14e54b48fb8cca2a4d9f1d72522347348149beff
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static void transport_complete_task_attr(struct se_cmd *cmd);
70 static void transport_handle_queue_full(struct se_cmd *cmd,
71 struct se_device *dev);
72 static int transport_generic_get_mem(struct se_cmd *cmd);
73 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool);
74 static void transport_put_cmd(struct se_cmd *cmd);
75 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
76 static void target_complete_ok_work(struct work_struct *work);
77
78 int init_se_kmem_caches(void)
79 {
80 se_sess_cache = kmem_cache_create("se_sess_cache",
81 sizeof(struct se_session), __alignof__(struct se_session),
82 0, NULL);
83 if (!se_sess_cache) {
84 pr_err("kmem_cache_create() for struct se_session"
85 " failed\n");
86 goto out;
87 }
88 se_ua_cache = kmem_cache_create("se_ua_cache",
89 sizeof(struct se_ua), __alignof__(struct se_ua),
90 0, NULL);
91 if (!se_ua_cache) {
92 pr_err("kmem_cache_create() for struct se_ua failed\n");
93 goto out_free_sess_cache;
94 }
95 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
96 sizeof(struct t10_pr_registration),
97 __alignof__(struct t10_pr_registration), 0, NULL);
98 if (!t10_pr_reg_cache) {
99 pr_err("kmem_cache_create() for struct t10_pr_registration"
100 " failed\n");
101 goto out_free_ua_cache;
102 }
103 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
104 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
105 0, NULL);
106 if (!t10_alua_lu_gp_cache) {
107 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
108 " failed\n");
109 goto out_free_pr_reg_cache;
110 }
111 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
112 sizeof(struct t10_alua_lu_gp_member),
113 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
114 if (!t10_alua_lu_gp_mem_cache) {
115 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
116 "cache failed\n");
117 goto out_free_lu_gp_cache;
118 }
119 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
120 sizeof(struct t10_alua_tg_pt_gp),
121 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
122 if (!t10_alua_tg_pt_gp_cache) {
123 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
124 "cache failed\n");
125 goto out_free_lu_gp_mem_cache;
126 }
127 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
128 "t10_alua_tg_pt_gp_mem_cache",
129 sizeof(struct t10_alua_tg_pt_gp_member),
130 __alignof__(struct t10_alua_tg_pt_gp_member),
131 0, NULL);
132 if (!t10_alua_tg_pt_gp_mem_cache) {
133 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
134 "mem_t failed\n");
135 goto out_free_tg_pt_gp_cache;
136 }
137
138 target_completion_wq = alloc_workqueue("target_completion",
139 WQ_MEM_RECLAIM, 0);
140 if (!target_completion_wq)
141 goto out_free_tg_pt_gp_mem_cache;
142
143 return 0;
144
145 out_free_tg_pt_gp_mem_cache:
146 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
147 out_free_tg_pt_gp_cache:
148 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
149 out_free_lu_gp_mem_cache:
150 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
151 out_free_lu_gp_cache:
152 kmem_cache_destroy(t10_alua_lu_gp_cache);
153 out_free_pr_reg_cache:
154 kmem_cache_destroy(t10_pr_reg_cache);
155 out_free_ua_cache:
156 kmem_cache_destroy(se_ua_cache);
157 out_free_sess_cache:
158 kmem_cache_destroy(se_sess_cache);
159 out:
160 return -ENOMEM;
161 }
162
163 void release_se_kmem_caches(void)
164 {
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
173 }
174
175 /* This code ensures unique mib indexes are handed out. */
176 static DEFINE_SPINLOCK(scsi_mib_index_lock);
177 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
178
179 /*
180 * Allocate a new row index for the entry type specified
181 */
182 u32 scsi_get_new_index(scsi_index_t type)
183 {
184 u32 new_index;
185
186 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
187
188 spin_lock(&scsi_mib_index_lock);
189 new_index = ++scsi_mib_index[type];
190 spin_unlock(&scsi_mib_index_lock);
191
192 return new_index;
193 }
194
195 void transport_subsystem_check_init(void)
196 {
197 int ret;
198
199 if (sub_api_initialized)
200 return;
201
202 ret = request_module("target_core_iblock");
203 if (ret != 0)
204 pr_err("Unable to load target_core_iblock\n");
205
206 ret = request_module("target_core_file");
207 if (ret != 0)
208 pr_err("Unable to load target_core_file\n");
209
210 ret = request_module("target_core_pscsi");
211 if (ret != 0)
212 pr_err("Unable to load target_core_pscsi\n");
213
214 ret = request_module("target_core_stgt");
215 if (ret != 0)
216 pr_err("Unable to load target_core_stgt\n");
217
218 sub_api_initialized = 1;
219 return;
220 }
221
222 struct se_session *transport_init_session(void)
223 {
224 struct se_session *se_sess;
225
226 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
227 if (!se_sess) {
228 pr_err("Unable to allocate struct se_session from"
229 " se_sess_cache\n");
230 return ERR_PTR(-ENOMEM);
231 }
232 INIT_LIST_HEAD(&se_sess->sess_list);
233 INIT_LIST_HEAD(&se_sess->sess_acl_list);
234 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
235 spin_lock_init(&se_sess->sess_cmd_lock);
236 kref_init(&se_sess->sess_kref);
237
238 return se_sess;
239 }
240 EXPORT_SYMBOL(transport_init_session);
241
242 /*
243 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
244 */
245 void __transport_register_session(
246 struct se_portal_group *se_tpg,
247 struct se_node_acl *se_nacl,
248 struct se_session *se_sess,
249 void *fabric_sess_ptr)
250 {
251 unsigned char buf[PR_REG_ISID_LEN];
252
253 se_sess->se_tpg = se_tpg;
254 se_sess->fabric_sess_ptr = fabric_sess_ptr;
255 /*
256 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
257 *
258 * Only set for struct se_session's that will actually be moving I/O.
259 * eg: *NOT* discovery sessions.
260 */
261 if (se_nacl) {
262 /*
263 * If the fabric module supports an ISID based TransportID,
264 * save this value in binary from the fabric I_T Nexus now.
265 */
266 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
267 memset(&buf[0], 0, PR_REG_ISID_LEN);
268 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
269 &buf[0], PR_REG_ISID_LEN);
270 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
271 }
272 kref_get(&se_nacl->acl_kref);
273
274 spin_lock_irq(&se_nacl->nacl_sess_lock);
275 /*
276 * The se_nacl->nacl_sess pointer will be set to the
277 * last active I_T Nexus for each struct se_node_acl.
278 */
279 se_nacl->nacl_sess = se_sess;
280
281 list_add_tail(&se_sess->sess_acl_list,
282 &se_nacl->acl_sess_list);
283 spin_unlock_irq(&se_nacl->nacl_sess_lock);
284 }
285 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
286
287 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
288 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
289 }
290 EXPORT_SYMBOL(__transport_register_session);
291
292 void transport_register_session(
293 struct se_portal_group *se_tpg,
294 struct se_node_acl *se_nacl,
295 struct se_session *se_sess,
296 void *fabric_sess_ptr)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&se_tpg->session_lock, flags);
301 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
302 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
303 }
304 EXPORT_SYMBOL(transport_register_session);
305
306 void target_release_session(struct kref *kref)
307 {
308 struct se_session *se_sess = container_of(kref,
309 struct se_session, sess_kref);
310 struct se_portal_group *se_tpg = se_sess->se_tpg;
311
312 se_tpg->se_tpg_tfo->close_session(se_sess);
313 }
314
315 void target_get_session(struct se_session *se_sess)
316 {
317 kref_get(&se_sess->sess_kref);
318 }
319 EXPORT_SYMBOL(target_get_session);
320
321 void target_put_session(struct se_session *se_sess)
322 {
323 struct se_portal_group *tpg = se_sess->se_tpg;
324
325 if (tpg->se_tpg_tfo->put_session != NULL) {
326 tpg->se_tpg_tfo->put_session(se_sess);
327 return;
328 }
329 kref_put(&se_sess->sess_kref, target_release_session);
330 }
331 EXPORT_SYMBOL(target_put_session);
332
333 static void target_complete_nacl(struct kref *kref)
334 {
335 struct se_node_acl *nacl = container_of(kref,
336 struct se_node_acl, acl_kref);
337
338 complete(&nacl->acl_free_comp);
339 }
340
341 void target_put_nacl(struct se_node_acl *nacl)
342 {
343 kref_put(&nacl->acl_kref, target_complete_nacl);
344 }
345
346 void transport_deregister_session_configfs(struct se_session *se_sess)
347 {
348 struct se_node_acl *se_nacl;
349 unsigned long flags;
350 /*
351 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
352 */
353 se_nacl = se_sess->se_node_acl;
354 if (se_nacl) {
355 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
356 if (se_nacl->acl_stop == 0)
357 list_del(&se_sess->sess_acl_list);
358 /*
359 * If the session list is empty, then clear the pointer.
360 * Otherwise, set the struct se_session pointer from the tail
361 * element of the per struct se_node_acl active session list.
362 */
363 if (list_empty(&se_nacl->acl_sess_list))
364 se_nacl->nacl_sess = NULL;
365 else {
366 se_nacl->nacl_sess = container_of(
367 se_nacl->acl_sess_list.prev,
368 struct se_session, sess_acl_list);
369 }
370 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
371 }
372 }
373 EXPORT_SYMBOL(transport_deregister_session_configfs);
374
375 void transport_free_session(struct se_session *se_sess)
376 {
377 kmem_cache_free(se_sess_cache, se_sess);
378 }
379 EXPORT_SYMBOL(transport_free_session);
380
381 void transport_deregister_session(struct se_session *se_sess)
382 {
383 struct se_portal_group *se_tpg = se_sess->se_tpg;
384 struct target_core_fabric_ops *se_tfo;
385 struct se_node_acl *se_nacl;
386 unsigned long flags;
387 bool comp_nacl = true;
388
389 if (!se_tpg) {
390 transport_free_session(se_sess);
391 return;
392 }
393 se_tfo = se_tpg->se_tpg_tfo;
394
395 spin_lock_irqsave(&se_tpg->session_lock, flags);
396 list_del(&se_sess->sess_list);
397 se_sess->se_tpg = NULL;
398 se_sess->fabric_sess_ptr = NULL;
399 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
400
401 /*
402 * Determine if we need to do extra work for this initiator node's
403 * struct se_node_acl if it had been previously dynamically generated.
404 */
405 se_nacl = se_sess->se_node_acl;
406
407 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
408 if (se_nacl && se_nacl->dynamic_node_acl) {
409 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
410 list_del(&se_nacl->acl_list);
411 se_tpg->num_node_acls--;
412 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
413 core_tpg_wait_for_nacl_pr_ref(se_nacl);
414 core_free_device_list_for_node(se_nacl, se_tpg);
415 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
416
417 comp_nacl = false;
418 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
419 }
420 }
421 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
422
423 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
424 se_tpg->se_tpg_tfo->get_fabric_name());
425 /*
426 * If last kref is dropping now for an explict NodeACL, awake sleeping
427 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
428 * removal context.
429 */
430 if (se_nacl && comp_nacl == true)
431 target_put_nacl(se_nacl);
432
433 transport_free_session(se_sess);
434 }
435 EXPORT_SYMBOL(transport_deregister_session);
436
437 /*
438 * Called with cmd->t_state_lock held.
439 */
440 static void target_remove_from_state_list(struct se_cmd *cmd)
441 {
442 struct se_device *dev = cmd->se_dev;
443 unsigned long flags;
444
445 if (!dev)
446 return;
447
448 if (cmd->transport_state & CMD_T_BUSY)
449 return;
450
451 spin_lock_irqsave(&dev->execute_task_lock, flags);
452 if (cmd->state_active) {
453 list_del(&cmd->state_list);
454 cmd->state_active = false;
455 }
456 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
457 }
458
459 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
460 {
461 unsigned long flags;
462
463 spin_lock_irqsave(&cmd->t_state_lock, flags);
464 /*
465 * Determine if IOCTL context caller in requesting the stopping of this
466 * command for LUN shutdown purposes.
467 */
468 if (cmd->transport_state & CMD_T_LUN_STOP) {
469 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
470 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
471
472 cmd->transport_state &= ~CMD_T_ACTIVE;
473 if (remove_from_lists)
474 target_remove_from_state_list(cmd);
475 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
476
477 complete(&cmd->transport_lun_stop_comp);
478 return 1;
479 }
480
481 if (remove_from_lists) {
482 target_remove_from_state_list(cmd);
483
484 /*
485 * Clear struct se_cmd->se_lun before the handoff to FE.
486 */
487 cmd->se_lun = NULL;
488 }
489
490 /*
491 * Determine if frontend context caller is requesting the stopping of
492 * this command for frontend exceptions.
493 */
494 if (cmd->transport_state & CMD_T_STOP) {
495 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
496 __func__, __LINE__,
497 cmd->se_tfo->get_task_tag(cmd));
498
499 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
500
501 complete(&cmd->t_transport_stop_comp);
502 return 1;
503 }
504
505 cmd->transport_state &= ~CMD_T_ACTIVE;
506 if (remove_from_lists) {
507 /*
508 * Some fabric modules like tcm_loop can release
509 * their internally allocated I/O reference now and
510 * struct se_cmd now.
511 *
512 * Fabric modules are expected to return '1' here if the
513 * se_cmd being passed is released at this point,
514 * or zero if not being released.
515 */
516 if (cmd->se_tfo->check_stop_free != NULL) {
517 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
518 return cmd->se_tfo->check_stop_free(cmd);
519 }
520 }
521
522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
523 return 0;
524 }
525
526 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
527 {
528 return transport_cmd_check_stop(cmd, true);
529 }
530
531 static void transport_lun_remove_cmd(struct se_cmd *cmd)
532 {
533 struct se_lun *lun = cmd->se_lun;
534 unsigned long flags;
535
536 if (!lun)
537 return;
538
539 spin_lock_irqsave(&cmd->t_state_lock, flags);
540 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
541 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
542 target_remove_from_state_list(cmd);
543 }
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
547 if (!list_empty(&cmd->se_lun_node))
548 list_del_init(&cmd->se_lun_node);
549 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
550 }
551
552 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
553 {
554 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
555 transport_lun_remove_cmd(cmd);
556
557 if (transport_cmd_check_stop_to_fabric(cmd))
558 return;
559 if (remove)
560 transport_put_cmd(cmd);
561 }
562
563 static void target_complete_failure_work(struct work_struct *work)
564 {
565 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
566
567 transport_generic_request_failure(cmd);
568 }
569
570 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
571 {
572 struct se_device *dev = cmd->se_dev;
573 int success = scsi_status == GOOD;
574 unsigned long flags;
575
576 cmd->scsi_status = scsi_status;
577
578
579 spin_lock_irqsave(&cmd->t_state_lock, flags);
580 cmd->transport_state &= ~CMD_T_BUSY;
581
582 if (dev && dev->transport->transport_complete) {
583 if (dev->transport->transport_complete(cmd,
584 cmd->t_data_sg) != 0) {
585 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
586 success = 1;
587 }
588 }
589
590 /*
591 * See if we are waiting to complete for an exception condition.
592 */
593 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
594 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595 complete(&cmd->task_stop_comp);
596 return;
597 }
598
599 if (!success)
600 cmd->transport_state |= CMD_T_FAILED;
601
602 /*
603 * Check for case where an explict ABORT_TASK has been received
604 * and transport_wait_for_tasks() will be waiting for completion..
605 */
606 if (cmd->transport_state & CMD_T_ABORTED &&
607 cmd->transport_state & CMD_T_STOP) {
608 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
609 complete(&cmd->t_transport_stop_comp);
610 return;
611 } else if (cmd->transport_state & CMD_T_FAILED) {
612 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
613 INIT_WORK(&cmd->work, target_complete_failure_work);
614 } else {
615 INIT_WORK(&cmd->work, target_complete_ok_work);
616 }
617
618 cmd->t_state = TRANSPORT_COMPLETE;
619 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
620 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
621
622 queue_work(target_completion_wq, &cmd->work);
623 }
624 EXPORT_SYMBOL(target_complete_cmd);
625
626 static void target_add_to_state_list(struct se_cmd *cmd)
627 {
628 struct se_device *dev = cmd->se_dev;
629 unsigned long flags;
630
631 spin_lock_irqsave(&dev->execute_task_lock, flags);
632 if (!cmd->state_active) {
633 list_add_tail(&cmd->state_list, &dev->state_list);
634 cmd->state_active = true;
635 }
636 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
637 }
638
639 /*
640 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
641 */
642 static void transport_write_pending_qf(struct se_cmd *cmd);
643 static void transport_complete_qf(struct se_cmd *cmd);
644
645 static void target_qf_do_work(struct work_struct *work)
646 {
647 struct se_device *dev = container_of(work, struct se_device,
648 qf_work_queue);
649 LIST_HEAD(qf_cmd_list);
650 struct se_cmd *cmd, *cmd_tmp;
651
652 spin_lock_irq(&dev->qf_cmd_lock);
653 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
654 spin_unlock_irq(&dev->qf_cmd_lock);
655
656 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
657 list_del(&cmd->se_qf_node);
658 atomic_dec(&dev->dev_qf_count);
659 smp_mb__after_atomic_dec();
660
661 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
662 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
663 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
664 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
665 : "UNKNOWN");
666
667 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
668 transport_write_pending_qf(cmd);
669 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
670 transport_complete_qf(cmd);
671 }
672 }
673
674 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
675 {
676 switch (cmd->data_direction) {
677 case DMA_NONE:
678 return "NONE";
679 case DMA_FROM_DEVICE:
680 return "READ";
681 case DMA_TO_DEVICE:
682 return "WRITE";
683 case DMA_BIDIRECTIONAL:
684 return "BIDI";
685 default:
686 break;
687 }
688
689 return "UNKNOWN";
690 }
691
692 void transport_dump_dev_state(
693 struct se_device *dev,
694 char *b,
695 int *bl)
696 {
697 *bl += sprintf(b + *bl, "Status: ");
698 switch (dev->dev_status) {
699 case TRANSPORT_DEVICE_ACTIVATED:
700 *bl += sprintf(b + *bl, "ACTIVATED");
701 break;
702 case TRANSPORT_DEVICE_DEACTIVATED:
703 *bl += sprintf(b + *bl, "DEACTIVATED");
704 break;
705 case TRANSPORT_DEVICE_SHUTDOWN:
706 *bl += sprintf(b + *bl, "SHUTDOWN");
707 break;
708 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
709 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
710 *bl += sprintf(b + *bl, "OFFLINE");
711 break;
712 default:
713 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
714 break;
715 }
716
717 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
718 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
719 dev->se_sub_dev->se_dev_attrib.block_size,
720 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
721 *bl += sprintf(b + *bl, " ");
722 }
723
724 void transport_dump_vpd_proto_id(
725 struct t10_vpd *vpd,
726 unsigned char *p_buf,
727 int p_buf_len)
728 {
729 unsigned char buf[VPD_TMP_BUF_SIZE];
730 int len;
731
732 memset(buf, 0, VPD_TMP_BUF_SIZE);
733 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
734
735 switch (vpd->protocol_identifier) {
736 case 0x00:
737 sprintf(buf+len, "Fibre Channel\n");
738 break;
739 case 0x10:
740 sprintf(buf+len, "Parallel SCSI\n");
741 break;
742 case 0x20:
743 sprintf(buf+len, "SSA\n");
744 break;
745 case 0x30:
746 sprintf(buf+len, "IEEE 1394\n");
747 break;
748 case 0x40:
749 sprintf(buf+len, "SCSI Remote Direct Memory Access"
750 " Protocol\n");
751 break;
752 case 0x50:
753 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
754 break;
755 case 0x60:
756 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
757 break;
758 case 0x70:
759 sprintf(buf+len, "Automation/Drive Interface Transport"
760 " Protocol\n");
761 break;
762 case 0x80:
763 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
764 break;
765 default:
766 sprintf(buf+len, "Unknown 0x%02x\n",
767 vpd->protocol_identifier);
768 break;
769 }
770
771 if (p_buf)
772 strncpy(p_buf, buf, p_buf_len);
773 else
774 pr_debug("%s", buf);
775 }
776
777 void
778 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
779 {
780 /*
781 * Check if the Protocol Identifier Valid (PIV) bit is set..
782 *
783 * from spc3r23.pdf section 7.5.1
784 */
785 if (page_83[1] & 0x80) {
786 vpd->protocol_identifier = (page_83[0] & 0xf0);
787 vpd->protocol_identifier_set = 1;
788 transport_dump_vpd_proto_id(vpd, NULL, 0);
789 }
790 }
791 EXPORT_SYMBOL(transport_set_vpd_proto_id);
792
793 int transport_dump_vpd_assoc(
794 struct t10_vpd *vpd,
795 unsigned char *p_buf,
796 int p_buf_len)
797 {
798 unsigned char buf[VPD_TMP_BUF_SIZE];
799 int ret = 0;
800 int len;
801
802 memset(buf, 0, VPD_TMP_BUF_SIZE);
803 len = sprintf(buf, "T10 VPD Identifier Association: ");
804
805 switch (vpd->association) {
806 case 0x00:
807 sprintf(buf+len, "addressed logical unit\n");
808 break;
809 case 0x10:
810 sprintf(buf+len, "target port\n");
811 break;
812 case 0x20:
813 sprintf(buf+len, "SCSI target device\n");
814 break;
815 default:
816 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
817 ret = -EINVAL;
818 break;
819 }
820
821 if (p_buf)
822 strncpy(p_buf, buf, p_buf_len);
823 else
824 pr_debug("%s", buf);
825
826 return ret;
827 }
828
829 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
830 {
831 /*
832 * The VPD identification association..
833 *
834 * from spc3r23.pdf Section 7.6.3.1 Table 297
835 */
836 vpd->association = (page_83[1] & 0x30);
837 return transport_dump_vpd_assoc(vpd, NULL, 0);
838 }
839 EXPORT_SYMBOL(transport_set_vpd_assoc);
840
841 int transport_dump_vpd_ident_type(
842 struct t10_vpd *vpd,
843 unsigned char *p_buf,
844 int p_buf_len)
845 {
846 unsigned char buf[VPD_TMP_BUF_SIZE];
847 int ret = 0;
848 int len;
849
850 memset(buf, 0, VPD_TMP_BUF_SIZE);
851 len = sprintf(buf, "T10 VPD Identifier Type: ");
852
853 switch (vpd->device_identifier_type) {
854 case 0x00:
855 sprintf(buf+len, "Vendor specific\n");
856 break;
857 case 0x01:
858 sprintf(buf+len, "T10 Vendor ID based\n");
859 break;
860 case 0x02:
861 sprintf(buf+len, "EUI-64 based\n");
862 break;
863 case 0x03:
864 sprintf(buf+len, "NAA\n");
865 break;
866 case 0x04:
867 sprintf(buf+len, "Relative target port identifier\n");
868 break;
869 case 0x08:
870 sprintf(buf+len, "SCSI name string\n");
871 break;
872 default:
873 sprintf(buf+len, "Unsupported: 0x%02x\n",
874 vpd->device_identifier_type);
875 ret = -EINVAL;
876 break;
877 }
878
879 if (p_buf) {
880 if (p_buf_len < strlen(buf)+1)
881 return -EINVAL;
882 strncpy(p_buf, buf, p_buf_len);
883 } else {
884 pr_debug("%s", buf);
885 }
886
887 return ret;
888 }
889
890 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
891 {
892 /*
893 * The VPD identifier type..
894 *
895 * from spc3r23.pdf Section 7.6.3.1 Table 298
896 */
897 vpd->device_identifier_type = (page_83[1] & 0x0f);
898 return transport_dump_vpd_ident_type(vpd, NULL, 0);
899 }
900 EXPORT_SYMBOL(transport_set_vpd_ident_type);
901
902 int transport_dump_vpd_ident(
903 struct t10_vpd *vpd,
904 unsigned char *p_buf,
905 int p_buf_len)
906 {
907 unsigned char buf[VPD_TMP_BUF_SIZE];
908 int ret = 0;
909
910 memset(buf, 0, VPD_TMP_BUF_SIZE);
911
912 switch (vpd->device_identifier_code_set) {
913 case 0x01: /* Binary */
914 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
915 &vpd->device_identifier[0]);
916 break;
917 case 0x02: /* ASCII */
918 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
919 &vpd->device_identifier[0]);
920 break;
921 case 0x03: /* UTF-8 */
922 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
923 &vpd->device_identifier[0]);
924 break;
925 default:
926 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
927 " 0x%02x", vpd->device_identifier_code_set);
928 ret = -EINVAL;
929 break;
930 }
931
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
936
937 return ret;
938 }
939
940 int
941 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
942 {
943 static const char hex_str[] = "0123456789abcdef";
944 int j = 0, i = 4; /* offset to start of the identifer */
945
946 /*
947 * The VPD Code Set (encoding)
948 *
949 * from spc3r23.pdf Section 7.6.3.1 Table 296
950 */
951 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
952 switch (vpd->device_identifier_code_set) {
953 case 0x01: /* Binary */
954 vpd->device_identifier[j++] =
955 hex_str[vpd->device_identifier_type];
956 while (i < (4 + page_83[3])) {
957 vpd->device_identifier[j++] =
958 hex_str[(page_83[i] & 0xf0) >> 4];
959 vpd->device_identifier[j++] =
960 hex_str[page_83[i] & 0x0f];
961 i++;
962 }
963 break;
964 case 0x02: /* ASCII */
965 case 0x03: /* UTF-8 */
966 while (i < (4 + page_83[3]))
967 vpd->device_identifier[j++] = page_83[i++];
968 break;
969 default:
970 break;
971 }
972
973 return transport_dump_vpd_ident(vpd, NULL, 0);
974 }
975 EXPORT_SYMBOL(transport_set_vpd_ident);
976
977 static void core_setup_task_attr_emulation(struct se_device *dev)
978 {
979 /*
980 * If this device is from Target_Core_Mod/pSCSI, disable the
981 * SAM Task Attribute emulation.
982 *
983 * This is currently not available in upsream Linux/SCSI Target
984 * mode code, and is assumed to be disabled while using TCM/pSCSI.
985 */
986 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
987 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
988 return;
989 }
990
991 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
992 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
993 " device\n", dev->transport->name,
994 dev->transport->get_device_rev(dev));
995 }
996
997 static void scsi_dump_inquiry(struct se_device *dev)
998 {
999 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1000 char buf[17];
1001 int i, device_type;
1002 /*
1003 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1004 */
1005 for (i = 0; i < 8; i++)
1006 if (wwn->vendor[i] >= 0x20)
1007 buf[i] = wwn->vendor[i];
1008 else
1009 buf[i] = ' ';
1010 buf[i] = '\0';
1011 pr_debug(" Vendor: %s\n", buf);
1012
1013 for (i = 0; i < 16; i++)
1014 if (wwn->model[i] >= 0x20)
1015 buf[i] = wwn->model[i];
1016 else
1017 buf[i] = ' ';
1018 buf[i] = '\0';
1019 pr_debug(" Model: %s\n", buf);
1020
1021 for (i = 0; i < 4; i++)
1022 if (wwn->revision[i] >= 0x20)
1023 buf[i] = wwn->revision[i];
1024 else
1025 buf[i] = ' ';
1026 buf[i] = '\0';
1027 pr_debug(" Revision: %s\n", buf);
1028
1029 device_type = dev->transport->get_device_type(dev);
1030 pr_debug(" Type: %s ", scsi_device_type(device_type));
1031 pr_debug(" ANSI SCSI revision: %02x\n",
1032 dev->transport->get_device_rev(dev));
1033 }
1034
1035 struct se_device *transport_add_device_to_core_hba(
1036 struct se_hba *hba,
1037 struct se_subsystem_api *transport,
1038 struct se_subsystem_dev *se_dev,
1039 u32 device_flags,
1040 void *transport_dev,
1041 struct se_dev_limits *dev_limits,
1042 const char *inquiry_prod,
1043 const char *inquiry_rev)
1044 {
1045 int force_pt;
1046 struct se_device *dev;
1047
1048 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1049 if (!dev) {
1050 pr_err("Unable to allocate memory for se_dev_t\n");
1051 return NULL;
1052 }
1053
1054 dev->dev_flags = device_flags;
1055 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1056 dev->dev_ptr = transport_dev;
1057 dev->se_hba = hba;
1058 dev->se_sub_dev = se_dev;
1059 dev->transport = transport;
1060 INIT_LIST_HEAD(&dev->dev_list);
1061 INIT_LIST_HEAD(&dev->dev_sep_list);
1062 INIT_LIST_HEAD(&dev->dev_tmr_list);
1063 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1064 INIT_LIST_HEAD(&dev->state_list);
1065 INIT_LIST_HEAD(&dev->qf_cmd_list);
1066 spin_lock_init(&dev->execute_task_lock);
1067 spin_lock_init(&dev->delayed_cmd_lock);
1068 spin_lock_init(&dev->dev_reservation_lock);
1069 spin_lock_init(&dev->dev_status_lock);
1070 spin_lock_init(&dev->se_port_lock);
1071 spin_lock_init(&dev->se_tmr_lock);
1072 spin_lock_init(&dev->qf_cmd_lock);
1073 atomic_set(&dev->dev_ordered_id, 0);
1074
1075 se_dev_set_default_attribs(dev, dev_limits);
1076
1077 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1078 dev->creation_time = get_jiffies_64();
1079 spin_lock_init(&dev->stats_lock);
1080
1081 spin_lock(&hba->device_lock);
1082 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1083 hba->dev_count++;
1084 spin_unlock(&hba->device_lock);
1085 /*
1086 * Setup the SAM Task Attribute emulation for struct se_device
1087 */
1088 core_setup_task_attr_emulation(dev);
1089 /*
1090 * Force PR and ALUA passthrough emulation with internal object use.
1091 */
1092 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1093 /*
1094 * Setup the Reservations infrastructure for struct se_device
1095 */
1096 core_setup_reservations(dev, force_pt);
1097 /*
1098 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1099 */
1100 if (core_setup_alua(dev, force_pt) < 0)
1101 goto out;
1102
1103 /*
1104 * Startup the struct se_device processing thread
1105 */
1106 dev->tmr_wq = alloc_workqueue("tmr-%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 1,
1107 dev->transport->name);
1108 if (!dev->tmr_wq) {
1109 pr_err("Unable to create tmr workqueue for %s\n",
1110 dev->transport->name);
1111 goto out;
1112 }
1113 /*
1114 * Setup work_queue for QUEUE_FULL
1115 */
1116 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1117 /*
1118 * Preload the initial INQUIRY const values if we are doing
1119 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1120 * passthrough because this is being provided by the backend LLD.
1121 * This is required so that transport_get_inquiry() copies these
1122 * originals once back into DEV_T10_WWN(dev) for the virtual device
1123 * setup.
1124 */
1125 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1126 if (!inquiry_prod || !inquiry_rev) {
1127 pr_err("All non TCM/pSCSI plugins require"
1128 " INQUIRY consts\n");
1129 goto out;
1130 }
1131
1132 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1133 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1134 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1135 }
1136 scsi_dump_inquiry(dev);
1137
1138 return dev;
1139 out:
1140 destroy_workqueue(dev->tmr_wq);
1141
1142 spin_lock(&hba->device_lock);
1143 list_del(&dev->dev_list);
1144 hba->dev_count--;
1145 spin_unlock(&hba->device_lock);
1146
1147 se_release_vpd_for_dev(dev);
1148
1149 kfree(dev);
1150
1151 return NULL;
1152 }
1153 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1154
1155 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1156 {
1157 struct se_device *dev = cmd->se_dev;
1158
1159 if (cmd->unknown_data_length) {
1160 cmd->data_length = size;
1161 } else if (size != cmd->data_length) {
1162 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1163 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1164 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1165 cmd->data_length, size, cmd->t_task_cdb[0]);
1166
1167 cmd->cmd_spdtl = size;
1168
1169 if (cmd->data_direction == DMA_TO_DEVICE) {
1170 pr_err("Rejecting underflow/overflow"
1171 " WRITE data\n");
1172 goto out_invalid_cdb_field;
1173 }
1174 /*
1175 * Reject READ_* or WRITE_* with overflow/underflow for
1176 * type SCF_SCSI_DATA_CDB.
1177 */
1178 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) {
1179 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1180 " CDB on non 512-byte sector setup subsystem"
1181 " plugin: %s\n", dev->transport->name);
1182 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1183 goto out_invalid_cdb_field;
1184 }
1185
1186 if (size > cmd->data_length) {
1187 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1188 cmd->residual_count = (size - cmd->data_length);
1189 } else {
1190 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1191 cmd->residual_count = (cmd->data_length - size);
1192 }
1193 cmd->data_length = size;
1194 }
1195
1196 return 0;
1197
1198 out_invalid_cdb_field:
1199 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1200 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1201 return -EINVAL;
1202 }
1203
1204 /*
1205 * Used by fabric modules containing a local struct se_cmd within their
1206 * fabric dependent per I/O descriptor.
1207 */
1208 void transport_init_se_cmd(
1209 struct se_cmd *cmd,
1210 struct target_core_fabric_ops *tfo,
1211 struct se_session *se_sess,
1212 u32 data_length,
1213 int data_direction,
1214 int task_attr,
1215 unsigned char *sense_buffer)
1216 {
1217 INIT_LIST_HEAD(&cmd->se_lun_node);
1218 INIT_LIST_HEAD(&cmd->se_delayed_node);
1219 INIT_LIST_HEAD(&cmd->se_qf_node);
1220 INIT_LIST_HEAD(&cmd->se_cmd_list);
1221 INIT_LIST_HEAD(&cmd->state_list);
1222 init_completion(&cmd->transport_lun_fe_stop_comp);
1223 init_completion(&cmd->transport_lun_stop_comp);
1224 init_completion(&cmd->t_transport_stop_comp);
1225 init_completion(&cmd->cmd_wait_comp);
1226 init_completion(&cmd->task_stop_comp);
1227 spin_lock_init(&cmd->t_state_lock);
1228 cmd->transport_state = CMD_T_DEV_ACTIVE;
1229
1230 cmd->se_tfo = tfo;
1231 cmd->se_sess = se_sess;
1232 cmd->data_length = data_length;
1233 cmd->data_direction = data_direction;
1234 cmd->sam_task_attr = task_attr;
1235 cmd->sense_buffer = sense_buffer;
1236
1237 cmd->state_active = false;
1238 }
1239 EXPORT_SYMBOL(transport_init_se_cmd);
1240
1241 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1242 {
1243 /*
1244 * Check if SAM Task Attribute emulation is enabled for this
1245 * struct se_device storage object
1246 */
1247 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1248 return 0;
1249
1250 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1251 pr_debug("SAM Task Attribute ACA"
1252 " emulation is not supported\n");
1253 return -EINVAL;
1254 }
1255 /*
1256 * Used to determine when ORDERED commands should go from
1257 * Dormant to Active status.
1258 */
1259 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1260 smp_mb__after_atomic_inc();
1261 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1262 cmd->se_ordered_id, cmd->sam_task_attr,
1263 cmd->se_dev->transport->name);
1264 return 0;
1265 }
1266
1267 /* target_setup_cmd_from_cdb():
1268 *
1269 * Called from fabric RX Thread.
1270 */
1271 int target_setup_cmd_from_cdb(
1272 struct se_cmd *cmd,
1273 unsigned char *cdb)
1274 {
1275 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev;
1276 u32 pr_reg_type = 0;
1277 u8 alua_ascq = 0;
1278 unsigned long flags;
1279 int ret;
1280
1281 /*
1282 * Ensure that the received CDB is less than the max (252 + 8) bytes
1283 * for VARIABLE_LENGTH_CMD
1284 */
1285 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1286 pr_err("Received SCSI CDB with command_size: %d that"
1287 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1288 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1289 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1290 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1291 return -EINVAL;
1292 }
1293 /*
1294 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1295 * allocate the additional extended CDB buffer now.. Otherwise
1296 * setup the pointer from __t_task_cdb to t_task_cdb.
1297 */
1298 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1299 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1300 GFP_KERNEL);
1301 if (!cmd->t_task_cdb) {
1302 pr_err("Unable to allocate cmd->t_task_cdb"
1303 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1304 scsi_command_size(cdb),
1305 (unsigned long)sizeof(cmd->__t_task_cdb));
1306 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1307 cmd->scsi_sense_reason =
1308 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1309 return -ENOMEM;
1310 }
1311 } else
1312 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1313 /*
1314 * Copy the original CDB into cmd->
1315 */
1316 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1317
1318 /*
1319 * Check for an existing UNIT ATTENTION condition
1320 */
1321 if (core_scsi3_ua_check(cmd, cdb) < 0) {
1322 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1323 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
1324 return -EINVAL;
1325 }
1326
1327 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
1328 if (ret != 0) {
1329 /*
1330 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
1331 * The ALUA additional sense code qualifier (ASCQ) is determined
1332 * by the ALUA primary or secondary access state..
1333 */
1334 if (ret > 0) {
1335 pr_debug("[%s]: ALUA TG Port not available, "
1336 "SenseKey: NOT_READY, ASC/ASCQ: "
1337 "0x04/0x%02x\n",
1338 cmd->se_tfo->get_fabric_name(), alua_ascq);
1339
1340 transport_set_sense_codes(cmd, 0x04, alua_ascq);
1341 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1342 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
1343 return -EINVAL;
1344 }
1345 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1346 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1347 return -EINVAL;
1348 }
1349
1350 /*
1351 * Check status for SPC-3 Persistent Reservations
1352 */
1353 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) {
1354 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
1355 cmd, cdb, pr_reg_type) != 0) {
1356 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1357 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
1358 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1359 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
1360 return -EBUSY;
1361 }
1362 /*
1363 * This means the CDB is allowed for the SCSI Initiator port
1364 * when said port is *NOT* holding the legacy SPC-2 or
1365 * SPC-3 Persistent Reservation.
1366 */
1367 }
1368
1369 ret = cmd->se_dev->transport->parse_cdb(cmd);
1370 if (ret < 0)
1371 return ret;
1372
1373 spin_lock_irqsave(&cmd->t_state_lock, flags);
1374 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1375 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1376
1377 /*
1378 * Check for SAM Task Attribute Emulation
1379 */
1380 if (transport_check_alloc_task_attr(cmd) < 0) {
1381 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1382 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1383 return -EINVAL;
1384 }
1385 spin_lock(&cmd->se_lun->lun_sep_lock);
1386 if (cmd->se_lun->lun_sep)
1387 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1388 spin_unlock(&cmd->se_lun->lun_sep_lock);
1389 return 0;
1390 }
1391 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1392
1393 /*
1394 * Used by fabric module frontends to queue tasks directly.
1395 * Many only be used from process context only
1396 */
1397 int transport_handle_cdb_direct(
1398 struct se_cmd *cmd)
1399 {
1400 int ret;
1401
1402 if (!cmd->se_lun) {
1403 dump_stack();
1404 pr_err("cmd->se_lun is NULL\n");
1405 return -EINVAL;
1406 }
1407 if (in_interrupt()) {
1408 dump_stack();
1409 pr_err("transport_generic_handle_cdb cannot be called"
1410 " from interrupt context\n");
1411 return -EINVAL;
1412 }
1413 /*
1414 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1415 * outstanding descriptors are handled correctly during shutdown via
1416 * transport_wait_for_tasks()
1417 *
1418 * Also, we don't take cmd->t_state_lock here as we only expect
1419 * this to be called for initial descriptor submission.
1420 */
1421 cmd->t_state = TRANSPORT_NEW_CMD;
1422 cmd->transport_state |= CMD_T_ACTIVE;
1423
1424 /*
1425 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1426 * so follow TRANSPORT_NEW_CMD processing thread context usage
1427 * and call transport_generic_request_failure() if necessary..
1428 */
1429 ret = transport_generic_new_cmd(cmd);
1430 if (ret < 0)
1431 transport_generic_request_failure(cmd);
1432
1433 return 0;
1434 }
1435 EXPORT_SYMBOL(transport_handle_cdb_direct);
1436
1437 /**
1438 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1439 *
1440 * @se_cmd: command descriptor to submit
1441 * @se_sess: associated se_sess for endpoint
1442 * @cdb: pointer to SCSI CDB
1443 * @sense: pointer to SCSI sense buffer
1444 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445 * @data_length: fabric expected data transfer length
1446 * @task_addr: SAM task attribute
1447 * @data_dir: DMA data direction
1448 * @flags: flags for command submission from target_sc_flags_tables
1449 *
1450 * This may only be called from process context, and also currently
1451 * assumes internal allocation of fabric payload buffer by target-core.
1452 **/
1453 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1454 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1455 u32 data_length, int task_attr, int data_dir, int flags)
1456 {
1457 struct se_portal_group *se_tpg;
1458 int rc;
1459
1460 se_tpg = se_sess->se_tpg;
1461 BUG_ON(!se_tpg);
1462 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1463 BUG_ON(in_interrupt());
1464 /*
1465 * Initialize se_cmd for target operation. From this point
1466 * exceptions are handled by sending exception status via
1467 * target_core_fabric_ops->queue_status() callback
1468 */
1469 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1470 data_length, data_dir, task_attr, sense);
1471 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1472 se_cmd->unknown_data_length = 1;
1473 /*
1474 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1475 * se_sess->sess_cmd_list. A second kref_get here is necessary
1476 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1477 * kref_put() to happen during fabric packet acknowledgement.
1478 */
1479 rc = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1480 if (rc)
1481 return;
1482 /*
1483 * Signal bidirectional data payloads to target-core
1484 */
1485 if (flags & TARGET_SCF_BIDI_OP)
1486 se_cmd->se_cmd_flags |= SCF_BIDI;
1487 /*
1488 * Locate se_lun pointer and attach it to struct se_cmd
1489 */
1490 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1491 transport_send_check_condition_and_sense(se_cmd,
1492 se_cmd->scsi_sense_reason, 0);
1493 target_put_sess_cmd(se_sess, se_cmd);
1494 return;
1495 }
1496
1497 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1498 if (rc != 0) {
1499 transport_generic_request_failure(se_cmd);
1500 return;
1501 }
1502
1503 /*
1504 * Check if we need to delay processing because of ALUA
1505 * Active/NonOptimized primary access state..
1506 */
1507 core_alua_check_nonop_delay(se_cmd);
1508
1509 transport_handle_cdb_direct(se_cmd);
1510 return;
1511 }
1512 EXPORT_SYMBOL(target_submit_cmd);
1513
1514 static void target_complete_tmr_failure(struct work_struct *work)
1515 {
1516 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1517
1518 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1519 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1520 transport_generic_free_cmd(se_cmd, 0);
1521 }
1522
1523 /**
1524 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1525 * for TMR CDBs
1526 *
1527 * @se_cmd: command descriptor to submit
1528 * @se_sess: associated se_sess for endpoint
1529 * @sense: pointer to SCSI sense buffer
1530 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1531 * @fabric_context: fabric context for TMR req
1532 * @tm_type: Type of TM request
1533 * @gfp: gfp type for caller
1534 * @tag: referenced task tag for TMR_ABORT_TASK
1535 * @flags: submit cmd flags
1536 *
1537 * Callable from all contexts.
1538 **/
1539
1540 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1541 unsigned char *sense, u32 unpacked_lun,
1542 void *fabric_tmr_ptr, unsigned char tm_type,
1543 gfp_t gfp, unsigned int tag, int flags)
1544 {
1545 struct se_portal_group *se_tpg;
1546 int ret;
1547
1548 se_tpg = se_sess->se_tpg;
1549 BUG_ON(!se_tpg);
1550
1551 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1552 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1553 /*
1554 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1555 * allocation failure.
1556 */
1557 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1558 if (ret < 0)
1559 return -ENOMEM;
1560
1561 if (tm_type == TMR_ABORT_TASK)
1562 se_cmd->se_tmr_req->ref_task_tag = tag;
1563
1564 /* See target_submit_cmd for commentary */
1565 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1566 if (ret) {
1567 core_tmr_release_req(se_cmd->se_tmr_req);
1568 return ret;
1569 }
1570
1571 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1572 if (ret) {
1573 /*
1574 * For callback during failure handling, push this work off
1575 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1576 */
1577 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1578 schedule_work(&se_cmd->work);
1579 return 0;
1580 }
1581 transport_generic_handle_tmr(se_cmd);
1582 return 0;
1583 }
1584 EXPORT_SYMBOL(target_submit_tmr);
1585
1586 /*
1587 * If the cmd is active, request it to be stopped and sleep until it
1588 * has completed.
1589 */
1590 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1591 {
1592 bool was_active = false;
1593
1594 if (cmd->transport_state & CMD_T_BUSY) {
1595 cmd->transport_state |= CMD_T_REQUEST_STOP;
1596 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1597
1598 pr_debug("cmd %p waiting to complete\n", cmd);
1599 wait_for_completion(&cmd->task_stop_comp);
1600 pr_debug("cmd %p stopped successfully\n", cmd);
1601
1602 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1603 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1604 cmd->transport_state &= ~CMD_T_BUSY;
1605 was_active = true;
1606 }
1607
1608 return was_active;
1609 }
1610
1611 /*
1612 * Handle SAM-esque emulation for generic transport request failures.
1613 */
1614 void transport_generic_request_failure(struct se_cmd *cmd)
1615 {
1616 int ret = 0;
1617
1618 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1619 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1620 cmd->t_task_cdb[0]);
1621 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1622 cmd->se_tfo->get_cmd_state(cmd),
1623 cmd->t_state, cmd->scsi_sense_reason);
1624 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1625 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1626 (cmd->transport_state & CMD_T_STOP) != 0,
1627 (cmd->transport_state & CMD_T_SENT) != 0);
1628
1629 /*
1630 * For SAM Task Attribute emulation for failed struct se_cmd
1631 */
1632 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1633 transport_complete_task_attr(cmd);
1634
1635 switch (cmd->scsi_sense_reason) {
1636 case TCM_NON_EXISTENT_LUN:
1637 case TCM_UNSUPPORTED_SCSI_OPCODE:
1638 case TCM_INVALID_CDB_FIELD:
1639 case TCM_INVALID_PARAMETER_LIST:
1640 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1641 case TCM_UNKNOWN_MODE_PAGE:
1642 case TCM_WRITE_PROTECTED:
1643 case TCM_ADDRESS_OUT_OF_RANGE:
1644 case TCM_CHECK_CONDITION_ABORT_CMD:
1645 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1646 case TCM_CHECK_CONDITION_NOT_READY:
1647 break;
1648 case TCM_RESERVATION_CONFLICT:
1649 /*
1650 * No SENSE Data payload for this case, set SCSI Status
1651 * and queue the response to $FABRIC_MOD.
1652 *
1653 * Uses linux/include/scsi/scsi.h SAM status codes defs
1654 */
1655 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1656 /*
1657 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1658 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1659 * CONFLICT STATUS.
1660 *
1661 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1662 */
1663 if (cmd->se_sess &&
1664 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1665 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1666 cmd->orig_fe_lun, 0x2C,
1667 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1668
1669 ret = cmd->se_tfo->queue_status(cmd);
1670 if (ret == -EAGAIN || ret == -ENOMEM)
1671 goto queue_full;
1672 goto check_stop;
1673 default:
1674 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1675 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1676 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1677 break;
1678 }
1679
1680 ret = transport_send_check_condition_and_sense(cmd,
1681 cmd->scsi_sense_reason, 0);
1682 if (ret == -EAGAIN || ret == -ENOMEM)
1683 goto queue_full;
1684
1685 check_stop:
1686 transport_lun_remove_cmd(cmd);
1687 if (!transport_cmd_check_stop_to_fabric(cmd))
1688 ;
1689 return;
1690
1691 queue_full:
1692 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1693 transport_handle_queue_full(cmd, cmd->se_dev);
1694 }
1695 EXPORT_SYMBOL(transport_generic_request_failure);
1696
1697 static void __target_execute_cmd(struct se_cmd *cmd)
1698 {
1699 int error = 0;
1700
1701 spin_lock_irq(&cmd->t_state_lock);
1702 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1703 spin_unlock_irq(&cmd->t_state_lock);
1704
1705 if (cmd->execute_cmd)
1706 error = cmd->execute_cmd(cmd);
1707
1708 if (error) {
1709 spin_lock_irq(&cmd->t_state_lock);
1710 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1711 spin_unlock_irq(&cmd->t_state_lock);
1712
1713 transport_generic_request_failure(cmd);
1714 }
1715 }
1716
1717 void target_execute_cmd(struct se_cmd *cmd)
1718 {
1719 struct se_device *dev = cmd->se_dev;
1720
1721 /*
1722 * If the received CDB has aleady been aborted stop processing it here.
1723 */
1724 if (transport_check_aborted_status(cmd, 1))
1725 return;
1726
1727 /*
1728 * Determine if IOCTL context caller in requesting the stopping of this
1729 * command for LUN shutdown purposes.
1730 */
1731 spin_lock_irq(&cmd->t_state_lock);
1732 if (cmd->transport_state & CMD_T_LUN_STOP) {
1733 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1734 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1735
1736 cmd->transport_state &= ~CMD_T_ACTIVE;
1737 spin_unlock_irq(&cmd->t_state_lock);
1738 complete(&cmd->transport_lun_stop_comp);
1739 return;
1740 }
1741 /*
1742 * Determine if frontend context caller is requesting the stopping of
1743 * this command for frontend exceptions.
1744 */
1745 if (cmd->transport_state & CMD_T_STOP) {
1746 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1747 __func__, __LINE__,
1748 cmd->se_tfo->get_task_tag(cmd));
1749
1750 spin_unlock_irq(&cmd->t_state_lock);
1751 complete(&cmd->t_transport_stop_comp);
1752 return;
1753 }
1754
1755 cmd->t_state = TRANSPORT_PROCESSING;
1756 spin_unlock_irq(&cmd->t_state_lock);
1757
1758 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1759 goto execute;
1760
1761 /*
1762 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1763 * to allow the passed struct se_cmd list of tasks to the front of the list.
1764 */
1765 switch (cmd->sam_task_attr) {
1766 case MSG_HEAD_TAG:
1767 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1768 "se_ordered_id: %u\n",
1769 cmd->t_task_cdb[0], cmd->se_ordered_id);
1770 goto execute;
1771 case MSG_ORDERED_TAG:
1772 atomic_inc(&dev->dev_ordered_sync);
1773 smp_mb__after_atomic_inc();
1774
1775 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1776 " se_ordered_id: %u\n",
1777 cmd->t_task_cdb[0], cmd->se_ordered_id);
1778
1779 /*
1780 * Execute an ORDERED command if no other older commands
1781 * exist that need to be completed first.
1782 */
1783 if (!atomic_read(&dev->simple_cmds))
1784 goto execute;
1785 break;
1786 default:
1787 /*
1788 * For SIMPLE and UNTAGGED Task Attribute commands
1789 */
1790 atomic_inc(&dev->simple_cmds);
1791 smp_mb__after_atomic_inc();
1792 break;
1793 }
1794
1795 if (atomic_read(&dev->dev_ordered_sync) != 0) {
1796 spin_lock(&dev->delayed_cmd_lock);
1797 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1798 spin_unlock(&dev->delayed_cmd_lock);
1799
1800 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1801 " delayed CMD list, se_ordered_id: %u\n",
1802 cmd->t_task_cdb[0], cmd->sam_task_attr,
1803 cmd->se_ordered_id);
1804 return;
1805 }
1806
1807 execute:
1808 /*
1809 * Otherwise, no ORDERED task attributes exist..
1810 */
1811 __target_execute_cmd(cmd);
1812 }
1813 EXPORT_SYMBOL(target_execute_cmd);
1814
1815 /*
1816 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
1817 */
1818 static int transport_get_sense_data(struct se_cmd *cmd)
1819 {
1820 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
1821 struct se_device *dev = cmd->se_dev;
1822 unsigned long flags;
1823 u32 offset = 0;
1824
1825 WARN_ON(!cmd->se_lun);
1826
1827 if (!dev)
1828 return 0;
1829
1830 spin_lock_irqsave(&cmd->t_state_lock, flags);
1831 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
1832 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1833 return 0;
1834 }
1835
1836 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
1837 goto out;
1838
1839 if (!dev->transport->get_sense_buffer) {
1840 pr_err("dev->transport->get_sense_buffer is NULL\n");
1841 goto out;
1842 }
1843
1844 sense_buffer = dev->transport->get_sense_buffer(cmd);
1845 if (!sense_buffer) {
1846 pr_err("ITT 0x%08x cmd %p: Unable to locate"
1847 " sense buffer for task with sense\n",
1848 cmd->se_tfo->get_task_tag(cmd), cmd);
1849 goto out;
1850 }
1851
1852 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1853
1854 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
1855
1856 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
1857
1858 /* Automatically padded */
1859 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
1860
1861 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
1862 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
1863 return 0;
1864
1865 out:
1866 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1867 return -1;
1868 }
1869
1870 /*
1871 * Process all commands up to the last received ORDERED task attribute which
1872 * requires another blocking boundary
1873 */
1874 static void target_restart_delayed_cmds(struct se_device *dev)
1875 {
1876 for (;;) {
1877 struct se_cmd *cmd;
1878
1879 spin_lock(&dev->delayed_cmd_lock);
1880 if (list_empty(&dev->delayed_cmd_list)) {
1881 spin_unlock(&dev->delayed_cmd_lock);
1882 break;
1883 }
1884
1885 cmd = list_entry(dev->delayed_cmd_list.next,
1886 struct se_cmd, se_delayed_node);
1887 list_del(&cmd->se_delayed_node);
1888 spin_unlock(&dev->delayed_cmd_lock);
1889
1890 __target_execute_cmd(cmd);
1891
1892 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1893 break;
1894 }
1895 }
1896
1897 /*
1898 * Called from I/O completion to determine which dormant/delayed
1899 * and ordered cmds need to have their tasks added to the execution queue.
1900 */
1901 static void transport_complete_task_attr(struct se_cmd *cmd)
1902 {
1903 struct se_device *dev = cmd->se_dev;
1904
1905 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1906 atomic_dec(&dev->simple_cmds);
1907 smp_mb__after_atomic_dec();
1908 dev->dev_cur_ordered_id++;
1909 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1910 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1911 cmd->se_ordered_id);
1912 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1913 dev->dev_cur_ordered_id++;
1914 pr_debug("Incremented dev_cur_ordered_id: %u for"
1915 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1916 cmd->se_ordered_id);
1917 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1918 atomic_dec(&dev->dev_ordered_sync);
1919 smp_mb__after_atomic_dec();
1920
1921 dev->dev_cur_ordered_id++;
1922 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1923 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1924 }
1925
1926 target_restart_delayed_cmds(dev);
1927 }
1928
1929 static void transport_complete_qf(struct se_cmd *cmd)
1930 {
1931 int ret = 0;
1932
1933 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1934 transport_complete_task_attr(cmd);
1935
1936 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1937 ret = cmd->se_tfo->queue_status(cmd);
1938 if (ret)
1939 goto out;
1940 }
1941
1942 switch (cmd->data_direction) {
1943 case DMA_FROM_DEVICE:
1944 ret = cmd->se_tfo->queue_data_in(cmd);
1945 break;
1946 case DMA_TO_DEVICE:
1947 if (cmd->t_bidi_data_sg) {
1948 ret = cmd->se_tfo->queue_data_in(cmd);
1949 if (ret < 0)
1950 break;
1951 }
1952 /* Fall through for DMA_TO_DEVICE */
1953 case DMA_NONE:
1954 ret = cmd->se_tfo->queue_status(cmd);
1955 break;
1956 default:
1957 break;
1958 }
1959
1960 out:
1961 if (ret < 0) {
1962 transport_handle_queue_full(cmd, cmd->se_dev);
1963 return;
1964 }
1965 transport_lun_remove_cmd(cmd);
1966 transport_cmd_check_stop_to_fabric(cmd);
1967 }
1968
1969 static void transport_handle_queue_full(
1970 struct se_cmd *cmd,
1971 struct se_device *dev)
1972 {
1973 spin_lock_irq(&dev->qf_cmd_lock);
1974 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1975 atomic_inc(&dev->dev_qf_count);
1976 smp_mb__after_atomic_inc();
1977 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1978
1979 schedule_work(&cmd->se_dev->qf_work_queue);
1980 }
1981
1982 static void target_complete_ok_work(struct work_struct *work)
1983 {
1984 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1985 int reason = 0, ret;
1986
1987 /*
1988 * Check if we need to move delayed/dormant tasks from cmds on the
1989 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1990 * Attribute.
1991 */
1992 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1993 transport_complete_task_attr(cmd);
1994 /*
1995 * Check to schedule QUEUE_FULL work, or execute an existing
1996 * cmd->transport_qf_callback()
1997 */
1998 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1999 schedule_work(&cmd->se_dev->qf_work_queue);
2000
2001 /*
2002 * Check if we need to retrieve a sense buffer from
2003 * the struct se_cmd in question.
2004 */
2005 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2006 if (transport_get_sense_data(cmd) < 0)
2007 reason = TCM_NON_EXISTENT_LUN;
2008
2009 if (cmd->scsi_status) {
2010 ret = transport_send_check_condition_and_sense(
2011 cmd, reason, 1);
2012 if (ret == -EAGAIN || ret == -ENOMEM)
2013 goto queue_full;
2014
2015 transport_lun_remove_cmd(cmd);
2016 transport_cmd_check_stop_to_fabric(cmd);
2017 return;
2018 }
2019 }
2020 /*
2021 * Check for a callback, used by amongst other things
2022 * XDWRITE_READ_10 emulation.
2023 */
2024 if (cmd->transport_complete_callback)
2025 cmd->transport_complete_callback(cmd);
2026
2027 switch (cmd->data_direction) {
2028 case DMA_FROM_DEVICE:
2029 spin_lock(&cmd->se_lun->lun_sep_lock);
2030 if (cmd->se_lun->lun_sep) {
2031 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2032 cmd->data_length;
2033 }
2034 spin_unlock(&cmd->se_lun->lun_sep_lock);
2035
2036 ret = cmd->se_tfo->queue_data_in(cmd);
2037 if (ret == -EAGAIN || ret == -ENOMEM)
2038 goto queue_full;
2039 break;
2040 case DMA_TO_DEVICE:
2041 spin_lock(&cmd->se_lun->lun_sep_lock);
2042 if (cmd->se_lun->lun_sep) {
2043 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2044 cmd->data_length;
2045 }
2046 spin_unlock(&cmd->se_lun->lun_sep_lock);
2047 /*
2048 * Check if we need to send READ payload for BIDI-COMMAND
2049 */
2050 if (cmd->t_bidi_data_sg) {
2051 spin_lock(&cmd->se_lun->lun_sep_lock);
2052 if (cmd->se_lun->lun_sep) {
2053 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2054 cmd->data_length;
2055 }
2056 spin_unlock(&cmd->se_lun->lun_sep_lock);
2057 ret = cmd->se_tfo->queue_data_in(cmd);
2058 if (ret == -EAGAIN || ret == -ENOMEM)
2059 goto queue_full;
2060 break;
2061 }
2062 /* Fall through for DMA_TO_DEVICE */
2063 case DMA_NONE:
2064 ret = cmd->se_tfo->queue_status(cmd);
2065 if (ret == -EAGAIN || ret == -ENOMEM)
2066 goto queue_full;
2067 break;
2068 default:
2069 break;
2070 }
2071
2072 transport_lun_remove_cmd(cmd);
2073 transport_cmd_check_stop_to_fabric(cmd);
2074 return;
2075
2076 queue_full:
2077 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2078 " data_direction: %d\n", cmd, cmd->data_direction);
2079 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2080 transport_handle_queue_full(cmd, cmd->se_dev);
2081 }
2082
2083 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2084 {
2085 struct scatterlist *sg;
2086 int count;
2087
2088 for_each_sg(sgl, sg, nents, count)
2089 __free_page(sg_page(sg));
2090
2091 kfree(sgl);
2092 }
2093
2094 static inline void transport_free_pages(struct se_cmd *cmd)
2095 {
2096 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
2097 return;
2098
2099 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2100 cmd->t_data_sg = NULL;
2101 cmd->t_data_nents = 0;
2102
2103 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2104 cmd->t_bidi_data_sg = NULL;
2105 cmd->t_bidi_data_nents = 0;
2106 }
2107
2108 /**
2109 * transport_release_cmd - free a command
2110 * @cmd: command to free
2111 *
2112 * This routine unconditionally frees a command, and reference counting
2113 * or list removal must be done in the caller.
2114 */
2115 static void transport_release_cmd(struct se_cmd *cmd)
2116 {
2117 BUG_ON(!cmd->se_tfo);
2118
2119 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2120 core_tmr_release_req(cmd->se_tmr_req);
2121 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2122 kfree(cmd->t_task_cdb);
2123 /*
2124 * If this cmd has been setup with target_get_sess_cmd(), drop
2125 * the kref and call ->release_cmd() in kref callback.
2126 */
2127 if (cmd->check_release != 0) {
2128 target_put_sess_cmd(cmd->se_sess, cmd);
2129 return;
2130 }
2131 cmd->se_tfo->release_cmd(cmd);
2132 }
2133
2134 /**
2135 * transport_put_cmd - release a reference to a command
2136 * @cmd: command to release
2137 *
2138 * This routine releases our reference to the command and frees it if possible.
2139 */
2140 static void transport_put_cmd(struct se_cmd *cmd)
2141 {
2142 unsigned long flags;
2143
2144 spin_lock_irqsave(&cmd->t_state_lock, flags);
2145 if (atomic_read(&cmd->t_fe_count)) {
2146 if (!atomic_dec_and_test(&cmd->t_fe_count))
2147 goto out_busy;
2148 }
2149
2150 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
2151 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2152 target_remove_from_state_list(cmd);
2153 }
2154 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2155
2156 transport_free_pages(cmd);
2157 transport_release_cmd(cmd);
2158 return;
2159 out_busy:
2160 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2161 }
2162
2163 /*
2164 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
2165 * allocating in the core.
2166 * @cmd: Associated se_cmd descriptor
2167 * @mem: SGL style memory for TCM WRITE / READ
2168 * @sg_mem_num: Number of SGL elements
2169 * @mem_bidi_in: SGL style memory for TCM BIDI READ
2170 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
2171 *
2172 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
2173 * of parameters.
2174 */
2175 int transport_generic_map_mem_to_cmd(
2176 struct se_cmd *cmd,
2177 struct scatterlist *sgl,
2178 u32 sgl_count,
2179 struct scatterlist *sgl_bidi,
2180 u32 sgl_bidi_count)
2181 {
2182 if (!sgl || !sgl_count)
2183 return 0;
2184
2185 /*
2186 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
2187 * scatterlists already have been set to follow what the fabric
2188 * passes for the original expected data transfer length.
2189 */
2190 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
2191 pr_warn("Rejecting SCSI DATA overflow for fabric using"
2192 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
2193 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2194 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2195 return -EINVAL;
2196 }
2197
2198 cmd->t_data_sg = sgl;
2199 cmd->t_data_nents = sgl_count;
2200
2201 if (sgl_bidi && sgl_bidi_count) {
2202 cmd->t_bidi_data_sg = sgl_bidi;
2203 cmd->t_bidi_data_nents = sgl_bidi_count;
2204 }
2205 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
2209
2210 void *transport_kmap_data_sg(struct se_cmd *cmd)
2211 {
2212 struct scatterlist *sg = cmd->t_data_sg;
2213 struct page **pages;
2214 int i;
2215
2216 BUG_ON(!sg);
2217 /*
2218 * We need to take into account a possible offset here for fabrics like
2219 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2220 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2221 */
2222 if (!cmd->t_data_nents)
2223 return NULL;
2224 else if (cmd->t_data_nents == 1)
2225 return kmap(sg_page(sg)) + sg->offset;
2226
2227 /* >1 page. use vmap */
2228 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2229 if (!pages)
2230 return NULL;
2231
2232 /* convert sg[] to pages[] */
2233 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2234 pages[i] = sg_page(sg);
2235 }
2236
2237 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2238 kfree(pages);
2239 if (!cmd->t_data_vmap)
2240 return NULL;
2241
2242 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2243 }
2244 EXPORT_SYMBOL(transport_kmap_data_sg);
2245
2246 void transport_kunmap_data_sg(struct se_cmd *cmd)
2247 {
2248 if (!cmd->t_data_nents) {
2249 return;
2250 } else if (cmd->t_data_nents == 1) {
2251 kunmap(sg_page(cmd->t_data_sg));
2252 return;
2253 }
2254
2255 vunmap(cmd->t_data_vmap);
2256 cmd->t_data_vmap = NULL;
2257 }
2258 EXPORT_SYMBOL(transport_kunmap_data_sg);
2259
2260 static int
2261 transport_generic_get_mem(struct se_cmd *cmd)
2262 {
2263 u32 length = cmd->data_length;
2264 unsigned int nents;
2265 struct page *page;
2266 gfp_t zero_flag;
2267 int i = 0;
2268
2269 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2270 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2271 if (!cmd->t_data_sg)
2272 return -ENOMEM;
2273
2274 cmd->t_data_nents = nents;
2275 sg_init_table(cmd->t_data_sg, nents);
2276
2277 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2278
2279 while (length) {
2280 u32 page_len = min_t(u32, length, PAGE_SIZE);
2281 page = alloc_page(GFP_KERNEL | zero_flag);
2282 if (!page)
2283 goto out;
2284
2285 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2286 length -= page_len;
2287 i++;
2288 }
2289 return 0;
2290
2291 out:
2292 while (i >= 0) {
2293 __free_page(sg_page(&cmd->t_data_sg[i]));
2294 i--;
2295 }
2296 kfree(cmd->t_data_sg);
2297 cmd->t_data_sg = NULL;
2298 return -ENOMEM;
2299 }
2300
2301 /*
2302 * Allocate any required resources to execute the command. For writes we
2303 * might not have the payload yet, so notify the fabric via a call to
2304 * ->write_pending instead. Otherwise place it on the execution queue.
2305 */
2306 int transport_generic_new_cmd(struct se_cmd *cmd)
2307 {
2308 int ret = 0;
2309
2310 /*
2311 * Determine is the TCM fabric module has already allocated physical
2312 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2313 * beforehand.
2314 */
2315 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2316 cmd->data_length) {
2317 ret = transport_generic_get_mem(cmd);
2318 if (ret < 0)
2319 goto out_fail;
2320 }
2321
2322 /* Workaround for handling zero-length control CDBs */
2323 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && !cmd->data_length) {
2324 spin_lock_irq(&cmd->t_state_lock);
2325 cmd->t_state = TRANSPORT_COMPLETE;
2326 cmd->transport_state |= CMD_T_ACTIVE;
2327 spin_unlock_irq(&cmd->t_state_lock);
2328
2329 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
2330 u8 ua_asc = 0, ua_ascq = 0;
2331
2332 core_scsi3_ua_clear_for_request_sense(cmd,
2333 &ua_asc, &ua_ascq);
2334 }
2335
2336 INIT_WORK(&cmd->work, target_complete_ok_work);
2337 queue_work(target_completion_wq, &cmd->work);
2338 return 0;
2339 }
2340
2341 atomic_inc(&cmd->t_fe_count);
2342
2343 /*
2344 * If this command is not a write we can execute it right here,
2345 * for write buffers we need to notify the fabric driver first
2346 * and let it call back once the write buffers are ready.
2347 */
2348 target_add_to_state_list(cmd);
2349 if (cmd->data_direction != DMA_TO_DEVICE) {
2350 target_execute_cmd(cmd);
2351 return 0;
2352 }
2353
2354 spin_lock_irq(&cmd->t_state_lock);
2355 cmd->t_state = TRANSPORT_WRITE_PENDING;
2356 spin_unlock_irq(&cmd->t_state_lock);
2357
2358 transport_cmd_check_stop(cmd, false);
2359
2360 ret = cmd->se_tfo->write_pending(cmd);
2361 if (ret == -EAGAIN || ret == -ENOMEM)
2362 goto queue_full;
2363
2364 if (ret < 0)
2365 return ret;
2366 return 1;
2367
2368 out_fail:
2369 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2370 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2371 return -EINVAL;
2372 queue_full:
2373 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2374 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2375 transport_handle_queue_full(cmd, cmd->se_dev);
2376 return 0;
2377 }
2378 EXPORT_SYMBOL(transport_generic_new_cmd);
2379
2380 static void transport_write_pending_qf(struct se_cmd *cmd)
2381 {
2382 int ret;
2383
2384 ret = cmd->se_tfo->write_pending(cmd);
2385 if (ret == -EAGAIN || ret == -ENOMEM) {
2386 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2387 cmd);
2388 transport_handle_queue_full(cmd, cmd->se_dev);
2389 }
2390 }
2391
2392 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2393 {
2394 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2395 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2396 transport_wait_for_tasks(cmd);
2397
2398 transport_release_cmd(cmd);
2399 } else {
2400 if (wait_for_tasks)
2401 transport_wait_for_tasks(cmd);
2402
2403 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2404
2405 if (cmd->se_lun)
2406 transport_lun_remove_cmd(cmd);
2407
2408 transport_put_cmd(cmd);
2409 }
2410 }
2411 EXPORT_SYMBOL(transport_generic_free_cmd);
2412
2413 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2414 * @se_sess: session to reference
2415 * @se_cmd: command descriptor to add
2416 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2417 */
2418 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2419 bool ack_kref)
2420 {
2421 unsigned long flags;
2422 int ret = 0;
2423
2424 kref_init(&se_cmd->cmd_kref);
2425 /*
2426 * Add a second kref if the fabric caller is expecting to handle
2427 * fabric acknowledgement that requires two target_put_sess_cmd()
2428 * invocations before se_cmd descriptor release.
2429 */
2430 if (ack_kref == true) {
2431 kref_get(&se_cmd->cmd_kref);
2432 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2433 }
2434
2435 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2436 if (se_sess->sess_tearing_down) {
2437 ret = -ESHUTDOWN;
2438 goto out;
2439 }
2440 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2441 se_cmd->check_release = 1;
2442
2443 out:
2444 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2445 return ret;
2446 }
2447
2448 static void target_release_cmd_kref(struct kref *kref)
2449 {
2450 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2451 struct se_session *se_sess = se_cmd->se_sess;
2452 unsigned long flags;
2453
2454 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2455 if (list_empty(&se_cmd->se_cmd_list)) {
2456 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2457 se_cmd->se_tfo->release_cmd(se_cmd);
2458 return;
2459 }
2460 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2461 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2462 complete(&se_cmd->cmd_wait_comp);
2463 return;
2464 }
2465 list_del(&se_cmd->se_cmd_list);
2466 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2467
2468 se_cmd->se_tfo->release_cmd(se_cmd);
2469 }
2470
2471 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2472 * @se_sess: session to reference
2473 * @se_cmd: command descriptor to drop
2474 */
2475 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2476 {
2477 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2478 }
2479 EXPORT_SYMBOL(target_put_sess_cmd);
2480
2481 /* target_sess_cmd_list_set_waiting - Flag all commands in
2482 * sess_cmd_list to complete cmd_wait_comp. Set
2483 * sess_tearing_down so no more commands are queued.
2484 * @se_sess: session to flag
2485 */
2486 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2487 {
2488 struct se_cmd *se_cmd;
2489 unsigned long flags;
2490
2491 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2492
2493 WARN_ON(se_sess->sess_tearing_down);
2494 se_sess->sess_tearing_down = 1;
2495
2496 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list)
2497 se_cmd->cmd_wait_set = 1;
2498
2499 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2500 }
2501 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2502
2503 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2504 * @se_sess: session to wait for active I/O
2505 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2506 */
2507 void target_wait_for_sess_cmds(
2508 struct se_session *se_sess,
2509 int wait_for_tasks)
2510 {
2511 struct se_cmd *se_cmd, *tmp_cmd;
2512 bool rc = false;
2513
2514 list_for_each_entry_safe(se_cmd, tmp_cmd,
2515 &se_sess->sess_cmd_list, se_cmd_list) {
2516 list_del(&se_cmd->se_cmd_list);
2517
2518 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2519 " %d\n", se_cmd, se_cmd->t_state,
2520 se_cmd->se_tfo->get_cmd_state(se_cmd));
2521
2522 if (wait_for_tasks) {
2523 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2524 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2525 se_cmd->se_tfo->get_cmd_state(se_cmd));
2526
2527 rc = transport_wait_for_tasks(se_cmd);
2528
2529 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2530 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2531 se_cmd->se_tfo->get_cmd_state(se_cmd));
2532 }
2533
2534 if (!rc) {
2535 wait_for_completion(&se_cmd->cmd_wait_comp);
2536 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2537 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2538 se_cmd->se_tfo->get_cmd_state(se_cmd));
2539 }
2540
2541 se_cmd->se_tfo->release_cmd(se_cmd);
2542 }
2543 }
2544 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2545
2546 /* transport_lun_wait_for_tasks():
2547 *
2548 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2549 * an struct se_lun to be successfully shutdown.
2550 */
2551 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2552 {
2553 unsigned long flags;
2554 int ret = 0;
2555
2556 /*
2557 * If the frontend has already requested this struct se_cmd to
2558 * be stopped, we can safely ignore this struct se_cmd.
2559 */
2560 spin_lock_irqsave(&cmd->t_state_lock, flags);
2561 if (cmd->transport_state & CMD_T_STOP) {
2562 cmd->transport_state &= ~CMD_T_LUN_STOP;
2563
2564 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2565 cmd->se_tfo->get_task_tag(cmd));
2566 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2567 transport_cmd_check_stop(cmd, false);
2568 return -EPERM;
2569 }
2570 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2571 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2572
2573 // XXX: audit task_flags checks.
2574 spin_lock_irqsave(&cmd->t_state_lock, flags);
2575 if ((cmd->transport_state & CMD_T_BUSY) &&
2576 (cmd->transport_state & CMD_T_SENT)) {
2577 if (!target_stop_cmd(cmd, &flags))
2578 ret++;
2579 }
2580 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2581
2582 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2583 " %d\n", cmd, ret);
2584 if (!ret) {
2585 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2586 cmd->se_tfo->get_task_tag(cmd));
2587 wait_for_completion(&cmd->transport_lun_stop_comp);
2588 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2589 cmd->se_tfo->get_task_tag(cmd));
2590 }
2591
2592 return 0;
2593 }
2594
2595 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2596 {
2597 struct se_cmd *cmd = NULL;
2598 unsigned long lun_flags, cmd_flags;
2599 /*
2600 * Do exception processing and return CHECK_CONDITION status to the
2601 * Initiator Port.
2602 */
2603 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2604 while (!list_empty(&lun->lun_cmd_list)) {
2605 cmd = list_first_entry(&lun->lun_cmd_list,
2606 struct se_cmd, se_lun_node);
2607 list_del_init(&cmd->se_lun_node);
2608
2609 spin_lock(&cmd->t_state_lock);
2610 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2611 "_lun_stop for ITT: 0x%08x\n",
2612 cmd->se_lun->unpacked_lun,
2613 cmd->se_tfo->get_task_tag(cmd));
2614 cmd->transport_state |= CMD_T_LUN_STOP;
2615 spin_unlock(&cmd->t_state_lock);
2616
2617 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2618
2619 if (!cmd->se_lun) {
2620 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2621 cmd->se_tfo->get_task_tag(cmd),
2622 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2623 BUG();
2624 }
2625 /*
2626 * If the Storage engine still owns the iscsi_cmd_t, determine
2627 * and/or stop its context.
2628 */
2629 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2630 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2631 cmd->se_tfo->get_task_tag(cmd));
2632
2633 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2634 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2635 continue;
2636 }
2637
2638 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2639 "_wait_for_tasks(): SUCCESS\n",
2640 cmd->se_lun->unpacked_lun,
2641 cmd->se_tfo->get_task_tag(cmd));
2642
2643 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2644 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2645 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2646 goto check_cond;
2647 }
2648 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2649 target_remove_from_state_list(cmd);
2650 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2651
2652 /*
2653 * The Storage engine stopped this struct se_cmd before it was
2654 * send to the fabric frontend for delivery back to the
2655 * Initiator Node. Return this SCSI CDB back with an
2656 * CHECK_CONDITION status.
2657 */
2658 check_cond:
2659 transport_send_check_condition_and_sense(cmd,
2660 TCM_NON_EXISTENT_LUN, 0);
2661 /*
2662 * If the fabric frontend is waiting for this iscsi_cmd_t to
2663 * be released, notify the waiting thread now that LU has
2664 * finished accessing it.
2665 */
2666 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2667 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2668 pr_debug("SE_LUN[%d] - Detected FE stop for"
2669 " struct se_cmd: %p ITT: 0x%08x\n",
2670 lun->unpacked_lun,
2671 cmd, cmd->se_tfo->get_task_tag(cmd));
2672
2673 spin_unlock_irqrestore(&cmd->t_state_lock,
2674 cmd_flags);
2675 transport_cmd_check_stop(cmd, false);
2676 complete(&cmd->transport_lun_fe_stop_comp);
2677 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2678 continue;
2679 }
2680 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2681 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2682
2683 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2684 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2685 }
2686 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2687 }
2688
2689 static int transport_clear_lun_thread(void *p)
2690 {
2691 struct se_lun *lun = p;
2692
2693 __transport_clear_lun_from_sessions(lun);
2694 complete(&lun->lun_shutdown_comp);
2695
2696 return 0;
2697 }
2698
2699 int transport_clear_lun_from_sessions(struct se_lun *lun)
2700 {
2701 struct task_struct *kt;
2702
2703 kt = kthread_run(transport_clear_lun_thread, lun,
2704 "tcm_cl_%u", lun->unpacked_lun);
2705 if (IS_ERR(kt)) {
2706 pr_err("Unable to start clear_lun thread\n");
2707 return PTR_ERR(kt);
2708 }
2709 wait_for_completion(&lun->lun_shutdown_comp);
2710
2711 return 0;
2712 }
2713
2714 /**
2715 * transport_wait_for_tasks - wait for completion to occur
2716 * @cmd: command to wait
2717 *
2718 * Called from frontend fabric context to wait for storage engine
2719 * to pause and/or release frontend generated struct se_cmd.
2720 */
2721 bool transport_wait_for_tasks(struct se_cmd *cmd)
2722 {
2723 unsigned long flags;
2724
2725 spin_lock_irqsave(&cmd->t_state_lock, flags);
2726 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2727 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2728 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2729 return false;
2730 }
2731
2732 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2733 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2734 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2735 return false;
2736 }
2737 /*
2738 * If we are already stopped due to an external event (ie: LUN shutdown)
2739 * sleep until the connection can have the passed struct se_cmd back.
2740 * The cmd->transport_lun_stopped_sem will be upped by
2741 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2742 * has completed its operation on the struct se_cmd.
2743 */
2744 if (cmd->transport_state & CMD_T_LUN_STOP) {
2745 pr_debug("wait_for_tasks: Stopping"
2746 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2747 "_stop_comp); for ITT: 0x%08x\n",
2748 cmd->se_tfo->get_task_tag(cmd));
2749 /*
2750 * There is a special case for WRITES where a FE exception +
2751 * LUN shutdown means ConfigFS context is still sleeping on
2752 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2753 * We go ahead and up transport_lun_stop_comp just to be sure
2754 * here.
2755 */
2756 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2757 complete(&cmd->transport_lun_stop_comp);
2758 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2759 spin_lock_irqsave(&cmd->t_state_lock, flags);
2760
2761 target_remove_from_state_list(cmd);
2762 /*
2763 * At this point, the frontend who was the originator of this
2764 * struct se_cmd, now owns the structure and can be released through
2765 * normal means below.
2766 */
2767 pr_debug("wait_for_tasks: Stopped"
2768 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2769 "stop_comp); for ITT: 0x%08x\n",
2770 cmd->se_tfo->get_task_tag(cmd));
2771
2772 cmd->transport_state &= ~CMD_T_LUN_STOP;
2773 }
2774
2775 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2776 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2777 return false;
2778 }
2779
2780 cmd->transport_state |= CMD_T_STOP;
2781
2782 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2783 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2784 cmd, cmd->se_tfo->get_task_tag(cmd),
2785 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2786
2787 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2788
2789 wait_for_completion(&cmd->t_transport_stop_comp);
2790
2791 spin_lock_irqsave(&cmd->t_state_lock, flags);
2792 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2793
2794 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
2795 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2796 cmd->se_tfo->get_task_tag(cmd));
2797
2798 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2799
2800 return true;
2801 }
2802 EXPORT_SYMBOL(transport_wait_for_tasks);
2803
2804 static int transport_get_sense_codes(
2805 struct se_cmd *cmd,
2806 u8 *asc,
2807 u8 *ascq)
2808 {
2809 *asc = cmd->scsi_asc;
2810 *ascq = cmd->scsi_ascq;
2811
2812 return 0;
2813 }
2814
2815 static int transport_set_sense_codes(
2816 struct se_cmd *cmd,
2817 u8 asc,
2818 u8 ascq)
2819 {
2820 cmd->scsi_asc = asc;
2821 cmd->scsi_ascq = ascq;
2822
2823 return 0;
2824 }
2825
2826 int transport_send_check_condition_and_sense(
2827 struct se_cmd *cmd,
2828 u8 reason,
2829 int from_transport)
2830 {
2831 unsigned char *buffer = cmd->sense_buffer;
2832 unsigned long flags;
2833 int offset;
2834 u8 asc = 0, ascq = 0;
2835
2836 spin_lock_irqsave(&cmd->t_state_lock, flags);
2837 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2838 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2839 return 0;
2840 }
2841 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2842 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2843
2844 if (!reason && from_transport)
2845 goto after_reason;
2846
2847 if (!from_transport)
2848 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2849 /*
2850 * Data Segment and SenseLength of the fabric response PDU.
2851 *
2852 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
2853 * from include/scsi/scsi_cmnd.h
2854 */
2855 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2856 TRANSPORT_SENSE_BUFFER);
2857 /*
2858 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2859 * SENSE KEY values from include/scsi/scsi.h
2860 */
2861 switch (reason) {
2862 case TCM_NON_EXISTENT_LUN:
2863 /* CURRENT ERROR */
2864 buffer[offset] = 0x70;
2865 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2866 /* ILLEGAL REQUEST */
2867 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2868 /* LOGICAL UNIT NOT SUPPORTED */
2869 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
2870 break;
2871 case TCM_UNSUPPORTED_SCSI_OPCODE:
2872 case TCM_SECTOR_COUNT_TOO_MANY:
2873 /* CURRENT ERROR */
2874 buffer[offset] = 0x70;
2875 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2876 /* ILLEGAL REQUEST */
2877 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2878 /* INVALID COMMAND OPERATION CODE */
2879 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
2880 break;
2881 case TCM_UNKNOWN_MODE_PAGE:
2882 /* CURRENT ERROR */
2883 buffer[offset] = 0x70;
2884 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2885 /* ILLEGAL REQUEST */
2886 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2887 /* INVALID FIELD IN CDB */
2888 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2889 break;
2890 case TCM_CHECK_CONDITION_ABORT_CMD:
2891 /* CURRENT ERROR */
2892 buffer[offset] = 0x70;
2893 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2894 /* ABORTED COMMAND */
2895 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2896 /* BUS DEVICE RESET FUNCTION OCCURRED */
2897 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
2898 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
2899 break;
2900 case TCM_INCORRECT_AMOUNT_OF_DATA:
2901 /* CURRENT ERROR */
2902 buffer[offset] = 0x70;
2903 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2904 /* ABORTED COMMAND */
2905 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2906 /* WRITE ERROR */
2907 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2908 /* NOT ENOUGH UNSOLICITED DATA */
2909 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
2910 break;
2911 case TCM_INVALID_CDB_FIELD:
2912 /* CURRENT ERROR */
2913 buffer[offset] = 0x70;
2914 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2915 /* ILLEGAL REQUEST */
2916 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2917 /* INVALID FIELD IN CDB */
2918 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2919 break;
2920 case TCM_INVALID_PARAMETER_LIST:
2921 /* CURRENT ERROR */
2922 buffer[offset] = 0x70;
2923 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2924 /* ILLEGAL REQUEST */
2925 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2926 /* INVALID FIELD IN PARAMETER LIST */
2927 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
2928 break;
2929 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2930 /* CURRENT ERROR */
2931 buffer[offset] = 0x70;
2932 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2933 /* ABORTED COMMAND */
2934 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2935 /* WRITE ERROR */
2936 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2937 /* UNEXPECTED_UNSOLICITED_DATA */
2938 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
2939 break;
2940 case TCM_SERVICE_CRC_ERROR:
2941 /* CURRENT ERROR */
2942 buffer[offset] = 0x70;
2943 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2944 /* ABORTED COMMAND */
2945 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2946 /* PROTOCOL SERVICE CRC ERROR */
2947 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
2948 /* N/A */
2949 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
2950 break;
2951 case TCM_SNACK_REJECTED:
2952 /* CURRENT ERROR */
2953 buffer[offset] = 0x70;
2954 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2955 /* ABORTED COMMAND */
2956 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2957 /* READ ERROR */
2958 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
2959 /* FAILED RETRANSMISSION REQUEST */
2960 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
2961 break;
2962 case TCM_WRITE_PROTECTED:
2963 /* CURRENT ERROR */
2964 buffer[offset] = 0x70;
2965 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2966 /* DATA PROTECT */
2967 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2968 /* WRITE PROTECTED */
2969 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
2970 break;
2971 case TCM_ADDRESS_OUT_OF_RANGE:
2972 /* CURRENT ERROR */
2973 buffer[offset] = 0x70;
2974 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2975 /* ILLEGAL REQUEST */
2976 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2977 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2978 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
2979 break;
2980 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2981 /* CURRENT ERROR */
2982 buffer[offset] = 0x70;
2983 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2984 /* UNIT ATTENTION */
2985 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2986 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2987 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2988 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
2989 break;
2990 case TCM_CHECK_CONDITION_NOT_READY:
2991 /* CURRENT ERROR */
2992 buffer[offset] = 0x70;
2993 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2994 /* Not Ready */
2995 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
2996 transport_get_sense_codes(cmd, &asc, &ascq);
2997 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2998 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
2999 break;
3000 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
3001 default:
3002 /* CURRENT ERROR */
3003 buffer[offset] = 0x70;
3004 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3005 /* ILLEGAL REQUEST */
3006 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3007 /* LOGICAL UNIT COMMUNICATION FAILURE */
3008 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
3009 break;
3010 }
3011 /*
3012 * This code uses linux/include/scsi/scsi.h SAM status codes!
3013 */
3014 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3015 /*
3016 * Automatically padded, this value is encoded in the fabric's
3017 * data_length response PDU containing the SCSI defined sense data.
3018 */
3019 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
3020
3021 after_reason:
3022 return cmd->se_tfo->queue_status(cmd);
3023 }
3024 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3025
3026 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3027 {
3028 int ret = 0;
3029
3030 if (cmd->transport_state & CMD_T_ABORTED) {
3031 if (!send_status ||
3032 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
3033 return 1;
3034
3035 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
3036 " status for CDB: 0x%02x ITT: 0x%08x\n",
3037 cmd->t_task_cdb[0],
3038 cmd->se_tfo->get_task_tag(cmd));
3039
3040 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
3041 cmd->se_tfo->queue_status(cmd);
3042 ret = 1;
3043 }
3044 return ret;
3045 }
3046 EXPORT_SYMBOL(transport_check_aborted_status);
3047
3048 void transport_send_task_abort(struct se_cmd *cmd)
3049 {
3050 unsigned long flags;
3051
3052 spin_lock_irqsave(&cmd->t_state_lock, flags);
3053 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3054 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3055 return;
3056 }
3057 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3058
3059 /*
3060 * If there are still expected incoming fabric WRITEs, we wait
3061 * until until they have completed before sending a TASK_ABORTED
3062 * response. This response with TASK_ABORTED status will be
3063 * queued back to fabric module by transport_check_aborted_status().
3064 */
3065 if (cmd->data_direction == DMA_TO_DEVICE) {
3066 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3067 cmd->transport_state |= CMD_T_ABORTED;
3068 smp_mb__after_atomic_inc();
3069 }
3070 }
3071 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3072
3073 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3074 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3075 cmd->se_tfo->get_task_tag(cmd));
3076
3077 cmd->se_tfo->queue_status(cmd);
3078 }
3079
3080 static void target_tmr_work(struct work_struct *work)
3081 {
3082 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3083 struct se_device *dev = cmd->se_dev;
3084 struct se_tmr_req *tmr = cmd->se_tmr_req;
3085 int ret;
3086
3087 switch (tmr->function) {
3088 case TMR_ABORT_TASK:
3089 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3090 break;
3091 case TMR_ABORT_TASK_SET:
3092 case TMR_CLEAR_ACA:
3093 case TMR_CLEAR_TASK_SET:
3094 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3095 break;
3096 case TMR_LUN_RESET:
3097 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3098 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3099 TMR_FUNCTION_REJECTED;
3100 break;
3101 case TMR_TARGET_WARM_RESET:
3102 tmr->response = TMR_FUNCTION_REJECTED;
3103 break;
3104 case TMR_TARGET_COLD_RESET:
3105 tmr->response = TMR_FUNCTION_REJECTED;
3106 break;
3107 default:
3108 pr_err("Uknown TMR function: 0x%02x.\n",
3109 tmr->function);
3110 tmr->response = TMR_FUNCTION_REJECTED;
3111 break;
3112 }
3113
3114 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3115 cmd->se_tfo->queue_tm_rsp(cmd);
3116
3117 transport_cmd_check_stop_to_fabric(cmd);
3118 }
3119
3120 int transport_generic_handle_tmr(
3121 struct se_cmd *cmd)
3122 {
3123 INIT_WORK(&cmd->work, target_tmr_work);
3124 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3125 return 0;
3126 }
3127 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.096647 seconds and 4 git commands to generate.