Merge branch 'slab/next' into slab/for-linus
[deliverable/linux.git] / drivers / staging / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 *
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the licence that better fits your requirements.
8 *
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
11 *
12 * Project home: http://compcache.googlecode.com
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
46 {
47 spin_lock(&zram->stat64_lock);
48 *v = *v + inc;
49 spin_unlock(&zram->stat64_lock);
50 }
51
52 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
53 {
54 spin_lock(&zram->stat64_lock);
55 *v = *v - dec;
56 spin_unlock(&zram->stat64_lock);
57 }
58
59 static void zram_stat64_inc(struct zram *zram, u64 *v)
60 {
61 zram_stat64_add(zram, v, 1);
62 }
63
64 static int zram_test_flag(struct zram_meta *meta, u32 index,
65 enum zram_pageflags flag)
66 {
67 return meta->table[index].flags & BIT(flag);
68 }
69
70 static void zram_set_flag(struct zram_meta *meta, u32 index,
71 enum zram_pageflags flag)
72 {
73 meta->table[index].flags |= BIT(flag);
74 }
75
76 static void zram_clear_flag(struct zram_meta *meta, u32 index,
77 enum zram_pageflags flag)
78 {
79 meta->table[index].flags &= ~BIT(flag);
80 }
81
82 static int page_zero_filled(void *ptr)
83 {
84 unsigned int pos;
85 unsigned long *page;
86
87 page = (unsigned long *)ptr;
88
89 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
90 if (page[pos])
91 return 0;
92 }
93
94 return 1;
95 }
96
97 static void zram_free_page(struct zram *zram, size_t index)
98 {
99 struct zram_meta *meta = zram->meta;
100 unsigned long handle = meta->table[index].handle;
101 u16 size = meta->table[index].size;
102
103 if (unlikely(!handle)) {
104 /*
105 * No memory is allocated for zero filled pages.
106 * Simply clear zero page flag.
107 */
108 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
109 zram_clear_flag(meta, index, ZRAM_ZERO);
110 zram->stats.pages_zero--;
111 }
112 return;
113 }
114
115 if (unlikely(size > max_zpage_size))
116 zram->stats.bad_compress--;
117
118 zs_free(meta->mem_pool, handle);
119
120 if (size <= PAGE_SIZE / 2)
121 zram->stats.good_compress--;
122
123 zram_stat64_sub(zram, &zram->stats.compr_size,
124 meta->table[index].size);
125 zram->stats.pages_stored--;
126
127 meta->table[index].handle = 0;
128 meta->table[index].size = 0;
129 }
130
131 static void handle_zero_page(struct bio_vec *bvec)
132 {
133 struct page *page = bvec->bv_page;
134 void *user_mem;
135
136 user_mem = kmap_atomic(page);
137 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
138 kunmap_atomic(user_mem);
139
140 flush_dcache_page(page);
141 }
142
143 static inline int is_partial_io(struct bio_vec *bvec)
144 {
145 return bvec->bv_len != PAGE_SIZE;
146 }
147
148 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
149 {
150 int ret = LZO_E_OK;
151 size_t clen = PAGE_SIZE;
152 unsigned char *cmem;
153 struct zram_meta *meta = zram->meta;
154 unsigned long handle = meta->table[index].handle;
155
156 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
157 memset(mem, 0, PAGE_SIZE);
158 return 0;
159 }
160
161 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
162 if (meta->table[index].size == PAGE_SIZE)
163 memcpy(mem, cmem, PAGE_SIZE);
164 else
165 ret = lzo1x_decompress_safe(cmem, meta->table[index].size,
166 mem, &clen);
167 zs_unmap_object(meta->mem_pool, handle);
168
169 /* Should NEVER happen. Return bio error if it does. */
170 if (unlikely(ret != LZO_E_OK)) {
171 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
172 zram_stat64_inc(zram, &zram->stats.failed_reads);
173 return ret;
174 }
175
176 return 0;
177 }
178
179 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
180 u32 index, int offset, struct bio *bio)
181 {
182 int ret;
183 struct page *page;
184 unsigned char *user_mem, *uncmem = NULL;
185 struct zram_meta *meta = zram->meta;
186 page = bvec->bv_page;
187
188 if (unlikely(!meta->table[index].handle) ||
189 zram_test_flag(meta, index, ZRAM_ZERO)) {
190 handle_zero_page(bvec);
191 return 0;
192 }
193
194 if (is_partial_io(bvec))
195 /* Use a temporary buffer to decompress the page */
196 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
197
198 user_mem = kmap_atomic(page);
199 if (!is_partial_io(bvec))
200 uncmem = user_mem;
201
202 if (!uncmem) {
203 pr_info("Unable to allocate temp memory\n");
204 ret = -ENOMEM;
205 goto out_cleanup;
206 }
207
208 ret = zram_decompress_page(zram, uncmem, index);
209 /* Should NEVER happen. Return bio error if it does. */
210 if (unlikely(ret != LZO_E_OK)) {
211 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
212 zram_stat64_inc(zram, &zram->stats.failed_reads);
213 goto out_cleanup;
214 }
215
216 if (is_partial_io(bvec))
217 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
218 bvec->bv_len);
219
220 flush_dcache_page(page);
221 ret = 0;
222 out_cleanup:
223 kunmap_atomic(user_mem);
224 if (is_partial_io(bvec))
225 kfree(uncmem);
226 return ret;
227 }
228
229 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
230 int offset)
231 {
232 int ret = 0;
233 size_t clen;
234 unsigned long handle;
235 struct page *page;
236 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
237 struct zram_meta *meta = zram->meta;
238
239 page = bvec->bv_page;
240 src = meta->compress_buffer;
241
242 if (is_partial_io(bvec)) {
243 /*
244 * This is a partial IO. We need to read the full page
245 * before to write the changes.
246 */
247 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
248 if (!uncmem) {
249 ret = -ENOMEM;
250 goto out;
251 }
252 ret = zram_decompress_page(zram, uncmem, index);
253 if (ret)
254 goto out;
255 }
256
257 /*
258 * System overwrites unused sectors. Free memory associated
259 * with this sector now.
260 */
261 if (meta->table[index].handle ||
262 zram_test_flag(meta, index, ZRAM_ZERO))
263 zram_free_page(zram, index);
264
265 user_mem = kmap_atomic(page);
266
267 if (is_partial_io(bvec)) {
268 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
269 bvec->bv_len);
270 kunmap_atomic(user_mem);
271 user_mem = NULL;
272 } else {
273 uncmem = user_mem;
274 }
275
276 if (page_zero_filled(uncmem)) {
277 kunmap_atomic(user_mem);
278 if (is_partial_io(bvec))
279 kfree(uncmem);
280 zram->stats.pages_zero++;
281 zram_set_flag(meta, index, ZRAM_ZERO);
282 ret = 0;
283 goto out;
284 }
285
286 ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
287 meta->compress_workmem);
288
289 if (!is_partial_io(bvec)) {
290 kunmap_atomic(user_mem);
291 user_mem = NULL;
292 uncmem = NULL;
293 }
294
295 if (unlikely(ret != LZO_E_OK)) {
296 pr_err("Compression failed! err=%d\n", ret);
297 goto out;
298 }
299
300 if (unlikely(clen > max_zpage_size)) {
301 zram->stats.bad_compress++;
302 clen = PAGE_SIZE;
303 src = NULL;
304 if (is_partial_io(bvec))
305 src = uncmem;
306 }
307
308 handle = zs_malloc(meta->mem_pool, clen);
309 if (!handle) {
310 pr_info("Error allocating memory for compressed "
311 "page: %u, size=%zu\n", index, clen);
312 ret = -ENOMEM;
313 goto out;
314 }
315 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
316
317 if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
318 src = kmap_atomic(page);
319 memcpy(cmem, src, clen);
320 if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
321 kunmap_atomic(src);
322
323 zs_unmap_object(meta->mem_pool, handle);
324
325 meta->table[index].handle = handle;
326 meta->table[index].size = clen;
327
328 /* Update stats */
329 zram_stat64_add(zram, &zram->stats.compr_size, clen);
330 zram->stats.pages_stored++;
331 if (clen <= PAGE_SIZE / 2)
332 zram->stats.good_compress++;
333
334 out:
335 if (is_partial_io(bvec))
336 kfree(uncmem);
337
338 if (ret)
339 zram_stat64_inc(zram, &zram->stats.failed_writes);
340 return ret;
341 }
342
343 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
344 int offset, struct bio *bio, int rw)
345 {
346 int ret;
347
348 if (rw == READ) {
349 down_read(&zram->lock);
350 ret = zram_bvec_read(zram, bvec, index, offset, bio);
351 up_read(&zram->lock);
352 } else {
353 down_write(&zram->lock);
354 ret = zram_bvec_write(zram, bvec, index, offset);
355 up_write(&zram->lock);
356 }
357
358 return ret;
359 }
360
361 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
362 {
363 if (*offset + bvec->bv_len >= PAGE_SIZE)
364 (*index)++;
365 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
366 }
367
368 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
369 {
370 int i, offset;
371 u32 index;
372 struct bio_vec *bvec;
373
374 switch (rw) {
375 case READ:
376 zram_stat64_inc(zram, &zram->stats.num_reads);
377 break;
378 case WRITE:
379 zram_stat64_inc(zram, &zram->stats.num_writes);
380 break;
381 }
382
383 index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
384 offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
385
386 bio_for_each_segment(bvec, bio, i) {
387 int max_transfer_size = PAGE_SIZE - offset;
388
389 if (bvec->bv_len > max_transfer_size) {
390 /*
391 * zram_bvec_rw() can only make operation on a single
392 * zram page. Split the bio vector.
393 */
394 struct bio_vec bv;
395
396 bv.bv_page = bvec->bv_page;
397 bv.bv_len = max_transfer_size;
398 bv.bv_offset = bvec->bv_offset;
399
400 if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
401 goto out;
402
403 bv.bv_len = bvec->bv_len - max_transfer_size;
404 bv.bv_offset += max_transfer_size;
405 if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
406 goto out;
407 } else
408 if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
409 < 0)
410 goto out;
411
412 update_position(&index, &offset, bvec);
413 }
414
415 set_bit(BIO_UPTODATE, &bio->bi_flags);
416 bio_endio(bio, 0);
417 return;
418
419 out:
420 bio_io_error(bio);
421 }
422
423 /*
424 * Check if request is within bounds and aligned on zram logical blocks.
425 */
426 static inline int valid_io_request(struct zram *zram, struct bio *bio)
427 {
428 if (unlikely(
429 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
430 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
431 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
432
433 return 0;
434 }
435
436 /* I/O request is valid */
437 return 1;
438 }
439
440 /*
441 * Handler function for all zram I/O requests.
442 */
443 static void zram_make_request(struct request_queue *queue, struct bio *bio)
444 {
445 struct zram *zram = queue->queuedata;
446
447 down_read(&zram->init_lock);
448 if (unlikely(!zram->init_done))
449 goto error;
450
451 if (!valid_io_request(zram, bio)) {
452 zram_stat64_inc(zram, &zram->stats.invalid_io);
453 goto error;
454 }
455
456 __zram_make_request(zram, bio, bio_data_dir(bio));
457 up_read(&zram->init_lock);
458
459 return;
460
461 error:
462 up_read(&zram->init_lock);
463 bio_io_error(bio);
464 }
465
466 static void __zram_reset_device(struct zram *zram)
467 {
468 size_t index;
469 struct zram_meta *meta;
470
471 if (!zram->init_done)
472 return;
473
474 meta = zram->meta;
475 zram->init_done = 0;
476
477 /* Free all pages that are still in this zram device */
478 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
479 unsigned long handle = meta->table[index].handle;
480 if (!handle)
481 continue;
482
483 zs_free(meta->mem_pool, handle);
484 }
485
486 zram_meta_free(zram->meta);
487 zram->meta = NULL;
488 /* Reset stats */
489 memset(&zram->stats, 0, sizeof(zram->stats));
490
491 zram->disksize = 0;
492 set_capacity(zram->disk, 0);
493 }
494
495 void zram_reset_device(struct zram *zram)
496 {
497 down_write(&zram->init_lock);
498 __zram_reset_device(zram);
499 up_write(&zram->init_lock);
500 }
501
502 void zram_meta_free(struct zram_meta *meta)
503 {
504 zs_destroy_pool(meta->mem_pool);
505 kfree(meta->compress_workmem);
506 free_pages((unsigned long)meta->compress_buffer, 1);
507 vfree(meta->table);
508 kfree(meta);
509 }
510
511 struct zram_meta *zram_meta_alloc(u64 disksize)
512 {
513 size_t num_pages;
514 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
515 if (!meta)
516 goto out;
517
518 meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
519 if (!meta->compress_workmem)
520 goto free_meta;
521
522 meta->compress_buffer =
523 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
524 if (!meta->compress_buffer) {
525 pr_err("Error allocating compressor buffer space\n");
526 goto free_workmem;
527 }
528
529 num_pages = disksize >> PAGE_SHIFT;
530 meta->table = vzalloc(num_pages * sizeof(*meta->table));
531 if (!meta->table) {
532 pr_err("Error allocating zram address table\n");
533 goto free_buffer;
534 }
535
536 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
537 if (!meta->mem_pool) {
538 pr_err("Error creating memory pool\n");
539 goto free_table;
540 }
541
542 return meta;
543
544 free_table:
545 vfree(meta->table);
546 free_buffer:
547 free_pages((unsigned long)meta->compress_buffer, 1);
548 free_workmem:
549 kfree(meta->compress_workmem);
550 free_meta:
551 kfree(meta);
552 meta = NULL;
553 out:
554 return meta;
555 }
556
557 void zram_init_device(struct zram *zram, struct zram_meta *meta)
558 {
559 if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
560 pr_info(
561 "There is little point creating a zram of greater than "
562 "twice the size of memory since we expect a 2:1 compression "
563 "ratio. Note that zram uses about 0.1%% of the size of "
564 "the disk when not in use so a huge zram is "
565 "wasteful.\n"
566 "\tMemory Size: %lu kB\n"
567 "\tSize you selected: %llu kB\n"
568 "Continuing anyway ...\n",
569 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
570 );
571 }
572
573 /* zram devices sort of resembles non-rotational disks */
574 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
575
576 zram->meta = meta;
577 zram->init_done = 1;
578
579 pr_debug("Initialization done!\n");
580 }
581
582 static void zram_slot_free_notify(struct block_device *bdev,
583 unsigned long index)
584 {
585 struct zram *zram;
586
587 zram = bdev->bd_disk->private_data;
588 zram_free_page(zram, index);
589 zram_stat64_inc(zram, &zram->stats.notify_free);
590 }
591
592 static const struct block_device_operations zram_devops = {
593 .swap_slot_free_notify = zram_slot_free_notify,
594 .owner = THIS_MODULE
595 };
596
597 static int create_device(struct zram *zram, int device_id)
598 {
599 int ret = 0;
600
601 init_rwsem(&zram->lock);
602 init_rwsem(&zram->init_lock);
603 spin_lock_init(&zram->stat64_lock);
604
605 zram->queue = blk_alloc_queue(GFP_KERNEL);
606 if (!zram->queue) {
607 pr_err("Error allocating disk queue for device %d\n",
608 device_id);
609 ret = -ENOMEM;
610 goto out;
611 }
612
613 blk_queue_make_request(zram->queue, zram_make_request);
614 zram->queue->queuedata = zram;
615
616 /* gendisk structure */
617 zram->disk = alloc_disk(1);
618 if (!zram->disk) {
619 blk_cleanup_queue(zram->queue);
620 pr_warn("Error allocating disk structure for device %d\n",
621 device_id);
622 ret = -ENOMEM;
623 goto out;
624 }
625
626 zram->disk->major = zram_major;
627 zram->disk->first_minor = device_id;
628 zram->disk->fops = &zram_devops;
629 zram->disk->queue = zram->queue;
630 zram->disk->private_data = zram;
631 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
632
633 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
634 set_capacity(zram->disk, 0);
635
636 /*
637 * To ensure that we always get PAGE_SIZE aligned
638 * and n*PAGE_SIZED sized I/O requests.
639 */
640 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
641 blk_queue_logical_block_size(zram->disk->queue,
642 ZRAM_LOGICAL_BLOCK_SIZE);
643 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
644 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
645
646 add_disk(zram->disk);
647
648 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
649 &zram_disk_attr_group);
650 if (ret < 0) {
651 pr_warn("Error creating sysfs group");
652 goto out;
653 }
654
655 zram->init_done = 0;
656
657 out:
658 return ret;
659 }
660
661 static void destroy_device(struct zram *zram)
662 {
663 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
664 &zram_disk_attr_group);
665
666 if (zram->disk) {
667 del_gendisk(zram->disk);
668 put_disk(zram->disk);
669 }
670
671 if (zram->queue)
672 blk_cleanup_queue(zram->queue);
673 }
674
675 unsigned int zram_get_num_devices(void)
676 {
677 return num_devices;
678 }
679
680 static int __init zram_init(void)
681 {
682 int ret, dev_id;
683
684 if (num_devices > max_num_devices) {
685 pr_warn("Invalid value for num_devices: %u\n",
686 num_devices);
687 ret = -EINVAL;
688 goto out;
689 }
690
691 zram_major = register_blkdev(0, "zram");
692 if (zram_major <= 0) {
693 pr_warn("Unable to get major number\n");
694 ret = -EBUSY;
695 goto out;
696 }
697
698 /* Allocate the device array and initialize each one */
699 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
700 if (!zram_devices) {
701 ret = -ENOMEM;
702 goto unregister;
703 }
704
705 for (dev_id = 0; dev_id < num_devices; dev_id++) {
706 ret = create_device(&zram_devices[dev_id], dev_id);
707 if (ret)
708 goto free_devices;
709 }
710
711 pr_info("Created %u device(s) ...\n", num_devices);
712
713 return 0;
714
715 free_devices:
716 while (dev_id)
717 destroy_device(&zram_devices[--dev_id]);
718 kfree(zram_devices);
719 unregister:
720 unregister_blkdev(zram_major, "zram");
721 out:
722 return ret;
723 }
724
725 static void __exit zram_exit(void)
726 {
727 int i;
728 struct zram *zram;
729
730 for (i = 0; i < num_devices; i++) {
731 zram = &zram_devices[i];
732
733 destroy_device(zram);
734 zram_reset_device(zram);
735 }
736
737 unregister_blkdev(zram_major, "zram");
738
739 kfree(zram_devices);
740 pr_debug("Cleanup done!\n");
741 }
742
743 module_param(num_devices, uint, 0);
744 MODULE_PARM_DESC(num_devices, "Number of zram devices");
745
746 module_init(zram_init);
747 module_exit(zram_exit);
748
749 MODULE_LICENSE("Dual BSD/GPL");
750 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
751 MODULE_DESCRIPTION("Compressed RAM Block Device");
This page took 0.055904 seconds and 6 git commands to generate.