0b4e24217564ab902f3dc389deb48acb63c79440
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42
43 #include <target/target_core_base.h>
44 #include <target/target_core_backend.h>
45 #include <target/target_core_fabric.h>
46 #include <target/target_core_configfs.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
64 struct kmem_cache *t10_alua_lba_map_cache;
65 struct kmem_cache *t10_alua_lba_map_mem_cache;
66
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
123 "t10_alua_tg_pt_gp_mem_cache",
124 sizeof(struct t10_alua_tg_pt_gp_member),
125 __alignof__(struct t10_alua_tg_pt_gp_member),
126 0, NULL);
127 if (!t10_alua_tg_pt_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
129 "mem_t failed\n");
130 goto out_free_tg_pt_gp_cache;
131 }
132 t10_alua_lba_map_cache = kmem_cache_create(
133 "t10_alua_lba_map_cache",
134 sizeof(struct t10_alua_lba_map),
135 __alignof__(struct t10_alua_lba_map), 0, NULL);
136 if (!t10_alua_lba_map_cache) {
137 pr_err("kmem_cache_create() for t10_alua_lba_map_"
138 "cache failed\n");
139 goto out_free_tg_pt_gp_mem_cache;
140 }
141 t10_alua_lba_map_mem_cache = kmem_cache_create(
142 "t10_alua_lba_map_mem_cache",
143 sizeof(struct t10_alua_lba_map_member),
144 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
145 if (!t10_alua_lba_map_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
147 "cache failed\n");
148 goto out_free_lba_map_cache;
149 }
150
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_lba_map_mem_cache;
155
156 return 0;
157
158 out_free_lba_map_mem_cache:
159 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
160 out_free_lba_map_cache:
161 kmem_cache_destroy(t10_alua_lba_map_cache);
162 out_free_tg_pt_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
164 out_free_tg_pt_gp_cache:
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 out_free_lu_gp_mem_cache:
167 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
168 out_free_lu_gp_cache:
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 out_free_pr_reg_cache:
171 kmem_cache_destroy(t10_pr_reg_cache);
172 out_free_ua_cache:
173 kmem_cache_destroy(se_ua_cache);
174 out_free_sess_cache:
175 kmem_cache_destroy(se_sess_cache);
176 out:
177 return -ENOMEM;
178 }
179
180 void release_se_kmem_caches(void)
181 {
182 destroy_workqueue(target_completion_wq);
183 kmem_cache_destroy(se_sess_cache);
184 kmem_cache_destroy(se_ua_cache);
185 kmem_cache_destroy(t10_pr_reg_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
190 kmem_cache_destroy(t10_alua_lba_map_cache);
191 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
192 }
193
194 /* This code ensures unique mib indexes are handed out. */
195 static DEFINE_SPINLOCK(scsi_mib_index_lock);
196 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
197
198 /*
199 * Allocate a new row index for the entry type specified
200 */
201 u32 scsi_get_new_index(scsi_index_t type)
202 {
203 u32 new_index;
204
205 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
206
207 spin_lock(&scsi_mib_index_lock);
208 new_index = ++scsi_mib_index[type];
209 spin_unlock(&scsi_mib_index_lock);
210
211 return new_index;
212 }
213
214 void transport_subsystem_check_init(void)
215 {
216 int ret;
217 static int sub_api_initialized;
218
219 if (sub_api_initialized)
220 return;
221
222 ret = request_module("target_core_iblock");
223 if (ret != 0)
224 pr_err("Unable to load target_core_iblock\n");
225
226 ret = request_module("target_core_file");
227 if (ret != 0)
228 pr_err("Unable to load target_core_file\n");
229
230 ret = request_module("target_core_pscsi");
231 if (ret != 0)
232 pr_err("Unable to load target_core_pscsi\n");
233
234 ret = request_module("target_core_user");
235 if (ret != 0)
236 pr_err("Unable to load target_core_user\n");
237
238 sub_api_initialized = 1;
239 }
240
241 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
242 {
243 struct se_session *se_sess;
244
245 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
246 if (!se_sess) {
247 pr_err("Unable to allocate struct se_session from"
248 " se_sess_cache\n");
249 return ERR_PTR(-ENOMEM);
250 }
251 INIT_LIST_HEAD(&se_sess->sess_list);
252 INIT_LIST_HEAD(&se_sess->sess_acl_list);
253 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
254 INIT_LIST_HEAD(&se_sess->sess_wait_list);
255 spin_lock_init(&se_sess->sess_cmd_lock);
256 kref_init(&se_sess->sess_kref);
257 se_sess->sup_prot_ops = sup_prot_ops;
258
259 return se_sess;
260 }
261 EXPORT_SYMBOL(transport_init_session);
262
263 int transport_alloc_session_tags(struct se_session *se_sess,
264 unsigned int tag_num, unsigned int tag_size)
265 {
266 int rc;
267
268 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
269 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
270 if (!se_sess->sess_cmd_map) {
271 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
272 if (!se_sess->sess_cmd_map) {
273 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
274 return -ENOMEM;
275 }
276 }
277
278 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
279 if (rc < 0) {
280 pr_err("Unable to init se_sess->sess_tag_pool,"
281 " tag_num: %u\n", tag_num);
282 if (is_vmalloc_addr(se_sess->sess_cmd_map))
283 vfree(se_sess->sess_cmd_map);
284 else
285 kfree(se_sess->sess_cmd_map);
286 se_sess->sess_cmd_map = NULL;
287 return -ENOMEM;
288 }
289
290 return 0;
291 }
292 EXPORT_SYMBOL(transport_alloc_session_tags);
293
294 struct se_session *transport_init_session_tags(unsigned int tag_num,
295 unsigned int tag_size,
296 enum target_prot_op sup_prot_ops)
297 {
298 struct se_session *se_sess;
299 int rc;
300
301 se_sess = transport_init_session(sup_prot_ops);
302 if (IS_ERR(se_sess))
303 return se_sess;
304
305 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
306 if (rc < 0) {
307 transport_free_session(se_sess);
308 return ERR_PTR(-ENOMEM);
309 }
310
311 return se_sess;
312 }
313 EXPORT_SYMBOL(transport_init_session_tags);
314
315 /*
316 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
317 */
318 void __transport_register_session(
319 struct se_portal_group *se_tpg,
320 struct se_node_acl *se_nacl,
321 struct se_session *se_sess,
322 void *fabric_sess_ptr)
323 {
324 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
325 unsigned char buf[PR_REG_ISID_LEN];
326
327 se_sess->se_tpg = se_tpg;
328 se_sess->fabric_sess_ptr = fabric_sess_ptr;
329 /*
330 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
331 *
332 * Only set for struct se_session's that will actually be moving I/O.
333 * eg: *NOT* discovery sessions.
334 */
335 if (se_nacl) {
336 /*
337 *
338 * Determine if fabric allows for T10-PI feature bits exposed to
339 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
340 *
341 * If so, then always save prot_type on a per se_node_acl node
342 * basis and re-instate the previous sess_prot_type to avoid
343 * disabling PI from below any previously initiator side
344 * registered LUNs.
345 */
346 if (se_nacl->saved_prot_type)
347 se_sess->sess_prot_type = se_nacl->saved_prot_type;
348 else if (tfo->tpg_check_prot_fabric_only)
349 se_sess->sess_prot_type = se_nacl->saved_prot_type =
350 tfo->tpg_check_prot_fabric_only(se_tpg);
351 /*
352 * If the fabric module supports an ISID based TransportID,
353 * save this value in binary from the fabric I_T Nexus now.
354 */
355 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
356 memset(&buf[0], 0, PR_REG_ISID_LEN);
357 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
358 &buf[0], PR_REG_ISID_LEN);
359 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
360 }
361 kref_get(&se_nacl->acl_kref);
362
363 spin_lock_irq(&se_nacl->nacl_sess_lock);
364 /*
365 * The se_nacl->nacl_sess pointer will be set to the
366 * last active I_T Nexus for each struct se_node_acl.
367 */
368 se_nacl->nacl_sess = se_sess;
369
370 list_add_tail(&se_sess->sess_acl_list,
371 &se_nacl->acl_sess_list);
372 spin_unlock_irq(&se_nacl->nacl_sess_lock);
373 }
374 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
375
376 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
377 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
378 }
379 EXPORT_SYMBOL(__transport_register_session);
380
381 void transport_register_session(
382 struct se_portal_group *se_tpg,
383 struct se_node_acl *se_nacl,
384 struct se_session *se_sess,
385 void *fabric_sess_ptr)
386 {
387 unsigned long flags;
388
389 spin_lock_irqsave(&se_tpg->session_lock, flags);
390 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
391 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
392 }
393 EXPORT_SYMBOL(transport_register_session);
394
395 static void target_release_session(struct kref *kref)
396 {
397 struct se_session *se_sess = container_of(kref,
398 struct se_session, sess_kref);
399 struct se_portal_group *se_tpg = se_sess->se_tpg;
400
401 se_tpg->se_tpg_tfo->close_session(se_sess);
402 }
403
404 void target_get_session(struct se_session *se_sess)
405 {
406 kref_get(&se_sess->sess_kref);
407 }
408 EXPORT_SYMBOL(target_get_session);
409
410 void target_put_session(struct se_session *se_sess)
411 {
412 struct se_portal_group *tpg = se_sess->se_tpg;
413
414 if (tpg->se_tpg_tfo->put_session != NULL) {
415 tpg->se_tpg_tfo->put_session(se_sess);
416 return;
417 }
418 kref_put(&se_sess->sess_kref, target_release_session);
419 }
420 EXPORT_SYMBOL(target_put_session);
421
422 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
423 {
424 struct se_session *se_sess;
425 ssize_t len = 0;
426
427 spin_lock_bh(&se_tpg->session_lock);
428 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
429 if (!se_sess->se_node_acl)
430 continue;
431 if (!se_sess->se_node_acl->dynamic_node_acl)
432 continue;
433 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
434 break;
435
436 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
437 se_sess->se_node_acl->initiatorname);
438 len += 1; /* Include NULL terminator */
439 }
440 spin_unlock_bh(&se_tpg->session_lock);
441
442 return len;
443 }
444 EXPORT_SYMBOL(target_show_dynamic_sessions);
445
446 static void target_complete_nacl(struct kref *kref)
447 {
448 struct se_node_acl *nacl = container_of(kref,
449 struct se_node_acl, acl_kref);
450
451 complete(&nacl->acl_free_comp);
452 }
453
454 void target_put_nacl(struct se_node_acl *nacl)
455 {
456 kref_put(&nacl->acl_kref, target_complete_nacl);
457 }
458
459 void transport_deregister_session_configfs(struct se_session *se_sess)
460 {
461 struct se_node_acl *se_nacl;
462 unsigned long flags;
463 /*
464 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
465 */
466 se_nacl = se_sess->se_node_acl;
467 if (se_nacl) {
468 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
469 if (se_nacl->acl_stop == 0)
470 list_del(&se_sess->sess_acl_list);
471 /*
472 * If the session list is empty, then clear the pointer.
473 * Otherwise, set the struct se_session pointer from the tail
474 * element of the per struct se_node_acl active session list.
475 */
476 if (list_empty(&se_nacl->acl_sess_list))
477 se_nacl->nacl_sess = NULL;
478 else {
479 se_nacl->nacl_sess = container_of(
480 se_nacl->acl_sess_list.prev,
481 struct se_session, sess_acl_list);
482 }
483 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
484 }
485 }
486 EXPORT_SYMBOL(transport_deregister_session_configfs);
487
488 void transport_free_session(struct se_session *se_sess)
489 {
490 if (se_sess->sess_cmd_map) {
491 percpu_ida_destroy(&se_sess->sess_tag_pool);
492 if (is_vmalloc_addr(se_sess->sess_cmd_map))
493 vfree(se_sess->sess_cmd_map);
494 else
495 kfree(se_sess->sess_cmd_map);
496 }
497 kmem_cache_free(se_sess_cache, se_sess);
498 }
499 EXPORT_SYMBOL(transport_free_session);
500
501 void transport_deregister_session(struct se_session *se_sess)
502 {
503 struct se_portal_group *se_tpg = se_sess->se_tpg;
504 const struct target_core_fabric_ops *se_tfo;
505 struct se_node_acl *se_nacl;
506 unsigned long flags;
507 bool comp_nacl = true;
508
509 if (!se_tpg) {
510 transport_free_session(se_sess);
511 return;
512 }
513 se_tfo = se_tpg->se_tpg_tfo;
514
515 spin_lock_irqsave(&se_tpg->session_lock, flags);
516 list_del(&se_sess->sess_list);
517 se_sess->se_tpg = NULL;
518 se_sess->fabric_sess_ptr = NULL;
519 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
520
521 /*
522 * Determine if we need to do extra work for this initiator node's
523 * struct se_node_acl if it had been previously dynamically generated.
524 */
525 se_nacl = se_sess->se_node_acl;
526
527 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
528 if (se_nacl && se_nacl->dynamic_node_acl) {
529 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
530 list_del(&se_nacl->acl_list);
531 se_tpg->num_node_acls--;
532 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
533 core_tpg_wait_for_nacl_pr_ref(se_nacl);
534 core_free_device_list_for_node(se_nacl, se_tpg);
535 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
536
537 comp_nacl = false;
538 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
539 }
540 }
541 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
542
543 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
544 se_tpg->se_tpg_tfo->get_fabric_name());
545 /*
546 * If last kref is dropping now for an explicit NodeACL, awake sleeping
547 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
548 * removal context.
549 */
550 if (se_nacl && comp_nacl)
551 target_put_nacl(se_nacl);
552
553 transport_free_session(se_sess);
554 }
555 EXPORT_SYMBOL(transport_deregister_session);
556
557 /*
558 * Called with cmd->t_state_lock held.
559 */
560 static void target_remove_from_state_list(struct se_cmd *cmd)
561 {
562 struct se_device *dev = cmd->se_dev;
563 unsigned long flags;
564
565 if (!dev)
566 return;
567
568 if (cmd->transport_state & CMD_T_BUSY)
569 return;
570
571 spin_lock_irqsave(&dev->execute_task_lock, flags);
572 if (cmd->state_active) {
573 list_del(&cmd->state_list);
574 cmd->state_active = false;
575 }
576 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
577 }
578
579 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
580 bool write_pending)
581 {
582 unsigned long flags;
583
584 spin_lock_irqsave(&cmd->t_state_lock, flags);
585 if (write_pending)
586 cmd->t_state = TRANSPORT_WRITE_PENDING;
587
588 if (remove_from_lists) {
589 target_remove_from_state_list(cmd);
590
591 /*
592 * Clear struct se_cmd->se_lun before the handoff to FE.
593 */
594 cmd->se_lun = NULL;
595 }
596
597 /*
598 * Determine if frontend context caller is requesting the stopping of
599 * this command for frontend exceptions.
600 */
601 if (cmd->transport_state & CMD_T_STOP) {
602 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
603 __func__, __LINE__,
604 cmd->se_tfo->get_task_tag(cmd));
605
606 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
607
608 complete_all(&cmd->t_transport_stop_comp);
609 return 1;
610 }
611
612 cmd->transport_state &= ~CMD_T_ACTIVE;
613 if (remove_from_lists) {
614 /*
615 * Some fabric modules like tcm_loop can release
616 * their internally allocated I/O reference now and
617 * struct se_cmd now.
618 *
619 * Fabric modules are expected to return '1' here if the
620 * se_cmd being passed is released at this point,
621 * or zero if not being released.
622 */
623 if (cmd->se_tfo->check_stop_free != NULL) {
624 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
625 return cmd->se_tfo->check_stop_free(cmd);
626 }
627 }
628
629 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
630 return 0;
631 }
632
633 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
634 {
635 return transport_cmd_check_stop(cmd, true, false);
636 }
637
638 static void transport_lun_remove_cmd(struct se_cmd *cmd)
639 {
640 struct se_lun *lun = cmd->se_lun;
641
642 if (!lun)
643 return;
644
645 if (cmpxchg(&cmd->lun_ref_active, true, false))
646 percpu_ref_put(&lun->lun_ref);
647 }
648
649 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
650 {
651 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
652 transport_lun_remove_cmd(cmd);
653 /*
654 * Allow the fabric driver to unmap any resources before
655 * releasing the descriptor via TFO->release_cmd()
656 */
657 if (remove)
658 cmd->se_tfo->aborted_task(cmd);
659
660 if (transport_cmd_check_stop_to_fabric(cmd))
661 return;
662 if (remove)
663 transport_put_cmd(cmd);
664 }
665
666 static void target_complete_failure_work(struct work_struct *work)
667 {
668 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
669
670 transport_generic_request_failure(cmd,
671 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
672 }
673
674 /*
675 * Used when asking transport to copy Sense Data from the underlying
676 * Linux/SCSI struct scsi_cmnd
677 */
678 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
679 {
680 struct se_device *dev = cmd->se_dev;
681
682 WARN_ON(!cmd->se_lun);
683
684 if (!dev)
685 return NULL;
686
687 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
688 return NULL;
689
690 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
691
692 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
693 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
694 return cmd->sense_buffer;
695 }
696
697 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
698 {
699 struct se_device *dev = cmd->se_dev;
700 int success = scsi_status == GOOD;
701 unsigned long flags;
702
703 cmd->scsi_status = scsi_status;
704
705
706 spin_lock_irqsave(&cmd->t_state_lock, flags);
707 cmd->transport_state &= ~CMD_T_BUSY;
708
709 if (dev && dev->transport->transport_complete) {
710 dev->transport->transport_complete(cmd,
711 cmd->t_data_sg,
712 transport_get_sense_buffer(cmd));
713 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
714 success = 1;
715 }
716
717 /*
718 * See if we are waiting to complete for an exception condition.
719 */
720 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722 complete(&cmd->task_stop_comp);
723 return;
724 }
725
726 /*
727 * Check for case where an explicit ABORT_TASK has been received
728 * and transport_wait_for_tasks() will be waiting for completion..
729 */
730 if (cmd->transport_state & CMD_T_ABORTED &&
731 cmd->transport_state & CMD_T_STOP) {
732 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
733 complete_all(&cmd->t_transport_stop_comp);
734 return;
735 } else if (!success) {
736 INIT_WORK(&cmd->work, target_complete_failure_work);
737 } else {
738 INIT_WORK(&cmd->work, target_complete_ok_work);
739 }
740
741 cmd->t_state = TRANSPORT_COMPLETE;
742 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
743 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
744
745 queue_work(target_completion_wq, &cmd->work);
746 }
747 EXPORT_SYMBOL(target_complete_cmd);
748
749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
750 {
751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
753 cmd->residual_count += cmd->data_length - length;
754 } else {
755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
756 cmd->residual_count = cmd->data_length - length;
757 }
758
759 cmd->data_length = length;
760 }
761
762 target_complete_cmd(cmd, scsi_status);
763 }
764 EXPORT_SYMBOL(target_complete_cmd_with_length);
765
766 static void target_add_to_state_list(struct se_cmd *cmd)
767 {
768 struct se_device *dev = cmd->se_dev;
769 unsigned long flags;
770
771 spin_lock_irqsave(&dev->execute_task_lock, flags);
772 if (!cmd->state_active) {
773 list_add_tail(&cmd->state_list, &dev->state_list);
774 cmd->state_active = true;
775 }
776 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
777 }
778
779 /*
780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
781 */
782 static void transport_write_pending_qf(struct se_cmd *cmd);
783 static void transport_complete_qf(struct se_cmd *cmd);
784
785 void target_qf_do_work(struct work_struct *work)
786 {
787 struct se_device *dev = container_of(work, struct se_device,
788 qf_work_queue);
789 LIST_HEAD(qf_cmd_list);
790 struct se_cmd *cmd, *cmd_tmp;
791
792 spin_lock_irq(&dev->qf_cmd_lock);
793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
794 spin_unlock_irq(&dev->qf_cmd_lock);
795
796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
797 list_del(&cmd->se_qf_node);
798 atomic_dec_mb(&dev->dev_qf_count);
799
800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
804 : "UNKNOWN");
805
806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
807 transport_write_pending_qf(cmd);
808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
809 transport_complete_qf(cmd);
810 }
811 }
812
813 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
814 {
815 switch (cmd->data_direction) {
816 case DMA_NONE:
817 return "NONE";
818 case DMA_FROM_DEVICE:
819 return "READ";
820 case DMA_TO_DEVICE:
821 return "WRITE";
822 case DMA_BIDIRECTIONAL:
823 return "BIDI";
824 default:
825 break;
826 }
827
828 return "UNKNOWN";
829 }
830
831 void transport_dump_dev_state(
832 struct se_device *dev,
833 char *b,
834 int *bl)
835 {
836 *bl += sprintf(b + *bl, "Status: ");
837 if (dev->export_count)
838 *bl += sprintf(b + *bl, "ACTIVATED");
839 else
840 *bl += sprintf(b + *bl, "DEACTIVATED");
841
842 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
843 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
844 dev->dev_attrib.block_size,
845 dev->dev_attrib.hw_max_sectors);
846 *bl += sprintf(b + *bl, " ");
847 }
848
849 void transport_dump_vpd_proto_id(
850 struct t10_vpd *vpd,
851 unsigned char *p_buf,
852 int p_buf_len)
853 {
854 unsigned char buf[VPD_TMP_BUF_SIZE];
855 int len;
856
857 memset(buf, 0, VPD_TMP_BUF_SIZE);
858 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
859
860 switch (vpd->protocol_identifier) {
861 case 0x00:
862 sprintf(buf+len, "Fibre Channel\n");
863 break;
864 case 0x10:
865 sprintf(buf+len, "Parallel SCSI\n");
866 break;
867 case 0x20:
868 sprintf(buf+len, "SSA\n");
869 break;
870 case 0x30:
871 sprintf(buf+len, "IEEE 1394\n");
872 break;
873 case 0x40:
874 sprintf(buf+len, "SCSI Remote Direct Memory Access"
875 " Protocol\n");
876 break;
877 case 0x50:
878 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
879 break;
880 case 0x60:
881 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
882 break;
883 case 0x70:
884 sprintf(buf+len, "Automation/Drive Interface Transport"
885 " Protocol\n");
886 break;
887 case 0x80:
888 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
889 break;
890 default:
891 sprintf(buf+len, "Unknown 0x%02x\n",
892 vpd->protocol_identifier);
893 break;
894 }
895
896 if (p_buf)
897 strncpy(p_buf, buf, p_buf_len);
898 else
899 pr_debug("%s", buf);
900 }
901
902 void
903 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
904 {
905 /*
906 * Check if the Protocol Identifier Valid (PIV) bit is set..
907 *
908 * from spc3r23.pdf section 7.5.1
909 */
910 if (page_83[1] & 0x80) {
911 vpd->protocol_identifier = (page_83[0] & 0xf0);
912 vpd->protocol_identifier_set = 1;
913 transport_dump_vpd_proto_id(vpd, NULL, 0);
914 }
915 }
916 EXPORT_SYMBOL(transport_set_vpd_proto_id);
917
918 int transport_dump_vpd_assoc(
919 struct t10_vpd *vpd,
920 unsigned char *p_buf,
921 int p_buf_len)
922 {
923 unsigned char buf[VPD_TMP_BUF_SIZE];
924 int ret = 0;
925 int len;
926
927 memset(buf, 0, VPD_TMP_BUF_SIZE);
928 len = sprintf(buf, "T10 VPD Identifier Association: ");
929
930 switch (vpd->association) {
931 case 0x00:
932 sprintf(buf+len, "addressed logical unit\n");
933 break;
934 case 0x10:
935 sprintf(buf+len, "target port\n");
936 break;
937 case 0x20:
938 sprintf(buf+len, "SCSI target device\n");
939 break;
940 default:
941 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
942 ret = -EINVAL;
943 break;
944 }
945
946 if (p_buf)
947 strncpy(p_buf, buf, p_buf_len);
948 else
949 pr_debug("%s", buf);
950
951 return ret;
952 }
953
954 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
955 {
956 /*
957 * The VPD identification association..
958 *
959 * from spc3r23.pdf Section 7.6.3.1 Table 297
960 */
961 vpd->association = (page_83[1] & 0x30);
962 return transport_dump_vpd_assoc(vpd, NULL, 0);
963 }
964 EXPORT_SYMBOL(transport_set_vpd_assoc);
965
966 int transport_dump_vpd_ident_type(
967 struct t10_vpd *vpd,
968 unsigned char *p_buf,
969 int p_buf_len)
970 {
971 unsigned char buf[VPD_TMP_BUF_SIZE];
972 int ret = 0;
973 int len;
974
975 memset(buf, 0, VPD_TMP_BUF_SIZE);
976 len = sprintf(buf, "T10 VPD Identifier Type: ");
977
978 switch (vpd->device_identifier_type) {
979 case 0x00:
980 sprintf(buf+len, "Vendor specific\n");
981 break;
982 case 0x01:
983 sprintf(buf+len, "T10 Vendor ID based\n");
984 break;
985 case 0x02:
986 sprintf(buf+len, "EUI-64 based\n");
987 break;
988 case 0x03:
989 sprintf(buf+len, "NAA\n");
990 break;
991 case 0x04:
992 sprintf(buf+len, "Relative target port identifier\n");
993 break;
994 case 0x08:
995 sprintf(buf+len, "SCSI name string\n");
996 break;
997 default:
998 sprintf(buf+len, "Unsupported: 0x%02x\n",
999 vpd->device_identifier_type);
1000 ret = -EINVAL;
1001 break;
1002 }
1003
1004 if (p_buf) {
1005 if (p_buf_len < strlen(buf)+1)
1006 return -EINVAL;
1007 strncpy(p_buf, buf, p_buf_len);
1008 } else {
1009 pr_debug("%s", buf);
1010 }
1011
1012 return ret;
1013 }
1014
1015 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1016 {
1017 /*
1018 * The VPD identifier type..
1019 *
1020 * from spc3r23.pdf Section 7.6.3.1 Table 298
1021 */
1022 vpd->device_identifier_type = (page_83[1] & 0x0f);
1023 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1024 }
1025 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1026
1027 int transport_dump_vpd_ident(
1028 struct t10_vpd *vpd,
1029 unsigned char *p_buf,
1030 int p_buf_len)
1031 {
1032 unsigned char buf[VPD_TMP_BUF_SIZE];
1033 int ret = 0;
1034
1035 memset(buf, 0, VPD_TMP_BUF_SIZE);
1036
1037 switch (vpd->device_identifier_code_set) {
1038 case 0x01: /* Binary */
1039 snprintf(buf, sizeof(buf),
1040 "T10 VPD Binary Device Identifier: %s\n",
1041 &vpd->device_identifier[0]);
1042 break;
1043 case 0x02: /* ASCII */
1044 snprintf(buf, sizeof(buf),
1045 "T10 VPD ASCII Device Identifier: %s\n",
1046 &vpd->device_identifier[0]);
1047 break;
1048 case 0x03: /* UTF-8 */
1049 snprintf(buf, sizeof(buf),
1050 "T10 VPD UTF-8 Device Identifier: %s\n",
1051 &vpd->device_identifier[0]);
1052 break;
1053 default:
1054 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1055 " 0x%02x", vpd->device_identifier_code_set);
1056 ret = -EINVAL;
1057 break;
1058 }
1059
1060 if (p_buf)
1061 strncpy(p_buf, buf, p_buf_len);
1062 else
1063 pr_debug("%s", buf);
1064
1065 return ret;
1066 }
1067
1068 int
1069 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1070 {
1071 static const char hex_str[] = "0123456789abcdef";
1072 int j = 0, i = 4; /* offset to start of the identifier */
1073
1074 /*
1075 * The VPD Code Set (encoding)
1076 *
1077 * from spc3r23.pdf Section 7.6.3.1 Table 296
1078 */
1079 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1080 switch (vpd->device_identifier_code_set) {
1081 case 0x01: /* Binary */
1082 vpd->device_identifier[j++] =
1083 hex_str[vpd->device_identifier_type];
1084 while (i < (4 + page_83[3])) {
1085 vpd->device_identifier[j++] =
1086 hex_str[(page_83[i] & 0xf0) >> 4];
1087 vpd->device_identifier[j++] =
1088 hex_str[page_83[i] & 0x0f];
1089 i++;
1090 }
1091 break;
1092 case 0x02: /* ASCII */
1093 case 0x03: /* UTF-8 */
1094 while (i < (4 + page_83[3]))
1095 vpd->device_identifier[j++] = page_83[i++];
1096 break;
1097 default:
1098 break;
1099 }
1100
1101 return transport_dump_vpd_ident(vpd, NULL, 0);
1102 }
1103 EXPORT_SYMBOL(transport_set_vpd_ident);
1104
1105 sense_reason_t
1106 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1107 {
1108 struct se_device *dev = cmd->se_dev;
1109
1110 if (cmd->unknown_data_length) {
1111 cmd->data_length = size;
1112 } else if (size != cmd->data_length) {
1113 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1114 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1115 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1116 cmd->data_length, size, cmd->t_task_cdb[0]);
1117
1118 if (cmd->data_direction == DMA_TO_DEVICE) {
1119 pr_err("Rejecting underflow/overflow"
1120 " WRITE data\n");
1121 return TCM_INVALID_CDB_FIELD;
1122 }
1123 /*
1124 * Reject READ_* or WRITE_* with overflow/underflow for
1125 * type SCF_SCSI_DATA_CDB.
1126 */
1127 if (dev->dev_attrib.block_size != 512) {
1128 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1129 " CDB on non 512-byte sector setup subsystem"
1130 " plugin: %s\n", dev->transport->name);
1131 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1132 return TCM_INVALID_CDB_FIELD;
1133 }
1134 /*
1135 * For the overflow case keep the existing fabric provided
1136 * ->data_length. Otherwise for the underflow case, reset
1137 * ->data_length to the smaller SCSI expected data transfer
1138 * length.
1139 */
1140 if (size > cmd->data_length) {
1141 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1142 cmd->residual_count = (size - cmd->data_length);
1143 } else {
1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1145 cmd->residual_count = (cmd->data_length - size);
1146 cmd->data_length = size;
1147 }
1148 }
1149
1150 return 0;
1151
1152 }
1153
1154 /*
1155 * Used by fabric modules containing a local struct se_cmd within their
1156 * fabric dependent per I/O descriptor.
1157 */
1158 void transport_init_se_cmd(
1159 struct se_cmd *cmd,
1160 const struct target_core_fabric_ops *tfo,
1161 struct se_session *se_sess,
1162 u32 data_length,
1163 int data_direction,
1164 int task_attr,
1165 unsigned char *sense_buffer)
1166 {
1167 INIT_LIST_HEAD(&cmd->se_delayed_node);
1168 INIT_LIST_HEAD(&cmd->se_qf_node);
1169 INIT_LIST_HEAD(&cmd->se_cmd_list);
1170 INIT_LIST_HEAD(&cmd->state_list);
1171 init_completion(&cmd->t_transport_stop_comp);
1172 init_completion(&cmd->cmd_wait_comp);
1173 init_completion(&cmd->task_stop_comp);
1174 spin_lock_init(&cmd->t_state_lock);
1175 kref_init(&cmd->cmd_kref);
1176 cmd->transport_state = CMD_T_DEV_ACTIVE;
1177
1178 cmd->se_tfo = tfo;
1179 cmd->se_sess = se_sess;
1180 cmd->data_length = data_length;
1181 cmd->data_direction = data_direction;
1182 cmd->sam_task_attr = task_attr;
1183 cmd->sense_buffer = sense_buffer;
1184
1185 cmd->state_active = false;
1186 }
1187 EXPORT_SYMBOL(transport_init_se_cmd);
1188
1189 static sense_reason_t
1190 transport_check_alloc_task_attr(struct se_cmd *cmd)
1191 {
1192 struct se_device *dev = cmd->se_dev;
1193
1194 /*
1195 * Check if SAM Task Attribute emulation is enabled for this
1196 * struct se_device storage object
1197 */
1198 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1199 return 0;
1200
1201 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1202 pr_debug("SAM Task Attribute ACA"
1203 " emulation is not supported\n");
1204 return TCM_INVALID_CDB_FIELD;
1205 }
1206 /*
1207 * Used to determine when ORDERED commands should go from
1208 * Dormant to Active status.
1209 */
1210 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1211 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1212 cmd->se_ordered_id, cmd->sam_task_attr,
1213 dev->transport->name);
1214 return 0;
1215 }
1216
1217 sense_reason_t
1218 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1219 {
1220 struct se_device *dev = cmd->se_dev;
1221 sense_reason_t ret;
1222
1223 /*
1224 * Ensure that the received CDB is less than the max (252 + 8) bytes
1225 * for VARIABLE_LENGTH_CMD
1226 */
1227 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1228 pr_err("Received SCSI CDB with command_size: %d that"
1229 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1230 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1231 return TCM_INVALID_CDB_FIELD;
1232 }
1233 /*
1234 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1235 * allocate the additional extended CDB buffer now.. Otherwise
1236 * setup the pointer from __t_task_cdb to t_task_cdb.
1237 */
1238 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1239 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1240 GFP_KERNEL);
1241 if (!cmd->t_task_cdb) {
1242 pr_err("Unable to allocate cmd->t_task_cdb"
1243 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1244 scsi_command_size(cdb),
1245 (unsigned long)sizeof(cmd->__t_task_cdb));
1246 return TCM_OUT_OF_RESOURCES;
1247 }
1248 } else
1249 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1250 /*
1251 * Copy the original CDB into cmd->
1252 */
1253 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1254
1255 trace_target_sequencer_start(cmd);
1256
1257 /*
1258 * Check for an existing UNIT ATTENTION condition
1259 */
1260 ret = target_scsi3_ua_check(cmd);
1261 if (ret)
1262 return ret;
1263
1264 ret = target_alua_state_check(cmd);
1265 if (ret)
1266 return ret;
1267
1268 ret = target_check_reservation(cmd);
1269 if (ret) {
1270 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1271 return ret;
1272 }
1273
1274 ret = dev->transport->parse_cdb(cmd);
1275 if (ret)
1276 return ret;
1277
1278 ret = transport_check_alloc_task_attr(cmd);
1279 if (ret)
1280 return ret;
1281
1282 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1283
1284 spin_lock(&cmd->se_lun->lun_sep_lock);
1285 if (cmd->se_lun->lun_sep)
1286 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1287 spin_unlock(&cmd->se_lun->lun_sep_lock);
1288 return 0;
1289 }
1290 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1291
1292 /*
1293 * Used by fabric module frontends to queue tasks directly.
1294 * Many only be used from process context only
1295 */
1296 int transport_handle_cdb_direct(
1297 struct se_cmd *cmd)
1298 {
1299 sense_reason_t ret;
1300
1301 if (!cmd->se_lun) {
1302 dump_stack();
1303 pr_err("cmd->se_lun is NULL\n");
1304 return -EINVAL;
1305 }
1306 if (in_interrupt()) {
1307 dump_stack();
1308 pr_err("transport_generic_handle_cdb cannot be called"
1309 " from interrupt context\n");
1310 return -EINVAL;
1311 }
1312 /*
1313 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1314 * outstanding descriptors are handled correctly during shutdown via
1315 * transport_wait_for_tasks()
1316 *
1317 * Also, we don't take cmd->t_state_lock here as we only expect
1318 * this to be called for initial descriptor submission.
1319 */
1320 cmd->t_state = TRANSPORT_NEW_CMD;
1321 cmd->transport_state |= CMD_T_ACTIVE;
1322
1323 /*
1324 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1325 * so follow TRANSPORT_NEW_CMD processing thread context usage
1326 * and call transport_generic_request_failure() if necessary..
1327 */
1328 ret = transport_generic_new_cmd(cmd);
1329 if (ret)
1330 transport_generic_request_failure(cmd, ret);
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(transport_handle_cdb_direct);
1334
1335 sense_reason_t
1336 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1337 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1338 {
1339 if (!sgl || !sgl_count)
1340 return 0;
1341
1342 /*
1343 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1344 * scatterlists already have been set to follow what the fabric
1345 * passes for the original expected data transfer length.
1346 */
1347 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1348 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1349 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1350 return TCM_INVALID_CDB_FIELD;
1351 }
1352
1353 cmd->t_data_sg = sgl;
1354 cmd->t_data_nents = sgl_count;
1355
1356 if (sgl_bidi && sgl_bidi_count) {
1357 cmd->t_bidi_data_sg = sgl_bidi;
1358 cmd->t_bidi_data_nents = sgl_bidi_count;
1359 }
1360 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1361 return 0;
1362 }
1363
1364 /*
1365 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1366 * se_cmd + use pre-allocated SGL memory.
1367 *
1368 * @se_cmd: command descriptor to submit
1369 * @se_sess: associated se_sess for endpoint
1370 * @cdb: pointer to SCSI CDB
1371 * @sense: pointer to SCSI sense buffer
1372 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1373 * @data_length: fabric expected data transfer length
1374 * @task_addr: SAM task attribute
1375 * @data_dir: DMA data direction
1376 * @flags: flags for command submission from target_sc_flags_tables
1377 * @sgl: struct scatterlist memory for unidirectional mapping
1378 * @sgl_count: scatterlist count for unidirectional mapping
1379 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1380 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1381 * @sgl_prot: struct scatterlist memory protection information
1382 * @sgl_prot_count: scatterlist count for protection information
1383 *
1384 * Returns non zero to signal active I/O shutdown failure. All other
1385 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1386 * but still return zero here.
1387 *
1388 * This may only be called from process context, and also currently
1389 * assumes internal allocation of fabric payload buffer by target-core.
1390 */
1391 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1392 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1393 u32 data_length, int task_attr, int data_dir, int flags,
1394 struct scatterlist *sgl, u32 sgl_count,
1395 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1396 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1397 {
1398 struct se_portal_group *se_tpg;
1399 sense_reason_t rc;
1400 int ret;
1401
1402 se_tpg = se_sess->se_tpg;
1403 BUG_ON(!se_tpg);
1404 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1405 BUG_ON(in_interrupt());
1406 /*
1407 * Initialize se_cmd for target operation. From this point
1408 * exceptions are handled by sending exception status via
1409 * target_core_fabric_ops->queue_status() callback
1410 */
1411 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1412 data_length, data_dir, task_attr, sense);
1413 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1414 se_cmd->unknown_data_length = 1;
1415 /*
1416 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1417 * se_sess->sess_cmd_list. A second kref_get here is necessary
1418 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1419 * kref_put() to happen during fabric packet acknowledgement.
1420 */
1421 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1422 if (ret)
1423 return ret;
1424 /*
1425 * Signal bidirectional data payloads to target-core
1426 */
1427 if (flags & TARGET_SCF_BIDI_OP)
1428 se_cmd->se_cmd_flags |= SCF_BIDI;
1429 /*
1430 * Locate se_lun pointer and attach it to struct se_cmd
1431 */
1432 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1433 if (rc) {
1434 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1435 target_put_sess_cmd(se_sess, se_cmd);
1436 return 0;
1437 }
1438
1439 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1440 if (rc != 0) {
1441 transport_generic_request_failure(se_cmd, rc);
1442 return 0;
1443 }
1444
1445 /*
1446 * Save pointers for SGLs containing protection information,
1447 * if present.
1448 */
1449 if (sgl_prot_count) {
1450 se_cmd->t_prot_sg = sgl_prot;
1451 se_cmd->t_prot_nents = sgl_prot_count;
1452 }
1453
1454 /*
1455 * When a non zero sgl_count has been passed perform SGL passthrough
1456 * mapping for pre-allocated fabric memory instead of having target
1457 * core perform an internal SGL allocation..
1458 */
1459 if (sgl_count != 0) {
1460 BUG_ON(!sgl);
1461
1462 /*
1463 * A work-around for tcm_loop as some userspace code via
1464 * scsi-generic do not memset their associated read buffers,
1465 * so go ahead and do that here for type non-data CDBs. Also
1466 * note that this is currently guaranteed to be a single SGL
1467 * for this case by target core in target_setup_cmd_from_cdb()
1468 * -> transport_generic_cmd_sequencer().
1469 */
1470 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1471 se_cmd->data_direction == DMA_FROM_DEVICE) {
1472 unsigned char *buf = NULL;
1473
1474 if (sgl)
1475 buf = kmap(sg_page(sgl)) + sgl->offset;
1476
1477 if (buf) {
1478 memset(buf, 0, sgl->length);
1479 kunmap(sg_page(sgl));
1480 }
1481 }
1482
1483 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1484 sgl_bidi, sgl_bidi_count);
1485 if (rc != 0) {
1486 transport_generic_request_failure(se_cmd, rc);
1487 return 0;
1488 }
1489 }
1490
1491 /*
1492 * Check if we need to delay processing because of ALUA
1493 * Active/NonOptimized primary access state..
1494 */
1495 core_alua_check_nonop_delay(se_cmd);
1496
1497 transport_handle_cdb_direct(se_cmd);
1498 return 0;
1499 }
1500 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1501
1502 /*
1503 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1504 *
1505 * @se_cmd: command descriptor to submit
1506 * @se_sess: associated se_sess for endpoint
1507 * @cdb: pointer to SCSI CDB
1508 * @sense: pointer to SCSI sense buffer
1509 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1510 * @data_length: fabric expected data transfer length
1511 * @task_addr: SAM task attribute
1512 * @data_dir: DMA data direction
1513 * @flags: flags for command submission from target_sc_flags_tables
1514 *
1515 * Returns non zero to signal active I/O shutdown failure. All other
1516 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1517 * but still return zero here.
1518 *
1519 * This may only be called from process context, and also currently
1520 * assumes internal allocation of fabric payload buffer by target-core.
1521 *
1522 * It also assumes interal target core SGL memory allocation.
1523 */
1524 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1525 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1526 u32 data_length, int task_attr, int data_dir, int flags)
1527 {
1528 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1529 unpacked_lun, data_length, task_attr, data_dir,
1530 flags, NULL, 0, NULL, 0, NULL, 0);
1531 }
1532 EXPORT_SYMBOL(target_submit_cmd);
1533
1534 static void target_complete_tmr_failure(struct work_struct *work)
1535 {
1536 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1537
1538 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1539 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1540
1541 transport_cmd_check_stop_to_fabric(se_cmd);
1542 }
1543
1544 /**
1545 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1546 * for TMR CDBs
1547 *
1548 * @se_cmd: command descriptor to submit
1549 * @se_sess: associated se_sess for endpoint
1550 * @sense: pointer to SCSI sense buffer
1551 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1552 * @fabric_context: fabric context for TMR req
1553 * @tm_type: Type of TM request
1554 * @gfp: gfp type for caller
1555 * @tag: referenced task tag for TMR_ABORT_TASK
1556 * @flags: submit cmd flags
1557 *
1558 * Callable from all contexts.
1559 **/
1560
1561 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1562 unsigned char *sense, u32 unpacked_lun,
1563 void *fabric_tmr_ptr, unsigned char tm_type,
1564 gfp_t gfp, unsigned int tag, int flags)
1565 {
1566 struct se_portal_group *se_tpg;
1567 int ret;
1568
1569 se_tpg = se_sess->se_tpg;
1570 BUG_ON(!se_tpg);
1571
1572 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1573 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1574 /*
1575 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1576 * allocation failure.
1577 */
1578 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1579 if (ret < 0)
1580 return -ENOMEM;
1581
1582 if (tm_type == TMR_ABORT_TASK)
1583 se_cmd->se_tmr_req->ref_task_tag = tag;
1584
1585 /* See target_submit_cmd for commentary */
1586 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1587 if (ret) {
1588 core_tmr_release_req(se_cmd->se_tmr_req);
1589 return ret;
1590 }
1591
1592 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1593 if (ret) {
1594 /*
1595 * For callback during failure handling, push this work off
1596 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1597 */
1598 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1599 schedule_work(&se_cmd->work);
1600 return 0;
1601 }
1602 transport_generic_handle_tmr(se_cmd);
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(target_submit_tmr);
1606
1607 /*
1608 * If the cmd is active, request it to be stopped and sleep until it
1609 * has completed.
1610 */
1611 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1612 __releases(&cmd->t_state_lock)
1613 __acquires(&cmd->t_state_lock)
1614 {
1615 bool was_active = false;
1616
1617 if (cmd->transport_state & CMD_T_BUSY) {
1618 cmd->transport_state |= CMD_T_REQUEST_STOP;
1619 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1620
1621 pr_debug("cmd %p waiting to complete\n", cmd);
1622 wait_for_completion(&cmd->task_stop_comp);
1623 pr_debug("cmd %p stopped successfully\n", cmd);
1624
1625 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1626 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1627 cmd->transport_state &= ~CMD_T_BUSY;
1628 was_active = true;
1629 }
1630
1631 return was_active;
1632 }
1633
1634 /*
1635 * Handle SAM-esque emulation for generic transport request failures.
1636 */
1637 void transport_generic_request_failure(struct se_cmd *cmd,
1638 sense_reason_t sense_reason)
1639 {
1640 int ret = 0;
1641
1642 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1643 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1644 cmd->t_task_cdb[0]);
1645 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1646 cmd->se_tfo->get_cmd_state(cmd),
1647 cmd->t_state, sense_reason);
1648 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1649 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1650 (cmd->transport_state & CMD_T_STOP) != 0,
1651 (cmd->transport_state & CMD_T_SENT) != 0);
1652
1653 /*
1654 * For SAM Task Attribute emulation for failed struct se_cmd
1655 */
1656 transport_complete_task_attr(cmd);
1657 /*
1658 * Handle special case for COMPARE_AND_WRITE failure, where the
1659 * callback is expected to drop the per device ->caw_sem.
1660 */
1661 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1662 cmd->transport_complete_callback)
1663 cmd->transport_complete_callback(cmd, false);
1664
1665 switch (sense_reason) {
1666 case TCM_NON_EXISTENT_LUN:
1667 case TCM_UNSUPPORTED_SCSI_OPCODE:
1668 case TCM_INVALID_CDB_FIELD:
1669 case TCM_INVALID_PARAMETER_LIST:
1670 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1671 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1672 case TCM_UNKNOWN_MODE_PAGE:
1673 case TCM_WRITE_PROTECTED:
1674 case TCM_ADDRESS_OUT_OF_RANGE:
1675 case TCM_CHECK_CONDITION_ABORT_CMD:
1676 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1677 case TCM_CHECK_CONDITION_NOT_READY:
1678 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1679 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1680 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1681 break;
1682 case TCM_OUT_OF_RESOURCES:
1683 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1684 break;
1685 case TCM_RESERVATION_CONFLICT:
1686 /*
1687 * No SENSE Data payload for this case, set SCSI Status
1688 * and queue the response to $FABRIC_MOD.
1689 *
1690 * Uses linux/include/scsi/scsi.h SAM status codes defs
1691 */
1692 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1693 /*
1694 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1695 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1696 * CONFLICT STATUS.
1697 *
1698 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1699 */
1700 if (cmd->se_sess &&
1701 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1702 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1703 cmd->orig_fe_lun, 0x2C,
1704 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1705
1706 trace_target_cmd_complete(cmd);
1707 ret = cmd->se_tfo-> queue_status(cmd);
1708 if (ret == -EAGAIN || ret == -ENOMEM)
1709 goto queue_full;
1710 goto check_stop;
1711 default:
1712 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1713 cmd->t_task_cdb[0], sense_reason);
1714 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1715 break;
1716 }
1717
1718 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1719 if (ret == -EAGAIN || ret == -ENOMEM)
1720 goto queue_full;
1721
1722 check_stop:
1723 transport_lun_remove_cmd(cmd);
1724 if (!transport_cmd_check_stop_to_fabric(cmd))
1725 ;
1726 return;
1727
1728 queue_full:
1729 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1730 transport_handle_queue_full(cmd, cmd->se_dev);
1731 }
1732 EXPORT_SYMBOL(transport_generic_request_failure);
1733
1734 void __target_execute_cmd(struct se_cmd *cmd)
1735 {
1736 sense_reason_t ret;
1737
1738 if (cmd->execute_cmd) {
1739 ret = cmd->execute_cmd(cmd);
1740 if (ret) {
1741 spin_lock_irq(&cmd->t_state_lock);
1742 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1743 spin_unlock_irq(&cmd->t_state_lock);
1744
1745 transport_generic_request_failure(cmd, ret);
1746 }
1747 }
1748 }
1749
1750 static int target_write_prot_action(struct se_cmd *cmd)
1751 {
1752 u32 sectors;
1753 /*
1754 * Perform WRITE_INSERT of PI using software emulation when backend
1755 * device has PI enabled, if the transport has not already generated
1756 * PI using hardware WRITE_INSERT offload.
1757 */
1758 switch (cmd->prot_op) {
1759 case TARGET_PROT_DOUT_INSERT:
1760 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1761 sbc_dif_generate(cmd);
1762 break;
1763 case TARGET_PROT_DOUT_STRIP:
1764 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1765 break;
1766
1767 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1768 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1769 sectors, 0, NULL, 0);
1770 if (unlikely(cmd->pi_err)) {
1771 spin_lock_irq(&cmd->t_state_lock);
1772 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1773 spin_unlock_irq(&cmd->t_state_lock);
1774 transport_generic_request_failure(cmd, cmd->pi_err);
1775 return -1;
1776 }
1777 break;
1778 default:
1779 break;
1780 }
1781
1782 return 0;
1783 }
1784
1785 static bool target_handle_task_attr(struct se_cmd *cmd)
1786 {
1787 struct se_device *dev = cmd->se_dev;
1788
1789 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1790 return false;
1791
1792 /*
1793 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1794 * to allow the passed struct se_cmd list of tasks to the front of the list.
1795 */
1796 switch (cmd->sam_task_attr) {
1797 case TCM_HEAD_TAG:
1798 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1799 "se_ordered_id: %u\n",
1800 cmd->t_task_cdb[0], cmd->se_ordered_id);
1801 return false;
1802 case TCM_ORDERED_TAG:
1803 atomic_inc_mb(&dev->dev_ordered_sync);
1804
1805 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1806 " se_ordered_id: %u\n",
1807 cmd->t_task_cdb[0], cmd->se_ordered_id);
1808
1809 /*
1810 * Execute an ORDERED command if no other older commands
1811 * exist that need to be completed first.
1812 */
1813 if (!atomic_read(&dev->simple_cmds))
1814 return false;
1815 break;
1816 default:
1817 /*
1818 * For SIMPLE and UNTAGGED Task Attribute commands
1819 */
1820 atomic_inc_mb(&dev->simple_cmds);
1821 break;
1822 }
1823
1824 if (atomic_read(&dev->dev_ordered_sync) == 0)
1825 return false;
1826
1827 spin_lock(&dev->delayed_cmd_lock);
1828 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1829 spin_unlock(&dev->delayed_cmd_lock);
1830
1831 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1832 " delayed CMD list, se_ordered_id: %u\n",
1833 cmd->t_task_cdb[0], cmd->sam_task_attr,
1834 cmd->se_ordered_id);
1835 return true;
1836 }
1837
1838 void target_execute_cmd(struct se_cmd *cmd)
1839 {
1840 /*
1841 * If the received CDB has aleady been aborted stop processing it here.
1842 */
1843 if (transport_check_aborted_status(cmd, 1))
1844 return;
1845
1846 /*
1847 * Determine if frontend context caller is requesting the stopping of
1848 * this command for frontend exceptions.
1849 */
1850 spin_lock_irq(&cmd->t_state_lock);
1851 if (cmd->transport_state & CMD_T_STOP) {
1852 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1853 __func__, __LINE__,
1854 cmd->se_tfo->get_task_tag(cmd));
1855
1856 spin_unlock_irq(&cmd->t_state_lock);
1857 complete_all(&cmd->t_transport_stop_comp);
1858 return;
1859 }
1860
1861 cmd->t_state = TRANSPORT_PROCESSING;
1862 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1863 spin_unlock_irq(&cmd->t_state_lock);
1864
1865 if (target_write_prot_action(cmd))
1866 return;
1867
1868 if (target_handle_task_attr(cmd)) {
1869 spin_lock_irq(&cmd->t_state_lock);
1870 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1871 spin_unlock_irq(&cmd->t_state_lock);
1872 return;
1873 }
1874
1875 __target_execute_cmd(cmd);
1876 }
1877 EXPORT_SYMBOL(target_execute_cmd);
1878
1879 /*
1880 * Process all commands up to the last received ORDERED task attribute which
1881 * requires another blocking boundary
1882 */
1883 static void target_restart_delayed_cmds(struct se_device *dev)
1884 {
1885 for (;;) {
1886 struct se_cmd *cmd;
1887
1888 spin_lock(&dev->delayed_cmd_lock);
1889 if (list_empty(&dev->delayed_cmd_list)) {
1890 spin_unlock(&dev->delayed_cmd_lock);
1891 break;
1892 }
1893
1894 cmd = list_entry(dev->delayed_cmd_list.next,
1895 struct se_cmd, se_delayed_node);
1896 list_del(&cmd->se_delayed_node);
1897 spin_unlock(&dev->delayed_cmd_lock);
1898
1899 __target_execute_cmd(cmd);
1900
1901 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1902 break;
1903 }
1904 }
1905
1906 /*
1907 * Called from I/O completion to determine which dormant/delayed
1908 * and ordered cmds need to have their tasks added to the execution queue.
1909 */
1910 static void transport_complete_task_attr(struct se_cmd *cmd)
1911 {
1912 struct se_device *dev = cmd->se_dev;
1913
1914 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1915 return;
1916
1917 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1918 atomic_dec_mb(&dev->simple_cmds);
1919 dev->dev_cur_ordered_id++;
1920 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1921 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1922 cmd->se_ordered_id);
1923 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1924 dev->dev_cur_ordered_id++;
1925 pr_debug("Incremented dev_cur_ordered_id: %u for"
1926 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1927 cmd->se_ordered_id);
1928 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1929 atomic_dec_mb(&dev->dev_ordered_sync);
1930
1931 dev->dev_cur_ordered_id++;
1932 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1933 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1934 }
1935
1936 target_restart_delayed_cmds(dev);
1937 }
1938
1939 static void transport_complete_qf(struct se_cmd *cmd)
1940 {
1941 int ret = 0;
1942
1943 transport_complete_task_attr(cmd);
1944
1945 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1946 trace_target_cmd_complete(cmd);
1947 ret = cmd->se_tfo->queue_status(cmd);
1948 goto out;
1949 }
1950
1951 switch (cmd->data_direction) {
1952 case DMA_FROM_DEVICE:
1953 trace_target_cmd_complete(cmd);
1954 ret = cmd->se_tfo->queue_data_in(cmd);
1955 break;
1956 case DMA_TO_DEVICE:
1957 if (cmd->se_cmd_flags & SCF_BIDI) {
1958 ret = cmd->se_tfo->queue_data_in(cmd);
1959 break;
1960 }
1961 /* Fall through for DMA_TO_DEVICE */
1962 case DMA_NONE:
1963 trace_target_cmd_complete(cmd);
1964 ret = cmd->se_tfo->queue_status(cmd);
1965 break;
1966 default:
1967 break;
1968 }
1969
1970 out:
1971 if (ret < 0) {
1972 transport_handle_queue_full(cmd, cmd->se_dev);
1973 return;
1974 }
1975 transport_lun_remove_cmd(cmd);
1976 transport_cmd_check_stop_to_fabric(cmd);
1977 }
1978
1979 static void transport_handle_queue_full(
1980 struct se_cmd *cmd,
1981 struct se_device *dev)
1982 {
1983 spin_lock_irq(&dev->qf_cmd_lock);
1984 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1985 atomic_inc_mb(&dev->dev_qf_count);
1986 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1987
1988 schedule_work(&cmd->se_dev->qf_work_queue);
1989 }
1990
1991 static bool target_read_prot_action(struct se_cmd *cmd)
1992 {
1993 sense_reason_t rc;
1994
1995 switch (cmd->prot_op) {
1996 case TARGET_PROT_DIN_STRIP:
1997 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1998 rc = sbc_dif_read_strip(cmd);
1999 if (rc) {
2000 cmd->pi_err = rc;
2001 return true;
2002 }
2003 }
2004 break;
2005 case TARGET_PROT_DIN_INSERT:
2006 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2007 break;
2008
2009 sbc_dif_generate(cmd);
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 return false;
2016 }
2017
2018 static void target_complete_ok_work(struct work_struct *work)
2019 {
2020 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2021 int ret;
2022
2023 /*
2024 * Check if we need to move delayed/dormant tasks from cmds on the
2025 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2026 * Attribute.
2027 */
2028 transport_complete_task_attr(cmd);
2029
2030 /*
2031 * Check to schedule QUEUE_FULL work, or execute an existing
2032 * cmd->transport_qf_callback()
2033 */
2034 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2035 schedule_work(&cmd->se_dev->qf_work_queue);
2036
2037 /*
2038 * Check if we need to send a sense buffer from
2039 * the struct se_cmd in question.
2040 */
2041 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2042 WARN_ON(!cmd->scsi_status);
2043 ret = transport_send_check_condition_and_sense(
2044 cmd, 0, 1);
2045 if (ret == -EAGAIN || ret == -ENOMEM)
2046 goto queue_full;
2047
2048 transport_lun_remove_cmd(cmd);
2049 transport_cmd_check_stop_to_fabric(cmd);
2050 return;
2051 }
2052 /*
2053 * Check for a callback, used by amongst other things
2054 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2055 */
2056 if (cmd->transport_complete_callback) {
2057 sense_reason_t rc;
2058
2059 rc = cmd->transport_complete_callback(cmd, true);
2060 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2061 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2062 !cmd->data_length)
2063 goto queue_rsp;
2064
2065 return;
2066 } else if (rc) {
2067 ret = transport_send_check_condition_and_sense(cmd,
2068 rc, 0);
2069 if (ret == -EAGAIN || ret == -ENOMEM)
2070 goto queue_full;
2071
2072 transport_lun_remove_cmd(cmd);
2073 transport_cmd_check_stop_to_fabric(cmd);
2074 return;
2075 }
2076 }
2077
2078 queue_rsp:
2079 switch (cmd->data_direction) {
2080 case DMA_FROM_DEVICE:
2081 spin_lock(&cmd->se_lun->lun_sep_lock);
2082 if (cmd->se_lun->lun_sep) {
2083 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2084 cmd->data_length;
2085 }
2086 spin_unlock(&cmd->se_lun->lun_sep_lock);
2087 /*
2088 * Perform READ_STRIP of PI using software emulation when
2089 * backend had PI enabled, if the transport will not be
2090 * performing hardware READ_STRIP offload.
2091 */
2092 if (target_read_prot_action(cmd)) {
2093 ret = transport_send_check_condition_and_sense(cmd,
2094 cmd->pi_err, 0);
2095 if (ret == -EAGAIN || ret == -ENOMEM)
2096 goto queue_full;
2097
2098 transport_lun_remove_cmd(cmd);
2099 transport_cmd_check_stop_to_fabric(cmd);
2100 return;
2101 }
2102
2103 trace_target_cmd_complete(cmd);
2104 ret = cmd->se_tfo->queue_data_in(cmd);
2105 if (ret == -EAGAIN || ret == -ENOMEM)
2106 goto queue_full;
2107 break;
2108 case DMA_TO_DEVICE:
2109 spin_lock(&cmd->se_lun->lun_sep_lock);
2110 if (cmd->se_lun->lun_sep) {
2111 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2112 cmd->data_length;
2113 }
2114 spin_unlock(&cmd->se_lun->lun_sep_lock);
2115 /*
2116 * Check if we need to send READ payload for BIDI-COMMAND
2117 */
2118 if (cmd->se_cmd_flags & SCF_BIDI) {
2119 spin_lock(&cmd->se_lun->lun_sep_lock);
2120 if (cmd->se_lun->lun_sep) {
2121 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2122 cmd->data_length;
2123 }
2124 spin_unlock(&cmd->se_lun->lun_sep_lock);
2125 ret = cmd->se_tfo->queue_data_in(cmd);
2126 if (ret == -EAGAIN || ret == -ENOMEM)
2127 goto queue_full;
2128 break;
2129 }
2130 /* Fall through for DMA_TO_DEVICE */
2131 case DMA_NONE:
2132 trace_target_cmd_complete(cmd);
2133 ret = cmd->se_tfo->queue_status(cmd);
2134 if (ret == -EAGAIN || ret == -ENOMEM)
2135 goto queue_full;
2136 break;
2137 default:
2138 break;
2139 }
2140
2141 transport_lun_remove_cmd(cmd);
2142 transport_cmd_check_stop_to_fabric(cmd);
2143 return;
2144
2145 queue_full:
2146 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2147 " data_direction: %d\n", cmd, cmd->data_direction);
2148 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2149 transport_handle_queue_full(cmd, cmd->se_dev);
2150 }
2151
2152 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2153 {
2154 struct scatterlist *sg;
2155 int count;
2156
2157 for_each_sg(sgl, sg, nents, count)
2158 __free_page(sg_page(sg));
2159
2160 kfree(sgl);
2161 }
2162
2163 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2164 {
2165 /*
2166 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2167 * emulation, and free + reset pointers if necessary..
2168 */
2169 if (!cmd->t_data_sg_orig)
2170 return;
2171
2172 kfree(cmd->t_data_sg);
2173 cmd->t_data_sg = cmd->t_data_sg_orig;
2174 cmd->t_data_sg_orig = NULL;
2175 cmd->t_data_nents = cmd->t_data_nents_orig;
2176 cmd->t_data_nents_orig = 0;
2177 }
2178
2179 static inline void transport_free_pages(struct se_cmd *cmd)
2180 {
2181 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2182 /*
2183 * Release special case READ buffer payload required for
2184 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2185 */
2186 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2187 transport_free_sgl(cmd->t_bidi_data_sg,
2188 cmd->t_bidi_data_nents);
2189 cmd->t_bidi_data_sg = NULL;
2190 cmd->t_bidi_data_nents = 0;
2191 }
2192 transport_reset_sgl_orig(cmd);
2193 return;
2194 }
2195 transport_reset_sgl_orig(cmd);
2196
2197 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2198 cmd->t_data_sg = NULL;
2199 cmd->t_data_nents = 0;
2200
2201 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2202 cmd->t_bidi_data_sg = NULL;
2203 cmd->t_bidi_data_nents = 0;
2204
2205 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2206 cmd->t_prot_sg = NULL;
2207 cmd->t_prot_nents = 0;
2208 }
2209
2210 /**
2211 * transport_release_cmd - free a command
2212 * @cmd: command to free
2213 *
2214 * This routine unconditionally frees a command, and reference counting
2215 * or list removal must be done in the caller.
2216 */
2217 static int transport_release_cmd(struct se_cmd *cmd)
2218 {
2219 BUG_ON(!cmd->se_tfo);
2220
2221 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2222 core_tmr_release_req(cmd->se_tmr_req);
2223 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2224 kfree(cmd->t_task_cdb);
2225 /*
2226 * If this cmd has been setup with target_get_sess_cmd(), drop
2227 * the kref and call ->release_cmd() in kref callback.
2228 */
2229 return target_put_sess_cmd(cmd->se_sess, cmd);
2230 }
2231
2232 /**
2233 * transport_put_cmd - release a reference to a command
2234 * @cmd: command to release
2235 *
2236 * This routine releases our reference to the command and frees it if possible.
2237 */
2238 static int transport_put_cmd(struct se_cmd *cmd)
2239 {
2240 transport_free_pages(cmd);
2241 return transport_release_cmd(cmd);
2242 }
2243
2244 void *transport_kmap_data_sg(struct se_cmd *cmd)
2245 {
2246 struct scatterlist *sg = cmd->t_data_sg;
2247 struct page **pages;
2248 int i;
2249
2250 /*
2251 * We need to take into account a possible offset here for fabrics like
2252 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2253 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2254 */
2255 if (!cmd->t_data_nents)
2256 return NULL;
2257
2258 BUG_ON(!sg);
2259 if (cmd->t_data_nents == 1)
2260 return kmap(sg_page(sg)) + sg->offset;
2261
2262 /* >1 page. use vmap */
2263 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2264 if (!pages)
2265 return NULL;
2266
2267 /* convert sg[] to pages[] */
2268 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2269 pages[i] = sg_page(sg);
2270 }
2271
2272 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2273 kfree(pages);
2274 if (!cmd->t_data_vmap)
2275 return NULL;
2276
2277 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2278 }
2279 EXPORT_SYMBOL(transport_kmap_data_sg);
2280
2281 void transport_kunmap_data_sg(struct se_cmd *cmd)
2282 {
2283 if (!cmd->t_data_nents) {
2284 return;
2285 } else if (cmd->t_data_nents == 1) {
2286 kunmap(sg_page(cmd->t_data_sg));
2287 return;
2288 }
2289
2290 vunmap(cmd->t_data_vmap);
2291 cmd->t_data_vmap = NULL;
2292 }
2293 EXPORT_SYMBOL(transport_kunmap_data_sg);
2294
2295 int
2296 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2297 bool zero_page)
2298 {
2299 struct scatterlist *sg;
2300 struct page *page;
2301 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2302 unsigned int nent;
2303 int i = 0;
2304
2305 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2306 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2307 if (!sg)
2308 return -ENOMEM;
2309
2310 sg_init_table(sg, nent);
2311
2312 while (length) {
2313 u32 page_len = min_t(u32, length, PAGE_SIZE);
2314 page = alloc_page(GFP_KERNEL | zero_flag);
2315 if (!page)
2316 goto out;
2317
2318 sg_set_page(&sg[i], page, page_len, 0);
2319 length -= page_len;
2320 i++;
2321 }
2322 *sgl = sg;
2323 *nents = nent;
2324 return 0;
2325
2326 out:
2327 while (i > 0) {
2328 i--;
2329 __free_page(sg_page(&sg[i]));
2330 }
2331 kfree(sg);
2332 return -ENOMEM;
2333 }
2334
2335 /*
2336 * Allocate any required resources to execute the command. For writes we
2337 * might not have the payload yet, so notify the fabric via a call to
2338 * ->write_pending instead. Otherwise place it on the execution queue.
2339 */
2340 sense_reason_t
2341 transport_generic_new_cmd(struct se_cmd *cmd)
2342 {
2343 int ret = 0;
2344 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2345
2346 /*
2347 * Determine is the TCM fabric module has already allocated physical
2348 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2349 * beforehand.
2350 */
2351 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2352 cmd->data_length) {
2353
2354 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2355 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2356 u32 bidi_length;
2357
2358 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2359 bidi_length = cmd->t_task_nolb *
2360 cmd->se_dev->dev_attrib.block_size;
2361 else
2362 bidi_length = cmd->data_length;
2363
2364 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2365 &cmd->t_bidi_data_nents,
2366 bidi_length, zero_flag);
2367 if (ret < 0)
2368 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2369 }
2370
2371 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2372 ret = target_alloc_sgl(&cmd->t_prot_sg,
2373 &cmd->t_prot_nents,
2374 cmd->prot_length, true);
2375 if (ret < 0)
2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2377 }
2378
2379 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2380 cmd->data_length, zero_flag);
2381 if (ret < 0)
2382 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2383 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2384 cmd->data_length) {
2385 /*
2386 * Special case for COMPARE_AND_WRITE with fabrics
2387 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2388 */
2389 u32 caw_length = cmd->t_task_nolb *
2390 cmd->se_dev->dev_attrib.block_size;
2391
2392 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2393 &cmd->t_bidi_data_nents,
2394 caw_length, zero_flag);
2395 if (ret < 0)
2396 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2397 }
2398 /*
2399 * If this command is not a write we can execute it right here,
2400 * for write buffers we need to notify the fabric driver first
2401 * and let it call back once the write buffers are ready.
2402 */
2403 target_add_to_state_list(cmd);
2404 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2405 target_execute_cmd(cmd);
2406 return 0;
2407 }
2408 transport_cmd_check_stop(cmd, false, true);
2409
2410 ret = cmd->se_tfo->write_pending(cmd);
2411 if (ret == -EAGAIN || ret == -ENOMEM)
2412 goto queue_full;
2413
2414 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2415 WARN_ON(ret);
2416
2417 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2418
2419 queue_full:
2420 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2421 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2422 transport_handle_queue_full(cmd, cmd->se_dev);
2423 return 0;
2424 }
2425 EXPORT_SYMBOL(transport_generic_new_cmd);
2426
2427 static void transport_write_pending_qf(struct se_cmd *cmd)
2428 {
2429 int ret;
2430
2431 ret = cmd->se_tfo->write_pending(cmd);
2432 if (ret == -EAGAIN || ret == -ENOMEM) {
2433 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2434 cmd);
2435 transport_handle_queue_full(cmd, cmd->se_dev);
2436 }
2437 }
2438
2439 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2440 {
2441 unsigned long flags;
2442 int ret = 0;
2443
2444 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2445 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2446 transport_wait_for_tasks(cmd);
2447
2448 ret = transport_release_cmd(cmd);
2449 } else {
2450 if (wait_for_tasks)
2451 transport_wait_for_tasks(cmd);
2452 /*
2453 * Handle WRITE failure case where transport_generic_new_cmd()
2454 * has already added se_cmd to state_list, but fabric has
2455 * failed command before I/O submission.
2456 */
2457 if (cmd->state_active) {
2458 spin_lock_irqsave(&cmd->t_state_lock, flags);
2459 target_remove_from_state_list(cmd);
2460 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2461 }
2462
2463 if (cmd->se_lun)
2464 transport_lun_remove_cmd(cmd);
2465
2466 ret = transport_put_cmd(cmd);
2467 }
2468 return ret;
2469 }
2470 EXPORT_SYMBOL(transport_generic_free_cmd);
2471
2472 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2473 * @se_sess: session to reference
2474 * @se_cmd: command descriptor to add
2475 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2476 */
2477 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2478 bool ack_kref)
2479 {
2480 unsigned long flags;
2481 int ret = 0;
2482
2483 /*
2484 * Add a second kref if the fabric caller is expecting to handle
2485 * fabric acknowledgement that requires two target_put_sess_cmd()
2486 * invocations before se_cmd descriptor release.
2487 */
2488 if (ack_kref)
2489 kref_get(&se_cmd->cmd_kref);
2490
2491 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2492 if (se_sess->sess_tearing_down) {
2493 ret = -ESHUTDOWN;
2494 goto out;
2495 }
2496 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2497 out:
2498 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2499
2500 if (ret && ack_kref)
2501 target_put_sess_cmd(se_sess, se_cmd);
2502
2503 return ret;
2504 }
2505 EXPORT_SYMBOL(target_get_sess_cmd);
2506
2507 static void target_release_cmd_kref(struct kref *kref)
2508 __releases(&se_cmd->se_sess->sess_cmd_lock)
2509 {
2510 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2511 struct se_session *se_sess = se_cmd->se_sess;
2512
2513 if (list_empty(&se_cmd->se_cmd_list)) {
2514 spin_unlock(&se_sess->sess_cmd_lock);
2515 se_cmd->se_tfo->release_cmd(se_cmd);
2516 return;
2517 }
2518 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2519 spin_unlock(&se_sess->sess_cmd_lock);
2520 complete(&se_cmd->cmd_wait_comp);
2521 return;
2522 }
2523 list_del(&se_cmd->se_cmd_list);
2524 spin_unlock(&se_sess->sess_cmd_lock);
2525
2526 se_cmd->se_tfo->release_cmd(se_cmd);
2527 }
2528
2529 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2530 * @se_sess: session to reference
2531 * @se_cmd: command descriptor to drop
2532 */
2533 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2534 {
2535 if (!se_sess) {
2536 se_cmd->se_tfo->release_cmd(se_cmd);
2537 return 1;
2538 }
2539 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2540 &se_sess->sess_cmd_lock);
2541 }
2542 EXPORT_SYMBOL(target_put_sess_cmd);
2543
2544 /* target_sess_cmd_list_set_waiting - Flag all commands in
2545 * sess_cmd_list to complete cmd_wait_comp. Set
2546 * sess_tearing_down so no more commands are queued.
2547 * @se_sess: session to flag
2548 */
2549 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2550 {
2551 struct se_cmd *se_cmd;
2552 unsigned long flags;
2553
2554 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2555 if (se_sess->sess_tearing_down) {
2556 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2557 return;
2558 }
2559 se_sess->sess_tearing_down = 1;
2560 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2561
2562 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2563 se_cmd->cmd_wait_set = 1;
2564
2565 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2566 }
2567 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2568
2569 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2570 * @se_sess: session to wait for active I/O
2571 */
2572 void target_wait_for_sess_cmds(struct se_session *se_sess)
2573 {
2574 struct se_cmd *se_cmd, *tmp_cmd;
2575 unsigned long flags;
2576
2577 list_for_each_entry_safe(se_cmd, tmp_cmd,
2578 &se_sess->sess_wait_list, se_cmd_list) {
2579 list_del(&se_cmd->se_cmd_list);
2580
2581 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2582 " %d\n", se_cmd, se_cmd->t_state,
2583 se_cmd->se_tfo->get_cmd_state(se_cmd));
2584
2585 wait_for_completion(&se_cmd->cmd_wait_comp);
2586 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2587 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2588 se_cmd->se_tfo->get_cmd_state(se_cmd));
2589
2590 se_cmd->se_tfo->release_cmd(se_cmd);
2591 }
2592
2593 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2594 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2595 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2596
2597 }
2598 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2599
2600 static int transport_clear_lun_ref_thread(void *p)
2601 {
2602 struct se_lun *lun = p;
2603
2604 percpu_ref_kill(&lun->lun_ref);
2605
2606 wait_for_completion(&lun->lun_ref_comp);
2607 complete(&lun->lun_shutdown_comp);
2608
2609 return 0;
2610 }
2611
2612 int transport_clear_lun_ref(struct se_lun *lun)
2613 {
2614 struct task_struct *kt;
2615
2616 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2617 "tcm_cl_%u", lun->unpacked_lun);
2618 if (IS_ERR(kt)) {
2619 pr_err("Unable to start clear_lun thread\n");
2620 return PTR_ERR(kt);
2621 }
2622 wait_for_completion(&lun->lun_shutdown_comp);
2623
2624 return 0;
2625 }
2626
2627 /**
2628 * transport_wait_for_tasks - wait for completion to occur
2629 * @cmd: command to wait
2630 *
2631 * Called from frontend fabric context to wait for storage engine
2632 * to pause and/or release frontend generated struct se_cmd.
2633 */
2634 bool transport_wait_for_tasks(struct se_cmd *cmd)
2635 {
2636 unsigned long flags;
2637
2638 spin_lock_irqsave(&cmd->t_state_lock, flags);
2639 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2640 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2641 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2642 return false;
2643 }
2644
2645 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2646 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2647 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2648 return false;
2649 }
2650
2651 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2652 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2653 return false;
2654 }
2655
2656 cmd->transport_state |= CMD_T_STOP;
2657
2658 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2659 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2660 cmd, cmd->se_tfo->get_task_tag(cmd),
2661 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2662
2663 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2664
2665 wait_for_completion(&cmd->t_transport_stop_comp);
2666
2667 spin_lock_irqsave(&cmd->t_state_lock, flags);
2668 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2669
2670 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2671 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2672 cmd->se_tfo->get_task_tag(cmd));
2673
2674 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2675
2676 return true;
2677 }
2678 EXPORT_SYMBOL(transport_wait_for_tasks);
2679
2680 static int transport_get_sense_codes(
2681 struct se_cmd *cmd,
2682 u8 *asc,
2683 u8 *ascq)
2684 {
2685 *asc = cmd->scsi_asc;
2686 *ascq = cmd->scsi_ascq;
2687
2688 return 0;
2689 }
2690
2691 static
2692 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2693 {
2694 /* Place failed LBA in sense data information descriptor 0. */
2695 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2696 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2697 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2698 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2699
2700 /* Descriptor Information: failing sector */
2701 put_unaligned_be64(bad_sector, &buffer[12]);
2702 }
2703
2704 int
2705 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2706 sense_reason_t reason, int from_transport)
2707 {
2708 unsigned char *buffer = cmd->sense_buffer;
2709 unsigned long flags;
2710 u8 asc = 0, ascq = 0;
2711
2712 spin_lock_irqsave(&cmd->t_state_lock, flags);
2713 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2715 return 0;
2716 }
2717 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2718 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2719
2720 if (!reason && from_transport)
2721 goto after_reason;
2722
2723 if (!from_transport)
2724 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2725
2726 /*
2727 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2728 * SENSE KEY values from include/scsi/scsi.h
2729 */
2730 switch (reason) {
2731 case TCM_NO_SENSE:
2732 /* CURRENT ERROR */
2733 buffer[0] = 0x70;
2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2735 /* Not Ready */
2736 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2737 /* NO ADDITIONAL SENSE INFORMATION */
2738 buffer[SPC_ASC_KEY_OFFSET] = 0;
2739 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2740 break;
2741 case TCM_NON_EXISTENT_LUN:
2742 /* CURRENT ERROR */
2743 buffer[0] = 0x70;
2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2745 /* ILLEGAL REQUEST */
2746 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2747 /* LOGICAL UNIT NOT SUPPORTED */
2748 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2749 break;
2750 case TCM_UNSUPPORTED_SCSI_OPCODE:
2751 case TCM_SECTOR_COUNT_TOO_MANY:
2752 /* CURRENT ERROR */
2753 buffer[0] = 0x70;
2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2755 /* ILLEGAL REQUEST */
2756 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2757 /* INVALID COMMAND OPERATION CODE */
2758 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2759 break;
2760 case TCM_UNKNOWN_MODE_PAGE:
2761 /* CURRENT ERROR */
2762 buffer[0] = 0x70;
2763 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2764 /* ILLEGAL REQUEST */
2765 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2766 /* INVALID FIELD IN CDB */
2767 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2768 break;
2769 case TCM_CHECK_CONDITION_ABORT_CMD:
2770 /* CURRENT ERROR */
2771 buffer[0] = 0x70;
2772 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2773 /* ABORTED COMMAND */
2774 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2775 /* BUS DEVICE RESET FUNCTION OCCURRED */
2776 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2777 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2778 break;
2779 case TCM_INCORRECT_AMOUNT_OF_DATA:
2780 /* CURRENT ERROR */
2781 buffer[0] = 0x70;
2782 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2783 /* ABORTED COMMAND */
2784 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2785 /* WRITE ERROR */
2786 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2787 /* NOT ENOUGH UNSOLICITED DATA */
2788 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2789 break;
2790 case TCM_INVALID_CDB_FIELD:
2791 /* CURRENT ERROR */
2792 buffer[0] = 0x70;
2793 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2794 /* ILLEGAL REQUEST */
2795 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2796 /* INVALID FIELD IN CDB */
2797 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2798 break;
2799 case TCM_INVALID_PARAMETER_LIST:
2800 /* CURRENT ERROR */
2801 buffer[0] = 0x70;
2802 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2803 /* ILLEGAL REQUEST */
2804 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2805 /* INVALID FIELD IN PARAMETER LIST */
2806 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2807 break;
2808 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2809 /* CURRENT ERROR */
2810 buffer[0] = 0x70;
2811 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2812 /* ILLEGAL REQUEST */
2813 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2814 /* PARAMETER LIST LENGTH ERROR */
2815 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2816 break;
2817 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2818 /* CURRENT ERROR */
2819 buffer[0] = 0x70;
2820 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2821 /* ABORTED COMMAND */
2822 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2823 /* WRITE ERROR */
2824 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2825 /* UNEXPECTED_UNSOLICITED_DATA */
2826 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2827 break;
2828 case TCM_SERVICE_CRC_ERROR:
2829 /* CURRENT ERROR */
2830 buffer[0] = 0x70;
2831 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2832 /* ABORTED COMMAND */
2833 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2834 /* PROTOCOL SERVICE CRC ERROR */
2835 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2836 /* N/A */
2837 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2838 break;
2839 case TCM_SNACK_REJECTED:
2840 /* CURRENT ERROR */
2841 buffer[0] = 0x70;
2842 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2843 /* ABORTED COMMAND */
2844 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2845 /* READ ERROR */
2846 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2847 /* FAILED RETRANSMISSION REQUEST */
2848 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2849 break;
2850 case TCM_WRITE_PROTECTED:
2851 /* CURRENT ERROR */
2852 buffer[0] = 0x70;
2853 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2854 /* DATA PROTECT */
2855 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2856 /* WRITE PROTECTED */
2857 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2858 break;
2859 case TCM_ADDRESS_OUT_OF_RANGE:
2860 /* CURRENT ERROR */
2861 buffer[0] = 0x70;
2862 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2863 /* ILLEGAL REQUEST */
2864 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2865 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2866 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2867 break;
2868 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2869 /* CURRENT ERROR */
2870 buffer[0] = 0x70;
2871 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2872 /* UNIT ATTENTION */
2873 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2874 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2875 buffer[SPC_ASC_KEY_OFFSET] = asc;
2876 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2877 break;
2878 case TCM_CHECK_CONDITION_NOT_READY:
2879 /* CURRENT ERROR */
2880 buffer[0] = 0x70;
2881 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2882 /* Not Ready */
2883 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2884 transport_get_sense_codes(cmd, &asc, &ascq);
2885 buffer[SPC_ASC_KEY_OFFSET] = asc;
2886 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2887 break;
2888 case TCM_MISCOMPARE_VERIFY:
2889 /* CURRENT ERROR */
2890 buffer[0] = 0x70;
2891 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2892 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2893 /* MISCOMPARE DURING VERIFY OPERATION */
2894 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2895 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2896 break;
2897 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2898 /* CURRENT ERROR */
2899 buffer[0] = 0x70;
2900 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2901 /* ILLEGAL REQUEST */
2902 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2903 /* LOGICAL BLOCK GUARD CHECK FAILED */
2904 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2905 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2906 transport_err_sector_info(buffer, cmd->bad_sector);
2907 break;
2908 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2909 /* CURRENT ERROR */
2910 buffer[0] = 0x70;
2911 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2912 /* ILLEGAL REQUEST */
2913 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2914 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2915 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2916 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2917 transport_err_sector_info(buffer, cmd->bad_sector);
2918 break;
2919 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2920 /* CURRENT ERROR */
2921 buffer[0] = 0x70;
2922 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2923 /* ILLEGAL REQUEST */
2924 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2925 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2926 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2927 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2928 transport_err_sector_info(buffer, cmd->bad_sector);
2929 break;
2930 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2931 default:
2932 /* CURRENT ERROR */
2933 buffer[0] = 0x70;
2934 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2935 /*
2936 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2937 * Solaris initiators. Returning NOT READY instead means the
2938 * operations will be retried a finite number of times and we
2939 * can survive intermittent errors.
2940 */
2941 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2942 /* LOGICAL UNIT COMMUNICATION FAILURE */
2943 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2944 break;
2945 }
2946 /*
2947 * This code uses linux/include/scsi/scsi.h SAM status codes!
2948 */
2949 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2950 /*
2951 * Automatically padded, this value is encoded in the fabric's
2952 * data_length response PDU containing the SCSI defined sense data.
2953 */
2954 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2955
2956 after_reason:
2957 trace_target_cmd_complete(cmd);
2958 return cmd->se_tfo->queue_status(cmd);
2959 }
2960 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2961
2962 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2963 {
2964 if (!(cmd->transport_state & CMD_T_ABORTED))
2965 return 0;
2966
2967 /*
2968 * If cmd has been aborted but either no status is to be sent or it has
2969 * already been sent, just return
2970 */
2971 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2972 return 1;
2973
2974 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2975 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2976
2977 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2978 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2979 trace_target_cmd_complete(cmd);
2980 cmd->se_tfo->queue_status(cmd);
2981
2982 return 1;
2983 }
2984 EXPORT_SYMBOL(transport_check_aborted_status);
2985
2986 void transport_send_task_abort(struct se_cmd *cmd)
2987 {
2988 unsigned long flags;
2989
2990 spin_lock_irqsave(&cmd->t_state_lock, flags);
2991 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2992 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2993 return;
2994 }
2995 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2996
2997 /*
2998 * If there are still expected incoming fabric WRITEs, we wait
2999 * until until they have completed before sending a TASK_ABORTED
3000 * response. This response with TASK_ABORTED status will be
3001 * queued back to fabric module by transport_check_aborted_status().
3002 */
3003 if (cmd->data_direction == DMA_TO_DEVICE) {
3004 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3005 cmd->transport_state |= CMD_T_ABORTED;
3006 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3007 return;
3008 }
3009 }
3010 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3011
3012 transport_lun_remove_cmd(cmd);
3013
3014 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3015 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3016 cmd->se_tfo->get_task_tag(cmd));
3017
3018 trace_target_cmd_complete(cmd);
3019 cmd->se_tfo->queue_status(cmd);
3020 }
3021
3022 static void target_tmr_work(struct work_struct *work)
3023 {
3024 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3025 struct se_device *dev = cmd->se_dev;
3026 struct se_tmr_req *tmr = cmd->se_tmr_req;
3027 int ret;
3028
3029 switch (tmr->function) {
3030 case TMR_ABORT_TASK:
3031 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3032 break;
3033 case TMR_ABORT_TASK_SET:
3034 case TMR_CLEAR_ACA:
3035 case TMR_CLEAR_TASK_SET:
3036 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3037 break;
3038 case TMR_LUN_RESET:
3039 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3040 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3041 TMR_FUNCTION_REJECTED;
3042 break;
3043 case TMR_TARGET_WARM_RESET:
3044 tmr->response = TMR_FUNCTION_REJECTED;
3045 break;
3046 case TMR_TARGET_COLD_RESET:
3047 tmr->response = TMR_FUNCTION_REJECTED;
3048 break;
3049 default:
3050 pr_err("Uknown TMR function: 0x%02x.\n",
3051 tmr->function);
3052 tmr->response = TMR_FUNCTION_REJECTED;
3053 break;
3054 }
3055
3056 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3057 cmd->se_tfo->queue_tm_rsp(cmd);
3058
3059 transport_cmd_check_stop_to_fabric(cmd);
3060 }
3061
3062 int transport_generic_handle_tmr(
3063 struct se_cmd *cmd)
3064 {
3065 unsigned long flags;
3066
3067 spin_lock_irqsave(&cmd->t_state_lock, flags);
3068 cmd->transport_state |= CMD_T_ACTIVE;
3069 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3070
3071 INIT_WORK(&cmd->work, target_tmr_work);
3072 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3073 return 0;
3074 }
3075 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.104054 seconds and 5 git commands to generate.