target: merge transport_new_cmd_obj into transport_generic_new_cmd
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77 struct se_device *dev);
78 static void transport_direct_request_timeout(struct se_cmd *cmd);
79 static void transport_free_dev_tasks(struct se_cmd *cmd);
80 static int transport_generic_get_mem(struct se_cmd *cmd);
81 static void transport_put_cmd(struct se_cmd *cmd);
82 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
83 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
84 static void transport_generic_request_failure(struct se_cmd *, int, int);
85 static void target_complete_ok_work(struct work_struct *work);
86
87 int init_se_kmem_caches(void)
88 {
89 se_cmd_cache = kmem_cache_create("se_cmd_cache",
90 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
91 if (!se_cmd_cache) {
92 pr_err("kmem_cache_create for struct se_cmd failed\n");
93 goto out;
94 }
95 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
96 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
97 0, NULL);
98 if (!se_tmr_req_cache) {
99 pr_err("kmem_cache_create() for struct se_tmr_req"
100 " failed\n");
101 goto out_free_cmd_cache;
102 }
103 se_sess_cache = kmem_cache_create("se_sess_cache",
104 sizeof(struct se_session), __alignof__(struct se_session),
105 0, NULL);
106 if (!se_sess_cache) {
107 pr_err("kmem_cache_create() for struct se_session"
108 " failed\n");
109 goto out_free_tmr_req_cache;
110 }
111 se_ua_cache = kmem_cache_create("se_ua_cache",
112 sizeof(struct se_ua), __alignof__(struct se_ua),
113 0, NULL);
114 if (!se_ua_cache) {
115 pr_err("kmem_cache_create() for struct se_ua failed\n");
116 goto out_free_sess_cache;
117 }
118 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
119 sizeof(struct t10_pr_registration),
120 __alignof__(struct t10_pr_registration), 0, NULL);
121 if (!t10_pr_reg_cache) {
122 pr_err("kmem_cache_create() for struct t10_pr_registration"
123 " failed\n");
124 goto out_free_ua_cache;
125 }
126 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
127 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
128 0, NULL);
129 if (!t10_alua_lu_gp_cache) {
130 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
131 " failed\n");
132 goto out_free_pr_reg_cache;
133 }
134 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
135 sizeof(struct t10_alua_lu_gp_member),
136 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
137 if (!t10_alua_lu_gp_mem_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
139 "cache failed\n");
140 goto out_free_lu_gp_cache;
141 }
142 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
143 sizeof(struct t10_alua_tg_pt_gp),
144 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
145 if (!t10_alua_tg_pt_gp_cache) {
146 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 "cache failed\n");
148 goto out_free_lu_gp_mem_cache;
149 }
150 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
151 "t10_alua_tg_pt_gp_mem_cache",
152 sizeof(struct t10_alua_tg_pt_gp_member),
153 __alignof__(struct t10_alua_tg_pt_gp_member),
154 0, NULL);
155 if (!t10_alua_tg_pt_gp_mem_cache) {
156 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
157 "mem_t failed\n");
158 goto out_free_tg_pt_gp_cache;
159 }
160
161 target_completion_wq = alloc_workqueue("target_completion",
162 WQ_MEM_RECLAIM, 0);
163 if (!target_completion_wq)
164 goto out_free_tg_pt_gp_mem_cache;
165
166 return 0;
167
168 out_free_tg_pt_gp_mem_cache:
169 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
170 out_free_tg_pt_gp_cache:
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 out_free_lu_gp_mem_cache:
173 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174 out_free_lu_gp_cache:
175 kmem_cache_destroy(t10_alua_lu_gp_cache);
176 out_free_pr_reg_cache:
177 kmem_cache_destroy(t10_pr_reg_cache);
178 out_free_ua_cache:
179 kmem_cache_destroy(se_ua_cache);
180 out_free_sess_cache:
181 kmem_cache_destroy(se_sess_cache);
182 out_free_tmr_req_cache:
183 kmem_cache_destroy(se_tmr_req_cache);
184 out_free_cmd_cache:
185 kmem_cache_destroy(se_cmd_cache);
186 out:
187 return -ENOMEM;
188 }
189
190 void release_se_kmem_caches(void)
191 {
192 destroy_workqueue(target_completion_wq);
193 kmem_cache_destroy(se_cmd_cache);
194 kmem_cache_destroy(se_tmr_req_cache);
195 kmem_cache_destroy(se_sess_cache);
196 kmem_cache_destroy(se_ua_cache);
197 kmem_cache_destroy(t10_pr_reg_cache);
198 kmem_cache_destroy(t10_alua_lu_gp_cache);
199 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
200 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
201 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
202 }
203
204 /* This code ensures unique mib indexes are handed out. */
205 static DEFINE_SPINLOCK(scsi_mib_index_lock);
206 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
207
208 /*
209 * Allocate a new row index for the entry type specified
210 */
211 u32 scsi_get_new_index(scsi_index_t type)
212 {
213 u32 new_index;
214
215 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
216
217 spin_lock(&scsi_mib_index_lock);
218 new_index = ++scsi_mib_index[type];
219 spin_unlock(&scsi_mib_index_lock);
220
221 return new_index;
222 }
223
224 void transport_init_queue_obj(struct se_queue_obj *qobj)
225 {
226 atomic_set(&qobj->queue_cnt, 0);
227 INIT_LIST_HEAD(&qobj->qobj_list);
228 init_waitqueue_head(&qobj->thread_wq);
229 spin_lock_init(&qobj->cmd_queue_lock);
230 }
231 EXPORT_SYMBOL(transport_init_queue_obj);
232
233 void transport_subsystem_check_init(void)
234 {
235 int ret;
236
237 if (sub_api_initialized)
238 return;
239
240 ret = request_module("target_core_iblock");
241 if (ret != 0)
242 pr_err("Unable to load target_core_iblock\n");
243
244 ret = request_module("target_core_file");
245 if (ret != 0)
246 pr_err("Unable to load target_core_file\n");
247
248 ret = request_module("target_core_pscsi");
249 if (ret != 0)
250 pr_err("Unable to load target_core_pscsi\n");
251
252 ret = request_module("target_core_stgt");
253 if (ret != 0)
254 pr_err("Unable to load target_core_stgt\n");
255
256 sub_api_initialized = 1;
257 return;
258 }
259
260 struct se_session *transport_init_session(void)
261 {
262 struct se_session *se_sess;
263
264 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
265 if (!se_sess) {
266 pr_err("Unable to allocate struct se_session from"
267 " se_sess_cache\n");
268 return ERR_PTR(-ENOMEM);
269 }
270 INIT_LIST_HEAD(&se_sess->sess_list);
271 INIT_LIST_HEAD(&se_sess->sess_acl_list);
272
273 return se_sess;
274 }
275 EXPORT_SYMBOL(transport_init_session);
276
277 /*
278 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
279 */
280 void __transport_register_session(
281 struct se_portal_group *se_tpg,
282 struct se_node_acl *se_nacl,
283 struct se_session *se_sess,
284 void *fabric_sess_ptr)
285 {
286 unsigned char buf[PR_REG_ISID_LEN];
287
288 se_sess->se_tpg = se_tpg;
289 se_sess->fabric_sess_ptr = fabric_sess_ptr;
290 /*
291 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
292 *
293 * Only set for struct se_session's that will actually be moving I/O.
294 * eg: *NOT* discovery sessions.
295 */
296 if (se_nacl) {
297 /*
298 * If the fabric module supports an ISID based TransportID,
299 * save this value in binary from the fabric I_T Nexus now.
300 */
301 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
302 memset(&buf[0], 0, PR_REG_ISID_LEN);
303 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
304 &buf[0], PR_REG_ISID_LEN);
305 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
306 }
307 spin_lock_irq(&se_nacl->nacl_sess_lock);
308 /*
309 * The se_nacl->nacl_sess pointer will be set to the
310 * last active I_T Nexus for each struct se_node_acl.
311 */
312 se_nacl->nacl_sess = se_sess;
313
314 list_add_tail(&se_sess->sess_acl_list,
315 &se_nacl->acl_sess_list);
316 spin_unlock_irq(&se_nacl->nacl_sess_lock);
317 }
318 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
319
320 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
321 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
322 }
323 EXPORT_SYMBOL(__transport_register_session);
324
325 void transport_register_session(
326 struct se_portal_group *se_tpg,
327 struct se_node_acl *se_nacl,
328 struct se_session *se_sess,
329 void *fabric_sess_ptr)
330 {
331 spin_lock_bh(&se_tpg->session_lock);
332 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
333 spin_unlock_bh(&se_tpg->session_lock);
334 }
335 EXPORT_SYMBOL(transport_register_session);
336
337 void transport_deregister_session_configfs(struct se_session *se_sess)
338 {
339 struct se_node_acl *se_nacl;
340 unsigned long flags;
341 /*
342 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
343 */
344 se_nacl = se_sess->se_node_acl;
345 if (se_nacl) {
346 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
347 list_del(&se_sess->sess_acl_list);
348 /*
349 * If the session list is empty, then clear the pointer.
350 * Otherwise, set the struct se_session pointer from the tail
351 * element of the per struct se_node_acl active session list.
352 */
353 if (list_empty(&se_nacl->acl_sess_list))
354 se_nacl->nacl_sess = NULL;
355 else {
356 se_nacl->nacl_sess = container_of(
357 se_nacl->acl_sess_list.prev,
358 struct se_session, sess_acl_list);
359 }
360 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
361 }
362 }
363 EXPORT_SYMBOL(transport_deregister_session_configfs);
364
365 void transport_free_session(struct se_session *se_sess)
366 {
367 kmem_cache_free(se_sess_cache, se_sess);
368 }
369 EXPORT_SYMBOL(transport_free_session);
370
371 void transport_deregister_session(struct se_session *se_sess)
372 {
373 struct se_portal_group *se_tpg = se_sess->se_tpg;
374 struct se_node_acl *se_nacl;
375 unsigned long flags;
376
377 if (!se_tpg) {
378 transport_free_session(se_sess);
379 return;
380 }
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 list_del(&se_sess->sess_list);
384 se_sess->se_tpg = NULL;
385 se_sess->fabric_sess_ptr = NULL;
386 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
387
388 /*
389 * Determine if we need to do extra work for this initiator node's
390 * struct se_node_acl if it had been previously dynamically generated.
391 */
392 se_nacl = se_sess->se_node_acl;
393 if (se_nacl) {
394 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
395 if (se_nacl->dynamic_node_acl) {
396 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
397 se_tpg)) {
398 list_del(&se_nacl->acl_list);
399 se_tpg->num_node_acls--;
400 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
401
402 core_tpg_wait_for_nacl_pr_ref(se_nacl);
403 core_free_device_list_for_node(se_nacl, se_tpg);
404 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
405 se_nacl);
406 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
407 }
408 }
409 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
410 }
411
412 transport_free_session(se_sess);
413
414 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
415 se_tpg->se_tpg_tfo->get_fabric_name());
416 }
417 EXPORT_SYMBOL(transport_deregister_session);
418
419 /*
420 * Called with cmd->t_state_lock held.
421 */
422 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
423 {
424 struct se_device *dev = cmd->se_dev;
425 struct se_task *task;
426 unsigned long flags;
427
428 if (!dev)
429 return;
430
431 list_for_each_entry(task, &cmd->t_task_list, t_list) {
432 if (task->task_flags & TF_ACTIVE)
433 continue;
434
435 if (!atomic_read(&task->task_state_active))
436 continue;
437
438 spin_lock_irqsave(&dev->execute_task_lock, flags);
439 list_del(&task->t_state_list);
440 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
441 cmd->se_tfo->get_task_tag(cmd), dev, task);
442 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
443
444 atomic_set(&task->task_state_active, 0);
445 atomic_dec(&cmd->t_task_cdbs_ex_left);
446 }
447 }
448
449 /* transport_cmd_check_stop():
450 *
451 * 'transport_off = 1' determines if t_transport_active should be cleared.
452 * 'transport_off = 2' determines if task_dev_state should be removed.
453 *
454 * A non-zero u8 t_state sets cmd->t_state.
455 * Returns 1 when command is stopped, else 0.
456 */
457 static int transport_cmd_check_stop(
458 struct se_cmd *cmd,
459 int transport_off,
460 u8 t_state)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&cmd->t_state_lock, flags);
465 /*
466 * Determine if IOCTL context caller in requesting the stopping of this
467 * command for LUN shutdown purposes.
468 */
469 if (atomic_read(&cmd->transport_lun_stop)) {
470 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
471 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
472 cmd->se_tfo->get_task_tag(cmd));
473
474 atomic_set(&cmd->t_transport_active, 0);
475 if (transport_off == 2)
476 transport_all_task_dev_remove_state(cmd);
477 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
478
479 complete(&cmd->transport_lun_stop_comp);
480 return 1;
481 }
482 /*
483 * Determine if frontend context caller is requesting the stopping of
484 * this command for frontend exceptions.
485 */
486 if (atomic_read(&cmd->t_transport_stop)) {
487 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
488 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
489 cmd->se_tfo->get_task_tag(cmd));
490
491 if (transport_off == 2)
492 transport_all_task_dev_remove_state(cmd);
493
494 /*
495 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
496 * to FE.
497 */
498 if (transport_off == 2)
499 cmd->se_lun = NULL;
500 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
501
502 complete(&cmd->t_transport_stop_comp);
503 return 1;
504 }
505 if (transport_off) {
506 atomic_set(&cmd->t_transport_active, 0);
507 if (transport_off == 2) {
508 transport_all_task_dev_remove_state(cmd);
509 /*
510 * Clear struct se_cmd->se_lun before the transport_off == 2
511 * handoff to fabric module.
512 */
513 cmd->se_lun = NULL;
514 /*
515 * Some fabric modules like tcm_loop can release
516 * their internally allocated I/O reference now and
517 * struct se_cmd now.
518 */
519 if (cmd->se_tfo->check_stop_free != NULL) {
520 spin_unlock_irqrestore(
521 &cmd->t_state_lock, flags);
522
523 cmd->se_tfo->check_stop_free(cmd);
524 return 1;
525 }
526 }
527 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
528
529 return 0;
530 } else if (t_state)
531 cmd->t_state = t_state;
532 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
533
534 return 0;
535 }
536
537 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
538 {
539 return transport_cmd_check_stop(cmd, 2, 0);
540 }
541
542 static void transport_lun_remove_cmd(struct se_cmd *cmd)
543 {
544 struct se_lun *lun = cmd->se_lun;
545 unsigned long flags;
546
547 if (!lun)
548 return;
549
550 spin_lock_irqsave(&cmd->t_state_lock, flags);
551 if (!atomic_read(&cmd->transport_dev_active)) {
552 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
553 goto check_lun;
554 }
555 atomic_set(&cmd->transport_dev_active, 0);
556 transport_all_task_dev_remove_state(cmd);
557 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
558
559
560 check_lun:
561 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
562 if (atomic_read(&cmd->transport_lun_active)) {
563 list_del(&cmd->se_lun_node);
564 atomic_set(&cmd->transport_lun_active, 0);
565 #if 0
566 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
567 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
568 #endif
569 }
570 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
571 }
572
573 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
574 {
575 if (!cmd->se_tmr_req)
576 transport_lun_remove_cmd(cmd);
577
578 if (transport_cmd_check_stop_to_fabric(cmd))
579 return;
580 if (remove) {
581 transport_remove_cmd_from_queue(cmd);
582 transport_put_cmd(cmd);
583 }
584 }
585
586 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
587 bool at_head)
588 {
589 struct se_device *dev = cmd->se_dev;
590 struct se_queue_obj *qobj = &dev->dev_queue_obj;
591 unsigned long flags;
592
593 if (t_state) {
594 spin_lock_irqsave(&cmd->t_state_lock, flags);
595 cmd->t_state = t_state;
596 atomic_set(&cmd->t_transport_active, 1);
597 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
598 }
599
600 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
601
602 /* If the cmd is already on the list, remove it before we add it */
603 if (!list_empty(&cmd->se_queue_node))
604 list_del(&cmd->se_queue_node);
605 else
606 atomic_inc(&qobj->queue_cnt);
607
608 if (at_head)
609 list_add(&cmd->se_queue_node, &qobj->qobj_list);
610 else
611 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
612 atomic_set(&cmd->t_transport_queue_active, 1);
613 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
614
615 wake_up_interruptible(&qobj->thread_wq);
616 }
617
618 static struct se_cmd *
619 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
620 {
621 struct se_cmd *cmd;
622 unsigned long flags;
623
624 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
625 if (list_empty(&qobj->qobj_list)) {
626 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
627 return NULL;
628 }
629 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
630
631 atomic_set(&cmd->t_transport_queue_active, 0);
632
633 list_del_init(&cmd->se_queue_node);
634 atomic_dec(&qobj->queue_cnt);
635 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
636
637 return cmd;
638 }
639
640 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
641 {
642 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
643 unsigned long flags;
644
645 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
646 if (!atomic_read(&cmd->t_transport_queue_active)) {
647 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648 return;
649 }
650 atomic_set(&cmd->t_transport_queue_active, 0);
651 atomic_dec(&qobj->queue_cnt);
652 list_del_init(&cmd->se_queue_node);
653 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654
655 if (atomic_read(&cmd->t_transport_queue_active)) {
656 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
657 cmd->se_tfo->get_task_tag(cmd),
658 atomic_read(&cmd->t_transport_queue_active));
659 }
660 }
661
662 /*
663 * Completion function used by TCM subsystem plugins (such as FILEIO)
664 * for queueing up response from struct se_subsystem_api->do_task()
665 */
666 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
667 {
668 struct se_task *task = list_entry(cmd->t_task_list.next,
669 struct se_task, t_list);
670
671 if (good) {
672 cmd->scsi_status = SAM_STAT_GOOD;
673 task->task_scsi_status = GOOD;
674 } else {
675 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
676 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
677 task->task_se_cmd->transport_error_status =
678 PYX_TRANSPORT_ILLEGAL_REQUEST;
679 }
680
681 transport_complete_task(task, good);
682 }
683 EXPORT_SYMBOL(transport_complete_sync_cache);
684
685 static void target_complete_timeout_work(struct work_struct *work)
686 {
687 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
688 unsigned long flags;
689
690 /*
691 * Reset cmd->t_se_count to allow transport_put_cmd()
692 * to allow last call to free memory resources.
693 */
694 spin_lock_irqsave(&cmd->t_state_lock, flags);
695 if (atomic_read(&cmd->t_transport_timeout) > 1) {
696 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
697
698 atomic_sub(tmp, &cmd->t_se_count);
699 }
700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701
702 transport_put_cmd(cmd);
703 }
704
705 static void target_complete_failure_work(struct work_struct *work)
706 {
707 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
708
709 transport_generic_request_failure(cmd, 1, 1);
710 }
711
712 /* transport_complete_task():
713 *
714 * Called from interrupt and non interrupt context depending
715 * on the transport plugin.
716 */
717 void transport_complete_task(struct se_task *task, int success)
718 {
719 struct se_cmd *cmd = task->task_se_cmd;
720 struct se_device *dev = cmd->se_dev;
721 unsigned long flags;
722 #if 0
723 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
724 cmd->t_task_cdb[0], dev);
725 #endif
726 if (dev)
727 atomic_inc(&dev->depth_left);
728
729 del_timer(&task->task_timer);
730
731 spin_lock_irqsave(&cmd->t_state_lock, flags);
732 task->task_flags &= ~TF_ACTIVE;
733
734 /*
735 * See if any sense data exists, if so set the TASK_SENSE flag.
736 * Also check for any other post completion work that needs to be
737 * done by the plugins.
738 */
739 if (dev && dev->transport->transport_complete) {
740 if (dev->transport->transport_complete(task) != 0) {
741 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
742 task->task_sense = 1;
743 success = 1;
744 }
745 }
746
747 /*
748 * See if we are waiting for outstanding struct se_task
749 * to complete for an exception condition
750 */
751 if (task->task_flags & TF_REQUEST_STOP) {
752 /*
753 * Decrement cmd->t_se_count if this task had
754 * previously thrown its timeout exception handler.
755 */
756 if (task->task_flags & TF_TIMEOUT) {
757 atomic_dec(&cmd->t_se_count);
758 task->task_flags &= ~TF_TIMEOUT;
759 }
760 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
761
762 complete(&task->task_stop_comp);
763 return;
764 }
765 /*
766 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
767 * left counter to determine when the struct se_cmd is ready to be queued to
768 * the processing thread.
769 */
770 if (task->task_flags & TF_TIMEOUT) {
771 if (!atomic_dec_and_test(&cmd->t_task_cdbs_timeout_left)) {
772 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
773 return;
774 }
775 INIT_WORK(&cmd->work, target_complete_timeout_work);
776 goto out_queue;
777 }
778 atomic_dec(&cmd->t_task_cdbs_timeout_left);
779
780 /*
781 * Decrement the outstanding t_task_cdbs_left count. The last
782 * struct se_task from struct se_cmd will complete itself into the
783 * device queue depending upon int success.
784 */
785 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
786 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
787 return;
788 }
789
790 if (!success || cmd->t_tasks_failed) {
791 if (!task->task_error_status) {
792 task->task_error_status =
793 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
794 cmd->transport_error_status =
795 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
796 }
797 INIT_WORK(&cmd->work, target_complete_failure_work);
798 } else {
799 atomic_set(&cmd->t_transport_complete, 1);
800 INIT_WORK(&cmd->work, target_complete_ok_work);
801 }
802
803 out_queue:
804 cmd->t_state = TRANSPORT_COMPLETE;
805 atomic_set(&cmd->t_transport_active, 1);
806 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
807
808 queue_work(target_completion_wq, &cmd->work);
809 }
810 EXPORT_SYMBOL(transport_complete_task);
811
812 /*
813 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
814 * struct se_task list are ready to be added to the active execution list
815 * struct se_device
816
817 * Called with se_dev_t->execute_task_lock called.
818 */
819 static inline int transport_add_task_check_sam_attr(
820 struct se_task *task,
821 struct se_task *task_prev,
822 struct se_device *dev)
823 {
824 /*
825 * No SAM Task attribute emulation enabled, add to tail of
826 * execution queue
827 */
828 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
829 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
830 return 0;
831 }
832 /*
833 * HEAD_OF_QUEUE attribute for received CDB, which means
834 * the first task that is associated with a struct se_cmd goes to
835 * head of the struct se_device->execute_task_list, and task_prev
836 * after that for each subsequent task
837 */
838 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
839 list_add(&task->t_execute_list,
840 (task_prev != NULL) ?
841 &task_prev->t_execute_list :
842 &dev->execute_task_list);
843
844 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
845 " in execution queue\n",
846 task->task_se_cmd->t_task_cdb[0]);
847 return 1;
848 }
849 /*
850 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
851 * transitioned from Dermant -> Active state, and are added to the end
852 * of the struct se_device->execute_task_list
853 */
854 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
855 return 0;
856 }
857
858 /* __transport_add_task_to_execute_queue():
859 *
860 * Called with se_dev_t->execute_task_lock called.
861 */
862 static void __transport_add_task_to_execute_queue(
863 struct se_task *task,
864 struct se_task *task_prev,
865 struct se_device *dev)
866 {
867 int head_of_queue;
868
869 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
870 atomic_inc(&dev->execute_tasks);
871
872 if (atomic_read(&task->task_state_active))
873 return;
874 /*
875 * Determine if this task needs to go to HEAD_OF_QUEUE for the
876 * state list as well. Running with SAM Task Attribute emulation
877 * will always return head_of_queue == 0 here
878 */
879 if (head_of_queue)
880 list_add(&task->t_state_list, (task_prev) ?
881 &task_prev->t_state_list :
882 &dev->state_task_list);
883 else
884 list_add_tail(&task->t_state_list, &dev->state_task_list);
885
886 atomic_set(&task->task_state_active, 1);
887
888 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
889 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
890 task, dev);
891 }
892
893 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
894 {
895 struct se_device *dev = cmd->se_dev;
896 struct se_task *task;
897 unsigned long flags;
898
899 spin_lock_irqsave(&cmd->t_state_lock, flags);
900 list_for_each_entry(task, &cmd->t_task_list, t_list) {
901 if (atomic_read(&task->task_state_active))
902 continue;
903
904 spin_lock(&dev->execute_task_lock);
905 list_add_tail(&task->t_state_list, &dev->state_task_list);
906 atomic_set(&task->task_state_active, 1);
907
908 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
909 task->task_se_cmd->se_tfo->get_task_tag(
910 task->task_se_cmd), task, dev);
911
912 spin_unlock(&dev->execute_task_lock);
913 }
914 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
915 }
916
917 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
918 {
919 struct se_device *dev = cmd->se_dev;
920 struct se_task *task, *task_prev = NULL;
921 unsigned long flags;
922
923 spin_lock_irqsave(&dev->execute_task_lock, flags);
924 list_for_each_entry(task, &cmd->t_task_list, t_list) {
925 if (!list_empty(&task->t_execute_list))
926 continue;
927 /*
928 * __transport_add_task_to_execute_queue() handles the
929 * SAM Task Attribute emulation if enabled
930 */
931 __transport_add_task_to_execute_queue(task, task_prev, dev);
932 task_prev = task;
933 }
934 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
935 }
936
937 void __transport_remove_task_from_execute_queue(struct se_task *task,
938 struct se_device *dev)
939 {
940 list_del_init(&task->t_execute_list);
941 atomic_dec(&dev->execute_tasks);
942 }
943
944 void transport_remove_task_from_execute_queue(
945 struct se_task *task,
946 struct se_device *dev)
947 {
948 unsigned long flags;
949
950 if (WARN_ON(list_empty(&task->t_execute_list)))
951 return;
952
953 spin_lock_irqsave(&dev->execute_task_lock, flags);
954 __transport_remove_task_from_execute_queue(task, dev);
955 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
956 }
957
958 /*
959 * Handle QUEUE_FULL / -EAGAIN status
960 */
961
962 static void target_qf_do_work(struct work_struct *work)
963 {
964 struct se_device *dev = container_of(work, struct se_device,
965 qf_work_queue);
966 LIST_HEAD(qf_cmd_list);
967 struct se_cmd *cmd, *cmd_tmp;
968
969 spin_lock_irq(&dev->qf_cmd_lock);
970 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
971 spin_unlock_irq(&dev->qf_cmd_lock);
972
973 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
974 list_del(&cmd->se_qf_node);
975 atomic_dec(&dev->dev_qf_count);
976 smp_mb__after_atomic_dec();
977
978 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
979 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
980 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
981 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
982 : "UNKNOWN");
983
984 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
985 }
986 }
987
988 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
989 {
990 switch (cmd->data_direction) {
991 case DMA_NONE:
992 return "NONE";
993 case DMA_FROM_DEVICE:
994 return "READ";
995 case DMA_TO_DEVICE:
996 return "WRITE";
997 case DMA_BIDIRECTIONAL:
998 return "BIDI";
999 default:
1000 break;
1001 }
1002
1003 return "UNKNOWN";
1004 }
1005
1006 void transport_dump_dev_state(
1007 struct se_device *dev,
1008 char *b,
1009 int *bl)
1010 {
1011 *bl += sprintf(b + *bl, "Status: ");
1012 switch (dev->dev_status) {
1013 case TRANSPORT_DEVICE_ACTIVATED:
1014 *bl += sprintf(b + *bl, "ACTIVATED");
1015 break;
1016 case TRANSPORT_DEVICE_DEACTIVATED:
1017 *bl += sprintf(b + *bl, "DEACTIVATED");
1018 break;
1019 case TRANSPORT_DEVICE_SHUTDOWN:
1020 *bl += sprintf(b + *bl, "SHUTDOWN");
1021 break;
1022 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1023 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1024 *bl += sprintf(b + *bl, "OFFLINE");
1025 break;
1026 default:
1027 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1028 break;
1029 }
1030
1031 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1032 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1033 dev->queue_depth);
1034 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1035 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1036 *bl += sprintf(b + *bl, " ");
1037 }
1038
1039 void transport_dump_vpd_proto_id(
1040 struct t10_vpd *vpd,
1041 unsigned char *p_buf,
1042 int p_buf_len)
1043 {
1044 unsigned char buf[VPD_TMP_BUF_SIZE];
1045 int len;
1046
1047 memset(buf, 0, VPD_TMP_BUF_SIZE);
1048 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1049
1050 switch (vpd->protocol_identifier) {
1051 case 0x00:
1052 sprintf(buf+len, "Fibre Channel\n");
1053 break;
1054 case 0x10:
1055 sprintf(buf+len, "Parallel SCSI\n");
1056 break;
1057 case 0x20:
1058 sprintf(buf+len, "SSA\n");
1059 break;
1060 case 0x30:
1061 sprintf(buf+len, "IEEE 1394\n");
1062 break;
1063 case 0x40:
1064 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1065 " Protocol\n");
1066 break;
1067 case 0x50:
1068 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1069 break;
1070 case 0x60:
1071 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1072 break;
1073 case 0x70:
1074 sprintf(buf+len, "Automation/Drive Interface Transport"
1075 " Protocol\n");
1076 break;
1077 case 0x80:
1078 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1079 break;
1080 default:
1081 sprintf(buf+len, "Unknown 0x%02x\n",
1082 vpd->protocol_identifier);
1083 break;
1084 }
1085
1086 if (p_buf)
1087 strncpy(p_buf, buf, p_buf_len);
1088 else
1089 pr_debug("%s", buf);
1090 }
1091
1092 void
1093 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1094 {
1095 /*
1096 * Check if the Protocol Identifier Valid (PIV) bit is set..
1097 *
1098 * from spc3r23.pdf section 7.5.1
1099 */
1100 if (page_83[1] & 0x80) {
1101 vpd->protocol_identifier = (page_83[0] & 0xf0);
1102 vpd->protocol_identifier_set = 1;
1103 transport_dump_vpd_proto_id(vpd, NULL, 0);
1104 }
1105 }
1106 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1107
1108 int transport_dump_vpd_assoc(
1109 struct t10_vpd *vpd,
1110 unsigned char *p_buf,
1111 int p_buf_len)
1112 {
1113 unsigned char buf[VPD_TMP_BUF_SIZE];
1114 int ret = 0;
1115 int len;
1116
1117 memset(buf, 0, VPD_TMP_BUF_SIZE);
1118 len = sprintf(buf, "T10 VPD Identifier Association: ");
1119
1120 switch (vpd->association) {
1121 case 0x00:
1122 sprintf(buf+len, "addressed logical unit\n");
1123 break;
1124 case 0x10:
1125 sprintf(buf+len, "target port\n");
1126 break;
1127 case 0x20:
1128 sprintf(buf+len, "SCSI target device\n");
1129 break;
1130 default:
1131 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1132 ret = -EINVAL;
1133 break;
1134 }
1135
1136 if (p_buf)
1137 strncpy(p_buf, buf, p_buf_len);
1138 else
1139 pr_debug("%s", buf);
1140
1141 return ret;
1142 }
1143
1144 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1145 {
1146 /*
1147 * The VPD identification association..
1148 *
1149 * from spc3r23.pdf Section 7.6.3.1 Table 297
1150 */
1151 vpd->association = (page_83[1] & 0x30);
1152 return transport_dump_vpd_assoc(vpd, NULL, 0);
1153 }
1154 EXPORT_SYMBOL(transport_set_vpd_assoc);
1155
1156 int transport_dump_vpd_ident_type(
1157 struct t10_vpd *vpd,
1158 unsigned char *p_buf,
1159 int p_buf_len)
1160 {
1161 unsigned char buf[VPD_TMP_BUF_SIZE];
1162 int ret = 0;
1163 int len;
1164
1165 memset(buf, 0, VPD_TMP_BUF_SIZE);
1166 len = sprintf(buf, "T10 VPD Identifier Type: ");
1167
1168 switch (vpd->device_identifier_type) {
1169 case 0x00:
1170 sprintf(buf+len, "Vendor specific\n");
1171 break;
1172 case 0x01:
1173 sprintf(buf+len, "T10 Vendor ID based\n");
1174 break;
1175 case 0x02:
1176 sprintf(buf+len, "EUI-64 based\n");
1177 break;
1178 case 0x03:
1179 sprintf(buf+len, "NAA\n");
1180 break;
1181 case 0x04:
1182 sprintf(buf+len, "Relative target port identifier\n");
1183 break;
1184 case 0x08:
1185 sprintf(buf+len, "SCSI name string\n");
1186 break;
1187 default:
1188 sprintf(buf+len, "Unsupported: 0x%02x\n",
1189 vpd->device_identifier_type);
1190 ret = -EINVAL;
1191 break;
1192 }
1193
1194 if (p_buf) {
1195 if (p_buf_len < strlen(buf)+1)
1196 return -EINVAL;
1197 strncpy(p_buf, buf, p_buf_len);
1198 } else {
1199 pr_debug("%s", buf);
1200 }
1201
1202 return ret;
1203 }
1204
1205 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1206 {
1207 /*
1208 * The VPD identifier type..
1209 *
1210 * from spc3r23.pdf Section 7.6.3.1 Table 298
1211 */
1212 vpd->device_identifier_type = (page_83[1] & 0x0f);
1213 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1214 }
1215 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1216
1217 int transport_dump_vpd_ident(
1218 struct t10_vpd *vpd,
1219 unsigned char *p_buf,
1220 int p_buf_len)
1221 {
1222 unsigned char buf[VPD_TMP_BUF_SIZE];
1223 int ret = 0;
1224
1225 memset(buf, 0, VPD_TMP_BUF_SIZE);
1226
1227 switch (vpd->device_identifier_code_set) {
1228 case 0x01: /* Binary */
1229 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1230 &vpd->device_identifier[0]);
1231 break;
1232 case 0x02: /* ASCII */
1233 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1234 &vpd->device_identifier[0]);
1235 break;
1236 case 0x03: /* UTF-8 */
1237 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1238 &vpd->device_identifier[0]);
1239 break;
1240 default:
1241 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1242 " 0x%02x", vpd->device_identifier_code_set);
1243 ret = -EINVAL;
1244 break;
1245 }
1246
1247 if (p_buf)
1248 strncpy(p_buf, buf, p_buf_len);
1249 else
1250 pr_debug("%s", buf);
1251
1252 return ret;
1253 }
1254
1255 int
1256 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1257 {
1258 static const char hex_str[] = "0123456789abcdef";
1259 int j = 0, i = 4; /* offset to start of the identifer */
1260
1261 /*
1262 * The VPD Code Set (encoding)
1263 *
1264 * from spc3r23.pdf Section 7.6.3.1 Table 296
1265 */
1266 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1267 switch (vpd->device_identifier_code_set) {
1268 case 0x01: /* Binary */
1269 vpd->device_identifier[j++] =
1270 hex_str[vpd->device_identifier_type];
1271 while (i < (4 + page_83[3])) {
1272 vpd->device_identifier[j++] =
1273 hex_str[(page_83[i] & 0xf0) >> 4];
1274 vpd->device_identifier[j++] =
1275 hex_str[page_83[i] & 0x0f];
1276 i++;
1277 }
1278 break;
1279 case 0x02: /* ASCII */
1280 case 0x03: /* UTF-8 */
1281 while (i < (4 + page_83[3]))
1282 vpd->device_identifier[j++] = page_83[i++];
1283 break;
1284 default:
1285 break;
1286 }
1287
1288 return transport_dump_vpd_ident(vpd, NULL, 0);
1289 }
1290 EXPORT_SYMBOL(transport_set_vpd_ident);
1291
1292 static void core_setup_task_attr_emulation(struct se_device *dev)
1293 {
1294 /*
1295 * If this device is from Target_Core_Mod/pSCSI, disable the
1296 * SAM Task Attribute emulation.
1297 *
1298 * This is currently not available in upsream Linux/SCSI Target
1299 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1300 */
1301 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1302 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1303 return;
1304 }
1305
1306 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1307 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1308 " device\n", dev->transport->name,
1309 dev->transport->get_device_rev(dev));
1310 }
1311
1312 static void scsi_dump_inquiry(struct se_device *dev)
1313 {
1314 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1315 int i, device_type;
1316 /*
1317 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1318 */
1319 pr_debug(" Vendor: ");
1320 for (i = 0; i < 8; i++)
1321 if (wwn->vendor[i] >= 0x20)
1322 pr_debug("%c", wwn->vendor[i]);
1323 else
1324 pr_debug(" ");
1325
1326 pr_debug(" Model: ");
1327 for (i = 0; i < 16; i++)
1328 if (wwn->model[i] >= 0x20)
1329 pr_debug("%c", wwn->model[i]);
1330 else
1331 pr_debug(" ");
1332
1333 pr_debug(" Revision: ");
1334 for (i = 0; i < 4; i++)
1335 if (wwn->revision[i] >= 0x20)
1336 pr_debug("%c", wwn->revision[i]);
1337 else
1338 pr_debug(" ");
1339
1340 pr_debug("\n");
1341
1342 device_type = dev->transport->get_device_type(dev);
1343 pr_debug(" Type: %s ", scsi_device_type(device_type));
1344 pr_debug(" ANSI SCSI revision: %02x\n",
1345 dev->transport->get_device_rev(dev));
1346 }
1347
1348 struct se_device *transport_add_device_to_core_hba(
1349 struct se_hba *hba,
1350 struct se_subsystem_api *transport,
1351 struct se_subsystem_dev *se_dev,
1352 u32 device_flags,
1353 void *transport_dev,
1354 struct se_dev_limits *dev_limits,
1355 const char *inquiry_prod,
1356 const char *inquiry_rev)
1357 {
1358 int force_pt;
1359 struct se_device *dev;
1360
1361 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1362 if (!dev) {
1363 pr_err("Unable to allocate memory for se_dev_t\n");
1364 return NULL;
1365 }
1366
1367 transport_init_queue_obj(&dev->dev_queue_obj);
1368 dev->dev_flags = device_flags;
1369 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1370 dev->dev_ptr = transport_dev;
1371 dev->se_hba = hba;
1372 dev->se_sub_dev = se_dev;
1373 dev->transport = transport;
1374 atomic_set(&dev->active_cmds, 0);
1375 INIT_LIST_HEAD(&dev->dev_list);
1376 INIT_LIST_HEAD(&dev->dev_sep_list);
1377 INIT_LIST_HEAD(&dev->dev_tmr_list);
1378 INIT_LIST_HEAD(&dev->execute_task_list);
1379 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1380 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1381 INIT_LIST_HEAD(&dev->state_task_list);
1382 INIT_LIST_HEAD(&dev->qf_cmd_list);
1383 spin_lock_init(&dev->execute_task_lock);
1384 spin_lock_init(&dev->delayed_cmd_lock);
1385 spin_lock_init(&dev->ordered_cmd_lock);
1386 spin_lock_init(&dev->state_task_lock);
1387 spin_lock_init(&dev->dev_alua_lock);
1388 spin_lock_init(&dev->dev_reservation_lock);
1389 spin_lock_init(&dev->dev_status_lock);
1390 spin_lock_init(&dev->dev_status_thr_lock);
1391 spin_lock_init(&dev->se_port_lock);
1392 spin_lock_init(&dev->se_tmr_lock);
1393 spin_lock_init(&dev->qf_cmd_lock);
1394
1395 dev->queue_depth = dev_limits->queue_depth;
1396 atomic_set(&dev->depth_left, dev->queue_depth);
1397 atomic_set(&dev->dev_ordered_id, 0);
1398
1399 se_dev_set_default_attribs(dev, dev_limits);
1400
1401 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1402 dev->creation_time = get_jiffies_64();
1403 spin_lock_init(&dev->stats_lock);
1404
1405 spin_lock(&hba->device_lock);
1406 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1407 hba->dev_count++;
1408 spin_unlock(&hba->device_lock);
1409 /*
1410 * Setup the SAM Task Attribute emulation for struct se_device
1411 */
1412 core_setup_task_attr_emulation(dev);
1413 /*
1414 * Force PR and ALUA passthrough emulation with internal object use.
1415 */
1416 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1417 /*
1418 * Setup the Reservations infrastructure for struct se_device
1419 */
1420 core_setup_reservations(dev, force_pt);
1421 /*
1422 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1423 */
1424 if (core_setup_alua(dev, force_pt) < 0)
1425 goto out;
1426
1427 /*
1428 * Startup the struct se_device processing thread
1429 */
1430 dev->process_thread = kthread_run(transport_processing_thread, dev,
1431 "LIO_%s", dev->transport->name);
1432 if (IS_ERR(dev->process_thread)) {
1433 pr_err("Unable to create kthread: LIO_%s\n",
1434 dev->transport->name);
1435 goto out;
1436 }
1437 /*
1438 * Setup work_queue for QUEUE_FULL
1439 */
1440 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1441 /*
1442 * Preload the initial INQUIRY const values if we are doing
1443 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1444 * passthrough because this is being provided by the backend LLD.
1445 * This is required so that transport_get_inquiry() copies these
1446 * originals once back into DEV_T10_WWN(dev) for the virtual device
1447 * setup.
1448 */
1449 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1450 if (!inquiry_prod || !inquiry_rev) {
1451 pr_err("All non TCM/pSCSI plugins require"
1452 " INQUIRY consts\n");
1453 goto out;
1454 }
1455
1456 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1457 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1458 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1459 }
1460 scsi_dump_inquiry(dev);
1461
1462 return dev;
1463 out:
1464 kthread_stop(dev->process_thread);
1465
1466 spin_lock(&hba->device_lock);
1467 list_del(&dev->dev_list);
1468 hba->dev_count--;
1469 spin_unlock(&hba->device_lock);
1470
1471 se_release_vpd_for_dev(dev);
1472
1473 kfree(dev);
1474
1475 return NULL;
1476 }
1477 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1478
1479 /* transport_generic_prepare_cdb():
1480 *
1481 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1482 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1483 * The point of this is since we are mapping iSCSI LUNs to
1484 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1485 * devices and HBAs for a loop.
1486 */
1487 static inline void transport_generic_prepare_cdb(
1488 unsigned char *cdb)
1489 {
1490 switch (cdb[0]) {
1491 case READ_10: /* SBC - RDProtect */
1492 case READ_12: /* SBC - RDProtect */
1493 case READ_16: /* SBC - RDProtect */
1494 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1495 case VERIFY: /* SBC - VRProtect */
1496 case VERIFY_16: /* SBC - VRProtect */
1497 case WRITE_VERIFY: /* SBC - VRProtect */
1498 case WRITE_VERIFY_12: /* SBC - VRProtect */
1499 break;
1500 default:
1501 cdb[1] &= 0x1f; /* clear logical unit number */
1502 break;
1503 }
1504 }
1505
1506 static struct se_task *
1507 transport_generic_get_task(struct se_cmd *cmd,
1508 enum dma_data_direction data_direction)
1509 {
1510 struct se_task *task;
1511 struct se_device *dev = cmd->se_dev;
1512
1513 task = dev->transport->alloc_task(cmd->t_task_cdb);
1514 if (!task) {
1515 pr_err("Unable to allocate struct se_task\n");
1516 return NULL;
1517 }
1518
1519 INIT_LIST_HEAD(&task->t_list);
1520 INIT_LIST_HEAD(&task->t_execute_list);
1521 INIT_LIST_HEAD(&task->t_state_list);
1522 init_timer(&task->task_timer);
1523 init_completion(&task->task_stop_comp);
1524 task->task_se_cmd = cmd;
1525 task->task_data_direction = data_direction;
1526
1527 return task;
1528 }
1529
1530 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1531
1532 /*
1533 * Used by fabric modules containing a local struct se_cmd within their
1534 * fabric dependent per I/O descriptor.
1535 */
1536 void transport_init_se_cmd(
1537 struct se_cmd *cmd,
1538 struct target_core_fabric_ops *tfo,
1539 struct se_session *se_sess,
1540 u32 data_length,
1541 int data_direction,
1542 int task_attr,
1543 unsigned char *sense_buffer)
1544 {
1545 INIT_LIST_HEAD(&cmd->se_lun_node);
1546 INIT_LIST_HEAD(&cmd->se_delayed_node);
1547 INIT_LIST_HEAD(&cmd->se_ordered_node);
1548 INIT_LIST_HEAD(&cmd->se_qf_node);
1549 INIT_LIST_HEAD(&cmd->se_queue_node);
1550
1551 INIT_LIST_HEAD(&cmd->t_task_list);
1552 init_completion(&cmd->transport_lun_fe_stop_comp);
1553 init_completion(&cmd->transport_lun_stop_comp);
1554 init_completion(&cmd->t_transport_stop_comp);
1555 spin_lock_init(&cmd->t_state_lock);
1556 atomic_set(&cmd->transport_dev_active, 1);
1557
1558 cmd->se_tfo = tfo;
1559 cmd->se_sess = se_sess;
1560 cmd->data_length = data_length;
1561 cmd->data_direction = data_direction;
1562 cmd->sam_task_attr = task_attr;
1563 cmd->sense_buffer = sense_buffer;
1564 }
1565 EXPORT_SYMBOL(transport_init_se_cmd);
1566
1567 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1568 {
1569 /*
1570 * Check if SAM Task Attribute emulation is enabled for this
1571 * struct se_device storage object
1572 */
1573 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1574 return 0;
1575
1576 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1577 pr_debug("SAM Task Attribute ACA"
1578 " emulation is not supported\n");
1579 return -EINVAL;
1580 }
1581 /*
1582 * Used to determine when ORDERED commands should go from
1583 * Dormant to Active status.
1584 */
1585 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1586 smp_mb__after_atomic_inc();
1587 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1588 cmd->se_ordered_id, cmd->sam_task_attr,
1589 cmd->se_dev->transport->name);
1590 return 0;
1591 }
1592
1593 /* transport_generic_allocate_tasks():
1594 *
1595 * Called from fabric RX Thread.
1596 */
1597 int transport_generic_allocate_tasks(
1598 struct se_cmd *cmd,
1599 unsigned char *cdb)
1600 {
1601 int ret;
1602
1603 transport_generic_prepare_cdb(cdb);
1604 /*
1605 * Ensure that the received CDB is less than the max (252 + 8) bytes
1606 * for VARIABLE_LENGTH_CMD
1607 */
1608 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1609 pr_err("Received SCSI CDB with command_size: %d that"
1610 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1611 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1612 return -EINVAL;
1613 }
1614 /*
1615 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1616 * allocate the additional extended CDB buffer now.. Otherwise
1617 * setup the pointer from __t_task_cdb to t_task_cdb.
1618 */
1619 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1620 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1621 GFP_KERNEL);
1622 if (!cmd->t_task_cdb) {
1623 pr_err("Unable to allocate cmd->t_task_cdb"
1624 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1625 scsi_command_size(cdb),
1626 (unsigned long)sizeof(cmd->__t_task_cdb));
1627 return -ENOMEM;
1628 }
1629 } else
1630 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1631 /*
1632 * Copy the original CDB into cmd->
1633 */
1634 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1635 /*
1636 * Setup the received CDB based on SCSI defined opcodes and
1637 * perform unit attention, persistent reservations and ALUA
1638 * checks for virtual device backends. The cmd->t_task_cdb
1639 * pointer is expected to be setup before we reach this point.
1640 */
1641 ret = transport_generic_cmd_sequencer(cmd, cdb);
1642 if (ret < 0)
1643 return ret;
1644 /*
1645 * Check for SAM Task Attribute Emulation
1646 */
1647 if (transport_check_alloc_task_attr(cmd) < 0) {
1648 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1649 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1650 return -EINVAL;
1651 }
1652 spin_lock(&cmd->se_lun->lun_sep_lock);
1653 if (cmd->se_lun->lun_sep)
1654 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1655 spin_unlock(&cmd->se_lun->lun_sep_lock);
1656 return 0;
1657 }
1658 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1659
1660 /*
1661 * Used by fabric module frontends to queue tasks directly.
1662 * Many only be used from process context only
1663 */
1664 int transport_handle_cdb_direct(
1665 struct se_cmd *cmd)
1666 {
1667 int ret;
1668
1669 if (!cmd->se_lun) {
1670 dump_stack();
1671 pr_err("cmd->se_lun is NULL\n");
1672 return -EINVAL;
1673 }
1674 if (in_interrupt()) {
1675 dump_stack();
1676 pr_err("transport_generic_handle_cdb cannot be called"
1677 " from interrupt context\n");
1678 return -EINVAL;
1679 }
1680 /*
1681 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1682 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1683 * in existing usage to ensure that outstanding descriptors are handled
1684 * correctly during shutdown via transport_wait_for_tasks()
1685 *
1686 * Also, we don't take cmd->t_state_lock here as we only expect
1687 * this to be called for initial descriptor submission.
1688 */
1689 cmd->t_state = TRANSPORT_NEW_CMD;
1690 atomic_set(&cmd->t_transport_active, 1);
1691 /*
1692 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1693 * so follow TRANSPORT_NEW_CMD processing thread context usage
1694 * and call transport_generic_request_failure() if necessary..
1695 */
1696 ret = transport_generic_new_cmd(cmd);
1697 if (ret == -EAGAIN)
1698 return 0;
1699 else if (ret < 0) {
1700 cmd->transport_error_status = ret;
1701 transport_generic_request_failure(cmd, 0,
1702 (cmd->data_direction != DMA_TO_DEVICE));
1703 }
1704 return 0;
1705 }
1706 EXPORT_SYMBOL(transport_handle_cdb_direct);
1707
1708 /*
1709 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1710 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1711 * complete setup in TCM process context w/ TFO->new_cmd_map().
1712 */
1713 int transport_generic_handle_cdb_map(
1714 struct se_cmd *cmd)
1715 {
1716 if (!cmd->se_lun) {
1717 dump_stack();
1718 pr_err("cmd->se_lun is NULL\n");
1719 return -EINVAL;
1720 }
1721
1722 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1723 return 0;
1724 }
1725 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1726
1727 /* transport_generic_handle_data():
1728 *
1729 *
1730 */
1731 int transport_generic_handle_data(
1732 struct se_cmd *cmd)
1733 {
1734 /*
1735 * For the software fabric case, then we assume the nexus is being
1736 * failed/shutdown when signals are pending from the kthread context
1737 * caller, so we return a failure. For the HW target mode case running
1738 * in interrupt code, the signal_pending() check is skipped.
1739 */
1740 if (!in_interrupt() && signal_pending(current))
1741 return -EPERM;
1742 /*
1743 * If the received CDB has aleady been ABORTED by the generic
1744 * target engine, we now call transport_check_aborted_status()
1745 * to queue any delated TASK_ABORTED status for the received CDB to the
1746 * fabric module as we are expecting no further incoming DATA OUT
1747 * sequences at this point.
1748 */
1749 if (transport_check_aborted_status(cmd, 1) != 0)
1750 return 0;
1751
1752 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1753 return 0;
1754 }
1755 EXPORT_SYMBOL(transport_generic_handle_data);
1756
1757 /* transport_generic_handle_tmr():
1758 *
1759 *
1760 */
1761 int transport_generic_handle_tmr(
1762 struct se_cmd *cmd)
1763 {
1764 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1765 return 0;
1766 }
1767 EXPORT_SYMBOL(transport_generic_handle_tmr);
1768
1769 void transport_generic_free_cmd_intr(
1770 struct se_cmd *cmd)
1771 {
1772 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1773 }
1774 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1775
1776 /*
1777 * If the task is active, request it to be stopped and sleep until it
1778 * has completed.
1779 */
1780 bool target_stop_task(struct se_task *task, unsigned long *flags)
1781 {
1782 struct se_cmd *cmd = task->task_se_cmd;
1783 bool was_active = false;
1784
1785 if (task->task_flags & TF_ACTIVE) {
1786 task->task_flags |= TF_REQUEST_STOP;
1787 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1788
1789 pr_debug("Task %p waiting to complete\n", task);
1790 del_timer_sync(&task->task_timer);
1791 wait_for_completion(&task->task_stop_comp);
1792 pr_debug("Task %p stopped successfully\n", task);
1793
1794 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1795 atomic_dec(&cmd->t_task_cdbs_left);
1796 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1797 was_active = true;
1798 }
1799
1800 return was_active;
1801 }
1802
1803 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1804 {
1805 struct se_task *task, *task_tmp;
1806 unsigned long flags;
1807 int ret = 0;
1808
1809 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1810 cmd->se_tfo->get_task_tag(cmd));
1811
1812 /*
1813 * No tasks remain in the execution queue
1814 */
1815 spin_lock_irqsave(&cmd->t_state_lock, flags);
1816 list_for_each_entry_safe(task, task_tmp,
1817 &cmd->t_task_list, t_list) {
1818 pr_debug("Processing task %p\n", task);
1819 /*
1820 * If the struct se_task has not been sent and is not active,
1821 * remove the struct se_task from the execution queue.
1822 */
1823 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1824 spin_unlock_irqrestore(&cmd->t_state_lock,
1825 flags);
1826 transport_remove_task_from_execute_queue(task,
1827 cmd->se_dev);
1828
1829 pr_debug("Task %p removed from execute queue\n", task);
1830 spin_lock_irqsave(&cmd->t_state_lock, flags);
1831 continue;
1832 }
1833
1834 if (!target_stop_task(task, &flags)) {
1835 pr_debug("Task %p - did nothing\n", task);
1836 ret++;
1837 }
1838 }
1839 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1840
1841 return ret;
1842 }
1843
1844 /*
1845 * Handle SAM-esque emulation for generic transport request failures.
1846 */
1847 static void transport_generic_request_failure(
1848 struct se_cmd *cmd,
1849 int complete,
1850 int sc)
1851 {
1852 int ret = 0;
1853
1854 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1855 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1856 cmd->t_task_cdb[0]);
1857 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1858 cmd->se_tfo->get_cmd_state(cmd),
1859 cmd->t_state,
1860 cmd->transport_error_status);
1861 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1862 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1863 " t_transport_active: %d t_transport_stop: %d"
1864 " t_transport_sent: %d\n", cmd->t_task_list_num,
1865 atomic_read(&cmd->t_task_cdbs_left),
1866 atomic_read(&cmd->t_task_cdbs_sent),
1867 atomic_read(&cmd->t_task_cdbs_ex_left),
1868 atomic_read(&cmd->t_transport_active),
1869 atomic_read(&cmd->t_transport_stop),
1870 atomic_read(&cmd->t_transport_sent));
1871
1872 /*
1873 * For SAM Task Attribute emulation for failed struct se_cmd
1874 */
1875 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1876 transport_complete_task_attr(cmd);
1877
1878 if (complete) {
1879 transport_direct_request_timeout(cmd);
1880 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1881 }
1882
1883 switch (cmd->transport_error_status) {
1884 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1885 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1886 break;
1887 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1888 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1889 break;
1890 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1891 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1892 break;
1893 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1894 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1895 break;
1896 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1897 if (!sc)
1898 transport_new_cmd_failure(cmd);
1899 /*
1900 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1901 * we force this session to fall back to session
1902 * recovery.
1903 */
1904 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1905 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1906
1907 goto check_stop;
1908 case PYX_TRANSPORT_LU_COMM_FAILURE:
1909 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1910 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1911 break;
1912 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1913 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1914 break;
1915 case PYX_TRANSPORT_WRITE_PROTECTED:
1916 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1917 break;
1918 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1919 /*
1920 * No SENSE Data payload for this case, set SCSI Status
1921 * and queue the response to $FABRIC_MOD.
1922 *
1923 * Uses linux/include/scsi/scsi.h SAM status codes defs
1924 */
1925 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1926 /*
1927 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1928 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1929 * CONFLICT STATUS.
1930 *
1931 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1932 */
1933 if (cmd->se_sess &&
1934 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1935 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1936 cmd->orig_fe_lun, 0x2C,
1937 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1938
1939 ret = cmd->se_tfo->queue_status(cmd);
1940 if (ret == -EAGAIN)
1941 goto queue_full;
1942 goto check_stop;
1943 case PYX_TRANSPORT_USE_SENSE_REASON:
1944 /*
1945 * struct se_cmd->scsi_sense_reason already set
1946 */
1947 break;
1948 default:
1949 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1950 cmd->t_task_cdb[0],
1951 cmd->transport_error_status);
1952 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1953 break;
1954 }
1955 /*
1956 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1957 * make the call to transport_send_check_condition_and_sense()
1958 * directly. Otherwise expect the fabric to make the call to
1959 * transport_send_check_condition_and_sense() after handling
1960 * possible unsoliticied write data payloads.
1961 */
1962 if (!sc && !cmd->se_tfo->new_cmd_map)
1963 transport_new_cmd_failure(cmd);
1964 else {
1965 ret = transport_send_check_condition_and_sense(cmd,
1966 cmd->scsi_sense_reason, 0);
1967 if (ret == -EAGAIN)
1968 goto queue_full;
1969 }
1970
1971 check_stop:
1972 transport_lun_remove_cmd(cmd);
1973 if (!transport_cmd_check_stop_to_fabric(cmd))
1974 ;
1975 return;
1976
1977 queue_full:
1978 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1979 transport_handle_queue_full(cmd, cmd->se_dev);
1980 }
1981
1982 static void transport_direct_request_timeout(struct se_cmd *cmd)
1983 {
1984 unsigned long flags;
1985
1986 spin_lock_irqsave(&cmd->t_state_lock, flags);
1987 if (!atomic_read(&cmd->t_transport_timeout)) {
1988 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1989 return;
1990 }
1991 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1992 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1993 return;
1994 }
1995
1996 atomic_sub(atomic_read(&cmd->t_transport_timeout),
1997 &cmd->t_se_count);
1998 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1999 }
2000
2001 static inline u32 transport_lba_21(unsigned char *cdb)
2002 {
2003 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2004 }
2005
2006 static inline u32 transport_lba_32(unsigned char *cdb)
2007 {
2008 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2009 }
2010
2011 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2012 {
2013 unsigned int __v1, __v2;
2014
2015 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2016 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2017
2018 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2019 }
2020
2021 /*
2022 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2023 */
2024 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2025 {
2026 unsigned int __v1, __v2;
2027
2028 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2029 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2030
2031 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2032 }
2033
2034 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2035 {
2036 unsigned long flags;
2037
2038 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2039 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2040 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2041 }
2042
2043 /*
2044 * Called from interrupt context.
2045 */
2046 static void transport_task_timeout_handler(unsigned long data)
2047 {
2048 struct se_task *task = (struct se_task *)data;
2049 struct se_cmd *cmd = task->task_se_cmd;
2050 unsigned long flags;
2051
2052 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2053
2054 spin_lock_irqsave(&cmd->t_state_lock, flags);
2055
2056 /*
2057 * Determine if transport_complete_task() has already been called.
2058 */
2059 if (!(task->task_flags & TF_ACTIVE)) {
2060 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2061 task, cmd);
2062 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2063 return;
2064 }
2065
2066 atomic_inc(&cmd->t_se_count);
2067 atomic_inc(&cmd->t_transport_timeout);
2068 cmd->t_tasks_failed = 1;
2069
2070 task->task_flags |= TF_TIMEOUT;
2071 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2072 task->task_scsi_status = 1;
2073
2074 if (task->task_flags & TF_REQUEST_STOP) {
2075 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2076 " == 1\n", task, cmd);
2077 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2078 complete(&task->task_stop_comp);
2079 return;
2080 }
2081
2082 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2083 pr_debug("transport task: %p cmd: %p timeout non zero"
2084 " t_task_cdbs_left\n", task, cmd);
2085 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2086 return;
2087 }
2088 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2089 task, cmd);
2090
2091 INIT_WORK(&cmd->work, target_complete_failure_work);
2092 cmd->t_state = TRANSPORT_COMPLETE;
2093 atomic_set(&cmd->t_transport_active, 1);
2094 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2095
2096 queue_work(target_completion_wq, &cmd->work);
2097 }
2098
2099 static void transport_start_task_timer(struct se_task *task)
2100 {
2101 struct se_device *dev = task->task_se_cmd->se_dev;
2102 int timeout;
2103
2104 /*
2105 * If the task_timeout is disabled, exit now.
2106 */
2107 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2108 if (!timeout)
2109 return;
2110
2111 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2112 task->task_timer.data = (unsigned long) task;
2113 task->task_timer.function = transport_task_timeout_handler;
2114 add_timer(&task->task_timer);
2115 }
2116
2117 static inline int transport_tcq_window_closed(struct se_device *dev)
2118 {
2119 if (dev->dev_tcq_window_closed++ <
2120 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2121 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2122 } else
2123 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2124
2125 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2126 return 0;
2127 }
2128
2129 /*
2130 * Called from Fabric Module context from transport_execute_tasks()
2131 *
2132 * The return of this function determins if the tasks from struct se_cmd
2133 * get added to the execution queue in transport_execute_tasks(),
2134 * or are added to the delayed or ordered lists here.
2135 */
2136 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2137 {
2138 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2139 return 1;
2140 /*
2141 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2142 * to allow the passed struct se_cmd list of tasks to the front of the list.
2143 */
2144 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2145 atomic_inc(&cmd->se_dev->dev_hoq_count);
2146 smp_mb__after_atomic_inc();
2147 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2148 " 0x%02x, se_ordered_id: %u\n",
2149 cmd->t_task_cdb[0],
2150 cmd->se_ordered_id);
2151 return 1;
2152 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2153 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2154 list_add_tail(&cmd->se_ordered_node,
2155 &cmd->se_dev->ordered_cmd_list);
2156 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2157
2158 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2159 smp_mb__after_atomic_inc();
2160
2161 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2162 " list, se_ordered_id: %u\n",
2163 cmd->t_task_cdb[0],
2164 cmd->se_ordered_id);
2165 /*
2166 * Add ORDERED command to tail of execution queue if
2167 * no other older commands exist that need to be
2168 * completed first.
2169 */
2170 if (!atomic_read(&cmd->se_dev->simple_cmds))
2171 return 1;
2172 } else {
2173 /*
2174 * For SIMPLE and UNTAGGED Task Attribute commands
2175 */
2176 atomic_inc(&cmd->se_dev->simple_cmds);
2177 smp_mb__after_atomic_inc();
2178 }
2179 /*
2180 * Otherwise if one or more outstanding ORDERED task attribute exist,
2181 * add the dormant task(s) built for the passed struct se_cmd to the
2182 * execution queue and become in Active state for this struct se_device.
2183 */
2184 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2185 /*
2186 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2187 * will be drained upon completion of HEAD_OF_QUEUE task.
2188 */
2189 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2190 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2191 list_add_tail(&cmd->se_delayed_node,
2192 &cmd->se_dev->delayed_cmd_list);
2193 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2194
2195 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2196 " delayed CMD list, se_ordered_id: %u\n",
2197 cmd->t_task_cdb[0], cmd->sam_task_attr,
2198 cmd->se_ordered_id);
2199 /*
2200 * Return zero to let transport_execute_tasks() know
2201 * not to add the delayed tasks to the execution list.
2202 */
2203 return 0;
2204 }
2205 /*
2206 * Otherwise, no ORDERED task attributes exist..
2207 */
2208 return 1;
2209 }
2210
2211 /*
2212 * Called from fabric module context in transport_generic_new_cmd() and
2213 * transport_generic_process_write()
2214 */
2215 static int transport_execute_tasks(struct se_cmd *cmd)
2216 {
2217 int add_tasks;
2218
2219 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2220 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2221 transport_generic_request_failure(cmd, 0, 1);
2222 return 0;
2223 }
2224
2225 /*
2226 * Call transport_cmd_check_stop() to see if a fabric exception
2227 * has occurred that prevents execution.
2228 */
2229 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2230 /*
2231 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2232 * attribute for the tasks of the received struct se_cmd CDB
2233 */
2234 add_tasks = transport_execute_task_attr(cmd);
2235 if (!add_tasks)
2236 goto execute_tasks;
2237 /*
2238 * This calls transport_add_tasks_from_cmd() to handle
2239 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2240 * (if enabled) in __transport_add_task_to_execute_queue() and
2241 * transport_add_task_check_sam_attr().
2242 */
2243 transport_add_tasks_from_cmd(cmd);
2244 }
2245 /*
2246 * Kick the execution queue for the cmd associated struct se_device
2247 * storage object.
2248 */
2249 execute_tasks:
2250 __transport_execute_tasks(cmd->se_dev);
2251 return 0;
2252 }
2253
2254 /*
2255 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2256 * from struct se_device->execute_task_list and
2257 *
2258 * Called from transport_processing_thread()
2259 */
2260 static int __transport_execute_tasks(struct se_device *dev)
2261 {
2262 int error;
2263 struct se_cmd *cmd = NULL;
2264 struct se_task *task = NULL;
2265 unsigned long flags;
2266
2267 /*
2268 * Check if there is enough room in the device and HBA queue to send
2269 * struct se_tasks to the selected transport.
2270 */
2271 check_depth:
2272 if (!atomic_read(&dev->depth_left))
2273 return transport_tcq_window_closed(dev);
2274
2275 dev->dev_tcq_window_closed = 0;
2276
2277 spin_lock_irq(&dev->execute_task_lock);
2278 if (list_empty(&dev->execute_task_list)) {
2279 spin_unlock_irq(&dev->execute_task_lock);
2280 return 0;
2281 }
2282 task = list_first_entry(&dev->execute_task_list,
2283 struct se_task, t_execute_list);
2284 __transport_remove_task_from_execute_queue(task, dev);
2285 spin_unlock_irq(&dev->execute_task_lock);
2286
2287 atomic_dec(&dev->depth_left);
2288
2289 cmd = task->task_se_cmd;
2290
2291 spin_lock_irqsave(&cmd->t_state_lock, flags);
2292 task->task_flags |= (TF_ACTIVE | TF_SENT);
2293 atomic_inc(&cmd->t_task_cdbs_sent);
2294
2295 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2296 cmd->t_task_list_num)
2297 atomic_set(&cmd->transport_sent, 1);
2298
2299 transport_start_task_timer(task);
2300 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2301 /*
2302 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2303 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2304 * struct se_subsystem_api->do_task() caller below.
2305 */
2306 if (cmd->transport_emulate_cdb) {
2307 error = cmd->transport_emulate_cdb(cmd);
2308 if (error != 0) {
2309 cmd->transport_error_status = error;
2310 spin_lock_irqsave(&cmd->t_state_lock, flags);
2311 task->task_flags &= ~TF_ACTIVE;
2312 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2313 del_timer_sync(&task->task_timer);
2314 atomic_set(&cmd->transport_sent, 0);
2315 transport_stop_tasks_for_cmd(cmd);
2316 atomic_inc(&dev->depth_left);
2317 transport_generic_request_failure(cmd, 0, 1);
2318 goto check_depth;
2319 }
2320 /*
2321 * Handle the successful completion for transport_emulate_cdb()
2322 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2323 * Otherwise the caller is expected to complete the task with
2324 * proper status.
2325 */
2326 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2327 cmd->scsi_status = SAM_STAT_GOOD;
2328 task->task_scsi_status = GOOD;
2329 transport_complete_task(task, 1);
2330 }
2331 } else {
2332 /*
2333 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2334 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2335 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2336 * LUN emulation code.
2337 *
2338 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2339 * call ->do_task() directly and let the underlying TCM subsystem plugin
2340 * code handle the CDB emulation.
2341 */
2342 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2343 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2344 error = transport_emulate_control_cdb(task);
2345 else
2346 error = dev->transport->do_task(task);
2347
2348 if (error != 0) {
2349 cmd->transport_error_status = error;
2350 spin_lock_irqsave(&cmd->t_state_lock, flags);
2351 task->task_flags &= ~TF_ACTIVE;
2352 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2353 del_timer_sync(&task->task_timer);
2354 atomic_set(&cmd->transport_sent, 0);
2355 transport_stop_tasks_for_cmd(cmd);
2356 atomic_inc(&dev->depth_left);
2357 transport_generic_request_failure(cmd, 0, 1);
2358 }
2359 }
2360
2361 goto check_depth;
2362
2363 return 0;
2364 }
2365
2366 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2367 {
2368 unsigned long flags;
2369 /*
2370 * Any unsolicited data will get dumped for failed command inside of
2371 * the fabric plugin
2372 */
2373 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2374 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2375 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2376 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2377 }
2378
2379 static inline u32 transport_get_sectors_6(
2380 unsigned char *cdb,
2381 struct se_cmd *cmd,
2382 int *ret)
2383 {
2384 struct se_device *dev = cmd->se_dev;
2385
2386 /*
2387 * Assume TYPE_DISK for non struct se_device objects.
2388 * Use 8-bit sector value.
2389 */
2390 if (!dev)
2391 goto type_disk;
2392
2393 /*
2394 * Use 24-bit allocation length for TYPE_TAPE.
2395 */
2396 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2397 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2398
2399 /*
2400 * Everything else assume TYPE_DISK Sector CDB location.
2401 * Use 8-bit sector value.
2402 */
2403 type_disk:
2404 return (u32)cdb[4];
2405 }
2406
2407 static inline u32 transport_get_sectors_10(
2408 unsigned char *cdb,
2409 struct se_cmd *cmd,
2410 int *ret)
2411 {
2412 struct se_device *dev = cmd->se_dev;
2413
2414 /*
2415 * Assume TYPE_DISK for non struct se_device objects.
2416 * Use 16-bit sector value.
2417 */
2418 if (!dev)
2419 goto type_disk;
2420
2421 /*
2422 * XXX_10 is not defined in SSC, throw an exception
2423 */
2424 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2425 *ret = -EINVAL;
2426 return 0;
2427 }
2428
2429 /*
2430 * Everything else assume TYPE_DISK Sector CDB location.
2431 * Use 16-bit sector value.
2432 */
2433 type_disk:
2434 return (u32)(cdb[7] << 8) + cdb[8];
2435 }
2436
2437 static inline u32 transport_get_sectors_12(
2438 unsigned char *cdb,
2439 struct se_cmd *cmd,
2440 int *ret)
2441 {
2442 struct se_device *dev = cmd->se_dev;
2443
2444 /*
2445 * Assume TYPE_DISK for non struct se_device objects.
2446 * Use 32-bit sector value.
2447 */
2448 if (!dev)
2449 goto type_disk;
2450
2451 /*
2452 * XXX_12 is not defined in SSC, throw an exception
2453 */
2454 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2455 *ret = -EINVAL;
2456 return 0;
2457 }
2458
2459 /*
2460 * Everything else assume TYPE_DISK Sector CDB location.
2461 * Use 32-bit sector value.
2462 */
2463 type_disk:
2464 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2465 }
2466
2467 static inline u32 transport_get_sectors_16(
2468 unsigned char *cdb,
2469 struct se_cmd *cmd,
2470 int *ret)
2471 {
2472 struct se_device *dev = cmd->se_dev;
2473
2474 /*
2475 * Assume TYPE_DISK for non struct se_device objects.
2476 * Use 32-bit sector value.
2477 */
2478 if (!dev)
2479 goto type_disk;
2480
2481 /*
2482 * Use 24-bit allocation length for TYPE_TAPE.
2483 */
2484 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2485 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2486
2487 type_disk:
2488 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2489 (cdb[12] << 8) + cdb[13];
2490 }
2491
2492 /*
2493 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2494 */
2495 static inline u32 transport_get_sectors_32(
2496 unsigned char *cdb,
2497 struct se_cmd *cmd,
2498 int *ret)
2499 {
2500 /*
2501 * Assume TYPE_DISK for non struct se_device objects.
2502 * Use 32-bit sector value.
2503 */
2504 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2505 (cdb[30] << 8) + cdb[31];
2506
2507 }
2508
2509 static inline u32 transport_get_size(
2510 u32 sectors,
2511 unsigned char *cdb,
2512 struct se_cmd *cmd)
2513 {
2514 struct se_device *dev = cmd->se_dev;
2515
2516 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2517 if (cdb[1] & 1) { /* sectors */
2518 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2519 } else /* bytes */
2520 return sectors;
2521 }
2522 #if 0
2523 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2524 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2525 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2526 dev->transport->name);
2527 #endif
2528 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2529 }
2530
2531 static void transport_xor_callback(struct se_cmd *cmd)
2532 {
2533 unsigned char *buf, *addr;
2534 struct scatterlist *sg;
2535 unsigned int offset;
2536 int i;
2537 int count;
2538 /*
2539 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2540 *
2541 * 1) read the specified logical block(s);
2542 * 2) transfer logical blocks from the data-out buffer;
2543 * 3) XOR the logical blocks transferred from the data-out buffer with
2544 * the logical blocks read, storing the resulting XOR data in a buffer;
2545 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2546 * blocks transferred from the data-out buffer; and
2547 * 5) transfer the resulting XOR data to the data-in buffer.
2548 */
2549 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2550 if (!buf) {
2551 pr_err("Unable to allocate xor_callback buf\n");
2552 return;
2553 }
2554 /*
2555 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2556 * into the locally allocated *buf
2557 */
2558 sg_copy_to_buffer(cmd->t_data_sg,
2559 cmd->t_data_nents,
2560 buf,
2561 cmd->data_length);
2562
2563 /*
2564 * Now perform the XOR against the BIDI read memory located at
2565 * cmd->t_mem_bidi_list
2566 */
2567
2568 offset = 0;
2569 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2570 addr = kmap_atomic(sg_page(sg), KM_USER0);
2571 if (!addr)
2572 goto out;
2573
2574 for (i = 0; i < sg->length; i++)
2575 *(addr + sg->offset + i) ^= *(buf + offset + i);
2576
2577 offset += sg->length;
2578 kunmap_atomic(addr, KM_USER0);
2579 }
2580
2581 out:
2582 kfree(buf);
2583 }
2584
2585 /*
2586 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2587 */
2588 static int transport_get_sense_data(struct se_cmd *cmd)
2589 {
2590 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2591 struct se_device *dev = cmd->se_dev;
2592 struct se_task *task = NULL, *task_tmp;
2593 unsigned long flags;
2594 u32 offset = 0;
2595
2596 WARN_ON(!cmd->se_lun);
2597
2598 if (!dev)
2599 return 0;
2600
2601 spin_lock_irqsave(&cmd->t_state_lock, flags);
2602 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2603 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2604 return 0;
2605 }
2606
2607 list_for_each_entry_safe(task, task_tmp,
2608 &cmd->t_task_list, t_list) {
2609 if (!task->task_sense)
2610 continue;
2611
2612 if (!dev->transport->get_sense_buffer) {
2613 pr_err("dev->transport->get_sense_buffer"
2614 " is NULL\n");
2615 continue;
2616 }
2617
2618 sense_buffer = dev->transport->get_sense_buffer(task);
2619 if (!sense_buffer) {
2620 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2621 " sense buffer for task with sense\n",
2622 cmd->se_tfo->get_task_tag(cmd), task);
2623 continue;
2624 }
2625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2626
2627 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2628 TRANSPORT_SENSE_BUFFER);
2629
2630 memcpy(&buffer[offset], sense_buffer,
2631 TRANSPORT_SENSE_BUFFER);
2632 cmd->scsi_status = task->task_scsi_status;
2633 /* Automatically padded */
2634 cmd->scsi_sense_length =
2635 (TRANSPORT_SENSE_BUFFER + offset);
2636
2637 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2638 " and sense\n",
2639 dev->se_hba->hba_id, dev->transport->name,
2640 cmd->scsi_status);
2641 return 0;
2642 }
2643 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2644
2645 return -1;
2646 }
2647
2648 static int
2649 transport_handle_reservation_conflict(struct se_cmd *cmd)
2650 {
2651 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2652 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2653 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2654 /*
2655 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2656 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2657 * CONFLICT STATUS.
2658 *
2659 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2660 */
2661 if (cmd->se_sess &&
2662 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2663 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2664 cmd->orig_fe_lun, 0x2C,
2665 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2666 return -EINVAL;
2667 }
2668
2669 static inline long long transport_dev_end_lba(struct se_device *dev)
2670 {
2671 return dev->transport->get_blocks(dev) + 1;
2672 }
2673
2674 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2675 {
2676 struct se_device *dev = cmd->se_dev;
2677 u32 sectors;
2678
2679 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2680 return 0;
2681
2682 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2683
2684 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2685 pr_err("LBA: %llu Sectors: %u exceeds"
2686 " transport_dev_end_lba(): %llu\n",
2687 cmd->t_task_lba, sectors,
2688 transport_dev_end_lba(dev));
2689 return -EINVAL;
2690 }
2691
2692 return 0;
2693 }
2694
2695 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2696 {
2697 /*
2698 * Determine if the received WRITE_SAME is used to for direct
2699 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2700 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2701 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2702 */
2703 int passthrough = (dev->transport->transport_type ==
2704 TRANSPORT_PLUGIN_PHBA_PDEV);
2705
2706 if (!passthrough) {
2707 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2708 pr_err("WRITE_SAME PBDATA and LBDATA"
2709 " bits not supported for Block Discard"
2710 " Emulation\n");
2711 return -ENOSYS;
2712 }
2713 /*
2714 * Currently for the emulated case we only accept
2715 * tpws with the UNMAP=1 bit set.
2716 */
2717 if (!(flags[0] & 0x08)) {
2718 pr_err("WRITE_SAME w/o UNMAP bit not"
2719 " supported for Block Discard Emulation\n");
2720 return -ENOSYS;
2721 }
2722 }
2723
2724 return 0;
2725 }
2726
2727 /* transport_generic_cmd_sequencer():
2728 *
2729 * Generic Command Sequencer that should work for most DAS transport
2730 * drivers.
2731 *
2732 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2733 * RX Thread.
2734 *
2735 * FIXME: Need to support other SCSI OPCODES where as well.
2736 */
2737 static int transport_generic_cmd_sequencer(
2738 struct se_cmd *cmd,
2739 unsigned char *cdb)
2740 {
2741 struct se_device *dev = cmd->se_dev;
2742 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2743 int ret = 0, sector_ret = 0, passthrough;
2744 u32 sectors = 0, size = 0, pr_reg_type = 0;
2745 u16 service_action;
2746 u8 alua_ascq = 0;
2747 /*
2748 * Check for an existing UNIT ATTENTION condition
2749 */
2750 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2751 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2752 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2753 return -EINVAL;
2754 }
2755 /*
2756 * Check status of Asymmetric Logical Unit Assignment port
2757 */
2758 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2759 if (ret != 0) {
2760 /*
2761 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2762 * The ALUA additional sense code qualifier (ASCQ) is determined
2763 * by the ALUA primary or secondary access state..
2764 */
2765 if (ret > 0) {
2766 #if 0
2767 pr_debug("[%s]: ALUA TG Port not available,"
2768 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2769 cmd->se_tfo->get_fabric_name(), alua_ascq);
2770 #endif
2771 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2772 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2773 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2774 return -EINVAL;
2775 }
2776 goto out_invalid_cdb_field;
2777 }
2778 /*
2779 * Check status for SPC-3 Persistent Reservations
2780 */
2781 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2782 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2783 cmd, cdb, pr_reg_type) != 0)
2784 return transport_handle_reservation_conflict(cmd);
2785 /*
2786 * This means the CDB is allowed for the SCSI Initiator port
2787 * when said port is *NOT* holding the legacy SPC-2 or
2788 * SPC-3 Persistent Reservation.
2789 */
2790 }
2791
2792 switch (cdb[0]) {
2793 case READ_6:
2794 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2795 if (sector_ret)
2796 goto out_unsupported_cdb;
2797 size = transport_get_size(sectors, cdb, cmd);
2798 cmd->t_task_lba = transport_lba_21(cdb);
2799 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2800 break;
2801 case READ_10:
2802 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2803 if (sector_ret)
2804 goto out_unsupported_cdb;
2805 size = transport_get_size(sectors, cdb, cmd);
2806 cmd->t_task_lba = transport_lba_32(cdb);
2807 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2808 break;
2809 case READ_12:
2810 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2811 if (sector_ret)
2812 goto out_unsupported_cdb;
2813 size = transport_get_size(sectors, cdb, cmd);
2814 cmd->t_task_lba = transport_lba_32(cdb);
2815 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2816 break;
2817 case READ_16:
2818 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2819 if (sector_ret)
2820 goto out_unsupported_cdb;
2821 size = transport_get_size(sectors, cdb, cmd);
2822 cmd->t_task_lba = transport_lba_64(cdb);
2823 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2824 break;
2825 case WRITE_6:
2826 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2827 if (sector_ret)
2828 goto out_unsupported_cdb;
2829 size = transport_get_size(sectors, cdb, cmd);
2830 cmd->t_task_lba = transport_lba_21(cdb);
2831 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2832 break;
2833 case WRITE_10:
2834 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2835 if (sector_ret)
2836 goto out_unsupported_cdb;
2837 size = transport_get_size(sectors, cdb, cmd);
2838 cmd->t_task_lba = transport_lba_32(cdb);
2839 cmd->t_tasks_fua = (cdb[1] & 0x8);
2840 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2841 break;
2842 case WRITE_12:
2843 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2844 if (sector_ret)
2845 goto out_unsupported_cdb;
2846 size = transport_get_size(sectors, cdb, cmd);
2847 cmd->t_task_lba = transport_lba_32(cdb);
2848 cmd->t_tasks_fua = (cdb[1] & 0x8);
2849 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2850 break;
2851 case WRITE_16:
2852 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2853 if (sector_ret)
2854 goto out_unsupported_cdb;
2855 size = transport_get_size(sectors, cdb, cmd);
2856 cmd->t_task_lba = transport_lba_64(cdb);
2857 cmd->t_tasks_fua = (cdb[1] & 0x8);
2858 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2859 break;
2860 case XDWRITEREAD_10:
2861 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2862 !(cmd->t_tasks_bidi))
2863 goto out_invalid_cdb_field;
2864 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2865 if (sector_ret)
2866 goto out_unsupported_cdb;
2867 size = transport_get_size(sectors, cdb, cmd);
2868 cmd->t_task_lba = transport_lba_32(cdb);
2869 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2870
2871 if (dev->transport->transport_type ==
2872 TRANSPORT_PLUGIN_PHBA_PDEV)
2873 goto out_unsupported_cdb;
2874 /*
2875 * Setup BIDI XOR callback to be run after I/O completion.
2876 */
2877 cmd->transport_complete_callback = &transport_xor_callback;
2878 cmd->t_tasks_fua = (cdb[1] & 0x8);
2879 break;
2880 case VARIABLE_LENGTH_CMD:
2881 service_action = get_unaligned_be16(&cdb[8]);
2882 /*
2883 * Determine if this is TCM/PSCSI device and we should disable
2884 * internal emulation for this CDB.
2885 */
2886 passthrough = (dev->transport->transport_type ==
2887 TRANSPORT_PLUGIN_PHBA_PDEV);
2888
2889 switch (service_action) {
2890 case XDWRITEREAD_32:
2891 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2892 if (sector_ret)
2893 goto out_unsupported_cdb;
2894 size = transport_get_size(sectors, cdb, cmd);
2895 /*
2896 * Use WRITE_32 and READ_32 opcodes for the emulated
2897 * XDWRITE_READ_32 logic.
2898 */
2899 cmd->t_task_lba = transport_lba_64_ext(cdb);
2900 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2901
2902 if (passthrough)
2903 goto out_unsupported_cdb;
2904 /*
2905 * Setup BIDI XOR callback to be run during after I/O
2906 * completion.
2907 */
2908 cmd->transport_complete_callback = &transport_xor_callback;
2909 cmd->t_tasks_fua = (cdb[10] & 0x8);
2910 break;
2911 case WRITE_SAME_32:
2912 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2913 if (sector_ret)
2914 goto out_unsupported_cdb;
2915
2916 if (sectors)
2917 size = transport_get_size(1, cdb, cmd);
2918 else {
2919 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2920 " supported\n");
2921 goto out_invalid_cdb_field;
2922 }
2923
2924 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2925 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2926
2927 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2928 goto out_invalid_cdb_field;
2929
2930 break;
2931 default:
2932 pr_err("VARIABLE_LENGTH_CMD service action"
2933 " 0x%04x not supported\n", service_action);
2934 goto out_unsupported_cdb;
2935 }
2936 break;
2937 case MAINTENANCE_IN:
2938 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2939 /* MAINTENANCE_IN from SCC-2 */
2940 /*
2941 * Check for emulated MI_REPORT_TARGET_PGS.
2942 */
2943 if (cdb[1] == MI_REPORT_TARGET_PGS) {
2944 cmd->transport_emulate_cdb =
2945 (su_dev->t10_alua.alua_type ==
2946 SPC3_ALUA_EMULATED) ?
2947 core_emulate_report_target_port_groups :
2948 NULL;
2949 }
2950 size = (cdb[6] << 24) | (cdb[7] << 16) |
2951 (cdb[8] << 8) | cdb[9];
2952 } else {
2953 /* GPCMD_SEND_KEY from multi media commands */
2954 size = (cdb[8] << 8) + cdb[9];
2955 }
2956 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2957 break;
2958 case MODE_SELECT:
2959 size = cdb[4];
2960 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961 break;
2962 case MODE_SELECT_10:
2963 size = (cdb[7] << 8) + cdb[8];
2964 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2965 break;
2966 case MODE_SENSE:
2967 size = cdb[4];
2968 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2969 break;
2970 case MODE_SENSE_10:
2971 case GPCMD_READ_BUFFER_CAPACITY:
2972 case GPCMD_SEND_OPC:
2973 case LOG_SELECT:
2974 case LOG_SENSE:
2975 size = (cdb[7] << 8) + cdb[8];
2976 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2977 break;
2978 case READ_BLOCK_LIMITS:
2979 size = READ_BLOCK_LEN;
2980 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2981 break;
2982 case GPCMD_GET_CONFIGURATION:
2983 case GPCMD_READ_FORMAT_CAPACITIES:
2984 case GPCMD_READ_DISC_INFO:
2985 case GPCMD_READ_TRACK_RZONE_INFO:
2986 size = (cdb[7] << 8) + cdb[8];
2987 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2988 break;
2989 case PERSISTENT_RESERVE_IN:
2990 case PERSISTENT_RESERVE_OUT:
2991 cmd->transport_emulate_cdb =
2992 (su_dev->t10_pr.res_type ==
2993 SPC3_PERSISTENT_RESERVATIONS) ?
2994 core_scsi3_emulate_pr : NULL;
2995 size = (cdb[7] << 8) + cdb[8];
2996 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2997 break;
2998 case GPCMD_MECHANISM_STATUS:
2999 case GPCMD_READ_DVD_STRUCTURE:
3000 size = (cdb[8] << 8) + cdb[9];
3001 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3002 break;
3003 case READ_POSITION:
3004 size = READ_POSITION_LEN;
3005 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3006 break;
3007 case MAINTENANCE_OUT:
3008 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3009 /* MAINTENANCE_OUT from SCC-2
3010 *
3011 * Check for emulated MO_SET_TARGET_PGS.
3012 */
3013 if (cdb[1] == MO_SET_TARGET_PGS) {
3014 cmd->transport_emulate_cdb =
3015 (su_dev->t10_alua.alua_type ==
3016 SPC3_ALUA_EMULATED) ?
3017 core_emulate_set_target_port_groups :
3018 NULL;
3019 }
3020
3021 size = (cdb[6] << 24) | (cdb[7] << 16) |
3022 (cdb[8] << 8) | cdb[9];
3023 } else {
3024 /* GPCMD_REPORT_KEY from multi media commands */
3025 size = (cdb[8] << 8) + cdb[9];
3026 }
3027 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3028 break;
3029 case INQUIRY:
3030 size = (cdb[3] << 8) + cdb[4];
3031 /*
3032 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3033 * See spc4r17 section 5.3
3034 */
3035 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3036 cmd->sam_task_attr = MSG_HEAD_TAG;
3037 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3038 break;
3039 case READ_BUFFER:
3040 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3041 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3042 break;
3043 case READ_CAPACITY:
3044 size = READ_CAP_LEN;
3045 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3046 break;
3047 case READ_MEDIA_SERIAL_NUMBER:
3048 case SECURITY_PROTOCOL_IN:
3049 case SECURITY_PROTOCOL_OUT:
3050 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3051 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052 break;
3053 case SERVICE_ACTION_IN:
3054 case ACCESS_CONTROL_IN:
3055 case ACCESS_CONTROL_OUT:
3056 case EXTENDED_COPY:
3057 case READ_ATTRIBUTE:
3058 case RECEIVE_COPY_RESULTS:
3059 case WRITE_ATTRIBUTE:
3060 size = (cdb[10] << 24) | (cdb[11] << 16) |
3061 (cdb[12] << 8) | cdb[13];
3062 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3063 break;
3064 case RECEIVE_DIAGNOSTIC:
3065 case SEND_DIAGNOSTIC:
3066 size = (cdb[3] << 8) | cdb[4];
3067 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3068 break;
3069 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3070 #if 0
3071 case GPCMD_READ_CD:
3072 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3073 size = (2336 * sectors);
3074 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3075 break;
3076 #endif
3077 case READ_TOC:
3078 size = cdb[8];
3079 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3080 break;
3081 case REQUEST_SENSE:
3082 size = cdb[4];
3083 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3084 break;
3085 case READ_ELEMENT_STATUS:
3086 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3087 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3088 break;
3089 case WRITE_BUFFER:
3090 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3091 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092 break;
3093 case RESERVE:
3094 case RESERVE_10:
3095 /*
3096 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3097 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3098 */
3099 if (cdb[0] == RESERVE_10)
3100 size = (cdb[7] << 8) | cdb[8];
3101 else
3102 size = cmd->data_length;
3103
3104 /*
3105 * Setup the legacy emulated handler for SPC-2 and
3106 * >= SPC-3 compatible reservation handling (CRH=1)
3107 * Otherwise, we assume the underlying SCSI logic is
3108 * is running in SPC_PASSTHROUGH, and wants reservations
3109 * emulation disabled.
3110 */
3111 cmd->transport_emulate_cdb =
3112 (su_dev->t10_pr.res_type !=
3113 SPC_PASSTHROUGH) ?
3114 core_scsi2_emulate_crh : NULL;
3115 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3116 break;
3117 case RELEASE:
3118 case RELEASE_10:
3119 /*
3120 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3121 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3122 */
3123 if (cdb[0] == RELEASE_10)
3124 size = (cdb[7] << 8) | cdb[8];
3125 else
3126 size = cmd->data_length;
3127
3128 cmd->transport_emulate_cdb =
3129 (su_dev->t10_pr.res_type !=
3130 SPC_PASSTHROUGH) ?
3131 core_scsi2_emulate_crh : NULL;
3132 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3133 break;
3134 case SYNCHRONIZE_CACHE:
3135 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3136 /*
3137 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3138 */
3139 if (cdb[0] == SYNCHRONIZE_CACHE) {
3140 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3141 cmd->t_task_lba = transport_lba_32(cdb);
3142 } else {
3143 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3144 cmd->t_task_lba = transport_lba_64(cdb);
3145 }
3146 if (sector_ret)
3147 goto out_unsupported_cdb;
3148
3149 size = transport_get_size(sectors, cdb, cmd);
3150 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3151
3152 /*
3153 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3154 */
3155 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3156 break;
3157 /*
3158 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3159 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3160 */
3161 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3162 /*
3163 * Check to ensure that LBA + Range does not exceed past end of
3164 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3165 */
3166 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3167 if (transport_cmd_get_valid_sectors(cmd) < 0)
3168 goto out_invalid_cdb_field;
3169 }
3170 break;
3171 case UNMAP:
3172 size = get_unaligned_be16(&cdb[7]);
3173 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3174 break;
3175 case WRITE_SAME_16:
3176 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3177 if (sector_ret)
3178 goto out_unsupported_cdb;
3179
3180 if (sectors)
3181 size = transport_get_size(1, cdb, cmd);
3182 else {
3183 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3184 goto out_invalid_cdb_field;
3185 }
3186
3187 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3188 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3189
3190 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3191 goto out_invalid_cdb_field;
3192 break;
3193 case WRITE_SAME:
3194 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3195 if (sector_ret)
3196 goto out_unsupported_cdb;
3197
3198 if (sectors)
3199 size = transport_get_size(1, cdb, cmd);
3200 else {
3201 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3202 goto out_invalid_cdb_field;
3203 }
3204
3205 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3206 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3207 /*
3208 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3209 * of byte 1 bit 3 UNMAP instead of original reserved field
3210 */
3211 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3212 goto out_invalid_cdb_field;
3213 break;
3214 case ALLOW_MEDIUM_REMOVAL:
3215 case GPCMD_CLOSE_TRACK:
3216 case ERASE:
3217 case INITIALIZE_ELEMENT_STATUS:
3218 case GPCMD_LOAD_UNLOAD:
3219 case REZERO_UNIT:
3220 case SEEK_10:
3221 case GPCMD_SET_SPEED:
3222 case SPACE:
3223 case START_STOP:
3224 case TEST_UNIT_READY:
3225 case VERIFY:
3226 case WRITE_FILEMARKS:
3227 case MOVE_MEDIUM:
3228 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3229 break;
3230 case REPORT_LUNS:
3231 cmd->transport_emulate_cdb =
3232 transport_core_report_lun_response;
3233 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3234 /*
3235 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3236 * See spc4r17 section 5.3
3237 */
3238 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3239 cmd->sam_task_attr = MSG_HEAD_TAG;
3240 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3241 break;
3242 default:
3243 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3244 " 0x%02x, sending CHECK_CONDITION.\n",
3245 cmd->se_tfo->get_fabric_name(), cdb[0]);
3246 goto out_unsupported_cdb;
3247 }
3248
3249 if (size != cmd->data_length) {
3250 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3251 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3252 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3253 cmd->data_length, size, cdb[0]);
3254
3255 cmd->cmd_spdtl = size;
3256
3257 if (cmd->data_direction == DMA_TO_DEVICE) {
3258 pr_err("Rejecting underflow/overflow"
3259 " WRITE data\n");
3260 goto out_invalid_cdb_field;
3261 }
3262 /*
3263 * Reject READ_* or WRITE_* with overflow/underflow for
3264 * type SCF_SCSI_DATA_SG_IO_CDB.
3265 */
3266 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3267 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3268 " CDB on non 512-byte sector setup subsystem"
3269 " plugin: %s\n", dev->transport->name);
3270 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3271 goto out_invalid_cdb_field;
3272 }
3273
3274 if (size > cmd->data_length) {
3275 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3276 cmd->residual_count = (size - cmd->data_length);
3277 } else {
3278 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3279 cmd->residual_count = (cmd->data_length - size);
3280 }
3281 cmd->data_length = size;
3282 }
3283
3284 /* Let's limit control cdbs to a page, for simplicity's sake. */
3285 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3286 size > PAGE_SIZE)
3287 goto out_invalid_cdb_field;
3288
3289 transport_set_supported_SAM_opcode(cmd);
3290 return ret;
3291
3292 out_unsupported_cdb:
3293 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3294 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3295 return -EINVAL;
3296 out_invalid_cdb_field:
3297 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3298 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3299 return -EINVAL;
3300 }
3301
3302 /*
3303 * Called from I/O completion to determine which dormant/delayed
3304 * and ordered cmds need to have their tasks added to the execution queue.
3305 */
3306 static void transport_complete_task_attr(struct se_cmd *cmd)
3307 {
3308 struct se_device *dev = cmd->se_dev;
3309 struct se_cmd *cmd_p, *cmd_tmp;
3310 int new_active_tasks = 0;
3311
3312 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3313 atomic_dec(&dev->simple_cmds);
3314 smp_mb__after_atomic_dec();
3315 dev->dev_cur_ordered_id++;
3316 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3317 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3318 cmd->se_ordered_id);
3319 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3320 atomic_dec(&dev->dev_hoq_count);
3321 smp_mb__after_atomic_dec();
3322 dev->dev_cur_ordered_id++;
3323 pr_debug("Incremented dev_cur_ordered_id: %u for"
3324 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3325 cmd->se_ordered_id);
3326 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3327 spin_lock(&dev->ordered_cmd_lock);
3328 list_del(&cmd->se_ordered_node);
3329 atomic_dec(&dev->dev_ordered_sync);
3330 smp_mb__after_atomic_dec();
3331 spin_unlock(&dev->ordered_cmd_lock);
3332
3333 dev->dev_cur_ordered_id++;
3334 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3335 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3336 }
3337 /*
3338 * Process all commands up to the last received
3339 * ORDERED task attribute which requires another blocking
3340 * boundary
3341 */
3342 spin_lock(&dev->delayed_cmd_lock);
3343 list_for_each_entry_safe(cmd_p, cmd_tmp,
3344 &dev->delayed_cmd_list, se_delayed_node) {
3345
3346 list_del(&cmd_p->se_delayed_node);
3347 spin_unlock(&dev->delayed_cmd_lock);
3348
3349 pr_debug("Calling add_tasks() for"
3350 " cmd_p: 0x%02x Task Attr: 0x%02x"
3351 " Dormant -> Active, se_ordered_id: %u\n",
3352 cmd_p->t_task_cdb[0],
3353 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3354
3355 transport_add_tasks_from_cmd(cmd_p);
3356 new_active_tasks++;
3357
3358 spin_lock(&dev->delayed_cmd_lock);
3359 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3360 break;
3361 }
3362 spin_unlock(&dev->delayed_cmd_lock);
3363 /*
3364 * If new tasks have become active, wake up the transport thread
3365 * to do the processing of the Active tasks.
3366 */
3367 if (new_active_tasks != 0)
3368 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3369 }
3370
3371 static void transport_complete_qf(struct se_cmd *cmd)
3372 {
3373 int ret = 0;
3374
3375 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3376 transport_complete_task_attr(cmd);
3377
3378 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3379 ret = cmd->se_tfo->queue_status(cmd);
3380 if (ret)
3381 goto out;
3382 }
3383
3384 switch (cmd->data_direction) {
3385 case DMA_FROM_DEVICE:
3386 ret = cmd->se_tfo->queue_data_in(cmd);
3387 break;
3388 case DMA_TO_DEVICE:
3389 if (cmd->t_bidi_data_sg) {
3390 ret = cmd->se_tfo->queue_data_in(cmd);
3391 if (ret < 0)
3392 break;
3393 }
3394 /* Fall through for DMA_TO_DEVICE */
3395 case DMA_NONE:
3396 ret = cmd->se_tfo->queue_status(cmd);
3397 break;
3398 default:
3399 break;
3400 }
3401
3402 out:
3403 if (ret < 0) {
3404 transport_handle_queue_full(cmd, cmd->se_dev);
3405 return;
3406 }
3407 transport_lun_remove_cmd(cmd);
3408 transport_cmd_check_stop_to_fabric(cmd);
3409 }
3410
3411 static void transport_handle_queue_full(
3412 struct se_cmd *cmd,
3413 struct se_device *dev)
3414 {
3415 spin_lock_irq(&dev->qf_cmd_lock);
3416 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3417 atomic_inc(&dev->dev_qf_count);
3418 smp_mb__after_atomic_inc();
3419 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3420
3421 schedule_work(&cmd->se_dev->qf_work_queue);
3422 }
3423
3424 static void target_complete_ok_work(struct work_struct *work)
3425 {
3426 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3427 int reason = 0, ret;
3428
3429 /*
3430 * Check if we need to move delayed/dormant tasks from cmds on the
3431 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3432 * Attribute.
3433 */
3434 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3435 transport_complete_task_attr(cmd);
3436 /*
3437 * Check to schedule QUEUE_FULL work, or execute an existing
3438 * cmd->transport_qf_callback()
3439 */
3440 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3441 schedule_work(&cmd->se_dev->qf_work_queue);
3442
3443 /*
3444 * Check if we need to retrieve a sense buffer from
3445 * the struct se_cmd in question.
3446 */
3447 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3448 if (transport_get_sense_data(cmd) < 0)
3449 reason = TCM_NON_EXISTENT_LUN;
3450
3451 /*
3452 * Only set when an struct se_task->task_scsi_status returned
3453 * a non GOOD status.
3454 */
3455 if (cmd->scsi_status) {
3456 ret = transport_send_check_condition_and_sense(
3457 cmd, reason, 1);
3458 if (ret == -EAGAIN)
3459 goto queue_full;
3460
3461 transport_lun_remove_cmd(cmd);
3462 transport_cmd_check_stop_to_fabric(cmd);
3463 return;
3464 }
3465 }
3466 /*
3467 * Check for a callback, used by amongst other things
3468 * XDWRITE_READ_10 emulation.
3469 */
3470 if (cmd->transport_complete_callback)
3471 cmd->transport_complete_callback(cmd);
3472
3473 switch (cmd->data_direction) {
3474 case DMA_FROM_DEVICE:
3475 spin_lock(&cmd->se_lun->lun_sep_lock);
3476 if (cmd->se_lun->lun_sep) {
3477 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3478 cmd->data_length;
3479 }
3480 spin_unlock(&cmd->se_lun->lun_sep_lock);
3481
3482 ret = cmd->se_tfo->queue_data_in(cmd);
3483 if (ret == -EAGAIN)
3484 goto queue_full;
3485 break;
3486 case DMA_TO_DEVICE:
3487 spin_lock(&cmd->se_lun->lun_sep_lock);
3488 if (cmd->se_lun->lun_sep) {
3489 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3490 cmd->data_length;
3491 }
3492 spin_unlock(&cmd->se_lun->lun_sep_lock);
3493 /*
3494 * Check if we need to send READ payload for BIDI-COMMAND
3495 */
3496 if (cmd->t_bidi_data_sg) {
3497 spin_lock(&cmd->se_lun->lun_sep_lock);
3498 if (cmd->se_lun->lun_sep) {
3499 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3500 cmd->data_length;
3501 }
3502 spin_unlock(&cmd->se_lun->lun_sep_lock);
3503 ret = cmd->se_tfo->queue_data_in(cmd);
3504 if (ret == -EAGAIN)
3505 goto queue_full;
3506 break;
3507 }
3508 /* Fall through for DMA_TO_DEVICE */
3509 case DMA_NONE:
3510 ret = cmd->se_tfo->queue_status(cmd);
3511 if (ret == -EAGAIN)
3512 goto queue_full;
3513 break;
3514 default:
3515 break;
3516 }
3517
3518 transport_lun_remove_cmd(cmd);
3519 transport_cmd_check_stop_to_fabric(cmd);
3520 return;
3521
3522 queue_full:
3523 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3524 " data_direction: %d\n", cmd, cmd->data_direction);
3525 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3526 transport_handle_queue_full(cmd, cmd->se_dev);
3527 }
3528
3529 static void transport_free_dev_tasks(struct se_cmd *cmd)
3530 {
3531 struct se_task *task, *task_tmp;
3532 unsigned long flags;
3533 LIST_HEAD(dispose_list);
3534
3535 spin_lock_irqsave(&cmd->t_state_lock, flags);
3536 list_for_each_entry_safe(task, task_tmp,
3537 &cmd->t_task_list, t_list) {
3538 if (!(task->task_flags & TF_ACTIVE))
3539 list_move_tail(&task->t_list, &dispose_list);
3540 }
3541 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3542
3543 while (!list_empty(&dispose_list)) {
3544 task = list_first_entry(&dispose_list, struct se_task, t_list);
3545
3546 /*
3547 * We already cancelled all pending timers in
3548 * transport_complete_task, but that was just a pure del_timer,
3549 * so do a full del_timer_sync here to make sure any handler
3550 * that was running at that point has finished execution.
3551 */
3552 del_timer_sync(&task->task_timer);
3553
3554 kfree(task->task_sg);
3555
3556 list_del(&task->t_list);
3557
3558 cmd->se_dev->transport->free_task(task);
3559 }
3560 }
3561
3562 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3563 {
3564 struct scatterlist *sg;
3565 int count;
3566
3567 for_each_sg(sgl, sg, nents, count)
3568 __free_page(sg_page(sg));
3569
3570 kfree(sgl);
3571 }
3572
3573 static inline void transport_free_pages(struct se_cmd *cmd)
3574 {
3575 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3576 return;
3577
3578 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3579 cmd->t_data_sg = NULL;
3580 cmd->t_data_nents = 0;
3581
3582 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3583 cmd->t_bidi_data_sg = NULL;
3584 cmd->t_bidi_data_nents = 0;
3585 }
3586
3587 /**
3588 * transport_put_cmd - release a reference to a command
3589 * @cmd: command to release
3590 *
3591 * This routine releases our reference to the command and frees it if possible.
3592 */
3593 static void transport_put_cmd(struct se_cmd *cmd)
3594 {
3595 unsigned long flags;
3596 int free_tasks = 0;
3597
3598 spin_lock_irqsave(&cmd->t_state_lock, flags);
3599 if (atomic_read(&cmd->t_fe_count)) {
3600 if (!atomic_dec_and_test(&cmd->t_fe_count))
3601 goto out_busy;
3602 }
3603
3604 if (atomic_read(&cmd->t_se_count)) {
3605 if (!atomic_dec_and_test(&cmd->t_se_count))
3606 goto out_busy;
3607 }
3608
3609 if (atomic_read(&cmd->transport_dev_active)) {
3610 atomic_set(&cmd->transport_dev_active, 0);
3611 transport_all_task_dev_remove_state(cmd);
3612 free_tasks = 1;
3613 }
3614 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3615
3616 if (free_tasks != 0)
3617 transport_free_dev_tasks(cmd);
3618
3619 transport_free_pages(cmd);
3620 transport_release_cmd(cmd);
3621 return;
3622 out_busy:
3623 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3624 }
3625
3626 /*
3627 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3628 * allocating in the core.
3629 * @cmd: Associated se_cmd descriptor
3630 * @mem: SGL style memory for TCM WRITE / READ
3631 * @sg_mem_num: Number of SGL elements
3632 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3633 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3634 *
3635 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3636 * of parameters.
3637 */
3638 int transport_generic_map_mem_to_cmd(
3639 struct se_cmd *cmd,
3640 struct scatterlist *sgl,
3641 u32 sgl_count,
3642 struct scatterlist *sgl_bidi,
3643 u32 sgl_bidi_count)
3644 {
3645 if (!sgl || !sgl_count)
3646 return 0;
3647
3648 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3649 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3650
3651 cmd->t_data_sg = sgl;
3652 cmd->t_data_nents = sgl_count;
3653
3654 if (sgl_bidi && sgl_bidi_count) {
3655 cmd->t_bidi_data_sg = sgl_bidi;
3656 cmd->t_bidi_data_nents = sgl_bidi_count;
3657 }
3658 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3659 }
3660
3661 return 0;
3662 }
3663 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3664
3665 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3666 {
3667 struct scatterlist *sg = cmd->t_data_sg;
3668
3669 BUG_ON(!sg);
3670 /*
3671 * We need to take into account a possible offset here for fabrics like
3672 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3673 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3674 */
3675 return kmap(sg_page(sg)) + sg->offset;
3676 }
3677 EXPORT_SYMBOL(transport_kmap_first_data_page);
3678
3679 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3680 {
3681 kunmap(sg_page(cmd->t_data_sg));
3682 }
3683 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3684
3685 static int
3686 transport_generic_get_mem(struct se_cmd *cmd)
3687 {
3688 u32 length = cmd->data_length;
3689 unsigned int nents;
3690 struct page *page;
3691 int i = 0;
3692
3693 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3694 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3695 if (!cmd->t_data_sg)
3696 return -ENOMEM;
3697
3698 cmd->t_data_nents = nents;
3699 sg_init_table(cmd->t_data_sg, nents);
3700
3701 while (length) {
3702 u32 page_len = min_t(u32, length, PAGE_SIZE);
3703 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3704 if (!page)
3705 goto out;
3706
3707 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3708 length -= page_len;
3709 i++;
3710 }
3711 return 0;
3712
3713 out:
3714 while (i >= 0) {
3715 __free_page(sg_page(&cmd->t_data_sg[i]));
3716 i--;
3717 }
3718 kfree(cmd->t_data_sg);
3719 cmd->t_data_sg = NULL;
3720 return -ENOMEM;
3721 }
3722
3723 /* Reduce sectors if they are too long for the device */
3724 static inline sector_t transport_limit_task_sectors(
3725 struct se_device *dev,
3726 unsigned long long lba,
3727 sector_t sectors)
3728 {
3729 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3730
3731 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3732 if ((lba + sectors) > transport_dev_end_lba(dev))
3733 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3734
3735 return sectors;
3736 }
3737
3738
3739 /*
3740 * This function can be used by HW target mode drivers to create a linked
3741 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3742 * This is intended to be called during the completion path by TCM Core
3743 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3744 */
3745 void transport_do_task_sg_chain(struct se_cmd *cmd)
3746 {
3747 struct scatterlist *sg_first = NULL;
3748 struct scatterlist *sg_prev = NULL;
3749 int sg_prev_nents = 0;
3750 struct scatterlist *sg;
3751 struct se_task *task;
3752 u32 chained_nents = 0;
3753 int i;
3754
3755 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3756
3757 /*
3758 * Walk the struct se_task list and setup scatterlist chains
3759 * for each contiguously allocated struct se_task->task_sg[].
3760 */
3761 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3762 if (!task->task_sg)
3763 continue;
3764
3765 if (!sg_first) {
3766 sg_first = task->task_sg;
3767 chained_nents = task->task_sg_nents;
3768 } else {
3769 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3770 chained_nents += task->task_sg_nents;
3771 }
3772 /*
3773 * For the padded tasks, use the extra SGL vector allocated
3774 * in transport_allocate_data_tasks() for the sg_prev_nents
3775 * offset into sg_chain() above.
3776 *
3777 * We do not need the padding for the last task (or a single
3778 * task), but in that case we will never use the sg_prev_nents
3779 * value below which would be incorrect.
3780 */
3781 sg_prev_nents = (task->task_sg_nents + 1);
3782 sg_prev = task->task_sg;
3783 }
3784 /*
3785 * Setup the starting pointer and total t_tasks_sg_linked_no including
3786 * padding SGs for linking and to mark the end.
3787 */
3788 cmd->t_tasks_sg_chained = sg_first;
3789 cmd->t_tasks_sg_chained_no = chained_nents;
3790
3791 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3792 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3793 cmd->t_tasks_sg_chained_no);
3794
3795 for_each_sg(cmd->t_tasks_sg_chained, sg,
3796 cmd->t_tasks_sg_chained_no, i) {
3797
3798 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3799 i, sg, sg_page(sg), sg->length, sg->offset);
3800 if (sg_is_chain(sg))
3801 pr_debug("SG: %p sg_is_chain=1\n", sg);
3802 if (sg_is_last(sg))
3803 pr_debug("SG: %p sg_is_last=1\n", sg);
3804 }
3805 }
3806 EXPORT_SYMBOL(transport_do_task_sg_chain);
3807
3808 /*
3809 * Break up cmd into chunks transport can handle
3810 */
3811 static int transport_allocate_data_tasks(
3812 struct se_cmd *cmd,
3813 unsigned long long lba,
3814 enum dma_data_direction data_direction,
3815 struct scatterlist *sgl,
3816 unsigned int sgl_nents)
3817 {
3818 struct se_task *task;
3819 struct se_device *dev = cmd->se_dev;
3820 unsigned long flags;
3821 int task_count, i;
3822 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3823 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3824 struct scatterlist *sg;
3825 struct scatterlist *cmd_sg;
3826
3827 WARN_ON(cmd->data_length % sector_size);
3828 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3829 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3830
3831 cmd_sg = sgl;
3832 for (i = 0; i < task_count; i++) {
3833 unsigned int task_size, task_sg_nents_padded;
3834 int count;
3835
3836 task = transport_generic_get_task(cmd, data_direction);
3837 if (!task)
3838 return -ENOMEM;
3839
3840 task->task_lba = lba;
3841 task->task_sectors = min(sectors, dev_max_sectors);
3842 task->task_size = task->task_sectors * sector_size;
3843
3844 /*
3845 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3846 * in order to calculate the number per task SGL entries
3847 */
3848 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3849 /*
3850 * Check if the fabric module driver is requesting that all
3851 * struct se_task->task_sg[] be chained together.. If so,
3852 * then allocate an extra padding SG entry for linking and
3853 * marking the end of the chained SGL for every task except
3854 * the last one for (task_count > 1) operation, or skipping
3855 * the extra padding for the (task_count == 1) case.
3856 */
3857 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3858 task_sg_nents_padded = (task->task_sg_nents + 1);
3859 } else
3860 task_sg_nents_padded = task->task_sg_nents;
3861
3862 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3863 task_sg_nents_padded, GFP_KERNEL);
3864 if (!task->task_sg) {
3865 cmd->se_dev->transport->free_task(task);
3866 return -ENOMEM;
3867 }
3868
3869 sg_init_table(task->task_sg, task_sg_nents_padded);
3870
3871 task_size = task->task_size;
3872
3873 /* Build new sgl, only up to task_size */
3874 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3875 if (cmd_sg->length > task_size)
3876 break;
3877
3878 *sg = *cmd_sg;
3879 task_size -= cmd_sg->length;
3880 cmd_sg = sg_next(cmd_sg);
3881 }
3882
3883 lba += task->task_sectors;
3884 sectors -= task->task_sectors;
3885
3886 spin_lock_irqsave(&cmd->t_state_lock, flags);
3887 list_add_tail(&task->t_list, &cmd->t_task_list);
3888 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3889 }
3890
3891 return task_count;
3892 }
3893
3894 static int
3895 transport_allocate_control_task(struct se_cmd *cmd)
3896 {
3897 struct se_task *task;
3898 unsigned long flags;
3899
3900 task = transport_generic_get_task(cmd, cmd->data_direction);
3901 if (!task)
3902 return -ENOMEM;
3903
3904 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
3905 GFP_KERNEL);
3906 if (!task->task_sg) {
3907 cmd->se_dev->transport->free_task(task);
3908 return -ENOMEM;
3909 }
3910
3911 memcpy(task->task_sg, cmd->t_data_sg,
3912 sizeof(struct scatterlist) * cmd->t_data_nents);
3913 task->task_size = cmd->data_length;
3914 task->task_sg_nents = cmd->t_data_nents;
3915
3916 spin_lock_irqsave(&cmd->t_state_lock, flags);
3917 list_add_tail(&task->t_list, &cmd->t_task_list);
3918 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3919
3920 /* Success! Return number of tasks allocated */
3921 return 1;
3922 }
3923
3924 static u32 transport_allocate_tasks(
3925 struct se_cmd *cmd,
3926 unsigned long long lba,
3927 enum dma_data_direction data_direction,
3928 struct scatterlist *sgl,
3929 unsigned int sgl_nents)
3930 {
3931 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3932 if (transport_cmd_get_valid_sectors(cmd) < 0)
3933 return -EINVAL;
3934
3935 return transport_allocate_data_tasks(cmd, lba, data_direction,
3936 sgl, sgl_nents);
3937 } else
3938 return transport_allocate_control_task(cmd);
3939
3940 }
3941
3942
3943 /*
3944 * Allocate any required ressources to execute the command, and either place
3945 * it on the execution queue if possible. For writes we might not have the
3946 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3947 */
3948 int transport_generic_new_cmd(struct se_cmd *cmd)
3949 {
3950 struct se_device *dev = cmd->se_dev;
3951 int task_cdbs;
3952 int set_counts = 1;
3953 int ret = 0;
3954
3955 /*
3956 * Determine is the TCM fabric module has already allocated physical
3957 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3958 * beforehand.
3959 */
3960 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3961 cmd->data_length) {
3962 ret = transport_generic_get_mem(cmd);
3963 if (ret < 0)
3964 return ret;
3965 }
3966
3967 /*
3968 * Setup any BIDI READ tasks and memory from
3969 * cmd->t_mem_bidi_list so the READ struct se_tasks
3970 * are queued first for the non pSCSI passthrough case.
3971 */
3972 if (cmd->t_bidi_data_sg &&
3973 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3974 ret = transport_allocate_tasks(cmd,
3975 cmd->t_task_lba,
3976 DMA_FROM_DEVICE,
3977 cmd->t_bidi_data_sg,
3978 cmd->t_bidi_data_nents);
3979 if (ret <= 0)
3980 goto out_fail;
3981
3982 atomic_inc(&cmd->t_fe_count);
3983 atomic_inc(&cmd->t_se_count);
3984 set_counts = 0;
3985 }
3986 /*
3987 * Setup the tasks and memory from cmd->t_mem_list
3988 * Note for BIDI transfers this will contain the WRITE payload
3989 */
3990 task_cdbs = transport_allocate_tasks(cmd,
3991 cmd->t_task_lba,
3992 cmd->data_direction,
3993 cmd->t_data_sg,
3994 cmd->t_data_nents);
3995 if (task_cdbs <= 0)
3996 goto out_fail;
3997
3998 if (set_counts) {
3999 atomic_inc(&cmd->t_fe_count);
4000 atomic_inc(&cmd->t_se_count);
4001 }
4002
4003 cmd->t_task_list_num = task_cdbs;
4004
4005 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
4006 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
4007 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
4008
4009 /*
4010 * For WRITEs, let the fabric know its buffer is ready..
4011 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4012 * will be added to the struct se_device execution queue after its WRITE
4013 * data has arrived. (ie: It gets handled by the transport processing
4014 * thread a second time)
4015 */
4016 if (cmd->data_direction == DMA_TO_DEVICE) {
4017 transport_add_tasks_to_state_queue(cmd);
4018 return transport_generic_write_pending(cmd);
4019 }
4020 /*
4021 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4022 * to the execution queue.
4023 */
4024 transport_execute_tasks(cmd);
4025 return 0;
4026
4027 out_fail:
4028 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4029 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4030 return -EINVAL;
4031 }
4032 EXPORT_SYMBOL(transport_generic_new_cmd);
4033
4034 /* transport_generic_process_write():
4035 *
4036 *
4037 */
4038 void transport_generic_process_write(struct se_cmd *cmd)
4039 {
4040 transport_execute_tasks(cmd);
4041 }
4042 EXPORT_SYMBOL(transport_generic_process_write);
4043
4044 static void transport_write_pending_qf(struct se_cmd *cmd)
4045 {
4046 if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4047 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4048 cmd);
4049 transport_handle_queue_full(cmd, cmd->se_dev);
4050 }
4051 }
4052
4053 static int transport_generic_write_pending(struct se_cmd *cmd)
4054 {
4055 unsigned long flags;
4056 int ret;
4057
4058 spin_lock_irqsave(&cmd->t_state_lock, flags);
4059 cmd->t_state = TRANSPORT_WRITE_PENDING;
4060 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4061
4062 /*
4063 * Clear the se_cmd for WRITE_PENDING status in order to set
4064 * cmd->t_transport_active=0 so that transport_generic_handle_data
4065 * can be called from HW target mode interrupt code. This is safe
4066 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4067 * because the se_cmd->se_lun pointer is not being cleared.
4068 */
4069 transport_cmd_check_stop(cmd, 1, 0);
4070
4071 /*
4072 * Call the fabric write_pending function here to let the
4073 * frontend know that WRITE buffers are ready.
4074 */
4075 ret = cmd->se_tfo->write_pending(cmd);
4076 if (ret == -EAGAIN)
4077 goto queue_full;
4078 else if (ret < 0)
4079 return ret;
4080
4081 return PYX_TRANSPORT_WRITE_PENDING;
4082
4083 queue_full:
4084 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4085 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4086 transport_handle_queue_full(cmd, cmd->se_dev);
4087 return ret;
4088 }
4089
4090 /**
4091 * transport_release_cmd - free a command
4092 * @cmd: command to free
4093 *
4094 * This routine unconditionally frees a command, and reference counting
4095 * or list removal must be done in the caller.
4096 */
4097 void transport_release_cmd(struct se_cmd *cmd)
4098 {
4099 BUG_ON(!cmd->se_tfo);
4100
4101 if (cmd->se_tmr_req)
4102 core_tmr_release_req(cmd->se_tmr_req);
4103 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4104 kfree(cmd->t_task_cdb);
4105 cmd->se_tfo->release_cmd(cmd);
4106 }
4107 EXPORT_SYMBOL(transport_release_cmd);
4108
4109 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4110 {
4111 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4112 if (wait_for_tasks && cmd->se_tmr_req)
4113 transport_wait_for_tasks(cmd);
4114
4115 transport_release_cmd(cmd);
4116 } else {
4117 if (wait_for_tasks)
4118 transport_wait_for_tasks(cmd);
4119
4120 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4121
4122 if (cmd->se_lun)
4123 transport_lun_remove_cmd(cmd);
4124
4125 transport_free_dev_tasks(cmd);
4126
4127 transport_put_cmd(cmd);
4128 }
4129 }
4130 EXPORT_SYMBOL(transport_generic_free_cmd);
4131
4132 /* transport_lun_wait_for_tasks():
4133 *
4134 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4135 * an struct se_lun to be successfully shutdown.
4136 */
4137 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4138 {
4139 unsigned long flags;
4140 int ret;
4141 /*
4142 * If the frontend has already requested this struct se_cmd to
4143 * be stopped, we can safely ignore this struct se_cmd.
4144 */
4145 spin_lock_irqsave(&cmd->t_state_lock, flags);
4146 if (atomic_read(&cmd->t_transport_stop)) {
4147 atomic_set(&cmd->transport_lun_stop, 0);
4148 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4149 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4150 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4151 transport_cmd_check_stop(cmd, 1, 0);
4152 return -EPERM;
4153 }
4154 atomic_set(&cmd->transport_lun_fe_stop, 1);
4155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4156
4157 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4158
4159 ret = transport_stop_tasks_for_cmd(cmd);
4160
4161 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4162 " %d\n", cmd, cmd->t_task_list_num, ret);
4163 if (!ret) {
4164 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4165 cmd->se_tfo->get_task_tag(cmd));
4166 wait_for_completion(&cmd->transport_lun_stop_comp);
4167 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4168 cmd->se_tfo->get_task_tag(cmd));
4169 }
4170 transport_remove_cmd_from_queue(cmd);
4171
4172 return 0;
4173 }
4174
4175 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4176 {
4177 struct se_cmd *cmd = NULL;
4178 unsigned long lun_flags, cmd_flags;
4179 /*
4180 * Do exception processing and return CHECK_CONDITION status to the
4181 * Initiator Port.
4182 */
4183 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4184 while (!list_empty(&lun->lun_cmd_list)) {
4185 cmd = list_first_entry(&lun->lun_cmd_list,
4186 struct se_cmd, se_lun_node);
4187 list_del(&cmd->se_lun_node);
4188
4189 atomic_set(&cmd->transport_lun_active, 0);
4190 /*
4191 * This will notify iscsi_target_transport.c:
4192 * transport_cmd_check_stop() that a LUN shutdown is in
4193 * progress for the iscsi_cmd_t.
4194 */
4195 spin_lock(&cmd->t_state_lock);
4196 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4197 "_lun_stop for ITT: 0x%08x\n",
4198 cmd->se_lun->unpacked_lun,
4199 cmd->se_tfo->get_task_tag(cmd));
4200 atomic_set(&cmd->transport_lun_stop, 1);
4201 spin_unlock(&cmd->t_state_lock);
4202
4203 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4204
4205 if (!cmd->se_lun) {
4206 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4207 cmd->se_tfo->get_task_tag(cmd),
4208 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4209 BUG();
4210 }
4211 /*
4212 * If the Storage engine still owns the iscsi_cmd_t, determine
4213 * and/or stop its context.
4214 */
4215 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4216 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4217 cmd->se_tfo->get_task_tag(cmd));
4218
4219 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4220 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4221 continue;
4222 }
4223
4224 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4225 "_wait_for_tasks(): SUCCESS\n",
4226 cmd->se_lun->unpacked_lun,
4227 cmd->se_tfo->get_task_tag(cmd));
4228
4229 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4230 if (!atomic_read(&cmd->transport_dev_active)) {
4231 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4232 goto check_cond;
4233 }
4234 atomic_set(&cmd->transport_dev_active, 0);
4235 transport_all_task_dev_remove_state(cmd);
4236 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4237
4238 transport_free_dev_tasks(cmd);
4239 /*
4240 * The Storage engine stopped this struct se_cmd before it was
4241 * send to the fabric frontend for delivery back to the
4242 * Initiator Node. Return this SCSI CDB back with an
4243 * CHECK_CONDITION status.
4244 */
4245 check_cond:
4246 transport_send_check_condition_and_sense(cmd,
4247 TCM_NON_EXISTENT_LUN, 0);
4248 /*
4249 * If the fabric frontend is waiting for this iscsi_cmd_t to
4250 * be released, notify the waiting thread now that LU has
4251 * finished accessing it.
4252 */
4253 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4254 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4255 pr_debug("SE_LUN[%d] - Detected FE stop for"
4256 " struct se_cmd: %p ITT: 0x%08x\n",
4257 lun->unpacked_lun,
4258 cmd, cmd->se_tfo->get_task_tag(cmd));
4259
4260 spin_unlock_irqrestore(&cmd->t_state_lock,
4261 cmd_flags);
4262 transport_cmd_check_stop(cmd, 1, 0);
4263 complete(&cmd->transport_lun_fe_stop_comp);
4264 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4265 continue;
4266 }
4267 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4268 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4269
4270 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4271 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4272 }
4273 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4274 }
4275
4276 static int transport_clear_lun_thread(void *p)
4277 {
4278 struct se_lun *lun = (struct se_lun *)p;
4279
4280 __transport_clear_lun_from_sessions(lun);
4281 complete(&lun->lun_shutdown_comp);
4282
4283 return 0;
4284 }
4285
4286 int transport_clear_lun_from_sessions(struct se_lun *lun)
4287 {
4288 struct task_struct *kt;
4289
4290 kt = kthread_run(transport_clear_lun_thread, lun,
4291 "tcm_cl_%u", lun->unpacked_lun);
4292 if (IS_ERR(kt)) {
4293 pr_err("Unable to start clear_lun thread\n");
4294 return PTR_ERR(kt);
4295 }
4296 wait_for_completion(&lun->lun_shutdown_comp);
4297
4298 return 0;
4299 }
4300
4301 /**
4302 * transport_wait_for_tasks - wait for completion to occur
4303 * @cmd: command to wait
4304 *
4305 * Called from frontend fabric context to wait for storage engine
4306 * to pause and/or release frontend generated struct se_cmd.
4307 */
4308 void transport_wait_for_tasks(struct se_cmd *cmd)
4309 {
4310 unsigned long flags;
4311
4312 spin_lock_irqsave(&cmd->t_state_lock, flags);
4313 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4314 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4315 return;
4316 }
4317 /*
4318 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4319 * has been set in transport_set_supported_SAM_opcode().
4320 */
4321 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4322 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4323 return;
4324 }
4325 /*
4326 * If we are already stopped due to an external event (ie: LUN shutdown)
4327 * sleep until the connection can have the passed struct se_cmd back.
4328 * The cmd->transport_lun_stopped_sem will be upped by
4329 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4330 * has completed its operation on the struct se_cmd.
4331 */
4332 if (atomic_read(&cmd->transport_lun_stop)) {
4333
4334 pr_debug("wait_for_tasks: Stopping"
4335 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4336 "_stop_comp); for ITT: 0x%08x\n",
4337 cmd->se_tfo->get_task_tag(cmd));
4338 /*
4339 * There is a special case for WRITES where a FE exception +
4340 * LUN shutdown means ConfigFS context is still sleeping on
4341 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4342 * We go ahead and up transport_lun_stop_comp just to be sure
4343 * here.
4344 */
4345 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4346 complete(&cmd->transport_lun_stop_comp);
4347 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4348 spin_lock_irqsave(&cmd->t_state_lock, flags);
4349
4350 transport_all_task_dev_remove_state(cmd);
4351 /*
4352 * At this point, the frontend who was the originator of this
4353 * struct se_cmd, now owns the structure and can be released through
4354 * normal means below.
4355 */
4356 pr_debug("wait_for_tasks: Stopped"
4357 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4358 "stop_comp); for ITT: 0x%08x\n",
4359 cmd->se_tfo->get_task_tag(cmd));
4360
4361 atomic_set(&cmd->transport_lun_stop, 0);
4362 }
4363 if (!atomic_read(&cmd->t_transport_active) ||
4364 atomic_read(&cmd->t_transport_aborted)) {
4365 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4366 return;
4367 }
4368
4369 atomic_set(&cmd->t_transport_stop, 1);
4370
4371 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4372 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4373 cmd, cmd->se_tfo->get_task_tag(cmd),
4374 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4375
4376 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4377
4378 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4379
4380 wait_for_completion(&cmd->t_transport_stop_comp);
4381
4382 spin_lock_irqsave(&cmd->t_state_lock, flags);
4383 atomic_set(&cmd->t_transport_active, 0);
4384 atomic_set(&cmd->t_transport_stop, 0);
4385
4386 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4387 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4388 cmd->se_tfo->get_task_tag(cmd));
4389
4390 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4391 }
4392 EXPORT_SYMBOL(transport_wait_for_tasks);
4393
4394 static int transport_get_sense_codes(
4395 struct se_cmd *cmd,
4396 u8 *asc,
4397 u8 *ascq)
4398 {
4399 *asc = cmd->scsi_asc;
4400 *ascq = cmd->scsi_ascq;
4401
4402 return 0;
4403 }
4404
4405 static int transport_set_sense_codes(
4406 struct se_cmd *cmd,
4407 u8 asc,
4408 u8 ascq)
4409 {
4410 cmd->scsi_asc = asc;
4411 cmd->scsi_ascq = ascq;
4412
4413 return 0;
4414 }
4415
4416 int transport_send_check_condition_and_sense(
4417 struct se_cmd *cmd,
4418 u8 reason,
4419 int from_transport)
4420 {
4421 unsigned char *buffer = cmd->sense_buffer;
4422 unsigned long flags;
4423 int offset;
4424 u8 asc = 0, ascq = 0;
4425
4426 spin_lock_irqsave(&cmd->t_state_lock, flags);
4427 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4428 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4429 return 0;
4430 }
4431 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4432 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4433
4434 if (!reason && from_transport)
4435 goto after_reason;
4436
4437 if (!from_transport)
4438 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4439 /*
4440 * Data Segment and SenseLength of the fabric response PDU.
4441 *
4442 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4443 * from include/scsi/scsi_cmnd.h
4444 */
4445 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4446 TRANSPORT_SENSE_BUFFER);
4447 /*
4448 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4449 * SENSE KEY values from include/scsi/scsi.h
4450 */
4451 switch (reason) {
4452 case TCM_NON_EXISTENT_LUN:
4453 /* CURRENT ERROR */
4454 buffer[offset] = 0x70;
4455 /* ILLEGAL REQUEST */
4456 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4457 /* LOGICAL UNIT NOT SUPPORTED */
4458 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4459 break;
4460 case TCM_UNSUPPORTED_SCSI_OPCODE:
4461 case TCM_SECTOR_COUNT_TOO_MANY:
4462 /* CURRENT ERROR */
4463 buffer[offset] = 0x70;
4464 /* ILLEGAL REQUEST */
4465 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4466 /* INVALID COMMAND OPERATION CODE */
4467 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4468 break;
4469 case TCM_UNKNOWN_MODE_PAGE:
4470 /* CURRENT ERROR */
4471 buffer[offset] = 0x70;
4472 /* ILLEGAL REQUEST */
4473 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4474 /* INVALID FIELD IN CDB */
4475 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4476 break;
4477 case TCM_CHECK_CONDITION_ABORT_CMD:
4478 /* CURRENT ERROR */
4479 buffer[offset] = 0x70;
4480 /* ABORTED COMMAND */
4481 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4482 /* BUS DEVICE RESET FUNCTION OCCURRED */
4483 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4484 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4485 break;
4486 case TCM_INCORRECT_AMOUNT_OF_DATA:
4487 /* CURRENT ERROR */
4488 buffer[offset] = 0x70;
4489 /* ABORTED COMMAND */
4490 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4491 /* WRITE ERROR */
4492 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4493 /* NOT ENOUGH UNSOLICITED DATA */
4494 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4495 break;
4496 case TCM_INVALID_CDB_FIELD:
4497 /* CURRENT ERROR */
4498 buffer[offset] = 0x70;
4499 /* ABORTED COMMAND */
4500 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4501 /* INVALID FIELD IN CDB */
4502 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4503 break;
4504 case TCM_INVALID_PARAMETER_LIST:
4505 /* CURRENT ERROR */
4506 buffer[offset] = 0x70;
4507 /* ABORTED COMMAND */
4508 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4509 /* INVALID FIELD IN PARAMETER LIST */
4510 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4511 break;
4512 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4513 /* CURRENT ERROR */
4514 buffer[offset] = 0x70;
4515 /* ABORTED COMMAND */
4516 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4517 /* WRITE ERROR */
4518 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4519 /* UNEXPECTED_UNSOLICITED_DATA */
4520 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4521 break;
4522 case TCM_SERVICE_CRC_ERROR:
4523 /* CURRENT ERROR */
4524 buffer[offset] = 0x70;
4525 /* ABORTED COMMAND */
4526 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4527 /* PROTOCOL SERVICE CRC ERROR */
4528 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4529 /* N/A */
4530 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4531 break;
4532 case TCM_SNACK_REJECTED:
4533 /* CURRENT ERROR */
4534 buffer[offset] = 0x70;
4535 /* ABORTED COMMAND */
4536 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4537 /* READ ERROR */
4538 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4539 /* FAILED RETRANSMISSION REQUEST */
4540 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4541 break;
4542 case TCM_WRITE_PROTECTED:
4543 /* CURRENT ERROR */
4544 buffer[offset] = 0x70;
4545 /* DATA PROTECT */
4546 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4547 /* WRITE PROTECTED */
4548 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4549 break;
4550 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4551 /* CURRENT ERROR */
4552 buffer[offset] = 0x70;
4553 /* UNIT ATTENTION */
4554 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4555 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4556 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4557 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4558 break;
4559 case TCM_CHECK_CONDITION_NOT_READY:
4560 /* CURRENT ERROR */
4561 buffer[offset] = 0x70;
4562 /* Not Ready */
4563 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4564 transport_get_sense_codes(cmd, &asc, &ascq);
4565 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4566 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4567 break;
4568 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4569 default:
4570 /* CURRENT ERROR */
4571 buffer[offset] = 0x70;
4572 /* ILLEGAL REQUEST */
4573 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4574 /* LOGICAL UNIT COMMUNICATION FAILURE */
4575 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4576 break;
4577 }
4578 /*
4579 * This code uses linux/include/scsi/scsi.h SAM status codes!
4580 */
4581 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4582 /*
4583 * Automatically padded, this value is encoded in the fabric's
4584 * data_length response PDU containing the SCSI defined sense data.
4585 */
4586 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4587
4588 after_reason:
4589 return cmd->se_tfo->queue_status(cmd);
4590 }
4591 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4592
4593 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4594 {
4595 int ret = 0;
4596
4597 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4598 if (!send_status ||
4599 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4600 return 1;
4601 #if 0
4602 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4603 " status for CDB: 0x%02x ITT: 0x%08x\n",
4604 cmd->t_task_cdb[0],
4605 cmd->se_tfo->get_task_tag(cmd));
4606 #endif
4607 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4608 cmd->se_tfo->queue_status(cmd);
4609 ret = 1;
4610 }
4611 return ret;
4612 }
4613 EXPORT_SYMBOL(transport_check_aborted_status);
4614
4615 void transport_send_task_abort(struct se_cmd *cmd)
4616 {
4617 unsigned long flags;
4618
4619 spin_lock_irqsave(&cmd->t_state_lock, flags);
4620 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4621 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4622 return;
4623 }
4624 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4625
4626 /*
4627 * If there are still expected incoming fabric WRITEs, we wait
4628 * until until they have completed before sending a TASK_ABORTED
4629 * response. This response with TASK_ABORTED status will be
4630 * queued back to fabric module by transport_check_aborted_status().
4631 */
4632 if (cmd->data_direction == DMA_TO_DEVICE) {
4633 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4634 atomic_inc(&cmd->t_transport_aborted);
4635 smp_mb__after_atomic_inc();
4636 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4637 transport_new_cmd_failure(cmd);
4638 return;
4639 }
4640 }
4641 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4642 #if 0
4643 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4644 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4645 cmd->se_tfo->get_task_tag(cmd));
4646 #endif
4647 cmd->se_tfo->queue_status(cmd);
4648 }
4649
4650 /* transport_generic_do_tmr():
4651 *
4652 *
4653 */
4654 int transport_generic_do_tmr(struct se_cmd *cmd)
4655 {
4656 struct se_device *dev = cmd->se_dev;
4657 struct se_tmr_req *tmr = cmd->se_tmr_req;
4658 int ret;
4659
4660 switch (tmr->function) {
4661 case TMR_ABORT_TASK:
4662 tmr->response = TMR_FUNCTION_REJECTED;
4663 break;
4664 case TMR_ABORT_TASK_SET:
4665 case TMR_CLEAR_ACA:
4666 case TMR_CLEAR_TASK_SET:
4667 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4668 break;
4669 case TMR_LUN_RESET:
4670 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4671 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4672 TMR_FUNCTION_REJECTED;
4673 break;
4674 case TMR_TARGET_WARM_RESET:
4675 tmr->response = TMR_FUNCTION_REJECTED;
4676 break;
4677 case TMR_TARGET_COLD_RESET:
4678 tmr->response = TMR_FUNCTION_REJECTED;
4679 break;
4680 default:
4681 pr_err("Uknown TMR function: 0x%02x.\n",
4682 tmr->function);
4683 tmr->response = TMR_FUNCTION_REJECTED;
4684 break;
4685 }
4686
4687 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4688 cmd->se_tfo->queue_tm_rsp(cmd);
4689
4690 transport_cmd_check_stop_to_fabric(cmd);
4691 return 0;
4692 }
4693
4694 /* transport_processing_thread():
4695 *
4696 *
4697 */
4698 static int transport_processing_thread(void *param)
4699 {
4700 int ret;
4701 struct se_cmd *cmd;
4702 struct se_device *dev = (struct se_device *) param;
4703
4704 set_user_nice(current, -20);
4705
4706 while (!kthread_should_stop()) {
4707 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4708 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4709 kthread_should_stop());
4710 if (ret < 0)
4711 goto out;
4712
4713 get_cmd:
4714 __transport_execute_tasks(dev);
4715
4716 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4717 if (!cmd)
4718 continue;
4719
4720 switch (cmd->t_state) {
4721 case TRANSPORT_NEW_CMD:
4722 BUG();
4723 break;
4724 case TRANSPORT_NEW_CMD_MAP:
4725 if (!cmd->se_tfo->new_cmd_map) {
4726 pr_err("cmd->se_tfo->new_cmd_map is"
4727 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4728 BUG();
4729 }
4730 ret = cmd->se_tfo->new_cmd_map(cmd);
4731 if (ret < 0) {
4732 cmd->transport_error_status = ret;
4733 transport_generic_request_failure(cmd,
4734 0, (cmd->data_direction !=
4735 DMA_TO_DEVICE));
4736 break;
4737 }
4738 ret = transport_generic_new_cmd(cmd);
4739 if (ret == -EAGAIN)
4740 break;
4741 else if (ret < 0) {
4742 cmd->transport_error_status = ret;
4743 transport_generic_request_failure(cmd,
4744 0, (cmd->data_direction !=
4745 DMA_TO_DEVICE));
4746 }
4747 break;
4748 case TRANSPORT_PROCESS_WRITE:
4749 transport_generic_process_write(cmd);
4750 break;
4751 case TRANSPORT_FREE_CMD_INTR:
4752 transport_generic_free_cmd(cmd, 0);
4753 break;
4754 case TRANSPORT_PROCESS_TMR:
4755 transport_generic_do_tmr(cmd);
4756 break;
4757 case TRANSPORT_COMPLETE_QF_WP:
4758 transport_write_pending_qf(cmd);
4759 break;
4760 case TRANSPORT_COMPLETE_QF_OK:
4761 transport_complete_qf(cmd);
4762 break;
4763 default:
4764 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4765 "i_state: %d on SE LUN: %u\n",
4766 cmd->t_state,
4767 cmd->se_tfo->get_task_tag(cmd),
4768 cmd->se_tfo->get_cmd_state(cmd),
4769 cmd->se_lun->unpacked_lun);
4770 BUG();
4771 }
4772
4773 goto get_cmd;
4774 }
4775
4776 out:
4777 WARN_ON(!list_empty(&dev->state_task_list));
4778 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4779 dev->process_thread = NULL;
4780 return 0;
4781 }
This page took 0.137998 seconds and 5 git commands to generate.