;
1182
1183 result = wait_for_completion_interruptible(&ctlx->done);
1184
1185 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1186
1187 /*
1188 * We can only handle the CTLX if the USB disconnect
1189 * function has not run yet ...
1190 */
1191 cleanup:
1192 if (hw->wlandev->hwremoved) {
1193 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1194 result = -ENODEV;
1195 } else if (result != 0) {
1196 int runqueue = 0;
1197
1198 /*
1199 * We were probably interrupted, so delete
1200 * this CTLX asynchronously, kill the timers
1201 * and the URB, and then start the next
1202 * pending CTLX.
1203 *
1204 * NOTE: We can only delete the timers and
1205 * the URB if this CTLX is active.
1206 */
1207 if (ctlx == get_active_ctlx(hw)) {
1208 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1209
1210 del_singleshot_timer_sync(&hw->reqtimer);
1211 del_singleshot_timer_sync(&hw->resptimer);
1212 hw->req_timer_done = 1;
1213 hw->resp_timer_done = 1;
1214 usb_kill_urb(&hw->ctlx_urb);
1215
1216 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1217
1218 runqueue = 1;
1219
1220 /*
1221 * This scenario is so unlikely that I'm
1222 * happy with a grubby "goto" solution ...
1223 */
1224 if (hw->wlandev->hwremoved)
1225 goto cleanup;
1226 }
1227
1228 /*
1229 * The completion task will send this CTLX
1230 * to the reaper the next time it runs. We
1231 * are no longer in a hurry.
1232 */
1233 ctlx->reapable = 1;
1234 ctlx->state = CTLX_REQ_FAILED;
1235 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1236
1237 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1238
1239 if (runqueue)
1240 hfa384x_usbctlxq_run(hw);
1241 } else {
1242 if (ctlx->state == CTLX_COMPLETE) {
1243 result = completor->complete(completor);
1244 } else {
1245 netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1246 le16_to_cpu(ctlx->outbuf.type),
1247 ctlxstr(ctlx->state));
1248 result = -EIO;
1249 }
1250
1251 list_del(&ctlx->list);
1252 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1253 kfree(ctlx);
1254 }
1255
1256 return result;
1257 }
1258
1259 /*----------------------------------------------------------------
1260 * hfa384x_docmd
1261 *
1262 * Constructs a command CTLX and submits it.
1263 *
1264 * NOTE: Any changes to the 'post-submit' code in this function
1265 * need to be carried over to hfa384x_cbcmd() since the handling
1266 * is virtually identical.
1267 *
1268 * Arguments:
1269 * hw device structure
1270 * mode DOWAIT or DOASYNC
1271 * cmd cmd structure. Includes all arguments and result
1272 * data points. All in host order. in host order
1273 * cmdcb command-specific callback
1274 * usercb user callback for async calls, NULL for DOWAIT calls
1275 * usercb_data user supplied data pointer for async calls, NULL
1276 * for DOASYNC calls
1277 *
1278 * Returns:
1279 * 0 success
1280 * -EIO CTLX failure
1281 * -ERESTARTSYS Awakened on signal
1282 * >0 command indicated error, Status and Resp0-2 are
1283 * in hw structure.
1284 *
1285 * Side effects:
1286 *
1287 *
1288 * Call context:
1289 * process
1290 ----------------------------------------------------------------*/
1291 static int
1292 hfa384x_docmd(hfa384x_t *hw,
1293 enum cmd_mode mode,
1294 hfa384x_metacmd_t *cmd,
1295 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1296 {
1297 int result;
1298 hfa384x_usbctlx_t *ctlx;
1299
1300 ctlx = usbctlx_alloc();
1301 if (!ctlx) {
1302 result = -ENOMEM;
1303 goto done;
1304 }
1305
1306 /* Initialize the command */
1307 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1308 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1309 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1310 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1311 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1312
1313 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1314
1315 pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1316 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1317
1318 ctlx->reapable = mode;
1319 ctlx->cmdcb = cmdcb;
1320 ctlx->usercb = usercb;
1321 ctlx->usercb_data = usercb_data;
1322
1323 result = hfa384x_usbctlx_submit(hw, ctlx);
1324 if (result != 0) {
1325 kfree(ctlx);
1326 } else if (mode == DOWAIT) {
1327 struct usbctlx_cmd_completor completor;
1328
1329 result =
1330 hfa384x_usbctlx_complete_sync(hw, ctlx,
1331 init_cmd_completor(&completor,
1332 &ctlx->
1333 inbuf.
1334 cmdresp,
1335 &cmd->
1336 result));
1337 }
1338
1339 done:
1340 return result;
1341 }
1342
1343 /*----------------------------------------------------------------
1344 * hfa384x_dorrid
1345 *
1346 * Constructs a read rid CTLX and issues it.
1347 *
1348 * NOTE: Any changes to the 'post-submit' code in this function
1349 * need to be carried over to hfa384x_cbrrid() since the handling
1350 * is virtually identical.
1351 *
1352 * Arguments:
1353 * hw device structure
1354 * mode DOWAIT or DOASYNC
1355 * rid Read RID number (host order)
1356 * riddata Caller supplied buffer that MAC formatted RID.data
1357 * record will be written to for DOWAIT calls. Should
1358 * be NULL for DOASYNC calls.
1359 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1360 * cmdcb command callback for async calls, NULL for DOWAIT calls
1361 * usercb user callback for async calls, NULL for DOWAIT calls
1362 * usercb_data user supplied data pointer for async calls, NULL
1363 * for DOWAIT calls
1364 *
1365 * Returns:
1366 * 0 success
1367 * -EIO CTLX failure
1368 * -ERESTARTSYS Awakened on signal
1369 * -ENODATA riddatalen != macdatalen
1370 * >0 command indicated error, Status and Resp0-2 are
1371 * in hw structure.
1372 *
1373 * Side effects:
1374 *
1375 * Call context:
1376 * interrupt (DOASYNC)
1377 * process (DOWAIT or DOASYNC)
1378 ----------------------------------------------------------------*/
1379 static int
1380 hfa384x_dorrid(hfa384x_t *hw,
1381 enum cmd_mode mode,
1382 u16 rid,
1383 void *riddata,
1384 unsigned int riddatalen,
1385 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1386 {
1387 int result;
1388 hfa384x_usbctlx_t *ctlx;
1389
1390 ctlx = usbctlx_alloc();
1391 if (!ctlx) {
1392 result = -ENOMEM;
1393 goto done;
1394 }
1395
1396 /* Initialize the command */
1397 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1398 ctlx->outbuf.rridreq.frmlen =
1399 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1400 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1401
1402 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1403
1404 ctlx->reapable = mode;
1405 ctlx->cmdcb = cmdcb;
1406 ctlx->usercb = usercb;
1407 ctlx->usercb_data = usercb_data;
1408
1409 /* Submit the CTLX */
1410 result = hfa384x_usbctlx_submit(hw, ctlx);
1411 if (result != 0) {
1412 kfree(ctlx);
1413 } else if (mode == DOWAIT) {
1414 struct usbctlx_rrid_completor completor;
1415
1416 result =
1417 hfa384x_usbctlx_complete_sync(hw, ctlx,
1418 init_rrid_completor
1419 (&completor,
1420 &ctlx->inbuf.rridresp,
1421 riddata, riddatalen));
1422 }
1423
1424 done:
1425 return result;
1426 }
1427
1428 /*----------------------------------------------------------------
1429 * hfa384x_dowrid
1430 *
1431 * Constructs a write rid CTLX and issues it.
1432 *
1433 * NOTE: Any changes to the 'post-submit' code in this function
1434 * need to be carried over to hfa384x_cbwrid() since the handling
1435 * is virtually identical.
1436 *
1437 * Arguments:
1438 * hw device structure
1439 * enum cmd_mode DOWAIT or DOASYNC
1440 * rid RID code
1441 * riddata Data portion of RID formatted for MAC
1442 * riddatalen Length of the data portion in bytes
1443 * cmdcb command callback for async calls, NULL for DOWAIT calls
1444 * usercb user callback for async calls, NULL for DOWAIT calls
1445 * usercb_data user supplied data pointer for async calls
1446 *
1447 * Returns:
1448 * 0 success
1449 * -ETIMEDOUT timed out waiting for register ready or
1450 * command completion
1451 * >0 command indicated error, Status and Resp0-2 are
1452 * in hw structure.
1453 *
1454 * Side effects:
1455 *
1456 * Call context:
1457 * interrupt (DOASYNC)
1458 * process (DOWAIT or DOASYNC)
1459 ----------------------------------------------------------------*/
1460 static int
1461 hfa384x_dowrid(hfa384x_t *hw,
1462 enum cmd_mode mode,
1463 u16 rid,
1464 void *riddata,
1465 unsigned int riddatalen,
1466 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1467 {
1468 int result;
1469 hfa384x_usbctlx_t *ctlx;
1470
1471 ctlx = usbctlx_alloc();
1472 if (!ctlx) {
1473 result = -ENOMEM;
1474 goto done;
1475 }
1476
1477 /* Initialize the command */
1478 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1479 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1480 (ctlx->outbuf.wridreq.rid) +
1481 riddatalen + 1) / 2);
1482 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1483 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1484
1485 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1486 sizeof(ctlx->outbuf.wridreq.frmlen) +
1487 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1488
1489 ctlx->reapable = mode;
1490 ctlx->cmdcb = cmdcb;
1491 ctlx->usercb = usercb;
1492 ctlx->usercb_data = usercb_data;
1493
1494 /* Submit the CTLX */
1495 result = hfa384x_usbctlx_submit(hw, ctlx);
1496 if (result != 0) {
1497 kfree(ctlx);
1498 } else if (mode == DOWAIT) {
1499 struct usbctlx_cmd_completor completor;
1500 hfa384x_cmdresult_t wridresult;
1501
1502 result = hfa384x_usbctlx_complete_sync(hw,
1503 ctlx,
1504 init_wrid_completor
1505 (&completor,
1506 &ctlx->inbuf.wridresp,
1507 &wridresult));
1508 }
1509
1510 done:
1511 return result;
1512 }
1513
1514 /*----------------------------------------------------------------
1515 * hfa384x_dormem
1516 *
1517 * Constructs a readmem CTLX and issues it.
1518 *
1519 * NOTE: Any changes to the 'post-submit' code in this function
1520 * need to be carried over to hfa384x_cbrmem() since the handling
1521 * is virtually identical.
1522 *
1523 * Arguments:
1524 * hw device structure
1525 * mode DOWAIT or DOASYNC
1526 * page MAC address space page (CMD format)
1527 * offset MAC address space offset
1528 * data Ptr to data buffer to receive read
1529 * len Length of the data to read (max == 2048)
1530 * cmdcb command callback for async calls, NULL for DOWAIT calls
1531 * usercb user callback for async calls, NULL for DOWAIT calls
1532 * usercb_data user supplied data pointer for async calls
1533 *
1534 * Returns:
1535 * 0 success
1536 * -ETIMEDOUT timed out waiting for register ready or
1537 * command completion
1538 * >0 command indicated error, Status and Resp0-2 are
1539 * in hw structure.
1540 *
1541 * Side effects:
1542 *
1543 * Call context:
1544 * interrupt (DOASYNC)
1545 * process (DOWAIT or DOASYNC)
1546 ----------------------------------------------------------------*/
1547 static int
1548 hfa384x_dormem(hfa384x_t *hw,
1549 enum cmd_mode mode,
1550 u16 page,
1551 u16 offset,
1552 void *data,
1553 unsigned int len,
1554 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1555 {
1556 int result;
1557 hfa384x_usbctlx_t *ctlx;
1558
1559 ctlx = usbctlx_alloc();
1560 if (!ctlx) {
1561 result = -ENOMEM;
1562 goto done;
1563 }
1564
1565 /* Initialize the command */
1566 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1567 ctlx->outbuf.rmemreq.frmlen =
1568 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1569 sizeof(ctlx->outbuf.rmemreq.page) + len);
1570 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1571 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1572
1573 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1574
1575 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1576 ctlx->outbuf.rmemreq.type,
1577 ctlx->outbuf.rmemreq.frmlen,
1578 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1579
1580 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1581
1582 ctlx->reapable = mode;
1583 ctlx->cmdcb = cmdcb;
1584 ctlx->usercb = usercb;
1585 ctlx->usercb_data = usercb_data;
1586
1587 result = hfa384x_usbctlx_submit(hw, ctlx);
1588 if (result != 0) {
1589 kfree(ctlx);
1590 } else if (mode == DOWAIT) {
1591 struct usbctlx_rmem_completor completor;
1592
1593 result =
1594 hfa384x_usbctlx_complete_sync(hw, ctlx,
1595 init_rmem_completor
1596 (&completor,
1597 &ctlx->inbuf.rmemresp, data,
1598 len));
1599 }
1600
1601 done:
1602 return result;
1603 }
1604
1605 /*----------------------------------------------------------------
1606 * hfa384x_dowmem
1607 *
1608 * Constructs a writemem CTLX and issues it.
1609 *
1610 * NOTE: Any changes to the 'post-submit' code in this function
1611 * need to be carried over to hfa384x_cbwmem() since the handling
1612 * is virtually identical.
1613 *
1614 * Arguments:
1615 * hw device structure
1616 * mode DOWAIT or DOASYNC
1617 * page MAC address space page (CMD format)
1618 * offset MAC address space offset
1619 * data Ptr to data buffer containing write data
1620 * len Length of the data to read (max == 2048)
1621 * cmdcb command callback for async calls, NULL for DOWAIT calls
1622 * usercb user callback for async calls, NULL for DOWAIT calls
1623 * usercb_data user supplied data pointer for async calls.
1624 *
1625 * Returns:
1626 * 0 success
1627 * -ETIMEDOUT timed out waiting for register ready or
1628 * command completion
1629 * >0 command indicated error, Status and Resp0-2 are
1630 * in hw structure.
1631 *
1632 * Side effects:
1633 *
1634 * Call context:
1635 * interrupt (DOWAIT)
1636 * process (DOWAIT or DOASYNC)
1637 ----------------------------------------------------------------*/
1638 static int
1639 hfa384x_dowmem(hfa384x_t *hw,
1640 enum cmd_mode mode,
1641 u16 page,
1642 u16 offset,
1643 void *data,
1644 unsigned int len,
1645 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1646 {
1647 int result;
1648 hfa384x_usbctlx_t *ctlx;
1649
1650 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1651
1652 ctlx = usbctlx_alloc();
1653 if (!ctlx) {
1654 result = -ENOMEM;
1655 goto done;
1656 }
1657
1658 /* Initialize the command */
1659 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1660 ctlx->outbuf.wmemreq.frmlen =
1661 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1662 sizeof(ctlx->outbuf.wmemreq.page) + len);
1663 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1664 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1665 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1666
1667 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1668 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1669 sizeof(ctlx->outbuf.wmemreq.offset) +
1670 sizeof(ctlx->outbuf.wmemreq.page) + len;
1671
1672 ctlx->reapable = mode;
1673 ctlx->cmdcb = cmdcb;
1674 ctlx->usercb = usercb;
1675 ctlx->usercb_data = usercb_data;
1676
1677 result = hfa384x_usbctlx_submit(hw, ctlx);
1678 if (result != 0) {
1679 kfree(ctlx);
1680 } else if (mode == DOWAIT) {
1681 struct usbctlx_cmd_completor completor;
1682 hfa384x_cmdresult_t wmemresult;
1683
1684 result = hfa384x_usbctlx_complete_sync(hw,
1685 ctlx,
1686 init_wmem_completor
1687 (&completor,
1688 &ctlx->inbuf.wmemresp,
1689 &wmemresult));
1690 }
1691
1692 done:
1693 return result;
1694 }
1695
1696 /*----------------------------------------------------------------
1697 * hfa384x_drvr_disable
1698 *
1699 * Issues the disable command to stop communications on one of
1700 * the MACs 'ports'. Only macport 0 is valid for stations.
1701 * APs may also disable macports 1-6. Only ports that have been
1702 * previously enabled may be disabled.
1703 *
1704 * Arguments:
1705 * hw device structure
1706 * macport MAC port number (host order)
1707 *
1708 * Returns:
1709 * 0 success
1710 * >0 f/w reported failure - f/w status code
1711 * <0 driver reported error (timeout|bad arg)
1712 *
1713 * Side effects:
1714 *
1715 * Call context:
1716 * process
1717 ----------------------------------------------------------------*/
1718 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1719 {
1720 int result = 0;
1721
1722 if ((!hw->isap && macport != 0) ||
1723 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1724 !(hw->port_enabled[macport])) {
1725 result = -EINVAL;
1726 } else {
1727 result = hfa384x_cmd_disable(hw, macport);
1728 if (result == 0)
1729 hw->port_enabled[macport] = 0;
1730 }
1731 return result;
1732 }
1733
1734 /*----------------------------------------------------------------
1735 * hfa384x_drvr_enable
1736 *
1737 * Issues the enable command to enable communications on one of
1738 * the MACs 'ports'. Only macport 0 is valid for stations.
1739 * APs may also enable macports 1-6. Only ports that are currently
1740 * disabled may be enabled.
1741 *
1742 * Arguments:
1743 * hw device structure
1744 * macport MAC port number
1745 *
1746 * Returns:
1747 * 0 success
1748 * >0 f/w reported failure - f/w status code
1749 * <0 driver reported error (timeout|bad arg)
1750 *
1751 * Side effects:
1752 *
1753 * Call context:
1754 * process
1755 ----------------------------------------------------------------*/
1756 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1757 {
1758 int result = 0;
1759
1760 if ((!hw->isap && macport != 0) ||
1761 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1762 (hw->port_enabled[macport])) {
1763 result = -EINVAL;
1764 } else {
1765 result = hfa384x_cmd_enable(hw, macport);
1766 if (result == 0)
1767 hw->port_enabled[macport] = 1;
1768 }
1769 return result;
1770 }
1771
1772 /*----------------------------------------------------------------
1773 * hfa384x_drvr_flashdl_enable
1774 *
1775 * Begins the flash download state. Checks to see that we're not
1776 * already in a download state and that a port isn't enabled.
1777 * Sets the download state and retrieves the flash download
1778 * buffer location, buffer size, and timeout length.
1779 *
1780 * Arguments:
1781 * hw device structure
1782 *
1783 * Returns:
1784 * 0 success
1785 * >0 f/w reported error - f/w status code
1786 * <0 driver reported error
1787 *
1788 * Side effects:
1789 *
1790 * Call context:
1791 * process
1792 ----------------------------------------------------------------*/
1793 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1794 {
1795 int result = 0;
1796 int i;
1797
1798 /* Check that a port isn't active */
1799 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1800 if (hw->port_enabled[i]) {
1801 pr_debug("called when port enabled.\n");
1802 return -EINVAL;
1803 }
1804 }
1805
1806 /* Check that we're not already in a download state */
1807 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1808 return -EINVAL;
1809
1810 /* Retrieve the buffer loc&size and timeout */
1811 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1812 &(hw->bufinfo), sizeof(hw->bufinfo));
1813 if (result)
1814 return result;
1815
1816 hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1817 hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1818 hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1819 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1820 &(hw->dltimeout));
1821 if (result)
1822 return result;
1823
1824 hw->dltimeout = le16_to_cpu(hw->dltimeout);
1825
1826 pr_debug("flashdl_enable\n");
1827
1828 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1829
1830 return result;
1831 }
1832
1833 /*----------------------------------------------------------------
1834 * hfa384x_drvr_flashdl_disable
1835 *
1836 * Ends the flash download state. Note that this will cause the MAC
1837 * firmware to restart.
1838 *
1839 * Arguments:
1840 * hw device structure
1841 *
1842 * Returns:
1843 * 0 success
1844 * >0 f/w reported error - f/w status code
1845 * <0 driver reported error
1846 *
1847 * Side effects:
1848 *
1849 * Call context:
1850 * process
1851 ----------------------------------------------------------------*/
1852 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1853 {
1854 /* Check that we're already in the download state */
1855 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1856 return -EINVAL;
1857
1858 pr_debug("flashdl_enable\n");
1859
1860 /* There isn't much we can do at this point, so I don't */
1861 /* bother w/ the return value */
1862 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1863 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1864
1865 return 0;
1866 }
1867
1868 /*----------------------------------------------------------------
1869 * hfa384x_drvr_flashdl_write
1870 *
1871 * Performs a FLASH download of a chunk of data. First checks to see
1872 * that we're in the FLASH download state, then sets the download
1873 * mode, uses the aux functions to 1) copy the data to the flash
1874 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1875 * compare. Lather rinse, repeat as many times an necessary to get
1876 * all the given data into flash.
1877 * When all data has been written using this function (possibly
1878 * repeatedly), call drvr_flashdl_disable() to end the download state
1879 * and restart the MAC.
1880 *
1881 * Arguments:
1882 * hw device structure
1883 * daddr Card address to write to. (host order)
1884 * buf Ptr to data to write.
1885 * len Length of data (host order).
1886 *
1887 * Returns:
1888 * 0 success
1889 * >0 f/w reported error - f/w status code
1890 * <0 driver reported error
1891 *
1892 * Side effects:
1893 *
1894 * Call context:
1895 * process
1896 ----------------------------------------------------------------*/
1897 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1898 {
1899 int result = 0;
1900 u32 dlbufaddr;
1901 int nburns;
1902 u32 burnlen;
1903 u32 burndaddr;
1904 u16 burnlo;
1905 u16 burnhi;
1906 int nwrites;
1907 u8 *writebuf;
1908 u16 writepage;
1909 u16 writeoffset;
1910 u32 writelen;
1911 int i;
1912 int j;
1913
1914 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1915
1916 /* Check that we're in the flash download state */
1917 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1918 return -EINVAL;
1919
1920 netdev_info(hw->wlandev->netdev,
1921 "Download %d bytes to flash @0x%06x\n", len, daddr);
1922
1923 /* Convert to flat address for arithmetic */
1924 /* NOTE: dlbuffer RID stores the address in AUX format */
1925 dlbufaddr =
1926 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1927 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1928 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1929 /* Calculations to determine how many fills of the dlbuffer to do
1930 * and how many USB wmemreq's to do for each fill. At this point
1931 * in time, the dlbuffer size and the wmemreq size are the same.
1932 * Therefore, nwrites should always be 1. The extra complexity
1933 * here is a hedge against future changes.
1934 */
1935
1936 /* Figure out how many times to do the flash programming */
1937 nburns = len / hw->bufinfo.len;
1938 nburns += (len % hw->bufinfo.len) ? 1 : 0;
1939
1940 /* For each flash program cycle, how many USB wmemreq's are needed? */
1941 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1942 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1943
1944 /* For each burn */
1945 for (i = 0; i < nburns; i++) {
1946 /* Get the dest address and len */
1947 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1948 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1949 burndaddr = daddr + (hw->bufinfo.len * i);
1950 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1951 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1952
1953 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1954 burnlen, burndaddr);
1955
1956 /* Set the download mode */
1957 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1958 burnlo, burnhi, burnlen);
1959 if (result) {
1960 netdev_err(hw->wlandev->netdev,
1961 "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1962 burnlo, burnhi, burnlen, result);
1963 goto exit_proc;
1964 }
1965
1966 /* copy the data to the flash download buffer */
1967 for (j = 0; j < nwrites; j++) {
1968 writebuf = buf +
1969 (i * hw->bufinfo.len) +
1970 (j * HFA384x_USB_RWMEM_MAXLEN);
1971
1972 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1973 (j * HFA384x_USB_RWMEM_MAXLEN));
1974 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
1975 (j * HFA384x_USB_RWMEM_MAXLEN));
1976
1977 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
1978 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
1979 HFA384x_USB_RWMEM_MAXLEN : writelen;
1980
1981 result = hfa384x_dowmem_wait(hw,
1982 writepage,
1983 writeoffset,
1984 writebuf, writelen);
1985 }
1986
1987 /* set the download 'write flash' mode */
1988 result = hfa384x_cmd_download(hw,
1989 HFA384x_PROGMODE_NVWRITE,
1990 0, 0, 0);
1991 if (result) {
1992 netdev_err(hw->wlandev->netdev,
1993 "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1994 burnlo, burnhi, burnlen, result);
1995 goto exit_proc;
1996 }
1997
1998 /* TODO: We really should do a readback and compare. */
1999 }
2000
2001 exit_proc:
2002
2003 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2004 /* actually disable programming mode. Remember, that will cause the */
2005 /* the firmware to effectively reset itself. */
2006
2007 return result;
2008 }
2009
2010 /*----------------------------------------------------------------
2011 * hfa384x_drvr_getconfig
2012 *
2013 * Performs the sequence necessary to read a config/info item.
2014 *
2015 * Arguments:
2016 * hw device structure
2017 * rid config/info record id (host order)
2018 * buf host side record buffer. Upon return it will
2019 * contain the body portion of the record (minus the
2020 * RID and len).
2021 * len buffer length (in bytes, should match record length)
2022 *
2023 * Returns:
2024 * 0 success
2025 * >0 f/w reported error - f/w status code
2026 * <0 driver reported error
2027 * -ENODATA length mismatch between argument and retrieved
2028 * record.
2029 *
2030 * Side effects:
2031 *
2032 * Call context:
2033 * process
2034 ----------------------------------------------------------------*/
2035 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2036 {
2037 return hfa384x_dorrid_wait(hw, rid, buf, len);
2038 }
2039
2040 /*----------------------------------------------------------------
2041 * hfa384x_drvr_setconfig_async
2042 *
2043 * Performs the sequence necessary to write a config/info item.
2044 *
2045 * Arguments:
2046 * hw device structure
2047 * rid config/info record id (in host order)
2048 * buf host side record buffer
2049 * len buffer length (in bytes)
2050 * usercb completion callback
2051 * usercb_data completion callback argument
2052 *
2053 * Returns:
2054 * 0 success
2055 * >0 f/w reported error - f/w status code
2056 * <0 driver reported error
2057 *
2058 * Side effects:
2059 *
2060 * Call context:
2061 * process
2062 ----------------------------------------------------------------*/
2063 int
2064 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2065 u16 rid,
2066 void *buf,
2067 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2068 {
2069 return hfa384x_dowrid_async(hw, rid, buf, len,
2070 hfa384x_cb_status, usercb, usercb_data);
2071 }
2072
2073 /*----------------------------------------------------------------
2074 * hfa384x_drvr_ramdl_disable
2075 *
2076 * Ends the ram download state.
2077 *
2078 * Arguments:
2079 * hw device structure
2080 *
2081 * Returns:
2082 * 0 success
2083 * >0 f/w reported error - f/w status code
2084 * <0 driver reported error
2085 *
2086 * Side effects:
2087 *
2088 * Call context:
2089 * process
2090 ----------------------------------------------------------------*/
2091 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2092 {
2093 /* Check that we're already in the download state */
2094 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2095 return -EINVAL;
2096
2097 pr_debug("ramdl_disable()\n");
2098
2099 /* There isn't much we can do at this point, so I don't */
2100 /* bother w/ the return value */
2101 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2102 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2103
2104 return 0;
2105 }
2106
2107 /*----------------------------------------------------------------
2108 * hfa384x_drvr_ramdl_enable
2109 *
2110 * Begins the ram download state. Checks to see that we're not
2111 * already in a download state and that a port isn't enabled.
2112 * Sets the download state and calls cmd_download with the
2113 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2114 *
2115 * Arguments:
2116 * hw device structure
2117 * exeaddr the card execution address that will be
2118 * jumped to when ramdl_disable() is called
2119 * (host order).
2120 *
2121 * Returns:
2122 * 0 success
2123 * >0 f/w reported error - f/w status code
2124 * <0 driver reported error
2125 *
2126 * Side effects:
2127 *
2128 * Call context:
2129 * process
2130 ----------------------------------------------------------------*/
2131 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2132 {
2133 int result = 0;
2134 u16 lowaddr;
2135 u16 hiaddr;
2136 int i;
2137
2138 /* Check that a port isn't active */
2139 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2140 if (hw->port_enabled[i]) {
2141 netdev_err(hw->wlandev->netdev,
2142 "Can't download with a macport enabled.\n");
2143 return -EINVAL;
2144 }
2145 }
2146
2147 /* Check that we're not already in a download state */
2148 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2149 netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2150 return -EINVAL;
2151 }
2152
2153 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2154
2155 /* Call the download(1,addr) function */
2156 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2157 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2158
2159 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2160 lowaddr, hiaddr, 0);
2161
2162 if (result == 0) {
2163 /* Set the download state */
2164 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2165 } else {
2166 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2167 lowaddr, hiaddr, result);
2168 }
2169
2170 return result;
2171 }
2172
2173 /*----------------------------------------------------------------
2174 * hfa384x_drvr_ramdl_write
2175 *
2176 * Performs a RAM download of a chunk of data. First checks to see
2177 * that we're in the RAM download state, then uses the [read|write]mem USB
2178 * commands to 1) copy the data, 2) readback and compare. The download
2179 * state is unaffected. When all data has been written using
2180 * this function, call drvr_ramdl_disable() to end the download state
2181 * and restart the MAC.
2182 *
2183 * Arguments:
2184 * hw device structure
2185 * daddr Card address to write to. (host order)
2186 * buf Ptr to data to write.
2187 * len Length of data (host order).
2188 *
2189 * Returns:
2190 * 0 success
2191 * >0 f/w reported error - f/w status code
2192 * <0 driver reported error
2193 *
2194 * Side effects:
2195 *
2196 * Call context:
2197 * process
2198 ----------------------------------------------------------------*/
2199 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2200 {
2201 int result = 0;
2202 int nwrites;
2203 u8 *data = buf;
2204 int i;
2205 u32 curraddr;
2206 u16 currpage;
2207 u16 curroffset;
2208 u16 currlen;
2209
2210 /* Check that we're in the ram download state */
2211 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2212 return -EINVAL;
2213
2214 netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2215 len, daddr);
2216
2217 /* How many dowmem calls? */
2218 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2219 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2220
2221 /* Do blocking wmem's */
2222 for (i = 0; i < nwrites; i++) {
2223 /* make address args */
2224 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2225 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2226 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2227 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2228 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2229 currlen = HFA384x_USB_RWMEM_MAXLEN;
2230
2231 /* Do blocking ctlx */
2232 result = hfa384x_dowmem_wait(hw,
2233 currpage,
2234 curroffset,
2235 data +
2236 (i * HFA384x_USB_RWMEM_MAXLEN),
2237 currlen);
2238
2239 if (result)
2240 break;
2241
2242 /* TODO: We really should have a readback. */
2243 }
2244
2245 return result;
2246 }
2247
2248 /*----------------------------------------------------------------
2249 * hfa384x_drvr_readpda
2250 *
2251 * Performs the sequence to read the PDA space. Note there is no
2252 * drvr_writepda() function. Writing a PDA is
2253 * generally implemented by a calling component via calls to
2254 * cmd_download and writing to the flash download buffer via the
2255 * aux regs.
2256 *
2257 * Arguments:
2258 * hw device structure
2259 * buf buffer to store PDA in
2260 * len buffer length
2261 *
2262 * Returns:
2263 * 0 success
2264 * >0 f/w reported error - f/w status code
2265 * <0 driver reported error
2266 * -ETIMEDOUT timeout waiting for the cmd regs to become
2267 * available, or waiting for the control reg
2268 * to indicate the Aux port is enabled.
2269 * -ENODATA the buffer does NOT contain a valid PDA.
2270 * Either the card PDA is bad, or the auxdata
2271 * reads are giving us garbage.
2272
2273 *
2274 * Side effects:
2275 *
2276 * Call context:
2277 * process or non-card interrupt.
2278 ----------------------------------------------------------------*/
2279 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2280 {
2281 int result = 0;
2282 u16 *pda = buf;
2283 int pdaok = 0;
2284 int morepdrs = 1;
2285 int currpdr = 0; /* word offset of the current pdr */
2286 size_t i;
2287 u16 pdrlen; /* pdr length in bytes, host order */
2288 u16 pdrcode; /* pdr code, host order */
2289 u16 currpage;
2290 u16 curroffset;
2291 struct pdaloc {
2292 u32 cardaddr;
2293 u16 auxctl;
2294 } pdaloc[] = {
2295 {
2296 HFA3842_PDA_BASE, 0}, {
2297 HFA3841_PDA_BASE, 0}, {
2298 HFA3841_PDA_BOGUS_BASE, 0}
2299 };
2300
2301 /* Read the pda from each known address. */
2302 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2303 /* Make address */
2304 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2305 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2306
2307 /* units of bytes */
2308 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2309 len);
2310
2311 if (result) {
2312 netdev_warn(hw->wlandev->netdev,
2313 "Read from index %zd failed, continuing\n",
2314 i);
2315 continue;
2316 }
2317
2318 /* Test for garbage */
2319 pdaok = 1; /* initially assume good */
2320 morepdrs = 1;
2321 while (pdaok && morepdrs) {
2322 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2323 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2324 /* Test the record length */
2325 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2326 netdev_err(hw->wlandev->netdev,
2327 "pdrlen invalid=%d\n", pdrlen);
2328 pdaok = 0;
2329 break;
2330 }
2331 /* Test the code */
2332 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2333 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2334 pdrcode);
2335 pdaok = 0;
2336 break;
2337 }
2338 /* Test for completion */
2339 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2340 morepdrs = 0;
2341
2342 /* Move to the next pdr (if necessary) */
2343 if (morepdrs) {
2344 /* note the access to pda[], need words here */
2345 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2346 }
2347 }
2348 if (pdaok) {
2349 netdev_info(hw->wlandev->netdev,
2350 "PDA Read from 0x%08x in %s space.\n",
2351 pdaloc[i].cardaddr,
2352 pdaloc[i].auxctl == 0 ? "EXTDS" :
2353 pdaloc[i].auxctl == 1 ? "NV" :
2354 pdaloc[i].auxctl == 2 ? "PHY" :
2355 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2356 "<bogus auxctl>");
2357 break;
2358 }
2359 }
2360 result = pdaok ? 0 : -ENODATA;
2361
2362 if (result)
2363 pr_debug("Failure: pda is not okay\n");
2364
2365 return result;
2366 }
2367
2368 /*----------------------------------------------------------------
2369 * hfa384x_drvr_setconfig
2370 *
2371 * Performs the sequence necessary to write a config/info item.
2372 *
2373 * Arguments:
2374 * hw device structure
2375 * rid config/info record id (in host order)
2376 * buf host side record buffer
2377 * len buffer length (in bytes)
2378 *
2379 * Returns:
2380 * 0 success
2381 * >0 f/w reported error - f/w status code
2382 * <0 driver reported error
2383 *
2384 * Side effects:
2385 *
2386 * Call context:
2387 * process
2388 ----------------------------------------------------------------*/
2389 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2390 {
2391 return hfa384x_dowrid_wait(hw, rid, buf, len);
2392 }
2393
2394 /*----------------------------------------------------------------
2395 * hfa384x_drvr_start
2396 *
2397 * Issues the MAC initialize command, sets up some data structures,
2398 * and enables the interrupts. After this function completes, the
2399 * low-level stuff should be ready for any/all commands.
2400 *
2401 * Arguments:
2402 * hw device structure
2403 * Returns:
2404 * 0 success
2405 * >0 f/w reported error - f/w status code
2406 * <0 driver reported error
2407 *
2408 * Side effects:
2409 *
2410 * Call context:
2411 * process
2412 ----------------------------------------------------------------*/
2413
2414 int hfa384x_drvr_start(hfa384x_t *hw)
2415 {
2416 int result, result1, result2;
2417 u16 status;
2418
2419 might_sleep();
2420
2421 /* Clear endpoint stalls - but only do this if the endpoint
2422 * is showing a stall status. Some prism2 cards seem to behave
2423 * badly if a clear_halt is called when the endpoint is already
2424 * ok
2425 */
2426 result =
2427 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2428 if (result < 0) {
2429 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2430 goto done;
2431 }
2432 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2433 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2434
2435 result =
2436 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2437 if (result < 0) {
2438 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2439 goto done;
2440 }
2441 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2442 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2443
2444 /* Synchronous unlink, in case we're trying to restart the driver */
2445 usb_kill_urb(&hw->rx_urb);
2446
2447 /* Post the IN urb */
2448 result = submit_rx_urb(hw, GFP_KERNEL);
2449 if (result != 0) {
2450 netdev_err(hw->wlandev->netdev,
2451 "Fatal, failed to submit RX URB, result=%d\n",
2452 result);
2453 goto done;
2454 }
2455
2456 /* Call initialize twice, with a 1 second sleep in between.
2457 * This is a nasty work-around since many prism2 cards seem to
2458 * need time to settle after an init from cold. The second
2459 * call to initialize in theory is not necessary - but we call
2460 * it anyway as a double insurance policy:
2461 * 1) If the first init should fail, the second may well succeed
2462 * and the card can still be used
2463 * 2) It helps ensures all is well with the card after the first
2464 * init and settle time.
2465 */
2466 result1 = hfa384x_cmd_initialize(hw);
2467 msleep(1000);
2468 result = hfa384x_cmd_initialize(hw);
2469 result2 = result;
2470 if (result1 != 0) {
2471 if (result2 != 0) {
2472 netdev_err(hw->wlandev->netdev,
2473 "cmd_initialize() failed on two attempts, results %d and %d\n",
2474 result1, result2);
2475 usb_kill_urb(&hw->rx_urb);
2476 goto done;
2477 } else {
2478 pr_debug("First cmd_initialize() failed (result %d),\n",
2479 result1);
2480 pr_debug("but second attempt succeeded. All should be ok\n");
2481 }
2482 } else if (result2 != 0) {
2483 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2484 result2);
2485 netdev_warn(hw->wlandev->netdev,
2486 "Most likely the card will be functional\n");
2487 goto done;
2488 }
2489
2490 hw->state = HFA384x_STATE_RUNNING;
2491
2492 done:
2493 return result;
2494 }
2495
2496 /*----------------------------------------------------------------
2497 * hfa384x_drvr_stop
2498 *
2499 * Shuts down the MAC to the point where it is safe to unload the
2500 * driver. Any subsystem that may be holding a data or function
2501 * ptr into the driver must be cleared/deinitialized.
2502 *
2503 * Arguments:
2504 * hw device structure
2505 * Returns:
2506 * 0 success
2507 * >0 f/w reported error - f/w status code
2508 * <0 driver reported error
2509 *
2510 * Side effects:
2511 *
2512 * Call context:
2513 * process
2514 ----------------------------------------------------------------*/
2515 int hfa384x_drvr_stop(hfa384x_t *hw)
2516 {
2517 int i;
2518
2519 might_sleep();
2520
2521 /* There's no need for spinlocks here. The USB "disconnect"
2522 * function sets this "removed" flag and then calls us.
2523 */
2524 if (!hw->wlandev->hwremoved) {
2525 /* Call initialize to leave the MAC in its 'reset' state */
2526 hfa384x_cmd_initialize(hw);
2527
2528 /* Cancel the rxurb */
2529 usb_kill_urb(&hw->rx_urb);
2530 }
2531
2532 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2533 hw->state = HFA384x_STATE_INIT;
2534
2535 del_timer_sync(&hw->commsqual_timer);
2536
2537 /* Clear all the port status */
2538 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2539 hw->port_enabled[i] = 0;
2540
2541 return 0;
2542 }
2543
2544 /*----------------------------------------------------------------
2545 * hfa384x_drvr_txframe
2546 *
2547 * Takes a frame from prism2sta and queues it for transmission.
2548 *
2549 * Arguments:
2550 * hw device structure
2551 * skb packet buffer struct. Contains an 802.11
2552 * data frame.
2553 * p80211_hdr points to the 802.11 header for the packet.
2554 * Returns:
2555 * 0 Success and more buffs available
2556 * 1 Success but no more buffs
2557 * 2 Allocation failure
2558 * 4 Buffer full or queue busy
2559 *
2560 * Side effects:
2561 *
2562 * Call context:
2563 * interrupt
2564 ----------------------------------------------------------------*/
2565 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2566 union p80211_hdr *p80211_hdr,
2567 struct p80211_metawep *p80211_wep)
2568 {
2569 int usbpktlen = sizeof(hfa384x_tx_frame_t);
2570 int result;
2571 int ret;
2572 char *ptr;
2573
2574 if (hw->tx_urb.status == -EINPROGRESS) {
2575 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2576 result = 3;
2577 goto exit;
2578 }
2579
2580 /* Build Tx frame structure */
2581 /* Set up the control field */
2582 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2583
2584 /* Setup the usb type field */
2585 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2586
2587 /* Set up the sw_support field to identify this frame */
2588 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2589
2590 /* Tx complete and Tx exception disable per dleach. Might be causing
2591 * buf depletion
2592 */
2593 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2594 #if defined(DOBOTH)
2595 hw->txbuff.txfrm.desc.tx_control =
2596 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2597 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2598 #elif defined(DOEXC)
2599 hw->txbuff.txfrm.desc.tx_control =
2600 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2601 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2602 #else
2603 hw->txbuff.txfrm.desc.tx_control =
2604 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2605 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2606 #endif
2607 hw->txbuff.txfrm.desc.tx_control =
2608 cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2609
2610 /* copy the header over to the txdesc */
2611 memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2612 sizeof(union p80211_hdr));
2613
2614 /* if we're using host WEP, increase size by IV+ICV */
2615 if (p80211_wep->data) {
2616 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2617 usbpktlen += 8;
2618 } else {
2619 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2620 }
2621
2622 usbpktlen += skb->len;
2623
2624 /* copy over the WEP IV if we are using host WEP */
2625 ptr = hw->txbuff.txfrm.data;
2626 if (p80211_wep->data) {
2627 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2628 ptr += sizeof(p80211_wep->iv);
2629 memcpy(ptr, p80211_wep->data, skb->len);
2630 } else {
2631 memcpy(ptr, skb->data, skb->len);
2632 }
2633 /* copy over the packet data */
2634 ptr += skb->len;
2635
2636 /* copy over the WEP ICV if we are using host WEP */
2637 if (p80211_wep->data)
2638 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2639
2640 /* Send the USB packet */
2641 usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2642 hw->endp_out,
2643 &(hw->txbuff), ROUNDUP64(usbpktlen),
2644 hfa384x_usbout_callback, hw->wlandev);
2645 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2646
2647 result = 1;
2648 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2649 if (ret != 0) {
2650 netdev_err(hw->wlandev->netdev,
2651 "submit_tx_urb() failed, error=%d\n", ret);
2652 result = 3;
2653 }
2654
2655 exit:
2656 return result;
2657 }
2658
2659 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2660 {
2661 hfa384x_t *hw = wlandev->priv;
2662 unsigned long flags;
2663
2664 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2665
2666 if (!hw->wlandev->hwremoved) {
2667 int sched;
2668
2669 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2670 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2671 if (sched)
2672 schedule_work(&hw->usb_work);
2673 }
2674
2675 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2676 }
2677
2678 /*----------------------------------------------------------------
2679 * hfa384x_usbctlx_reaper_task
2680 *
2681 * Tasklet to delete dead CTLX objects
2682 *
2683 * Arguments:
2684 * data ptr to a hfa384x_t
2685 *
2686 * Returns:
2687 *
2688 * Call context:
2689 * Interrupt
2690 ----------------------------------------------------------------*/
2691 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2692 {
2693 hfa384x_t *hw = (hfa384x_t *)data;
2694 hfa384x_usbctlx_t *ctlx, *temp;
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2698
2699 /* This list is guaranteed to be empty if someone
2700 * has unplugged the adapter.
2701 */
2702 list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2703 list_del(&ctlx->list);
2704 kfree(ctlx);
2705 }
2706
2707 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2708 }
2709
2710 /*----------------------------------------------------------------
2711 * hfa384x_usbctlx_completion_task
2712 *
2713 * Tasklet to call completion handlers for returned CTLXs
2714 *
2715 * Arguments:
2716 * data ptr to hfa384x_t
2717 *
2718 * Returns:
2719 * Nothing
2720 *
2721 * Call context:
2722 * Interrupt
2723 ----------------------------------------------------------------*/
2724 static void hfa384x_usbctlx_completion_task(unsigned long data)
2725 {
2726 hfa384x_t *hw = (hfa384x_t *)data;
2727 hfa384x_usbctlx_t *ctlx, *temp;
2728 unsigned long flags;
2729
2730 int reap = 0;
2731
2732 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2733
2734 /* This list is guaranteed to be empty if someone
2735 * has unplugged the adapter ...
2736 */
2737 list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2738 /* Call the completion function that this
2739 * command was assigned, assuming it has one.
2740 */
2741 if (ctlx->cmdcb) {
2742 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2743 ctlx->cmdcb(hw, ctlx);
2744 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2745
2746 /* Make sure we don't try and complete
2747 * this CTLX more than once!
2748 */
2749 ctlx->cmdcb = NULL;
2750
2751 /* Did someone yank the adapter out
2752 * while our list was (briefly) unlocked?
2753 */
2754 if (hw->wlandev->hwremoved) {
2755 reap = 0;
2756 break;
2757 }
2758 }
2759
2760 /*
2761 * "Reapable" CTLXs are ones which don't have any
2762 * threads waiting for them to die. Hence they must
2763 * be delivered to The Reaper!
2764 */
2765 if (ctlx->reapable) {
2766 /* Move the CTLX off the "completing" list (hopefully)
2767 * on to the "reapable" list where the reaper task
2768 * can find it. And "reapable" means that this CTLX
2769 * isn't sitting on a wait-queue somewhere.
2770 */
2771 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2772 reap = 1;
2773 }
2774
2775 complete(&ctlx->done);
2776 }
2777 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2778
2779 if (reap)
2780 tasklet_schedule(&hw->reaper_bh);
2781 }
2782
2783 /*----------------------------------------------------------------
2784 * unlocked_usbctlx_cancel_async
2785 *
2786 * Mark the CTLX dead asynchronously, and ensure that the
2787 * next command on the queue is run afterwards.
2788 *
2789 * Arguments:
2790 * hw ptr to the hfa384x_t structure
2791 * ctlx ptr to a CTLX structure
2792 *
2793 * Returns:
2794 * 0 the CTLX's URB is inactive
2795 * -EINPROGRESS the URB is currently being unlinked
2796 *
2797 * Call context:
2798 * Either process or interrupt, but presumably interrupt
2799 ----------------------------------------------------------------*/
2800 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2801 hfa384x_usbctlx_t *ctlx)
2802 {
2803 int ret;
2804
2805 /*
2806 * Try to delete the URB containing our request packet.
2807 * If we succeed, then its completion handler will be
2808 * called with a status of -ECONNRESET.
2809 */
2810 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2811 ret = usb_unlink_urb(&hw->ctlx_urb);
2812
2813 if (ret != -EINPROGRESS) {
2814 /*
2815 * The OUT URB had either already completed
2816 * or was still in the pending queue, so the
2817 * URB's completion function will not be called.
2818 * We will have to complete the CTLX ourselves.
2819 */
2820 ctlx->state = CTLX_REQ_FAILED;
2821 unlocked_usbctlx_complete(hw, ctlx);
2822 ret = 0;
2823 }
2824
2825 return ret;
2826 }
2827
2828 /*----------------------------------------------------------------
2829 * unlocked_usbctlx_complete
2830 *
2831 * A CTLX has completed. It may have been successful, it may not
2832 * have been. At this point, the CTLX should be quiescent. The URBs
2833 * aren't active and the timers should have been stopped.
2834 *
2835 * The CTLX is migrated to the "completing" queue, and the completing
2836 * tasklet is scheduled.
2837 *
2838 * Arguments:
2839 * hw ptr to a hfa384x_t structure
2840 * ctlx ptr to a ctlx structure
2841 *
2842 * Returns:
2843 * nothing
2844 *
2845 * Side effects:
2846 *
2847 * Call context:
2848 * Either, assume interrupt
2849 ----------------------------------------------------------------*/
2850 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2851 {
2852 /* Timers have been stopped, and ctlx should be in
2853 * a terminal state. Retire it from the "active"
2854 * queue.
2855 */
2856 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2857 tasklet_schedule(&hw->completion_bh);
2858
2859 switch (ctlx->state) {
2860 case CTLX_COMPLETE:
2861 case CTLX_REQ_FAILED:
2862 /* This are the correct terminating states. */
2863 break;
2864
2865 default:
2866 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2867 le16_to_cpu(ctlx->outbuf.type),
2868 ctlxstr(ctlx->state));
2869 break;
2870 } /* switch */
2871 }
2872
2873 /*----------------------------------------------------------------
2874 * hfa384x_usbctlxq_run
2875 *
2876 * Checks to see if the head item is running. If not, starts it.
2877 *
2878 * Arguments:
2879 * hw ptr to hfa384x_t
2880 *
2881 * Returns:
2882 * nothing
2883 *
2884 * Side effects:
2885 *
2886 * Call context:
2887 * any
2888 ----------------------------------------------------------------*/
2889 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
2890 {
2891 unsigned long flags;
2892
2893 /* acquire lock */
2894 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2895
2896 /* Only one active CTLX at any one time, because there's no
2897 * other (reliable) way to match the response URB to the
2898 * correct CTLX.
2899 *
2900 * Don't touch any of these CTLXs if the hardware
2901 * has been removed or the USB subsystem is stalled.
2902 */
2903 if (!list_empty(&hw->ctlxq.active) ||
2904 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2905 goto unlock;
2906
2907 while (!list_empty(&hw->ctlxq.pending)) {
2908 hfa384x_usbctlx_t *head;
2909 int result;
2910
2911 /* This is the first pending command */
2912 head = list_entry(hw->ctlxq.pending.next,
2913 hfa384x_usbctlx_t, list);
2914
2915 /* We need to split this off to avoid a race condition */
2916 list_move_tail(&head->list, &hw->ctlxq.active);
2917
2918 /* Fill the out packet */
2919 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
2920 hw->endp_out,
2921 &(head->outbuf), ROUNDUP64(head->outbufsize),
2922 hfa384x_ctlxout_callback, hw);
2923 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2924
2925 /* Now submit the URB and update the CTLX's state */
2926 result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2927 if (result == 0) {
2928 /* This CTLX is now running on the active queue */
2929 head->state = CTLX_REQ_SUBMITTED;
2930
2931 /* Start the OUT wait timer */
2932 hw->req_timer_done = 0;
2933 hw->reqtimer.expires = jiffies + HZ;
2934 add_timer(&hw->reqtimer);
2935
2936 /* Start the IN wait timer */
2937 hw->resp_timer_done = 0;
2938 hw->resptimer.expires = jiffies + 2 * HZ;
2939 add_timer(&hw->resptimer);
2940
2941 break;
2942 }
2943
2944 if (result == -EPIPE) {
2945 /* The OUT pipe needs resetting, so put
2946 * this CTLX back in the "pending" queue
2947 * and schedule a reset ...
2948 */
2949 netdev_warn(hw->wlandev->netdev,
2950 "%s tx pipe stalled: requesting reset\n",
2951 hw->wlandev->netdev->name);
2952 list_move(&head->list, &hw->ctlxq.pending);
2953 set_bit(WORK_TX_HALT, &hw->usb_flags);
2954 schedule_work(&hw->usb_work);
2955 break;
2956 }
2957
2958 if (result == -ESHUTDOWN) {
2959 netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
2960 hw->wlandev->netdev->name);
2961 break;
2962 }
2963
2964 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
2965 le16_to_cpu(head->outbuf.type), result);
2966 unlocked_usbctlx_complete(hw, head);
2967 } /* while */
2968
2969 unlock:
2970 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2971 }
2972
2973 /*----------------------------------------------------------------
2974 * hfa384x_usbin_callback
2975 *
2976 * Callback for URBs on the BULKIN endpoint.
2977 *
2978 * Arguments:
2979 * urb ptr to the completed urb
2980 *
2981 * Returns:
2982 * nothing
2983 *
2984 * Side effects:
2985 *
2986 * Call context:
2987 * interrupt
2988 ----------------------------------------------------------------*/
2989 static void hfa384x_usbin_callback(struct urb *urb)
2990 {
2991 wlandevice_t *wlandev = urb->context;
2992 hfa384x_t *hw;
2993 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)urb->transfer_buffer;
2994 struct sk_buff *skb = NULL;
2995 int result;
2996 int urb_status;
2997 u16 type;
2998
2999 enum USBIN_ACTION {
3000 HANDLE,
3001 RESUBMIT,
3002 ABORT
3003 } action;
3004
3005 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3006 goto exit;
3007
3008 hw = wlandev->priv;
3009 if (!hw)
3010 goto exit;
3011
3012 skb = hw->rx_urb_skb;
3013 BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3014
3015 hw->rx_urb_skb = NULL;
3016
3017 /* Check for error conditions within the URB */
3018 switch (urb->status) {
3019 case 0:
3020 action = HANDLE;
3021
3022 /* Check for short packet */
3023 if (urb->actual_length == 0) {
3024 wlandev->netdev->stats.rx_errors++;
3025 wlandev->netdev->stats.rx_length_errors++;
3026 action = RESUBMIT;
3027 }
3028 break;
3029
3030 case -EPIPE:
3031 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3032 wlandev->netdev->name);
3033 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3034 schedule_work(&hw->usb_work);
3035 wlandev->netdev->stats.rx_errors++;
3036 action = ABORT;
3037 break;
3038
3039 case -EILSEQ:
3040 case -ETIMEDOUT:
3041 case -EPROTO:
3042 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3043 !timer_pending(&hw->throttle)) {
3044 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3045 }
3046 wlandev->netdev->stats.rx_errors++;
3047 action = ABORT;
3048 break;
3049
3050 case -EOVERFLOW:
3051 wlandev->netdev->stats.rx_over_errors++;
3052 action = RESUBMIT;
3053 break;
3054
3055 case -ENODEV:
3056 case -ESHUTDOWN:
3057 pr_debug("status=%d, device removed.\n", urb->status);
3058 action = ABORT;
3059 break;
3060
3061 case -ENOENT:
3062 case -ECONNRESET:
3063 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3064 action = ABORT;
3065 break;
3066
3067 default:
3068 pr_debug("urb status=%d, transfer flags=0x%x\n",
3069 urb->status, urb->transfer_flags);
3070 wlandev->netdev->stats.rx_errors++;
3071 action = RESUBMIT;
3072 break;
3073 }
3074
3075 urb_status = urb->status;
3076
3077 if (action != ABORT) {
3078 /* Repost the RX URB */
3079 result = submit_rx_urb(hw, GFP_ATOMIC);
3080
3081 if (result != 0) {
3082 netdev_err(hw->wlandev->netdev,
3083 "Fatal, failed to resubmit rx_urb. error=%d\n",
3084 result);
3085 }
3086 }
3087
3088 /* Handle any USB-IN packet */
3089 /* Note: the check of the sw_support field, the type field doesn't
3090 * have bit 12 set like the docs suggest.
3091 */
3092 type = le16_to_cpu(usbin->type);
3093 if (HFA384x_USB_ISRXFRM(type)) {
3094 if (action == HANDLE) {
3095 if (usbin->txfrm.desc.sw_support == 0x0123) {
3096 hfa384x_usbin_txcompl(wlandev, usbin);
3097 } else {
3098 skb_put(skb, sizeof(*usbin));
3099 hfa384x_usbin_rx(wlandev, skb);
3100 skb = NULL;
3101 }
3102 }
3103 goto exit;
3104 }
3105 if (HFA384x_USB_ISTXFRM(type)) {
3106 if (action == HANDLE)
3107 hfa384x_usbin_txcompl(wlandev, usbin);
3108 goto exit;
3109 }
3110 switch (type) {
3111 case HFA384x_USB_INFOFRM:
3112 if (action == ABORT)
3113 goto exit;
3114 if (action == HANDLE)
3115 hfa384x_usbin_info(wlandev, usbin);
3116 break;
3117
3118 case HFA384x_USB_CMDRESP:
3119 case HFA384x_USB_WRIDRESP:
3120 case HFA384x_USB_RRIDRESP:
3121 case HFA384x_USB_WMEMRESP:
3122 case HFA384x_USB_RMEMRESP:
3123 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3124 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3125 break;
3126
3127 case HFA384x_USB_BUFAVAIL:
3128 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3129 usbin->bufavail.frmlen);
3130 break;
3131
3132 case HFA384x_USB_ERROR:
3133 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3134 usbin->usberror.errortype);
3135 break;
3136
3137 default:
3138 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3139 usbin->type, urb_status);
3140 break;
3141 } /* switch */
3142
3143 exit:
3144
3145 if (skb)
3146 dev_kfree_skb(skb);
3147 }
3148
3149 /*----------------------------------------------------------------
3150 * hfa384x_usbin_ctlx
3151 *
3152 * We've received a URB containing a Prism2 "response" message.
3153 * This message needs to be matched up with a CTLX on the active
3154 * queue and our state updated accordingly.
3155 *
3156 * Arguments:
3157 * hw ptr to hfa384x_t
3158 * usbin ptr to USB IN packet
3159 * urb_status status of this Bulk-In URB
3160 *
3161 * Returns:
3162 * nothing
3163 *
3164 * Side effects:
3165 *
3166 * Call context:
3167 * interrupt
3168 ----------------------------------------------------------------*/
3169 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3170 int urb_status)
3171 {
3172 hfa384x_usbctlx_t *ctlx;
3173 int run_queue = 0;
3174 unsigned long flags;
3175
3176 retry:
3177 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3178
3179 /* There can be only one CTLX on the active queue
3180 * at any one time, and this is the CTLX that the
3181 * timers are waiting for.
3182 */
3183 if (list_empty(&hw->ctlxq.active))
3184 goto unlock;
3185
3186 /* Remove the "response timeout". It's possible that
3187 * we are already too late, and that the timeout is
3188 * already running. And that's just too bad for us,
3189 * because we could lose our CTLX from the active
3190 * queue here ...
3191 */
3192 if (del_timer(&hw->resptimer) == 0) {
3193 if (hw->resp_timer_done == 0) {
3194 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3195 goto retry;
3196 }
3197 } else {
3198 hw->resp_timer_done = 1;
3199 }
3200
3201 ctlx = get_active_ctlx(hw);
3202
3203 if (urb_status != 0) {
3204 /*
3205 * Bad CTLX, so get rid of it. But we only
3206 * remove it from the active queue if we're no
3207 * longer expecting the OUT URB to complete.
3208 */
3209 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3210 run_queue = 1;
3211 } else {
3212 const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3213
3214 /*
3215 * Check that our message is what we're expecting ...
3216 */
3217 if (ctlx->outbuf.type != intype) {
3218 netdev_warn(hw->wlandev->netdev,
3219 "Expected IN[%d], received IN[%d] - ignored.\n",
3220 le16_to_cpu(ctlx->outbuf.type),
3221 le16_to_cpu(intype));
3222 goto unlock;
3223 }
3224
3225 /* This URB has succeeded, so grab the data ... */
3226 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3227
3228 switch (ctlx->state) {
3229 case CTLX_REQ_SUBMITTED:
3230 /*
3231 * We have received our response URB before
3232 * our request has been acknowledged. Odd,
3233 * but our OUT URB is still alive...
3234 */
3235 pr_debug("Causality violation: please reboot Universe\n");
3236 ctlx->state = CTLX_RESP_COMPLETE;
3237 break;
3238
3239 case CTLX_REQ_COMPLETE:
3240 /*
3241 * This is the usual path: our request
3242 * has already been acknowledged, and
3243 * now we have received the reply too.
3244 */
3245 ctlx->state = CTLX_COMPLETE;
3246 unlocked_usbctlx_complete(hw, ctlx);
3247 run_queue = 1;
3248 break;
3249
3250 default:
3251 /*
3252 * Throw this CTLX away ...
3253 */
3254 netdev_err(hw->wlandev->netdev,
3255 "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3256 le16_to_cpu(ctlx->outbuf.type),
3257 ctlxstr(ctlx->state));
3258 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3259 run_queue = 1;
3260 break;
3261 } /* switch */
3262 }
3263
3264 unlock:
3265 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3266
3267 if (run_queue)
3268 hfa384x_usbctlxq_run(hw);
3269 }
3270
3271 /*----------------------------------------------------------------
3272 * hfa384x_usbin_txcompl
3273 *
3274 * At this point we have the results of a previous transmit.
3275 *
3276 * Arguments:
3277 * wlandev wlan device
3278 * usbin ptr to the usb transfer buffer
3279 *
3280 * Returns:
3281 * nothing
3282 *
3283 * Side effects:
3284 *
3285 * Call context:
3286 * interrupt
3287 ----------------------------------------------------------------*/
3288 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3289 hfa384x_usbin_t *usbin)
3290 {
3291 u16 status;
3292
3293 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3294
3295 /* Was there an error? */
3296 if (HFA384x_TXSTATUS_ISERROR(status))
3297 prism2sta_ev_txexc(wlandev, status);
3298 else
3299 prism2sta_ev_tx(wlandev, status);
3300 }
3301
3302 /*----------------------------------------------------------------
3303 * hfa384x_usbin_rx
3304 *
3305 * At this point we have a successful received a rx frame packet.
3306 *
3307 * Arguments:
3308 * wlandev wlan device
3309 * usbin ptr to the usb transfer buffer
3310 *
3311 * Returns:
3312 * nothing
3313 *
3314 * Side effects:
3315 *
3316 * Call context:
3317 * interrupt
3318 ----------------------------------------------------------------*/
3319 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3320 {
3321 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)skb->data;
3322 hfa384x_t *hw = wlandev->priv;
3323 int hdrlen;
3324 struct p80211_rxmeta *rxmeta;
3325 u16 data_len;
3326 u16 fc;
3327
3328 /* Byte order convert once up front. */
3329 usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3330 usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3331
3332 /* Now handle frame based on port# */
3333 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3334 case 0:
3335 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3336
3337 /* If exclude and we receive an unencrypted, drop it */
3338 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3339 !WLAN_GET_FC_ISWEP(fc)) {
3340 break;
3341 }
3342
3343 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3344
3345 /* How much header data do we have? */
3346 hdrlen = p80211_headerlen(fc);
3347
3348 /* Pull off the descriptor */
3349 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3350
3351 /* Now shunt the header block up against the data block
3352 * with an "overlapping" copy
3353 */
3354 memmove(skb_push(skb, hdrlen),
3355 &usbin->rxfrm.desc.frame_control, hdrlen);
3356
3357 skb->dev = wlandev->netdev;
3358 skb->dev->last_rx = jiffies;
3359
3360 /* And set the frame length properly */
3361 skb_trim(skb, data_len + hdrlen);
3362
3363 /* The prism2 series does not return the CRC */
3364 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3365
3366 skb_reset_mac_header(skb);
3367
3368 /* Attach the rxmeta, set some stuff */
3369 p80211skb_rxmeta_attach(wlandev, skb);
3370 rxmeta = P80211SKB_RXMETA(skb);
3371 rxmeta->mactime = usbin->rxfrm.desc.time;
3372 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3373 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3374 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3375
3376 p80211netdev_rx(wlandev, skb);
3377
3378 break;
3379
3380 case 7:
3381 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3382 /* Copy to wlansnif skb */
3383 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3384 dev_kfree_skb(skb);
3385 } else {
3386 pr_debug("Received monitor frame: FCSerr set\n");
3387 }
3388 break;
3389
3390 default:
3391 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3392 HFA384x_RXSTATUS_MACPORT_GET(
3393 usbin->rxfrm.desc.status));
3394 break;
3395 }
3396 }
3397
3398 /*----------------------------------------------------------------
3399 * hfa384x_int_rxmonitor
3400 *
3401 * Helper function for int_rx. Handles monitor frames.
3402 * Note that this function allocates space for the FCS and sets it
3403 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3404 * higher layers expect it. 0xffffffff is used as a flag to indicate
3405 * the FCS is bogus.
3406 *
3407 * Arguments:
3408 * wlandev wlan device structure
3409 * rxfrm rx descriptor read from card in int_rx
3410 *
3411 * Returns:
3412 * nothing
3413 *
3414 * Side effects:
3415 * Allocates an skb and passes it up via the PF_PACKET interface.
3416 * Call context:
3417 * interrupt
3418 ----------------------------------------------------------------*/
3419 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3420 hfa384x_usb_rxfrm_t *rxfrm)
3421 {
3422 hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3423 unsigned int hdrlen = 0;
3424 unsigned int datalen = 0;
3425 unsigned int skblen = 0;
3426 u8 *datap;
3427 u16 fc;
3428 struct sk_buff *skb;
3429 hfa384x_t *hw = wlandev->priv;
3430
3431 /* Remember the status, time, and data_len fields are in host order */
3432 /* Figure out how big the frame is */
3433 fc = le16_to_cpu(rxdesc->frame_control);
3434 hdrlen = p80211_headerlen(fc);
3435 datalen = le16_to_cpu(rxdesc->data_len);
3436
3437 /* Allocate an ind message+framesize skb */
3438 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3439
3440 /* sanity check the length */
3441 if (skblen >
3442 (sizeof(struct p80211_caphdr) +
3443 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3444 pr_debug("overlen frm: len=%zd\n",
3445 skblen - sizeof(struct p80211_caphdr));
3446 }
3447
3448 skb = dev_alloc_skb(skblen);
3449 if (!skb)
3450 return;
3451
3452 /* only prepend the prism header if in the right mode */
3453 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3454 (hw->sniffhdr != 0)) {
3455 struct p80211_caphdr *caphdr;
3456 /* The NEW header format! */
3457 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3458 caphdr = (struct p80211_caphdr *)datap;
3459
3460 caphdr->version = htonl(P80211CAPTURE_VERSION);
3461 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3462 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3463 caphdr->hosttime = __cpu_to_be64(jiffies);
3464 caphdr->phytype = htonl(4); /* dss_dot11_b */
3465 caphdr->channel = htonl(hw->sniff_channel);
3466 caphdr->datarate = htonl(rxdesc->rate);
3467 caphdr->antenna = htonl(0); /* unknown */
3468 caphdr->priority = htonl(0); /* unknown */
3469 caphdr->ssi_type = htonl(3); /* rssi_raw */
3470 caphdr->ssi_signal = htonl(rxdesc->signal);
3471 caphdr->ssi_noise = htonl(rxdesc->silence);
3472 caphdr->preamble = htonl(0); /* unknown */
3473 caphdr->encoding = htonl(1); /* cck */
3474 }
3475
3476 /* Copy the 802.11 header to the skb
3477 (ctl frames may be less than a full header) */
3478 datap = skb_put(skb, hdrlen);
3479 memcpy(datap, &(rxdesc->frame_control), hdrlen);
3480
3481 /* If any, copy the data from the card to the skb */
3482 if (datalen > 0) {
3483 datap = skb_put(skb, datalen);
3484 memcpy(datap, rxfrm->data, datalen);
3485
3486 /* check for unencrypted stuff if WEP bit set. */
3487 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3488 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3489 /* clear wep; it's the 802.2 header! */
3490 *(datap - hdrlen + 1) &= 0xbf;
3491 }
3492
3493 if (hw->sniff_fcs) {
3494 /* Set the FCS */
3495 datap = skb_put(skb, WLAN_CRC_LEN);
3496 memset(datap, 0xff, WLAN_CRC_LEN);
3497 }
3498
3499 /* pass it back up */
3500 p80211netdev_rx(wlandev, skb);
3501 }
3502
3503 /*----------------------------------------------------------------
3504 * hfa384x_usbin_info
3505 *
3506 * At this point we have a successful received a Prism2 info frame.
3507 *
3508 * Arguments:
3509 * wlandev wlan device
3510 * usbin ptr to the usb transfer buffer
3511 *
3512 * Returns:
3513 * nothing
3514 *
3515 * Side effects:
3516 *
3517 * Call context:
3518 * interrupt
3519 ----------------------------------------------------------------*/
3520 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3521 {
3522 usbin->infofrm.info.framelen =
3523 le16_to_cpu(usbin->infofrm.info.framelen);
3524 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3525 }
3526
3527 /*----------------------------------------------------------------
3528 * hfa384x_usbout_callback
3529 *
3530 * Callback for URBs on the BULKOUT endpoint.
3531 *
3532 * Arguments:
3533 * urb ptr to the completed urb
3534 *
3535 * Returns:
3536 * nothing
3537 *
3538 * Side effects:
3539 *
3540 * Call context:
3541 * interrupt
3542 ----------------------------------------------------------------*/
3543 static void hfa384x_usbout_callback(struct urb *urb)
3544 {
3545 wlandevice_t *wlandev = urb->context;
3546
3547 #ifdef DEBUG_USB
3548 dbprint_urb(urb);
3549 #endif
3550
3551 if (wlandev && wlandev->netdev) {
3552 switch (urb->status) {
3553 case 0:
3554 prism2sta_ev_alloc(wlandev);
3555 break;
3556
3557 case -EPIPE:
3558 {
3559 hfa384x_t *hw = wlandev->priv;
3560
3561 netdev_warn(hw->wlandev->netdev,
3562 "%s tx pipe stalled: requesting reset\n",
3563 wlandev->netdev->name);
3564 if (!test_and_set_bit
3565 (WORK_TX_HALT, &hw->usb_flags))
3566 schedule_work(&hw->usb_work);
3567 wlandev->netdev->stats.tx_errors++;
3568 break;
3569 }
3570
3571 case -EPROTO:
3572 case -ETIMEDOUT:
3573 case -EILSEQ:
3574 {
3575 hfa384x_t *hw = wlandev->priv;
3576
3577 if (!test_and_set_bit
3578 (THROTTLE_TX, &hw->usb_flags) &&
3579 !timer_pending(&hw->throttle)) {
3580 mod_timer(&hw->throttle,
3581 jiffies + THROTTLE_JIFFIES);
3582 }
3583 wlandev->netdev->stats.tx_errors++;
3584 netif_stop_queue(wlandev->netdev);
3585 break;
3586 }
3587
3588 case -ENOENT:
3589 case -ESHUTDOWN:
3590 /* Ignorable errors */
3591 break;
3592
3593 default:
3594 netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3595 urb->status);
3596 wlandev->netdev->stats.tx_errors++;
3597 break;
3598 } /* switch */
3599 }
3600 }
3601
3602 /*----------------------------------------------------------------
3603 * hfa384x_ctlxout_callback
3604 *
3605 * Callback for control data on the BULKOUT endpoint.
3606 *
3607 * Arguments:
3608 * urb ptr to the completed urb
3609 *
3610 * Returns:
3611 * nothing
3612 *
3613 * Side effects:
3614 *
3615 * Call context:
3616 * interrupt
3617 ----------------------------------------------------------------*/
3618 static void hfa384x_ctlxout_callback(struct urb *urb)
3619 {
3620 hfa384x_t *hw = urb->context;
3621 int delete_resptimer = 0;
3622 int timer_ok = 1;
3623 int run_queue = 0;
3624 hfa384x_usbctlx_t *ctlx;
3625 unsigned long flags;
3626
3627 pr_debug("urb->status=%d\n", urb->status);
3628 #ifdef DEBUG_USB
3629 dbprint_urb(urb);
3630 #endif
3631 if ((urb->status == -ESHUTDOWN) ||
3632 (urb->status == -ENODEV) || !hw)
3633 return;
3634
3635 retry:
3636 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3637
3638 /*
3639 * Only one CTLX at a time on the "active" list, and
3640 * none at all if we are unplugged. However, we can
3641 * rely on the disconnect function to clean everything
3642 * up if someone unplugged the adapter.
3643 */
3644 if (list_empty(&hw->ctlxq.active)) {
3645 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3646 return;
3647 }
3648
3649 /*
3650 * Having something on the "active" queue means
3651 * that we have timers to worry about ...
3652 */
3653 if (del_timer(&hw->reqtimer) == 0) {
3654 if (hw->req_timer_done == 0) {
3655 /*
3656 * This timer was actually running while we
3657 * were trying to delete it. Let it terminate
3658 * gracefully instead.
3659 */
3660 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3661 goto retry;
3662 }
3663 } else {
3664 hw->req_timer_done = 1;
3665 }
3666
3667 ctlx = get_active_ctlx(hw);
3668
3669 if (urb->status == 0) {
3670 /* Request portion of a CTLX is successful */
3671 switch (ctlx->state) {
3672 case CTLX_REQ_SUBMITTED:
3673 /* This OUT-ACK received before IN */
3674 ctlx->state = CTLX_REQ_COMPLETE;
3675 break;
3676
3677 case CTLX_RESP_COMPLETE:
3678 /* IN already received before this OUT-ACK,
3679 * so this command must now be complete.
3680 */
3681 ctlx->state = CTLX_COMPLETE;
3682 unlocked_usbctlx_complete(hw, ctlx);
3683 run_queue = 1;
3684 break;
3685
3686 default:
3687 /* This is NOT a valid CTLX "success" state! */
3688 netdev_err(hw->wlandev->netdev,
3689 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3690 le16_to_cpu(ctlx->outbuf.type),
3691 ctlxstr(ctlx->state), urb->status);
3692 break;
3693 } /* switch */
3694 } else {
3695 /* If the pipe has stalled then we need to reset it */
3696 if ((urb->status == -EPIPE) &&
3697 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3698 netdev_warn(hw->wlandev->netdev,
3699 "%s tx pipe stalled: requesting reset\n",
3700 hw->wlandev->netdev->name);
3701 schedule_work(&hw->usb_work);
3702 }
3703
3704 /* If someone cancels the OUT URB then its status
3705 * should be either -ECONNRESET or -ENOENT.
3706 */
3707 ctlx->state = CTLX_REQ_FAILED;
3708 unlocked_usbctlx_complete(hw, ctlx);
3709 delete_resptimer = 1;
3710 run_queue = 1;
3711 }
3712
3713 delresp:
3714 if (delete_resptimer) {
3715 timer_ok = del_timer(&hw->resptimer);
3716 if (timer_ok != 0)
3717 hw->resp_timer_done = 1;
3718 }
3719
3720 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3721
3722 if (!timer_ok && (hw->resp_timer_done == 0)) {
3723 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3724 goto delresp;
3725 }
3726
3727 if (run_queue)
3728 hfa384x_usbctlxq_run(hw);
3729 }
3730
3731 /*----------------------------------------------------------------
3732 * hfa384x_usbctlx_reqtimerfn
3733 *
3734 * Timer response function for CTLX request timeouts. If this
3735 * function is called, it means that the callback for the OUT
3736 * URB containing a Prism2.x XXX_Request was never called.
3737 *
3738 * Arguments:
3739 * data a ptr to the hfa384x_t
3740 *
3741 * Returns:
3742 * nothing
3743 *
3744 * Side effects:
3745 *
3746 * Call context:
3747 * interrupt
3748 ----------------------------------------------------------------*/
3749 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3750 {
3751 hfa384x_t *hw = (hfa384x_t *)data;
3752 unsigned long flags;
3753
3754 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3755
3756 hw->req_timer_done = 1;
3757
3758 /* Removing the hardware automatically empties
3759 * the active list ...
3760 */
3761 if (!list_empty(&hw->ctlxq.active)) {
3762 /*
3763 * We must ensure that our URB is removed from
3764 * the system, if it hasn't already expired.
3765 */
3766 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3767 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3768 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3769
3770 ctlx->state = CTLX_REQ_FAILED;
3771
3772 /* This URB was active, but has now been
3773 * cancelled. It will now have a status of
3774 * -ECONNRESET in the callback function.
3775 *
3776 * We are cancelling this CTLX, so we're
3777 * not going to need to wait for a response.
3778 * The URB's callback function will check
3779 * that this timer is truly dead.
3780 */
3781 if (del_timer(&hw->resptimer) != 0)
3782 hw->resp_timer_done = 1;
3783 }
3784 }
3785
3786 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3787 }
3788
3789 /*----------------------------------------------------------------
3790 * hfa384x_usbctlx_resptimerfn
3791 *
3792 * Timer response function for CTLX response timeouts. If this
3793 * function is called, it means that the callback for the IN
3794 * URB containing a Prism2.x XXX_Response was never called.
3795 *
3796 * Arguments:
3797 * data a ptr to the hfa384x_t
3798 *
3799 * Returns:
3800 * nothing
3801 *
3802 * Side effects:
3803 *
3804 * Call context:
3805 * interrupt
3806 ----------------------------------------------------------------*/
3807 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3808 {
3809 hfa384x_t *hw = (hfa384x_t *)data;
3810 unsigned long flags;
3811
3812 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3813
3814 hw->resp_timer_done = 1;
3815
3816 /* The active list will be empty if the
3817 * adapter has been unplugged ...
3818 */
3819 if (!list_empty(&hw->ctlxq.active)) {
3820 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3821
3822 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3823 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3824 hfa384x_usbctlxq_run(hw);
3825 return;
3826 }
3827 }
3828 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3829 }
3830
3831 /*----------------------------------------------------------------
3832 * hfa384x_usb_throttlefn
3833 *
3834 *
3835 * Arguments:
3836 * data ptr to hw
3837 *
3838 * Returns:
3839 * Nothing
3840 *
3841 * Side effects:
3842 *
3843 * Call context:
3844 * Interrupt
3845 ----------------------------------------------------------------*/
3846 static void hfa384x_usb_throttlefn(unsigned long data)
3847 {
3848 hfa384x_t *hw = (hfa384x_t *)data;
3849 unsigned long flags;
3850
3851 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3852
3853 /*
3854 * We need to check BOTH the RX and the TX throttle controls,
3855 * so we use the bitwise OR instead of the logical OR.
3856 */
3857 pr_debug("flags=0x%lx\n", hw->usb_flags);
3858 if (!hw->wlandev->hwremoved &&
3859 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3860 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) |
3861 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3862 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3863 )) {
3864 schedule_work(&hw->usb_work);
3865 }
3866
3867 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3868 }
3869
3870 /*----------------------------------------------------------------
3871 * hfa384x_usbctlx_submit
3872 *
3873 * Called from the doxxx functions to submit a CTLX to the queue
3874 *
3875 * Arguments:
3876 * hw ptr to the hw struct
3877 * ctlx ctlx structure to enqueue
3878 *
3879 * Returns:
3880 * -ENODEV if the adapter is unplugged
3881 * 0
3882 *
3883 * Side effects:
3884 *
3885 * Call context:
3886 * process or interrupt
3887 ----------------------------------------------------------------*/
3888 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
3889 {
3890 unsigned long flags;
3891
3892 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3893
3894 if (hw->wlandev->hwremoved) {
3895 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3896 return -ENODEV;
3897 }
3898
3899 ctlx->state = CTLX_PENDING;
3900 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3901 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3902 hfa384x_usbctlxq_run(hw);
3903
3904 return 0;
3905 }
3906
3907 /*----------------------------------------------------------------
3908 * hfa384x_isgood_pdrcore
3909 *
3910 * Quick check of PDR codes.
3911 *
3912 * Arguments:
3913 * pdrcode PDR code number (host order)
3914 *
3915 * Returns:
3916 * zero not good.
3917 * one is good.
3918 *
3919 * Side effects:
3920 *
3921 * Call context:
3922 ----------------------------------------------------------------*/
3923 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3924 {
3925 switch (pdrcode) {
3926 case HFA384x_PDR_END_OF_PDA:
3927 case HFA384x_PDR_PCB_PARTNUM:
3928 case HFA384x_PDR_PDAVER:
3929 case HFA384x_PDR_NIC_SERIAL:
3930 case HFA384x_PDR_MKK_MEASUREMENTS:
3931 case HFA384x_PDR_NIC_RAMSIZE:
3932 case HFA384x_PDR_MFISUPRANGE:
3933 case HFA384x_PDR_CFISUPRANGE:
3934 case HFA384x_PDR_NICID:
3935 case HFA384x_PDR_MAC_ADDRESS:
3936 case HFA384x_PDR_REGDOMAIN:
3937 case HFA384x_PDR_ALLOWED_CHANNEL:
3938 case HFA384x_PDR_DEFAULT_CHANNEL:
3939 case HFA384x_PDR_TEMPTYPE:
3940 case HFA384x_PDR_IFR_SETTING:
3941 case HFA384x_PDR_RFR_SETTING:
3942 case HFA384x_PDR_HFA3861_BASELINE:
3943 case HFA384x_PDR_HFA3861_SHADOW:
3944 case HFA384x_PDR_HFA3861_IFRF:
3945 case HFA384x_PDR_HFA3861_CHCALSP:
3946 case HFA384x_PDR_HFA3861_CHCALI:
3947 case HFA384x_PDR_3842_NIC_CONFIG:
3948 case HFA384x_PDR_USB_ID:
3949 case HFA384x_PDR_PCI_ID:
3950 case HFA384x_PDR_PCI_IFCONF:
3951 case HFA384x_PDR_PCI_PMCONF:
3952 case HFA384x_PDR_RFENRGY:
3953 case HFA384x_PDR_HFA3861_MANF_TESTSP:
3954 case HFA384x_PDR_HFA3861_MANF_TESTI:
3955 /* code is OK */
3956 return 1;
3957 default:
3958 if (pdrcode < 0x1000) {
3959 /* code is OK, but we don't know exactly what it is */
3960 pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
3961 pdrcode);
3962 return 1;
3963 }
3964 break;
3965 }
3966 /* bad code */
3967 pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
3968 pdrcode);
3969 return 0;
3970 }
This page took 0.188521 seconds and 5 git commands to generate.