Merge branch 'drm-next' of ../main_line/linux-drm into dave-drm-next
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static int transport_generic_get_mem(struct se_cmd *cmd);
76 static void transport_put_cmd(struct se_cmd *cmd);
77 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
78 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
79 static void target_complete_ok_work(struct work_struct *work);
80
81 int init_se_kmem_caches(void)
82 {
83 se_sess_cache = kmem_cache_create("se_sess_cache",
84 sizeof(struct se_session), __alignof__(struct se_session),
85 0, NULL);
86 if (!se_sess_cache) {
87 pr_err("kmem_cache_create() for struct se_session"
88 " failed\n");
89 goto out;
90 }
91 se_ua_cache = kmem_cache_create("se_ua_cache",
92 sizeof(struct se_ua), __alignof__(struct se_ua),
93 0, NULL);
94 if (!se_ua_cache) {
95 pr_err("kmem_cache_create() for struct se_ua failed\n");
96 goto out_free_sess_cache;
97 }
98 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
99 sizeof(struct t10_pr_registration),
100 __alignof__(struct t10_pr_registration), 0, NULL);
101 if (!t10_pr_reg_cache) {
102 pr_err("kmem_cache_create() for struct t10_pr_registration"
103 " failed\n");
104 goto out_free_ua_cache;
105 }
106 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
107 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
108 0, NULL);
109 if (!t10_alua_lu_gp_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
111 " failed\n");
112 goto out_free_pr_reg_cache;
113 }
114 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
115 sizeof(struct t10_alua_lu_gp_member),
116 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
117 if (!t10_alua_lu_gp_mem_cache) {
118 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
119 "cache failed\n");
120 goto out_free_lu_gp_cache;
121 }
122 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
123 sizeof(struct t10_alua_tg_pt_gp),
124 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
125 if (!t10_alua_tg_pt_gp_cache) {
126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
127 "cache failed\n");
128 goto out_free_lu_gp_mem_cache;
129 }
130 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
131 "t10_alua_tg_pt_gp_mem_cache",
132 sizeof(struct t10_alua_tg_pt_gp_member),
133 __alignof__(struct t10_alua_tg_pt_gp_member),
134 0, NULL);
135 if (!t10_alua_tg_pt_gp_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "mem_t failed\n");
138 goto out_free_tg_pt_gp_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_tg_pt_gp_mem_cache;
145
146 return 0;
147
148 out_free_tg_pt_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
150 out_free_tg_pt_gp_cache:
151 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
152 out_free_lu_gp_mem_cache:
153 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
154 out_free_lu_gp_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_cache);
156 out_free_pr_reg_cache:
157 kmem_cache_destroy(t10_pr_reg_cache);
158 out_free_ua_cache:
159 kmem_cache_destroy(se_ua_cache);
160 out_free_sess_cache:
161 kmem_cache_destroy(se_sess_cache);
162 out:
163 return -ENOMEM;
164 }
165
166 void release_se_kmem_caches(void)
167 {
168 destroy_workqueue(target_completion_wq);
169 kmem_cache_destroy(se_sess_cache);
170 kmem_cache_destroy(se_ua_cache);
171 kmem_cache_destroy(t10_pr_reg_cache);
172 kmem_cache_destroy(t10_alua_lu_gp_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
176 }
177
178 /* This code ensures unique mib indexes are handed out. */
179 static DEFINE_SPINLOCK(scsi_mib_index_lock);
180 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
181
182 /*
183 * Allocate a new row index for the entry type specified
184 */
185 u32 scsi_get_new_index(scsi_index_t type)
186 {
187 u32 new_index;
188
189 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
190
191 spin_lock(&scsi_mib_index_lock);
192 new_index = ++scsi_mib_index[type];
193 spin_unlock(&scsi_mib_index_lock);
194
195 return new_index;
196 }
197
198 static void transport_init_queue_obj(struct se_queue_obj *qobj)
199 {
200 atomic_set(&qobj->queue_cnt, 0);
201 INIT_LIST_HEAD(&qobj->qobj_list);
202 init_waitqueue_head(&qobj->thread_wq);
203 spin_lock_init(&qobj->cmd_queue_lock);
204 }
205
206 void transport_subsystem_check_init(void)
207 {
208 int ret;
209
210 if (sub_api_initialized)
211 return;
212
213 ret = request_module("target_core_iblock");
214 if (ret != 0)
215 pr_err("Unable to load target_core_iblock\n");
216
217 ret = request_module("target_core_file");
218 if (ret != 0)
219 pr_err("Unable to load target_core_file\n");
220
221 ret = request_module("target_core_pscsi");
222 if (ret != 0)
223 pr_err("Unable to load target_core_pscsi\n");
224
225 ret = request_module("target_core_stgt");
226 if (ret != 0)
227 pr_err("Unable to load target_core_stgt\n");
228
229 sub_api_initialized = 1;
230 return;
231 }
232
233 struct se_session *transport_init_session(void)
234 {
235 struct se_session *se_sess;
236
237 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
238 if (!se_sess) {
239 pr_err("Unable to allocate struct se_session from"
240 " se_sess_cache\n");
241 return ERR_PTR(-ENOMEM);
242 }
243 INIT_LIST_HEAD(&se_sess->sess_list);
244 INIT_LIST_HEAD(&se_sess->sess_acl_list);
245 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
246 INIT_LIST_HEAD(&se_sess->sess_wait_list);
247 spin_lock_init(&se_sess->sess_cmd_lock);
248 kref_init(&se_sess->sess_kref);
249
250 return se_sess;
251 }
252 EXPORT_SYMBOL(transport_init_session);
253
254 /*
255 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
256 */
257 void __transport_register_session(
258 struct se_portal_group *se_tpg,
259 struct se_node_acl *se_nacl,
260 struct se_session *se_sess,
261 void *fabric_sess_ptr)
262 {
263 unsigned char buf[PR_REG_ISID_LEN];
264
265 se_sess->se_tpg = se_tpg;
266 se_sess->fabric_sess_ptr = fabric_sess_ptr;
267 /*
268 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269 *
270 * Only set for struct se_session's that will actually be moving I/O.
271 * eg: *NOT* discovery sessions.
272 */
273 if (se_nacl) {
274 /*
275 * If the fabric module supports an ISID based TransportID,
276 * save this value in binary from the fabric I_T Nexus now.
277 */
278 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279 memset(&buf[0], 0, PR_REG_ISID_LEN);
280 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281 &buf[0], PR_REG_ISID_LEN);
282 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283 }
284 kref_get(&se_nacl->acl_kref);
285
286 spin_lock_irq(&se_nacl->nacl_sess_lock);
287 /*
288 * The se_nacl->nacl_sess pointer will be set to the
289 * last active I_T Nexus for each struct se_node_acl.
290 */
291 se_nacl->nacl_sess = se_sess;
292
293 list_add_tail(&se_sess->sess_acl_list,
294 &se_nacl->acl_sess_list);
295 spin_unlock_irq(&se_nacl->nacl_sess_lock);
296 }
297 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
298
299 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
300 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
301 }
302 EXPORT_SYMBOL(__transport_register_session);
303
304 void transport_register_session(
305 struct se_portal_group *se_tpg,
306 struct se_node_acl *se_nacl,
307 struct se_session *se_sess,
308 void *fabric_sess_ptr)
309 {
310 unsigned long flags;
311
312 spin_lock_irqsave(&se_tpg->session_lock, flags);
313 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
314 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
315 }
316 EXPORT_SYMBOL(transport_register_session);
317
318 void target_release_session(struct kref *kref)
319 {
320 struct se_session *se_sess = container_of(kref,
321 struct se_session, sess_kref);
322 struct se_portal_group *se_tpg = se_sess->se_tpg;
323
324 se_tpg->se_tpg_tfo->close_session(se_sess);
325 }
326
327 void target_get_session(struct se_session *se_sess)
328 {
329 kref_get(&se_sess->sess_kref);
330 }
331 EXPORT_SYMBOL(target_get_session);
332
333 void target_put_session(struct se_session *se_sess)
334 {
335 struct se_portal_group *tpg = se_sess->se_tpg;
336
337 if (tpg->se_tpg_tfo->put_session != NULL) {
338 tpg->se_tpg_tfo->put_session(se_sess);
339 return;
340 }
341 kref_put(&se_sess->sess_kref, target_release_session);
342 }
343 EXPORT_SYMBOL(target_put_session);
344
345 static void target_complete_nacl(struct kref *kref)
346 {
347 struct se_node_acl *nacl = container_of(kref,
348 struct se_node_acl, acl_kref);
349
350 complete(&nacl->acl_free_comp);
351 }
352
353 void target_put_nacl(struct se_node_acl *nacl)
354 {
355 kref_put(&nacl->acl_kref, target_complete_nacl);
356 }
357
358 void transport_deregister_session_configfs(struct se_session *se_sess)
359 {
360 struct se_node_acl *se_nacl;
361 unsigned long flags;
362 /*
363 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
364 */
365 se_nacl = se_sess->se_node_acl;
366 if (se_nacl) {
367 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
368 if (se_nacl->acl_stop == 0)
369 list_del(&se_sess->sess_acl_list);
370 /*
371 * If the session list is empty, then clear the pointer.
372 * Otherwise, set the struct se_session pointer from the tail
373 * element of the per struct se_node_acl active session list.
374 */
375 if (list_empty(&se_nacl->acl_sess_list))
376 se_nacl->nacl_sess = NULL;
377 else {
378 se_nacl->nacl_sess = container_of(
379 se_nacl->acl_sess_list.prev,
380 struct se_session, sess_acl_list);
381 }
382 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
383 }
384 }
385 EXPORT_SYMBOL(transport_deregister_session_configfs);
386
387 void transport_free_session(struct se_session *se_sess)
388 {
389 kmem_cache_free(se_sess_cache, se_sess);
390 }
391 EXPORT_SYMBOL(transport_free_session);
392
393 void transport_deregister_session(struct se_session *se_sess)
394 {
395 struct se_portal_group *se_tpg = se_sess->se_tpg;
396 struct target_core_fabric_ops *se_tfo;
397 struct se_node_acl *se_nacl;
398 unsigned long flags;
399 bool comp_nacl = true;
400
401 if (!se_tpg) {
402 transport_free_session(se_sess);
403 return;
404 }
405 se_tfo = se_tpg->se_tpg_tfo;
406
407 spin_lock_irqsave(&se_tpg->session_lock, flags);
408 list_del(&se_sess->sess_list);
409 se_sess->se_tpg = NULL;
410 se_sess->fabric_sess_ptr = NULL;
411 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
412
413 /*
414 * Determine if we need to do extra work for this initiator node's
415 * struct se_node_acl if it had been previously dynamically generated.
416 */
417 se_nacl = se_sess->se_node_acl;
418
419 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
420 if (se_nacl && se_nacl->dynamic_node_acl) {
421 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
422 list_del(&se_nacl->acl_list);
423 se_tpg->num_node_acls--;
424 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
425 core_tpg_wait_for_nacl_pr_ref(se_nacl);
426 core_free_device_list_for_node(se_nacl, se_tpg);
427 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
428
429 comp_nacl = false;
430 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
431 }
432 }
433 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
434
435 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
436 se_tpg->se_tpg_tfo->get_fabric_name());
437 /*
438 * If last kref is dropping now for an explict NodeACL, awake sleeping
439 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
440 * removal context.
441 */
442 if (se_nacl && comp_nacl == true)
443 target_put_nacl(se_nacl);
444
445 transport_free_session(se_sess);
446 }
447 EXPORT_SYMBOL(transport_deregister_session);
448
449 /*
450 * Called with cmd->t_state_lock held.
451 */
452 static void target_remove_from_state_list(struct se_cmd *cmd)
453 {
454 struct se_device *dev = cmd->se_dev;
455 unsigned long flags;
456
457 if (!dev)
458 return;
459
460 if (cmd->transport_state & CMD_T_BUSY)
461 return;
462
463 spin_lock_irqsave(&dev->execute_task_lock, flags);
464 if (cmd->state_active) {
465 list_del(&cmd->state_list);
466 cmd->state_active = false;
467 }
468 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
469 }
470
471 /* transport_cmd_check_stop():
472 *
473 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
474 * 'transport_off = 2' determines if task_dev_state should be removed.
475 *
476 * A non-zero u8 t_state sets cmd->t_state.
477 * Returns 1 when command is stopped, else 0.
478 */
479 static int transport_cmd_check_stop(
480 struct se_cmd *cmd,
481 int transport_off,
482 u8 t_state)
483 {
484 unsigned long flags;
485
486 spin_lock_irqsave(&cmd->t_state_lock, flags);
487 /*
488 * Determine if IOCTL context caller in requesting the stopping of this
489 * command for LUN shutdown purposes.
490 */
491 if (cmd->transport_state & CMD_T_LUN_STOP) {
492 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
493 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
494
495 cmd->transport_state &= ~CMD_T_ACTIVE;
496 if (transport_off == 2)
497 target_remove_from_state_list(cmd);
498 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
499
500 complete(&cmd->transport_lun_stop_comp);
501 return 1;
502 }
503 /*
504 * Determine if frontend context caller is requesting the stopping of
505 * this command for frontend exceptions.
506 */
507 if (cmd->transport_state & CMD_T_STOP) {
508 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
509 __func__, __LINE__,
510 cmd->se_tfo->get_task_tag(cmd));
511
512 if (transport_off == 2)
513 target_remove_from_state_list(cmd);
514
515 /*
516 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
517 * to FE.
518 */
519 if (transport_off == 2)
520 cmd->se_lun = NULL;
521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
522
523 complete(&cmd->t_transport_stop_comp);
524 return 1;
525 }
526 if (transport_off) {
527 cmd->transport_state &= ~CMD_T_ACTIVE;
528 if (transport_off == 2) {
529 target_remove_from_state_list(cmd);
530 /*
531 * Clear struct se_cmd->se_lun before the transport_off == 2
532 * handoff to fabric module.
533 */
534 cmd->se_lun = NULL;
535 /*
536 * Some fabric modules like tcm_loop can release
537 * their internally allocated I/O reference now and
538 * struct se_cmd now.
539 *
540 * Fabric modules are expected to return '1' here if the
541 * se_cmd being passed is released at this point,
542 * or zero if not being released.
543 */
544 if (cmd->se_tfo->check_stop_free != NULL) {
545 spin_unlock_irqrestore(
546 &cmd->t_state_lock, flags);
547
548 return cmd->se_tfo->check_stop_free(cmd);
549 }
550 }
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552
553 return 0;
554 } else if (t_state)
555 cmd->t_state = t_state;
556 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
557
558 return 0;
559 }
560
561 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
562 {
563 return transport_cmd_check_stop(cmd, 2, 0);
564 }
565
566 static void transport_lun_remove_cmd(struct se_cmd *cmd)
567 {
568 struct se_lun *lun = cmd->se_lun;
569 unsigned long flags;
570
571 if (!lun)
572 return;
573
574 spin_lock_irqsave(&cmd->t_state_lock, flags);
575 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
576 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
577 target_remove_from_state_list(cmd);
578 }
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580
581 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
582 if (!list_empty(&cmd->se_lun_node))
583 list_del_init(&cmd->se_lun_node);
584 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
585 }
586
587 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
588 {
589 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
590 transport_lun_remove_cmd(cmd);
591
592 if (transport_cmd_check_stop_to_fabric(cmd))
593 return;
594 if (remove) {
595 transport_remove_cmd_from_queue(cmd);
596 transport_put_cmd(cmd);
597 }
598 }
599
600 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
601 bool at_head)
602 {
603 struct se_device *dev = cmd->se_dev;
604 struct se_queue_obj *qobj = &dev->dev_queue_obj;
605 unsigned long flags;
606
607 if (t_state) {
608 spin_lock_irqsave(&cmd->t_state_lock, flags);
609 cmd->t_state = t_state;
610 cmd->transport_state |= CMD_T_ACTIVE;
611 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
612 }
613
614 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
615
616 /* If the cmd is already on the list, remove it before we add it */
617 if (!list_empty(&cmd->se_queue_node))
618 list_del(&cmd->se_queue_node);
619 else
620 atomic_inc(&qobj->queue_cnt);
621
622 if (at_head)
623 list_add(&cmd->se_queue_node, &qobj->qobj_list);
624 else
625 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
626 cmd->transport_state |= CMD_T_QUEUED;
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629 wake_up_interruptible(&qobj->thread_wq);
630 }
631
632 static struct se_cmd *
633 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
634 {
635 struct se_cmd *cmd;
636 unsigned long flags;
637
638 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
639 if (list_empty(&qobj->qobj_list)) {
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641 return NULL;
642 }
643 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
644
645 cmd->transport_state &= ~CMD_T_QUEUED;
646 list_del_init(&cmd->se_queue_node);
647 atomic_dec(&qobj->queue_cnt);
648 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
649
650 return cmd;
651 }
652
653 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
654 {
655 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
656 unsigned long flags;
657
658 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
659 if (!(cmd->transport_state & CMD_T_QUEUED)) {
660 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
661 return;
662 }
663 cmd->transport_state &= ~CMD_T_QUEUED;
664 atomic_dec(&qobj->queue_cnt);
665 list_del_init(&cmd->se_queue_node);
666 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
667 }
668
669 static void target_complete_failure_work(struct work_struct *work)
670 {
671 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
672
673 transport_generic_request_failure(cmd);
674 }
675
676 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
677 {
678 struct se_device *dev = cmd->se_dev;
679 int success = scsi_status == GOOD;
680 unsigned long flags;
681
682 cmd->scsi_status = scsi_status;
683
684
685 spin_lock_irqsave(&cmd->t_state_lock, flags);
686 cmd->transport_state &= ~CMD_T_BUSY;
687
688 if (dev && dev->transport->transport_complete) {
689 if (dev->transport->transport_complete(cmd,
690 cmd->t_data_sg) != 0) {
691 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
692 success = 1;
693 }
694 }
695
696 /*
697 * See if we are waiting to complete for an exception condition.
698 */
699 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701 complete(&cmd->task_stop_comp);
702 return;
703 }
704
705 if (!success)
706 cmd->transport_state |= CMD_T_FAILED;
707
708 /*
709 * Check for case where an explict ABORT_TASK has been received
710 * and transport_wait_for_tasks() will be waiting for completion..
711 */
712 if (cmd->transport_state & CMD_T_ABORTED &&
713 cmd->transport_state & CMD_T_STOP) {
714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715 complete(&cmd->t_transport_stop_comp);
716 return;
717 } else if (cmd->transport_state & CMD_T_FAILED) {
718 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
719 INIT_WORK(&cmd->work, target_complete_failure_work);
720 } else {
721 INIT_WORK(&cmd->work, target_complete_ok_work);
722 }
723
724 cmd->t_state = TRANSPORT_COMPLETE;
725 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
726 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
727
728 queue_work(target_completion_wq, &cmd->work);
729 }
730 EXPORT_SYMBOL(target_complete_cmd);
731
732 static void target_add_to_state_list(struct se_cmd *cmd)
733 {
734 struct se_device *dev = cmd->se_dev;
735 unsigned long flags;
736
737 spin_lock_irqsave(&dev->execute_task_lock, flags);
738 if (!cmd->state_active) {
739 list_add_tail(&cmd->state_list, &dev->state_list);
740 cmd->state_active = true;
741 }
742 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
743 }
744
745 static void __target_add_to_execute_list(struct se_cmd *cmd)
746 {
747 struct se_device *dev = cmd->se_dev;
748 bool head_of_queue = false;
749
750 if (!list_empty(&cmd->execute_list))
751 return;
752
753 if (dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED &&
754 cmd->sam_task_attr == MSG_HEAD_TAG)
755 head_of_queue = true;
756
757 if (head_of_queue)
758 list_add(&cmd->execute_list, &dev->execute_list);
759 else
760 list_add_tail(&cmd->execute_list, &dev->execute_list);
761
762 atomic_inc(&dev->execute_tasks);
763
764 if (cmd->state_active)
765 return;
766
767 if (head_of_queue)
768 list_add(&cmd->state_list, &dev->state_list);
769 else
770 list_add_tail(&cmd->state_list, &dev->state_list);
771
772 cmd->state_active = true;
773 }
774
775 static void target_add_to_execute_list(struct se_cmd *cmd)
776 {
777 unsigned long flags;
778 struct se_device *dev = cmd->se_dev;
779
780 spin_lock_irqsave(&dev->execute_task_lock, flags);
781 __target_add_to_execute_list(cmd);
782 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
783 }
784
785 void __target_remove_from_execute_list(struct se_cmd *cmd)
786 {
787 list_del_init(&cmd->execute_list);
788 atomic_dec(&cmd->se_dev->execute_tasks);
789 }
790
791 static void target_remove_from_execute_list(struct se_cmd *cmd)
792 {
793 struct se_device *dev = cmd->se_dev;
794 unsigned long flags;
795
796 if (WARN_ON(list_empty(&cmd->execute_list)))
797 return;
798
799 spin_lock_irqsave(&dev->execute_task_lock, flags);
800 __target_remove_from_execute_list(cmd);
801 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
802 }
803
804 /*
805 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
806 */
807
808 static void target_qf_do_work(struct work_struct *work)
809 {
810 struct se_device *dev = container_of(work, struct se_device,
811 qf_work_queue);
812 LIST_HEAD(qf_cmd_list);
813 struct se_cmd *cmd, *cmd_tmp;
814
815 spin_lock_irq(&dev->qf_cmd_lock);
816 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
817 spin_unlock_irq(&dev->qf_cmd_lock);
818
819 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
820 list_del(&cmd->se_qf_node);
821 atomic_dec(&dev->dev_qf_count);
822 smp_mb__after_atomic_dec();
823
824 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
825 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
826 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
827 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
828 : "UNKNOWN");
829
830 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
831 }
832 }
833
834 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
835 {
836 switch (cmd->data_direction) {
837 case DMA_NONE:
838 return "NONE";
839 case DMA_FROM_DEVICE:
840 return "READ";
841 case DMA_TO_DEVICE:
842 return "WRITE";
843 case DMA_BIDIRECTIONAL:
844 return "BIDI";
845 default:
846 break;
847 }
848
849 return "UNKNOWN";
850 }
851
852 void transport_dump_dev_state(
853 struct se_device *dev,
854 char *b,
855 int *bl)
856 {
857 *bl += sprintf(b + *bl, "Status: ");
858 switch (dev->dev_status) {
859 case TRANSPORT_DEVICE_ACTIVATED:
860 *bl += sprintf(b + *bl, "ACTIVATED");
861 break;
862 case TRANSPORT_DEVICE_DEACTIVATED:
863 *bl += sprintf(b + *bl, "DEACTIVATED");
864 break;
865 case TRANSPORT_DEVICE_SHUTDOWN:
866 *bl += sprintf(b + *bl, "SHUTDOWN");
867 break;
868 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
869 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
870 *bl += sprintf(b + *bl, "OFFLINE");
871 break;
872 default:
873 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
874 break;
875 }
876
877 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
878 atomic_read(&dev->execute_tasks), dev->queue_depth);
879 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
880 dev->se_sub_dev->se_dev_attrib.block_size,
881 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
882 *bl += sprintf(b + *bl, " ");
883 }
884
885 void transport_dump_vpd_proto_id(
886 struct t10_vpd *vpd,
887 unsigned char *p_buf,
888 int p_buf_len)
889 {
890 unsigned char buf[VPD_TMP_BUF_SIZE];
891 int len;
892
893 memset(buf, 0, VPD_TMP_BUF_SIZE);
894 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
895
896 switch (vpd->protocol_identifier) {
897 case 0x00:
898 sprintf(buf+len, "Fibre Channel\n");
899 break;
900 case 0x10:
901 sprintf(buf+len, "Parallel SCSI\n");
902 break;
903 case 0x20:
904 sprintf(buf+len, "SSA\n");
905 break;
906 case 0x30:
907 sprintf(buf+len, "IEEE 1394\n");
908 break;
909 case 0x40:
910 sprintf(buf+len, "SCSI Remote Direct Memory Access"
911 " Protocol\n");
912 break;
913 case 0x50:
914 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
915 break;
916 case 0x60:
917 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
918 break;
919 case 0x70:
920 sprintf(buf+len, "Automation/Drive Interface Transport"
921 " Protocol\n");
922 break;
923 case 0x80:
924 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
925 break;
926 default:
927 sprintf(buf+len, "Unknown 0x%02x\n",
928 vpd->protocol_identifier);
929 break;
930 }
931
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
936 }
937
938 void
939 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
940 {
941 /*
942 * Check if the Protocol Identifier Valid (PIV) bit is set..
943 *
944 * from spc3r23.pdf section 7.5.1
945 */
946 if (page_83[1] & 0x80) {
947 vpd->protocol_identifier = (page_83[0] & 0xf0);
948 vpd->protocol_identifier_set = 1;
949 transport_dump_vpd_proto_id(vpd, NULL, 0);
950 }
951 }
952 EXPORT_SYMBOL(transport_set_vpd_proto_id);
953
954 int transport_dump_vpd_assoc(
955 struct t10_vpd *vpd,
956 unsigned char *p_buf,
957 int p_buf_len)
958 {
959 unsigned char buf[VPD_TMP_BUF_SIZE];
960 int ret = 0;
961 int len;
962
963 memset(buf, 0, VPD_TMP_BUF_SIZE);
964 len = sprintf(buf, "T10 VPD Identifier Association: ");
965
966 switch (vpd->association) {
967 case 0x00:
968 sprintf(buf+len, "addressed logical unit\n");
969 break;
970 case 0x10:
971 sprintf(buf+len, "target port\n");
972 break;
973 case 0x20:
974 sprintf(buf+len, "SCSI target device\n");
975 break;
976 default:
977 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
978 ret = -EINVAL;
979 break;
980 }
981
982 if (p_buf)
983 strncpy(p_buf, buf, p_buf_len);
984 else
985 pr_debug("%s", buf);
986
987 return ret;
988 }
989
990 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
991 {
992 /*
993 * The VPD identification association..
994 *
995 * from spc3r23.pdf Section 7.6.3.1 Table 297
996 */
997 vpd->association = (page_83[1] & 0x30);
998 return transport_dump_vpd_assoc(vpd, NULL, 0);
999 }
1000 EXPORT_SYMBOL(transport_set_vpd_assoc);
1001
1002 int transport_dump_vpd_ident_type(
1003 struct t10_vpd *vpd,
1004 unsigned char *p_buf,
1005 int p_buf_len)
1006 {
1007 unsigned char buf[VPD_TMP_BUF_SIZE];
1008 int ret = 0;
1009 int len;
1010
1011 memset(buf, 0, VPD_TMP_BUF_SIZE);
1012 len = sprintf(buf, "T10 VPD Identifier Type: ");
1013
1014 switch (vpd->device_identifier_type) {
1015 case 0x00:
1016 sprintf(buf+len, "Vendor specific\n");
1017 break;
1018 case 0x01:
1019 sprintf(buf+len, "T10 Vendor ID based\n");
1020 break;
1021 case 0x02:
1022 sprintf(buf+len, "EUI-64 based\n");
1023 break;
1024 case 0x03:
1025 sprintf(buf+len, "NAA\n");
1026 break;
1027 case 0x04:
1028 sprintf(buf+len, "Relative target port identifier\n");
1029 break;
1030 case 0x08:
1031 sprintf(buf+len, "SCSI name string\n");
1032 break;
1033 default:
1034 sprintf(buf+len, "Unsupported: 0x%02x\n",
1035 vpd->device_identifier_type);
1036 ret = -EINVAL;
1037 break;
1038 }
1039
1040 if (p_buf) {
1041 if (p_buf_len < strlen(buf)+1)
1042 return -EINVAL;
1043 strncpy(p_buf, buf, p_buf_len);
1044 } else {
1045 pr_debug("%s", buf);
1046 }
1047
1048 return ret;
1049 }
1050
1051 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1052 {
1053 /*
1054 * The VPD identifier type..
1055 *
1056 * from spc3r23.pdf Section 7.6.3.1 Table 298
1057 */
1058 vpd->device_identifier_type = (page_83[1] & 0x0f);
1059 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1060 }
1061 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1062
1063 int transport_dump_vpd_ident(
1064 struct t10_vpd *vpd,
1065 unsigned char *p_buf,
1066 int p_buf_len)
1067 {
1068 unsigned char buf[VPD_TMP_BUF_SIZE];
1069 int ret = 0;
1070
1071 memset(buf, 0, VPD_TMP_BUF_SIZE);
1072
1073 switch (vpd->device_identifier_code_set) {
1074 case 0x01: /* Binary */
1075 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1076 &vpd->device_identifier[0]);
1077 break;
1078 case 0x02: /* ASCII */
1079 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1080 &vpd->device_identifier[0]);
1081 break;
1082 case 0x03: /* UTF-8 */
1083 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1084 &vpd->device_identifier[0]);
1085 break;
1086 default:
1087 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1088 " 0x%02x", vpd->device_identifier_code_set);
1089 ret = -EINVAL;
1090 break;
1091 }
1092
1093 if (p_buf)
1094 strncpy(p_buf, buf, p_buf_len);
1095 else
1096 pr_debug("%s", buf);
1097
1098 return ret;
1099 }
1100
1101 int
1102 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1103 {
1104 static const char hex_str[] = "0123456789abcdef";
1105 int j = 0, i = 4; /* offset to start of the identifer */
1106
1107 /*
1108 * The VPD Code Set (encoding)
1109 *
1110 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111 */
1112 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1113 switch (vpd->device_identifier_code_set) {
1114 case 0x01: /* Binary */
1115 vpd->device_identifier[j++] =
1116 hex_str[vpd->device_identifier_type];
1117 while (i < (4 + page_83[3])) {
1118 vpd->device_identifier[j++] =
1119 hex_str[(page_83[i] & 0xf0) >> 4];
1120 vpd->device_identifier[j++] =
1121 hex_str[page_83[i] & 0x0f];
1122 i++;
1123 }
1124 break;
1125 case 0x02: /* ASCII */
1126 case 0x03: /* UTF-8 */
1127 while (i < (4 + page_83[3]))
1128 vpd->device_identifier[j++] = page_83[i++];
1129 break;
1130 default:
1131 break;
1132 }
1133
1134 return transport_dump_vpd_ident(vpd, NULL, 0);
1135 }
1136 EXPORT_SYMBOL(transport_set_vpd_ident);
1137
1138 static void core_setup_task_attr_emulation(struct se_device *dev)
1139 {
1140 /*
1141 * If this device is from Target_Core_Mod/pSCSI, disable the
1142 * SAM Task Attribute emulation.
1143 *
1144 * This is currently not available in upsream Linux/SCSI Target
1145 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1146 */
1147 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1148 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1149 return;
1150 }
1151
1152 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1153 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1154 " device\n", dev->transport->name,
1155 dev->transport->get_device_rev(dev));
1156 }
1157
1158 static void scsi_dump_inquiry(struct se_device *dev)
1159 {
1160 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1161 char buf[17];
1162 int i, device_type;
1163 /*
1164 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1165 */
1166 for (i = 0; i < 8; i++)
1167 if (wwn->vendor[i] >= 0x20)
1168 buf[i] = wwn->vendor[i];
1169 else
1170 buf[i] = ' ';
1171 buf[i] = '\0';
1172 pr_debug(" Vendor: %s\n", buf);
1173
1174 for (i = 0; i < 16; i++)
1175 if (wwn->model[i] >= 0x20)
1176 buf[i] = wwn->model[i];
1177 else
1178 buf[i] = ' ';
1179 buf[i] = '\0';
1180 pr_debug(" Model: %s\n", buf);
1181
1182 for (i = 0; i < 4; i++)
1183 if (wwn->revision[i] >= 0x20)
1184 buf[i] = wwn->revision[i];
1185 else
1186 buf[i] = ' ';
1187 buf[i] = '\0';
1188 pr_debug(" Revision: %s\n", buf);
1189
1190 device_type = dev->transport->get_device_type(dev);
1191 pr_debug(" Type: %s ", scsi_device_type(device_type));
1192 pr_debug(" ANSI SCSI revision: %02x\n",
1193 dev->transport->get_device_rev(dev));
1194 }
1195
1196 struct se_device *transport_add_device_to_core_hba(
1197 struct se_hba *hba,
1198 struct se_subsystem_api *transport,
1199 struct se_subsystem_dev *se_dev,
1200 u32 device_flags,
1201 void *transport_dev,
1202 struct se_dev_limits *dev_limits,
1203 const char *inquiry_prod,
1204 const char *inquiry_rev)
1205 {
1206 int force_pt;
1207 struct se_device *dev;
1208
1209 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1210 if (!dev) {
1211 pr_err("Unable to allocate memory for se_dev_t\n");
1212 return NULL;
1213 }
1214
1215 transport_init_queue_obj(&dev->dev_queue_obj);
1216 dev->dev_flags = device_flags;
1217 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1218 dev->dev_ptr = transport_dev;
1219 dev->se_hba = hba;
1220 dev->se_sub_dev = se_dev;
1221 dev->transport = transport;
1222 INIT_LIST_HEAD(&dev->dev_list);
1223 INIT_LIST_HEAD(&dev->dev_sep_list);
1224 INIT_LIST_HEAD(&dev->dev_tmr_list);
1225 INIT_LIST_HEAD(&dev->execute_list);
1226 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1227 INIT_LIST_HEAD(&dev->state_list);
1228 INIT_LIST_HEAD(&dev->qf_cmd_list);
1229 spin_lock_init(&dev->execute_task_lock);
1230 spin_lock_init(&dev->delayed_cmd_lock);
1231 spin_lock_init(&dev->dev_reservation_lock);
1232 spin_lock_init(&dev->dev_status_lock);
1233 spin_lock_init(&dev->se_port_lock);
1234 spin_lock_init(&dev->se_tmr_lock);
1235 spin_lock_init(&dev->qf_cmd_lock);
1236 atomic_set(&dev->dev_ordered_id, 0);
1237
1238 se_dev_set_default_attribs(dev, dev_limits);
1239
1240 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1241 dev->creation_time = get_jiffies_64();
1242 spin_lock_init(&dev->stats_lock);
1243
1244 spin_lock(&hba->device_lock);
1245 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1246 hba->dev_count++;
1247 spin_unlock(&hba->device_lock);
1248 /*
1249 * Setup the SAM Task Attribute emulation for struct se_device
1250 */
1251 core_setup_task_attr_emulation(dev);
1252 /*
1253 * Force PR and ALUA passthrough emulation with internal object use.
1254 */
1255 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1256 /*
1257 * Setup the Reservations infrastructure for struct se_device
1258 */
1259 core_setup_reservations(dev, force_pt);
1260 /*
1261 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1262 */
1263 if (core_setup_alua(dev, force_pt) < 0)
1264 goto out;
1265
1266 /*
1267 * Startup the struct se_device processing thread
1268 */
1269 dev->process_thread = kthread_run(transport_processing_thread, dev,
1270 "LIO_%s", dev->transport->name);
1271 if (IS_ERR(dev->process_thread)) {
1272 pr_err("Unable to create kthread: LIO_%s\n",
1273 dev->transport->name);
1274 goto out;
1275 }
1276 /*
1277 * Setup work_queue for QUEUE_FULL
1278 */
1279 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1280 /*
1281 * Preload the initial INQUIRY const values if we are doing
1282 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1283 * passthrough because this is being provided by the backend LLD.
1284 * This is required so that transport_get_inquiry() copies these
1285 * originals once back into DEV_T10_WWN(dev) for the virtual device
1286 * setup.
1287 */
1288 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1289 if (!inquiry_prod || !inquiry_rev) {
1290 pr_err("All non TCM/pSCSI plugins require"
1291 " INQUIRY consts\n");
1292 goto out;
1293 }
1294
1295 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1296 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1297 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1298 }
1299 scsi_dump_inquiry(dev);
1300
1301 return dev;
1302 out:
1303 kthread_stop(dev->process_thread);
1304
1305 spin_lock(&hba->device_lock);
1306 list_del(&dev->dev_list);
1307 hba->dev_count--;
1308 spin_unlock(&hba->device_lock);
1309
1310 se_release_vpd_for_dev(dev);
1311
1312 kfree(dev);
1313
1314 return NULL;
1315 }
1316 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1317
1318 /* transport_generic_prepare_cdb():
1319 *
1320 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1321 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1322 * The point of this is since we are mapping iSCSI LUNs to
1323 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1324 * devices and HBAs for a loop.
1325 */
1326 static inline void transport_generic_prepare_cdb(
1327 unsigned char *cdb)
1328 {
1329 switch (cdb[0]) {
1330 case READ_10: /* SBC - RDProtect */
1331 case READ_12: /* SBC - RDProtect */
1332 case READ_16: /* SBC - RDProtect */
1333 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1334 case VERIFY: /* SBC - VRProtect */
1335 case VERIFY_16: /* SBC - VRProtect */
1336 case WRITE_VERIFY: /* SBC - VRProtect */
1337 case WRITE_VERIFY_12: /* SBC - VRProtect */
1338 case MAINTENANCE_IN: /* SPC - Parameter Data Format for SA RTPG */
1339 break;
1340 default:
1341 cdb[1] &= 0x1f; /* clear logical unit number */
1342 break;
1343 }
1344 }
1345
1346 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1347
1348 /*
1349 * Used by fabric modules containing a local struct se_cmd within their
1350 * fabric dependent per I/O descriptor.
1351 */
1352 void transport_init_se_cmd(
1353 struct se_cmd *cmd,
1354 struct target_core_fabric_ops *tfo,
1355 struct se_session *se_sess,
1356 u32 data_length,
1357 int data_direction,
1358 int task_attr,
1359 unsigned char *sense_buffer)
1360 {
1361 INIT_LIST_HEAD(&cmd->se_lun_node);
1362 INIT_LIST_HEAD(&cmd->se_delayed_node);
1363 INIT_LIST_HEAD(&cmd->se_qf_node);
1364 INIT_LIST_HEAD(&cmd->se_queue_node);
1365 INIT_LIST_HEAD(&cmd->se_cmd_list);
1366 INIT_LIST_HEAD(&cmd->execute_list);
1367 INIT_LIST_HEAD(&cmd->state_list);
1368 init_completion(&cmd->transport_lun_fe_stop_comp);
1369 init_completion(&cmd->transport_lun_stop_comp);
1370 init_completion(&cmd->t_transport_stop_comp);
1371 init_completion(&cmd->cmd_wait_comp);
1372 init_completion(&cmd->task_stop_comp);
1373 spin_lock_init(&cmd->t_state_lock);
1374 cmd->transport_state = CMD_T_DEV_ACTIVE;
1375
1376 cmd->se_tfo = tfo;
1377 cmd->se_sess = se_sess;
1378 cmd->data_length = data_length;
1379 cmd->data_direction = data_direction;
1380 cmd->sam_task_attr = task_attr;
1381 cmd->sense_buffer = sense_buffer;
1382
1383 cmd->state_active = false;
1384 }
1385 EXPORT_SYMBOL(transport_init_se_cmd);
1386
1387 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1388 {
1389 /*
1390 * Check if SAM Task Attribute emulation is enabled for this
1391 * struct se_device storage object
1392 */
1393 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1394 return 0;
1395
1396 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1397 pr_debug("SAM Task Attribute ACA"
1398 " emulation is not supported\n");
1399 return -EINVAL;
1400 }
1401 /*
1402 * Used to determine when ORDERED commands should go from
1403 * Dormant to Active status.
1404 */
1405 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1406 smp_mb__after_atomic_inc();
1407 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1408 cmd->se_ordered_id, cmd->sam_task_attr,
1409 cmd->se_dev->transport->name);
1410 return 0;
1411 }
1412
1413 /* target_setup_cmd_from_cdb():
1414 *
1415 * Called from fabric RX Thread.
1416 */
1417 int target_setup_cmd_from_cdb(
1418 struct se_cmd *cmd,
1419 unsigned char *cdb)
1420 {
1421 int ret;
1422
1423 transport_generic_prepare_cdb(cdb);
1424 /*
1425 * Ensure that the received CDB is less than the max (252 + 8) bytes
1426 * for VARIABLE_LENGTH_CMD
1427 */
1428 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1429 pr_err("Received SCSI CDB with command_size: %d that"
1430 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1431 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1432 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1433 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1434 return -EINVAL;
1435 }
1436 /*
1437 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1438 * allocate the additional extended CDB buffer now.. Otherwise
1439 * setup the pointer from __t_task_cdb to t_task_cdb.
1440 */
1441 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1442 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1443 GFP_KERNEL);
1444 if (!cmd->t_task_cdb) {
1445 pr_err("Unable to allocate cmd->t_task_cdb"
1446 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1447 scsi_command_size(cdb),
1448 (unsigned long)sizeof(cmd->__t_task_cdb));
1449 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1450 cmd->scsi_sense_reason =
1451 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1452 return -ENOMEM;
1453 }
1454 } else
1455 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1456 /*
1457 * Copy the original CDB into cmd->
1458 */
1459 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1460 /*
1461 * Setup the received CDB based on SCSI defined opcodes and
1462 * perform unit attention, persistent reservations and ALUA
1463 * checks for virtual device backends. The cmd->t_task_cdb
1464 * pointer is expected to be setup before we reach this point.
1465 */
1466 ret = transport_generic_cmd_sequencer(cmd, cdb);
1467 if (ret < 0)
1468 return ret;
1469 /*
1470 * Check for SAM Task Attribute Emulation
1471 */
1472 if (transport_check_alloc_task_attr(cmd) < 0) {
1473 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1474 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1475 return -EINVAL;
1476 }
1477 spin_lock(&cmd->se_lun->lun_sep_lock);
1478 if (cmd->se_lun->lun_sep)
1479 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1480 spin_unlock(&cmd->se_lun->lun_sep_lock);
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1484
1485 /*
1486 * Used by fabric module frontends to queue tasks directly.
1487 * Many only be used from process context only
1488 */
1489 int transport_handle_cdb_direct(
1490 struct se_cmd *cmd)
1491 {
1492 int ret;
1493
1494 if (!cmd->se_lun) {
1495 dump_stack();
1496 pr_err("cmd->se_lun is NULL\n");
1497 return -EINVAL;
1498 }
1499 if (in_interrupt()) {
1500 dump_stack();
1501 pr_err("transport_generic_handle_cdb cannot be called"
1502 " from interrupt context\n");
1503 return -EINVAL;
1504 }
1505 /*
1506 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1507 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1508 * in existing usage to ensure that outstanding descriptors are handled
1509 * correctly during shutdown via transport_wait_for_tasks()
1510 *
1511 * Also, we don't take cmd->t_state_lock here as we only expect
1512 * this to be called for initial descriptor submission.
1513 */
1514 cmd->t_state = TRANSPORT_NEW_CMD;
1515 cmd->transport_state |= CMD_T_ACTIVE;
1516
1517 /*
1518 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1519 * so follow TRANSPORT_NEW_CMD processing thread context usage
1520 * and call transport_generic_request_failure() if necessary..
1521 */
1522 ret = transport_generic_new_cmd(cmd);
1523 if (ret < 0)
1524 transport_generic_request_failure(cmd);
1525
1526 return 0;
1527 }
1528 EXPORT_SYMBOL(transport_handle_cdb_direct);
1529
1530 /**
1531 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1532 *
1533 * @se_cmd: command descriptor to submit
1534 * @se_sess: associated se_sess for endpoint
1535 * @cdb: pointer to SCSI CDB
1536 * @sense: pointer to SCSI sense buffer
1537 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1538 * @data_length: fabric expected data transfer length
1539 * @task_addr: SAM task attribute
1540 * @data_dir: DMA data direction
1541 * @flags: flags for command submission from target_sc_flags_tables
1542 *
1543 * This may only be called from process context, and also currently
1544 * assumes internal allocation of fabric payload buffer by target-core.
1545 **/
1546 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1547 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1548 u32 data_length, int task_attr, int data_dir, int flags)
1549 {
1550 struct se_portal_group *se_tpg;
1551 int rc;
1552
1553 se_tpg = se_sess->se_tpg;
1554 BUG_ON(!se_tpg);
1555 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1556 BUG_ON(in_interrupt());
1557 /*
1558 * Initialize se_cmd for target operation. From this point
1559 * exceptions are handled by sending exception status via
1560 * target_core_fabric_ops->queue_status() callback
1561 */
1562 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1563 data_length, data_dir, task_attr, sense);
1564 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1565 se_cmd->unknown_data_length = 1;
1566 /*
1567 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1568 * se_sess->sess_cmd_list. A second kref_get here is necessary
1569 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1570 * kref_put() to happen during fabric packet acknowledgement.
1571 */
1572 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1573 /*
1574 * Signal bidirectional data payloads to target-core
1575 */
1576 if (flags & TARGET_SCF_BIDI_OP)
1577 se_cmd->se_cmd_flags |= SCF_BIDI;
1578 /*
1579 * Locate se_lun pointer and attach it to struct se_cmd
1580 */
1581 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1582 transport_send_check_condition_and_sense(se_cmd,
1583 se_cmd->scsi_sense_reason, 0);
1584 target_put_sess_cmd(se_sess, se_cmd);
1585 return;
1586 }
1587 /*
1588 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1589 * allocate the necessary tasks to complete the received CDB+data
1590 */
1591 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1592 if (rc != 0) {
1593 transport_generic_request_failure(se_cmd);
1594 return;
1595 }
1596
1597 /*
1598 * Check if we need to delay processing because of ALUA
1599 * Active/NonOptimized primary access state..
1600 */
1601 core_alua_check_nonop_delay(se_cmd);
1602
1603 /*
1604 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1605 * for immediate execution of READs, otherwise wait for
1606 * transport_generic_handle_data() to be called for WRITEs
1607 * when fabric has filled the incoming buffer.
1608 */
1609 transport_handle_cdb_direct(se_cmd);
1610 return;
1611 }
1612 EXPORT_SYMBOL(target_submit_cmd);
1613
1614 static void target_complete_tmr_failure(struct work_struct *work)
1615 {
1616 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1617
1618 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1619 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1620 transport_generic_free_cmd(se_cmd, 0);
1621 }
1622
1623 /**
1624 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1625 * for TMR CDBs
1626 *
1627 * @se_cmd: command descriptor to submit
1628 * @se_sess: associated se_sess for endpoint
1629 * @sense: pointer to SCSI sense buffer
1630 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1631 * @fabric_context: fabric context for TMR req
1632 * @tm_type: Type of TM request
1633 * @gfp: gfp type for caller
1634 * @tag: referenced task tag for TMR_ABORT_TASK
1635 * @flags: submit cmd flags
1636 *
1637 * Callable from all contexts.
1638 **/
1639
1640 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1641 unsigned char *sense, u32 unpacked_lun,
1642 void *fabric_tmr_ptr, unsigned char tm_type,
1643 gfp_t gfp, unsigned int tag, int flags)
1644 {
1645 struct se_portal_group *se_tpg;
1646 int ret;
1647
1648 se_tpg = se_sess->se_tpg;
1649 BUG_ON(!se_tpg);
1650
1651 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1652 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1653 /*
1654 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1655 * allocation failure.
1656 */
1657 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1658 if (ret < 0)
1659 return -ENOMEM;
1660
1661 if (tm_type == TMR_ABORT_TASK)
1662 se_cmd->se_tmr_req->ref_task_tag = tag;
1663
1664 /* See target_submit_cmd for commentary */
1665 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1666
1667 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1668 if (ret) {
1669 /*
1670 * For callback during failure handling, push this work off
1671 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1672 */
1673 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1674 schedule_work(&se_cmd->work);
1675 return 0;
1676 }
1677 transport_generic_handle_tmr(se_cmd);
1678 return 0;
1679 }
1680 EXPORT_SYMBOL(target_submit_tmr);
1681
1682 /*
1683 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1684 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1685 * complete setup in TCM process context w/ TFO->new_cmd_map().
1686 */
1687 int transport_generic_handle_cdb_map(
1688 struct se_cmd *cmd)
1689 {
1690 if (!cmd->se_lun) {
1691 dump_stack();
1692 pr_err("cmd->se_lun is NULL\n");
1693 return -EINVAL;
1694 }
1695
1696 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1697 return 0;
1698 }
1699 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1700
1701 /* transport_generic_handle_data():
1702 *
1703 *
1704 */
1705 int transport_generic_handle_data(
1706 struct se_cmd *cmd)
1707 {
1708 /*
1709 * For the software fabric case, then we assume the nexus is being
1710 * failed/shutdown when signals are pending from the kthread context
1711 * caller, so we return a failure. For the HW target mode case running
1712 * in interrupt code, the signal_pending() check is skipped.
1713 */
1714 if (!in_interrupt() && signal_pending(current))
1715 return -EPERM;
1716 /*
1717 * If the received CDB has aleady been ABORTED by the generic
1718 * target engine, we now call transport_check_aborted_status()
1719 * to queue any delated TASK_ABORTED status for the received CDB to the
1720 * fabric module as we are expecting no further incoming DATA OUT
1721 * sequences at this point.
1722 */
1723 if (transport_check_aborted_status(cmd, 1) != 0)
1724 return 0;
1725
1726 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1727 return 0;
1728 }
1729 EXPORT_SYMBOL(transport_generic_handle_data);
1730
1731 /* transport_generic_handle_tmr():
1732 *
1733 *
1734 */
1735 int transport_generic_handle_tmr(
1736 struct se_cmd *cmd)
1737 {
1738 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1739 return 0;
1740 }
1741 EXPORT_SYMBOL(transport_generic_handle_tmr);
1742
1743 /*
1744 * If the cmd is active, request it to be stopped and sleep until it
1745 * has completed.
1746 */
1747 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1748 {
1749 bool was_active = false;
1750
1751 if (cmd->transport_state & CMD_T_BUSY) {
1752 cmd->transport_state |= CMD_T_REQUEST_STOP;
1753 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1754
1755 pr_debug("cmd %p waiting to complete\n", cmd);
1756 wait_for_completion(&cmd->task_stop_comp);
1757 pr_debug("cmd %p stopped successfully\n", cmd);
1758
1759 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1760 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1761 cmd->transport_state &= ~CMD_T_BUSY;
1762 was_active = true;
1763 }
1764
1765 return was_active;
1766 }
1767
1768 /*
1769 * Handle SAM-esque emulation for generic transport request failures.
1770 */
1771 void transport_generic_request_failure(struct se_cmd *cmd)
1772 {
1773 int ret = 0;
1774
1775 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1776 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1777 cmd->t_task_cdb[0]);
1778 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1779 cmd->se_tfo->get_cmd_state(cmd),
1780 cmd->t_state, cmd->scsi_sense_reason);
1781 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1782 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1783 (cmd->transport_state & CMD_T_STOP) != 0,
1784 (cmd->transport_state & CMD_T_SENT) != 0);
1785
1786 /*
1787 * For SAM Task Attribute emulation for failed struct se_cmd
1788 */
1789 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1790 transport_complete_task_attr(cmd);
1791
1792 switch (cmd->scsi_sense_reason) {
1793 case TCM_NON_EXISTENT_LUN:
1794 case TCM_UNSUPPORTED_SCSI_OPCODE:
1795 case TCM_INVALID_CDB_FIELD:
1796 case TCM_INVALID_PARAMETER_LIST:
1797 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1798 case TCM_UNKNOWN_MODE_PAGE:
1799 case TCM_WRITE_PROTECTED:
1800 case TCM_CHECK_CONDITION_ABORT_CMD:
1801 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1802 case TCM_CHECK_CONDITION_NOT_READY:
1803 break;
1804 case TCM_RESERVATION_CONFLICT:
1805 /*
1806 * No SENSE Data payload for this case, set SCSI Status
1807 * and queue the response to $FABRIC_MOD.
1808 *
1809 * Uses linux/include/scsi/scsi.h SAM status codes defs
1810 */
1811 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1812 /*
1813 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1814 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1815 * CONFLICT STATUS.
1816 *
1817 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1818 */
1819 if (cmd->se_sess &&
1820 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1821 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1822 cmd->orig_fe_lun, 0x2C,
1823 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1824
1825 ret = cmd->se_tfo->queue_status(cmd);
1826 if (ret == -EAGAIN || ret == -ENOMEM)
1827 goto queue_full;
1828 goto check_stop;
1829 default:
1830 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1831 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1832 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1833 break;
1834 }
1835 /*
1836 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1837 * make the call to transport_send_check_condition_and_sense()
1838 * directly. Otherwise expect the fabric to make the call to
1839 * transport_send_check_condition_and_sense() after handling
1840 * possible unsoliticied write data payloads.
1841 */
1842 ret = transport_send_check_condition_and_sense(cmd,
1843 cmd->scsi_sense_reason, 0);
1844 if (ret == -EAGAIN || ret == -ENOMEM)
1845 goto queue_full;
1846
1847 check_stop:
1848 transport_lun_remove_cmd(cmd);
1849 if (!transport_cmd_check_stop_to_fabric(cmd))
1850 ;
1851 return;
1852
1853 queue_full:
1854 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1855 transport_handle_queue_full(cmd, cmd->se_dev);
1856 }
1857 EXPORT_SYMBOL(transport_generic_request_failure);
1858
1859 static inline u32 transport_lba_21(unsigned char *cdb)
1860 {
1861 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1862 }
1863
1864 static inline u32 transport_lba_32(unsigned char *cdb)
1865 {
1866 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1867 }
1868
1869 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1870 {
1871 unsigned int __v1, __v2;
1872
1873 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1874 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1875
1876 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1877 }
1878
1879 /*
1880 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1881 */
1882 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1883 {
1884 unsigned int __v1, __v2;
1885
1886 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1887 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1888
1889 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1890 }
1891
1892 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1893 {
1894 unsigned long flags;
1895
1896 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1897 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1898 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1899 }
1900
1901 /*
1902 * Called from Fabric Module context from transport_execute_tasks()
1903 *
1904 * The return of this function determins if the tasks from struct se_cmd
1905 * get added to the execution queue in transport_execute_tasks(),
1906 * or are added to the delayed or ordered lists here.
1907 */
1908 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1909 {
1910 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1911 return 1;
1912 /*
1913 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1914 * to allow the passed struct se_cmd list of tasks to the front of the list.
1915 */
1916 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1917 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1918 " 0x%02x, se_ordered_id: %u\n",
1919 cmd->t_task_cdb[0],
1920 cmd->se_ordered_id);
1921 return 1;
1922 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1923 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1924 smp_mb__after_atomic_inc();
1925
1926 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1927 " list, se_ordered_id: %u\n",
1928 cmd->t_task_cdb[0],
1929 cmd->se_ordered_id);
1930 /*
1931 * Add ORDERED command to tail of execution queue if
1932 * no other older commands exist that need to be
1933 * completed first.
1934 */
1935 if (!atomic_read(&cmd->se_dev->simple_cmds))
1936 return 1;
1937 } else {
1938 /*
1939 * For SIMPLE and UNTAGGED Task Attribute commands
1940 */
1941 atomic_inc(&cmd->se_dev->simple_cmds);
1942 smp_mb__after_atomic_inc();
1943 }
1944 /*
1945 * Otherwise if one or more outstanding ORDERED task attribute exist,
1946 * add the dormant task(s) built for the passed struct se_cmd to the
1947 * execution queue and become in Active state for this struct se_device.
1948 */
1949 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1950 /*
1951 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1952 * will be drained upon completion of HEAD_OF_QUEUE task.
1953 */
1954 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1955 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1956 list_add_tail(&cmd->se_delayed_node,
1957 &cmd->se_dev->delayed_cmd_list);
1958 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1959
1960 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1961 " delayed CMD list, se_ordered_id: %u\n",
1962 cmd->t_task_cdb[0], cmd->sam_task_attr,
1963 cmd->se_ordered_id);
1964 /*
1965 * Return zero to let transport_execute_tasks() know
1966 * not to add the delayed tasks to the execution list.
1967 */
1968 return 0;
1969 }
1970 /*
1971 * Otherwise, no ORDERED task attributes exist..
1972 */
1973 return 1;
1974 }
1975
1976 /*
1977 * Called from fabric module context in transport_generic_new_cmd() and
1978 * transport_generic_process_write()
1979 */
1980 static void transport_execute_tasks(struct se_cmd *cmd)
1981 {
1982 int add_tasks;
1983 struct se_device *se_dev = cmd->se_dev;
1984 /*
1985 * Call transport_cmd_check_stop() to see if a fabric exception
1986 * has occurred that prevents execution.
1987 */
1988 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
1989 /*
1990 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
1991 * attribute for the tasks of the received struct se_cmd CDB
1992 */
1993 add_tasks = transport_execute_task_attr(cmd);
1994 if (add_tasks) {
1995 __transport_execute_tasks(se_dev, cmd);
1996 return;
1997 }
1998 }
1999 __transport_execute_tasks(se_dev, NULL);
2000 }
2001
2002 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2003 {
2004 int error;
2005 struct se_cmd *cmd = NULL;
2006 unsigned long flags;
2007
2008 check_depth:
2009 spin_lock_irq(&dev->execute_task_lock);
2010 if (new_cmd != NULL)
2011 __target_add_to_execute_list(new_cmd);
2012
2013 if (list_empty(&dev->execute_list)) {
2014 spin_unlock_irq(&dev->execute_task_lock);
2015 return 0;
2016 }
2017 cmd = list_first_entry(&dev->execute_list, struct se_cmd, execute_list);
2018 __target_remove_from_execute_list(cmd);
2019 spin_unlock_irq(&dev->execute_task_lock);
2020
2021 spin_lock_irqsave(&cmd->t_state_lock, flags);
2022 cmd->transport_state |= CMD_T_BUSY;
2023 cmd->transport_state |= CMD_T_SENT;
2024
2025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2026
2027 if (cmd->execute_cmd)
2028 error = cmd->execute_cmd(cmd);
2029 else {
2030 error = dev->transport->execute_cmd(cmd, cmd->t_data_sg,
2031 cmd->t_data_nents, cmd->data_direction);
2032 }
2033
2034 if (error != 0) {
2035 spin_lock_irqsave(&cmd->t_state_lock, flags);
2036 cmd->transport_state &= ~CMD_T_BUSY;
2037 cmd->transport_state &= ~CMD_T_SENT;
2038 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2039
2040 transport_generic_request_failure(cmd);
2041 }
2042
2043 new_cmd = NULL;
2044 goto check_depth;
2045
2046 return 0;
2047 }
2048
2049 static inline u32 transport_get_sectors_6(
2050 unsigned char *cdb,
2051 struct se_cmd *cmd,
2052 int *ret)
2053 {
2054 struct se_device *dev = cmd->se_dev;
2055
2056 /*
2057 * Assume TYPE_DISK for non struct se_device objects.
2058 * Use 8-bit sector value.
2059 */
2060 if (!dev)
2061 goto type_disk;
2062
2063 /*
2064 * Use 24-bit allocation length for TYPE_TAPE.
2065 */
2066 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2067 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2068
2069 /*
2070 * Everything else assume TYPE_DISK Sector CDB location.
2071 * Use 8-bit sector value. SBC-3 says:
2072 *
2073 * A TRANSFER LENGTH field set to zero specifies that 256
2074 * logical blocks shall be written. Any other value
2075 * specifies the number of logical blocks that shall be
2076 * written.
2077 */
2078 type_disk:
2079 return cdb[4] ? : 256;
2080 }
2081
2082 static inline u32 transport_get_sectors_10(
2083 unsigned char *cdb,
2084 struct se_cmd *cmd,
2085 int *ret)
2086 {
2087 struct se_device *dev = cmd->se_dev;
2088
2089 /*
2090 * Assume TYPE_DISK for non struct se_device objects.
2091 * Use 16-bit sector value.
2092 */
2093 if (!dev)
2094 goto type_disk;
2095
2096 /*
2097 * XXX_10 is not defined in SSC, throw an exception
2098 */
2099 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2100 *ret = -EINVAL;
2101 return 0;
2102 }
2103
2104 /*
2105 * Everything else assume TYPE_DISK Sector CDB location.
2106 * Use 16-bit sector value.
2107 */
2108 type_disk:
2109 return (u32)(cdb[7] << 8) + cdb[8];
2110 }
2111
2112 static inline u32 transport_get_sectors_12(
2113 unsigned char *cdb,
2114 struct se_cmd *cmd,
2115 int *ret)
2116 {
2117 struct se_device *dev = cmd->se_dev;
2118
2119 /*
2120 * Assume TYPE_DISK for non struct se_device objects.
2121 * Use 32-bit sector value.
2122 */
2123 if (!dev)
2124 goto type_disk;
2125
2126 /*
2127 * XXX_12 is not defined in SSC, throw an exception
2128 */
2129 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2130 *ret = -EINVAL;
2131 return 0;
2132 }
2133
2134 /*
2135 * Everything else assume TYPE_DISK Sector CDB location.
2136 * Use 32-bit sector value.
2137 */
2138 type_disk:
2139 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2140 }
2141
2142 static inline u32 transport_get_sectors_16(
2143 unsigned char *cdb,
2144 struct se_cmd *cmd,
2145 int *ret)
2146 {
2147 struct se_device *dev = cmd->se_dev;
2148
2149 /*
2150 * Assume TYPE_DISK for non struct se_device objects.
2151 * Use 32-bit sector value.
2152 */
2153 if (!dev)
2154 goto type_disk;
2155
2156 /*
2157 * Use 24-bit allocation length for TYPE_TAPE.
2158 */
2159 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2160 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2161
2162 type_disk:
2163 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2164 (cdb[12] << 8) + cdb[13];
2165 }
2166
2167 /*
2168 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2169 */
2170 static inline u32 transport_get_sectors_32(
2171 unsigned char *cdb,
2172 struct se_cmd *cmd,
2173 int *ret)
2174 {
2175 /*
2176 * Assume TYPE_DISK for non struct se_device objects.
2177 * Use 32-bit sector value.
2178 */
2179 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2180 (cdb[30] << 8) + cdb[31];
2181
2182 }
2183
2184 static inline u32 transport_get_size(
2185 u32 sectors,
2186 unsigned char *cdb,
2187 struct se_cmd *cmd)
2188 {
2189 struct se_device *dev = cmd->se_dev;
2190
2191 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2192 if (cdb[1] & 1) { /* sectors */
2193 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2194 } else /* bytes */
2195 return sectors;
2196 }
2197
2198 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2199 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size,
2200 sectors, dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2201 dev->transport->name);
2202
2203 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2204 }
2205
2206 static void transport_xor_callback(struct se_cmd *cmd)
2207 {
2208 unsigned char *buf, *addr;
2209 struct scatterlist *sg;
2210 unsigned int offset;
2211 int i;
2212 int count;
2213 /*
2214 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2215 *
2216 * 1) read the specified logical block(s);
2217 * 2) transfer logical blocks from the data-out buffer;
2218 * 3) XOR the logical blocks transferred from the data-out buffer with
2219 * the logical blocks read, storing the resulting XOR data in a buffer;
2220 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2221 * blocks transferred from the data-out buffer; and
2222 * 5) transfer the resulting XOR data to the data-in buffer.
2223 */
2224 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2225 if (!buf) {
2226 pr_err("Unable to allocate xor_callback buf\n");
2227 return;
2228 }
2229 /*
2230 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2231 * into the locally allocated *buf
2232 */
2233 sg_copy_to_buffer(cmd->t_data_sg,
2234 cmd->t_data_nents,
2235 buf,
2236 cmd->data_length);
2237
2238 /*
2239 * Now perform the XOR against the BIDI read memory located at
2240 * cmd->t_mem_bidi_list
2241 */
2242
2243 offset = 0;
2244 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2245 addr = kmap_atomic(sg_page(sg));
2246 if (!addr)
2247 goto out;
2248
2249 for (i = 0; i < sg->length; i++)
2250 *(addr + sg->offset + i) ^= *(buf + offset + i);
2251
2252 offset += sg->length;
2253 kunmap_atomic(addr);
2254 }
2255
2256 out:
2257 kfree(buf);
2258 }
2259
2260 /*
2261 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2262 */
2263 static int transport_get_sense_data(struct se_cmd *cmd)
2264 {
2265 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2266 struct se_device *dev = cmd->se_dev;
2267 unsigned long flags;
2268 u32 offset = 0;
2269
2270 WARN_ON(!cmd->se_lun);
2271
2272 if (!dev)
2273 return 0;
2274
2275 spin_lock_irqsave(&cmd->t_state_lock, flags);
2276 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2277 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2278 return 0;
2279 }
2280
2281 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
2282 goto out;
2283
2284 if (!dev->transport->get_sense_buffer) {
2285 pr_err("dev->transport->get_sense_buffer is NULL\n");
2286 goto out;
2287 }
2288
2289 sense_buffer = dev->transport->get_sense_buffer(cmd);
2290 if (!sense_buffer) {
2291 pr_err("ITT 0x%08x cmd %p: Unable to locate"
2292 " sense buffer for task with sense\n",
2293 cmd->se_tfo->get_task_tag(cmd), cmd);
2294 goto out;
2295 }
2296
2297 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2298
2299 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
2300
2301 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
2302
2303 /* Automatically padded */
2304 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
2305
2306 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
2307 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
2308 return 0;
2309
2310 out:
2311 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2312 return -1;
2313 }
2314
2315 static inline long long transport_dev_end_lba(struct se_device *dev)
2316 {
2317 return dev->transport->get_blocks(dev) + 1;
2318 }
2319
2320 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2321 {
2322 struct se_device *dev = cmd->se_dev;
2323 u32 sectors;
2324
2325 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2326 return 0;
2327
2328 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2329
2330 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2331 pr_err("LBA: %llu Sectors: %u exceeds"
2332 " transport_dev_end_lba(): %llu\n",
2333 cmd->t_task_lba, sectors,
2334 transport_dev_end_lba(dev));
2335 return -EINVAL;
2336 }
2337
2338 return 0;
2339 }
2340
2341 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2342 {
2343 /*
2344 * Determine if the received WRITE_SAME is used to for direct
2345 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2346 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2347 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2348 */
2349 int passthrough = (dev->transport->transport_type ==
2350 TRANSPORT_PLUGIN_PHBA_PDEV);
2351
2352 if (!passthrough) {
2353 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2354 pr_err("WRITE_SAME PBDATA and LBDATA"
2355 " bits not supported for Block Discard"
2356 " Emulation\n");
2357 return -ENOSYS;
2358 }
2359 /*
2360 * Currently for the emulated case we only accept
2361 * tpws with the UNMAP=1 bit set.
2362 */
2363 if (!(flags[0] & 0x08)) {
2364 pr_err("WRITE_SAME w/o UNMAP bit not"
2365 " supported for Block Discard Emulation\n");
2366 return -ENOSYS;
2367 }
2368 }
2369
2370 return 0;
2371 }
2372
2373 /* transport_generic_cmd_sequencer():
2374 *
2375 * Generic Command Sequencer that should work for most DAS transport
2376 * drivers.
2377 *
2378 * Called from target_setup_cmd_from_cdb() in the $FABRIC_MOD
2379 * RX Thread.
2380 *
2381 * FIXME: Need to support other SCSI OPCODES where as well.
2382 */
2383 static int transport_generic_cmd_sequencer(
2384 struct se_cmd *cmd,
2385 unsigned char *cdb)
2386 {
2387 struct se_device *dev = cmd->se_dev;
2388 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2389 int ret = 0, sector_ret = 0, passthrough;
2390 u32 sectors = 0, size = 0, pr_reg_type = 0;
2391 u16 service_action;
2392 u8 alua_ascq = 0;
2393 /*
2394 * Check for an existing UNIT ATTENTION condition
2395 */
2396 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2397 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2398 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2399 return -EINVAL;
2400 }
2401 /*
2402 * Check status of Asymmetric Logical Unit Assignment port
2403 */
2404 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2405 if (ret != 0) {
2406 /*
2407 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2408 * The ALUA additional sense code qualifier (ASCQ) is determined
2409 * by the ALUA primary or secondary access state..
2410 */
2411 if (ret > 0) {
2412 pr_debug("[%s]: ALUA TG Port not available,"
2413 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2414 cmd->se_tfo->get_fabric_name(), alua_ascq);
2415
2416 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2417 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2418 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2419 return -EINVAL;
2420 }
2421 goto out_invalid_cdb_field;
2422 }
2423 /*
2424 * Check status for SPC-3 Persistent Reservations
2425 */
2426 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2427 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2428 cmd, cdb, pr_reg_type) != 0) {
2429 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2430 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2431 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2432 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2433 return -EBUSY;
2434 }
2435 /*
2436 * This means the CDB is allowed for the SCSI Initiator port
2437 * when said port is *NOT* holding the legacy SPC-2 or
2438 * SPC-3 Persistent Reservation.
2439 */
2440 }
2441
2442 /*
2443 * If we operate in passthrough mode we skip most CDB emulation and
2444 * instead hand the commands down to the physical SCSI device.
2445 */
2446 passthrough =
2447 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2448
2449 switch (cdb[0]) {
2450 case READ_6:
2451 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2452 if (sector_ret)
2453 goto out_unsupported_cdb;
2454 size = transport_get_size(sectors, cdb, cmd);
2455 cmd->t_task_lba = transport_lba_21(cdb);
2456 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2457 break;
2458 case READ_10:
2459 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2460 if (sector_ret)
2461 goto out_unsupported_cdb;
2462 size = transport_get_size(sectors, cdb, cmd);
2463 cmd->t_task_lba = transport_lba_32(cdb);
2464 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2465 break;
2466 case READ_12:
2467 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2468 if (sector_ret)
2469 goto out_unsupported_cdb;
2470 size = transport_get_size(sectors, cdb, cmd);
2471 cmd->t_task_lba = transport_lba_32(cdb);
2472 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2473 break;
2474 case READ_16:
2475 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2476 if (sector_ret)
2477 goto out_unsupported_cdb;
2478 size = transport_get_size(sectors, cdb, cmd);
2479 cmd->t_task_lba = transport_lba_64(cdb);
2480 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2481 break;
2482 case WRITE_6:
2483 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2484 if (sector_ret)
2485 goto out_unsupported_cdb;
2486 size = transport_get_size(sectors, cdb, cmd);
2487 cmd->t_task_lba = transport_lba_21(cdb);
2488 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2489 break;
2490 case WRITE_10:
2491 case WRITE_VERIFY:
2492 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2493 if (sector_ret)
2494 goto out_unsupported_cdb;
2495 size = transport_get_size(sectors, cdb, cmd);
2496 cmd->t_task_lba = transport_lba_32(cdb);
2497 if (cdb[1] & 0x8)
2498 cmd->se_cmd_flags |= SCF_FUA;
2499 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2500 break;
2501 case WRITE_12:
2502 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2503 if (sector_ret)
2504 goto out_unsupported_cdb;
2505 size = transport_get_size(sectors, cdb, cmd);
2506 cmd->t_task_lba = transport_lba_32(cdb);
2507 if (cdb[1] & 0x8)
2508 cmd->se_cmd_flags |= SCF_FUA;
2509 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2510 break;
2511 case WRITE_16:
2512 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2513 if (sector_ret)
2514 goto out_unsupported_cdb;
2515 size = transport_get_size(sectors, cdb, cmd);
2516 cmd->t_task_lba = transport_lba_64(cdb);
2517 if (cdb[1] & 0x8)
2518 cmd->se_cmd_flags |= SCF_FUA;
2519 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2520 break;
2521 case XDWRITEREAD_10:
2522 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2523 !(cmd->se_cmd_flags & SCF_BIDI))
2524 goto out_invalid_cdb_field;
2525 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2526 if (sector_ret)
2527 goto out_unsupported_cdb;
2528 size = transport_get_size(sectors, cdb, cmd);
2529 cmd->t_task_lba = transport_lba_32(cdb);
2530 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2531
2532 /*
2533 * Do now allow BIDI commands for passthrough mode.
2534 */
2535 if (passthrough)
2536 goto out_unsupported_cdb;
2537
2538 /*
2539 * Setup BIDI XOR callback to be run after I/O completion.
2540 */
2541 cmd->transport_complete_callback = &transport_xor_callback;
2542 if (cdb[1] & 0x8)
2543 cmd->se_cmd_flags |= SCF_FUA;
2544 break;
2545 case VARIABLE_LENGTH_CMD:
2546 service_action = get_unaligned_be16(&cdb[8]);
2547 switch (service_action) {
2548 case XDWRITEREAD_32:
2549 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2550 if (sector_ret)
2551 goto out_unsupported_cdb;
2552 size = transport_get_size(sectors, cdb, cmd);
2553 /*
2554 * Use WRITE_32 and READ_32 opcodes for the emulated
2555 * XDWRITE_READ_32 logic.
2556 */
2557 cmd->t_task_lba = transport_lba_64_ext(cdb);
2558 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2559
2560 /*
2561 * Do now allow BIDI commands for passthrough mode.
2562 */
2563 if (passthrough)
2564 goto out_unsupported_cdb;
2565
2566 /*
2567 * Setup BIDI XOR callback to be run during after I/O
2568 * completion.
2569 */
2570 cmd->transport_complete_callback = &transport_xor_callback;
2571 if (cdb[1] & 0x8)
2572 cmd->se_cmd_flags |= SCF_FUA;
2573 break;
2574 case WRITE_SAME_32:
2575 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2576 if (sector_ret)
2577 goto out_unsupported_cdb;
2578
2579 if (sectors)
2580 size = transport_get_size(1, cdb, cmd);
2581 else {
2582 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2583 " supported\n");
2584 goto out_invalid_cdb_field;
2585 }
2586
2587 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2588 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2589
2590 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2591 goto out_unsupported_cdb;
2592 if (!passthrough)
2593 cmd->execute_cmd = target_emulate_write_same;
2594 break;
2595 default:
2596 pr_err("VARIABLE_LENGTH_CMD service action"
2597 " 0x%04x not supported\n", service_action);
2598 goto out_unsupported_cdb;
2599 }
2600 break;
2601 case MAINTENANCE_IN:
2602 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2603 /* MAINTENANCE_IN from SCC-2 */
2604 /*
2605 * Check for emulated MI_REPORT_TARGET_PGS.
2606 */
2607 if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS &&
2608 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2609 cmd->execute_cmd =
2610 target_emulate_report_target_port_groups;
2611 }
2612 size = (cdb[6] << 24) | (cdb[7] << 16) |
2613 (cdb[8] << 8) | cdb[9];
2614 } else {
2615 /* GPCMD_SEND_KEY from multi media commands */
2616 size = (cdb[8] << 8) + cdb[9];
2617 }
2618 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2619 break;
2620 case MODE_SELECT:
2621 size = cdb[4];
2622 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2623 break;
2624 case MODE_SELECT_10:
2625 size = (cdb[7] << 8) + cdb[8];
2626 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2627 break;
2628 case MODE_SENSE:
2629 size = cdb[4];
2630 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2631 if (!passthrough)
2632 cmd->execute_cmd = target_emulate_modesense;
2633 break;
2634 case MODE_SENSE_10:
2635 size = (cdb[7] << 8) + cdb[8];
2636 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2637 if (!passthrough)
2638 cmd->execute_cmd = target_emulate_modesense;
2639 break;
2640 case GPCMD_READ_BUFFER_CAPACITY:
2641 case GPCMD_SEND_OPC:
2642 case LOG_SELECT:
2643 case LOG_SENSE:
2644 size = (cdb[7] << 8) + cdb[8];
2645 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2646 break;
2647 case READ_BLOCK_LIMITS:
2648 size = READ_BLOCK_LEN;
2649 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2650 break;
2651 case GPCMD_GET_CONFIGURATION:
2652 case GPCMD_READ_FORMAT_CAPACITIES:
2653 case GPCMD_READ_DISC_INFO:
2654 case GPCMD_READ_TRACK_RZONE_INFO:
2655 size = (cdb[7] << 8) + cdb[8];
2656 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2657 break;
2658 case PERSISTENT_RESERVE_IN:
2659 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2660 cmd->execute_cmd = target_scsi3_emulate_pr_in;
2661 size = (cdb[7] << 8) + cdb[8];
2662 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2663 break;
2664 case PERSISTENT_RESERVE_OUT:
2665 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2666 cmd->execute_cmd = target_scsi3_emulate_pr_out;
2667 size = (cdb[7] << 8) + cdb[8];
2668 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2669 break;
2670 case GPCMD_MECHANISM_STATUS:
2671 case GPCMD_READ_DVD_STRUCTURE:
2672 size = (cdb[8] << 8) + cdb[9];
2673 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2674 break;
2675 case READ_POSITION:
2676 size = READ_POSITION_LEN;
2677 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2678 break;
2679 case MAINTENANCE_OUT:
2680 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2681 /* MAINTENANCE_OUT from SCC-2
2682 *
2683 * Check for emulated MO_SET_TARGET_PGS.
2684 */
2685 if (cdb[1] == MO_SET_TARGET_PGS &&
2686 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2687 cmd->execute_cmd =
2688 target_emulate_set_target_port_groups;
2689 }
2690
2691 size = (cdb[6] << 24) | (cdb[7] << 16) |
2692 (cdb[8] << 8) | cdb[9];
2693 } else {
2694 /* GPCMD_REPORT_KEY from multi media commands */
2695 size = (cdb[8] << 8) + cdb[9];
2696 }
2697 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2698 break;
2699 case INQUIRY:
2700 size = (cdb[3] << 8) + cdb[4];
2701 /*
2702 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2703 * See spc4r17 section 5.3
2704 */
2705 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2706 cmd->sam_task_attr = MSG_HEAD_TAG;
2707 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2708 if (!passthrough)
2709 cmd->execute_cmd = target_emulate_inquiry;
2710 break;
2711 case READ_BUFFER:
2712 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2713 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2714 break;
2715 case READ_CAPACITY:
2716 size = READ_CAP_LEN;
2717 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2718 if (!passthrough)
2719 cmd->execute_cmd = target_emulate_readcapacity;
2720 break;
2721 case READ_MEDIA_SERIAL_NUMBER:
2722 case SECURITY_PROTOCOL_IN:
2723 case SECURITY_PROTOCOL_OUT:
2724 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2725 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2726 break;
2727 case SERVICE_ACTION_IN:
2728 switch (cmd->t_task_cdb[1] & 0x1f) {
2729 case SAI_READ_CAPACITY_16:
2730 if (!passthrough)
2731 cmd->execute_cmd =
2732 target_emulate_readcapacity_16;
2733 break;
2734 default:
2735 if (passthrough)
2736 break;
2737
2738 pr_err("Unsupported SA: 0x%02x\n",
2739 cmd->t_task_cdb[1] & 0x1f);
2740 goto out_invalid_cdb_field;
2741 }
2742 /*FALLTHROUGH*/
2743 case ACCESS_CONTROL_IN:
2744 case ACCESS_CONTROL_OUT:
2745 case EXTENDED_COPY:
2746 case READ_ATTRIBUTE:
2747 case RECEIVE_COPY_RESULTS:
2748 case WRITE_ATTRIBUTE:
2749 size = (cdb[10] << 24) | (cdb[11] << 16) |
2750 (cdb[12] << 8) | cdb[13];
2751 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2752 break;
2753 case RECEIVE_DIAGNOSTIC:
2754 case SEND_DIAGNOSTIC:
2755 size = (cdb[3] << 8) | cdb[4];
2756 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2757 break;
2758 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2759 #if 0
2760 case GPCMD_READ_CD:
2761 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2762 size = (2336 * sectors);
2763 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2764 break;
2765 #endif
2766 case READ_TOC:
2767 size = cdb[8];
2768 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2769 break;
2770 case REQUEST_SENSE:
2771 size = cdb[4];
2772 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2773 if (!passthrough)
2774 cmd->execute_cmd = target_emulate_request_sense;
2775 break;
2776 case READ_ELEMENT_STATUS:
2777 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2778 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779 break;
2780 case WRITE_BUFFER:
2781 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2782 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2783 break;
2784 case RESERVE:
2785 case RESERVE_10:
2786 /*
2787 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2788 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2789 */
2790 if (cdb[0] == RESERVE_10)
2791 size = (cdb[7] << 8) | cdb[8];
2792 else
2793 size = cmd->data_length;
2794
2795 /*
2796 * Setup the legacy emulated handler for SPC-2 and
2797 * >= SPC-3 compatible reservation handling (CRH=1)
2798 * Otherwise, we assume the underlying SCSI logic is
2799 * is running in SPC_PASSTHROUGH, and wants reservations
2800 * emulation disabled.
2801 */
2802 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2803 cmd->execute_cmd = target_scsi2_reservation_reserve;
2804 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2805 break;
2806 case RELEASE:
2807 case RELEASE_10:
2808 /*
2809 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2810 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2811 */
2812 if (cdb[0] == RELEASE_10)
2813 size = (cdb[7] << 8) | cdb[8];
2814 else
2815 size = cmd->data_length;
2816
2817 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2818 cmd->execute_cmd = target_scsi2_reservation_release;
2819 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2820 break;
2821 case SYNCHRONIZE_CACHE:
2822 case SYNCHRONIZE_CACHE_16:
2823 /*
2824 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2825 */
2826 if (cdb[0] == SYNCHRONIZE_CACHE) {
2827 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2828 cmd->t_task_lba = transport_lba_32(cdb);
2829 } else {
2830 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2831 cmd->t_task_lba = transport_lba_64(cdb);
2832 }
2833 if (sector_ret)
2834 goto out_unsupported_cdb;
2835
2836 size = transport_get_size(sectors, cdb, cmd);
2837 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2838
2839 if (passthrough)
2840 break;
2841
2842 /*
2843 * Check to ensure that LBA + Range does not exceed past end of
2844 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2845 */
2846 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2847 if (transport_cmd_get_valid_sectors(cmd) < 0)
2848 goto out_invalid_cdb_field;
2849 }
2850 cmd->execute_cmd = target_emulate_synchronize_cache;
2851 break;
2852 case UNMAP:
2853 size = get_unaligned_be16(&cdb[7]);
2854 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 if (!passthrough)
2856 cmd->execute_cmd = target_emulate_unmap;
2857 break;
2858 case WRITE_SAME_16:
2859 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2860 if (sector_ret)
2861 goto out_unsupported_cdb;
2862
2863 if (sectors)
2864 size = transport_get_size(1, cdb, cmd);
2865 else {
2866 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2867 goto out_invalid_cdb_field;
2868 }
2869
2870 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2871 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2872
2873 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2874 goto out_unsupported_cdb;
2875 if (!passthrough)
2876 cmd->execute_cmd = target_emulate_write_same;
2877 break;
2878 case WRITE_SAME:
2879 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2880 if (sector_ret)
2881 goto out_unsupported_cdb;
2882
2883 if (sectors)
2884 size = transport_get_size(1, cdb, cmd);
2885 else {
2886 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2887 goto out_invalid_cdb_field;
2888 }
2889
2890 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2891 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2892 /*
2893 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2894 * of byte 1 bit 3 UNMAP instead of original reserved field
2895 */
2896 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2897 goto out_unsupported_cdb;
2898 if (!passthrough)
2899 cmd->execute_cmd = target_emulate_write_same;
2900 break;
2901 case ALLOW_MEDIUM_REMOVAL:
2902 case ERASE:
2903 case REZERO_UNIT:
2904 case SEEK_10:
2905 case SPACE:
2906 case START_STOP:
2907 case TEST_UNIT_READY:
2908 case VERIFY:
2909 case WRITE_FILEMARKS:
2910 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2911 if (!passthrough)
2912 cmd->execute_cmd = target_emulate_noop;
2913 break;
2914 case GPCMD_CLOSE_TRACK:
2915 case INITIALIZE_ELEMENT_STATUS:
2916 case GPCMD_LOAD_UNLOAD:
2917 case GPCMD_SET_SPEED:
2918 case MOVE_MEDIUM:
2919 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2920 break;
2921 case REPORT_LUNS:
2922 cmd->execute_cmd = target_report_luns;
2923 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2924 /*
2925 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2926 * See spc4r17 section 5.3
2927 */
2928 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2929 cmd->sam_task_attr = MSG_HEAD_TAG;
2930 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2931 break;
2932 case GET_EVENT_STATUS_NOTIFICATION:
2933 size = (cdb[7] << 8) | cdb[8];
2934 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2935 break;
2936 case ATA_16:
2937 /* Only support ATA passthrough to pSCSI backends.. */
2938 if (!passthrough)
2939 goto out_unsupported_cdb;
2940
2941 /* T_LENGTH */
2942 switch (cdb[2] & 0x3) {
2943 case 0x0:
2944 sectors = 0;
2945 break;
2946 case 0x1:
2947 sectors = (((cdb[1] & 0x1) ? cdb[3] : 0) << 8) | cdb[4];
2948 break;
2949 case 0x2:
2950 sectors = (((cdb[1] & 0x1) ? cdb[5] : 0) << 8) | cdb[6];
2951 break;
2952 case 0x3:
2953 pr_err("T_LENGTH=0x3 not supported for ATA_16\n");
2954 goto out_invalid_cdb_field;
2955 }
2956
2957 /* BYTE_BLOCK */
2958 if (cdb[2] & 0x4) {
2959 /* BLOCK T_TYPE: 512 or sector */
2960 size = sectors * ((cdb[2] & 0x10) ?
2961 dev->se_sub_dev->se_dev_attrib.block_size : 512);
2962 } else {
2963 /* BYTE */
2964 size = sectors;
2965 }
2966 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2967 break;
2968 default:
2969 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
2970 " 0x%02x, sending CHECK_CONDITION.\n",
2971 cmd->se_tfo->get_fabric_name(), cdb[0]);
2972 goto out_unsupported_cdb;
2973 }
2974
2975 if (cmd->unknown_data_length)
2976 cmd->data_length = size;
2977
2978 if (size != cmd->data_length) {
2979 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
2980 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
2981 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
2982 cmd->data_length, size, cdb[0]);
2983
2984 cmd->cmd_spdtl = size;
2985
2986 if (cmd->data_direction == DMA_TO_DEVICE) {
2987 pr_err("Rejecting underflow/overflow"
2988 " WRITE data\n");
2989 goto out_invalid_cdb_field;
2990 }
2991 /*
2992 * Reject READ_* or WRITE_* with overflow/underflow for
2993 * type SCF_SCSI_DATA_SG_IO_CDB.
2994 */
2995 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
2996 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
2997 " CDB on non 512-byte sector setup subsystem"
2998 " plugin: %s\n", dev->transport->name);
2999 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3000 goto out_invalid_cdb_field;
3001 }
3002
3003 if (size > cmd->data_length) {
3004 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3005 cmd->residual_count = (size - cmd->data_length);
3006 } else {
3007 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3008 cmd->residual_count = (cmd->data_length - size);
3009 }
3010 cmd->data_length = size;
3011 }
3012
3013 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3014 if (sectors > su_dev->se_dev_attrib.fabric_max_sectors) {
3015 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
3016 " big sectors %u exceeds fabric_max_sectors:"
3017 " %u\n", cdb[0], sectors,
3018 su_dev->se_dev_attrib.fabric_max_sectors);
3019 goto out_invalid_cdb_field;
3020 }
3021 if (sectors > su_dev->se_dev_attrib.hw_max_sectors) {
3022 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
3023 " big sectors %u exceeds backend hw_max_sectors:"
3024 " %u\n", cdb[0], sectors,
3025 su_dev->se_dev_attrib.hw_max_sectors);
3026 goto out_invalid_cdb_field;
3027 }
3028 }
3029
3030 /* reject any command that we don't have a handler for */
3031 if (!(passthrough || cmd->execute_cmd ||
3032 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3033 goto out_unsupported_cdb;
3034
3035 transport_set_supported_SAM_opcode(cmd);
3036 return ret;
3037
3038 out_unsupported_cdb:
3039 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3040 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3041 return -EINVAL;
3042 out_invalid_cdb_field:
3043 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3044 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3045 return -EINVAL;
3046 }
3047
3048 /*
3049 * Called from I/O completion to determine which dormant/delayed
3050 * and ordered cmds need to have their tasks added to the execution queue.
3051 */
3052 static void transport_complete_task_attr(struct se_cmd *cmd)
3053 {
3054 struct se_device *dev = cmd->se_dev;
3055 struct se_cmd *cmd_p, *cmd_tmp;
3056 int new_active_tasks = 0;
3057
3058 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3059 atomic_dec(&dev->simple_cmds);
3060 smp_mb__after_atomic_dec();
3061 dev->dev_cur_ordered_id++;
3062 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3063 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3064 cmd->se_ordered_id);
3065 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3066 dev->dev_cur_ordered_id++;
3067 pr_debug("Incremented dev_cur_ordered_id: %u for"
3068 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3069 cmd->se_ordered_id);
3070 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3071 atomic_dec(&dev->dev_ordered_sync);
3072 smp_mb__after_atomic_dec();
3073
3074 dev->dev_cur_ordered_id++;
3075 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3076 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3077 }
3078 /*
3079 * Process all commands up to the last received
3080 * ORDERED task attribute which requires another blocking
3081 * boundary
3082 */
3083 spin_lock(&dev->delayed_cmd_lock);
3084 list_for_each_entry_safe(cmd_p, cmd_tmp,
3085 &dev->delayed_cmd_list, se_delayed_node) {
3086
3087 list_del(&cmd_p->se_delayed_node);
3088 spin_unlock(&dev->delayed_cmd_lock);
3089
3090 pr_debug("Calling add_tasks() for"
3091 " cmd_p: 0x%02x Task Attr: 0x%02x"
3092 " Dormant -> Active, se_ordered_id: %u\n",
3093 cmd_p->t_task_cdb[0],
3094 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3095
3096 target_add_to_execute_list(cmd_p);
3097 new_active_tasks++;
3098
3099 spin_lock(&dev->delayed_cmd_lock);
3100 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3101 break;
3102 }
3103 spin_unlock(&dev->delayed_cmd_lock);
3104 /*
3105 * If new tasks have become active, wake up the transport thread
3106 * to do the processing of the Active tasks.
3107 */
3108 if (new_active_tasks != 0)
3109 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3110 }
3111
3112 static void transport_complete_qf(struct se_cmd *cmd)
3113 {
3114 int ret = 0;
3115
3116 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3117 transport_complete_task_attr(cmd);
3118
3119 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3120 ret = cmd->se_tfo->queue_status(cmd);
3121 if (ret)
3122 goto out;
3123 }
3124
3125 switch (cmd->data_direction) {
3126 case DMA_FROM_DEVICE:
3127 ret = cmd->se_tfo->queue_data_in(cmd);
3128 break;
3129 case DMA_TO_DEVICE:
3130 if (cmd->t_bidi_data_sg) {
3131 ret = cmd->se_tfo->queue_data_in(cmd);
3132 if (ret < 0)
3133 break;
3134 }
3135 /* Fall through for DMA_TO_DEVICE */
3136 case DMA_NONE:
3137 ret = cmd->se_tfo->queue_status(cmd);
3138 break;
3139 default:
3140 break;
3141 }
3142
3143 out:
3144 if (ret < 0) {
3145 transport_handle_queue_full(cmd, cmd->se_dev);
3146 return;
3147 }
3148 transport_lun_remove_cmd(cmd);
3149 transport_cmd_check_stop_to_fabric(cmd);
3150 }
3151
3152 static void transport_handle_queue_full(
3153 struct se_cmd *cmd,
3154 struct se_device *dev)
3155 {
3156 spin_lock_irq(&dev->qf_cmd_lock);
3157 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3158 atomic_inc(&dev->dev_qf_count);
3159 smp_mb__after_atomic_inc();
3160 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3161
3162 schedule_work(&cmd->se_dev->qf_work_queue);
3163 }
3164
3165 static void target_complete_ok_work(struct work_struct *work)
3166 {
3167 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3168 int reason = 0, ret;
3169
3170 /*
3171 * Check if we need to move delayed/dormant tasks from cmds on the
3172 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3173 * Attribute.
3174 */
3175 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3176 transport_complete_task_attr(cmd);
3177 /*
3178 * Check to schedule QUEUE_FULL work, or execute an existing
3179 * cmd->transport_qf_callback()
3180 */
3181 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3182 schedule_work(&cmd->se_dev->qf_work_queue);
3183
3184 /*
3185 * Check if we need to retrieve a sense buffer from
3186 * the struct se_cmd in question.
3187 */
3188 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3189 if (transport_get_sense_data(cmd) < 0)
3190 reason = TCM_NON_EXISTENT_LUN;
3191
3192 if (cmd->scsi_status) {
3193 ret = transport_send_check_condition_and_sense(
3194 cmd, reason, 1);
3195 if (ret == -EAGAIN || ret == -ENOMEM)
3196 goto queue_full;
3197
3198 transport_lun_remove_cmd(cmd);
3199 transport_cmd_check_stop_to_fabric(cmd);
3200 return;
3201 }
3202 }
3203 /*
3204 * Check for a callback, used by amongst other things
3205 * XDWRITE_READ_10 emulation.
3206 */
3207 if (cmd->transport_complete_callback)
3208 cmd->transport_complete_callback(cmd);
3209
3210 switch (cmd->data_direction) {
3211 case DMA_FROM_DEVICE:
3212 spin_lock(&cmd->se_lun->lun_sep_lock);
3213 if (cmd->se_lun->lun_sep) {
3214 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3215 cmd->data_length;
3216 }
3217 spin_unlock(&cmd->se_lun->lun_sep_lock);
3218
3219 ret = cmd->se_tfo->queue_data_in(cmd);
3220 if (ret == -EAGAIN || ret == -ENOMEM)
3221 goto queue_full;
3222 break;
3223 case DMA_TO_DEVICE:
3224 spin_lock(&cmd->se_lun->lun_sep_lock);
3225 if (cmd->se_lun->lun_sep) {
3226 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3227 cmd->data_length;
3228 }
3229 spin_unlock(&cmd->se_lun->lun_sep_lock);
3230 /*
3231 * Check if we need to send READ payload for BIDI-COMMAND
3232 */
3233 if (cmd->t_bidi_data_sg) {
3234 spin_lock(&cmd->se_lun->lun_sep_lock);
3235 if (cmd->se_lun->lun_sep) {
3236 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3237 cmd->data_length;
3238 }
3239 spin_unlock(&cmd->se_lun->lun_sep_lock);
3240 ret = cmd->se_tfo->queue_data_in(cmd);
3241 if (ret == -EAGAIN || ret == -ENOMEM)
3242 goto queue_full;
3243 break;
3244 }
3245 /* Fall through for DMA_TO_DEVICE */
3246 case DMA_NONE:
3247 ret = cmd->se_tfo->queue_status(cmd);
3248 if (ret == -EAGAIN || ret == -ENOMEM)
3249 goto queue_full;
3250 break;
3251 default:
3252 break;
3253 }
3254
3255 transport_lun_remove_cmd(cmd);
3256 transport_cmd_check_stop_to_fabric(cmd);
3257 return;
3258
3259 queue_full:
3260 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3261 " data_direction: %d\n", cmd, cmd->data_direction);
3262 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3263 transport_handle_queue_full(cmd, cmd->se_dev);
3264 }
3265
3266 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3267 {
3268 struct scatterlist *sg;
3269 int count;
3270
3271 for_each_sg(sgl, sg, nents, count)
3272 __free_page(sg_page(sg));
3273
3274 kfree(sgl);
3275 }
3276
3277 static inline void transport_free_pages(struct se_cmd *cmd)
3278 {
3279 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3280 return;
3281
3282 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3283 cmd->t_data_sg = NULL;
3284 cmd->t_data_nents = 0;
3285
3286 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3287 cmd->t_bidi_data_sg = NULL;
3288 cmd->t_bidi_data_nents = 0;
3289 }
3290
3291 /**
3292 * transport_release_cmd - free a command
3293 * @cmd: command to free
3294 *
3295 * This routine unconditionally frees a command, and reference counting
3296 * or list removal must be done in the caller.
3297 */
3298 static void transport_release_cmd(struct se_cmd *cmd)
3299 {
3300 BUG_ON(!cmd->se_tfo);
3301
3302 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3303 core_tmr_release_req(cmd->se_tmr_req);
3304 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3305 kfree(cmd->t_task_cdb);
3306 /*
3307 * If this cmd has been setup with target_get_sess_cmd(), drop
3308 * the kref and call ->release_cmd() in kref callback.
3309 */
3310 if (cmd->check_release != 0) {
3311 target_put_sess_cmd(cmd->se_sess, cmd);
3312 return;
3313 }
3314 cmd->se_tfo->release_cmd(cmd);
3315 }
3316
3317 /**
3318 * transport_put_cmd - release a reference to a command
3319 * @cmd: command to release
3320 *
3321 * This routine releases our reference to the command and frees it if possible.
3322 */
3323 static void transport_put_cmd(struct se_cmd *cmd)
3324 {
3325 unsigned long flags;
3326
3327 spin_lock_irqsave(&cmd->t_state_lock, flags);
3328 if (atomic_read(&cmd->t_fe_count)) {
3329 if (!atomic_dec_and_test(&cmd->t_fe_count))
3330 goto out_busy;
3331 }
3332
3333 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3334 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3335 target_remove_from_state_list(cmd);
3336 }
3337 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3338
3339 transport_free_pages(cmd);
3340 transport_release_cmd(cmd);
3341 return;
3342 out_busy:
3343 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3344 }
3345
3346 /*
3347 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3348 * allocating in the core.
3349 * @cmd: Associated se_cmd descriptor
3350 * @mem: SGL style memory for TCM WRITE / READ
3351 * @sg_mem_num: Number of SGL elements
3352 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3353 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3354 *
3355 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3356 * of parameters.
3357 */
3358 int transport_generic_map_mem_to_cmd(
3359 struct se_cmd *cmd,
3360 struct scatterlist *sgl,
3361 u32 sgl_count,
3362 struct scatterlist *sgl_bidi,
3363 u32 sgl_bidi_count)
3364 {
3365 if (!sgl || !sgl_count)
3366 return 0;
3367
3368 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3369 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3370 /*
3371 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3372 * scatterlists already have been set to follow what the fabric
3373 * passes for the original expected data transfer length.
3374 */
3375 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3376 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3377 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3378 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3379 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3380 return -EINVAL;
3381 }
3382
3383 cmd->t_data_sg = sgl;
3384 cmd->t_data_nents = sgl_count;
3385
3386 if (sgl_bidi && sgl_bidi_count) {
3387 cmd->t_bidi_data_sg = sgl_bidi;
3388 cmd->t_bidi_data_nents = sgl_bidi_count;
3389 }
3390 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3391 }
3392
3393 return 0;
3394 }
3395 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3396
3397 void *transport_kmap_data_sg(struct se_cmd *cmd)
3398 {
3399 struct scatterlist *sg = cmd->t_data_sg;
3400 struct page **pages;
3401 int i;
3402
3403 BUG_ON(!sg);
3404 /*
3405 * We need to take into account a possible offset here for fabrics like
3406 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3407 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3408 */
3409 if (!cmd->t_data_nents)
3410 return NULL;
3411 else if (cmd->t_data_nents == 1)
3412 return kmap(sg_page(sg)) + sg->offset;
3413
3414 /* >1 page. use vmap */
3415 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3416 if (!pages)
3417 return NULL;
3418
3419 /* convert sg[] to pages[] */
3420 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3421 pages[i] = sg_page(sg);
3422 }
3423
3424 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3425 kfree(pages);
3426 if (!cmd->t_data_vmap)
3427 return NULL;
3428
3429 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3430 }
3431 EXPORT_SYMBOL(transport_kmap_data_sg);
3432
3433 void transport_kunmap_data_sg(struct se_cmd *cmd)
3434 {
3435 if (!cmd->t_data_nents) {
3436 return;
3437 } else if (cmd->t_data_nents == 1) {
3438 kunmap(sg_page(cmd->t_data_sg));
3439 return;
3440 }
3441
3442 vunmap(cmd->t_data_vmap);
3443 cmd->t_data_vmap = NULL;
3444 }
3445 EXPORT_SYMBOL(transport_kunmap_data_sg);
3446
3447 static int
3448 transport_generic_get_mem(struct se_cmd *cmd)
3449 {
3450 u32 length = cmd->data_length;
3451 unsigned int nents;
3452 struct page *page;
3453 gfp_t zero_flag;
3454 int i = 0;
3455
3456 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3457 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3458 if (!cmd->t_data_sg)
3459 return -ENOMEM;
3460
3461 cmd->t_data_nents = nents;
3462 sg_init_table(cmd->t_data_sg, nents);
3463
3464 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3465
3466 while (length) {
3467 u32 page_len = min_t(u32, length, PAGE_SIZE);
3468 page = alloc_page(GFP_KERNEL | zero_flag);
3469 if (!page)
3470 goto out;
3471
3472 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3473 length -= page_len;
3474 i++;
3475 }
3476 return 0;
3477
3478 out:
3479 while (i >= 0) {
3480 __free_page(sg_page(&cmd->t_data_sg[i]));
3481 i--;
3482 }
3483 kfree(cmd->t_data_sg);
3484 cmd->t_data_sg = NULL;
3485 return -ENOMEM;
3486 }
3487
3488 /*
3489 * Allocate any required resources to execute the command. For writes we
3490 * might not have the payload yet, so notify the fabric via a call to
3491 * ->write_pending instead. Otherwise place it on the execution queue.
3492 */
3493 int transport_generic_new_cmd(struct se_cmd *cmd)
3494 {
3495 struct se_device *dev = cmd->se_dev;
3496 int ret = 0;
3497
3498 /*
3499 * Determine is the TCM fabric module has already allocated physical
3500 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3501 * beforehand.
3502 */
3503 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3504 cmd->data_length) {
3505 ret = transport_generic_get_mem(cmd);
3506 if (ret < 0)
3507 goto out_fail;
3508 }
3509
3510 /* Workaround for handling zero-length control CDBs */
3511 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3512 !cmd->data_length) {
3513 spin_lock_irq(&cmd->t_state_lock);
3514 cmd->t_state = TRANSPORT_COMPLETE;
3515 cmd->transport_state |= CMD_T_ACTIVE;
3516 spin_unlock_irq(&cmd->t_state_lock);
3517
3518 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3519 u8 ua_asc = 0, ua_ascq = 0;
3520
3521 core_scsi3_ua_clear_for_request_sense(cmd,
3522 &ua_asc, &ua_ascq);
3523 }
3524
3525 INIT_WORK(&cmd->work, target_complete_ok_work);
3526 queue_work(target_completion_wq, &cmd->work);
3527 return 0;
3528 }
3529
3530 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3531 struct se_dev_attrib *attr = &dev->se_sub_dev->se_dev_attrib;
3532
3533 if (transport_cmd_get_valid_sectors(cmd) < 0)
3534 return -EINVAL;
3535
3536 BUG_ON(cmd->data_length % attr->block_size);
3537 BUG_ON(DIV_ROUND_UP(cmd->data_length, attr->block_size) >
3538 attr->hw_max_sectors);
3539 }
3540
3541 atomic_inc(&cmd->t_fe_count);
3542
3543 /*
3544 * For WRITEs, let the fabric know its buffer is ready.
3545 *
3546 * The command will be added to the execution queue after its write
3547 * data has arrived.
3548 */
3549 if (cmd->data_direction == DMA_TO_DEVICE) {
3550 target_add_to_state_list(cmd);
3551 return transport_generic_write_pending(cmd);
3552 }
3553 /*
3554 * Everything else but a WRITE, add the command to the execution queue.
3555 */
3556 transport_execute_tasks(cmd);
3557 return 0;
3558
3559 out_fail:
3560 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3561 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3562 return -EINVAL;
3563 }
3564 EXPORT_SYMBOL(transport_generic_new_cmd);
3565
3566 /* transport_generic_process_write():
3567 *
3568 *
3569 */
3570 void transport_generic_process_write(struct se_cmd *cmd)
3571 {
3572 transport_execute_tasks(cmd);
3573 }
3574 EXPORT_SYMBOL(transport_generic_process_write);
3575
3576 static void transport_write_pending_qf(struct se_cmd *cmd)
3577 {
3578 int ret;
3579
3580 ret = cmd->se_tfo->write_pending(cmd);
3581 if (ret == -EAGAIN || ret == -ENOMEM) {
3582 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3583 cmd);
3584 transport_handle_queue_full(cmd, cmd->se_dev);
3585 }
3586 }
3587
3588 static int transport_generic_write_pending(struct se_cmd *cmd)
3589 {
3590 unsigned long flags;
3591 int ret;
3592
3593 spin_lock_irqsave(&cmd->t_state_lock, flags);
3594 cmd->t_state = TRANSPORT_WRITE_PENDING;
3595 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3596
3597 /*
3598 * Clear the se_cmd for WRITE_PENDING status in order to set
3599 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3600 * from HW target mode interrupt code. This is safe to be called
3601 * with transport_off=1 before the cmd->se_tfo->write_pending
3602 * because the se_cmd->se_lun pointer is not being cleared.
3603 */
3604 transport_cmd_check_stop(cmd, 1, 0);
3605
3606 /*
3607 * Call the fabric write_pending function here to let the
3608 * frontend know that WRITE buffers are ready.
3609 */
3610 ret = cmd->se_tfo->write_pending(cmd);
3611 if (ret == -EAGAIN || ret == -ENOMEM)
3612 goto queue_full;
3613 else if (ret < 0)
3614 return ret;
3615
3616 return 1;
3617
3618 queue_full:
3619 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3620 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3621 transport_handle_queue_full(cmd, cmd->se_dev);
3622 return 0;
3623 }
3624
3625 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3626 {
3627 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3628 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3629 transport_wait_for_tasks(cmd);
3630
3631 transport_release_cmd(cmd);
3632 } else {
3633 if (wait_for_tasks)
3634 transport_wait_for_tasks(cmd);
3635
3636 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3637
3638 if (cmd->se_lun)
3639 transport_lun_remove_cmd(cmd);
3640
3641 transport_put_cmd(cmd);
3642 }
3643 }
3644 EXPORT_SYMBOL(transport_generic_free_cmd);
3645
3646 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3647 * @se_sess: session to reference
3648 * @se_cmd: command descriptor to add
3649 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3650 */
3651 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3652 bool ack_kref)
3653 {
3654 unsigned long flags;
3655
3656 kref_init(&se_cmd->cmd_kref);
3657 /*
3658 * Add a second kref if the fabric caller is expecting to handle
3659 * fabric acknowledgement that requires two target_put_sess_cmd()
3660 * invocations before se_cmd descriptor release.
3661 */
3662 if (ack_kref == true) {
3663 kref_get(&se_cmd->cmd_kref);
3664 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3665 }
3666
3667 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3668 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3669 se_cmd->check_release = 1;
3670 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3671 }
3672 EXPORT_SYMBOL(target_get_sess_cmd);
3673
3674 static void target_release_cmd_kref(struct kref *kref)
3675 {
3676 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3677 struct se_session *se_sess = se_cmd->se_sess;
3678 unsigned long flags;
3679
3680 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3681 if (list_empty(&se_cmd->se_cmd_list)) {
3682 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3683 se_cmd->se_tfo->release_cmd(se_cmd);
3684 return;
3685 }
3686 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3687 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3688 complete(&se_cmd->cmd_wait_comp);
3689 return;
3690 }
3691 list_del(&se_cmd->se_cmd_list);
3692 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3693
3694 se_cmd->se_tfo->release_cmd(se_cmd);
3695 }
3696
3697 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
3698 * @se_sess: session to reference
3699 * @se_cmd: command descriptor to drop
3700 */
3701 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3702 {
3703 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3704 }
3705 EXPORT_SYMBOL(target_put_sess_cmd);
3706
3707 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3708 * @se_sess: session to split
3709 */
3710 void target_splice_sess_cmd_list(struct se_session *se_sess)
3711 {
3712 struct se_cmd *se_cmd;
3713 unsigned long flags;
3714
3715 WARN_ON(!list_empty(&se_sess->sess_wait_list));
3716 INIT_LIST_HEAD(&se_sess->sess_wait_list);
3717
3718 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3719 se_sess->sess_tearing_down = 1;
3720
3721 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3722
3723 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3724 se_cmd->cmd_wait_set = 1;
3725
3726 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3727 }
3728 EXPORT_SYMBOL(target_splice_sess_cmd_list);
3729
3730 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3731 * @se_sess: session to wait for active I/O
3732 * @wait_for_tasks: Make extra transport_wait_for_tasks call
3733 */
3734 void target_wait_for_sess_cmds(
3735 struct se_session *se_sess,
3736 int wait_for_tasks)
3737 {
3738 struct se_cmd *se_cmd, *tmp_cmd;
3739 bool rc = false;
3740
3741 list_for_each_entry_safe(se_cmd, tmp_cmd,
3742 &se_sess->sess_wait_list, se_cmd_list) {
3743 list_del(&se_cmd->se_cmd_list);
3744
3745 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3746 " %d\n", se_cmd, se_cmd->t_state,
3747 se_cmd->se_tfo->get_cmd_state(se_cmd));
3748
3749 if (wait_for_tasks) {
3750 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
3751 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3752 se_cmd->se_tfo->get_cmd_state(se_cmd));
3753
3754 rc = transport_wait_for_tasks(se_cmd);
3755
3756 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
3757 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3758 se_cmd->se_tfo->get_cmd_state(se_cmd));
3759 }
3760
3761 if (!rc) {
3762 wait_for_completion(&se_cmd->cmd_wait_comp);
3763 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
3764 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3765 se_cmd->se_tfo->get_cmd_state(se_cmd));
3766 }
3767
3768 se_cmd->se_tfo->release_cmd(se_cmd);
3769 }
3770 }
3771 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3772
3773 /* transport_lun_wait_for_tasks():
3774 *
3775 * Called from ConfigFS context to stop the passed struct se_cmd to allow
3776 * an struct se_lun to be successfully shutdown.
3777 */
3778 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
3779 {
3780 unsigned long flags;
3781 int ret = 0;
3782
3783 /*
3784 * If the frontend has already requested this struct se_cmd to
3785 * be stopped, we can safely ignore this struct se_cmd.
3786 */
3787 spin_lock_irqsave(&cmd->t_state_lock, flags);
3788 if (cmd->transport_state & CMD_T_STOP) {
3789 cmd->transport_state &= ~CMD_T_LUN_STOP;
3790
3791 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
3792 cmd->se_tfo->get_task_tag(cmd));
3793 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3794 transport_cmd_check_stop(cmd, 1, 0);
3795 return -EPERM;
3796 }
3797 cmd->transport_state |= CMD_T_LUN_FE_STOP;
3798 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3799
3800 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
3801
3802 // XXX: audit task_flags checks.
3803 spin_lock_irqsave(&cmd->t_state_lock, flags);
3804 if ((cmd->transport_state & CMD_T_BUSY) &&
3805 (cmd->transport_state & CMD_T_SENT)) {
3806 if (!target_stop_cmd(cmd, &flags))
3807 ret++;
3808 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3809 } else {
3810 spin_unlock_irqrestore(&cmd->t_state_lock,
3811 flags);
3812 target_remove_from_execute_list(cmd);
3813 }
3814
3815 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
3816 " %d\n", cmd, ret);
3817 if (!ret) {
3818 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
3819 cmd->se_tfo->get_task_tag(cmd));
3820 wait_for_completion(&cmd->transport_lun_stop_comp);
3821 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
3822 cmd->se_tfo->get_task_tag(cmd));
3823 }
3824 transport_remove_cmd_from_queue(cmd);
3825
3826 return 0;
3827 }
3828
3829 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
3830 {
3831 struct se_cmd *cmd = NULL;
3832 unsigned long lun_flags, cmd_flags;
3833 /*
3834 * Do exception processing and return CHECK_CONDITION status to the
3835 * Initiator Port.
3836 */
3837 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3838 while (!list_empty(&lun->lun_cmd_list)) {
3839 cmd = list_first_entry(&lun->lun_cmd_list,
3840 struct se_cmd, se_lun_node);
3841 list_del_init(&cmd->se_lun_node);
3842
3843 /*
3844 * This will notify iscsi_target_transport.c:
3845 * transport_cmd_check_stop() that a LUN shutdown is in
3846 * progress for the iscsi_cmd_t.
3847 */
3848 spin_lock(&cmd->t_state_lock);
3849 pr_debug("SE_LUN[%d] - Setting cmd->transport"
3850 "_lun_stop for ITT: 0x%08x\n",
3851 cmd->se_lun->unpacked_lun,
3852 cmd->se_tfo->get_task_tag(cmd));
3853 cmd->transport_state |= CMD_T_LUN_STOP;
3854 spin_unlock(&cmd->t_state_lock);
3855
3856 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3857
3858 if (!cmd->se_lun) {
3859 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
3860 cmd->se_tfo->get_task_tag(cmd),
3861 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
3862 BUG();
3863 }
3864 /*
3865 * If the Storage engine still owns the iscsi_cmd_t, determine
3866 * and/or stop its context.
3867 */
3868 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
3869 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
3870 cmd->se_tfo->get_task_tag(cmd));
3871
3872 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
3873 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3874 continue;
3875 }
3876
3877 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
3878 "_wait_for_tasks(): SUCCESS\n",
3879 cmd->se_lun->unpacked_lun,
3880 cmd->se_tfo->get_task_tag(cmd));
3881
3882 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3883 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
3884 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3885 goto check_cond;
3886 }
3887 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3888 target_remove_from_state_list(cmd);
3889 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3890
3891 /*
3892 * The Storage engine stopped this struct se_cmd before it was
3893 * send to the fabric frontend for delivery back to the
3894 * Initiator Node. Return this SCSI CDB back with an
3895 * CHECK_CONDITION status.
3896 */
3897 check_cond:
3898 transport_send_check_condition_and_sense(cmd,
3899 TCM_NON_EXISTENT_LUN, 0);
3900 /*
3901 * If the fabric frontend is waiting for this iscsi_cmd_t to
3902 * be released, notify the waiting thread now that LU has
3903 * finished accessing it.
3904 */
3905 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3906 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
3907 pr_debug("SE_LUN[%d] - Detected FE stop for"
3908 " struct se_cmd: %p ITT: 0x%08x\n",
3909 lun->unpacked_lun,
3910 cmd, cmd->se_tfo->get_task_tag(cmd));
3911
3912 spin_unlock_irqrestore(&cmd->t_state_lock,
3913 cmd_flags);
3914 transport_cmd_check_stop(cmd, 1, 0);
3915 complete(&cmd->transport_lun_fe_stop_comp);
3916 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3917 continue;
3918 }
3919 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
3920 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
3921
3922 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3923 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3924 }
3925 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3926 }
3927
3928 static int transport_clear_lun_thread(void *p)
3929 {
3930 struct se_lun *lun = p;
3931
3932 __transport_clear_lun_from_sessions(lun);
3933 complete(&lun->lun_shutdown_comp);
3934
3935 return 0;
3936 }
3937
3938 int transport_clear_lun_from_sessions(struct se_lun *lun)
3939 {
3940 struct task_struct *kt;
3941
3942 kt = kthread_run(transport_clear_lun_thread, lun,
3943 "tcm_cl_%u", lun->unpacked_lun);
3944 if (IS_ERR(kt)) {
3945 pr_err("Unable to start clear_lun thread\n");
3946 return PTR_ERR(kt);
3947 }
3948 wait_for_completion(&lun->lun_shutdown_comp);
3949
3950 return 0;
3951 }
3952
3953 /**
3954 * transport_wait_for_tasks - wait for completion to occur
3955 * @cmd: command to wait
3956 *
3957 * Called from frontend fabric context to wait for storage engine
3958 * to pause and/or release frontend generated struct se_cmd.
3959 */
3960 bool transport_wait_for_tasks(struct se_cmd *cmd)
3961 {
3962 unsigned long flags;
3963
3964 spin_lock_irqsave(&cmd->t_state_lock, flags);
3965 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3966 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3967 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3968 return false;
3969 }
3970 /*
3971 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
3972 * has been set in transport_set_supported_SAM_opcode().
3973 */
3974 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3975 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3976 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3977 return false;
3978 }
3979 /*
3980 * If we are already stopped due to an external event (ie: LUN shutdown)
3981 * sleep until the connection can have the passed struct se_cmd back.
3982 * The cmd->transport_lun_stopped_sem will be upped by
3983 * transport_clear_lun_from_sessions() once the ConfigFS context caller
3984 * has completed its operation on the struct se_cmd.
3985 */
3986 if (cmd->transport_state & CMD_T_LUN_STOP) {
3987 pr_debug("wait_for_tasks: Stopping"
3988 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
3989 "_stop_comp); for ITT: 0x%08x\n",
3990 cmd->se_tfo->get_task_tag(cmd));
3991 /*
3992 * There is a special case for WRITES where a FE exception +
3993 * LUN shutdown means ConfigFS context is still sleeping on
3994 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
3995 * We go ahead and up transport_lun_stop_comp just to be sure
3996 * here.
3997 */
3998 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3999 complete(&cmd->transport_lun_stop_comp);
4000 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4001 spin_lock_irqsave(&cmd->t_state_lock, flags);
4002
4003 target_remove_from_state_list(cmd);
4004 /*
4005 * At this point, the frontend who was the originator of this
4006 * struct se_cmd, now owns the structure and can be released through
4007 * normal means below.
4008 */
4009 pr_debug("wait_for_tasks: Stopped"
4010 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4011 "stop_comp); for ITT: 0x%08x\n",
4012 cmd->se_tfo->get_task_tag(cmd));
4013
4014 cmd->transport_state &= ~CMD_T_LUN_STOP;
4015 }
4016
4017 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4018 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4019 return false;
4020 }
4021
4022 cmd->transport_state |= CMD_T_STOP;
4023
4024 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4025 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4026 cmd, cmd->se_tfo->get_task_tag(cmd),
4027 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4028
4029 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4030
4031 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4032
4033 wait_for_completion(&cmd->t_transport_stop_comp);
4034
4035 spin_lock_irqsave(&cmd->t_state_lock, flags);
4036 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4037
4038 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4039 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4040 cmd->se_tfo->get_task_tag(cmd));
4041
4042 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4043
4044 return true;
4045 }
4046 EXPORT_SYMBOL(transport_wait_for_tasks);
4047
4048 static int transport_get_sense_codes(
4049 struct se_cmd *cmd,
4050 u8 *asc,
4051 u8 *ascq)
4052 {
4053 *asc = cmd->scsi_asc;
4054 *ascq = cmd->scsi_ascq;
4055
4056 return 0;
4057 }
4058
4059 static int transport_set_sense_codes(
4060 struct se_cmd *cmd,
4061 u8 asc,
4062 u8 ascq)
4063 {
4064 cmd->scsi_asc = asc;
4065 cmd->scsi_ascq = ascq;
4066
4067 return 0;
4068 }
4069
4070 int transport_send_check_condition_and_sense(
4071 struct se_cmd *cmd,
4072 u8 reason,
4073 int from_transport)
4074 {
4075 unsigned char *buffer = cmd->sense_buffer;
4076 unsigned long flags;
4077 int offset;
4078 u8 asc = 0, ascq = 0;
4079
4080 spin_lock_irqsave(&cmd->t_state_lock, flags);
4081 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4083 return 0;
4084 }
4085 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4086 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4087
4088 if (!reason && from_transport)
4089 goto after_reason;
4090
4091 if (!from_transport)
4092 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4093 /*
4094 * Data Segment and SenseLength of the fabric response PDU.
4095 *
4096 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4097 * from include/scsi/scsi_cmnd.h
4098 */
4099 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4100 TRANSPORT_SENSE_BUFFER);
4101 /*
4102 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4103 * SENSE KEY values from include/scsi/scsi.h
4104 */
4105 switch (reason) {
4106 case TCM_NON_EXISTENT_LUN:
4107 /* CURRENT ERROR */
4108 buffer[offset] = 0x70;
4109 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4110 /* ILLEGAL REQUEST */
4111 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4112 /* LOGICAL UNIT NOT SUPPORTED */
4113 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4114 break;
4115 case TCM_UNSUPPORTED_SCSI_OPCODE:
4116 case TCM_SECTOR_COUNT_TOO_MANY:
4117 /* CURRENT ERROR */
4118 buffer[offset] = 0x70;
4119 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4120 /* ILLEGAL REQUEST */
4121 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4122 /* INVALID COMMAND OPERATION CODE */
4123 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4124 break;
4125 case TCM_UNKNOWN_MODE_PAGE:
4126 /* CURRENT ERROR */
4127 buffer[offset] = 0x70;
4128 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4129 /* ILLEGAL REQUEST */
4130 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4131 /* INVALID FIELD IN CDB */
4132 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4133 break;
4134 case TCM_CHECK_CONDITION_ABORT_CMD:
4135 /* CURRENT ERROR */
4136 buffer[offset] = 0x70;
4137 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4138 /* ABORTED COMMAND */
4139 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4140 /* BUS DEVICE RESET FUNCTION OCCURRED */
4141 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4142 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4143 break;
4144 case TCM_INCORRECT_AMOUNT_OF_DATA:
4145 /* CURRENT ERROR */
4146 buffer[offset] = 0x70;
4147 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4148 /* ABORTED COMMAND */
4149 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4150 /* WRITE ERROR */
4151 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4152 /* NOT ENOUGH UNSOLICITED DATA */
4153 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4154 break;
4155 case TCM_INVALID_CDB_FIELD:
4156 /* CURRENT ERROR */
4157 buffer[offset] = 0x70;
4158 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4159 /* ILLEGAL REQUEST */
4160 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4161 /* INVALID FIELD IN CDB */
4162 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4163 break;
4164 case TCM_INVALID_PARAMETER_LIST:
4165 /* CURRENT ERROR */
4166 buffer[offset] = 0x70;
4167 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4168 /* ILLEGAL REQUEST */
4169 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4170 /* INVALID FIELD IN PARAMETER LIST */
4171 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4172 break;
4173 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4174 /* CURRENT ERROR */
4175 buffer[offset] = 0x70;
4176 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4177 /* ABORTED COMMAND */
4178 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4179 /* WRITE ERROR */
4180 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4181 /* UNEXPECTED_UNSOLICITED_DATA */
4182 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4183 break;
4184 case TCM_SERVICE_CRC_ERROR:
4185 /* CURRENT ERROR */
4186 buffer[offset] = 0x70;
4187 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4188 /* ABORTED COMMAND */
4189 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4190 /* PROTOCOL SERVICE CRC ERROR */
4191 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4192 /* N/A */
4193 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4194 break;
4195 case TCM_SNACK_REJECTED:
4196 /* CURRENT ERROR */
4197 buffer[offset] = 0x70;
4198 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4199 /* ABORTED COMMAND */
4200 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4201 /* READ ERROR */
4202 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4203 /* FAILED RETRANSMISSION REQUEST */
4204 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4205 break;
4206 case TCM_WRITE_PROTECTED:
4207 /* CURRENT ERROR */
4208 buffer[offset] = 0x70;
4209 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4210 /* DATA PROTECT */
4211 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4212 /* WRITE PROTECTED */
4213 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4214 break;
4215 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4216 /* CURRENT ERROR */
4217 buffer[offset] = 0x70;
4218 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4219 /* UNIT ATTENTION */
4220 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4221 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4222 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4223 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4224 break;
4225 case TCM_CHECK_CONDITION_NOT_READY:
4226 /* CURRENT ERROR */
4227 buffer[offset] = 0x70;
4228 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4229 /* Not Ready */
4230 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4231 transport_get_sense_codes(cmd, &asc, &ascq);
4232 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4233 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4234 break;
4235 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4236 default:
4237 /* CURRENT ERROR */
4238 buffer[offset] = 0x70;
4239 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4240 /* ILLEGAL REQUEST */
4241 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4242 /* LOGICAL UNIT COMMUNICATION FAILURE */
4243 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4244 break;
4245 }
4246 /*
4247 * This code uses linux/include/scsi/scsi.h SAM status codes!
4248 */
4249 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4250 /*
4251 * Automatically padded, this value is encoded in the fabric's
4252 * data_length response PDU containing the SCSI defined sense data.
4253 */
4254 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4255
4256 after_reason:
4257 return cmd->se_tfo->queue_status(cmd);
4258 }
4259 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4260
4261 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4262 {
4263 int ret = 0;
4264
4265 if (cmd->transport_state & CMD_T_ABORTED) {
4266 if (!send_status ||
4267 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4268 return 1;
4269
4270 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4271 " status for CDB: 0x%02x ITT: 0x%08x\n",
4272 cmd->t_task_cdb[0],
4273 cmd->se_tfo->get_task_tag(cmd));
4274
4275 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4276 cmd->se_tfo->queue_status(cmd);
4277 ret = 1;
4278 }
4279 return ret;
4280 }
4281 EXPORT_SYMBOL(transport_check_aborted_status);
4282
4283 void transport_send_task_abort(struct se_cmd *cmd)
4284 {
4285 unsigned long flags;
4286
4287 spin_lock_irqsave(&cmd->t_state_lock, flags);
4288 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4289 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4290 return;
4291 }
4292 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4293
4294 /*
4295 * If there are still expected incoming fabric WRITEs, we wait
4296 * until until they have completed before sending a TASK_ABORTED
4297 * response. This response with TASK_ABORTED status will be
4298 * queued back to fabric module by transport_check_aborted_status().
4299 */
4300 if (cmd->data_direction == DMA_TO_DEVICE) {
4301 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4302 cmd->transport_state |= CMD_T_ABORTED;
4303 smp_mb__after_atomic_inc();
4304 }
4305 }
4306 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4307
4308 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4309 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4310 cmd->se_tfo->get_task_tag(cmd));
4311
4312 cmd->se_tfo->queue_status(cmd);
4313 }
4314
4315 static int transport_generic_do_tmr(struct se_cmd *cmd)
4316 {
4317 struct se_device *dev = cmd->se_dev;
4318 struct se_tmr_req *tmr = cmd->se_tmr_req;
4319 int ret;
4320
4321 switch (tmr->function) {
4322 case TMR_ABORT_TASK:
4323 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4324 break;
4325 case TMR_ABORT_TASK_SET:
4326 case TMR_CLEAR_ACA:
4327 case TMR_CLEAR_TASK_SET:
4328 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4329 break;
4330 case TMR_LUN_RESET:
4331 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4332 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4333 TMR_FUNCTION_REJECTED;
4334 break;
4335 case TMR_TARGET_WARM_RESET:
4336 tmr->response = TMR_FUNCTION_REJECTED;
4337 break;
4338 case TMR_TARGET_COLD_RESET:
4339 tmr->response = TMR_FUNCTION_REJECTED;
4340 break;
4341 default:
4342 pr_err("Uknown TMR function: 0x%02x.\n",
4343 tmr->function);
4344 tmr->response = TMR_FUNCTION_REJECTED;
4345 break;
4346 }
4347
4348 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4349 cmd->se_tfo->queue_tm_rsp(cmd);
4350
4351 transport_cmd_check_stop_to_fabric(cmd);
4352 return 0;
4353 }
4354
4355 /* transport_processing_thread():
4356 *
4357 *
4358 */
4359 static int transport_processing_thread(void *param)
4360 {
4361 int ret;
4362 struct se_cmd *cmd;
4363 struct se_device *dev = param;
4364
4365 while (!kthread_should_stop()) {
4366 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4367 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4368 kthread_should_stop());
4369 if (ret < 0)
4370 goto out;
4371
4372 get_cmd:
4373 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4374 if (!cmd)
4375 continue;
4376
4377 switch (cmd->t_state) {
4378 case TRANSPORT_NEW_CMD:
4379 BUG();
4380 break;
4381 case TRANSPORT_NEW_CMD_MAP:
4382 if (!cmd->se_tfo->new_cmd_map) {
4383 pr_err("cmd->se_tfo->new_cmd_map is"
4384 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4385 BUG();
4386 }
4387 ret = cmd->se_tfo->new_cmd_map(cmd);
4388 if (ret < 0) {
4389 transport_generic_request_failure(cmd);
4390 break;
4391 }
4392 ret = transport_generic_new_cmd(cmd);
4393 if (ret < 0) {
4394 transport_generic_request_failure(cmd);
4395 break;
4396 }
4397 break;
4398 case TRANSPORT_PROCESS_WRITE:
4399 transport_generic_process_write(cmd);
4400 break;
4401 case TRANSPORT_PROCESS_TMR:
4402 transport_generic_do_tmr(cmd);
4403 break;
4404 case TRANSPORT_COMPLETE_QF_WP:
4405 transport_write_pending_qf(cmd);
4406 break;
4407 case TRANSPORT_COMPLETE_QF_OK:
4408 transport_complete_qf(cmd);
4409 break;
4410 default:
4411 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4412 "i_state: %d on SE LUN: %u\n",
4413 cmd->t_state,
4414 cmd->se_tfo->get_task_tag(cmd),
4415 cmd->se_tfo->get_cmd_state(cmd),
4416 cmd->se_lun->unpacked_lun);
4417 BUG();
4418 }
4419
4420 goto get_cmd;
4421 }
4422
4423 out:
4424 WARN_ON(!list_empty(&dev->state_list));
4425 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4426 dev->process_thread = NULL;
4427 return 0;
4428 }
This page took 0.22144 seconds and 5 git commands to generate.