target: remove SCF_EMULATE_CDB_ASYNC
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77 struct se_device *dev);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static int transport_generic_get_mem(struct se_cmd *cmd);
80 static void transport_put_cmd(struct se_cmd *cmd);
81 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
82 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
83 static void transport_generic_request_failure(struct se_cmd *, int, int);
84 static void target_complete_ok_work(struct work_struct *work);
85
86 int init_se_kmem_caches(void)
87 {
88 se_cmd_cache = kmem_cache_create("se_cmd_cache",
89 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
90 if (!se_cmd_cache) {
91 pr_err("kmem_cache_create for struct se_cmd failed\n");
92 goto out;
93 }
94 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
95 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
96 0, NULL);
97 if (!se_tmr_req_cache) {
98 pr_err("kmem_cache_create() for struct se_tmr_req"
99 " failed\n");
100 goto out_free_cmd_cache;
101 }
102 se_sess_cache = kmem_cache_create("se_sess_cache",
103 sizeof(struct se_session), __alignof__(struct se_session),
104 0, NULL);
105 if (!se_sess_cache) {
106 pr_err("kmem_cache_create() for struct se_session"
107 " failed\n");
108 goto out_free_tmr_req_cache;
109 }
110 se_ua_cache = kmem_cache_create("se_ua_cache",
111 sizeof(struct se_ua), __alignof__(struct se_ua),
112 0, NULL);
113 if (!se_ua_cache) {
114 pr_err("kmem_cache_create() for struct se_ua failed\n");
115 goto out_free_sess_cache;
116 }
117 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
118 sizeof(struct t10_pr_registration),
119 __alignof__(struct t10_pr_registration), 0, NULL);
120 if (!t10_pr_reg_cache) {
121 pr_err("kmem_cache_create() for struct t10_pr_registration"
122 " failed\n");
123 goto out_free_ua_cache;
124 }
125 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
126 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
127 0, NULL);
128 if (!t10_alua_lu_gp_cache) {
129 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
130 " failed\n");
131 goto out_free_pr_reg_cache;
132 }
133 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
134 sizeof(struct t10_alua_lu_gp_member),
135 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
136 if (!t10_alua_lu_gp_mem_cache) {
137 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
138 "cache failed\n");
139 goto out_free_lu_gp_cache;
140 }
141 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
142 sizeof(struct t10_alua_tg_pt_gp),
143 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
144 if (!t10_alua_tg_pt_gp_cache) {
145 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
146 "cache failed\n");
147 goto out_free_lu_gp_mem_cache;
148 }
149 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
150 "t10_alua_tg_pt_gp_mem_cache",
151 sizeof(struct t10_alua_tg_pt_gp_member),
152 __alignof__(struct t10_alua_tg_pt_gp_member),
153 0, NULL);
154 if (!t10_alua_tg_pt_gp_mem_cache) {
155 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
156 "mem_t failed\n");
157 goto out_free_tg_pt_gp_cache;
158 }
159
160 target_completion_wq = alloc_workqueue("target_completion",
161 WQ_MEM_RECLAIM, 0);
162 if (!target_completion_wq)
163 goto out_free_tg_pt_gp_mem_cache;
164
165 return 0;
166
167 out_free_tg_pt_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
169 out_free_tg_pt_gp_cache:
170 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
171 out_free_lu_gp_mem_cache:
172 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
173 out_free_lu_gp_cache:
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 out_free_pr_reg_cache:
176 kmem_cache_destroy(t10_pr_reg_cache);
177 out_free_ua_cache:
178 kmem_cache_destroy(se_ua_cache);
179 out_free_sess_cache:
180 kmem_cache_destroy(se_sess_cache);
181 out_free_tmr_req_cache:
182 kmem_cache_destroy(se_tmr_req_cache);
183 out_free_cmd_cache:
184 kmem_cache_destroy(se_cmd_cache);
185 out:
186 return -ENOMEM;
187 }
188
189 void release_se_kmem_caches(void)
190 {
191 destroy_workqueue(target_completion_wq);
192 kmem_cache_destroy(se_cmd_cache);
193 kmem_cache_destroy(se_tmr_req_cache);
194 kmem_cache_destroy(se_sess_cache);
195 kmem_cache_destroy(se_ua_cache);
196 kmem_cache_destroy(t10_pr_reg_cache);
197 kmem_cache_destroy(t10_alua_lu_gp_cache);
198 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
199 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
200 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
201 }
202
203 /* This code ensures unique mib indexes are handed out. */
204 static DEFINE_SPINLOCK(scsi_mib_index_lock);
205 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
206
207 /*
208 * Allocate a new row index for the entry type specified
209 */
210 u32 scsi_get_new_index(scsi_index_t type)
211 {
212 u32 new_index;
213
214 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
215
216 spin_lock(&scsi_mib_index_lock);
217 new_index = ++scsi_mib_index[type];
218 spin_unlock(&scsi_mib_index_lock);
219
220 return new_index;
221 }
222
223 void transport_init_queue_obj(struct se_queue_obj *qobj)
224 {
225 atomic_set(&qobj->queue_cnt, 0);
226 INIT_LIST_HEAD(&qobj->qobj_list);
227 init_waitqueue_head(&qobj->thread_wq);
228 spin_lock_init(&qobj->cmd_queue_lock);
229 }
230 EXPORT_SYMBOL(transport_init_queue_obj);
231
232 void transport_subsystem_check_init(void)
233 {
234 int ret;
235
236 if (sub_api_initialized)
237 return;
238
239 ret = request_module("target_core_iblock");
240 if (ret != 0)
241 pr_err("Unable to load target_core_iblock\n");
242
243 ret = request_module("target_core_file");
244 if (ret != 0)
245 pr_err("Unable to load target_core_file\n");
246
247 ret = request_module("target_core_pscsi");
248 if (ret != 0)
249 pr_err("Unable to load target_core_pscsi\n");
250
251 ret = request_module("target_core_stgt");
252 if (ret != 0)
253 pr_err("Unable to load target_core_stgt\n");
254
255 sub_api_initialized = 1;
256 return;
257 }
258
259 struct se_session *transport_init_session(void)
260 {
261 struct se_session *se_sess;
262
263 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
264 if (!se_sess) {
265 pr_err("Unable to allocate struct se_session from"
266 " se_sess_cache\n");
267 return ERR_PTR(-ENOMEM);
268 }
269 INIT_LIST_HEAD(&se_sess->sess_list);
270 INIT_LIST_HEAD(&se_sess->sess_acl_list);
271 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
272 INIT_LIST_HEAD(&se_sess->sess_wait_list);
273 spin_lock_init(&se_sess->sess_cmd_lock);
274
275 return se_sess;
276 }
277 EXPORT_SYMBOL(transport_init_session);
278
279 /*
280 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
281 */
282 void __transport_register_session(
283 struct se_portal_group *se_tpg,
284 struct se_node_acl *se_nacl,
285 struct se_session *se_sess,
286 void *fabric_sess_ptr)
287 {
288 unsigned char buf[PR_REG_ISID_LEN];
289
290 se_sess->se_tpg = se_tpg;
291 se_sess->fabric_sess_ptr = fabric_sess_ptr;
292 /*
293 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
294 *
295 * Only set for struct se_session's that will actually be moving I/O.
296 * eg: *NOT* discovery sessions.
297 */
298 if (se_nacl) {
299 /*
300 * If the fabric module supports an ISID based TransportID,
301 * save this value in binary from the fabric I_T Nexus now.
302 */
303 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
304 memset(&buf[0], 0, PR_REG_ISID_LEN);
305 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
306 &buf[0], PR_REG_ISID_LEN);
307 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
308 }
309 spin_lock_irq(&se_nacl->nacl_sess_lock);
310 /*
311 * The se_nacl->nacl_sess pointer will be set to the
312 * last active I_T Nexus for each struct se_node_acl.
313 */
314 se_nacl->nacl_sess = se_sess;
315
316 list_add_tail(&se_sess->sess_acl_list,
317 &se_nacl->acl_sess_list);
318 spin_unlock_irq(&se_nacl->nacl_sess_lock);
319 }
320 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
321
322 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
324 }
325 EXPORT_SYMBOL(__transport_register_session);
326
327 void transport_register_session(
328 struct se_portal_group *se_tpg,
329 struct se_node_acl *se_nacl,
330 struct se_session *se_sess,
331 void *fabric_sess_ptr)
332 {
333 spin_lock_bh(&se_tpg->session_lock);
334 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
335 spin_unlock_bh(&se_tpg->session_lock);
336 }
337 EXPORT_SYMBOL(transport_register_session);
338
339 void transport_deregister_session_configfs(struct se_session *se_sess)
340 {
341 struct se_node_acl *se_nacl;
342 unsigned long flags;
343 /*
344 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
345 */
346 se_nacl = se_sess->se_node_acl;
347 if (se_nacl) {
348 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
349 list_del(&se_sess->sess_acl_list);
350 /*
351 * If the session list is empty, then clear the pointer.
352 * Otherwise, set the struct se_session pointer from the tail
353 * element of the per struct se_node_acl active session list.
354 */
355 if (list_empty(&se_nacl->acl_sess_list))
356 se_nacl->nacl_sess = NULL;
357 else {
358 se_nacl->nacl_sess = container_of(
359 se_nacl->acl_sess_list.prev,
360 struct se_session, sess_acl_list);
361 }
362 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
363 }
364 }
365 EXPORT_SYMBOL(transport_deregister_session_configfs);
366
367 void transport_free_session(struct se_session *se_sess)
368 {
369 kmem_cache_free(se_sess_cache, se_sess);
370 }
371 EXPORT_SYMBOL(transport_free_session);
372
373 void transport_deregister_session(struct se_session *se_sess)
374 {
375 struct se_portal_group *se_tpg = se_sess->se_tpg;
376 struct se_node_acl *se_nacl;
377 unsigned long flags;
378
379 if (!se_tpg) {
380 transport_free_session(se_sess);
381 return;
382 }
383
384 spin_lock_irqsave(&se_tpg->session_lock, flags);
385 list_del(&se_sess->sess_list);
386 se_sess->se_tpg = NULL;
387 se_sess->fabric_sess_ptr = NULL;
388 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
389
390 /*
391 * Determine if we need to do extra work for this initiator node's
392 * struct se_node_acl if it had been previously dynamically generated.
393 */
394 se_nacl = se_sess->se_node_acl;
395 if (se_nacl) {
396 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
397 if (se_nacl->dynamic_node_acl) {
398 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
399 se_tpg)) {
400 list_del(&se_nacl->acl_list);
401 se_tpg->num_node_acls--;
402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
403
404 core_tpg_wait_for_nacl_pr_ref(se_nacl);
405 core_free_device_list_for_node(se_nacl, se_tpg);
406 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
407 se_nacl);
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 }
410 }
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412 }
413
414 transport_free_session(se_sess);
415
416 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417 se_tpg->se_tpg_tfo->get_fabric_name());
418 }
419 EXPORT_SYMBOL(transport_deregister_session);
420
421 /*
422 * Called with cmd->t_state_lock held.
423 */
424 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
425 {
426 struct se_device *dev = cmd->se_dev;
427 struct se_task *task;
428 unsigned long flags;
429
430 if (!dev)
431 return;
432
433 list_for_each_entry(task, &cmd->t_task_list, t_list) {
434 if (task->task_flags & TF_ACTIVE)
435 continue;
436
437 if (!atomic_read(&task->task_state_active))
438 continue;
439
440 spin_lock_irqsave(&dev->execute_task_lock, flags);
441 list_del(&task->t_state_list);
442 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
443 cmd->se_tfo->get_task_tag(cmd), dev, task);
444 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
445
446 atomic_set(&task->task_state_active, 0);
447 atomic_dec(&cmd->t_task_cdbs_ex_left);
448 }
449 }
450
451 /* transport_cmd_check_stop():
452 *
453 * 'transport_off = 1' determines if t_transport_active should be cleared.
454 * 'transport_off = 2' determines if task_dev_state should be removed.
455 *
456 * A non-zero u8 t_state sets cmd->t_state.
457 * Returns 1 when command is stopped, else 0.
458 */
459 static int transport_cmd_check_stop(
460 struct se_cmd *cmd,
461 int transport_off,
462 u8 t_state)
463 {
464 unsigned long flags;
465
466 spin_lock_irqsave(&cmd->t_state_lock, flags);
467 /*
468 * Determine if IOCTL context caller in requesting the stopping of this
469 * command for LUN shutdown purposes.
470 */
471 if (atomic_read(&cmd->transport_lun_stop)) {
472 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
473 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
474 cmd->se_tfo->get_task_tag(cmd));
475
476 atomic_set(&cmd->t_transport_active, 0);
477 if (transport_off == 2)
478 transport_all_task_dev_remove_state(cmd);
479 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
480
481 complete(&cmd->transport_lun_stop_comp);
482 return 1;
483 }
484 /*
485 * Determine if frontend context caller is requesting the stopping of
486 * this command for frontend exceptions.
487 */
488 if (atomic_read(&cmd->t_transport_stop)) {
489 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
490 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
491 cmd->se_tfo->get_task_tag(cmd));
492
493 if (transport_off == 2)
494 transport_all_task_dev_remove_state(cmd);
495
496 /*
497 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
498 * to FE.
499 */
500 if (transport_off == 2)
501 cmd->se_lun = NULL;
502 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
503
504 complete(&cmd->t_transport_stop_comp);
505 return 1;
506 }
507 if (transport_off) {
508 atomic_set(&cmd->t_transport_active, 0);
509 if (transport_off == 2) {
510 transport_all_task_dev_remove_state(cmd);
511 /*
512 * Clear struct se_cmd->se_lun before the transport_off == 2
513 * handoff to fabric module.
514 */
515 cmd->se_lun = NULL;
516 /*
517 * Some fabric modules like tcm_loop can release
518 * their internally allocated I/O reference now and
519 * struct se_cmd now.
520 *
521 * Fabric modules are expected to return '1' here if the
522 * se_cmd being passed is released at this point,
523 * or zero if not being released.
524 */
525 if (cmd->se_tfo->check_stop_free != NULL) {
526 spin_unlock_irqrestore(
527 &cmd->t_state_lock, flags);
528
529 return cmd->se_tfo->check_stop_free(cmd);
530 }
531 }
532 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
533
534 return 0;
535 } else if (t_state)
536 cmd->t_state = t_state;
537 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
538
539 return 0;
540 }
541
542 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
543 {
544 return transport_cmd_check_stop(cmd, 2, 0);
545 }
546
547 static void transport_lun_remove_cmd(struct se_cmd *cmd)
548 {
549 struct se_lun *lun = cmd->se_lun;
550 unsigned long flags;
551
552 if (!lun)
553 return;
554
555 spin_lock_irqsave(&cmd->t_state_lock, flags);
556 if (!atomic_read(&cmd->transport_dev_active)) {
557 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
558 goto check_lun;
559 }
560 atomic_set(&cmd->transport_dev_active, 0);
561 transport_all_task_dev_remove_state(cmd);
562 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
563
564
565 check_lun:
566 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
567 if (atomic_read(&cmd->transport_lun_active)) {
568 list_del(&cmd->se_lun_node);
569 atomic_set(&cmd->transport_lun_active, 0);
570 #if 0
571 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
572 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
573 #endif
574 }
575 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
576 }
577
578 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
579 {
580 if (!cmd->se_tmr_req)
581 transport_lun_remove_cmd(cmd);
582
583 if (transport_cmd_check_stop_to_fabric(cmd))
584 return;
585 if (remove) {
586 transport_remove_cmd_from_queue(cmd);
587 transport_put_cmd(cmd);
588 }
589 }
590
591 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
592 bool at_head)
593 {
594 struct se_device *dev = cmd->se_dev;
595 struct se_queue_obj *qobj = &dev->dev_queue_obj;
596 unsigned long flags;
597
598 if (t_state) {
599 spin_lock_irqsave(&cmd->t_state_lock, flags);
600 cmd->t_state = t_state;
601 atomic_set(&cmd->t_transport_active, 1);
602 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
603 }
604
605 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
606
607 /* If the cmd is already on the list, remove it before we add it */
608 if (!list_empty(&cmd->se_queue_node))
609 list_del(&cmd->se_queue_node);
610 else
611 atomic_inc(&qobj->queue_cnt);
612
613 if (at_head)
614 list_add(&cmd->se_queue_node, &qobj->qobj_list);
615 else
616 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
617 atomic_set(&cmd->t_transport_queue_active, 1);
618 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619
620 wake_up_interruptible(&qobj->thread_wq);
621 }
622
623 static struct se_cmd *
624 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
625 {
626 struct se_cmd *cmd;
627 unsigned long flags;
628
629 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
630 if (list_empty(&qobj->qobj_list)) {
631 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
632 return NULL;
633 }
634 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
635
636 atomic_set(&cmd->t_transport_queue_active, 0);
637
638 list_del_init(&cmd->se_queue_node);
639 atomic_dec(&qobj->queue_cnt);
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641
642 return cmd;
643 }
644
645 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
646 {
647 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
648 unsigned long flags;
649
650 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
651 if (!atomic_read(&cmd->t_transport_queue_active)) {
652 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
653 return;
654 }
655 atomic_set(&cmd->t_transport_queue_active, 0);
656 atomic_dec(&qobj->queue_cnt);
657 list_del_init(&cmd->se_queue_node);
658 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
659
660 if (atomic_read(&cmd->t_transport_queue_active)) {
661 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
662 cmd->se_tfo->get_task_tag(cmd),
663 atomic_read(&cmd->t_transport_queue_active));
664 }
665 }
666
667 /*
668 * Completion function used by TCM subsystem plugins (such as FILEIO)
669 * for queueing up response from struct se_subsystem_api->do_task()
670 */
671 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
672 {
673 struct se_task *task = list_entry(cmd->t_task_list.next,
674 struct se_task, t_list);
675
676 if (good) {
677 cmd->scsi_status = SAM_STAT_GOOD;
678 task->task_scsi_status = GOOD;
679 } else {
680 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
681 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
682 task->task_se_cmd->transport_error_status =
683 PYX_TRANSPORT_ILLEGAL_REQUEST;
684 }
685
686 transport_complete_task(task, good);
687 }
688 EXPORT_SYMBOL(transport_complete_sync_cache);
689
690 static void target_complete_failure_work(struct work_struct *work)
691 {
692 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
693
694 transport_generic_request_failure(cmd, 1, 1);
695 }
696
697 /* transport_complete_task():
698 *
699 * Called from interrupt and non interrupt context depending
700 * on the transport plugin.
701 */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704 struct se_cmd *cmd = task->task_se_cmd;
705 struct se_device *dev = cmd->se_dev;
706 unsigned long flags;
707 #if 0
708 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
709 cmd->t_task_cdb[0], dev);
710 #endif
711 if (dev)
712 atomic_inc(&dev->depth_left);
713
714 spin_lock_irqsave(&cmd->t_state_lock, flags);
715 task->task_flags &= ~TF_ACTIVE;
716
717 /*
718 * See if any sense data exists, if so set the TASK_SENSE flag.
719 * Also check for any other post completion work that needs to be
720 * done by the plugins.
721 */
722 if (dev && dev->transport->transport_complete) {
723 if (dev->transport->transport_complete(task) != 0) {
724 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
725 task->task_sense = 1;
726 success = 1;
727 }
728 }
729
730 /*
731 * See if we are waiting for outstanding struct se_task
732 * to complete for an exception condition
733 */
734 if (task->task_flags & TF_REQUEST_STOP) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 complete(&task->task_stop_comp);
737 return;
738 }
739
740 if (!success)
741 cmd->t_tasks_failed = 1;
742
743 /*
744 * Decrement the outstanding t_task_cdbs_left count. The last
745 * struct se_task from struct se_cmd will complete itself into the
746 * device queue depending upon int success.
747 */
748 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
749 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
750 return;
751 }
752
753 if (cmd->t_tasks_failed) {
754 if (!task->task_error_status) {
755 task->task_error_status =
756 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
757 cmd->transport_error_status =
758 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
759 }
760 INIT_WORK(&cmd->work, target_complete_failure_work);
761 } else {
762 atomic_set(&cmd->t_transport_complete, 1);
763 INIT_WORK(&cmd->work, target_complete_ok_work);
764 }
765
766 cmd->t_state = TRANSPORT_COMPLETE;
767 atomic_set(&cmd->t_transport_active, 1);
768 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
769
770 queue_work(target_completion_wq, &cmd->work);
771 }
772 EXPORT_SYMBOL(transport_complete_task);
773
774 /*
775 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
776 * struct se_task list are ready to be added to the active execution list
777 * struct se_device
778
779 * Called with se_dev_t->execute_task_lock called.
780 */
781 static inline int transport_add_task_check_sam_attr(
782 struct se_task *task,
783 struct se_task *task_prev,
784 struct se_device *dev)
785 {
786 /*
787 * No SAM Task attribute emulation enabled, add to tail of
788 * execution queue
789 */
790 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
791 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
792 return 0;
793 }
794 /*
795 * HEAD_OF_QUEUE attribute for received CDB, which means
796 * the first task that is associated with a struct se_cmd goes to
797 * head of the struct se_device->execute_task_list, and task_prev
798 * after that for each subsequent task
799 */
800 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
801 list_add(&task->t_execute_list,
802 (task_prev != NULL) ?
803 &task_prev->t_execute_list :
804 &dev->execute_task_list);
805
806 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
807 " in execution queue\n",
808 task->task_se_cmd->t_task_cdb[0]);
809 return 1;
810 }
811 /*
812 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
813 * transitioned from Dermant -> Active state, and are added to the end
814 * of the struct se_device->execute_task_list
815 */
816 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
817 return 0;
818 }
819
820 /* __transport_add_task_to_execute_queue():
821 *
822 * Called with se_dev_t->execute_task_lock called.
823 */
824 static void __transport_add_task_to_execute_queue(
825 struct se_task *task,
826 struct se_task *task_prev,
827 struct se_device *dev)
828 {
829 int head_of_queue;
830
831 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
832 atomic_inc(&dev->execute_tasks);
833
834 if (atomic_read(&task->task_state_active))
835 return;
836 /*
837 * Determine if this task needs to go to HEAD_OF_QUEUE for the
838 * state list as well. Running with SAM Task Attribute emulation
839 * will always return head_of_queue == 0 here
840 */
841 if (head_of_queue)
842 list_add(&task->t_state_list, (task_prev) ?
843 &task_prev->t_state_list :
844 &dev->state_task_list);
845 else
846 list_add_tail(&task->t_state_list, &dev->state_task_list);
847
848 atomic_set(&task->task_state_active, 1);
849
850 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
851 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
852 task, dev);
853 }
854
855 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
856 {
857 struct se_device *dev = cmd->se_dev;
858 struct se_task *task;
859 unsigned long flags;
860
861 spin_lock_irqsave(&cmd->t_state_lock, flags);
862 list_for_each_entry(task, &cmd->t_task_list, t_list) {
863 if (atomic_read(&task->task_state_active))
864 continue;
865
866 spin_lock(&dev->execute_task_lock);
867 list_add_tail(&task->t_state_list, &dev->state_task_list);
868 atomic_set(&task->task_state_active, 1);
869
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task->task_se_cmd->se_tfo->get_task_tag(
872 task->task_se_cmd), task, dev);
873
874 spin_unlock(&dev->execute_task_lock);
875 }
876 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
879 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 struct se_device *dev = cmd->se_dev;
882 struct se_task *task, *task_prev = NULL;
883 unsigned long flags;
884
885 spin_lock_irqsave(&dev->execute_task_lock, flags);
886 list_for_each_entry(task, &cmd->t_task_list, t_list) {
887 if (!list_empty(&task->t_execute_list))
888 continue;
889 /*
890 * __transport_add_task_to_execute_queue() handles the
891 * SAM Task Attribute emulation if enabled
892 */
893 __transport_add_task_to_execute_queue(task, task_prev, dev);
894 task_prev = task;
895 }
896 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
897 }
898
899 void __transport_remove_task_from_execute_queue(struct se_task *task,
900 struct se_device *dev)
901 {
902 list_del_init(&task->t_execute_list);
903 atomic_dec(&dev->execute_tasks);
904 }
905
906 void transport_remove_task_from_execute_queue(
907 struct se_task *task,
908 struct se_device *dev)
909 {
910 unsigned long flags;
911
912 if (WARN_ON(list_empty(&task->t_execute_list)))
913 return;
914
915 spin_lock_irqsave(&dev->execute_task_lock, flags);
916 __transport_remove_task_from_execute_queue(task, dev);
917 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
918 }
919
920 /*
921 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
922 */
923
924 static void target_qf_do_work(struct work_struct *work)
925 {
926 struct se_device *dev = container_of(work, struct se_device,
927 qf_work_queue);
928 LIST_HEAD(qf_cmd_list);
929 struct se_cmd *cmd, *cmd_tmp;
930
931 spin_lock_irq(&dev->qf_cmd_lock);
932 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
933 spin_unlock_irq(&dev->qf_cmd_lock);
934
935 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
936 list_del(&cmd->se_qf_node);
937 atomic_dec(&dev->dev_qf_count);
938 smp_mb__after_atomic_dec();
939
940 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
941 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
942 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
943 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
944 : "UNKNOWN");
945
946 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
947 }
948 }
949
950 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
951 {
952 switch (cmd->data_direction) {
953 case DMA_NONE:
954 return "NONE";
955 case DMA_FROM_DEVICE:
956 return "READ";
957 case DMA_TO_DEVICE:
958 return "WRITE";
959 case DMA_BIDIRECTIONAL:
960 return "BIDI";
961 default:
962 break;
963 }
964
965 return "UNKNOWN";
966 }
967
968 void transport_dump_dev_state(
969 struct se_device *dev,
970 char *b,
971 int *bl)
972 {
973 *bl += sprintf(b + *bl, "Status: ");
974 switch (dev->dev_status) {
975 case TRANSPORT_DEVICE_ACTIVATED:
976 *bl += sprintf(b + *bl, "ACTIVATED");
977 break;
978 case TRANSPORT_DEVICE_DEACTIVATED:
979 *bl += sprintf(b + *bl, "DEACTIVATED");
980 break;
981 case TRANSPORT_DEVICE_SHUTDOWN:
982 *bl += sprintf(b + *bl, "SHUTDOWN");
983 break;
984 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
985 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
986 *bl += sprintf(b + *bl, "OFFLINE");
987 break;
988 default:
989 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
990 break;
991 }
992
993 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
994 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
995 dev->queue_depth);
996 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
997 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
998 *bl += sprintf(b + *bl, " ");
999 }
1000
1001 void transport_dump_vpd_proto_id(
1002 struct t10_vpd *vpd,
1003 unsigned char *p_buf,
1004 int p_buf_len)
1005 {
1006 unsigned char buf[VPD_TMP_BUF_SIZE];
1007 int len;
1008
1009 memset(buf, 0, VPD_TMP_BUF_SIZE);
1010 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1011
1012 switch (vpd->protocol_identifier) {
1013 case 0x00:
1014 sprintf(buf+len, "Fibre Channel\n");
1015 break;
1016 case 0x10:
1017 sprintf(buf+len, "Parallel SCSI\n");
1018 break;
1019 case 0x20:
1020 sprintf(buf+len, "SSA\n");
1021 break;
1022 case 0x30:
1023 sprintf(buf+len, "IEEE 1394\n");
1024 break;
1025 case 0x40:
1026 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1027 " Protocol\n");
1028 break;
1029 case 0x50:
1030 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1031 break;
1032 case 0x60:
1033 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1034 break;
1035 case 0x70:
1036 sprintf(buf+len, "Automation/Drive Interface Transport"
1037 " Protocol\n");
1038 break;
1039 case 0x80:
1040 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1041 break;
1042 default:
1043 sprintf(buf+len, "Unknown 0x%02x\n",
1044 vpd->protocol_identifier);
1045 break;
1046 }
1047
1048 if (p_buf)
1049 strncpy(p_buf, buf, p_buf_len);
1050 else
1051 pr_debug("%s", buf);
1052 }
1053
1054 void
1055 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1056 {
1057 /*
1058 * Check if the Protocol Identifier Valid (PIV) bit is set..
1059 *
1060 * from spc3r23.pdf section 7.5.1
1061 */
1062 if (page_83[1] & 0x80) {
1063 vpd->protocol_identifier = (page_83[0] & 0xf0);
1064 vpd->protocol_identifier_set = 1;
1065 transport_dump_vpd_proto_id(vpd, NULL, 0);
1066 }
1067 }
1068 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1069
1070 int transport_dump_vpd_assoc(
1071 struct t10_vpd *vpd,
1072 unsigned char *p_buf,
1073 int p_buf_len)
1074 {
1075 unsigned char buf[VPD_TMP_BUF_SIZE];
1076 int ret = 0;
1077 int len;
1078
1079 memset(buf, 0, VPD_TMP_BUF_SIZE);
1080 len = sprintf(buf, "T10 VPD Identifier Association: ");
1081
1082 switch (vpd->association) {
1083 case 0x00:
1084 sprintf(buf+len, "addressed logical unit\n");
1085 break;
1086 case 0x10:
1087 sprintf(buf+len, "target port\n");
1088 break;
1089 case 0x20:
1090 sprintf(buf+len, "SCSI target device\n");
1091 break;
1092 default:
1093 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1094 ret = -EINVAL;
1095 break;
1096 }
1097
1098 if (p_buf)
1099 strncpy(p_buf, buf, p_buf_len);
1100 else
1101 pr_debug("%s", buf);
1102
1103 return ret;
1104 }
1105
1106 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1107 {
1108 /*
1109 * The VPD identification association..
1110 *
1111 * from spc3r23.pdf Section 7.6.3.1 Table 297
1112 */
1113 vpd->association = (page_83[1] & 0x30);
1114 return transport_dump_vpd_assoc(vpd, NULL, 0);
1115 }
1116 EXPORT_SYMBOL(transport_set_vpd_assoc);
1117
1118 int transport_dump_vpd_ident_type(
1119 struct t10_vpd *vpd,
1120 unsigned char *p_buf,
1121 int p_buf_len)
1122 {
1123 unsigned char buf[VPD_TMP_BUF_SIZE];
1124 int ret = 0;
1125 int len;
1126
1127 memset(buf, 0, VPD_TMP_BUF_SIZE);
1128 len = sprintf(buf, "T10 VPD Identifier Type: ");
1129
1130 switch (vpd->device_identifier_type) {
1131 case 0x00:
1132 sprintf(buf+len, "Vendor specific\n");
1133 break;
1134 case 0x01:
1135 sprintf(buf+len, "T10 Vendor ID based\n");
1136 break;
1137 case 0x02:
1138 sprintf(buf+len, "EUI-64 based\n");
1139 break;
1140 case 0x03:
1141 sprintf(buf+len, "NAA\n");
1142 break;
1143 case 0x04:
1144 sprintf(buf+len, "Relative target port identifier\n");
1145 break;
1146 case 0x08:
1147 sprintf(buf+len, "SCSI name string\n");
1148 break;
1149 default:
1150 sprintf(buf+len, "Unsupported: 0x%02x\n",
1151 vpd->device_identifier_type);
1152 ret = -EINVAL;
1153 break;
1154 }
1155
1156 if (p_buf) {
1157 if (p_buf_len < strlen(buf)+1)
1158 return -EINVAL;
1159 strncpy(p_buf, buf, p_buf_len);
1160 } else {
1161 pr_debug("%s", buf);
1162 }
1163
1164 return ret;
1165 }
1166
1167 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1168 {
1169 /*
1170 * The VPD identifier type..
1171 *
1172 * from spc3r23.pdf Section 7.6.3.1 Table 298
1173 */
1174 vpd->device_identifier_type = (page_83[1] & 0x0f);
1175 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1176 }
1177 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1178
1179 int transport_dump_vpd_ident(
1180 struct t10_vpd *vpd,
1181 unsigned char *p_buf,
1182 int p_buf_len)
1183 {
1184 unsigned char buf[VPD_TMP_BUF_SIZE];
1185 int ret = 0;
1186
1187 memset(buf, 0, VPD_TMP_BUF_SIZE);
1188
1189 switch (vpd->device_identifier_code_set) {
1190 case 0x01: /* Binary */
1191 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1192 &vpd->device_identifier[0]);
1193 break;
1194 case 0x02: /* ASCII */
1195 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1196 &vpd->device_identifier[0]);
1197 break;
1198 case 0x03: /* UTF-8 */
1199 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1200 &vpd->device_identifier[0]);
1201 break;
1202 default:
1203 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1204 " 0x%02x", vpd->device_identifier_code_set);
1205 ret = -EINVAL;
1206 break;
1207 }
1208
1209 if (p_buf)
1210 strncpy(p_buf, buf, p_buf_len);
1211 else
1212 pr_debug("%s", buf);
1213
1214 return ret;
1215 }
1216
1217 int
1218 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1219 {
1220 static const char hex_str[] = "0123456789abcdef";
1221 int j = 0, i = 4; /* offset to start of the identifer */
1222
1223 /*
1224 * The VPD Code Set (encoding)
1225 *
1226 * from spc3r23.pdf Section 7.6.3.1 Table 296
1227 */
1228 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1229 switch (vpd->device_identifier_code_set) {
1230 case 0x01: /* Binary */
1231 vpd->device_identifier[j++] =
1232 hex_str[vpd->device_identifier_type];
1233 while (i < (4 + page_83[3])) {
1234 vpd->device_identifier[j++] =
1235 hex_str[(page_83[i] & 0xf0) >> 4];
1236 vpd->device_identifier[j++] =
1237 hex_str[page_83[i] & 0x0f];
1238 i++;
1239 }
1240 break;
1241 case 0x02: /* ASCII */
1242 case 0x03: /* UTF-8 */
1243 while (i < (4 + page_83[3]))
1244 vpd->device_identifier[j++] = page_83[i++];
1245 break;
1246 default:
1247 break;
1248 }
1249
1250 return transport_dump_vpd_ident(vpd, NULL, 0);
1251 }
1252 EXPORT_SYMBOL(transport_set_vpd_ident);
1253
1254 static void core_setup_task_attr_emulation(struct se_device *dev)
1255 {
1256 /*
1257 * If this device is from Target_Core_Mod/pSCSI, disable the
1258 * SAM Task Attribute emulation.
1259 *
1260 * This is currently not available in upsream Linux/SCSI Target
1261 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1262 */
1263 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1264 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1265 return;
1266 }
1267
1268 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1269 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1270 " device\n", dev->transport->name,
1271 dev->transport->get_device_rev(dev));
1272 }
1273
1274 static void scsi_dump_inquiry(struct se_device *dev)
1275 {
1276 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1277 int i, device_type;
1278 /*
1279 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1280 */
1281 pr_debug(" Vendor: ");
1282 for (i = 0; i < 8; i++)
1283 if (wwn->vendor[i] >= 0x20)
1284 pr_debug("%c", wwn->vendor[i]);
1285 else
1286 pr_debug(" ");
1287
1288 pr_debug(" Model: ");
1289 for (i = 0; i < 16; i++)
1290 if (wwn->model[i] >= 0x20)
1291 pr_debug("%c", wwn->model[i]);
1292 else
1293 pr_debug(" ");
1294
1295 pr_debug(" Revision: ");
1296 for (i = 0; i < 4; i++)
1297 if (wwn->revision[i] >= 0x20)
1298 pr_debug("%c", wwn->revision[i]);
1299 else
1300 pr_debug(" ");
1301
1302 pr_debug("\n");
1303
1304 device_type = dev->transport->get_device_type(dev);
1305 pr_debug(" Type: %s ", scsi_device_type(device_type));
1306 pr_debug(" ANSI SCSI revision: %02x\n",
1307 dev->transport->get_device_rev(dev));
1308 }
1309
1310 struct se_device *transport_add_device_to_core_hba(
1311 struct se_hba *hba,
1312 struct se_subsystem_api *transport,
1313 struct se_subsystem_dev *se_dev,
1314 u32 device_flags,
1315 void *transport_dev,
1316 struct se_dev_limits *dev_limits,
1317 const char *inquiry_prod,
1318 const char *inquiry_rev)
1319 {
1320 int force_pt;
1321 struct se_device *dev;
1322
1323 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1324 if (!dev) {
1325 pr_err("Unable to allocate memory for se_dev_t\n");
1326 return NULL;
1327 }
1328
1329 transport_init_queue_obj(&dev->dev_queue_obj);
1330 dev->dev_flags = device_flags;
1331 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1332 dev->dev_ptr = transport_dev;
1333 dev->se_hba = hba;
1334 dev->se_sub_dev = se_dev;
1335 dev->transport = transport;
1336 atomic_set(&dev->active_cmds, 0);
1337 INIT_LIST_HEAD(&dev->dev_list);
1338 INIT_LIST_HEAD(&dev->dev_sep_list);
1339 INIT_LIST_HEAD(&dev->dev_tmr_list);
1340 INIT_LIST_HEAD(&dev->execute_task_list);
1341 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1342 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1343 INIT_LIST_HEAD(&dev->state_task_list);
1344 INIT_LIST_HEAD(&dev->qf_cmd_list);
1345 spin_lock_init(&dev->execute_task_lock);
1346 spin_lock_init(&dev->delayed_cmd_lock);
1347 spin_lock_init(&dev->ordered_cmd_lock);
1348 spin_lock_init(&dev->state_task_lock);
1349 spin_lock_init(&dev->dev_alua_lock);
1350 spin_lock_init(&dev->dev_reservation_lock);
1351 spin_lock_init(&dev->dev_status_lock);
1352 spin_lock_init(&dev->dev_status_thr_lock);
1353 spin_lock_init(&dev->se_port_lock);
1354 spin_lock_init(&dev->se_tmr_lock);
1355 spin_lock_init(&dev->qf_cmd_lock);
1356
1357 dev->queue_depth = dev_limits->queue_depth;
1358 atomic_set(&dev->depth_left, dev->queue_depth);
1359 atomic_set(&dev->dev_ordered_id, 0);
1360
1361 se_dev_set_default_attribs(dev, dev_limits);
1362
1363 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364 dev->creation_time = get_jiffies_64();
1365 spin_lock_init(&dev->stats_lock);
1366
1367 spin_lock(&hba->device_lock);
1368 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369 hba->dev_count++;
1370 spin_unlock(&hba->device_lock);
1371 /*
1372 * Setup the SAM Task Attribute emulation for struct se_device
1373 */
1374 core_setup_task_attr_emulation(dev);
1375 /*
1376 * Force PR and ALUA passthrough emulation with internal object use.
1377 */
1378 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379 /*
1380 * Setup the Reservations infrastructure for struct se_device
1381 */
1382 core_setup_reservations(dev, force_pt);
1383 /*
1384 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385 */
1386 if (core_setup_alua(dev, force_pt) < 0)
1387 goto out;
1388
1389 /*
1390 * Startup the struct se_device processing thread
1391 */
1392 dev->process_thread = kthread_run(transport_processing_thread, dev,
1393 "LIO_%s", dev->transport->name);
1394 if (IS_ERR(dev->process_thread)) {
1395 pr_err("Unable to create kthread: LIO_%s\n",
1396 dev->transport->name);
1397 goto out;
1398 }
1399 /*
1400 * Setup work_queue for QUEUE_FULL
1401 */
1402 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403 /*
1404 * Preload the initial INQUIRY const values if we are doing
1405 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 * passthrough because this is being provided by the backend LLD.
1407 * This is required so that transport_get_inquiry() copies these
1408 * originals once back into DEV_T10_WWN(dev) for the virtual device
1409 * setup.
1410 */
1411 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412 if (!inquiry_prod || !inquiry_rev) {
1413 pr_err("All non TCM/pSCSI plugins require"
1414 " INQUIRY consts\n");
1415 goto out;
1416 }
1417
1418 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421 }
1422 scsi_dump_inquiry(dev);
1423
1424 return dev;
1425 out:
1426 kthread_stop(dev->process_thread);
1427
1428 spin_lock(&hba->device_lock);
1429 list_del(&dev->dev_list);
1430 hba->dev_count--;
1431 spin_unlock(&hba->device_lock);
1432
1433 se_release_vpd_for_dev(dev);
1434
1435 kfree(dev);
1436
1437 return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440
1441 /* transport_generic_prepare_cdb():
1442 *
1443 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1444 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445 * The point of this is since we are mapping iSCSI LUNs to
1446 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447 * devices and HBAs for a loop.
1448 */
1449 static inline void transport_generic_prepare_cdb(
1450 unsigned char *cdb)
1451 {
1452 switch (cdb[0]) {
1453 case READ_10: /* SBC - RDProtect */
1454 case READ_12: /* SBC - RDProtect */
1455 case READ_16: /* SBC - RDProtect */
1456 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457 case VERIFY: /* SBC - VRProtect */
1458 case VERIFY_16: /* SBC - VRProtect */
1459 case WRITE_VERIFY: /* SBC - VRProtect */
1460 case WRITE_VERIFY_12: /* SBC - VRProtect */
1461 break;
1462 default:
1463 cdb[1] &= 0x1f; /* clear logical unit number */
1464 break;
1465 }
1466 }
1467
1468 static struct se_task *
1469 transport_generic_get_task(struct se_cmd *cmd,
1470 enum dma_data_direction data_direction)
1471 {
1472 struct se_task *task;
1473 struct se_device *dev = cmd->se_dev;
1474
1475 task = dev->transport->alloc_task(cmd->t_task_cdb);
1476 if (!task) {
1477 pr_err("Unable to allocate struct se_task\n");
1478 return NULL;
1479 }
1480
1481 INIT_LIST_HEAD(&task->t_list);
1482 INIT_LIST_HEAD(&task->t_execute_list);
1483 INIT_LIST_HEAD(&task->t_state_list);
1484 init_completion(&task->task_stop_comp);
1485 task->task_se_cmd = cmd;
1486 task->task_data_direction = data_direction;
1487
1488 return task;
1489 }
1490
1491 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1492
1493 /*
1494 * Used by fabric modules containing a local struct se_cmd within their
1495 * fabric dependent per I/O descriptor.
1496 */
1497 void transport_init_se_cmd(
1498 struct se_cmd *cmd,
1499 struct target_core_fabric_ops *tfo,
1500 struct se_session *se_sess,
1501 u32 data_length,
1502 int data_direction,
1503 int task_attr,
1504 unsigned char *sense_buffer)
1505 {
1506 INIT_LIST_HEAD(&cmd->se_lun_node);
1507 INIT_LIST_HEAD(&cmd->se_delayed_node);
1508 INIT_LIST_HEAD(&cmd->se_ordered_node);
1509 INIT_LIST_HEAD(&cmd->se_qf_node);
1510 INIT_LIST_HEAD(&cmd->se_queue_node);
1511 INIT_LIST_HEAD(&cmd->se_cmd_list);
1512 INIT_LIST_HEAD(&cmd->t_task_list);
1513 init_completion(&cmd->transport_lun_fe_stop_comp);
1514 init_completion(&cmd->transport_lun_stop_comp);
1515 init_completion(&cmd->t_transport_stop_comp);
1516 init_completion(&cmd->cmd_wait_comp);
1517 spin_lock_init(&cmd->t_state_lock);
1518 atomic_set(&cmd->transport_dev_active, 1);
1519
1520 cmd->se_tfo = tfo;
1521 cmd->se_sess = se_sess;
1522 cmd->data_length = data_length;
1523 cmd->data_direction = data_direction;
1524 cmd->sam_task_attr = task_attr;
1525 cmd->sense_buffer = sense_buffer;
1526 }
1527 EXPORT_SYMBOL(transport_init_se_cmd);
1528
1529 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1530 {
1531 /*
1532 * Check if SAM Task Attribute emulation is enabled for this
1533 * struct se_device storage object
1534 */
1535 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1536 return 0;
1537
1538 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1539 pr_debug("SAM Task Attribute ACA"
1540 " emulation is not supported\n");
1541 return -EINVAL;
1542 }
1543 /*
1544 * Used to determine when ORDERED commands should go from
1545 * Dormant to Active status.
1546 */
1547 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1548 smp_mb__after_atomic_inc();
1549 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550 cmd->se_ordered_id, cmd->sam_task_attr,
1551 cmd->se_dev->transport->name);
1552 return 0;
1553 }
1554
1555 /* transport_generic_allocate_tasks():
1556 *
1557 * Called from fabric RX Thread.
1558 */
1559 int transport_generic_allocate_tasks(
1560 struct se_cmd *cmd,
1561 unsigned char *cdb)
1562 {
1563 int ret;
1564
1565 transport_generic_prepare_cdb(cdb);
1566 /*
1567 * Ensure that the received CDB is less than the max (252 + 8) bytes
1568 * for VARIABLE_LENGTH_CMD
1569 */
1570 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1571 pr_err("Received SCSI CDB with command_size: %d that"
1572 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1574 return -EINVAL;
1575 }
1576 /*
1577 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578 * allocate the additional extended CDB buffer now.. Otherwise
1579 * setup the pointer from __t_task_cdb to t_task_cdb.
1580 */
1581 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1582 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1583 GFP_KERNEL);
1584 if (!cmd->t_task_cdb) {
1585 pr_err("Unable to allocate cmd->t_task_cdb"
1586 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587 scsi_command_size(cdb),
1588 (unsigned long)sizeof(cmd->__t_task_cdb));
1589 return -ENOMEM;
1590 }
1591 } else
1592 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1593 /*
1594 * Copy the original CDB into cmd->
1595 */
1596 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1597 /*
1598 * Setup the received CDB based on SCSI defined opcodes and
1599 * perform unit attention, persistent reservations and ALUA
1600 * checks for virtual device backends. The cmd->t_task_cdb
1601 * pointer is expected to be setup before we reach this point.
1602 */
1603 ret = transport_generic_cmd_sequencer(cmd, cdb);
1604 if (ret < 0)
1605 return ret;
1606 /*
1607 * Check for SAM Task Attribute Emulation
1608 */
1609 if (transport_check_alloc_task_attr(cmd) < 0) {
1610 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1611 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1612 return -EINVAL;
1613 }
1614 spin_lock(&cmd->se_lun->lun_sep_lock);
1615 if (cmd->se_lun->lun_sep)
1616 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1617 spin_unlock(&cmd->se_lun->lun_sep_lock);
1618 return 0;
1619 }
1620 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1621
1622 /*
1623 * Used by fabric module frontends to queue tasks directly.
1624 * Many only be used from process context only
1625 */
1626 int transport_handle_cdb_direct(
1627 struct se_cmd *cmd)
1628 {
1629 int ret;
1630
1631 if (!cmd->se_lun) {
1632 dump_stack();
1633 pr_err("cmd->se_lun is NULL\n");
1634 return -EINVAL;
1635 }
1636 if (in_interrupt()) {
1637 dump_stack();
1638 pr_err("transport_generic_handle_cdb cannot be called"
1639 " from interrupt context\n");
1640 return -EINVAL;
1641 }
1642 /*
1643 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1644 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1645 * in existing usage to ensure that outstanding descriptors are handled
1646 * correctly during shutdown via transport_wait_for_tasks()
1647 *
1648 * Also, we don't take cmd->t_state_lock here as we only expect
1649 * this to be called for initial descriptor submission.
1650 */
1651 cmd->t_state = TRANSPORT_NEW_CMD;
1652 atomic_set(&cmd->t_transport_active, 1);
1653 /*
1654 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1655 * so follow TRANSPORT_NEW_CMD processing thread context usage
1656 * and call transport_generic_request_failure() if necessary..
1657 */
1658 ret = transport_generic_new_cmd(cmd);
1659 if (ret < 0) {
1660 cmd->transport_error_status = ret;
1661 transport_generic_request_failure(cmd, 0,
1662 (cmd->data_direction != DMA_TO_DEVICE));
1663 }
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(transport_handle_cdb_direct);
1667
1668 /*
1669 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1670 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1671 * complete setup in TCM process context w/ TFO->new_cmd_map().
1672 */
1673 int transport_generic_handle_cdb_map(
1674 struct se_cmd *cmd)
1675 {
1676 if (!cmd->se_lun) {
1677 dump_stack();
1678 pr_err("cmd->se_lun is NULL\n");
1679 return -EINVAL;
1680 }
1681
1682 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1683 return 0;
1684 }
1685 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1686
1687 /* transport_generic_handle_data():
1688 *
1689 *
1690 */
1691 int transport_generic_handle_data(
1692 struct se_cmd *cmd)
1693 {
1694 /*
1695 * For the software fabric case, then we assume the nexus is being
1696 * failed/shutdown when signals are pending from the kthread context
1697 * caller, so we return a failure. For the HW target mode case running
1698 * in interrupt code, the signal_pending() check is skipped.
1699 */
1700 if (!in_interrupt() && signal_pending(current))
1701 return -EPERM;
1702 /*
1703 * If the received CDB has aleady been ABORTED by the generic
1704 * target engine, we now call transport_check_aborted_status()
1705 * to queue any delated TASK_ABORTED status for the received CDB to the
1706 * fabric module as we are expecting no further incoming DATA OUT
1707 * sequences at this point.
1708 */
1709 if (transport_check_aborted_status(cmd, 1) != 0)
1710 return 0;
1711
1712 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1713 return 0;
1714 }
1715 EXPORT_SYMBOL(transport_generic_handle_data);
1716
1717 /* transport_generic_handle_tmr():
1718 *
1719 *
1720 */
1721 int transport_generic_handle_tmr(
1722 struct se_cmd *cmd)
1723 {
1724 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(transport_generic_handle_tmr);
1728
1729 /*
1730 * If the task is active, request it to be stopped and sleep until it
1731 * has completed.
1732 */
1733 bool target_stop_task(struct se_task *task, unsigned long *flags)
1734 {
1735 struct se_cmd *cmd = task->task_se_cmd;
1736 bool was_active = false;
1737
1738 if (task->task_flags & TF_ACTIVE) {
1739 task->task_flags |= TF_REQUEST_STOP;
1740 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1741
1742 pr_debug("Task %p waiting to complete\n", task);
1743 wait_for_completion(&task->task_stop_comp);
1744 pr_debug("Task %p stopped successfully\n", task);
1745
1746 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1747 atomic_dec(&cmd->t_task_cdbs_left);
1748 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1749 was_active = true;
1750 }
1751
1752 return was_active;
1753 }
1754
1755 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1756 {
1757 struct se_task *task, *task_tmp;
1758 unsigned long flags;
1759 int ret = 0;
1760
1761 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1762 cmd->se_tfo->get_task_tag(cmd));
1763
1764 /*
1765 * No tasks remain in the execution queue
1766 */
1767 spin_lock_irqsave(&cmd->t_state_lock, flags);
1768 list_for_each_entry_safe(task, task_tmp,
1769 &cmd->t_task_list, t_list) {
1770 pr_debug("Processing task %p\n", task);
1771 /*
1772 * If the struct se_task has not been sent and is not active,
1773 * remove the struct se_task from the execution queue.
1774 */
1775 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1776 spin_unlock_irqrestore(&cmd->t_state_lock,
1777 flags);
1778 transport_remove_task_from_execute_queue(task,
1779 cmd->se_dev);
1780
1781 pr_debug("Task %p removed from execute queue\n", task);
1782 spin_lock_irqsave(&cmd->t_state_lock, flags);
1783 continue;
1784 }
1785
1786 if (!target_stop_task(task, &flags)) {
1787 pr_debug("Task %p - did nothing\n", task);
1788 ret++;
1789 }
1790 }
1791 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1792
1793 return ret;
1794 }
1795
1796 /*
1797 * Handle SAM-esque emulation for generic transport request failures.
1798 */
1799 static void transport_generic_request_failure(
1800 struct se_cmd *cmd,
1801 int complete,
1802 int sc)
1803 {
1804 int ret = 0;
1805
1806 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1807 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1808 cmd->t_task_cdb[0]);
1809 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1810 cmd->se_tfo->get_cmd_state(cmd),
1811 cmd->t_state,
1812 cmd->transport_error_status);
1813 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1814 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1815 " t_transport_active: %d t_transport_stop: %d"
1816 " t_transport_sent: %d\n", cmd->t_task_list_num,
1817 atomic_read(&cmd->t_task_cdbs_left),
1818 atomic_read(&cmd->t_task_cdbs_sent),
1819 atomic_read(&cmd->t_task_cdbs_ex_left),
1820 atomic_read(&cmd->t_transport_active),
1821 atomic_read(&cmd->t_transport_stop),
1822 atomic_read(&cmd->t_transport_sent));
1823
1824 /*
1825 * For SAM Task Attribute emulation for failed struct se_cmd
1826 */
1827 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1828 transport_complete_task_attr(cmd);
1829
1830 if (complete) {
1831 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1832 }
1833
1834 switch (cmd->transport_error_status) {
1835 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1836 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1837 break;
1838 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1839 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1840 break;
1841 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1842 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1843 break;
1844 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1845 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1846 break;
1847 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1848 if (!sc)
1849 transport_new_cmd_failure(cmd);
1850 /*
1851 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1852 * we force this session to fall back to session
1853 * recovery.
1854 */
1855 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1856 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1857
1858 goto check_stop;
1859 case PYX_TRANSPORT_LU_COMM_FAILURE:
1860 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1861 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1862 break;
1863 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1864 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1865 break;
1866 case PYX_TRANSPORT_WRITE_PROTECTED:
1867 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1868 break;
1869 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1870 /*
1871 * No SENSE Data payload for this case, set SCSI Status
1872 * and queue the response to $FABRIC_MOD.
1873 *
1874 * Uses linux/include/scsi/scsi.h SAM status codes defs
1875 */
1876 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1877 /*
1878 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1879 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1880 * CONFLICT STATUS.
1881 *
1882 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1883 */
1884 if (cmd->se_sess &&
1885 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1886 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1887 cmd->orig_fe_lun, 0x2C,
1888 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1889
1890 ret = cmd->se_tfo->queue_status(cmd);
1891 if (ret == -EAGAIN || ret == -ENOMEM)
1892 goto queue_full;
1893 goto check_stop;
1894 case PYX_TRANSPORT_USE_SENSE_REASON:
1895 /*
1896 * struct se_cmd->scsi_sense_reason already set
1897 */
1898 break;
1899 default:
1900 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1901 cmd->t_task_cdb[0],
1902 cmd->transport_error_status);
1903 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1904 break;
1905 }
1906 /*
1907 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1908 * make the call to transport_send_check_condition_and_sense()
1909 * directly. Otherwise expect the fabric to make the call to
1910 * transport_send_check_condition_and_sense() after handling
1911 * possible unsoliticied write data payloads.
1912 */
1913 if (!sc && !cmd->se_tfo->new_cmd_map)
1914 transport_new_cmd_failure(cmd);
1915 else {
1916 ret = transport_send_check_condition_and_sense(cmd,
1917 cmd->scsi_sense_reason, 0);
1918 if (ret == -EAGAIN || ret == -ENOMEM)
1919 goto queue_full;
1920 }
1921
1922 check_stop:
1923 transport_lun_remove_cmd(cmd);
1924 if (!transport_cmd_check_stop_to_fabric(cmd))
1925 ;
1926 return;
1927
1928 queue_full:
1929 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1930 transport_handle_queue_full(cmd, cmd->se_dev);
1931 }
1932
1933 static inline u32 transport_lba_21(unsigned char *cdb)
1934 {
1935 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1936 }
1937
1938 static inline u32 transport_lba_32(unsigned char *cdb)
1939 {
1940 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1941 }
1942
1943 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1944 {
1945 unsigned int __v1, __v2;
1946
1947 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1948 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1949
1950 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1951 }
1952
1953 /*
1954 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1955 */
1956 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1957 {
1958 unsigned int __v1, __v2;
1959
1960 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1961 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1962
1963 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1964 }
1965
1966 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1967 {
1968 unsigned long flags;
1969
1970 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1971 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1972 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1973 }
1974
1975 static inline int transport_tcq_window_closed(struct se_device *dev)
1976 {
1977 if (dev->dev_tcq_window_closed++ <
1978 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1979 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1980 } else
1981 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1982
1983 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1984 return 0;
1985 }
1986
1987 /*
1988 * Called from Fabric Module context from transport_execute_tasks()
1989 *
1990 * The return of this function determins if the tasks from struct se_cmd
1991 * get added to the execution queue in transport_execute_tasks(),
1992 * or are added to the delayed or ordered lists here.
1993 */
1994 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1995 {
1996 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1997 return 1;
1998 /*
1999 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2000 * to allow the passed struct se_cmd list of tasks to the front of the list.
2001 */
2002 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2003 atomic_inc(&cmd->se_dev->dev_hoq_count);
2004 smp_mb__after_atomic_inc();
2005 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2006 " 0x%02x, se_ordered_id: %u\n",
2007 cmd->t_task_cdb[0],
2008 cmd->se_ordered_id);
2009 return 1;
2010 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2011 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2012 list_add_tail(&cmd->se_ordered_node,
2013 &cmd->se_dev->ordered_cmd_list);
2014 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2015
2016 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2017 smp_mb__after_atomic_inc();
2018
2019 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2020 " list, se_ordered_id: %u\n",
2021 cmd->t_task_cdb[0],
2022 cmd->se_ordered_id);
2023 /*
2024 * Add ORDERED command to tail of execution queue if
2025 * no other older commands exist that need to be
2026 * completed first.
2027 */
2028 if (!atomic_read(&cmd->se_dev->simple_cmds))
2029 return 1;
2030 } else {
2031 /*
2032 * For SIMPLE and UNTAGGED Task Attribute commands
2033 */
2034 atomic_inc(&cmd->se_dev->simple_cmds);
2035 smp_mb__after_atomic_inc();
2036 }
2037 /*
2038 * Otherwise if one or more outstanding ORDERED task attribute exist,
2039 * add the dormant task(s) built for the passed struct se_cmd to the
2040 * execution queue and become in Active state for this struct se_device.
2041 */
2042 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2043 /*
2044 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2045 * will be drained upon completion of HEAD_OF_QUEUE task.
2046 */
2047 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2048 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2049 list_add_tail(&cmd->se_delayed_node,
2050 &cmd->se_dev->delayed_cmd_list);
2051 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2052
2053 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2054 " delayed CMD list, se_ordered_id: %u\n",
2055 cmd->t_task_cdb[0], cmd->sam_task_attr,
2056 cmd->se_ordered_id);
2057 /*
2058 * Return zero to let transport_execute_tasks() know
2059 * not to add the delayed tasks to the execution list.
2060 */
2061 return 0;
2062 }
2063 /*
2064 * Otherwise, no ORDERED task attributes exist..
2065 */
2066 return 1;
2067 }
2068
2069 /*
2070 * Called from fabric module context in transport_generic_new_cmd() and
2071 * transport_generic_process_write()
2072 */
2073 static int transport_execute_tasks(struct se_cmd *cmd)
2074 {
2075 int add_tasks;
2076
2077 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2078 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2079 transport_generic_request_failure(cmd, 0, 1);
2080 return 0;
2081 }
2082
2083 /*
2084 * Call transport_cmd_check_stop() to see if a fabric exception
2085 * has occurred that prevents execution.
2086 */
2087 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2088 /*
2089 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2090 * attribute for the tasks of the received struct se_cmd CDB
2091 */
2092 add_tasks = transport_execute_task_attr(cmd);
2093 if (!add_tasks)
2094 goto execute_tasks;
2095 /*
2096 * This calls transport_add_tasks_from_cmd() to handle
2097 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2098 * (if enabled) in __transport_add_task_to_execute_queue() and
2099 * transport_add_task_check_sam_attr().
2100 */
2101 transport_add_tasks_from_cmd(cmd);
2102 }
2103 /*
2104 * Kick the execution queue for the cmd associated struct se_device
2105 * storage object.
2106 */
2107 execute_tasks:
2108 __transport_execute_tasks(cmd->se_dev);
2109 return 0;
2110 }
2111
2112 /*
2113 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2114 * from struct se_device->execute_task_list and
2115 *
2116 * Called from transport_processing_thread()
2117 */
2118 static int __transport_execute_tasks(struct se_device *dev)
2119 {
2120 int error;
2121 struct se_cmd *cmd = NULL;
2122 struct se_task *task = NULL;
2123 unsigned long flags;
2124
2125 /*
2126 * Check if there is enough room in the device and HBA queue to send
2127 * struct se_tasks to the selected transport.
2128 */
2129 check_depth:
2130 if (!atomic_read(&dev->depth_left))
2131 return transport_tcq_window_closed(dev);
2132
2133 dev->dev_tcq_window_closed = 0;
2134
2135 spin_lock_irq(&dev->execute_task_lock);
2136 if (list_empty(&dev->execute_task_list)) {
2137 spin_unlock_irq(&dev->execute_task_lock);
2138 return 0;
2139 }
2140 task = list_first_entry(&dev->execute_task_list,
2141 struct se_task, t_execute_list);
2142 __transport_remove_task_from_execute_queue(task, dev);
2143 spin_unlock_irq(&dev->execute_task_lock);
2144
2145 atomic_dec(&dev->depth_left);
2146
2147 cmd = task->task_se_cmd;
2148
2149 spin_lock_irqsave(&cmd->t_state_lock, flags);
2150 task->task_flags |= (TF_ACTIVE | TF_SENT);
2151 atomic_inc(&cmd->t_task_cdbs_sent);
2152
2153 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2154 cmd->t_task_list_num)
2155 atomic_set(&cmd->t_transport_sent, 1);
2156
2157 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2158 /*
2159 * The struct se_cmd->execute_task() function pointer is used
2160 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2161 * struct se_subsystem_api->do_task() caller below.
2162 */
2163 if (cmd->execute_task) {
2164 error = cmd->execute_task(task);
2165 } else {
2166 /*
2167 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2168 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2169 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2170 * LUN emulation code.
2171 *
2172 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2173 * call ->do_task() directly and let the underlying TCM subsystem plugin
2174 * code handle the CDB emulation.
2175 */
2176 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2177 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2178 error = transport_emulate_control_cdb(task);
2179 else
2180 error = dev->transport->do_task(task);
2181 }
2182
2183 if (error != 0) {
2184 cmd->transport_error_status = error;
2185 spin_lock_irqsave(&cmd->t_state_lock, flags);
2186 task->task_flags &= ~TF_ACTIVE;
2187 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188 atomic_set(&cmd->t_transport_sent, 0);
2189 transport_stop_tasks_for_cmd(cmd);
2190 atomic_inc(&dev->depth_left);
2191 transport_generic_request_failure(cmd, 0, 1);
2192 }
2193
2194 goto check_depth;
2195
2196 return 0;
2197 }
2198
2199 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2200 {
2201 unsigned long flags;
2202 /*
2203 * Any unsolicited data will get dumped for failed command inside of
2204 * the fabric plugin
2205 */
2206 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2207 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2208 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2209 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2210 }
2211
2212 static inline u32 transport_get_sectors_6(
2213 unsigned char *cdb,
2214 struct se_cmd *cmd,
2215 int *ret)
2216 {
2217 struct se_device *dev = cmd->se_dev;
2218
2219 /*
2220 * Assume TYPE_DISK for non struct se_device objects.
2221 * Use 8-bit sector value.
2222 */
2223 if (!dev)
2224 goto type_disk;
2225
2226 /*
2227 * Use 24-bit allocation length for TYPE_TAPE.
2228 */
2229 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2230 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2231
2232 /*
2233 * Everything else assume TYPE_DISK Sector CDB location.
2234 * Use 8-bit sector value.
2235 */
2236 type_disk:
2237 return (u32)cdb[4];
2238 }
2239
2240 static inline u32 transport_get_sectors_10(
2241 unsigned char *cdb,
2242 struct se_cmd *cmd,
2243 int *ret)
2244 {
2245 struct se_device *dev = cmd->se_dev;
2246
2247 /*
2248 * Assume TYPE_DISK for non struct se_device objects.
2249 * Use 16-bit sector value.
2250 */
2251 if (!dev)
2252 goto type_disk;
2253
2254 /*
2255 * XXX_10 is not defined in SSC, throw an exception
2256 */
2257 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2258 *ret = -EINVAL;
2259 return 0;
2260 }
2261
2262 /*
2263 * Everything else assume TYPE_DISK Sector CDB location.
2264 * Use 16-bit sector value.
2265 */
2266 type_disk:
2267 return (u32)(cdb[7] << 8) + cdb[8];
2268 }
2269
2270 static inline u32 transport_get_sectors_12(
2271 unsigned char *cdb,
2272 struct se_cmd *cmd,
2273 int *ret)
2274 {
2275 struct se_device *dev = cmd->se_dev;
2276
2277 /*
2278 * Assume TYPE_DISK for non struct se_device objects.
2279 * Use 32-bit sector value.
2280 */
2281 if (!dev)
2282 goto type_disk;
2283
2284 /*
2285 * XXX_12 is not defined in SSC, throw an exception
2286 */
2287 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2288 *ret = -EINVAL;
2289 return 0;
2290 }
2291
2292 /*
2293 * Everything else assume TYPE_DISK Sector CDB location.
2294 * Use 32-bit sector value.
2295 */
2296 type_disk:
2297 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2298 }
2299
2300 static inline u32 transport_get_sectors_16(
2301 unsigned char *cdb,
2302 struct se_cmd *cmd,
2303 int *ret)
2304 {
2305 struct se_device *dev = cmd->se_dev;
2306
2307 /*
2308 * Assume TYPE_DISK for non struct se_device objects.
2309 * Use 32-bit sector value.
2310 */
2311 if (!dev)
2312 goto type_disk;
2313
2314 /*
2315 * Use 24-bit allocation length for TYPE_TAPE.
2316 */
2317 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2318 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2319
2320 type_disk:
2321 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2322 (cdb[12] << 8) + cdb[13];
2323 }
2324
2325 /*
2326 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2327 */
2328 static inline u32 transport_get_sectors_32(
2329 unsigned char *cdb,
2330 struct se_cmd *cmd,
2331 int *ret)
2332 {
2333 /*
2334 * Assume TYPE_DISK for non struct se_device objects.
2335 * Use 32-bit sector value.
2336 */
2337 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2338 (cdb[30] << 8) + cdb[31];
2339
2340 }
2341
2342 static inline u32 transport_get_size(
2343 u32 sectors,
2344 unsigned char *cdb,
2345 struct se_cmd *cmd)
2346 {
2347 struct se_device *dev = cmd->se_dev;
2348
2349 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2350 if (cdb[1] & 1) { /* sectors */
2351 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2352 } else /* bytes */
2353 return sectors;
2354 }
2355 #if 0
2356 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2357 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2358 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2359 dev->transport->name);
2360 #endif
2361 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2362 }
2363
2364 static void transport_xor_callback(struct se_cmd *cmd)
2365 {
2366 unsigned char *buf, *addr;
2367 struct scatterlist *sg;
2368 unsigned int offset;
2369 int i;
2370 int count;
2371 /*
2372 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2373 *
2374 * 1) read the specified logical block(s);
2375 * 2) transfer logical blocks from the data-out buffer;
2376 * 3) XOR the logical blocks transferred from the data-out buffer with
2377 * the logical blocks read, storing the resulting XOR data in a buffer;
2378 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2379 * blocks transferred from the data-out buffer; and
2380 * 5) transfer the resulting XOR data to the data-in buffer.
2381 */
2382 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2383 if (!buf) {
2384 pr_err("Unable to allocate xor_callback buf\n");
2385 return;
2386 }
2387 /*
2388 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2389 * into the locally allocated *buf
2390 */
2391 sg_copy_to_buffer(cmd->t_data_sg,
2392 cmd->t_data_nents,
2393 buf,
2394 cmd->data_length);
2395
2396 /*
2397 * Now perform the XOR against the BIDI read memory located at
2398 * cmd->t_mem_bidi_list
2399 */
2400
2401 offset = 0;
2402 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2403 addr = kmap_atomic(sg_page(sg), KM_USER0);
2404 if (!addr)
2405 goto out;
2406
2407 for (i = 0; i < sg->length; i++)
2408 *(addr + sg->offset + i) ^= *(buf + offset + i);
2409
2410 offset += sg->length;
2411 kunmap_atomic(addr, KM_USER0);
2412 }
2413
2414 out:
2415 kfree(buf);
2416 }
2417
2418 /*
2419 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2420 */
2421 static int transport_get_sense_data(struct se_cmd *cmd)
2422 {
2423 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2424 struct se_device *dev = cmd->se_dev;
2425 struct se_task *task = NULL, *task_tmp;
2426 unsigned long flags;
2427 u32 offset = 0;
2428
2429 WARN_ON(!cmd->se_lun);
2430
2431 if (!dev)
2432 return 0;
2433
2434 spin_lock_irqsave(&cmd->t_state_lock, flags);
2435 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2436 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2437 return 0;
2438 }
2439
2440 list_for_each_entry_safe(task, task_tmp,
2441 &cmd->t_task_list, t_list) {
2442 if (!task->task_sense)
2443 continue;
2444
2445 if (!dev->transport->get_sense_buffer) {
2446 pr_err("dev->transport->get_sense_buffer"
2447 " is NULL\n");
2448 continue;
2449 }
2450
2451 sense_buffer = dev->transport->get_sense_buffer(task);
2452 if (!sense_buffer) {
2453 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2454 " sense buffer for task with sense\n",
2455 cmd->se_tfo->get_task_tag(cmd), task);
2456 continue;
2457 }
2458 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459
2460 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2461 TRANSPORT_SENSE_BUFFER);
2462
2463 memcpy(&buffer[offset], sense_buffer,
2464 TRANSPORT_SENSE_BUFFER);
2465 cmd->scsi_status = task->task_scsi_status;
2466 /* Automatically padded */
2467 cmd->scsi_sense_length =
2468 (TRANSPORT_SENSE_BUFFER + offset);
2469
2470 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2471 " and sense\n",
2472 dev->se_hba->hba_id, dev->transport->name,
2473 cmd->scsi_status);
2474 return 0;
2475 }
2476 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2477
2478 return -1;
2479 }
2480
2481 static int
2482 transport_handle_reservation_conflict(struct se_cmd *cmd)
2483 {
2484 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2485 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2486 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2487 /*
2488 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2489 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2490 * CONFLICT STATUS.
2491 *
2492 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2493 */
2494 if (cmd->se_sess &&
2495 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2496 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2497 cmd->orig_fe_lun, 0x2C,
2498 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2499 return -EINVAL;
2500 }
2501
2502 static inline long long transport_dev_end_lba(struct se_device *dev)
2503 {
2504 return dev->transport->get_blocks(dev) + 1;
2505 }
2506
2507 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2508 {
2509 struct se_device *dev = cmd->se_dev;
2510 u32 sectors;
2511
2512 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2513 return 0;
2514
2515 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2516
2517 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2518 pr_err("LBA: %llu Sectors: %u exceeds"
2519 " transport_dev_end_lba(): %llu\n",
2520 cmd->t_task_lba, sectors,
2521 transport_dev_end_lba(dev));
2522 return -EINVAL;
2523 }
2524
2525 return 0;
2526 }
2527
2528 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2529 {
2530 /*
2531 * Determine if the received WRITE_SAME is used to for direct
2532 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2533 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2534 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2535 */
2536 int passthrough = (dev->transport->transport_type ==
2537 TRANSPORT_PLUGIN_PHBA_PDEV);
2538
2539 if (!passthrough) {
2540 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2541 pr_err("WRITE_SAME PBDATA and LBDATA"
2542 " bits not supported for Block Discard"
2543 " Emulation\n");
2544 return -ENOSYS;
2545 }
2546 /*
2547 * Currently for the emulated case we only accept
2548 * tpws with the UNMAP=1 bit set.
2549 */
2550 if (!(flags[0] & 0x08)) {
2551 pr_err("WRITE_SAME w/o UNMAP bit not"
2552 " supported for Block Discard Emulation\n");
2553 return -ENOSYS;
2554 }
2555 }
2556
2557 return 0;
2558 }
2559
2560 /* transport_generic_cmd_sequencer():
2561 *
2562 * Generic Command Sequencer that should work for most DAS transport
2563 * drivers.
2564 *
2565 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2566 * RX Thread.
2567 *
2568 * FIXME: Need to support other SCSI OPCODES where as well.
2569 */
2570 static int transport_generic_cmd_sequencer(
2571 struct se_cmd *cmd,
2572 unsigned char *cdb)
2573 {
2574 struct se_device *dev = cmd->se_dev;
2575 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2576 int ret = 0, sector_ret = 0, passthrough;
2577 u32 sectors = 0, size = 0, pr_reg_type = 0;
2578 u16 service_action;
2579 u8 alua_ascq = 0;
2580 /*
2581 * Check for an existing UNIT ATTENTION condition
2582 */
2583 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2584 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2585 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2586 return -EINVAL;
2587 }
2588 /*
2589 * Check status of Asymmetric Logical Unit Assignment port
2590 */
2591 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2592 if (ret != 0) {
2593 /*
2594 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2595 * The ALUA additional sense code qualifier (ASCQ) is determined
2596 * by the ALUA primary or secondary access state..
2597 */
2598 if (ret > 0) {
2599 #if 0
2600 pr_debug("[%s]: ALUA TG Port not available,"
2601 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2602 cmd->se_tfo->get_fabric_name(), alua_ascq);
2603 #endif
2604 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2605 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2606 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2607 return -EINVAL;
2608 }
2609 goto out_invalid_cdb_field;
2610 }
2611 /*
2612 * Check status for SPC-3 Persistent Reservations
2613 */
2614 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2615 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2616 cmd, cdb, pr_reg_type) != 0)
2617 return transport_handle_reservation_conflict(cmd);
2618 /*
2619 * This means the CDB is allowed for the SCSI Initiator port
2620 * when said port is *NOT* holding the legacy SPC-2 or
2621 * SPC-3 Persistent Reservation.
2622 */
2623 }
2624
2625 switch (cdb[0]) {
2626 case READ_6:
2627 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2628 if (sector_ret)
2629 goto out_unsupported_cdb;
2630 size = transport_get_size(sectors, cdb, cmd);
2631 cmd->t_task_lba = transport_lba_21(cdb);
2632 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2633 break;
2634 case READ_10:
2635 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2636 if (sector_ret)
2637 goto out_unsupported_cdb;
2638 size = transport_get_size(sectors, cdb, cmd);
2639 cmd->t_task_lba = transport_lba_32(cdb);
2640 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2641 break;
2642 case READ_12:
2643 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2644 if (sector_ret)
2645 goto out_unsupported_cdb;
2646 size = transport_get_size(sectors, cdb, cmd);
2647 cmd->t_task_lba = transport_lba_32(cdb);
2648 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2649 break;
2650 case READ_16:
2651 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2652 if (sector_ret)
2653 goto out_unsupported_cdb;
2654 size = transport_get_size(sectors, cdb, cmd);
2655 cmd->t_task_lba = transport_lba_64(cdb);
2656 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2657 break;
2658 case WRITE_6:
2659 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2660 if (sector_ret)
2661 goto out_unsupported_cdb;
2662 size = transport_get_size(sectors, cdb, cmd);
2663 cmd->t_task_lba = transport_lba_21(cdb);
2664 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2665 break;
2666 case WRITE_10:
2667 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2668 if (sector_ret)
2669 goto out_unsupported_cdb;
2670 size = transport_get_size(sectors, cdb, cmd);
2671 cmd->t_task_lba = transport_lba_32(cdb);
2672 cmd->t_tasks_fua = (cdb[1] & 0x8);
2673 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2674 break;
2675 case WRITE_12:
2676 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2677 if (sector_ret)
2678 goto out_unsupported_cdb;
2679 size = transport_get_size(sectors, cdb, cmd);
2680 cmd->t_task_lba = transport_lba_32(cdb);
2681 cmd->t_tasks_fua = (cdb[1] & 0x8);
2682 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2683 break;
2684 case WRITE_16:
2685 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2686 if (sector_ret)
2687 goto out_unsupported_cdb;
2688 size = transport_get_size(sectors, cdb, cmd);
2689 cmd->t_task_lba = transport_lba_64(cdb);
2690 cmd->t_tasks_fua = (cdb[1] & 0x8);
2691 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2692 break;
2693 case XDWRITEREAD_10:
2694 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2695 !(cmd->t_tasks_bidi))
2696 goto out_invalid_cdb_field;
2697 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2698 if (sector_ret)
2699 goto out_unsupported_cdb;
2700 size = transport_get_size(sectors, cdb, cmd);
2701 cmd->t_task_lba = transport_lba_32(cdb);
2702 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2703
2704 if (dev->transport->transport_type ==
2705 TRANSPORT_PLUGIN_PHBA_PDEV)
2706 goto out_unsupported_cdb;
2707 /*
2708 * Setup BIDI XOR callback to be run after I/O completion.
2709 */
2710 cmd->transport_complete_callback = &transport_xor_callback;
2711 cmd->t_tasks_fua = (cdb[1] & 0x8);
2712 break;
2713 case VARIABLE_LENGTH_CMD:
2714 service_action = get_unaligned_be16(&cdb[8]);
2715 /*
2716 * Determine if this is TCM/PSCSI device and we should disable
2717 * internal emulation for this CDB.
2718 */
2719 passthrough = (dev->transport->transport_type ==
2720 TRANSPORT_PLUGIN_PHBA_PDEV);
2721
2722 switch (service_action) {
2723 case XDWRITEREAD_32:
2724 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2725 if (sector_ret)
2726 goto out_unsupported_cdb;
2727 size = transport_get_size(sectors, cdb, cmd);
2728 /*
2729 * Use WRITE_32 and READ_32 opcodes for the emulated
2730 * XDWRITE_READ_32 logic.
2731 */
2732 cmd->t_task_lba = transport_lba_64_ext(cdb);
2733 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2734
2735 if (passthrough)
2736 goto out_unsupported_cdb;
2737 /*
2738 * Setup BIDI XOR callback to be run during after I/O
2739 * completion.
2740 */
2741 cmd->transport_complete_callback = &transport_xor_callback;
2742 cmd->t_tasks_fua = (cdb[10] & 0x8);
2743 break;
2744 case WRITE_SAME_32:
2745 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2746 if (sector_ret)
2747 goto out_unsupported_cdb;
2748
2749 if (sectors)
2750 size = transport_get_size(1, cdb, cmd);
2751 else {
2752 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2753 " supported\n");
2754 goto out_invalid_cdb_field;
2755 }
2756
2757 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2758 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2759
2760 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2761 goto out_invalid_cdb_field;
2762
2763 break;
2764 default:
2765 pr_err("VARIABLE_LENGTH_CMD service action"
2766 " 0x%04x not supported\n", service_action);
2767 goto out_unsupported_cdb;
2768 }
2769 break;
2770 case MAINTENANCE_IN:
2771 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2772 /* MAINTENANCE_IN from SCC-2 */
2773 /*
2774 * Check for emulated MI_REPORT_TARGET_PGS.
2775 */
2776 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2777 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2778 cmd->execute_task =
2779 target_emulate_report_target_port_groups;
2780 }
2781 size = (cdb[6] << 24) | (cdb[7] << 16) |
2782 (cdb[8] << 8) | cdb[9];
2783 } else {
2784 /* GPCMD_SEND_KEY from multi media commands */
2785 size = (cdb[8] << 8) + cdb[9];
2786 }
2787 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2788 break;
2789 case MODE_SELECT:
2790 size = cdb[4];
2791 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2792 break;
2793 case MODE_SELECT_10:
2794 size = (cdb[7] << 8) + cdb[8];
2795 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2796 break;
2797 case MODE_SENSE:
2798 size = cdb[4];
2799 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2800 break;
2801 case MODE_SENSE_10:
2802 case GPCMD_READ_BUFFER_CAPACITY:
2803 case GPCMD_SEND_OPC:
2804 case LOG_SELECT:
2805 case LOG_SENSE:
2806 size = (cdb[7] << 8) + cdb[8];
2807 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2808 break;
2809 case READ_BLOCK_LIMITS:
2810 size = READ_BLOCK_LEN;
2811 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2812 break;
2813 case GPCMD_GET_CONFIGURATION:
2814 case GPCMD_READ_FORMAT_CAPACITIES:
2815 case GPCMD_READ_DISC_INFO:
2816 case GPCMD_READ_TRACK_RZONE_INFO:
2817 size = (cdb[7] << 8) + cdb[8];
2818 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2819 break;
2820 case PERSISTENT_RESERVE_IN:
2821 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2822 cmd->execute_task = target_scsi3_emulate_pr_in;
2823 size = (cdb[7] << 8) + cdb[8];
2824 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2825 break;
2826 case PERSISTENT_RESERVE_OUT:
2827 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2828 cmd->execute_task = target_scsi3_emulate_pr_out;
2829 size = (cdb[7] << 8) + cdb[8];
2830 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2831 break;
2832 case GPCMD_MECHANISM_STATUS:
2833 case GPCMD_READ_DVD_STRUCTURE:
2834 size = (cdb[8] << 8) + cdb[9];
2835 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 break;
2837 case READ_POSITION:
2838 size = READ_POSITION_LEN;
2839 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2840 break;
2841 case MAINTENANCE_OUT:
2842 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2843 /* MAINTENANCE_OUT from SCC-2
2844 *
2845 * Check for emulated MO_SET_TARGET_PGS.
2846 */
2847 if (cdb[1] == MO_SET_TARGET_PGS &&
2848 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2849 cmd->execute_task =
2850 target_emulate_set_target_port_groups;
2851 }
2852
2853 size = (cdb[6] << 24) | (cdb[7] << 16) |
2854 (cdb[8] << 8) | cdb[9];
2855 } else {
2856 /* GPCMD_REPORT_KEY from multi media commands */
2857 size = (cdb[8] << 8) + cdb[9];
2858 }
2859 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860 break;
2861 case INQUIRY:
2862 size = (cdb[3] << 8) + cdb[4];
2863 /*
2864 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2865 * See spc4r17 section 5.3
2866 */
2867 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2868 cmd->sam_task_attr = MSG_HEAD_TAG;
2869 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2870 break;
2871 case READ_BUFFER:
2872 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2873 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2874 break;
2875 case READ_CAPACITY:
2876 size = READ_CAP_LEN;
2877 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878 break;
2879 case READ_MEDIA_SERIAL_NUMBER:
2880 case SECURITY_PROTOCOL_IN:
2881 case SECURITY_PROTOCOL_OUT:
2882 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2883 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884 break;
2885 case SERVICE_ACTION_IN:
2886 case ACCESS_CONTROL_IN:
2887 case ACCESS_CONTROL_OUT:
2888 case EXTENDED_COPY:
2889 case READ_ATTRIBUTE:
2890 case RECEIVE_COPY_RESULTS:
2891 case WRITE_ATTRIBUTE:
2892 size = (cdb[10] << 24) | (cdb[11] << 16) |
2893 (cdb[12] << 8) | cdb[13];
2894 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2895 break;
2896 case RECEIVE_DIAGNOSTIC:
2897 case SEND_DIAGNOSTIC:
2898 size = (cdb[3] << 8) | cdb[4];
2899 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2900 break;
2901 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2902 #if 0
2903 case GPCMD_READ_CD:
2904 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2905 size = (2336 * sectors);
2906 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2907 break;
2908 #endif
2909 case READ_TOC:
2910 size = cdb[8];
2911 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912 break;
2913 case REQUEST_SENSE:
2914 size = cdb[4];
2915 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916 break;
2917 case READ_ELEMENT_STATUS:
2918 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2919 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920 break;
2921 case WRITE_BUFFER:
2922 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2923 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2924 break;
2925 case RESERVE:
2926 case RESERVE_10:
2927 /*
2928 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2929 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2930 */
2931 if (cdb[0] == RESERVE_10)
2932 size = (cdb[7] << 8) | cdb[8];
2933 else
2934 size = cmd->data_length;
2935
2936 /*
2937 * Setup the legacy emulated handler for SPC-2 and
2938 * >= SPC-3 compatible reservation handling (CRH=1)
2939 * Otherwise, we assume the underlying SCSI logic is
2940 * is running in SPC_PASSTHROUGH, and wants reservations
2941 * emulation disabled.
2942 */
2943 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2944 cmd->execute_task = target_scsi2_reservation_reserve;
2945 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2946 break;
2947 case RELEASE:
2948 case RELEASE_10:
2949 /*
2950 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2951 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2952 */
2953 if (cdb[0] == RELEASE_10)
2954 size = (cdb[7] << 8) | cdb[8];
2955 else
2956 size = cmd->data_length;
2957
2958 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2959 cmd->execute_task = target_scsi2_reservation_release;
2960 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2961 break;
2962 case SYNCHRONIZE_CACHE:
2963 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2964 /*
2965 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2966 */
2967 if (cdb[0] == SYNCHRONIZE_CACHE) {
2968 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2969 cmd->t_task_lba = transport_lba_32(cdb);
2970 } else {
2971 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2972 cmd->t_task_lba = transport_lba_64(cdb);
2973 }
2974 if (sector_ret)
2975 goto out_unsupported_cdb;
2976
2977 size = transport_get_size(sectors, cdb, cmd);
2978 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2979
2980 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
2981 break;
2982 /*
2983 * Check to ensure that LBA + Range does not exceed past end of
2984 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2985 */
2986 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2987 if (transport_cmd_get_valid_sectors(cmd) < 0)
2988 goto out_invalid_cdb_field;
2989 }
2990 break;
2991 case UNMAP:
2992 size = get_unaligned_be16(&cdb[7]);
2993 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2994 break;
2995 case WRITE_SAME_16:
2996 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2997 if (sector_ret)
2998 goto out_unsupported_cdb;
2999
3000 if (sectors)
3001 size = transport_get_size(1, cdb, cmd);
3002 else {
3003 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3004 goto out_invalid_cdb_field;
3005 }
3006
3007 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3008 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3009
3010 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3011 goto out_invalid_cdb_field;
3012 break;
3013 case WRITE_SAME:
3014 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3015 if (sector_ret)
3016 goto out_unsupported_cdb;
3017
3018 if (sectors)
3019 size = transport_get_size(1, cdb, cmd);
3020 else {
3021 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3022 goto out_invalid_cdb_field;
3023 }
3024
3025 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3026 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3027 /*
3028 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3029 * of byte 1 bit 3 UNMAP instead of original reserved field
3030 */
3031 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3032 goto out_invalid_cdb_field;
3033 break;
3034 case ALLOW_MEDIUM_REMOVAL:
3035 case GPCMD_CLOSE_TRACK:
3036 case ERASE:
3037 case INITIALIZE_ELEMENT_STATUS:
3038 case GPCMD_LOAD_UNLOAD:
3039 case REZERO_UNIT:
3040 case SEEK_10:
3041 case GPCMD_SET_SPEED:
3042 case SPACE:
3043 case START_STOP:
3044 case TEST_UNIT_READY:
3045 case VERIFY:
3046 case WRITE_FILEMARKS:
3047 case MOVE_MEDIUM:
3048 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3049 break;
3050 case REPORT_LUNS:
3051 cmd->execute_task = target_report_luns;
3052 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3053 /*
3054 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3055 * See spc4r17 section 5.3
3056 */
3057 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3058 cmd->sam_task_attr = MSG_HEAD_TAG;
3059 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3060 break;
3061 default:
3062 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3063 " 0x%02x, sending CHECK_CONDITION.\n",
3064 cmd->se_tfo->get_fabric_name(), cdb[0]);
3065 goto out_unsupported_cdb;
3066 }
3067
3068 if (size != cmd->data_length) {
3069 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3070 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3071 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3072 cmd->data_length, size, cdb[0]);
3073
3074 cmd->cmd_spdtl = size;
3075
3076 if (cmd->data_direction == DMA_TO_DEVICE) {
3077 pr_err("Rejecting underflow/overflow"
3078 " WRITE data\n");
3079 goto out_invalid_cdb_field;
3080 }
3081 /*
3082 * Reject READ_* or WRITE_* with overflow/underflow for
3083 * type SCF_SCSI_DATA_SG_IO_CDB.
3084 */
3085 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3086 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3087 " CDB on non 512-byte sector setup subsystem"
3088 " plugin: %s\n", dev->transport->name);
3089 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3090 goto out_invalid_cdb_field;
3091 }
3092
3093 if (size > cmd->data_length) {
3094 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3095 cmd->residual_count = (size - cmd->data_length);
3096 } else {
3097 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3098 cmd->residual_count = (cmd->data_length - size);
3099 }
3100 cmd->data_length = size;
3101 }
3102
3103 /* Let's limit control cdbs to a page, for simplicity's sake. */
3104 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3105 size > PAGE_SIZE)
3106 goto out_invalid_cdb_field;
3107
3108 transport_set_supported_SAM_opcode(cmd);
3109 return ret;
3110
3111 out_unsupported_cdb:
3112 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3113 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3114 return -EINVAL;
3115 out_invalid_cdb_field:
3116 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3117 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3118 return -EINVAL;
3119 }
3120
3121 /*
3122 * Called from I/O completion to determine which dormant/delayed
3123 * and ordered cmds need to have their tasks added to the execution queue.
3124 */
3125 static void transport_complete_task_attr(struct se_cmd *cmd)
3126 {
3127 struct se_device *dev = cmd->se_dev;
3128 struct se_cmd *cmd_p, *cmd_tmp;
3129 int new_active_tasks = 0;
3130
3131 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3132 atomic_dec(&dev->simple_cmds);
3133 smp_mb__after_atomic_dec();
3134 dev->dev_cur_ordered_id++;
3135 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3136 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3137 cmd->se_ordered_id);
3138 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3139 atomic_dec(&dev->dev_hoq_count);
3140 smp_mb__after_atomic_dec();
3141 dev->dev_cur_ordered_id++;
3142 pr_debug("Incremented dev_cur_ordered_id: %u for"
3143 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3144 cmd->se_ordered_id);
3145 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3146 spin_lock(&dev->ordered_cmd_lock);
3147 list_del(&cmd->se_ordered_node);
3148 atomic_dec(&dev->dev_ordered_sync);
3149 smp_mb__after_atomic_dec();
3150 spin_unlock(&dev->ordered_cmd_lock);
3151
3152 dev->dev_cur_ordered_id++;
3153 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3154 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3155 }
3156 /*
3157 * Process all commands up to the last received
3158 * ORDERED task attribute which requires another blocking
3159 * boundary
3160 */
3161 spin_lock(&dev->delayed_cmd_lock);
3162 list_for_each_entry_safe(cmd_p, cmd_tmp,
3163 &dev->delayed_cmd_list, se_delayed_node) {
3164
3165 list_del(&cmd_p->se_delayed_node);
3166 spin_unlock(&dev->delayed_cmd_lock);
3167
3168 pr_debug("Calling add_tasks() for"
3169 " cmd_p: 0x%02x Task Attr: 0x%02x"
3170 " Dormant -> Active, se_ordered_id: %u\n",
3171 cmd_p->t_task_cdb[0],
3172 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3173
3174 transport_add_tasks_from_cmd(cmd_p);
3175 new_active_tasks++;
3176
3177 spin_lock(&dev->delayed_cmd_lock);
3178 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3179 break;
3180 }
3181 spin_unlock(&dev->delayed_cmd_lock);
3182 /*
3183 * If new tasks have become active, wake up the transport thread
3184 * to do the processing of the Active tasks.
3185 */
3186 if (new_active_tasks != 0)
3187 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3188 }
3189
3190 static void transport_complete_qf(struct se_cmd *cmd)
3191 {
3192 int ret = 0;
3193
3194 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3195 transport_complete_task_attr(cmd);
3196
3197 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3198 ret = cmd->se_tfo->queue_status(cmd);
3199 if (ret)
3200 goto out;
3201 }
3202
3203 switch (cmd->data_direction) {
3204 case DMA_FROM_DEVICE:
3205 ret = cmd->se_tfo->queue_data_in(cmd);
3206 break;
3207 case DMA_TO_DEVICE:
3208 if (cmd->t_bidi_data_sg) {
3209 ret = cmd->se_tfo->queue_data_in(cmd);
3210 if (ret < 0)
3211 break;
3212 }
3213 /* Fall through for DMA_TO_DEVICE */
3214 case DMA_NONE:
3215 ret = cmd->se_tfo->queue_status(cmd);
3216 break;
3217 default:
3218 break;
3219 }
3220
3221 out:
3222 if (ret < 0) {
3223 transport_handle_queue_full(cmd, cmd->se_dev);
3224 return;
3225 }
3226 transport_lun_remove_cmd(cmd);
3227 transport_cmd_check_stop_to_fabric(cmd);
3228 }
3229
3230 static void transport_handle_queue_full(
3231 struct se_cmd *cmd,
3232 struct se_device *dev)
3233 {
3234 spin_lock_irq(&dev->qf_cmd_lock);
3235 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3236 atomic_inc(&dev->dev_qf_count);
3237 smp_mb__after_atomic_inc();
3238 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3239
3240 schedule_work(&cmd->se_dev->qf_work_queue);
3241 }
3242
3243 static void target_complete_ok_work(struct work_struct *work)
3244 {
3245 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3246 int reason = 0, ret;
3247
3248 /*
3249 * Check if we need to move delayed/dormant tasks from cmds on the
3250 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3251 * Attribute.
3252 */
3253 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3254 transport_complete_task_attr(cmd);
3255 /*
3256 * Check to schedule QUEUE_FULL work, or execute an existing
3257 * cmd->transport_qf_callback()
3258 */
3259 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3260 schedule_work(&cmd->se_dev->qf_work_queue);
3261
3262 /*
3263 * Check if we need to retrieve a sense buffer from
3264 * the struct se_cmd in question.
3265 */
3266 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3267 if (transport_get_sense_data(cmd) < 0)
3268 reason = TCM_NON_EXISTENT_LUN;
3269
3270 /*
3271 * Only set when an struct se_task->task_scsi_status returned
3272 * a non GOOD status.
3273 */
3274 if (cmd->scsi_status) {
3275 ret = transport_send_check_condition_and_sense(
3276 cmd, reason, 1);
3277 if (ret == -EAGAIN || ret == -ENOMEM)
3278 goto queue_full;
3279
3280 transport_lun_remove_cmd(cmd);
3281 transport_cmd_check_stop_to_fabric(cmd);
3282 return;
3283 }
3284 }
3285 /*
3286 * Check for a callback, used by amongst other things
3287 * XDWRITE_READ_10 emulation.
3288 */
3289 if (cmd->transport_complete_callback)
3290 cmd->transport_complete_callback(cmd);
3291
3292 switch (cmd->data_direction) {
3293 case DMA_FROM_DEVICE:
3294 spin_lock(&cmd->se_lun->lun_sep_lock);
3295 if (cmd->se_lun->lun_sep) {
3296 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3297 cmd->data_length;
3298 }
3299 spin_unlock(&cmd->se_lun->lun_sep_lock);
3300
3301 ret = cmd->se_tfo->queue_data_in(cmd);
3302 if (ret == -EAGAIN || ret == -ENOMEM)
3303 goto queue_full;
3304 break;
3305 case DMA_TO_DEVICE:
3306 spin_lock(&cmd->se_lun->lun_sep_lock);
3307 if (cmd->se_lun->lun_sep) {
3308 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3309 cmd->data_length;
3310 }
3311 spin_unlock(&cmd->se_lun->lun_sep_lock);
3312 /*
3313 * Check if we need to send READ payload for BIDI-COMMAND
3314 */
3315 if (cmd->t_bidi_data_sg) {
3316 spin_lock(&cmd->se_lun->lun_sep_lock);
3317 if (cmd->se_lun->lun_sep) {
3318 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3319 cmd->data_length;
3320 }
3321 spin_unlock(&cmd->se_lun->lun_sep_lock);
3322 ret = cmd->se_tfo->queue_data_in(cmd);
3323 if (ret == -EAGAIN || ret == -ENOMEM)
3324 goto queue_full;
3325 break;
3326 }
3327 /* Fall through for DMA_TO_DEVICE */
3328 case DMA_NONE:
3329 ret = cmd->se_tfo->queue_status(cmd);
3330 if (ret == -EAGAIN || ret == -ENOMEM)
3331 goto queue_full;
3332 break;
3333 default:
3334 break;
3335 }
3336
3337 transport_lun_remove_cmd(cmd);
3338 transport_cmd_check_stop_to_fabric(cmd);
3339 return;
3340
3341 queue_full:
3342 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3343 " data_direction: %d\n", cmd, cmd->data_direction);
3344 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3345 transport_handle_queue_full(cmd, cmd->se_dev);
3346 }
3347
3348 static void transport_free_dev_tasks(struct se_cmd *cmd)
3349 {
3350 struct se_task *task, *task_tmp;
3351 unsigned long flags;
3352 LIST_HEAD(dispose_list);
3353
3354 spin_lock_irqsave(&cmd->t_state_lock, flags);
3355 list_for_each_entry_safe(task, task_tmp,
3356 &cmd->t_task_list, t_list) {
3357 if (!(task->task_flags & TF_ACTIVE))
3358 list_move_tail(&task->t_list, &dispose_list);
3359 }
3360 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3361
3362 while (!list_empty(&dispose_list)) {
3363 task = list_first_entry(&dispose_list, struct se_task, t_list);
3364
3365 if (task->task_sg != cmd->t_data_sg &&
3366 task->task_sg != cmd->t_bidi_data_sg)
3367 kfree(task->task_sg);
3368
3369 list_del(&task->t_list);
3370
3371 cmd->se_dev->transport->free_task(task);
3372 }
3373 }
3374
3375 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3376 {
3377 struct scatterlist *sg;
3378 int count;
3379
3380 for_each_sg(sgl, sg, nents, count)
3381 __free_page(sg_page(sg));
3382
3383 kfree(sgl);
3384 }
3385
3386 static inline void transport_free_pages(struct se_cmd *cmd)
3387 {
3388 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3389 return;
3390
3391 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3392 cmd->t_data_sg = NULL;
3393 cmd->t_data_nents = 0;
3394
3395 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3396 cmd->t_bidi_data_sg = NULL;
3397 cmd->t_bidi_data_nents = 0;
3398 }
3399
3400 /**
3401 * transport_put_cmd - release a reference to a command
3402 * @cmd: command to release
3403 *
3404 * This routine releases our reference to the command and frees it if possible.
3405 */
3406 static void transport_put_cmd(struct se_cmd *cmd)
3407 {
3408 unsigned long flags;
3409 int free_tasks = 0;
3410
3411 spin_lock_irqsave(&cmd->t_state_lock, flags);
3412 if (atomic_read(&cmd->t_fe_count)) {
3413 if (!atomic_dec_and_test(&cmd->t_fe_count))
3414 goto out_busy;
3415 }
3416
3417 if (atomic_read(&cmd->t_se_count)) {
3418 if (!atomic_dec_and_test(&cmd->t_se_count))
3419 goto out_busy;
3420 }
3421
3422 if (atomic_read(&cmd->transport_dev_active)) {
3423 atomic_set(&cmd->transport_dev_active, 0);
3424 transport_all_task_dev_remove_state(cmd);
3425 free_tasks = 1;
3426 }
3427 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3428
3429 if (free_tasks != 0)
3430 transport_free_dev_tasks(cmd);
3431
3432 transport_free_pages(cmd);
3433 transport_release_cmd(cmd);
3434 return;
3435 out_busy:
3436 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437 }
3438
3439 /*
3440 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3441 * allocating in the core.
3442 * @cmd: Associated se_cmd descriptor
3443 * @mem: SGL style memory for TCM WRITE / READ
3444 * @sg_mem_num: Number of SGL elements
3445 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3446 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3447 *
3448 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3449 * of parameters.
3450 */
3451 int transport_generic_map_mem_to_cmd(
3452 struct se_cmd *cmd,
3453 struct scatterlist *sgl,
3454 u32 sgl_count,
3455 struct scatterlist *sgl_bidi,
3456 u32 sgl_bidi_count)
3457 {
3458 if (!sgl || !sgl_count)
3459 return 0;
3460
3461 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3462 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3463
3464 cmd->t_data_sg = sgl;
3465 cmd->t_data_nents = sgl_count;
3466
3467 if (sgl_bidi && sgl_bidi_count) {
3468 cmd->t_bidi_data_sg = sgl_bidi;
3469 cmd->t_bidi_data_nents = sgl_bidi_count;
3470 }
3471 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3472 }
3473
3474 return 0;
3475 }
3476 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3477
3478 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3479 {
3480 struct scatterlist *sg = cmd->t_data_sg;
3481
3482 BUG_ON(!sg);
3483 /*
3484 * We need to take into account a possible offset here for fabrics like
3485 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3486 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3487 */
3488 return kmap(sg_page(sg)) + sg->offset;
3489 }
3490 EXPORT_SYMBOL(transport_kmap_first_data_page);
3491
3492 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3493 {
3494 kunmap(sg_page(cmd->t_data_sg));
3495 }
3496 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3497
3498 static int
3499 transport_generic_get_mem(struct se_cmd *cmd)
3500 {
3501 u32 length = cmd->data_length;
3502 unsigned int nents;
3503 struct page *page;
3504 int i = 0;
3505
3506 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3507 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3508 if (!cmd->t_data_sg)
3509 return -ENOMEM;
3510
3511 cmd->t_data_nents = nents;
3512 sg_init_table(cmd->t_data_sg, nents);
3513
3514 while (length) {
3515 u32 page_len = min_t(u32, length, PAGE_SIZE);
3516 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3517 if (!page)
3518 goto out;
3519
3520 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3521 length -= page_len;
3522 i++;
3523 }
3524 return 0;
3525
3526 out:
3527 while (i >= 0) {
3528 __free_page(sg_page(&cmd->t_data_sg[i]));
3529 i--;
3530 }
3531 kfree(cmd->t_data_sg);
3532 cmd->t_data_sg = NULL;
3533 return -ENOMEM;
3534 }
3535
3536 /* Reduce sectors if they are too long for the device */
3537 static inline sector_t transport_limit_task_sectors(
3538 struct se_device *dev,
3539 unsigned long long lba,
3540 sector_t sectors)
3541 {
3542 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3543
3544 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3545 if ((lba + sectors) > transport_dev_end_lba(dev))
3546 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3547
3548 return sectors;
3549 }
3550
3551
3552 /*
3553 * This function can be used by HW target mode drivers to create a linked
3554 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3555 * This is intended to be called during the completion path by TCM Core
3556 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3557 */
3558 void transport_do_task_sg_chain(struct se_cmd *cmd)
3559 {
3560 struct scatterlist *sg_first = NULL;
3561 struct scatterlist *sg_prev = NULL;
3562 int sg_prev_nents = 0;
3563 struct scatterlist *sg;
3564 struct se_task *task;
3565 u32 chained_nents = 0;
3566 int i;
3567
3568 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3569
3570 /*
3571 * Walk the struct se_task list and setup scatterlist chains
3572 * for each contiguously allocated struct se_task->task_sg[].
3573 */
3574 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3575 if (!task->task_sg)
3576 continue;
3577
3578 if (!sg_first) {
3579 sg_first = task->task_sg;
3580 chained_nents = task->task_sg_nents;
3581 } else {
3582 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3583 chained_nents += task->task_sg_nents;
3584 }
3585 /*
3586 * For the padded tasks, use the extra SGL vector allocated
3587 * in transport_allocate_data_tasks() for the sg_prev_nents
3588 * offset into sg_chain() above.
3589 *
3590 * We do not need the padding for the last task (or a single
3591 * task), but in that case we will never use the sg_prev_nents
3592 * value below which would be incorrect.
3593 */
3594 sg_prev_nents = (task->task_sg_nents + 1);
3595 sg_prev = task->task_sg;
3596 }
3597 /*
3598 * Setup the starting pointer and total t_tasks_sg_linked_no including
3599 * padding SGs for linking and to mark the end.
3600 */
3601 cmd->t_tasks_sg_chained = sg_first;
3602 cmd->t_tasks_sg_chained_no = chained_nents;
3603
3604 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3605 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3606 cmd->t_tasks_sg_chained_no);
3607
3608 for_each_sg(cmd->t_tasks_sg_chained, sg,
3609 cmd->t_tasks_sg_chained_no, i) {
3610
3611 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3612 i, sg, sg_page(sg), sg->length, sg->offset);
3613 if (sg_is_chain(sg))
3614 pr_debug("SG: %p sg_is_chain=1\n", sg);
3615 if (sg_is_last(sg))
3616 pr_debug("SG: %p sg_is_last=1\n", sg);
3617 }
3618 }
3619 EXPORT_SYMBOL(transport_do_task_sg_chain);
3620
3621 /*
3622 * Break up cmd into chunks transport can handle
3623 */
3624 static int
3625 transport_allocate_data_tasks(struct se_cmd *cmd,
3626 enum dma_data_direction data_direction,
3627 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3628 {
3629 struct se_device *dev = cmd->se_dev;
3630 int task_count, i;
3631 unsigned long long lba;
3632 sector_t sectors, dev_max_sectors;
3633 u32 sector_size;
3634
3635 if (transport_cmd_get_valid_sectors(cmd) < 0)
3636 return -EINVAL;
3637
3638 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3639 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3640
3641 WARN_ON(cmd->data_length % sector_size);
3642
3643 lba = cmd->t_task_lba;
3644 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3645 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3646
3647 /*
3648 * If we need just a single task reuse the SG list in the command
3649 * and avoid a lot of work.
3650 */
3651 if (task_count == 1) {
3652 struct se_task *task;
3653 unsigned long flags;
3654
3655 task = transport_generic_get_task(cmd, data_direction);
3656 if (!task)
3657 return -ENOMEM;
3658
3659 task->task_sg = cmd_sg;
3660 task->task_sg_nents = sgl_nents;
3661
3662 task->task_lba = lba;
3663 task->task_sectors = sectors;
3664 task->task_size = task->task_sectors * sector_size;
3665
3666 spin_lock_irqsave(&cmd->t_state_lock, flags);
3667 list_add_tail(&task->t_list, &cmd->t_task_list);
3668 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3669
3670 return task_count;
3671 }
3672
3673 for (i = 0; i < task_count; i++) {
3674 struct se_task *task;
3675 unsigned int task_size, task_sg_nents_padded;
3676 struct scatterlist *sg;
3677 unsigned long flags;
3678 int count;
3679
3680 task = transport_generic_get_task(cmd, data_direction);
3681 if (!task)
3682 return -ENOMEM;
3683
3684 task->task_lba = lba;
3685 task->task_sectors = min(sectors, dev_max_sectors);
3686 task->task_size = task->task_sectors * sector_size;
3687
3688 /*
3689 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3690 * in order to calculate the number per task SGL entries
3691 */
3692 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3693 /*
3694 * Check if the fabric module driver is requesting that all
3695 * struct se_task->task_sg[] be chained together.. If so,
3696 * then allocate an extra padding SG entry for linking and
3697 * marking the end of the chained SGL for every task except
3698 * the last one for (task_count > 1) operation, or skipping
3699 * the extra padding for the (task_count == 1) case.
3700 */
3701 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3702 task_sg_nents_padded = (task->task_sg_nents + 1);
3703 } else
3704 task_sg_nents_padded = task->task_sg_nents;
3705
3706 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3707 task_sg_nents_padded, GFP_KERNEL);
3708 if (!task->task_sg) {
3709 cmd->se_dev->transport->free_task(task);
3710 return -ENOMEM;
3711 }
3712
3713 sg_init_table(task->task_sg, task_sg_nents_padded);
3714
3715 task_size = task->task_size;
3716
3717 /* Build new sgl, only up to task_size */
3718 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3719 if (cmd_sg->length > task_size)
3720 break;
3721
3722 *sg = *cmd_sg;
3723 task_size -= cmd_sg->length;
3724 cmd_sg = sg_next(cmd_sg);
3725 }
3726
3727 lba += task->task_sectors;
3728 sectors -= task->task_sectors;
3729
3730 spin_lock_irqsave(&cmd->t_state_lock, flags);
3731 list_add_tail(&task->t_list, &cmd->t_task_list);
3732 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3733 }
3734
3735 return task_count;
3736 }
3737
3738 static int
3739 transport_allocate_control_task(struct se_cmd *cmd)
3740 {
3741 struct se_task *task;
3742 unsigned long flags;
3743
3744 task = transport_generic_get_task(cmd, cmd->data_direction);
3745 if (!task)
3746 return -ENOMEM;
3747
3748 task->task_sg = cmd->t_data_sg;
3749 task->task_size = cmd->data_length;
3750 task->task_sg_nents = cmd->t_data_nents;
3751
3752 spin_lock_irqsave(&cmd->t_state_lock, flags);
3753 list_add_tail(&task->t_list, &cmd->t_task_list);
3754 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3755
3756 /* Success! Return number of tasks allocated */
3757 return 1;
3758 }
3759
3760 /*
3761 * Allocate any required ressources to execute the command, and either place
3762 * it on the execution queue if possible. For writes we might not have the
3763 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3764 */
3765 int transport_generic_new_cmd(struct se_cmd *cmd)
3766 {
3767 struct se_device *dev = cmd->se_dev;
3768 int task_cdbs, task_cdbs_bidi = 0;
3769 int set_counts = 1;
3770 int ret = 0;
3771
3772 /*
3773 * Determine is the TCM fabric module has already allocated physical
3774 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3775 * beforehand.
3776 */
3777 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3778 cmd->data_length) {
3779 ret = transport_generic_get_mem(cmd);
3780 if (ret < 0)
3781 return ret;
3782 }
3783
3784 /*
3785 * For BIDI command set up the read tasks first.
3786 */
3787 if (cmd->t_bidi_data_sg &&
3788 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3789 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3790
3791 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3792 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3793 cmd->t_bidi_data_nents);
3794 if (task_cdbs_bidi <= 0)
3795 goto out_fail;
3796
3797 atomic_inc(&cmd->t_fe_count);
3798 atomic_inc(&cmd->t_se_count);
3799 set_counts = 0;
3800 }
3801
3802 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3803 task_cdbs = transport_allocate_data_tasks(cmd,
3804 cmd->data_direction, cmd->t_data_sg,
3805 cmd->t_data_nents);
3806 } else {
3807 task_cdbs = transport_allocate_control_task(cmd);
3808 }
3809
3810 if (task_cdbs <= 0)
3811 goto out_fail;
3812
3813 if (set_counts) {
3814 atomic_inc(&cmd->t_fe_count);
3815 atomic_inc(&cmd->t_se_count);
3816 }
3817
3818 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3819 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3820 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3821
3822 /*
3823 * For WRITEs, let the fabric know its buffer is ready..
3824 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3825 * will be added to the struct se_device execution queue after its WRITE
3826 * data has arrived. (ie: It gets handled by the transport processing
3827 * thread a second time)
3828 */
3829 if (cmd->data_direction == DMA_TO_DEVICE) {
3830 transport_add_tasks_to_state_queue(cmd);
3831 return transport_generic_write_pending(cmd);
3832 }
3833 /*
3834 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3835 * to the execution queue.
3836 */
3837 transport_execute_tasks(cmd);
3838 return 0;
3839
3840 out_fail:
3841 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3842 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3843 return -EINVAL;
3844 }
3845 EXPORT_SYMBOL(transport_generic_new_cmd);
3846
3847 /* transport_generic_process_write():
3848 *
3849 *
3850 */
3851 void transport_generic_process_write(struct se_cmd *cmd)
3852 {
3853 transport_execute_tasks(cmd);
3854 }
3855 EXPORT_SYMBOL(transport_generic_process_write);
3856
3857 static void transport_write_pending_qf(struct se_cmd *cmd)
3858 {
3859 int ret;
3860
3861 ret = cmd->se_tfo->write_pending(cmd);
3862 if (ret == -EAGAIN || ret == -ENOMEM) {
3863 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3864 cmd);
3865 transport_handle_queue_full(cmd, cmd->se_dev);
3866 }
3867 }
3868
3869 static int transport_generic_write_pending(struct se_cmd *cmd)
3870 {
3871 unsigned long flags;
3872 int ret;
3873
3874 spin_lock_irqsave(&cmd->t_state_lock, flags);
3875 cmd->t_state = TRANSPORT_WRITE_PENDING;
3876 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3877
3878 /*
3879 * Clear the se_cmd for WRITE_PENDING status in order to set
3880 * cmd->t_transport_active=0 so that transport_generic_handle_data
3881 * can be called from HW target mode interrupt code. This is safe
3882 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3883 * because the se_cmd->se_lun pointer is not being cleared.
3884 */
3885 transport_cmd_check_stop(cmd, 1, 0);
3886
3887 /*
3888 * Call the fabric write_pending function here to let the
3889 * frontend know that WRITE buffers are ready.
3890 */
3891 ret = cmd->se_tfo->write_pending(cmd);
3892 if (ret == -EAGAIN || ret == -ENOMEM)
3893 goto queue_full;
3894 else if (ret < 0)
3895 return ret;
3896
3897 return PYX_TRANSPORT_WRITE_PENDING;
3898
3899 queue_full:
3900 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3901 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3902 transport_handle_queue_full(cmd, cmd->se_dev);
3903 return 0;
3904 }
3905
3906 /**
3907 * transport_release_cmd - free a command
3908 * @cmd: command to free
3909 *
3910 * This routine unconditionally frees a command, and reference counting
3911 * or list removal must be done in the caller.
3912 */
3913 void transport_release_cmd(struct se_cmd *cmd)
3914 {
3915 BUG_ON(!cmd->se_tfo);
3916
3917 if (cmd->se_tmr_req)
3918 core_tmr_release_req(cmd->se_tmr_req);
3919 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3920 kfree(cmd->t_task_cdb);
3921 /*
3922 * Check if target_wait_for_sess_cmds() is expecting to
3923 * release se_cmd directly here..
3924 */
3925 if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3926 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3927 return;
3928
3929 cmd->se_tfo->release_cmd(cmd);
3930 }
3931 EXPORT_SYMBOL(transport_release_cmd);
3932
3933 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3934 {
3935 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3936 if (wait_for_tasks && cmd->se_tmr_req)
3937 transport_wait_for_tasks(cmd);
3938
3939 transport_release_cmd(cmd);
3940 } else {
3941 if (wait_for_tasks)
3942 transport_wait_for_tasks(cmd);
3943
3944 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3945
3946 if (cmd->se_lun)
3947 transport_lun_remove_cmd(cmd);
3948
3949 transport_free_dev_tasks(cmd);
3950
3951 transport_put_cmd(cmd);
3952 }
3953 }
3954 EXPORT_SYMBOL(transport_generic_free_cmd);
3955
3956 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3957 * @se_sess: session to reference
3958 * @se_cmd: command descriptor to add
3959 */
3960 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3961 {
3962 unsigned long flags;
3963
3964 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3965 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3966 se_cmd->check_release = 1;
3967 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3968 }
3969 EXPORT_SYMBOL(target_get_sess_cmd);
3970
3971 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3972 * @se_sess: session to reference
3973 * @se_cmd: command descriptor to drop
3974 */
3975 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3976 {
3977 unsigned long flags;
3978
3979 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3980 if (list_empty(&se_cmd->se_cmd_list)) {
3981 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3982 WARN_ON(1);
3983 return 0;
3984 }
3985
3986 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3987 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3988 complete(&se_cmd->cmd_wait_comp);
3989 return 1;
3990 }
3991 list_del(&se_cmd->se_cmd_list);
3992 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3993
3994 return 0;
3995 }
3996 EXPORT_SYMBOL(target_put_sess_cmd);
3997
3998 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3999 * @se_sess: session to split
4000 */
4001 void target_splice_sess_cmd_list(struct se_session *se_sess)
4002 {
4003 struct se_cmd *se_cmd;
4004 unsigned long flags;
4005
4006 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4007 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4008
4009 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4010 se_sess->sess_tearing_down = 1;
4011
4012 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4013
4014 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4015 se_cmd->cmd_wait_set = 1;
4016
4017 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4018 }
4019 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4020
4021 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4022 * @se_sess: session to wait for active I/O
4023 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4024 */
4025 void target_wait_for_sess_cmds(
4026 struct se_session *se_sess,
4027 int wait_for_tasks)
4028 {
4029 struct se_cmd *se_cmd, *tmp_cmd;
4030 bool rc = false;
4031
4032 list_for_each_entry_safe(se_cmd, tmp_cmd,
4033 &se_sess->sess_wait_list, se_cmd_list) {
4034 list_del(&se_cmd->se_cmd_list);
4035
4036 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4037 " %d\n", se_cmd, se_cmd->t_state,
4038 se_cmd->se_tfo->get_cmd_state(se_cmd));
4039
4040 if (wait_for_tasks) {
4041 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4042 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4043 se_cmd->se_tfo->get_cmd_state(se_cmd));
4044
4045 rc = transport_wait_for_tasks(se_cmd);
4046
4047 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4048 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4049 se_cmd->se_tfo->get_cmd_state(se_cmd));
4050 }
4051
4052 if (!rc) {
4053 wait_for_completion(&se_cmd->cmd_wait_comp);
4054 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4055 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4056 se_cmd->se_tfo->get_cmd_state(se_cmd));
4057 }
4058
4059 se_cmd->se_tfo->release_cmd(se_cmd);
4060 }
4061 }
4062 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4063
4064 /* transport_lun_wait_for_tasks():
4065 *
4066 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4067 * an struct se_lun to be successfully shutdown.
4068 */
4069 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4070 {
4071 unsigned long flags;
4072 int ret;
4073 /*
4074 * If the frontend has already requested this struct se_cmd to
4075 * be stopped, we can safely ignore this struct se_cmd.
4076 */
4077 spin_lock_irqsave(&cmd->t_state_lock, flags);
4078 if (atomic_read(&cmd->t_transport_stop)) {
4079 atomic_set(&cmd->transport_lun_stop, 0);
4080 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4081 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4083 transport_cmd_check_stop(cmd, 1, 0);
4084 return -EPERM;
4085 }
4086 atomic_set(&cmd->transport_lun_fe_stop, 1);
4087 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4088
4089 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4090
4091 ret = transport_stop_tasks_for_cmd(cmd);
4092
4093 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4094 " %d\n", cmd, cmd->t_task_list_num, ret);
4095 if (!ret) {
4096 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4097 cmd->se_tfo->get_task_tag(cmd));
4098 wait_for_completion(&cmd->transport_lun_stop_comp);
4099 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4100 cmd->se_tfo->get_task_tag(cmd));
4101 }
4102 transport_remove_cmd_from_queue(cmd);
4103
4104 return 0;
4105 }
4106
4107 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4108 {
4109 struct se_cmd *cmd = NULL;
4110 unsigned long lun_flags, cmd_flags;
4111 /*
4112 * Do exception processing and return CHECK_CONDITION status to the
4113 * Initiator Port.
4114 */
4115 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4116 while (!list_empty(&lun->lun_cmd_list)) {
4117 cmd = list_first_entry(&lun->lun_cmd_list,
4118 struct se_cmd, se_lun_node);
4119 list_del(&cmd->se_lun_node);
4120
4121 atomic_set(&cmd->transport_lun_active, 0);
4122 /*
4123 * This will notify iscsi_target_transport.c:
4124 * transport_cmd_check_stop() that a LUN shutdown is in
4125 * progress for the iscsi_cmd_t.
4126 */
4127 spin_lock(&cmd->t_state_lock);
4128 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4129 "_lun_stop for ITT: 0x%08x\n",
4130 cmd->se_lun->unpacked_lun,
4131 cmd->se_tfo->get_task_tag(cmd));
4132 atomic_set(&cmd->transport_lun_stop, 1);
4133 spin_unlock(&cmd->t_state_lock);
4134
4135 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4136
4137 if (!cmd->se_lun) {
4138 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4139 cmd->se_tfo->get_task_tag(cmd),
4140 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4141 BUG();
4142 }
4143 /*
4144 * If the Storage engine still owns the iscsi_cmd_t, determine
4145 * and/or stop its context.
4146 */
4147 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4148 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4149 cmd->se_tfo->get_task_tag(cmd));
4150
4151 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4152 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4153 continue;
4154 }
4155
4156 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4157 "_wait_for_tasks(): SUCCESS\n",
4158 cmd->se_lun->unpacked_lun,
4159 cmd->se_tfo->get_task_tag(cmd));
4160
4161 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4162 if (!atomic_read(&cmd->transport_dev_active)) {
4163 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4164 goto check_cond;
4165 }
4166 atomic_set(&cmd->transport_dev_active, 0);
4167 transport_all_task_dev_remove_state(cmd);
4168 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4169
4170 transport_free_dev_tasks(cmd);
4171 /*
4172 * The Storage engine stopped this struct se_cmd before it was
4173 * send to the fabric frontend for delivery back to the
4174 * Initiator Node. Return this SCSI CDB back with an
4175 * CHECK_CONDITION status.
4176 */
4177 check_cond:
4178 transport_send_check_condition_and_sense(cmd,
4179 TCM_NON_EXISTENT_LUN, 0);
4180 /*
4181 * If the fabric frontend is waiting for this iscsi_cmd_t to
4182 * be released, notify the waiting thread now that LU has
4183 * finished accessing it.
4184 */
4185 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4186 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4187 pr_debug("SE_LUN[%d] - Detected FE stop for"
4188 " struct se_cmd: %p ITT: 0x%08x\n",
4189 lun->unpacked_lun,
4190 cmd, cmd->se_tfo->get_task_tag(cmd));
4191
4192 spin_unlock_irqrestore(&cmd->t_state_lock,
4193 cmd_flags);
4194 transport_cmd_check_stop(cmd, 1, 0);
4195 complete(&cmd->transport_lun_fe_stop_comp);
4196 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4197 continue;
4198 }
4199 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4200 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4201
4202 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4203 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4204 }
4205 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4206 }
4207
4208 static int transport_clear_lun_thread(void *p)
4209 {
4210 struct se_lun *lun = (struct se_lun *)p;
4211
4212 __transport_clear_lun_from_sessions(lun);
4213 complete(&lun->lun_shutdown_comp);
4214
4215 return 0;
4216 }
4217
4218 int transport_clear_lun_from_sessions(struct se_lun *lun)
4219 {
4220 struct task_struct *kt;
4221
4222 kt = kthread_run(transport_clear_lun_thread, lun,
4223 "tcm_cl_%u", lun->unpacked_lun);
4224 if (IS_ERR(kt)) {
4225 pr_err("Unable to start clear_lun thread\n");
4226 return PTR_ERR(kt);
4227 }
4228 wait_for_completion(&lun->lun_shutdown_comp);
4229
4230 return 0;
4231 }
4232
4233 /**
4234 * transport_wait_for_tasks - wait for completion to occur
4235 * @cmd: command to wait
4236 *
4237 * Called from frontend fabric context to wait for storage engine
4238 * to pause and/or release frontend generated struct se_cmd.
4239 */
4240 bool transport_wait_for_tasks(struct se_cmd *cmd)
4241 {
4242 unsigned long flags;
4243
4244 spin_lock_irqsave(&cmd->t_state_lock, flags);
4245 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4246 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4247 return false;
4248 }
4249 /*
4250 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4251 * has been set in transport_set_supported_SAM_opcode().
4252 */
4253 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4254 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4255 return false;
4256 }
4257 /*
4258 * If we are already stopped due to an external event (ie: LUN shutdown)
4259 * sleep until the connection can have the passed struct se_cmd back.
4260 * The cmd->transport_lun_stopped_sem will be upped by
4261 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4262 * has completed its operation on the struct se_cmd.
4263 */
4264 if (atomic_read(&cmd->transport_lun_stop)) {
4265
4266 pr_debug("wait_for_tasks: Stopping"
4267 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4268 "_stop_comp); for ITT: 0x%08x\n",
4269 cmd->se_tfo->get_task_tag(cmd));
4270 /*
4271 * There is a special case for WRITES where a FE exception +
4272 * LUN shutdown means ConfigFS context is still sleeping on
4273 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4274 * We go ahead and up transport_lun_stop_comp just to be sure
4275 * here.
4276 */
4277 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4278 complete(&cmd->transport_lun_stop_comp);
4279 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4280 spin_lock_irqsave(&cmd->t_state_lock, flags);
4281
4282 transport_all_task_dev_remove_state(cmd);
4283 /*
4284 * At this point, the frontend who was the originator of this
4285 * struct se_cmd, now owns the structure and can be released through
4286 * normal means below.
4287 */
4288 pr_debug("wait_for_tasks: Stopped"
4289 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4290 "stop_comp); for ITT: 0x%08x\n",
4291 cmd->se_tfo->get_task_tag(cmd));
4292
4293 atomic_set(&cmd->transport_lun_stop, 0);
4294 }
4295 if (!atomic_read(&cmd->t_transport_active) ||
4296 atomic_read(&cmd->t_transport_aborted)) {
4297 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4298 return false;
4299 }
4300
4301 atomic_set(&cmd->t_transport_stop, 1);
4302
4303 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4304 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4305 cmd, cmd->se_tfo->get_task_tag(cmd),
4306 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4307
4308 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4309
4310 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4311
4312 wait_for_completion(&cmd->t_transport_stop_comp);
4313
4314 spin_lock_irqsave(&cmd->t_state_lock, flags);
4315 atomic_set(&cmd->t_transport_active, 0);
4316 atomic_set(&cmd->t_transport_stop, 0);
4317
4318 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4319 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4320 cmd->se_tfo->get_task_tag(cmd));
4321
4322 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4323
4324 return true;
4325 }
4326 EXPORT_SYMBOL(transport_wait_for_tasks);
4327
4328 static int transport_get_sense_codes(
4329 struct se_cmd *cmd,
4330 u8 *asc,
4331 u8 *ascq)
4332 {
4333 *asc = cmd->scsi_asc;
4334 *ascq = cmd->scsi_ascq;
4335
4336 return 0;
4337 }
4338
4339 static int transport_set_sense_codes(
4340 struct se_cmd *cmd,
4341 u8 asc,
4342 u8 ascq)
4343 {
4344 cmd->scsi_asc = asc;
4345 cmd->scsi_ascq = ascq;
4346
4347 return 0;
4348 }
4349
4350 int transport_send_check_condition_and_sense(
4351 struct se_cmd *cmd,
4352 u8 reason,
4353 int from_transport)
4354 {
4355 unsigned char *buffer = cmd->sense_buffer;
4356 unsigned long flags;
4357 int offset;
4358 u8 asc = 0, ascq = 0;
4359
4360 spin_lock_irqsave(&cmd->t_state_lock, flags);
4361 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4362 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4363 return 0;
4364 }
4365 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4366 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4367
4368 if (!reason && from_transport)
4369 goto after_reason;
4370
4371 if (!from_transport)
4372 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4373 /*
4374 * Data Segment and SenseLength of the fabric response PDU.
4375 *
4376 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4377 * from include/scsi/scsi_cmnd.h
4378 */
4379 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4380 TRANSPORT_SENSE_BUFFER);
4381 /*
4382 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4383 * SENSE KEY values from include/scsi/scsi.h
4384 */
4385 switch (reason) {
4386 case TCM_NON_EXISTENT_LUN:
4387 /* CURRENT ERROR */
4388 buffer[offset] = 0x70;
4389 /* ILLEGAL REQUEST */
4390 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4391 /* LOGICAL UNIT NOT SUPPORTED */
4392 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4393 break;
4394 case TCM_UNSUPPORTED_SCSI_OPCODE:
4395 case TCM_SECTOR_COUNT_TOO_MANY:
4396 /* CURRENT ERROR */
4397 buffer[offset] = 0x70;
4398 /* ILLEGAL REQUEST */
4399 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4400 /* INVALID COMMAND OPERATION CODE */
4401 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4402 break;
4403 case TCM_UNKNOWN_MODE_PAGE:
4404 /* CURRENT ERROR */
4405 buffer[offset] = 0x70;
4406 /* ILLEGAL REQUEST */
4407 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4408 /* INVALID FIELD IN CDB */
4409 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4410 break;
4411 case TCM_CHECK_CONDITION_ABORT_CMD:
4412 /* CURRENT ERROR */
4413 buffer[offset] = 0x70;
4414 /* ABORTED COMMAND */
4415 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4416 /* BUS DEVICE RESET FUNCTION OCCURRED */
4417 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4418 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4419 break;
4420 case TCM_INCORRECT_AMOUNT_OF_DATA:
4421 /* CURRENT ERROR */
4422 buffer[offset] = 0x70;
4423 /* ABORTED COMMAND */
4424 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4425 /* WRITE ERROR */
4426 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4427 /* NOT ENOUGH UNSOLICITED DATA */
4428 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4429 break;
4430 case TCM_INVALID_CDB_FIELD:
4431 /* CURRENT ERROR */
4432 buffer[offset] = 0x70;
4433 /* ABORTED COMMAND */
4434 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4435 /* INVALID FIELD IN CDB */
4436 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4437 break;
4438 case TCM_INVALID_PARAMETER_LIST:
4439 /* CURRENT ERROR */
4440 buffer[offset] = 0x70;
4441 /* ABORTED COMMAND */
4442 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4443 /* INVALID FIELD IN PARAMETER LIST */
4444 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4445 break;
4446 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4447 /* CURRENT ERROR */
4448 buffer[offset] = 0x70;
4449 /* ABORTED COMMAND */
4450 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4451 /* WRITE ERROR */
4452 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4453 /* UNEXPECTED_UNSOLICITED_DATA */
4454 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4455 break;
4456 case TCM_SERVICE_CRC_ERROR:
4457 /* CURRENT ERROR */
4458 buffer[offset] = 0x70;
4459 /* ABORTED COMMAND */
4460 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4461 /* PROTOCOL SERVICE CRC ERROR */
4462 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4463 /* N/A */
4464 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4465 break;
4466 case TCM_SNACK_REJECTED:
4467 /* CURRENT ERROR */
4468 buffer[offset] = 0x70;
4469 /* ABORTED COMMAND */
4470 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4471 /* READ ERROR */
4472 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4473 /* FAILED RETRANSMISSION REQUEST */
4474 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4475 break;
4476 case TCM_WRITE_PROTECTED:
4477 /* CURRENT ERROR */
4478 buffer[offset] = 0x70;
4479 /* DATA PROTECT */
4480 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4481 /* WRITE PROTECTED */
4482 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4483 break;
4484 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4485 /* CURRENT ERROR */
4486 buffer[offset] = 0x70;
4487 /* UNIT ATTENTION */
4488 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4489 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4490 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4491 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4492 break;
4493 case TCM_CHECK_CONDITION_NOT_READY:
4494 /* CURRENT ERROR */
4495 buffer[offset] = 0x70;
4496 /* Not Ready */
4497 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4498 transport_get_sense_codes(cmd, &asc, &ascq);
4499 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4500 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4501 break;
4502 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4503 default:
4504 /* CURRENT ERROR */
4505 buffer[offset] = 0x70;
4506 /* ILLEGAL REQUEST */
4507 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4508 /* LOGICAL UNIT COMMUNICATION FAILURE */
4509 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4510 break;
4511 }
4512 /*
4513 * This code uses linux/include/scsi/scsi.h SAM status codes!
4514 */
4515 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4516 /*
4517 * Automatically padded, this value is encoded in the fabric's
4518 * data_length response PDU containing the SCSI defined sense data.
4519 */
4520 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4521
4522 after_reason:
4523 return cmd->se_tfo->queue_status(cmd);
4524 }
4525 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4526
4527 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4528 {
4529 int ret = 0;
4530
4531 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4532 if (!send_status ||
4533 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4534 return 1;
4535 #if 0
4536 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4537 " status for CDB: 0x%02x ITT: 0x%08x\n",
4538 cmd->t_task_cdb[0],
4539 cmd->se_tfo->get_task_tag(cmd));
4540 #endif
4541 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4542 cmd->se_tfo->queue_status(cmd);
4543 ret = 1;
4544 }
4545 return ret;
4546 }
4547 EXPORT_SYMBOL(transport_check_aborted_status);
4548
4549 void transport_send_task_abort(struct se_cmd *cmd)
4550 {
4551 unsigned long flags;
4552
4553 spin_lock_irqsave(&cmd->t_state_lock, flags);
4554 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4555 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4556 return;
4557 }
4558 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4559
4560 /*
4561 * If there are still expected incoming fabric WRITEs, we wait
4562 * until until they have completed before sending a TASK_ABORTED
4563 * response. This response with TASK_ABORTED status will be
4564 * queued back to fabric module by transport_check_aborted_status().
4565 */
4566 if (cmd->data_direction == DMA_TO_DEVICE) {
4567 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4568 atomic_inc(&cmd->t_transport_aborted);
4569 smp_mb__after_atomic_inc();
4570 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4571 transport_new_cmd_failure(cmd);
4572 return;
4573 }
4574 }
4575 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4576 #if 0
4577 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4578 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4579 cmd->se_tfo->get_task_tag(cmd));
4580 #endif
4581 cmd->se_tfo->queue_status(cmd);
4582 }
4583
4584 /* transport_generic_do_tmr():
4585 *
4586 *
4587 */
4588 int transport_generic_do_tmr(struct se_cmd *cmd)
4589 {
4590 struct se_device *dev = cmd->se_dev;
4591 struct se_tmr_req *tmr = cmd->se_tmr_req;
4592 int ret;
4593
4594 switch (tmr->function) {
4595 case TMR_ABORT_TASK:
4596 tmr->response = TMR_FUNCTION_REJECTED;
4597 break;
4598 case TMR_ABORT_TASK_SET:
4599 case TMR_CLEAR_ACA:
4600 case TMR_CLEAR_TASK_SET:
4601 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4602 break;
4603 case TMR_LUN_RESET:
4604 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4605 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4606 TMR_FUNCTION_REJECTED;
4607 break;
4608 case TMR_TARGET_WARM_RESET:
4609 tmr->response = TMR_FUNCTION_REJECTED;
4610 break;
4611 case TMR_TARGET_COLD_RESET:
4612 tmr->response = TMR_FUNCTION_REJECTED;
4613 break;
4614 default:
4615 pr_err("Uknown TMR function: 0x%02x.\n",
4616 tmr->function);
4617 tmr->response = TMR_FUNCTION_REJECTED;
4618 break;
4619 }
4620
4621 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4622 cmd->se_tfo->queue_tm_rsp(cmd);
4623
4624 transport_cmd_check_stop_to_fabric(cmd);
4625 return 0;
4626 }
4627
4628 /* transport_processing_thread():
4629 *
4630 *
4631 */
4632 static int transport_processing_thread(void *param)
4633 {
4634 int ret;
4635 struct se_cmd *cmd;
4636 struct se_device *dev = (struct se_device *) param;
4637
4638 set_user_nice(current, -20);
4639
4640 while (!kthread_should_stop()) {
4641 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4642 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4643 kthread_should_stop());
4644 if (ret < 0)
4645 goto out;
4646
4647 get_cmd:
4648 __transport_execute_tasks(dev);
4649
4650 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4651 if (!cmd)
4652 continue;
4653
4654 switch (cmd->t_state) {
4655 case TRANSPORT_NEW_CMD:
4656 BUG();
4657 break;
4658 case TRANSPORT_NEW_CMD_MAP:
4659 if (!cmd->se_tfo->new_cmd_map) {
4660 pr_err("cmd->se_tfo->new_cmd_map is"
4661 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4662 BUG();
4663 }
4664 ret = cmd->se_tfo->new_cmd_map(cmd);
4665 if (ret < 0) {
4666 cmd->transport_error_status = ret;
4667 transport_generic_request_failure(cmd,
4668 0, (cmd->data_direction !=
4669 DMA_TO_DEVICE));
4670 break;
4671 }
4672 ret = transport_generic_new_cmd(cmd);
4673 if (ret < 0) {
4674 cmd->transport_error_status = ret;
4675 transport_generic_request_failure(cmd,
4676 0, (cmd->data_direction !=
4677 DMA_TO_DEVICE));
4678 }
4679 break;
4680 case TRANSPORT_PROCESS_WRITE:
4681 transport_generic_process_write(cmd);
4682 break;
4683 case TRANSPORT_PROCESS_TMR:
4684 transport_generic_do_tmr(cmd);
4685 break;
4686 case TRANSPORT_COMPLETE_QF_WP:
4687 transport_write_pending_qf(cmd);
4688 break;
4689 case TRANSPORT_COMPLETE_QF_OK:
4690 transport_complete_qf(cmd);
4691 break;
4692 default:
4693 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4694 "i_state: %d on SE LUN: %u\n",
4695 cmd->t_state,
4696 cmd->se_tfo->get_task_tag(cmd),
4697 cmd->se_tfo->get_cmd_state(cmd),
4698 cmd->se_lun->unpacked_lun);
4699 BUG();
4700 }
4701
4702 goto get_cmd;
4703 }
4704
4705 out:
4706 WARN_ON(!list_empty(&dev->state_task_list));
4707 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4708 dev->process_thread = NULL;
4709 return 0;
4710 }
This page took 0.134484 seconds and 5 git commands to generate.