Merge remote-tracking branch 'asoc/topic/ac97' into asoc-fsl
[deliverable/linux.git] / drivers / staging / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 *
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the licence that better fits your requirements.
8 *
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
11 *
12 * Project home: http://compcache.googlecode.com
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47 return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51 struct device_attribute *attr, char *buf)
52 {
53 struct zram *zram = dev_to_zram(dev);
54
55 return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59 struct device_attribute *attr, char *buf)
60 {
61 struct zram *zram = dev_to_zram(dev);
62
63 return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68 {
69 struct zram *zram = dev_to_zram(dev);
70
71 return sprintf(buf, "%llu\n",
72 (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
77 {
78 struct zram *zram = dev_to_zram(dev);
79
80 return sprintf(buf, "%llu\n",
81 (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85 struct device_attribute *attr, char *buf)
86 {
87 struct zram *zram = dev_to_zram(dev);
88
89 return sprintf(buf, "%llu\n",
90 (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94 struct device_attribute *attr, char *buf)
95 {
96 struct zram *zram = dev_to_zram(dev);
97
98 return sprintf(buf, "%llu\n",
99 (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103 struct device_attribute *attr, char *buf)
104 {
105 struct zram *zram = dev_to_zram(dev);
106
107 return sprintf(buf, "%u\n", zram->stats.pages_zero);
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct zram *zram = dev_to_zram(dev);
114
115 return sprintf(buf, "%llu\n",
116 (u64)(zram->stats.pages_stored) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121 {
122 struct zram *zram = dev_to_zram(dev);
123
124 return sprintf(buf, "%llu\n",
125 (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129 struct device_attribute *attr, char *buf)
130 {
131 u64 val = 0;
132 struct zram *zram = dev_to_zram(dev);
133 struct zram_meta *meta = zram->meta;
134
135 down_read(&zram->init_lock);
136 if (zram->init_done)
137 val = zs_get_total_size_bytes(meta->mem_pool);
138 up_read(&zram->init_lock);
139
140 return sprintf(buf, "%llu\n", val);
141 }
142
143 static int zram_test_flag(struct zram_meta *meta, u32 index,
144 enum zram_pageflags flag)
145 {
146 return meta->table[index].flags & BIT(flag);
147 }
148
149 static void zram_set_flag(struct zram_meta *meta, u32 index,
150 enum zram_pageflags flag)
151 {
152 meta->table[index].flags |= BIT(flag);
153 }
154
155 static void zram_clear_flag(struct zram_meta *meta, u32 index,
156 enum zram_pageflags flag)
157 {
158 meta->table[index].flags &= ~BIT(flag);
159 }
160
161 static inline int is_partial_io(struct bio_vec *bvec)
162 {
163 return bvec->bv_len != PAGE_SIZE;
164 }
165
166 /*
167 * Check if request is within bounds and aligned on zram logical blocks.
168 */
169 static inline int valid_io_request(struct zram *zram, struct bio *bio)
170 {
171 u64 start, end, bound;
172
173 /* unaligned request */
174 if (unlikely(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
175 return 0;
176 if (unlikely(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
177 return 0;
178
179 start = bio->bi_sector;
180 end = start + (bio->bi_size >> SECTOR_SHIFT);
181 bound = zram->disksize >> SECTOR_SHIFT;
182 /* out of range range */
183 if (unlikely(start >= bound || end > bound || start > end))
184 return 0;
185
186 /* I/O request is valid */
187 return 1;
188 }
189
190 static void zram_meta_free(struct zram_meta *meta)
191 {
192 zs_destroy_pool(meta->mem_pool);
193 kfree(meta->compress_workmem);
194 free_pages((unsigned long)meta->compress_buffer, 1);
195 vfree(meta->table);
196 kfree(meta);
197 }
198
199 static struct zram_meta *zram_meta_alloc(u64 disksize)
200 {
201 size_t num_pages;
202 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
203 if (!meta)
204 goto out;
205
206 meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
207 if (!meta->compress_workmem)
208 goto free_meta;
209
210 meta->compress_buffer =
211 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
212 if (!meta->compress_buffer) {
213 pr_err("Error allocating compressor buffer space\n");
214 goto free_workmem;
215 }
216
217 num_pages = disksize >> PAGE_SHIFT;
218 meta->table = vzalloc(num_pages * sizeof(*meta->table));
219 if (!meta->table) {
220 pr_err("Error allocating zram address table\n");
221 goto free_buffer;
222 }
223
224 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
225 if (!meta->mem_pool) {
226 pr_err("Error creating memory pool\n");
227 goto free_table;
228 }
229
230 return meta;
231
232 free_table:
233 vfree(meta->table);
234 free_buffer:
235 free_pages((unsigned long)meta->compress_buffer, 1);
236 free_workmem:
237 kfree(meta->compress_workmem);
238 free_meta:
239 kfree(meta);
240 meta = NULL;
241 out:
242 return meta;
243 }
244
245 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
246 {
247 if (*offset + bvec->bv_len >= PAGE_SIZE)
248 (*index)++;
249 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
250 }
251
252 static int page_zero_filled(void *ptr)
253 {
254 unsigned int pos;
255 unsigned long *page;
256
257 page = (unsigned long *)ptr;
258
259 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
260 if (page[pos])
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static void handle_zero_page(struct bio_vec *bvec)
268 {
269 struct page *page = bvec->bv_page;
270 void *user_mem;
271
272 user_mem = kmap_atomic(page);
273 if (is_partial_io(bvec))
274 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
275 else
276 clear_page(user_mem);
277 kunmap_atomic(user_mem);
278
279 flush_dcache_page(page);
280 }
281
282 static void zram_free_page(struct zram *zram, size_t index)
283 {
284 struct zram_meta *meta = zram->meta;
285 unsigned long handle = meta->table[index].handle;
286 u16 size = meta->table[index].size;
287
288 if (unlikely(!handle)) {
289 /*
290 * No memory is allocated for zero filled pages.
291 * Simply clear zero page flag.
292 */
293 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
294 zram_clear_flag(meta, index, ZRAM_ZERO);
295 zram->stats.pages_zero--;
296 }
297 return;
298 }
299
300 if (unlikely(size > max_zpage_size))
301 zram->stats.bad_compress--;
302
303 zs_free(meta->mem_pool, handle);
304
305 if (size <= PAGE_SIZE / 2)
306 zram->stats.good_compress--;
307
308 atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
309 zram->stats.pages_stored--;
310
311 meta->table[index].handle = 0;
312 meta->table[index].size = 0;
313 }
314
315 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
316 {
317 int ret = LZO_E_OK;
318 size_t clen = PAGE_SIZE;
319 unsigned char *cmem;
320 struct zram_meta *meta = zram->meta;
321 unsigned long handle = meta->table[index].handle;
322
323 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
324 clear_page(mem);
325 return 0;
326 }
327
328 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
329 if (meta->table[index].size == PAGE_SIZE)
330 copy_page(mem, cmem);
331 else
332 ret = lzo1x_decompress_safe(cmem, meta->table[index].size,
333 mem, &clen);
334 zs_unmap_object(meta->mem_pool, handle);
335
336 /* Should NEVER happen. Return bio error if it does. */
337 if (unlikely(ret != LZO_E_OK)) {
338 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
339 atomic64_inc(&zram->stats.failed_reads);
340 return ret;
341 }
342
343 return 0;
344 }
345
346 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
347 u32 index, int offset, struct bio *bio)
348 {
349 int ret;
350 struct page *page;
351 unsigned char *user_mem, *uncmem = NULL;
352 struct zram_meta *meta = zram->meta;
353 page = bvec->bv_page;
354
355 if (unlikely(!meta->table[index].handle) ||
356 zram_test_flag(meta, index, ZRAM_ZERO)) {
357 handle_zero_page(bvec);
358 return 0;
359 }
360
361 if (is_partial_io(bvec))
362 /* Use a temporary buffer to decompress the page */
363 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
364
365 user_mem = kmap_atomic(page);
366 if (!is_partial_io(bvec))
367 uncmem = user_mem;
368
369 if (!uncmem) {
370 pr_info("Unable to allocate temp memory\n");
371 ret = -ENOMEM;
372 goto out_cleanup;
373 }
374
375 ret = zram_decompress_page(zram, uncmem, index);
376 /* Should NEVER happen. Return bio error if it does. */
377 if (unlikely(ret != LZO_E_OK))
378 goto out_cleanup;
379
380 if (is_partial_io(bvec))
381 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
382 bvec->bv_len);
383
384 flush_dcache_page(page);
385 ret = 0;
386 out_cleanup:
387 kunmap_atomic(user_mem);
388 if (is_partial_io(bvec))
389 kfree(uncmem);
390 return ret;
391 }
392
393 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
394 int offset)
395 {
396 int ret = 0;
397 size_t clen;
398 unsigned long handle;
399 struct page *page;
400 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
401 struct zram_meta *meta = zram->meta;
402
403 page = bvec->bv_page;
404 src = meta->compress_buffer;
405
406 if (is_partial_io(bvec)) {
407 /*
408 * This is a partial IO. We need to read the full page
409 * before to write the changes.
410 */
411 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
412 if (!uncmem) {
413 ret = -ENOMEM;
414 goto out;
415 }
416 ret = zram_decompress_page(zram, uncmem, index);
417 if (ret)
418 goto out;
419 }
420
421 /*
422 * System overwrites unused sectors. Free memory associated
423 * with this sector now.
424 */
425 if (meta->table[index].handle ||
426 zram_test_flag(meta, index, ZRAM_ZERO))
427 zram_free_page(zram, index);
428
429 user_mem = kmap_atomic(page);
430
431 if (is_partial_io(bvec)) {
432 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
433 bvec->bv_len);
434 kunmap_atomic(user_mem);
435 user_mem = NULL;
436 } else {
437 uncmem = user_mem;
438 }
439
440 if (page_zero_filled(uncmem)) {
441 kunmap_atomic(user_mem);
442 zram->stats.pages_zero++;
443 zram_set_flag(meta, index, ZRAM_ZERO);
444 ret = 0;
445 goto out;
446 }
447
448 ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
449 meta->compress_workmem);
450
451 if (!is_partial_io(bvec)) {
452 kunmap_atomic(user_mem);
453 user_mem = NULL;
454 uncmem = NULL;
455 }
456
457 if (unlikely(ret != LZO_E_OK)) {
458 pr_err("Compression failed! err=%d\n", ret);
459 goto out;
460 }
461
462 if (unlikely(clen > max_zpage_size)) {
463 zram->stats.bad_compress++;
464 clen = PAGE_SIZE;
465 src = NULL;
466 if (is_partial_io(bvec))
467 src = uncmem;
468 }
469
470 handle = zs_malloc(meta->mem_pool, clen);
471 if (!handle) {
472 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
473 index, clen);
474 ret = -ENOMEM;
475 goto out;
476 }
477 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
478
479 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
480 src = kmap_atomic(page);
481 copy_page(cmem, src);
482 kunmap_atomic(src);
483 } else {
484 memcpy(cmem, src, clen);
485 }
486
487 zs_unmap_object(meta->mem_pool, handle);
488
489 meta->table[index].handle = handle;
490 meta->table[index].size = clen;
491
492 /* Update stats */
493 atomic64_add(clen, &zram->stats.compr_size);
494 zram->stats.pages_stored++;
495 if (clen <= PAGE_SIZE / 2)
496 zram->stats.good_compress++;
497
498 out:
499 if (is_partial_io(bvec))
500 kfree(uncmem);
501
502 if (ret)
503 atomic64_inc(&zram->stats.failed_writes);
504 return ret;
505 }
506
507 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
508 int offset, struct bio *bio, int rw)
509 {
510 int ret;
511
512 if (rw == READ) {
513 down_read(&zram->lock);
514 ret = zram_bvec_read(zram, bvec, index, offset, bio);
515 up_read(&zram->lock);
516 } else {
517 down_write(&zram->lock);
518 ret = zram_bvec_write(zram, bvec, index, offset);
519 up_write(&zram->lock);
520 }
521
522 return ret;
523 }
524
525 static void zram_reset_device(struct zram *zram)
526 {
527 size_t index;
528 struct zram_meta *meta;
529
530 down_write(&zram->init_lock);
531 if (!zram->init_done) {
532 up_write(&zram->init_lock);
533 return;
534 }
535
536 meta = zram->meta;
537 zram->init_done = 0;
538
539 /* Free all pages that are still in this zram device */
540 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
541 unsigned long handle = meta->table[index].handle;
542 if (!handle)
543 continue;
544
545 zs_free(meta->mem_pool, handle);
546 }
547
548 zram_meta_free(zram->meta);
549 zram->meta = NULL;
550 /* Reset stats */
551 memset(&zram->stats, 0, sizeof(zram->stats));
552
553 zram->disksize = 0;
554 set_capacity(zram->disk, 0);
555 up_write(&zram->init_lock);
556 }
557
558 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
559 {
560 if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
561 pr_info(
562 "There is little point creating a zram of greater than "
563 "twice the size of memory since we expect a 2:1 compression "
564 "ratio. Note that zram uses about 0.1%% of the size of "
565 "the disk when not in use so a huge zram is "
566 "wasteful.\n"
567 "\tMemory Size: %lu kB\n"
568 "\tSize you selected: %llu kB\n"
569 "Continuing anyway ...\n",
570 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
571 );
572 }
573
574 /* zram devices sort of resembles non-rotational disks */
575 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
576
577 zram->meta = meta;
578 zram->init_done = 1;
579
580 pr_debug("Initialization done!\n");
581 }
582
583 static ssize_t disksize_store(struct device *dev,
584 struct device_attribute *attr, const char *buf, size_t len)
585 {
586 u64 disksize;
587 struct zram_meta *meta;
588 struct zram *zram = dev_to_zram(dev);
589
590 disksize = memparse(buf, NULL);
591 if (!disksize)
592 return -EINVAL;
593
594 disksize = PAGE_ALIGN(disksize);
595 meta = zram_meta_alloc(disksize);
596 down_write(&zram->init_lock);
597 if (zram->init_done) {
598 up_write(&zram->init_lock);
599 zram_meta_free(meta);
600 pr_info("Cannot change disksize for initialized device\n");
601 return -EBUSY;
602 }
603
604 zram->disksize = disksize;
605 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
606 zram_init_device(zram, meta);
607 up_write(&zram->init_lock);
608
609 return len;
610 }
611
612 static ssize_t reset_store(struct device *dev,
613 struct device_attribute *attr, const char *buf, size_t len)
614 {
615 int ret;
616 unsigned short do_reset;
617 struct zram *zram;
618 struct block_device *bdev;
619
620 zram = dev_to_zram(dev);
621 bdev = bdget_disk(zram->disk, 0);
622
623 /* Do not reset an active device! */
624 if (bdev->bd_holders)
625 return -EBUSY;
626
627 ret = kstrtou16(buf, 10, &do_reset);
628 if (ret)
629 return ret;
630
631 if (!do_reset)
632 return -EINVAL;
633
634 /* Make sure all pending I/O is finished */
635 if (bdev)
636 fsync_bdev(bdev);
637
638 zram_reset_device(zram);
639 return len;
640 }
641
642 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
643 {
644 int i, offset;
645 u32 index;
646 struct bio_vec *bvec;
647
648 switch (rw) {
649 case READ:
650 atomic64_inc(&zram->stats.num_reads);
651 break;
652 case WRITE:
653 atomic64_inc(&zram->stats.num_writes);
654 break;
655 }
656
657 index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
658 offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
659
660 bio_for_each_segment(bvec, bio, i) {
661 int max_transfer_size = PAGE_SIZE - offset;
662
663 if (bvec->bv_len > max_transfer_size) {
664 /*
665 * zram_bvec_rw() can only make operation on a single
666 * zram page. Split the bio vector.
667 */
668 struct bio_vec bv;
669
670 bv.bv_page = bvec->bv_page;
671 bv.bv_len = max_transfer_size;
672 bv.bv_offset = bvec->bv_offset;
673
674 if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
675 goto out;
676
677 bv.bv_len = bvec->bv_len - max_transfer_size;
678 bv.bv_offset += max_transfer_size;
679 if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
680 goto out;
681 } else
682 if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
683 < 0)
684 goto out;
685
686 update_position(&index, &offset, bvec);
687 }
688
689 set_bit(BIO_UPTODATE, &bio->bi_flags);
690 bio_endio(bio, 0);
691 return;
692
693 out:
694 bio_io_error(bio);
695 }
696
697 /*
698 * Handler function for all zram I/O requests.
699 */
700 static void zram_make_request(struct request_queue *queue, struct bio *bio)
701 {
702 struct zram *zram = queue->queuedata;
703
704 down_read(&zram->init_lock);
705 if (unlikely(!zram->init_done))
706 goto error;
707
708 if (!valid_io_request(zram, bio)) {
709 atomic64_inc(&zram->stats.invalid_io);
710 goto error;
711 }
712
713 __zram_make_request(zram, bio, bio_data_dir(bio));
714 up_read(&zram->init_lock);
715
716 return;
717
718 error:
719 up_read(&zram->init_lock);
720 bio_io_error(bio);
721 }
722
723 static void zram_slot_free_notify(struct block_device *bdev,
724 unsigned long index)
725 {
726 struct zram *zram;
727
728 zram = bdev->bd_disk->private_data;
729 down_write(&zram->lock);
730 zram_free_page(zram, index);
731 up_write(&zram->lock);
732 atomic64_inc(&zram->stats.notify_free);
733 }
734
735 static const struct block_device_operations zram_devops = {
736 .swap_slot_free_notify = zram_slot_free_notify,
737 .owner = THIS_MODULE
738 };
739
740 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
741 disksize_show, disksize_store);
742 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
743 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
744 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
745 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
746 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
747 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
748 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
749 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
750 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
751 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
752
753 static struct attribute *zram_disk_attrs[] = {
754 &dev_attr_disksize.attr,
755 &dev_attr_initstate.attr,
756 &dev_attr_reset.attr,
757 &dev_attr_num_reads.attr,
758 &dev_attr_num_writes.attr,
759 &dev_attr_invalid_io.attr,
760 &dev_attr_notify_free.attr,
761 &dev_attr_zero_pages.attr,
762 &dev_attr_orig_data_size.attr,
763 &dev_attr_compr_data_size.attr,
764 &dev_attr_mem_used_total.attr,
765 NULL,
766 };
767
768 static struct attribute_group zram_disk_attr_group = {
769 .attrs = zram_disk_attrs,
770 };
771
772 static int create_device(struct zram *zram, int device_id)
773 {
774 int ret = -ENOMEM;
775
776 init_rwsem(&zram->lock);
777 init_rwsem(&zram->init_lock);
778
779 zram->queue = blk_alloc_queue(GFP_KERNEL);
780 if (!zram->queue) {
781 pr_err("Error allocating disk queue for device %d\n",
782 device_id);
783 goto out;
784 }
785
786 blk_queue_make_request(zram->queue, zram_make_request);
787 zram->queue->queuedata = zram;
788
789 /* gendisk structure */
790 zram->disk = alloc_disk(1);
791 if (!zram->disk) {
792 pr_warn("Error allocating disk structure for device %d\n",
793 device_id);
794 goto out_free_queue;
795 }
796
797 zram->disk->major = zram_major;
798 zram->disk->first_minor = device_id;
799 zram->disk->fops = &zram_devops;
800 zram->disk->queue = zram->queue;
801 zram->disk->private_data = zram;
802 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
803
804 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
805 set_capacity(zram->disk, 0);
806
807 /*
808 * To ensure that we always get PAGE_SIZE aligned
809 * and n*PAGE_SIZED sized I/O requests.
810 */
811 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
812 blk_queue_logical_block_size(zram->disk->queue,
813 ZRAM_LOGICAL_BLOCK_SIZE);
814 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
815 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
816
817 add_disk(zram->disk);
818
819 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
820 &zram_disk_attr_group);
821 if (ret < 0) {
822 pr_warn("Error creating sysfs group");
823 goto out_free_disk;
824 }
825
826 zram->init_done = 0;
827 return 0;
828
829 out_free_disk:
830 del_gendisk(zram->disk);
831 put_disk(zram->disk);
832 out_free_queue:
833 blk_cleanup_queue(zram->queue);
834 out:
835 return ret;
836 }
837
838 static void destroy_device(struct zram *zram)
839 {
840 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
841 &zram_disk_attr_group);
842
843 if (zram->disk) {
844 del_gendisk(zram->disk);
845 put_disk(zram->disk);
846 }
847
848 if (zram->queue)
849 blk_cleanup_queue(zram->queue);
850 }
851
852 static int __init zram_init(void)
853 {
854 int ret, dev_id;
855
856 if (num_devices > max_num_devices) {
857 pr_warn("Invalid value for num_devices: %u\n",
858 num_devices);
859 ret = -EINVAL;
860 goto out;
861 }
862
863 zram_major = register_blkdev(0, "zram");
864 if (zram_major <= 0) {
865 pr_warn("Unable to get major number\n");
866 ret = -EBUSY;
867 goto out;
868 }
869
870 /* Allocate the device array and initialize each one */
871 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
872 if (!zram_devices) {
873 ret = -ENOMEM;
874 goto unregister;
875 }
876
877 for (dev_id = 0; dev_id < num_devices; dev_id++) {
878 ret = create_device(&zram_devices[dev_id], dev_id);
879 if (ret)
880 goto free_devices;
881 }
882
883 pr_info("Created %u device(s) ...\n", num_devices);
884
885 return 0;
886
887 free_devices:
888 while (dev_id)
889 destroy_device(&zram_devices[--dev_id]);
890 kfree(zram_devices);
891 unregister:
892 unregister_blkdev(zram_major, "zram");
893 out:
894 return ret;
895 }
896
897 static void __exit zram_exit(void)
898 {
899 int i;
900 struct zram *zram;
901
902 for (i = 0; i < num_devices; i++) {
903 zram = &zram_devices[i];
904
905 get_disk(zram->disk);
906 destroy_device(zram);
907 zram_reset_device(zram);
908 put_disk(zram->disk);
909 }
910
911 unregister_blkdev(zram_major, "zram");
912
913 kfree(zram_devices);
914 pr_debug("Cleanup done!\n");
915 }
916
917 module_init(zram_init);
918 module_exit(zram_exit);
919
920 module_param(num_devices, uint, 0);
921 MODULE_PARM_DESC(num_devices, "Number of zram devices");
922
923 MODULE_LICENSE("Dual BSD/GPL");
924 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
925 MODULE_DESCRIPTION("Compressed RAM Block Device");
This page took 0.051597 seconds and 5 git commands to generate.