target: use a workqueue for I/O completions
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77 struct se_device *dev);
78 static void transport_direct_request_timeout(struct se_cmd *cmd);
79 static void transport_free_dev_tasks(struct se_cmd *cmd);
80 static u32 transport_allocate_tasks(struct se_cmd *cmd,
81 unsigned long long starting_lba,
82 enum dma_data_direction data_direction,
83 struct scatterlist *sgl, unsigned int nents);
84 static int transport_generic_get_mem(struct se_cmd *cmd);
85 static void transport_put_cmd(struct se_cmd *cmd);
86 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
87 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
88 static void transport_generic_request_failure(struct se_cmd *, int, int);
89 static void target_complete_ok_work(struct work_struct *work);
90
91 int init_se_kmem_caches(void)
92 {
93 se_cmd_cache = kmem_cache_create("se_cmd_cache",
94 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
95 if (!se_cmd_cache) {
96 pr_err("kmem_cache_create for struct se_cmd failed\n");
97 goto out;
98 }
99 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
100 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
101 0, NULL);
102 if (!se_tmr_req_cache) {
103 pr_err("kmem_cache_create() for struct se_tmr_req"
104 " failed\n");
105 goto out_free_cmd_cache;
106 }
107 se_sess_cache = kmem_cache_create("se_sess_cache",
108 sizeof(struct se_session), __alignof__(struct se_session),
109 0, NULL);
110 if (!se_sess_cache) {
111 pr_err("kmem_cache_create() for struct se_session"
112 " failed\n");
113 goto out_free_tmr_req_cache;
114 }
115 se_ua_cache = kmem_cache_create("se_ua_cache",
116 sizeof(struct se_ua), __alignof__(struct se_ua),
117 0, NULL);
118 if (!se_ua_cache) {
119 pr_err("kmem_cache_create() for struct se_ua failed\n");
120 goto out_free_sess_cache;
121 }
122 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
123 sizeof(struct t10_pr_registration),
124 __alignof__(struct t10_pr_registration), 0, NULL);
125 if (!t10_pr_reg_cache) {
126 pr_err("kmem_cache_create() for struct t10_pr_registration"
127 " failed\n");
128 goto out_free_ua_cache;
129 }
130 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
131 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
132 0, NULL);
133 if (!t10_alua_lu_gp_cache) {
134 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
135 " failed\n");
136 goto out_free_pr_reg_cache;
137 }
138 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
139 sizeof(struct t10_alua_lu_gp_member),
140 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
141 if (!t10_alua_lu_gp_mem_cache) {
142 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
143 "cache failed\n");
144 goto out_free_lu_gp_cache;
145 }
146 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
147 sizeof(struct t10_alua_tg_pt_gp),
148 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
149 if (!t10_alua_tg_pt_gp_cache) {
150 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
151 "cache failed\n");
152 goto out_free_lu_gp_mem_cache;
153 }
154 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
155 "t10_alua_tg_pt_gp_mem_cache",
156 sizeof(struct t10_alua_tg_pt_gp_member),
157 __alignof__(struct t10_alua_tg_pt_gp_member),
158 0, NULL);
159 if (!t10_alua_tg_pt_gp_mem_cache) {
160 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
161 "mem_t failed\n");
162 goto out_free_tg_pt_gp_cache;
163 }
164
165 target_completion_wq = alloc_workqueue("target_completion",
166 WQ_MEM_RECLAIM, 0);
167 if (!target_completion_wq)
168 goto out_free_tg_pt_gp_mem_cache;
169
170 return 0;
171
172 out_free_tg_pt_gp_mem_cache:
173 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
174 out_free_tg_pt_gp_cache:
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 out_free_lu_gp_mem_cache:
177 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
178 out_free_lu_gp_cache:
179 kmem_cache_destroy(t10_alua_lu_gp_cache);
180 out_free_pr_reg_cache:
181 kmem_cache_destroy(t10_pr_reg_cache);
182 out_free_ua_cache:
183 kmem_cache_destroy(se_ua_cache);
184 out_free_sess_cache:
185 kmem_cache_destroy(se_sess_cache);
186 out_free_tmr_req_cache:
187 kmem_cache_destroy(se_tmr_req_cache);
188 out_free_cmd_cache:
189 kmem_cache_destroy(se_cmd_cache);
190 out:
191 return -ENOMEM;
192 }
193
194 void release_se_kmem_caches(void)
195 {
196 destroy_workqueue(target_completion_wq);
197 kmem_cache_destroy(se_cmd_cache);
198 kmem_cache_destroy(se_tmr_req_cache);
199 kmem_cache_destroy(se_sess_cache);
200 kmem_cache_destroy(se_ua_cache);
201 kmem_cache_destroy(t10_pr_reg_cache);
202 kmem_cache_destroy(t10_alua_lu_gp_cache);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
206 }
207
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
211
212 /*
213 * Allocate a new row index for the entry type specified
214 */
215 u32 scsi_get_new_index(scsi_index_t type)
216 {
217 u32 new_index;
218
219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
220
221 spin_lock(&scsi_mib_index_lock);
222 new_index = ++scsi_mib_index[type];
223 spin_unlock(&scsi_mib_index_lock);
224
225 return new_index;
226 }
227
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
229 {
230 atomic_set(&qobj->queue_cnt, 0);
231 INIT_LIST_HEAD(&qobj->qobj_list);
232 init_waitqueue_head(&qobj->thread_wq);
233 spin_lock_init(&qobj->cmd_queue_lock);
234 }
235 EXPORT_SYMBOL(transport_init_queue_obj);
236
237 static int transport_subsystem_reqmods(void)
238 {
239 int ret;
240
241 ret = request_module("target_core_iblock");
242 if (ret != 0)
243 pr_err("Unable to load target_core_iblock\n");
244
245 ret = request_module("target_core_file");
246 if (ret != 0)
247 pr_err("Unable to load target_core_file\n");
248
249 ret = request_module("target_core_pscsi");
250 if (ret != 0)
251 pr_err("Unable to load target_core_pscsi\n");
252
253 ret = request_module("target_core_stgt");
254 if (ret != 0)
255 pr_err("Unable to load target_core_stgt\n");
256
257 return 0;
258 }
259
260 int transport_subsystem_check_init(void)
261 {
262 int ret;
263
264 if (sub_api_initialized)
265 return 0;
266 /*
267 * Request the loading of known TCM subsystem plugins..
268 */
269 ret = transport_subsystem_reqmods();
270 if (ret < 0)
271 return ret;
272
273 sub_api_initialized = 1;
274 return 0;
275 }
276
277 struct se_session *transport_init_session(void)
278 {
279 struct se_session *se_sess;
280
281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282 if (!se_sess) {
283 pr_err("Unable to allocate struct se_session from"
284 " se_sess_cache\n");
285 return ERR_PTR(-ENOMEM);
286 }
287 INIT_LIST_HEAD(&se_sess->sess_list);
288 INIT_LIST_HEAD(&se_sess->sess_acl_list);
289
290 return se_sess;
291 }
292 EXPORT_SYMBOL(transport_init_session);
293
294 /*
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
296 */
297 void __transport_register_session(
298 struct se_portal_group *se_tpg,
299 struct se_node_acl *se_nacl,
300 struct se_session *se_sess,
301 void *fabric_sess_ptr)
302 {
303 unsigned char buf[PR_REG_ISID_LEN];
304
305 se_sess->se_tpg = se_tpg;
306 se_sess->fabric_sess_ptr = fabric_sess_ptr;
307 /*
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
309 *
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
312 */
313 if (se_nacl) {
314 /*
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
317 */
318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319 memset(&buf[0], 0, PR_REG_ISID_LEN);
320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321 &buf[0], PR_REG_ISID_LEN);
322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
323 }
324 spin_lock_irq(&se_nacl->nacl_sess_lock);
325 /*
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
328 */
329 se_nacl->nacl_sess = se_sess;
330
331 list_add_tail(&se_sess->sess_acl_list,
332 &se_nacl->acl_sess_list);
333 spin_unlock_irq(&se_nacl->nacl_sess_lock);
334 }
335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
336
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
339 }
340 EXPORT_SYMBOL(__transport_register_session);
341
342 void transport_register_session(
343 struct se_portal_group *se_tpg,
344 struct se_node_acl *se_nacl,
345 struct se_session *se_sess,
346 void *fabric_sess_ptr)
347 {
348 spin_lock_bh(&se_tpg->session_lock);
349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350 spin_unlock_bh(&se_tpg->session_lock);
351 }
352 EXPORT_SYMBOL(transport_register_session);
353
354 void transport_deregister_session_configfs(struct se_session *se_sess)
355 {
356 struct se_node_acl *se_nacl;
357 unsigned long flags;
358 /*
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
360 */
361 se_nacl = se_sess->se_node_acl;
362 if (se_nacl) {
363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364 list_del(&se_sess->sess_acl_list);
365 /*
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
369 */
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
376 }
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384 kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct se_node_acl *se_nacl;
392 unsigned long flags;
393
394 if (!se_tpg) {
395 transport_free_session(se_sess);
396 return;
397 }
398
399 spin_lock_irqsave(&se_tpg->session_lock, flags);
400 list_del(&se_sess->sess_list);
401 se_sess->se_tpg = NULL;
402 se_sess->fabric_sess_ptr = NULL;
403 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
404
405 /*
406 * Determine if we need to do extra work for this initiator node's
407 * struct se_node_acl if it had been previously dynamically generated.
408 */
409 se_nacl = se_sess->se_node_acl;
410 if (se_nacl) {
411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412 if (se_nacl->dynamic_node_acl) {
413 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
414 se_tpg)) {
415 list_del(&se_nacl->acl_list);
416 se_tpg->num_node_acls--;
417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418
419 core_tpg_wait_for_nacl_pr_ref(se_nacl);
420 core_free_device_list_for_node(se_nacl, se_tpg);
421 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
422 se_nacl);
423 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
424 }
425 }
426 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
427 }
428
429 transport_free_session(se_sess);
430
431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432 se_tpg->se_tpg_tfo->get_fabric_name());
433 }
434 EXPORT_SYMBOL(transport_deregister_session);
435
436 /*
437 * Called with cmd->t_state_lock held.
438 */
439 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
440 {
441 struct se_device *dev = cmd->se_dev;
442 struct se_task *task;
443 unsigned long flags;
444
445 if (!dev)
446 return;
447
448 list_for_each_entry(task, &cmd->t_task_list, t_list) {
449 if (task->task_flags & TF_ACTIVE)
450 continue;
451
452 if (!atomic_read(&task->task_state_active))
453 continue;
454
455 spin_lock_irqsave(&dev->execute_task_lock, flags);
456 list_del(&task->t_state_list);
457 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
458 cmd->se_tfo->get_task_tag(cmd), dev, task);
459 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
460
461 atomic_set(&task->task_state_active, 0);
462 atomic_dec(&cmd->t_task_cdbs_ex_left);
463 }
464 }
465
466 /* transport_cmd_check_stop():
467 *
468 * 'transport_off = 1' determines if t_transport_active should be cleared.
469 * 'transport_off = 2' determines if task_dev_state should be removed.
470 *
471 * A non-zero u8 t_state sets cmd->t_state.
472 * Returns 1 when command is stopped, else 0.
473 */
474 static int transport_cmd_check_stop(
475 struct se_cmd *cmd,
476 int transport_off,
477 u8 t_state)
478 {
479 unsigned long flags;
480
481 spin_lock_irqsave(&cmd->t_state_lock, flags);
482 /*
483 * Determine if IOCTL context caller in requesting the stopping of this
484 * command for LUN shutdown purposes.
485 */
486 if (atomic_read(&cmd->transport_lun_stop)) {
487 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
488 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
489 cmd->se_tfo->get_task_tag(cmd));
490
491 atomic_set(&cmd->t_transport_active, 0);
492 if (transport_off == 2)
493 transport_all_task_dev_remove_state(cmd);
494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496 complete(&cmd->transport_lun_stop_comp);
497 return 1;
498 }
499 /*
500 * Determine if frontend context caller is requesting the stopping of
501 * this command for frontend exceptions.
502 */
503 if (atomic_read(&cmd->t_transport_stop)) {
504 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
505 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
506 cmd->se_tfo->get_task_tag(cmd));
507
508 if (transport_off == 2)
509 transport_all_task_dev_remove_state(cmd);
510
511 /*
512 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
513 * to FE.
514 */
515 if (transport_off == 2)
516 cmd->se_lun = NULL;
517 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
518
519 complete(&cmd->t_transport_stop_comp);
520 return 1;
521 }
522 if (transport_off) {
523 atomic_set(&cmd->t_transport_active, 0);
524 if (transport_off == 2) {
525 transport_all_task_dev_remove_state(cmd);
526 /*
527 * Clear struct se_cmd->se_lun before the transport_off == 2
528 * handoff to fabric module.
529 */
530 cmd->se_lun = NULL;
531 /*
532 * Some fabric modules like tcm_loop can release
533 * their internally allocated I/O reference now and
534 * struct se_cmd now.
535 */
536 if (cmd->se_tfo->check_stop_free != NULL) {
537 spin_unlock_irqrestore(
538 &cmd->t_state_lock, flags);
539
540 cmd->se_tfo->check_stop_free(cmd);
541 return 1;
542 }
543 }
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546 return 0;
547 } else if (t_state)
548 cmd->t_state = t_state;
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551 return 0;
552 }
553
554 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
555 {
556 return transport_cmd_check_stop(cmd, 2, 0);
557 }
558
559 static void transport_lun_remove_cmd(struct se_cmd *cmd)
560 {
561 struct se_lun *lun = cmd->se_lun;
562 unsigned long flags;
563
564 if (!lun)
565 return;
566
567 spin_lock_irqsave(&cmd->t_state_lock, flags);
568 if (!atomic_read(&cmd->transport_dev_active)) {
569 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570 goto check_lun;
571 }
572 atomic_set(&cmd->transport_dev_active, 0);
573 transport_all_task_dev_remove_state(cmd);
574 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
575
576
577 check_lun:
578 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
579 if (atomic_read(&cmd->transport_lun_active)) {
580 list_del(&cmd->se_lun_node);
581 atomic_set(&cmd->transport_lun_active, 0);
582 #if 0
583 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
584 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
585 #endif
586 }
587 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592 if (!cmd->se_tmr_req)
593 transport_lun_remove_cmd(cmd);
594
595 if (transport_cmd_check_stop_to_fabric(cmd))
596 return;
597 if (remove) {
598 transport_remove_cmd_from_queue(cmd);
599 transport_put_cmd(cmd);
600 }
601 }
602
603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604 bool at_head)
605 {
606 struct se_device *dev = cmd->se_dev;
607 struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 unsigned long flags;
609
610 if (t_state) {
611 spin_lock_irqsave(&cmd->t_state_lock, flags);
612 cmd->t_state = t_state;
613 atomic_set(&cmd->t_transport_active, 1);
614 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 }
616
617 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619 /* If the cmd is already on the list, remove it before we add it */
620 if (!list_empty(&cmd->se_queue_node))
621 list_del(&cmd->se_queue_node);
622 else
623 atomic_inc(&qobj->queue_cnt);
624
625 if (at_head)
626 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 else
628 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 atomic_set(&cmd->t_transport_queue_active, 1);
630 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632 wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 struct se_cmd *cmd;
639 unsigned long flags;
640
641 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 if (list_empty(&qobj->qobj_list)) {
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 return NULL;
645 }
646 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648 atomic_set(&cmd->t_transport_queue_active, 0);
649
650 list_del_init(&cmd->se_queue_node);
651 atomic_dec(&qobj->queue_cnt);
652 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
653
654 return cmd;
655 }
656
657 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
658 {
659 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
660 unsigned long flags;
661
662 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
663 if (!atomic_read(&cmd->t_transport_queue_active)) {
664 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
665 return;
666 }
667 atomic_set(&cmd->t_transport_queue_active, 0);
668 atomic_dec(&qobj->queue_cnt);
669 list_del_init(&cmd->se_queue_node);
670 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
671
672 if (atomic_read(&cmd->t_transport_queue_active)) {
673 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
674 cmd->se_tfo->get_task_tag(cmd),
675 atomic_read(&cmd->t_transport_queue_active));
676 }
677 }
678
679 /*
680 * Completion function used by TCM subsystem plugins (such as FILEIO)
681 * for queueing up response from struct se_subsystem_api->do_task()
682 */
683 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
684 {
685 struct se_task *task = list_entry(cmd->t_task_list.next,
686 struct se_task, t_list);
687
688 if (good) {
689 cmd->scsi_status = SAM_STAT_GOOD;
690 task->task_scsi_status = GOOD;
691 } else {
692 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
693 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
694 task->task_se_cmd->transport_error_status =
695 PYX_TRANSPORT_ILLEGAL_REQUEST;
696 }
697
698 transport_complete_task(task, good);
699 }
700 EXPORT_SYMBOL(transport_complete_sync_cache);
701
702 static void target_complete_timeout_work(struct work_struct *work)
703 {
704 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
705 unsigned long flags;
706
707 /*
708 * Reset cmd->t_se_count to allow transport_put_cmd()
709 * to allow last call to free memory resources.
710 */
711 spin_lock_irqsave(&cmd->t_state_lock, flags);
712 if (atomic_read(&cmd->t_transport_timeout) > 1) {
713 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
714
715 atomic_sub(tmp, &cmd->t_se_count);
716 }
717 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
718
719 transport_put_cmd(cmd);
720 }
721
722 static void target_complete_failure_work(struct work_struct *work)
723 {
724 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
725
726 transport_generic_request_failure(cmd, 1, 1);
727 }
728
729 /* transport_complete_task():
730 *
731 * Called from interrupt and non interrupt context depending
732 * on the transport plugin.
733 */
734 void transport_complete_task(struct se_task *task, int success)
735 {
736 struct se_cmd *cmd = task->task_se_cmd;
737 struct se_device *dev = cmd->se_dev;
738 unsigned long flags;
739 #if 0
740 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
741 cmd->t_task_cdb[0], dev);
742 #endif
743 if (dev)
744 atomic_inc(&dev->depth_left);
745
746 del_timer(&task->task_timer);
747
748 spin_lock_irqsave(&cmd->t_state_lock, flags);
749 task->task_flags &= ~TF_ACTIVE;
750
751 /*
752 * See if any sense data exists, if so set the TASK_SENSE flag.
753 * Also check for any other post completion work that needs to be
754 * done by the plugins.
755 */
756 if (dev && dev->transport->transport_complete) {
757 if (dev->transport->transport_complete(task) != 0) {
758 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
759 task->task_sense = 1;
760 success = 1;
761 }
762 }
763
764 /*
765 * See if we are waiting for outstanding struct se_task
766 * to complete for an exception condition
767 */
768 if (task->task_flags & TF_REQUEST_STOP) {
769 /*
770 * Decrement cmd->t_se_count if this task had
771 * previously thrown its timeout exception handler.
772 */
773 if (task->task_flags & TF_TIMEOUT) {
774 atomic_dec(&cmd->t_se_count);
775 task->task_flags &= ~TF_TIMEOUT;
776 }
777 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
778
779 complete(&task->task_stop_comp);
780 return;
781 }
782 /*
783 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
784 * left counter to determine when the struct se_cmd is ready to be queued to
785 * the processing thread.
786 */
787 if (task->task_flags & TF_TIMEOUT) {
788 if (!atomic_dec_and_test(&cmd->t_task_cdbs_timeout_left)) {
789 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
790 return;
791 }
792 INIT_WORK(&cmd->work, target_complete_timeout_work);
793 goto out_queue;
794 }
795 atomic_dec(&cmd->t_task_cdbs_timeout_left);
796
797 /*
798 * Decrement the outstanding t_task_cdbs_left count. The last
799 * struct se_task from struct se_cmd will complete itself into the
800 * device queue depending upon int success.
801 */
802 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
803 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
804 return;
805 }
806
807 if (!success || cmd->t_tasks_failed) {
808 if (!task->task_error_status) {
809 task->task_error_status =
810 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
811 cmd->transport_error_status =
812 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
813 }
814 INIT_WORK(&cmd->work, target_complete_failure_work);
815 } else {
816 atomic_set(&cmd->t_transport_complete, 1);
817 INIT_WORK(&cmd->work, target_complete_ok_work);
818 }
819
820 out_queue:
821 cmd->t_state = TRANSPORT_COMPLETE;
822 atomic_set(&cmd->t_transport_active, 1);
823 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
824
825 queue_work(target_completion_wq, &cmd->work);
826 }
827 EXPORT_SYMBOL(transport_complete_task);
828
829 /*
830 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
831 * struct se_task list are ready to be added to the active execution list
832 * struct se_device
833
834 * Called with se_dev_t->execute_task_lock called.
835 */
836 static inline int transport_add_task_check_sam_attr(
837 struct se_task *task,
838 struct se_task *task_prev,
839 struct se_device *dev)
840 {
841 /*
842 * No SAM Task attribute emulation enabled, add to tail of
843 * execution queue
844 */
845 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
846 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
847 return 0;
848 }
849 /*
850 * HEAD_OF_QUEUE attribute for received CDB, which means
851 * the first task that is associated with a struct se_cmd goes to
852 * head of the struct se_device->execute_task_list, and task_prev
853 * after that for each subsequent task
854 */
855 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
856 list_add(&task->t_execute_list,
857 (task_prev != NULL) ?
858 &task_prev->t_execute_list :
859 &dev->execute_task_list);
860
861 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
862 " in execution queue\n",
863 task->task_se_cmd->t_task_cdb[0]);
864 return 1;
865 }
866 /*
867 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
868 * transitioned from Dermant -> Active state, and are added to the end
869 * of the struct se_device->execute_task_list
870 */
871 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
872 return 0;
873 }
874
875 /* __transport_add_task_to_execute_queue():
876 *
877 * Called with se_dev_t->execute_task_lock called.
878 */
879 static void __transport_add_task_to_execute_queue(
880 struct se_task *task,
881 struct se_task *task_prev,
882 struct se_device *dev)
883 {
884 int head_of_queue;
885
886 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
887 atomic_inc(&dev->execute_tasks);
888
889 if (atomic_read(&task->task_state_active))
890 return;
891 /*
892 * Determine if this task needs to go to HEAD_OF_QUEUE for the
893 * state list as well. Running with SAM Task Attribute emulation
894 * will always return head_of_queue == 0 here
895 */
896 if (head_of_queue)
897 list_add(&task->t_state_list, (task_prev) ?
898 &task_prev->t_state_list :
899 &dev->state_task_list);
900 else
901 list_add_tail(&task->t_state_list, &dev->state_task_list);
902
903 atomic_set(&task->task_state_active, 1);
904
905 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
906 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
907 task, dev);
908 }
909
910 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
911 {
912 struct se_device *dev = cmd->se_dev;
913 struct se_task *task;
914 unsigned long flags;
915
916 spin_lock_irqsave(&cmd->t_state_lock, flags);
917 list_for_each_entry(task, &cmd->t_task_list, t_list) {
918 if (atomic_read(&task->task_state_active))
919 continue;
920
921 spin_lock(&dev->execute_task_lock);
922 list_add_tail(&task->t_state_list, &dev->state_task_list);
923 atomic_set(&task->task_state_active, 1);
924
925 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
926 task->task_se_cmd->se_tfo->get_task_tag(
927 task->task_se_cmd), task, dev);
928
929 spin_unlock(&dev->execute_task_lock);
930 }
931 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
932 }
933
934 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
935 {
936 struct se_device *dev = cmd->se_dev;
937 struct se_task *task, *task_prev = NULL;
938 unsigned long flags;
939
940 spin_lock_irqsave(&dev->execute_task_lock, flags);
941 list_for_each_entry(task, &cmd->t_task_list, t_list) {
942 if (!list_empty(&task->t_execute_list))
943 continue;
944 /*
945 * __transport_add_task_to_execute_queue() handles the
946 * SAM Task Attribute emulation if enabled
947 */
948 __transport_add_task_to_execute_queue(task, task_prev, dev);
949 task_prev = task;
950 }
951 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
952 }
953
954 void __transport_remove_task_from_execute_queue(struct se_task *task,
955 struct se_device *dev)
956 {
957 list_del_init(&task->t_execute_list);
958 atomic_dec(&dev->execute_tasks);
959 }
960
961 void transport_remove_task_from_execute_queue(
962 struct se_task *task,
963 struct se_device *dev)
964 {
965 unsigned long flags;
966
967 if (WARN_ON(list_empty(&task->t_execute_list)))
968 return;
969
970 spin_lock_irqsave(&dev->execute_task_lock, flags);
971 __transport_remove_task_from_execute_queue(task, dev);
972 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
973 }
974
975 /*
976 * Handle QUEUE_FULL / -EAGAIN status
977 */
978
979 static void target_qf_do_work(struct work_struct *work)
980 {
981 struct se_device *dev = container_of(work, struct se_device,
982 qf_work_queue);
983 LIST_HEAD(qf_cmd_list);
984 struct se_cmd *cmd, *cmd_tmp;
985
986 spin_lock_irq(&dev->qf_cmd_lock);
987 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
988 spin_unlock_irq(&dev->qf_cmd_lock);
989
990 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
991 list_del(&cmd->se_qf_node);
992 atomic_dec(&dev->dev_qf_count);
993 smp_mb__after_atomic_dec();
994
995 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
996 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
997 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
998 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
999 : "UNKNOWN");
1000
1001 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
1002 }
1003 }
1004
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1006 {
1007 switch (cmd->data_direction) {
1008 case DMA_NONE:
1009 return "NONE";
1010 case DMA_FROM_DEVICE:
1011 return "READ";
1012 case DMA_TO_DEVICE:
1013 return "WRITE";
1014 case DMA_BIDIRECTIONAL:
1015 return "BIDI";
1016 default:
1017 break;
1018 }
1019
1020 return "UNKNOWN";
1021 }
1022
1023 void transport_dump_dev_state(
1024 struct se_device *dev,
1025 char *b,
1026 int *bl)
1027 {
1028 *bl += sprintf(b + *bl, "Status: ");
1029 switch (dev->dev_status) {
1030 case TRANSPORT_DEVICE_ACTIVATED:
1031 *bl += sprintf(b + *bl, "ACTIVATED");
1032 break;
1033 case TRANSPORT_DEVICE_DEACTIVATED:
1034 *bl += sprintf(b + *bl, "DEACTIVATED");
1035 break;
1036 case TRANSPORT_DEVICE_SHUTDOWN:
1037 *bl += sprintf(b + *bl, "SHUTDOWN");
1038 break;
1039 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041 *bl += sprintf(b + *bl, "OFFLINE");
1042 break;
1043 default:
1044 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045 break;
1046 }
1047
1048 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1049 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050 dev->queue_depth);
1051 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1052 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053 *bl += sprintf(b + *bl, " ");
1054 }
1055
1056 void transport_dump_vpd_proto_id(
1057 struct t10_vpd *vpd,
1058 unsigned char *p_buf,
1059 int p_buf_len)
1060 {
1061 unsigned char buf[VPD_TMP_BUF_SIZE];
1062 int len;
1063
1064 memset(buf, 0, VPD_TMP_BUF_SIZE);
1065 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1066
1067 switch (vpd->protocol_identifier) {
1068 case 0x00:
1069 sprintf(buf+len, "Fibre Channel\n");
1070 break;
1071 case 0x10:
1072 sprintf(buf+len, "Parallel SCSI\n");
1073 break;
1074 case 0x20:
1075 sprintf(buf+len, "SSA\n");
1076 break;
1077 case 0x30:
1078 sprintf(buf+len, "IEEE 1394\n");
1079 break;
1080 case 0x40:
1081 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1082 " Protocol\n");
1083 break;
1084 case 0x50:
1085 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1086 break;
1087 case 0x60:
1088 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1089 break;
1090 case 0x70:
1091 sprintf(buf+len, "Automation/Drive Interface Transport"
1092 " Protocol\n");
1093 break;
1094 case 0x80:
1095 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1096 break;
1097 default:
1098 sprintf(buf+len, "Unknown 0x%02x\n",
1099 vpd->protocol_identifier);
1100 break;
1101 }
1102
1103 if (p_buf)
1104 strncpy(p_buf, buf, p_buf_len);
1105 else
1106 pr_debug("%s", buf);
1107 }
1108
1109 void
1110 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1111 {
1112 /*
1113 * Check if the Protocol Identifier Valid (PIV) bit is set..
1114 *
1115 * from spc3r23.pdf section 7.5.1
1116 */
1117 if (page_83[1] & 0x80) {
1118 vpd->protocol_identifier = (page_83[0] & 0xf0);
1119 vpd->protocol_identifier_set = 1;
1120 transport_dump_vpd_proto_id(vpd, NULL, 0);
1121 }
1122 }
1123 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1124
1125 int transport_dump_vpd_assoc(
1126 struct t10_vpd *vpd,
1127 unsigned char *p_buf,
1128 int p_buf_len)
1129 {
1130 unsigned char buf[VPD_TMP_BUF_SIZE];
1131 int ret = 0;
1132 int len;
1133
1134 memset(buf, 0, VPD_TMP_BUF_SIZE);
1135 len = sprintf(buf, "T10 VPD Identifier Association: ");
1136
1137 switch (vpd->association) {
1138 case 0x00:
1139 sprintf(buf+len, "addressed logical unit\n");
1140 break;
1141 case 0x10:
1142 sprintf(buf+len, "target port\n");
1143 break;
1144 case 0x20:
1145 sprintf(buf+len, "SCSI target device\n");
1146 break;
1147 default:
1148 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1149 ret = -EINVAL;
1150 break;
1151 }
1152
1153 if (p_buf)
1154 strncpy(p_buf, buf, p_buf_len);
1155 else
1156 pr_debug("%s", buf);
1157
1158 return ret;
1159 }
1160
1161 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1162 {
1163 /*
1164 * The VPD identification association..
1165 *
1166 * from spc3r23.pdf Section 7.6.3.1 Table 297
1167 */
1168 vpd->association = (page_83[1] & 0x30);
1169 return transport_dump_vpd_assoc(vpd, NULL, 0);
1170 }
1171 EXPORT_SYMBOL(transport_set_vpd_assoc);
1172
1173 int transport_dump_vpd_ident_type(
1174 struct t10_vpd *vpd,
1175 unsigned char *p_buf,
1176 int p_buf_len)
1177 {
1178 unsigned char buf[VPD_TMP_BUF_SIZE];
1179 int ret = 0;
1180 int len;
1181
1182 memset(buf, 0, VPD_TMP_BUF_SIZE);
1183 len = sprintf(buf, "T10 VPD Identifier Type: ");
1184
1185 switch (vpd->device_identifier_type) {
1186 case 0x00:
1187 sprintf(buf+len, "Vendor specific\n");
1188 break;
1189 case 0x01:
1190 sprintf(buf+len, "T10 Vendor ID based\n");
1191 break;
1192 case 0x02:
1193 sprintf(buf+len, "EUI-64 based\n");
1194 break;
1195 case 0x03:
1196 sprintf(buf+len, "NAA\n");
1197 break;
1198 case 0x04:
1199 sprintf(buf+len, "Relative target port identifier\n");
1200 break;
1201 case 0x08:
1202 sprintf(buf+len, "SCSI name string\n");
1203 break;
1204 default:
1205 sprintf(buf+len, "Unsupported: 0x%02x\n",
1206 vpd->device_identifier_type);
1207 ret = -EINVAL;
1208 break;
1209 }
1210
1211 if (p_buf) {
1212 if (p_buf_len < strlen(buf)+1)
1213 return -EINVAL;
1214 strncpy(p_buf, buf, p_buf_len);
1215 } else {
1216 pr_debug("%s", buf);
1217 }
1218
1219 return ret;
1220 }
1221
1222 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1223 {
1224 /*
1225 * The VPD identifier type..
1226 *
1227 * from spc3r23.pdf Section 7.6.3.1 Table 298
1228 */
1229 vpd->device_identifier_type = (page_83[1] & 0x0f);
1230 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1231 }
1232 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1233
1234 int transport_dump_vpd_ident(
1235 struct t10_vpd *vpd,
1236 unsigned char *p_buf,
1237 int p_buf_len)
1238 {
1239 unsigned char buf[VPD_TMP_BUF_SIZE];
1240 int ret = 0;
1241
1242 memset(buf, 0, VPD_TMP_BUF_SIZE);
1243
1244 switch (vpd->device_identifier_code_set) {
1245 case 0x01: /* Binary */
1246 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1247 &vpd->device_identifier[0]);
1248 break;
1249 case 0x02: /* ASCII */
1250 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1251 &vpd->device_identifier[0]);
1252 break;
1253 case 0x03: /* UTF-8 */
1254 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1255 &vpd->device_identifier[0]);
1256 break;
1257 default:
1258 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1259 " 0x%02x", vpd->device_identifier_code_set);
1260 ret = -EINVAL;
1261 break;
1262 }
1263
1264 if (p_buf)
1265 strncpy(p_buf, buf, p_buf_len);
1266 else
1267 pr_debug("%s", buf);
1268
1269 return ret;
1270 }
1271
1272 int
1273 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1274 {
1275 static const char hex_str[] = "0123456789abcdef";
1276 int j = 0, i = 4; /* offset to start of the identifer */
1277
1278 /*
1279 * The VPD Code Set (encoding)
1280 *
1281 * from spc3r23.pdf Section 7.6.3.1 Table 296
1282 */
1283 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1284 switch (vpd->device_identifier_code_set) {
1285 case 0x01: /* Binary */
1286 vpd->device_identifier[j++] =
1287 hex_str[vpd->device_identifier_type];
1288 while (i < (4 + page_83[3])) {
1289 vpd->device_identifier[j++] =
1290 hex_str[(page_83[i] & 0xf0) >> 4];
1291 vpd->device_identifier[j++] =
1292 hex_str[page_83[i] & 0x0f];
1293 i++;
1294 }
1295 break;
1296 case 0x02: /* ASCII */
1297 case 0x03: /* UTF-8 */
1298 while (i < (4 + page_83[3]))
1299 vpd->device_identifier[j++] = page_83[i++];
1300 break;
1301 default:
1302 break;
1303 }
1304
1305 return transport_dump_vpd_ident(vpd, NULL, 0);
1306 }
1307 EXPORT_SYMBOL(transport_set_vpd_ident);
1308
1309 static void core_setup_task_attr_emulation(struct se_device *dev)
1310 {
1311 /*
1312 * If this device is from Target_Core_Mod/pSCSI, disable the
1313 * SAM Task Attribute emulation.
1314 *
1315 * This is currently not available in upsream Linux/SCSI Target
1316 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1317 */
1318 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1319 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1320 return;
1321 }
1322
1323 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1324 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1325 " device\n", dev->transport->name,
1326 dev->transport->get_device_rev(dev));
1327 }
1328
1329 static void scsi_dump_inquiry(struct se_device *dev)
1330 {
1331 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1332 int i, device_type;
1333 /*
1334 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1335 */
1336 pr_debug(" Vendor: ");
1337 for (i = 0; i < 8; i++)
1338 if (wwn->vendor[i] >= 0x20)
1339 pr_debug("%c", wwn->vendor[i]);
1340 else
1341 pr_debug(" ");
1342
1343 pr_debug(" Model: ");
1344 for (i = 0; i < 16; i++)
1345 if (wwn->model[i] >= 0x20)
1346 pr_debug("%c", wwn->model[i]);
1347 else
1348 pr_debug(" ");
1349
1350 pr_debug(" Revision: ");
1351 for (i = 0; i < 4; i++)
1352 if (wwn->revision[i] >= 0x20)
1353 pr_debug("%c", wwn->revision[i]);
1354 else
1355 pr_debug(" ");
1356
1357 pr_debug("\n");
1358
1359 device_type = dev->transport->get_device_type(dev);
1360 pr_debug(" Type: %s ", scsi_device_type(device_type));
1361 pr_debug(" ANSI SCSI revision: %02x\n",
1362 dev->transport->get_device_rev(dev));
1363 }
1364
1365 struct se_device *transport_add_device_to_core_hba(
1366 struct se_hba *hba,
1367 struct se_subsystem_api *transport,
1368 struct se_subsystem_dev *se_dev,
1369 u32 device_flags,
1370 void *transport_dev,
1371 struct se_dev_limits *dev_limits,
1372 const char *inquiry_prod,
1373 const char *inquiry_rev)
1374 {
1375 int force_pt;
1376 struct se_device *dev;
1377
1378 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1379 if (!dev) {
1380 pr_err("Unable to allocate memory for se_dev_t\n");
1381 return NULL;
1382 }
1383
1384 transport_init_queue_obj(&dev->dev_queue_obj);
1385 dev->dev_flags = device_flags;
1386 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1387 dev->dev_ptr = transport_dev;
1388 dev->se_hba = hba;
1389 dev->se_sub_dev = se_dev;
1390 dev->transport = transport;
1391 atomic_set(&dev->active_cmds, 0);
1392 INIT_LIST_HEAD(&dev->dev_list);
1393 INIT_LIST_HEAD(&dev->dev_sep_list);
1394 INIT_LIST_HEAD(&dev->dev_tmr_list);
1395 INIT_LIST_HEAD(&dev->execute_task_list);
1396 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1397 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1398 INIT_LIST_HEAD(&dev->state_task_list);
1399 INIT_LIST_HEAD(&dev->qf_cmd_list);
1400 spin_lock_init(&dev->execute_task_lock);
1401 spin_lock_init(&dev->delayed_cmd_lock);
1402 spin_lock_init(&dev->ordered_cmd_lock);
1403 spin_lock_init(&dev->state_task_lock);
1404 spin_lock_init(&dev->dev_alua_lock);
1405 spin_lock_init(&dev->dev_reservation_lock);
1406 spin_lock_init(&dev->dev_status_lock);
1407 spin_lock_init(&dev->dev_status_thr_lock);
1408 spin_lock_init(&dev->se_port_lock);
1409 spin_lock_init(&dev->se_tmr_lock);
1410 spin_lock_init(&dev->qf_cmd_lock);
1411
1412 dev->queue_depth = dev_limits->queue_depth;
1413 atomic_set(&dev->depth_left, dev->queue_depth);
1414 atomic_set(&dev->dev_ordered_id, 0);
1415
1416 se_dev_set_default_attribs(dev, dev_limits);
1417
1418 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1419 dev->creation_time = get_jiffies_64();
1420 spin_lock_init(&dev->stats_lock);
1421
1422 spin_lock(&hba->device_lock);
1423 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1424 hba->dev_count++;
1425 spin_unlock(&hba->device_lock);
1426 /*
1427 * Setup the SAM Task Attribute emulation for struct se_device
1428 */
1429 core_setup_task_attr_emulation(dev);
1430 /*
1431 * Force PR and ALUA passthrough emulation with internal object use.
1432 */
1433 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1434 /*
1435 * Setup the Reservations infrastructure for struct se_device
1436 */
1437 core_setup_reservations(dev, force_pt);
1438 /*
1439 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1440 */
1441 if (core_setup_alua(dev, force_pt) < 0)
1442 goto out;
1443
1444 /*
1445 * Startup the struct se_device processing thread
1446 */
1447 dev->process_thread = kthread_run(transport_processing_thread, dev,
1448 "LIO_%s", dev->transport->name);
1449 if (IS_ERR(dev->process_thread)) {
1450 pr_err("Unable to create kthread: LIO_%s\n",
1451 dev->transport->name);
1452 goto out;
1453 }
1454 /*
1455 * Setup work_queue for QUEUE_FULL
1456 */
1457 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1458 /*
1459 * Preload the initial INQUIRY const values if we are doing
1460 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1461 * passthrough because this is being provided by the backend LLD.
1462 * This is required so that transport_get_inquiry() copies these
1463 * originals once back into DEV_T10_WWN(dev) for the virtual device
1464 * setup.
1465 */
1466 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1467 if (!inquiry_prod || !inquiry_rev) {
1468 pr_err("All non TCM/pSCSI plugins require"
1469 " INQUIRY consts\n");
1470 goto out;
1471 }
1472
1473 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1474 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1475 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1476 }
1477 scsi_dump_inquiry(dev);
1478
1479 return dev;
1480 out:
1481 kthread_stop(dev->process_thread);
1482
1483 spin_lock(&hba->device_lock);
1484 list_del(&dev->dev_list);
1485 hba->dev_count--;
1486 spin_unlock(&hba->device_lock);
1487
1488 se_release_vpd_for_dev(dev);
1489
1490 kfree(dev);
1491
1492 return NULL;
1493 }
1494 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1495
1496 /* transport_generic_prepare_cdb():
1497 *
1498 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1499 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1500 * The point of this is since we are mapping iSCSI LUNs to
1501 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1502 * devices and HBAs for a loop.
1503 */
1504 static inline void transport_generic_prepare_cdb(
1505 unsigned char *cdb)
1506 {
1507 switch (cdb[0]) {
1508 case READ_10: /* SBC - RDProtect */
1509 case READ_12: /* SBC - RDProtect */
1510 case READ_16: /* SBC - RDProtect */
1511 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1512 case VERIFY: /* SBC - VRProtect */
1513 case VERIFY_16: /* SBC - VRProtect */
1514 case WRITE_VERIFY: /* SBC - VRProtect */
1515 case WRITE_VERIFY_12: /* SBC - VRProtect */
1516 break;
1517 default:
1518 cdb[1] &= 0x1f; /* clear logical unit number */
1519 break;
1520 }
1521 }
1522
1523 static struct se_task *
1524 transport_generic_get_task(struct se_cmd *cmd,
1525 enum dma_data_direction data_direction)
1526 {
1527 struct se_task *task;
1528 struct se_device *dev = cmd->se_dev;
1529
1530 task = dev->transport->alloc_task(cmd->t_task_cdb);
1531 if (!task) {
1532 pr_err("Unable to allocate struct se_task\n");
1533 return NULL;
1534 }
1535
1536 INIT_LIST_HEAD(&task->t_list);
1537 INIT_LIST_HEAD(&task->t_execute_list);
1538 INIT_LIST_HEAD(&task->t_state_list);
1539 init_timer(&task->task_timer);
1540 init_completion(&task->task_stop_comp);
1541 task->task_se_cmd = cmd;
1542 task->task_data_direction = data_direction;
1543
1544 return task;
1545 }
1546
1547 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1548
1549 /*
1550 * Used by fabric modules containing a local struct se_cmd within their
1551 * fabric dependent per I/O descriptor.
1552 */
1553 void transport_init_se_cmd(
1554 struct se_cmd *cmd,
1555 struct target_core_fabric_ops *tfo,
1556 struct se_session *se_sess,
1557 u32 data_length,
1558 int data_direction,
1559 int task_attr,
1560 unsigned char *sense_buffer)
1561 {
1562 INIT_LIST_HEAD(&cmd->se_lun_node);
1563 INIT_LIST_HEAD(&cmd->se_delayed_node);
1564 INIT_LIST_HEAD(&cmd->se_ordered_node);
1565 INIT_LIST_HEAD(&cmd->se_qf_node);
1566 INIT_LIST_HEAD(&cmd->se_queue_node);
1567
1568 INIT_LIST_HEAD(&cmd->t_task_list);
1569 init_completion(&cmd->transport_lun_fe_stop_comp);
1570 init_completion(&cmd->transport_lun_stop_comp);
1571 init_completion(&cmd->t_transport_stop_comp);
1572 spin_lock_init(&cmd->t_state_lock);
1573 atomic_set(&cmd->transport_dev_active, 1);
1574
1575 cmd->se_tfo = tfo;
1576 cmd->se_sess = se_sess;
1577 cmd->data_length = data_length;
1578 cmd->data_direction = data_direction;
1579 cmd->sam_task_attr = task_attr;
1580 cmd->sense_buffer = sense_buffer;
1581 }
1582 EXPORT_SYMBOL(transport_init_se_cmd);
1583
1584 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1585 {
1586 /*
1587 * Check if SAM Task Attribute emulation is enabled for this
1588 * struct se_device storage object
1589 */
1590 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1591 return 0;
1592
1593 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1594 pr_debug("SAM Task Attribute ACA"
1595 " emulation is not supported\n");
1596 return -EINVAL;
1597 }
1598 /*
1599 * Used to determine when ORDERED commands should go from
1600 * Dormant to Active status.
1601 */
1602 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1603 smp_mb__after_atomic_inc();
1604 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1605 cmd->se_ordered_id, cmd->sam_task_attr,
1606 cmd->se_dev->transport->name);
1607 return 0;
1608 }
1609
1610 /* transport_generic_allocate_tasks():
1611 *
1612 * Called from fabric RX Thread.
1613 */
1614 int transport_generic_allocate_tasks(
1615 struct se_cmd *cmd,
1616 unsigned char *cdb)
1617 {
1618 int ret;
1619
1620 transport_generic_prepare_cdb(cdb);
1621 /*
1622 * Ensure that the received CDB is less than the max (252 + 8) bytes
1623 * for VARIABLE_LENGTH_CMD
1624 */
1625 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1626 pr_err("Received SCSI CDB with command_size: %d that"
1627 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1628 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1629 return -EINVAL;
1630 }
1631 /*
1632 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1633 * allocate the additional extended CDB buffer now.. Otherwise
1634 * setup the pointer from __t_task_cdb to t_task_cdb.
1635 */
1636 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1637 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1638 GFP_KERNEL);
1639 if (!cmd->t_task_cdb) {
1640 pr_err("Unable to allocate cmd->t_task_cdb"
1641 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1642 scsi_command_size(cdb),
1643 (unsigned long)sizeof(cmd->__t_task_cdb));
1644 return -ENOMEM;
1645 }
1646 } else
1647 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1648 /*
1649 * Copy the original CDB into cmd->
1650 */
1651 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1652 /*
1653 * Setup the received CDB based on SCSI defined opcodes and
1654 * perform unit attention, persistent reservations and ALUA
1655 * checks for virtual device backends. The cmd->t_task_cdb
1656 * pointer is expected to be setup before we reach this point.
1657 */
1658 ret = transport_generic_cmd_sequencer(cmd, cdb);
1659 if (ret < 0)
1660 return ret;
1661 /*
1662 * Check for SAM Task Attribute Emulation
1663 */
1664 if (transport_check_alloc_task_attr(cmd) < 0) {
1665 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1666 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1667 return -EINVAL;
1668 }
1669 spin_lock(&cmd->se_lun->lun_sep_lock);
1670 if (cmd->se_lun->lun_sep)
1671 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1672 spin_unlock(&cmd->se_lun->lun_sep_lock);
1673 return 0;
1674 }
1675 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1676
1677 /*
1678 * Used by fabric module frontends to queue tasks directly.
1679 * Many only be used from process context only
1680 */
1681 int transport_handle_cdb_direct(
1682 struct se_cmd *cmd)
1683 {
1684 int ret;
1685
1686 if (!cmd->se_lun) {
1687 dump_stack();
1688 pr_err("cmd->se_lun is NULL\n");
1689 return -EINVAL;
1690 }
1691 if (in_interrupt()) {
1692 dump_stack();
1693 pr_err("transport_generic_handle_cdb cannot be called"
1694 " from interrupt context\n");
1695 return -EINVAL;
1696 }
1697 /*
1698 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1699 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1700 * in existing usage to ensure that outstanding descriptors are handled
1701 * correctly during shutdown via transport_wait_for_tasks()
1702 *
1703 * Also, we don't take cmd->t_state_lock here as we only expect
1704 * this to be called for initial descriptor submission.
1705 */
1706 cmd->t_state = TRANSPORT_NEW_CMD;
1707 atomic_set(&cmd->t_transport_active, 1);
1708 /*
1709 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1710 * so follow TRANSPORT_NEW_CMD processing thread context usage
1711 * and call transport_generic_request_failure() if necessary..
1712 */
1713 ret = transport_generic_new_cmd(cmd);
1714 if (ret == -EAGAIN)
1715 return 0;
1716 else if (ret < 0) {
1717 cmd->transport_error_status = ret;
1718 transport_generic_request_failure(cmd, 0,
1719 (cmd->data_direction != DMA_TO_DEVICE));
1720 }
1721 return 0;
1722 }
1723 EXPORT_SYMBOL(transport_handle_cdb_direct);
1724
1725 /*
1726 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1727 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1728 * complete setup in TCM process context w/ TFO->new_cmd_map().
1729 */
1730 int transport_generic_handle_cdb_map(
1731 struct se_cmd *cmd)
1732 {
1733 if (!cmd->se_lun) {
1734 dump_stack();
1735 pr_err("cmd->se_lun is NULL\n");
1736 return -EINVAL;
1737 }
1738
1739 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1743
1744 /* transport_generic_handle_data():
1745 *
1746 *
1747 */
1748 int transport_generic_handle_data(
1749 struct se_cmd *cmd)
1750 {
1751 /*
1752 * For the software fabric case, then we assume the nexus is being
1753 * failed/shutdown when signals are pending from the kthread context
1754 * caller, so we return a failure. For the HW target mode case running
1755 * in interrupt code, the signal_pending() check is skipped.
1756 */
1757 if (!in_interrupt() && signal_pending(current))
1758 return -EPERM;
1759 /*
1760 * If the received CDB has aleady been ABORTED by the generic
1761 * target engine, we now call transport_check_aborted_status()
1762 * to queue any delated TASK_ABORTED status for the received CDB to the
1763 * fabric module as we are expecting no further incoming DATA OUT
1764 * sequences at this point.
1765 */
1766 if (transport_check_aborted_status(cmd, 1) != 0)
1767 return 0;
1768
1769 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1770 return 0;
1771 }
1772 EXPORT_SYMBOL(transport_generic_handle_data);
1773
1774 /* transport_generic_handle_tmr():
1775 *
1776 *
1777 */
1778 int transport_generic_handle_tmr(
1779 struct se_cmd *cmd)
1780 {
1781 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1782 return 0;
1783 }
1784 EXPORT_SYMBOL(transport_generic_handle_tmr);
1785
1786 void transport_generic_free_cmd_intr(
1787 struct se_cmd *cmd)
1788 {
1789 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1790 }
1791 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1792
1793 /*
1794 * If the task is active, request it to be stopped and sleep until it
1795 * has completed.
1796 */
1797 bool target_stop_task(struct se_task *task, unsigned long *flags)
1798 {
1799 struct se_cmd *cmd = task->task_se_cmd;
1800 bool was_active = false;
1801
1802 if (task->task_flags & TF_ACTIVE) {
1803 task->task_flags |= TF_REQUEST_STOP;
1804 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1805
1806 pr_debug("Task %p waiting to complete\n", task);
1807 del_timer_sync(&task->task_timer);
1808 wait_for_completion(&task->task_stop_comp);
1809 pr_debug("Task %p stopped successfully\n", task);
1810
1811 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1812 atomic_dec(&cmd->t_task_cdbs_left);
1813 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1814 was_active = true;
1815 }
1816
1817 return was_active;
1818 }
1819
1820 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1821 {
1822 struct se_task *task, *task_tmp;
1823 unsigned long flags;
1824 int ret = 0;
1825
1826 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1827 cmd->se_tfo->get_task_tag(cmd));
1828
1829 /*
1830 * No tasks remain in the execution queue
1831 */
1832 spin_lock_irqsave(&cmd->t_state_lock, flags);
1833 list_for_each_entry_safe(task, task_tmp,
1834 &cmd->t_task_list, t_list) {
1835 pr_debug("Processing task %p\n", task);
1836 /*
1837 * If the struct se_task has not been sent and is not active,
1838 * remove the struct se_task from the execution queue.
1839 */
1840 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1841 spin_unlock_irqrestore(&cmd->t_state_lock,
1842 flags);
1843 transport_remove_task_from_execute_queue(task,
1844 cmd->se_dev);
1845
1846 pr_debug("Task %p removed from execute queue\n", task);
1847 spin_lock_irqsave(&cmd->t_state_lock, flags);
1848 continue;
1849 }
1850
1851 if (!target_stop_task(task, &flags)) {
1852 pr_debug("Task %p - did nothing\n", task);
1853 ret++;
1854 }
1855 }
1856 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1857
1858 return ret;
1859 }
1860
1861 /*
1862 * Handle SAM-esque emulation for generic transport request failures.
1863 */
1864 static void transport_generic_request_failure(
1865 struct se_cmd *cmd,
1866 int complete,
1867 int sc)
1868 {
1869 int ret = 0;
1870
1871 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1872 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1873 cmd->t_task_cdb[0]);
1874 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1875 cmd->se_tfo->get_cmd_state(cmd),
1876 cmd->t_state,
1877 cmd->transport_error_status);
1878 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1879 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1880 " t_transport_active: %d t_transport_stop: %d"
1881 " t_transport_sent: %d\n", cmd->t_task_list_num,
1882 atomic_read(&cmd->t_task_cdbs_left),
1883 atomic_read(&cmd->t_task_cdbs_sent),
1884 atomic_read(&cmd->t_task_cdbs_ex_left),
1885 atomic_read(&cmd->t_transport_active),
1886 atomic_read(&cmd->t_transport_stop),
1887 atomic_read(&cmd->t_transport_sent));
1888
1889 /*
1890 * For SAM Task Attribute emulation for failed struct se_cmd
1891 */
1892 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1893 transport_complete_task_attr(cmd);
1894
1895 if (complete) {
1896 transport_direct_request_timeout(cmd);
1897 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1898 }
1899
1900 switch (cmd->transport_error_status) {
1901 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1902 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1903 break;
1904 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1905 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1906 break;
1907 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1908 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1909 break;
1910 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1911 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1912 break;
1913 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1914 if (!sc)
1915 transport_new_cmd_failure(cmd);
1916 /*
1917 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1918 * we force this session to fall back to session
1919 * recovery.
1920 */
1921 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1922 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1923
1924 goto check_stop;
1925 case PYX_TRANSPORT_LU_COMM_FAILURE:
1926 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1927 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1928 break;
1929 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1930 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1931 break;
1932 case PYX_TRANSPORT_WRITE_PROTECTED:
1933 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1934 break;
1935 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1936 /*
1937 * No SENSE Data payload for this case, set SCSI Status
1938 * and queue the response to $FABRIC_MOD.
1939 *
1940 * Uses linux/include/scsi/scsi.h SAM status codes defs
1941 */
1942 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1943 /*
1944 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1945 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1946 * CONFLICT STATUS.
1947 *
1948 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1949 */
1950 if (cmd->se_sess &&
1951 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1952 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1953 cmd->orig_fe_lun, 0x2C,
1954 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1955
1956 ret = cmd->se_tfo->queue_status(cmd);
1957 if (ret == -EAGAIN)
1958 goto queue_full;
1959 goto check_stop;
1960 case PYX_TRANSPORT_USE_SENSE_REASON:
1961 /*
1962 * struct se_cmd->scsi_sense_reason already set
1963 */
1964 break;
1965 default:
1966 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1967 cmd->t_task_cdb[0],
1968 cmd->transport_error_status);
1969 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1970 break;
1971 }
1972 /*
1973 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1974 * make the call to transport_send_check_condition_and_sense()
1975 * directly. Otherwise expect the fabric to make the call to
1976 * transport_send_check_condition_and_sense() after handling
1977 * possible unsoliticied write data payloads.
1978 */
1979 if (!sc && !cmd->se_tfo->new_cmd_map)
1980 transport_new_cmd_failure(cmd);
1981 else {
1982 ret = transport_send_check_condition_and_sense(cmd,
1983 cmd->scsi_sense_reason, 0);
1984 if (ret == -EAGAIN)
1985 goto queue_full;
1986 }
1987
1988 check_stop:
1989 transport_lun_remove_cmd(cmd);
1990 if (!transport_cmd_check_stop_to_fabric(cmd))
1991 ;
1992 return;
1993
1994 queue_full:
1995 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1996 transport_handle_queue_full(cmd, cmd->se_dev);
1997 }
1998
1999 static void transport_direct_request_timeout(struct se_cmd *cmd)
2000 {
2001 unsigned long flags;
2002
2003 spin_lock_irqsave(&cmd->t_state_lock, flags);
2004 if (!atomic_read(&cmd->t_transport_timeout)) {
2005 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2006 return;
2007 }
2008 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2009 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2010 return;
2011 }
2012
2013 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2014 &cmd->t_se_count);
2015 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2016 }
2017
2018 static inline u32 transport_lba_21(unsigned char *cdb)
2019 {
2020 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2021 }
2022
2023 static inline u32 transport_lba_32(unsigned char *cdb)
2024 {
2025 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2026 }
2027
2028 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2029 {
2030 unsigned int __v1, __v2;
2031
2032 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2033 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2034
2035 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2036 }
2037
2038 /*
2039 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2040 */
2041 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2042 {
2043 unsigned int __v1, __v2;
2044
2045 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2046 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2047
2048 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2049 }
2050
2051 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2052 {
2053 unsigned long flags;
2054
2055 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2056 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2057 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2058 }
2059
2060 /*
2061 * Called from interrupt context.
2062 */
2063 static void transport_task_timeout_handler(unsigned long data)
2064 {
2065 struct se_task *task = (struct se_task *)data;
2066 struct se_cmd *cmd = task->task_se_cmd;
2067 unsigned long flags;
2068
2069 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2070
2071 spin_lock_irqsave(&cmd->t_state_lock, flags);
2072
2073 /*
2074 * Determine if transport_complete_task() has already been called.
2075 */
2076 if (!(task->task_flags & TF_ACTIVE)) {
2077 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2078 task, cmd);
2079 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2080 return;
2081 }
2082
2083 atomic_inc(&cmd->t_se_count);
2084 atomic_inc(&cmd->t_transport_timeout);
2085 cmd->t_tasks_failed = 1;
2086
2087 task->task_flags |= TF_TIMEOUT;
2088 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2089 task->task_scsi_status = 1;
2090
2091 if (task->task_flags & TF_REQUEST_STOP) {
2092 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2093 " == 1\n", task, cmd);
2094 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2095 complete(&task->task_stop_comp);
2096 return;
2097 }
2098
2099 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2100 pr_debug("transport task: %p cmd: %p timeout non zero"
2101 " t_task_cdbs_left\n", task, cmd);
2102 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2103 return;
2104 }
2105 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2106 task, cmd);
2107
2108 INIT_WORK(&cmd->work, target_complete_failure_work);
2109 cmd->t_state = TRANSPORT_COMPLETE;
2110 atomic_set(&cmd->t_transport_active, 1);
2111 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112
2113 queue_work(target_completion_wq, &cmd->work);
2114 }
2115
2116 static void transport_start_task_timer(struct se_task *task)
2117 {
2118 struct se_device *dev = task->task_se_cmd->se_dev;
2119 int timeout;
2120
2121 /*
2122 * If the task_timeout is disabled, exit now.
2123 */
2124 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2125 if (!timeout)
2126 return;
2127
2128 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2129 task->task_timer.data = (unsigned long) task;
2130 task->task_timer.function = transport_task_timeout_handler;
2131 add_timer(&task->task_timer);
2132 }
2133
2134 static inline int transport_tcq_window_closed(struct se_device *dev)
2135 {
2136 if (dev->dev_tcq_window_closed++ <
2137 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2138 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2139 } else
2140 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2141
2142 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2143 return 0;
2144 }
2145
2146 /*
2147 * Called from Fabric Module context from transport_execute_tasks()
2148 *
2149 * The return of this function determins if the tasks from struct se_cmd
2150 * get added to the execution queue in transport_execute_tasks(),
2151 * or are added to the delayed or ordered lists here.
2152 */
2153 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2154 {
2155 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2156 return 1;
2157 /*
2158 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2159 * to allow the passed struct se_cmd list of tasks to the front of the list.
2160 */
2161 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2162 atomic_inc(&cmd->se_dev->dev_hoq_count);
2163 smp_mb__after_atomic_inc();
2164 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2165 " 0x%02x, se_ordered_id: %u\n",
2166 cmd->t_task_cdb[0],
2167 cmd->se_ordered_id);
2168 return 1;
2169 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2170 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2171 list_add_tail(&cmd->se_ordered_node,
2172 &cmd->se_dev->ordered_cmd_list);
2173 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2174
2175 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2176 smp_mb__after_atomic_inc();
2177
2178 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2179 " list, se_ordered_id: %u\n",
2180 cmd->t_task_cdb[0],
2181 cmd->se_ordered_id);
2182 /*
2183 * Add ORDERED command to tail of execution queue if
2184 * no other older commands exist that need to be
2185 * completed first.
2186 */
2187 if (!atomic_read(&cmd->se_dev->simple_cmds))
2188 return 1;
2189 } else {
2190 /*
2191 * For SIMPLE and UNTAGGED Task Attribute commands
2192 */
2193 atomic_inc(&cmd->se_dev->simple_cmds);
2194 smp_mb__after_atomic_inc();
2195 }
2196 /*
2197 * Otherwise if one or more outstanding ORDERED task attribute exist,
2198 * add the dormant task(s) built for the passed struct se_cmd to the
2199 * execution queue and become in Active state for this struct se_device.
2200 */
2201 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2202 /*
2203 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2204 * will be drained upon completion of HEAD_OF_QUEUE task.
2205 */
2206 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2207 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2208 list_add_tail(&cmd->se_delayed_node,
2209 &cmd->se_dev->delayed_cmd_list);
2210 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2211
2212 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2213 " delayed CMD list, se_ordered_id: %u\n",
2214 cmd->t_task_cdb[0], cmd->sam_task_attr,
2215 cmd->se_ordered_id);
2216 /*
2217 * Return zero to let transport_execute_tasks() know
2218 * not to add the delayed tasks to the execution list.
2219 */
2220 return 0;
2221 }
2222 /*
2223 * Otherwise, no ORDERED task attributes exist..
2224 */
2225 return 1;
2226 }
2227
2228 /*
2229 * Called from fabric module context in transport_generic_new_cmd() and
2230 * transport_generic_process_write()
2231 */
2232 static int transport_execute_tasks(struct se_cmd *cmd)
2233 {
2234 int add_tasks;
2235
2236 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2237 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2238 transport_generic_request_failure(cmd, 0, 1);
2239 return 0;
2240 }
2241
2242 /*
2243 * Call transport_cmd_check_stop() to see if a fabric exception
2244 * has occurred that prevents execution.
2245 */
2246 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2247 /*
2248 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2249 * attribute for the tasks of the received struct se_cmd CDB
2250 */
2251 add_tasks = transport_execute_task_attr(cmd);
2252 if (!add_tasks)
2253 goto execute_tasks;
2254 /*
2255 * This calls transport_add_tasks_from_cmd() to handle
2256 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2257 * (if enabled) in __transport_add_task_to_execute_queue() and
2258 * transport_add_task_check_sam_attr().
2259 */
2260 transport_add_tasks_from_cmd(cmd);
2261 }
2262 /*
2263 * Kick the execution queue for the cmd associated struct se_device
2264 * storage object.
2265 */
2266 execute_tasks:
2267 __transport_execute_tasks(cmd->se_dev);
2268 return 0;
2269 }
2270
2271 /*
2272 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2273 * from struct se_device->execute_task_list and
2274 *
2275 * Called from transport_processing_thread()
2276 */
2277 static int __transport_execute_tasks(struct se_device *dev)
2278 {
2279 int error;
2280 struct se_cmd *cmd = NULL;
2281 struct se_task *task = NULL;
2282 unsigned long flags;
2283
2284 /*
2285 * Check if there is enough room in the device and HBA queue to send
2286 * struct se_tasks to the selected transport.
2287 */
2288 check_depth:
2289 if (!atomic_read(&dev->depth_left))
2290 return transport_tcq_window_closed(dev);
2291
2292 dev->dev_tcq_window_closed = 0;
2293
2294 spin_lock_irq(&dev->execute_task_lock);
2295 if (list_empty(&dev->execute_task_list)) {
2296 spin_unlock_irq(&dev->execute_task_lock);
2297 return 0;
2298 }
2299 task = list_first_entry(&dev->execute_task_list,
2300 struct se_task, t_execute_list);
2301 __transport_remove_task_from_execute_queue(task, dev);
2302 spin_unlock_irq(&dev->execute_task_lock);
2303
2304 atomic_dec(&dev->depth_left);
2305
2306 cmd = task->task_se_cmd;
2307
2308 spin_lock_irqsave(&cmd->t_state_lock, flags);
2309 task->task_flags |= (TF_ACTIVE | TF_SENT);
2310 atomic_inc(&cmd->t_task_cdbs_sent);
2311
2312 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2313 cmd->t_task_list_num)
2314 atomic_set(&cmd->transport_sent, 1);
2315
2316 transport_start_task_timer(task);
2317 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2318 /*
2319 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2320 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2321 * struct se_subsystem_api->do_task() caller below.
2322 */
2323 if (cmd->transport_emulate_cdb) {
2324 error = cmd->transport_emulate_cdb(cmd);
2325 if (error != 0) {
2326 cmd->transport_error_status = error;
2327 spin_lock_irqsave(&cmd->t_state_lock, flags);
2328 task->task_flags &= ~TF_ACTIVE;
2329 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2330 del_timer_sync(&task->task_timer);
2331 atomic_set(&cmd->transport_sent, 0);
2332 transport_stop_tasks_for_cmd(cmd);
2333 atomic_inc(&dev->depth_left);
2334 transport_generic_request_failure(cmd, 0, 1);
2335 goto check_depth;
2336 }
2337 /*
2338 * Handle the successful completion for transport_emulate_cdb()
2339 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2340 * Otherwise the caller is expected to complete the task with
2341 * proper status.
2342 */
2343 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2344 cmd->scsi_status = SAM_STAT_GOOD;
2345 task->task_scsi_status = GOOD;
2346 transport_complete_task(task, 1);
2347 }
2348 } else {
2349 /*
2350 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2351 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2352 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2353 * LUN emulation code.
2354 *
2355 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2356 * call ->do_task() directly and let the underlying TCM subsystem plugin
2357 * code handle the CDB emulation.
2358 */
2359 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2360 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2361 error = transport_emulate_control_cdb(task);
2362 else
2363 error = dev->transport->do_task(task);
2364
2365 if (error != 0) {
2366 cmd->transport_error_status = error;
2367 spin_lock_irqsave(&cmd->t_state_lock, flags);
2368 task->task_flags &= ~TF_ACTIVE;
2369 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2370 del_timer_sync(&task->task_timer);
2371 atomic_set(&cmd->transport_sent, 0);
2372 transport_stop_tasks_for_cmd(cmd);
2373 atomic_inc(&dev->depth_left);
2374 transport_generic_request_failure(cmd, 0, 1);
2375 }
2376 }
2377
2378 goto check_depth;
2379
2380 return 0;
2381 }
2382
2383 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2384 {
2385 unsigned long flags;
2386 /*
2387 * Any unsolicited data will get dumped for failed command inside of
2388 * the fabric plugin
2389 */
2390 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2391 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2392 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2393 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2394 }
2395
2396 static inline u32 transport_get_sectors_6(
2397 unsigned char *cdb,
2398 struct se_cmd *cmd,
2399 int *ret)
2400 {
2401 struct se_device *dev = cmd->se_dev;
2402
2403 /*
2404 * Assume TYPE_DISK for non struct se_device objects.
2405 * Use 8-bit sector value.
2406 */
2407 if (!dev)
2408 goto type_disk;
2409
2410 /*
2411 * Use 24-bit allocation length for TYPE_TAPE.
2412 */
2413 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2414 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2415
2416 /*
2417 * Everything else assume TYPE_DISK Sector CDB location.
2418 * Use 8-bit sector value.
2419 */
2420 type_disk:
2421 return (u32)cdb[4];
2422 }
2423
2424 static inline u32 transport_get_sectors_10(
2425 unsigned char *cdb,
2426 struct se_cmd *cmd,
2427 int *ret)
2428 {
2429 struct se_device *dev = cmd->se_dev;
2430
2431 /*
2432 * Assume TYPE_DISK for non struct se_device objects.
2433 * Use 16-bit sector value.
2434 */
2435 if (!dev)
2436 goto type_disk;
2437
2438 /*
2439 * XXX_10 is not defined in SSC, throw an exception
2440 */
2441 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2442 *ret = -EINVAL;
2443 return 0;
2444 }
2445
2446 /*
2447 * Everything else assume TYPE_DISK Sector CDB location.
2448 * Use 16-bit sector value.
2449 */
2450 type_disk:
2451 return (u32)(cdb[7] << 8) + cdb[8];
2452 }
2453
2454 static inline u32 transport_get_sectors_12(
2455 unsigned char *cdb,
2456 struct se_cmd *cmd,
2457 int *ret)
2458 {
2459 struct se_device *dev = cmd->se_dev;
2460
2461 /*
2462 * Assume TYPE_DISK for non struct se_device objects.
2463 * Use 32-bit sector value.
2464 */
2465 if (!dev)
2466 goto type_disk;
2467
2468 /*
2469 * XXX_12 is not defined in SSC, throw an exception
2470 */
2471 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2472 *ret = -EINVAL;
2473 return 0;
2474 }
2475
2476 /*
2477 * Everything else assume TYPE_DISK Sector CDB location.
2478 * Use 32-bit sector value.
2479 */
2480 type_disk:
2481 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2482 }
2483
2484 static inline u32 transport_get_sectors_16(
2485 unsigned char *cdb,
2486 struct se_cmd *cmd,
2487 int *ret)
2488 {
2489 struct se_device *dev = cmd->se_dev;
2490
2491 /*
2492 * Assume TYPE_DISK for non struct se_device objects.
2493 * Use 32-bit sector value.
2494 */
2495 if (!dev)
2496 goto type_disk;
2497
2498 /*
2499 * Use 24-bit allocation length for TYPE_TAPE.
2500 */
2501 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2502 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2503
2504 type_disk:
2505 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2506 (cdb[12] << 8) + cdb[13];
2507 }
2508
2509 /*
2510 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2511 */
2512 static inline u32 transport_get_sectors_32(
2513 unsigned char *cdb,
2514 struct se_cmd *cmd,
2515 int *ret)
2516 {
2517 /*
2518 * Assume TYPE_DISK for non struct se_device objects.
2519 * Use 32-bit sector value.
2520 */
2521 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2522 (cdb[30] << 8) + cdb[31];
2523
2524 }
2525
2526 static inline u32 transport_get_size(
2527 u32 sectors,
2528 unsigned char *cdb,
2529 struct se_cmd *cmd)
2530 {
2531 struct se_device *dev = cmd->se_dev;
2532
2533 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2534 if (cdb[1] & 1) { /* sectors */
2535 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2536 } else /* bytes */
2537 return sectors;
2538 }
2539 #if 0
2540 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2541 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2542 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2543 dev->transport->name);
2544 #endif
2545 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2546 }
2547
2548 static void transport_xor_callback(struct se_cmd *cmd)
2549 {
2550 unsigned char *buf, *addr;
2551 struct scatterlist *sg;
2552 unsigned int offset;
2553 int i;
2554 int count;
2555 /*
2556 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2557 *
2558 * 1) read the specified logical block(s);
2559 * 2) transfer logical blocks from the data-out buffer;
2560 * 3) XOR the logical blocks transferred from the data-out buffer with
2561 * the logical blocks read, storing the resulting XOR data in a buffer;
2562 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2563 * blocks transferred from the data-out buffer; and
2564 * 5) transfer the resulting XOR data to the data-in buffer.
2565 */
2566 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2567 if (!buf) {
2568 pr_err("Unable to allocate xor_callback buf\n");
2569 return;
2570 }
2571 /*
2572 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2573 * into the locally allocated *buf
2574 */
2575 sg_copy_to_buffer(cmd->t_data_sg,
2576 cmd->t_data_nents,
2577 buf,
2578 cmd->data_length);
2579
2580 /*
2581 * Now perform the XOR against the BIDI read memory located at
2582 * cmd->t_mem_bidi_list
2583 */
2584
2585 offset = 0;
2586 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2587 addr = kmap_atomic(sg_page(sg), KM_USER0);
2588 if (!addr)
2589 goto out;
2590
2591 for (i = 0; i < sg->length; i++)
2592 *(addr + sg->offset + i) ^= *(buf + offset + i);
2593
2594 offset += sg->length;
2595 kunmap_atomic(addr, KM_USER0);
2596 }
2597
2598 out:
2599 kfree(buf);
2600 }
2601
2602 /*
2603 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2604 */
2605 static int transport_get_sense_data(struct se_cmd *cmd)
2606 {
2607 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2608 struct se_device *dev = cmd->se_dev;
2609 struct se_task *task = NULL, *task_tmp;
2610 unsigned long flags;
2611 u32 offset = 0;
2612
2613 WARN_ON(!cmd->se_lun);
2614
2615 if (!dev)
2616 return 0;
2617
2618 spin_lock_irqsave(&cmd->t_state_lock, flags);
2619 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2620 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2621 return 0;
2622 }
2623
2624 list_for_each_entry_safe(task, task_tmp,
2625 &cmd->t_task_list, t_list) {
2626 if (!task->task_sense)
2627 continue;
2628
2629 if (!dev->transport->get_sense_buffer) {
2630 pr_err("dev->transport->get_sense_buffer"
2631 " is NULL\n");
2632 continue;
2633 }
2634
2635 sense_buffer = dev->transport->get_sense_buffer(task);
2636 if (!sense_buffer) {
2637 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2638 " sense buffer for task with sense\n",
2639 cmd->se_tfo->get_task_tag(cmd), task);
2640 continue;
2641 }
2642 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643
2644 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2645 TRANSPORT_SENSE_BUFFER);
2646
2647 memcpy(&buffer[offset], sense_buffer,
2648 TRANSPORT_SENSE_BUFFER);
2649 cmd->scsi_status = task->task_scsi_status;
2650 /* Automatically padded */
2651 cmd->scsi_sense_length =
2652 (TRANSPORT_SENSE_BUFFER + offset);
2653
2654 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2655 " and sense\n",
2656 dev->se_hba->hba_id, dev->transport->name,
2657 cmd->scsi_status);
2658 return 0;
2659 }
2660 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2661
2662 return -1;
2663 }
2664
2665 static int
2666 transport_handle_reservation_conflict(struct se_cmd *cmd)
2667 {
2668 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2669 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2670 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2671 /*
2672 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2673 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2674 * CONFLICT STATUS.
2675 *
2676 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2677 */
2678 if (cmd->se_sess &&
2679 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2680 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2681 cmd->orig_fe_lun, 0x2C,
2682 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2683 return -EINVAL;
2684 }
2685
2686 static inline long long transport_dev_end_lba(struct se_device *dev)
2687 {
2688 return dev->transport->get_blocks(dev) + 1;
2689 }
2690
2691 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2692 {
2693 struct se_device *dev = cmd->se_dev;
2694 u32 sectors;
2695
2696 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2697 return 0;
2698
2699 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2700
2701 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2702 pr_err("LBA: %llu Sectors: %u exceeds"
2703 " transport_dev_end_lba(): %llu\n",
2704 cmd->t_task_lba, sectors,
2705 transport_dev_end_lba(dev));
2706 return -EINVAL;
2707 }
2708
2709 return 0;
2710 }
2711
2712 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2713 {
2714 /*
2715 * Determine if the received WRITE_SAME is used to for direct
2716 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2717 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2718 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2719 */
2720 int passthrough = (dev->transport->transport_type ==
2721 TRANSPORT_PLUGIN_PHBA_PDEV);
2722
2723 if (!passthrough) {
2724 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2725 pr_err("WRITE_SAME PBDATA and LBDATA"
2726 " bits not supported for Block Discard"
2727 " Emulation\n");
2728 return -ENOSYS;
2729 }
2730 /*
2731 * Currently for the emulated case we only accept
2732 * tpws with the UNMAP=1 bit set.
2733 */
2734 if (!(flags[0] & 0x08)) {
2735 pr_err("WRITE_SAME w/o UNMAP bit not"
2736 " supported for Block Discard Emulation\n");
2737 return -ENOSYS;
2738 }
2739 }
2740
2741 return 0;
2742 }
2743
2744 /* transport_generic_cmd_sequencer():
2745 *
2746 * Generic Command Sequencer that should work for most DAS transport
2747 * drivers.
2748 *
2749 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2750 * RX Thread.
2751 *
2752 * FIXME: Need to support other SCSI OPCODES where as well.
2753 */
2754 static int transport_generic_cmd_sequencer(
2755 struct se_cmd *cmd,
2756 unsigned char *cdb)
2757 {
2758 struct se_device *dev = cmd->se_dev;
2759 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2760 int ret = 0, sector_ret = 0, passthrough;
2761 u32 sectors = 0, size = 0, pr_reg_type = 0;
2762 u16 service_action;
2763 u8 alua_ascq = 0;
2764 /*
2765 * Check for an existing UNIT ATTENTION condition
2766 */
2767 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2768 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2769 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2770 return -EINVAL;
2771 }
2772 /*
2773 * Check status of Asymmetric Logical Unit Assignment port
2774 */
2775 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2776 if (ret != 0) {
2777 /*
2778 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2779 * The ALUA additional sense code qualifier (ASCQ) is determined
2780 * by the ALUA primary or secondary access state..
2781 */
2782 if (ret > 0) {
2783 #if 0
2784 pr_debug("[%s]: ALUA TG Port not available,"
2785 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2786 cmd->se_tfo->get_fabric_name(), alua_ascq);
2787 #endif
2788 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2789 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2790 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2791 return -EINVAL;
2792 }
2793 goto out_invalid_cdb_field;
2794 }
2795 /*
2796 * Check status for SPC-3 Persistent Reservations
2797 */
2798 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2799 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2800 cmd, cdb, pr_reg_type) != 0)
2801 return transport_handle_reservation_conflict(cmd);
2802 /*
2803 * This means the CDB is allowed for the SCSI Initiator port
2804 * when said port is *NOT* holding the legacy SPC-2 or
2805 * SPC-3 Persistent Reservation.
2806 */
2807 }
2808
2809 switch (cdb[0]) {
2810 case READ_6:
2811 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2812 if (sector_ret)
2813 goto out_unsupported_cdb;
2814 size = transport_get_size(sectors, cdb, cmd);
2815 cmd->t_task_lba = transport_lba_21(cdb);
2816 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2817 break;
2818 case READ_10:
2819 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2820 if (sector_ret)
2821 goto out_unsupported_cdb;
2822 size = transport_get_size(sectors, cdb, cmd);
2823 cmd->t_task_lba = transport_lba_32(cdb);
2824 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2825 break;
2826 case READ_12:
2827 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2828 if (sector_ret)
2829 goto out_unsupported_cdb;
2830 size = transport_get_size(sectors, cdb, cmd);
2831 cmd->t_task_lba = transport_lba_32(cdb);
2832 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2833 break;
2834 case READ_16:
2835 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2836 if (sector_ret)
2837 goto out_unsupported_cdb;
2838 size = transport_get_size(sectors, cdb, cmd);
2839 cmd->t_task_lba = transport_lba_64(cdb);
2840 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2841 break;
2842 case WRITE_6:
2843 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2844 if (sector_ret)
2845 goto out_unsupported_cdb;
2846 size = transport_get_size(sectors, cdb, cmd);
2847 cmd->t_task_lba = transport_lba_21(cdb);
2848 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2849 break;
2850 case WRITE_10:
2851 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2852 if (sector_ret)
2853 goto out_unsupported_cdb;
2854 size = transport_get_size(sectors, cdb, cmd);
2855 cmd->t_task_lba = transport_lba_32(cdb);
2856 cmd->t_tasks_fua = (cdb[1] & 0x8);
2857 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2858 break;
2859 case WRITE_12:
2860 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2861 if (sector_ret)
2862 goto out_unsupported_cdb;
2863 size = transport_get_size(sectors, cdb, cmd);
2864 cmd->t_task_lba = transport_lba_32(cdb);
2865 cmd->t_tasks_fua = (cdb[1] & 0x8);
2866 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2867 break;
2868 case WRITE_16:
2869 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2870 if (sector_ret)
2871 goto out_unsupported_cdb;
2872 size = transport_get_size(sectors, cdb, cmd);
2873 cmd->t_task_lba = transport_lba_64(cdb);
2874 cmd->t_tasks_fua = (cdb[1] & 0x8);
2875 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2876 break;
2877 case XDWRITEREAD_10:
2878 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2879 !(cmd->t_tasks_bidi))
2880 goto out_invalid_cdb_field;
2881 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2882 if (sector_ret)
2883 goto out_unsupported_cdb;
2884 size = transport_get_size(sectors, cdb, cmd);
2885 cmd->t_task_lba = transport_lba_32(cdb);
2886 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2887 passthrough = (dev->transport->transport_type ==
2888 TRANSPORT_PLUGIN_PHBA_PDEV);
2889 /*
2890 * Skip the remaining assignments for TCM/PSCSI passthrough
2891 */
2892 if (passthrough)
2893 break;
2894 /*
2895 * Setup BIDI XOR callback to be run after I/O completion.
2896 */
2897 cmd->transport_complete_callback = &transport_xor_callback;
2898 cmd->t_tasks_fua = (cdb[1] & 0x8);
2899 break;
2900 case VARIABLE_LENGTH_CMD:
2901 service_action = get_unaligned_be16(&cdb[8]);
2902 /*
2903 * Determine if this is TCM/PSCSI device and we should disable
2904 * internal emulation for this CDB.
2905 */
2906 passthrough = (dev->transport->transport_type ==
2907 TRANSPORT_PLUGIN_PHBA_PDEV);
2908
2909 switch (service_action) {
2910 case XDWRITEREAD_32:
2911 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2912 if (sector_ret)
2913 goto out_unsupported_cdb;
2914 size = transport_get_size(sectors, cdb, cmd);
2915 /*
2916 * Use WRITE_32 and READ_32 opcodes for the emulated
2917 * XDWRITE_READ_32 logic.
2918 */
2919 cmd->t_task_lba = transport_lba_64_ext(cdb);
2920 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2921
2922 /*
2923 * Skip the remaining assignments for TCM/PSCSI passthrough
2924 */
2925 if (passthrough)
2926 break;
2927
2928 /*
2929 * Setup BIDI XOR callback to be run during after I/O
2930 * completion.
2931 */
2932 cmd->transport_complete_callback = &transport_xor_callback;
2933 cmd->t_tasks_fua = (cdb[10] & 0x8);
2934 break;
2935 case WRITE_SAME_32:
2936 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2937 if (sector_ret)
2938 goto out_unsupported_cdb;
2939
2940 if (sectors)
2941 size = transport_get_size(1, cdb, cmd);
2942 else {
2943 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2944 " supported\n");
2945 goto out_invalid_cdb_field;
2946 }
2947
2948 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2949 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2950
2951 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2952 goto out_invalid_cdb_field;
2953
2954 break;
2955 default:
2956 pr_err("VARIABLE_LENGTH_CMD service action"
2957 " 0x%04x not supported\n", service_action);
2958 goto out_unsupported_cdb;
2959 }
2960 break;
2961 case MAINTENANCE_IN:
2962 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2963 /* MAINTENANCE_IN from SCC-2 */
2964 /*
2965 * Check for emulated MI_REPORT_TARGET_PGS.
2966 */
2967 if (cdb[1] == MI_REPORT_TARGET_PGS) {
2968 cmd->transport_emulate_cdb =
2969 (su_dev->t10_alua.alua_type ==
2970 SPC3_ALUA_EMULATED) ?
2971 core_emulate_report_target_port_groups :
2972 NULL;
2973 }
2974 size = (cdb[6] << 24) | (cdb[7] << 16) |
2975 (cdb[8] << 8) | cdb[9];
2976 } else {
2977 /* GPCMD_SEND_KEY from multi media commands */
2978 size = (cdb[8] << 8) + cdb[9];
2979 }
2980 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2981 break;
2982 case MODE_SELECT:
2983 size = cdb[4];
2984 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2985 break;
2986 case MODE_SELECT_10:
2987 size = (cdb[7] << 8) + cdb[8];
2988 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2989 break;
2990 case MODE_SENSE:
2991 size = cdb[4];
2992 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2993 break;
2994 case MODE_SENSE_10:
2995 case GPCMD_READ_BUFFER_CAPACITY:
2996 case GPCMD_SEND_OPC:
2997 case LOG_SELECT:
2998 case LOG_SENSE:
2999 size = (cdb[7] << 8) + cdb[8];
3000 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3001 break;
3002 case READ_BLOCK_LIMITS:
3003 size = READ_BLOCK_LEN;
3004 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3005 break;
3006 case GPCMD_GET_CONFIGURATION:
3007 case GPCMD_READ_FORMAT_CAPACITIES:
3008 case GPCMD_READ_DISC_INFO:
3009 case GPCMD_READ_TRACK_RZONE_INFO:
3010 size = (cdb[7] << 8) + cdb[8];
3011 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3012 break;
3013 case PERSISTENT_RESERVE_IN:
3014 case PERSISTENT_RESERVE_OUT:
3015 cmd->transport_emulate_cdb =
3016 (su_dev->t10_pr.res_type ==
3017 SPC3_PERSISTENT_RESERVATIONS) ?
3018 core_scsi3_emulate_pr : NULL;
3019 size = (cdb[7] << 8) + cdb[8];
3020 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3021 break;
3022 case GPCMD_MECHANISM_STATUS:
3023 case GPCMD_READ_DVD_STRUCTURE:
3024 size = (cdb[8] << 8) + cdb[9];
3025 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3026 break;
3027 case READ_POSITION:
3028 size = READ_POSITION_LEN;
3029 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3030 break;
3031 case MAINTENANCE_OUT:
3032 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3033 /* MAINTENANCE_OUT from SCC-2
3034 *
3035 * Check for emulated MO_SET_TARGET_PGS.
3036 */
3037 if (cdb[1] == MO_SET_TARGET_PGS) {
3038 cmd->transport_emulate_cdb =
3039 (su_dev->t10_alua.alua_type ==
3040 SPC3_ALUA_EMULATED) ?
3041 core_emulate_set_target_port_groups :
3042 NULL;
3043 }
3044
3045 size = (cdb[6] << 24) | (cdb[7] << 16) |
3046 (cdb[8] << 8) | cdb[9];
3047 } else {
3048 /* GPCMD_REPORT_KEY from multi media commands */
3049 size = (cdb[8] << 8) + cdb[9];
3050 }
3051 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052 break;
3053 case INQUIRY:
3054 size = (cdb[3] << 8) + cdb[4];
3055 /*
3056 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3057 * See spc4r17 section 5.3
3058 */
3059 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3060 cmd->sam_task_attr = MSG_HEAD_TAG;
3061 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3062 break;
3063 case READ_BUFFER:
3064 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3065 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3066 break;
3067 case READ_CAPACITY:
3068 size = READ_CAP_LEN;
3069 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3070 break;
3071 case READ_MEDIA_SERIAL_NUMBER:
3072 case SECURITY_PROTOCOL_IN:
3073 case SECURITY_PROTOCOL_OUT:
3074 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3075 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3076 break;
3077 case SERVICE_ACTION_IN:
3078 case ACCESS_CONTROL_IN:
3079 case ACCESS_CONTROL_OUT:
3080 case EXTENDED_COPY:
3081 case READ_ATTRIBUTE:
3082 case RECEIVE_COPY_RESULTS:
3083 case WRITE_ATTRIBUTE:
3084 size = (cdb[10] << 24) | (cdb[11] << 16) |
3085 (cdb[12] << 8) | cdb[13];
3086 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3087 break;
3088 case RECEIVE_DIAGNOSTIC:
3089 case SEND_DIAGNOSTIC:
3090 size = (cdb[3] << 8) | cdb[4];
3091 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092 break;
3093 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3094 #if 0
3095 case GPCMD_READ_CD:
3096 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3097 size = (2336 * sectors);
3098 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3099 break;
3100 #endif
3101 case READ_TOC:
3102 size = cdb[8];
3103 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3104 break;
3105 case REQUEST_SENSE:
3106 size = cdb[4];
3107 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3108 break;
3109 case READ_ELEMENT_STATUS:
3110 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3111 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3112 break;
3113 case WRITE_BUFFER:
3114 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3115 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3116 break;
3117 case RESERVE:
3118 case RESERVE_10:
3119 /*
3120 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3121 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3122 */
3123 if (cdb[0] == RESERVE_10)
3124 size = (cdb[7] << 8) | cdb[8];
3125 else
3126 size = cmd->data_length;
3127
3128 /*
3129 * Setup the legacy emulated handler for SPC-2 and
3130 * >= SPC-3 compatible reservation handling (CRH=1)
3131 * Otherwise, we assume the underlying SCSI logic is
3132 * is running in SPC_PASSTHROUGH, and wants reservations
3133 * emulation disabled.
3134 */
3135 cmd->transport_emulate_cdb =
3136 (su_dev->t10_pr.res_type !=
3137 SPC_PASSTHROUGH) ?
3138 core_scsi2_emulate_crh : NULL;
3139 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3140 break;
3141 case RELEASE:
3142 case RELEASE_10:
3143 /*
3144 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3145 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3146 */
3147 if (cdb[0] == RELEASE_10)
3148 size = (cdb[7] << 8) | cdb[8];
3149 else
3150 size = cmd->data_length;
3151
3152 cmd->transport_emulate_cdb =
3153 (su_dev->t10_pr.res_type !=
3154 SPC_PASSTHROUGH) ?
3155 core_scsi2_emulate_crh : NULL;
3156 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3157 break;
3158 case SYNCHRONIZE_CACHE:
3159 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3160 /*
3161 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3162 */
3163 if (cdb[0] == SYNCHRONIZE_CACHE) {
3164 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3165 cmd->t_task_lba = transport_lba_32(cdb);
3166 } else {
3167 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3168 cmd->t_task_lba = transport_lba_64(cdb);
3169 }
3170 if (sector_ret)
3171 goto out_unsupported_cdb;
3172
3173 size = transport_get_size(sectors, cdb, cmd);
3174 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3175
3176 /*
3177 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3178 */
3179 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3180 break;
3181 /*
3182 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3183 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3184 */
3185 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3186 /*
3187 * Check to ensure that LBA + Range does not exceed past end of
3188 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3189 */
3190 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3191 if (transport_cmd_get_valid_sectors(cmd) < 0)
3192 goto out_invalid_cdb_field;
3193 }
3194 break;
3195 case UNMAP:
3196 size = get_unaligned_be16(&cdb[7]);
3197 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3198 break;
3199 case WRITE_SAME_16:
3200 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3201 if (sector_ret)
3202 goto out_unsupported_cdb;
3203
3204 if (sectors)
3205 size = transport_get_size(1, cdb, cmd);
3206 else {
3207 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3208 goto out_invalid_cdb_field;
3209 }
3210
3211 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3212 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3213
3214 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3215 goto out_invalid_cdb_field;
3216 break;
3217 case WRITE_SAME:
3218 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3219 if (sector_ret)
3220 goto out_unsupported_cdb;
3221
3222 if (sectors)
3223 size = transport_get_size(1, cdb, cmd);
3224 else {
3225 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3226 goto out_invalid_cdb_field;
3227 }
3228
3229 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3230 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3231 /*
3232 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3233 * of byte 1 bit 3 UNMAP instead of original reserved field
3234 */
3235 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3236 goto out_invalid_cdb_field;
3237 break;
3238 case ALLOW_MEDIUM_REMOVAL:
3239 case GPCMD_CLOSE_TRACK:
3240 case ERASE:
3241 case INITIALIZE_ELEMENT_STATUS:
3242 case GPCMD_LOAD_UNLOAD:
3243 case REZERO_UNIT:
3244 case SEEK_10:
3245 case GPCMD_SET_SPEED:
3246 case SPACE:
3247 case START_STOP:
3248 case TEST_UNIT_READY:
3249 case VERIFY:
3250 case WRITE_FILEMARKS:
3251 case MOVE_MEDIUM:
3252 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3253 break;
3254 case REPORT_LUNS:
3255 cmd->transport_emulate_cdb =
3256 transport_core_report_lun_response;
3257 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3258 /*
3259 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3260 * See spc4r17 section 5.3
3261 */
3262 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3263 cmd->sam_task_attr = MSG_HEAD_TAG;
3264 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3265 break;
3266 default:
3267 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3268 " 0x%02x, sending CHECK_CONDITION.\n",
3269 cmd->se_tfo->get_fabric_name(), cdb[0]);
3270 goto out_unsupported_cdb;
3271 }
3272
3273 if (size != cmd->data_length) {
3274 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3275 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3276 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3277 cmd->data_length, size, cdb[0]);
3278
3279 cmd->cmd_spdtl = size;
3280
3281 if (cmd->data_direction == DMA_TO_DEVICE) {
3282 pr_err("Rejecting underflow/overflow"
3283 " WRITE data\n");
3284 goto out_invalid_cdb_field;
3285 }
3286 /*
3287 * Reject READ_* or WRITE_* with overflow/underflow for
3288 * type SCF_SCSI_DATA_SG_IO_CDB.
3289 */
3290 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3291 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3292 " CDB on non 512-byte sector setup subsystem"
3293 " plugin: %s\n", dev->transport->name);
3294 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3295 goto out_invalid_cdb_field;
3296 }
3297
3298 if (size > cmd->data_length) {
3299 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3300 cmd->residual_count = (size - cmd->data_length);
3301 } else {
3302 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3303 cmd->residual_count = (cmd->data_length - size);
3304 }
3305 cmd->data_length = size;
3306 }
3307
3308 /* Let's limit control cdbs to a page, for simplicity's sake. */
3309 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3310 size > PAGE_SIZE)
3311 goto out_invalid_cdb_field;
3312
3313 transport_set_supported_SAM_opcode(cmd);
3314 return ret;
3315
3316 out_unsupported_cdb:
3317 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3318 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3319 return -EINVAL;
3320 out_invalid_cdb_field:
3321 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3322 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3323 return -EINVAL;
3324 }
3325
3326 /*
3327 * Called from I/O completion to determine which dormant/delayed
3328 * and ordered cmds need to have their tasks added to the execution queue.
3329 */
3330 static void transport_complete_task_attr(struct se_cmd *cmd)
3331 {
3332 struct se_device *dev = cmd->se_dev;
3333 struct se_cmd *cmd_p, *cmd_tmp;
3334 int new_active_tasks = 0;
3335
3336 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3337 atomic_dec(&dev->simple_cmds);
3338 smp_mb__after_atomic_dec();
3339 dev->dev_cur_ordered_id++;
3340 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3341 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3342 cmd->se_ordered_id);
3343 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3344 atomic_dec(&dev->dev_hoq_count);
3345 smp_mb__after_atomic_dec();
3346 dev->dev_cur_ordered_id++;
3347 pr_debug("Incremented dev_cur_ordered_id: %u for"
3348 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3349 cmd->se_ordered_id);
3350 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3351 spin_lock(&dev->ordered_cmd_lock);
3352 list_del(&cmd->se_ordered_node);
3353 atomic_dec(&dev->dev_ordered_sync);
3354 smp_mb__after_atomic_dec();
3355 spin_unlock(&dev->ordered_cmd_lock);
3356
3357 dev->dev_cur_ordered_id++;
3358 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3359 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3360 }
3361 /*
3362 * Process all commands up to the last received
3363 * ORDERED task attribute which requires another blocking
3364 * boundary
3365 */
3366 spin_lock(&dev->delayed_cmd_lock);
3367 list_for_each_entry_safe(cmd_p, cmd_tmp,
3368 &dev->delayed_cmd_list, se_delayed_node) {
3369
3370 list_del(&cmd_p->se_delayed_node);
3371 spin_unlock(&dev->delayed_cmd_lock);
3372
3373 pr_debug("Calling add_tasks() for"
3374 " cmd_p: 0x%02x Task Attr: 0x%02x"
3375 " Dormant -> Active, se_ordered_id: %u\n",
3376 cmd_p->t_task_cdb[0],
3377 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3378
3379 transport_add_tasks_from_cmd(cmd_p);
3380 new_active_tasks++;
3381
3382 spin_lock(&dev->delayed_cmd_lock);
3383 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3384 break;
3385 }
3386 spin_unlock(&dev->delayed_cmd_lock);
3387 /*
3388 * If new tasks have become active, wake up the transport thread
3389 * to do the processing of the Active tasks.
3390 */
3391 if (new_active_tasks != 0)
3392 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3393 }
3394
3395 static void transport_complete_qf(struct se_cmd *cmd)
3396 {
3397 int ret = 0;
3398
3399 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3400 transport_complete_task_attr(cmd);
3401
3402 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3403 ret = cmd->se_tfo->queue_status(cmd);
3404 if (ret)
3405 goto out;
3406 }
3407
3408 switch (cmd->data_direction) {
3409 case DMA_FROM_DEVICE:
3410 ret = cmd->se_tfo->queue_data_in(cmd);
3411 break;
3412 case DMA_TO_DEVICE:
3413 if (cmd->t_bidi_data_sg) {
3414 ret = cmd->se_tfo->queue_data_in(cmd);
3415 if (ret < 0)
3416 break;
3417 }
3418 /* Fall through for DMA_TO_DEVICE */
3419 case DMA_NONE:
3420 ret = cmd->se_tfo->queue_status(cmd);
3421 break;
3422 default:
3423 break;
3424 }
3425
3426 out:
3427 if (ret < 0) {
3428 transport_handle_queue_full(cmd, cmd->se_dev);
3429 return;
3430 }
3431 transport_lun_remove_cmd(cmd);
3432 transport_cmd_check_stop_to_fabric(cmd);
3433 }
3434
3435 static void transport_handle_queue_full(
3436 struct se_cmd *cmd,
3437 struct se_device *dev)
3438 {
3439 spin_lock_irq(&dev->qf_cmd_lock);
3440 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3441 atomic_inc(&dev->dev_qf_count);
3442 smp_mb__after_atomic_inc();
3443 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3444
3445 schedule_work(&cmd->se_dev->qf_work_queue);
3446 }
3447
3448 static void target_complete_ok_work(struct work_struct *work)
3449 {
3450 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3451 int reason = 0, ret;
3452
3453 /*
3454 * Check if we need to move delayed/dormant tasks from cmds on the
3455 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3456 * Attribute.
3457 */
3458 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3459 transport_complete_task_attr(cmd);
3460 /*
3461 * Check to schedule QUEUE_FULL work, or execute an existing
3462 * cmd->transport_qf_callback()
3463 */
3464 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3465 schedule_work(&cmd->se_dev->qf_work_queue);
3466
3467 /*
3468 * Check if we need to retrieve a sense buffer from
3469 * the struct se_cmd in question.
3470 */
3471 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3472 if (transport_get_sense_data(cmd) < 0)
3473 reason = TCM_NON_EXISTENT_LUN;
3474
3475 /*
3476 * Only set when an struct se_task->task_scsi_status returned
3477 * a non GOOD status.
3478 */
3479 if (cmd->scsi_status) {
3480 ret = transport_send_check_condition_and_sense(
3481 cmd, reason, 1);
3482 if (ret == -EAGAIN)
3483 goto queue_full;
3484
3485 transport_lun_remove_cmd(cmd);
3486 transport_cmd_check_stop_to_fabric(cmd);
3487 return;
3488 }
3489 }
3490 /*
3491 * Check for a callback, used by amongst other things
3492 * XDWRITE_READ_10 emulation.
3493 */
3494 if (cmd->transport_complete_callback)
3495 cmd->transport_complete_callback(cmd);
3496
3497 switch (cmd->data_direction) {
3498 case DMA_FROM_DEVICE:
3499 spin_lock(&cmd->se_lun->lun_sep_lock);
3500 if (cmd->se_lun->lun_sep) {
3501 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3502 cmd->data_length;
3503 }
3504 spin_unlock(&cmd->se_lun->lun_sep_lock);
3505
3506 ret = cmd->se_tfo->queue_data_in(cmd);
3507 if (ret == -EAGAIN)
3508 goto queue_full;
3509 break;
3510 case DMA_TO_DEVICE:
3511 spin_lock(&cmd->se_lun->lun_sep_lock);
3512 if (cmd->se_lun->lun_sep) {
3513 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3514 cmd->data_length;
3515 }
3516 spin_unlock(&cmd->se_lun->lun_sep_lock);
3517 /*
3518 * Check if we need to send READ payload for BIDI-COMMAND
3519 */
3520 if (cmd->t_bidi_data_sg) {
3521 spin_lock(&cmd->se_lun->lun_sep_lock);
3522 if (cmd->se_lun->lun_sep) {
3523 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3524 cmd->data_length;
3525 }
3526 spin_unlock(&cmd->se_lun->lun_sep_lock);
3527 ret = cmd->se_tfo->queue_data_in(cmd);
3528 if (ret == -EAGAIN)
3529 goto queue_full;
3530 break;
3531 }
3532 /* Fall through for DMA_TO_DEVICE */
3533 case DMA_NONE:
3534 ret = cmd->se_tfo->queue_status(cmd);
3535 if (ret == -EAGAIN)
3536 goto queue_full;
3537 break;
3538 default:
3539 break;
3540 }
3541
3542 transport_lun_remove_cmd(cmd);
3543 transport_cmd_check_stop_to_fabric(cmd);
3544 return;
3545
3546 queue_full:
3547 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3548 " data_direction: %d\n", cmd, cmd->data_direction);
3549 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3550 transport_handle_queue_full(cmd, cmd->se_dev);
3551 }
3552
3553 static void transport_free_dev_tasks(struct se_cmd *cmd)
3554 {
3555 struct se_task *task, *task_tmp;
3556 unsigned long flags;
3557 LIST_HEAD(dispose_list);
3558
3559 spin_lock_irqsave(&cmd->t_state_lock, flags);
3560 list_for_each_entry_safe(task, task_tmp,
3561 &cmd->t_task_list, t_list) {
3562 if (!(task->task_flags & TF_ACTIVE))
3563 list_move_tail(&task->t_list, &dispose_list);
3564 }
3565 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3566
3567 while (!list_empty(&dispose_list)) {
3568 task = list_first_entry(&dispose_list, struct se_task, t_list);
3569
3570 /*
3571 * We already cancelled all pending timers in
3572 * transport_complete_task, but that was just a pure del_timer,
3573 * so do a full del_timer_sync here to make sure any handler
3574 * that was running at that point has finished execution.
3575 */
3576 del_timer_sync(&task->task_timer);
3577
3578 kfree(task->task_sg_bidi);
3579 kfree(task->task_sg);
3580
3581 list_del(&task->t_list);
3582
3583 cmd->se_dev->transport->free_task(task);
3584 }
3585 }
3586
3587 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3588 {
3589 struct scatterlist *sg;
3590 int count;
3591
3592 for_each_sg(sgl, sg, nents, count)
3593 __free_page(sg_page(sg));
3594
3595 kfree(sgl);
3596 }
3597
3598 static inline void transport_free_pages(struct se_cmd *cmd)
3599 {
3600 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3601 return;
3602
3603 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3604 cmd->t_data_sg = NULL;
3605 cmd->t_data_nents = 0;
3606
3607 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3608 cmd->t_bidi_data_sg = NULL;
3609 cmd->t_bidi_data_nents = 0;
3610 }
3611
3612 /**
3613 * transport_put_cmd - release a reference to a command
3614 * @cmd: command to release
3615 *
3616 * This routine releases our reference to the command and frees it if possible.
3617 */
3618 static void transport_put_cmd(struct se_cmd *cmd)
3619 {
3620 unsigned long flags;
3621 int free_tasks = 0;
3622
3623 spin_lock_irqsave(&cmd->t_state_lock, flags);
3624 if (atomic_read(&cmd->t_fe_count)) {
3625 if (!atomic_dec_and_test(&cmd->t_fe_count))
3626 goto out_busy;
3627 }
3628
3629 if (atomic_read(&cmd->t_se_count)) {
3630 if (!atomic_dec_and_test(&cmd->t_se_count))
3631 goto out_busy;
3632 }
3633
3634 if (atomic_read(&cmd->transport_dev_active)) {
3635 atomic_set(&cmd->transport_dev_active, 0);
3636 transport_all_task_dev_remove_state(cmd);
3637 free_tasks = 1;
3638 }
3639 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3640
3641 if (free_tasks != 0)
3642 transport_free_dev_tasks(cmd);
3643
3644 transport_free_pages(cmd);
3645 transport_release_cmd(cmd);
3646 return;
3647 out_busy:
3648 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3649 }
3650
3651 /*
3652 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3653 * allocating in the core.
3654 * @cmd: Associated se_cmd descriptor
3655 * @mem: SGL style memory for TCM WRITE / READ
3656 * @sg_mem_num: Number of SGL elements
3657 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3658 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3659 *
3660 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3661 * of parameters.
3662 */
3663 int transport_generic_map_mem_to_cmd(
3664 struct se_cmd *cmd,
3665 struct scatterlist *sgl,
3666 u32 sgl_count,
3667 struct scatterlist *sgl_bidi,
3668 u32 sgl_bidi_count)
3669 {
3670 if (!sgl || !sgl_count)
3671 return 0;
3672
3673 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3674 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3675
3676 cmd->t_data_sg = sgl;
3677 cmd->t_data_nents = sgl_count;
3678
3679 if (sgl_bidi && sgl_bidi_count) {
3680 cmd->t_bidi_data_sg = sgl_bidi;
3681 cmd->t_bidi_data_nents = sgl_bidi_count;
3682 }
3683 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3684 }
3685
3686 return 0;
3687 }
3688 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3689
3690 static int transport_new_cmd_obj(struct se_cmd *cmd)
3691 {
3692 struct se_device *dev = cmd->se_dev;
3693 int set_counts = 1, rc, task_cdbs;
3694
3695 /*
3696 * Setup any BIDI READ tasks and memory from
3697 * cmd->t_mem_bidi_list so the READ struct se_tasks
3698 * are queued first for the non pSCSI passthrough case.
3699 */
3700 if (cmd->t_bidi_data_sg &&
3701 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3702 rc = transport_allocate_tasks(cmd,
3703 cmd->t_task_lba,
3704 DMA_FROM_DEVICE,
3705 cmd->t_bidi_data_sg,
3706 cmd->t_bidi_data_nents);
3707 if (rc <= 0) {
3708 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3709 cmd->scsi_sense_reason =
3710 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3711 return -EINVAL;
3712 }
3713 atomic_inc(&cmd->t_fe_count);
3714 atomic_inc(&cmd->t_se_count);
3715 set_counts = 0;
3716 }
3717 /*
3718 * Setup the tasks and memory from cmd->t_mem_list
3719 * Note for BIDI transfers this will contain the WRITE payload
3720 */
3721 task_cdbs = transport_allocate_tasks(cmd,
3722 cmd->t_task_lba,
3723 cmd->data_direction,
3724 cmd->t_data_sg,
3725 cmd->t_data_nents);
3726 if (task_cdbs <= 0) {
3727 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3728 cmd->scsi_sense_reason =
3729 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3730 return -EINVAL;
3731 }
3732
3733 if (set_counts) {
3734 atomic_inc(&cmd->t_fe_count);
3735 atomic_inc(&cmd->t_se_count);
3736 }
3737
3738 cmd->t_task_list_num = task_cdbs;
3739
3740 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3741 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3742 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3743 return 0;
3744 }
3745
3746 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3747 {
3748 struct scatterlist *sg = cmd->t_data_sg;
3749
3750 BUG_ON(!sg);
3751 /*
3752 * We need to take into account a possible offset here for fabrics like
3753 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3754 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3755 */
3756 return kmap(sg_page(sg)) + sg->offset;
3757 }
3758 EXPORT_SYMBOL(transport_kmap_first_data_page);
3759
3760 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3761 {
3762 kunmap(sg_page(cmd->t_data_sg));
3763 }
3764 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3765
3766 static int
3767 transport_generic_get_mem(struct se_cmd *cmd)
3768 {
3769 u32 length = cmd->data_length;
3770 unsigned int nents;
3771 struct page *page;
3772 int i = 0;
3773
3774 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3775 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3776 if (!cmd->t_data_sg)
3777 return -ENOMEM;
3778
3779 cmd->t_data_nents = nents;
3780 sg_init_table(cmd->t_data_sg, nents);
3781
3782 while (length) {
3783 u32 page_len = min_t(u32, length, PAGE_SIZE);
3784 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3785 if (!page)
3786 goto out;
3787
3788 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3789 length -= page_len;
3790 i++;
3791 }
3792 return 0;
3793
3794 out:
3795 while (i >= 0) {
3796 __free_page(sg_page(&cmd->t_data_sg[i]));
3797 i--;
3798 }
3799 kfree(cmd->t_data_sg);
3800 cmd->t_data_sg = NULL;
3801 return -ENOMEM;
3802 }
3803
3804 /* Reduce sectors if they are too long for the device */
3805 static inline sector_t transport_limit_task_sectors(
3806 struct se_device *dev,
3807 unsigned long long lba,
3808 sector_t sectors)
3809 {
3810 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3811
3812 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3813 if ((lba + sectors) > transport_dev_end_lba(dev))
3814 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3815
3816 return sectors;
3817 }
3818
3819
3820 /*
3821 * This function can be used by HW target mode drivers to create a linked
3822 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3823 * This is intended to be called during the completion path by TCM Core
3824 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3825 */
3826 void transport_do_task_sg_chain(struct se_cmd *cmd)
3827 {
3828 struct scatterlist *sg_first = NULL;
3829 struct scatterlist *sg_prev = NULL;
3830 int sg_prev_nents = 0;
3831 struct scatterlist *sg;
3832 struct se_task *task;
3833 u32 chained_nents = 0;
3834 int i;
3835
3836 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3837
3838 /*
3839 * Walk the struct se_task list and setup scatterlist chains
3840 * for each contiguously allocated struct se_task->task_sg[].
3841 */
3842 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3843 if (!task->task_sg)
3844 continue;
3845
3846 if (!sg_first) {
3847 sg_first = task->task_sg;
3848 chained_nents = task->task_sg_nents;
3849 } else {
3850 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3851 chained_nents += task->task_sg_nents;
3852 }
3853 /*
3854 * For the padded tasks, use the extra SGL vector allocated
3855 * in transport_allocate_data_tasks() for the sg_prev_nents
3856 * offset into sg_chain() above.
3857 *
3858 * We do not need the padding for the last task (or a single
3859 * task), but in that case we will never use the sg_prev_nents
3860 * value below which would be incorrect.
3861 */
3862 sg_prev_nents = (task->task_sg_nents + 1);
3863 sg_prev = task->task_sg;
3864 }
3865 /*
3866 * Setup the starting pointer and total t_tasks_sg_linked_no including
3867 * padding SGs for linking and to mark the end.
3868 */
3869 cmd->t_tasks_sg_chained = sg_first;
3870 cmd->t_tasks_sg_chained_no = chained_nents;
3871
3872 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3873 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3874 cmd->t_tasks_sg_chained_no);
3875
3876 for_each_sg(cmd->t_tasks_sg_chained, sg,
3877 cmd->t_tasks_sg_chained_no, i) {
3878
3879 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3880 i, sg, sg_page(sg), sg->length, sg->offset);
3881 if (sg_is_chain(sg))
3882 pr_debug("SG: %p sg_is_chain=1\n", sg);
3883 if (sg_is_last(sg))
3884 pr_debug("SG: %p sg_is_last=1\n", sg);
3885 }
3886 }
3887 EXPORT_SYMBOL(transport_do_task_sg_chain);
3888
3889 /*
3890 * Break up cmd into chunks transport can handle
3891 */
3892 static int transport_allocate_data_tasks(
3893 struct se_cmd *cmd,
3894 unsigned long long lba,
3895 enum dma_data_direction data_direction,
3896 struct scatterlist *sgl,
3897 unsigned int sgl_nents)
3898 {
3899 struct se_task *task;
3900 struct se_device *dev = cmd->se_dev;
3901 unsigned long flags;
3902 int task_count, i;
3903 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3904 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3905 struct scatterlist *sg;
3906 struct scatterlist *cmd_sg;
3907
3908 WARN_ON(cmd->data_length % sector_size);
3909 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3910 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3911
3912 cmd_sg = sgl;
3913 for (i = 0; i < task_count; i++) {
3914 unsigned int task_size, task_sg_nents_padded;
3915 int count;
3916
3917 task = transport_generic_get_task(cmd, data_direction);
3918 if (!task)
3919 return -ENOMEM;
3920
3921 task->task_lba = lba;
3922 task->task_sectors = min(sectors, dev_max_sectors);
3923 task->task_size = task->task_sectors * sector_size;
3924
3925 /*
3926 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3927 * in order to calculate the number per task SGL entries
3928 */
3929 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3930 /*
3931 * Check if the fabric module driver is requesting that all
3932 * struct se_task->task_sg[] be chained together.. If so,
3933 * then allocate an extra padding SG entry for linking and
3934 * marking the end of the chained SGL for every task except
3935 * the last one for (task_count > 1) operation, or skipping
3936 * the extra padding for the (task_count == 1) case.
3937 */
3938 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3939 task_sg_nents_padded = (task->task_sg_nents + 1);
3940 } else
3941 task_sg_nents_padded = task->task_sg_nents;
3942
3943 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3944 task_sg_nents_padded, GFP_KERNEL);
3945 if (!task->task_sg) {
3946 cmd->se_dev->transport->free_task(task);
3947 return -ENOMEM;
3948 }
3949
3950 sg_init_table(task->task_sg, task_sg_nents_padded);
3951
3952 task_size = task->task_size;
3953
3954 /* Build new sgl, only up to task_size */
3955 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3956 if (cmd_sg->length > task_size)
3957 break;
3958
3959 *sg = *cmd_sg;
3960 task_size -= cmd_sg->length;
3961 cmd_sg = sg_next(cmd_sg);
3962 }
3963
3964 lba += task->task_sectors;
3965 sectors -= task->task_sectors;
3966
3967 spin_lock_irqsave(&cmd->t_state_lock, flags);
3968 list_add_tail(&task->t_list, &cmd->t_task_list);
3969 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3970 }
3971
3972 return task_count;
3973 }
3974
3975 static int
3976 transport_allocate_control_task(struct se_cmd *cmd)
3977 {
3978 struct se_task *task;
3979 unsigned long flags;
3980
3981 task = transport_generic_get_task(cmd, cmd->data_direction);
3982 if (!task)
3983 return -ENOMEM;
3984
3985 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
3986 GFP_KERNEL);
3987 if (!task->task_sg) {
3988 cmd->se_dev->transport->free_task(task);
3989 return -ENOMEM;
3990 }
3991
3992 memcpy(task->task_sg, cmd->t_data_sg,
3993 sizeof(struct scatterlist) * cmd->t_data_nents);
3994 task->task_size = cmd->data_length;
3995 task->task_sg_nents = cmd->t_data_nents;
3996
3997 spin_lock_irqsave(&cmd->t_state_lock, flags);
3998 list_add_tail(&task->t_list, &cmd->t_task_list);
3999 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4000
4001 /* Success! Return number of tasks allocated */
4002 return 1;
4003 }
4004
4005 static u32 transport_allocate_tasks(
4006 struct se_cmd *cmd,
4007 unsigned long long lba,
4008 enum dma_data_direction data_direction,
4009 struct scatterlist *sgl,
4010 unsigned int sgl_nents)
4011 {
4012 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4013 if (transport_cmd_get_valid_sectors(cmd) < 0)
4014 return -EINVAL;
4015
4016 return transport_allocate_data_tasks(cmd, lba, data_direction,
4017 sgl, sgl_nents);
4018 } else
4019 return transport_allocate_control_task(cmd);
4020
4021 }
4022
4023
4024 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4025 *
4026 * Allocate storage transport resources from a set of values predefined
4027 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4028 * Any non zero return here is treated as an "out of resource' op here.
4029 */
4030 /*
4031 * Generate struct se_task(s) and/or their payloads for this CDB.
4032 */
4033 int transport_generic_new_cmd(struct se_cmd *cmd)
4034 {
4035 int ret = 0;
4036
4037 /*
4038 * Determine is the TCM fabric module has already allocated physical
4039 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4040 * beforehand.
4041 */
4042 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4043 cmd->data_length) {
4044 ret = transport_generic_get_mem(cmd);
4045 if (ret < 0)
4046 return ret;
4047 }
4048 /*
4049 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4050 * control or data CDB types, and perform the map to backend subsystem
4051 * code from SGL memory allocated here by transport_generic_get_mem(), or
4052 * via pre-existing SGL memory setup explictly by fabric module code with
4053 * transport_generic_map_mem_to_cmd().
4054 */
4055 ret = transport_new_cmd_obj(cmd);
4056 if (ret < 0)
4057 return ret;
4058 /*
4059 * For WRITEs, let the fabric know its buffer is ready..
4060 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4061 * will be added to the struct se_device execution queue after its WRITE
4062 * data has arrived. (ie: It gets handled by the transport processing
4063 * thread a second time)
4064 */
4065 if (cmd->data_direction == DMA_TO_DEVICE) {
4066 transport_add_tasks_to_state_queue(cmd);
4067 return transport_generic_write_pending(cmd);
4068 }
4069 /*
4070 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4071 * to the execution queue.
4072 */
4073 transport_execute_tasks(cmd);
4074 return 0;
4075 }
4076 EXPORT_SYMBOL(transport_generic_new_cmd);
4077
4078 /* transport_generic_process_write():
4079 *
4080 *
4081 */
4082 void transport_generic_process_write(struct se_cmd *cmd)
4083 {
4084 transport_execute_tasks(cmd);
4085 }
4086 EXPORT_SYMBOL(transport_generic_process_write);
4087
4088 static void transport_write_pending_qf(struct se_cmd *cmd)
4089 {
4090 if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4091 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4092 cmd);
4093 transport_handle_queue_full(cmd, cmd->se_dev);
4094 }
4095 }
4096
4097 static int transport_generic_write_pending(struct se_cmd *cmd)
4098 {
4099 unsigned long flags;
4100 int ret;
4101
4102 spin_lock_irqsave(&cmd->t_state_lock, flags);
4103 cmd->t_state = TRANSPORT_WRITE_PENDING;
4104 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4105
4106 /*
4107 * Clear the se_cmd for WRITE_PENDING status in order to set
4108 * cmd->t_transport_active=0 so that transport_generic_handle_data
4109 * can be called from HW target mode interrupt code. This is safe
4110 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4111 * because the se_cmd->se_lun pointer is not being cleared.
4112 */
4113 transport_cmd_check_stop(cmd, 1, 0);
4114
4115 /*
4116 * Call the fabric write_pending function here to let the
4117 * frontend know that WRITE buffers are ready.
4118 */
4119 ret = cmd->se_tfo->write_pending(cmd);
4120 if (ret == -EAGAIN)
4121 goto queue_full;
4122 else if (ret < 0)
4123 return ret;
4124
4125 return PYX_TRANSPORT_WRITE_PENDING;
4126
4127 queue_full:
4128 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4129 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4130 transport_handle_queue_full(cmd, cmd->se_dev);
4131 return ret;
4132 }
4133
4134 /**
4135 * transport_release_cmd - free a command
4136 * @cmd: command to free
4137 *
4138 * This routine unconditionally frees a command, and reference counting
4139 * or list removal must be done in the caller.
4140 */
4141 void transport_release_cmd(struct se_cmd *cmd)
4142 {
4143 BUG_ON(!cmd->se_tfo);
4144
4145 if (cmd->se_tmr_req)
4146 core_tmr_release_req(cmd->se_tmr_req);
4147 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4148 kfree(cmd->t_task_cdb);
4149 cmd->se_tfo->release_cmd(cmd);
4150 }
4151 EXPORT_SYMBOL(transport_release_cmd);
4152
4153 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4154 {
4155 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4156 if (wait_for_tasks && cmd->se_tmr_req)
4157 transport_wait_for_tasks(cmd);
4158
4159 transport_release_cmd(cmd);
4160 } else {
4161 if (wait_for_tasks)
4162 transport_wait_for_tasks(cmd);
4163
4164 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4165
4166 if (cmd->se_lun)
4167 transport_lun_remove_cmd(cmd);
4168
4169 transport_free_dev_tasks(cmd);
4170
4171 transport_put_cmd(cmd);
4172 }
4173 }
4174 EXPORT_SYMBOL(transport_generic_free_cmd);
4175
4176 /* transport_lun_wait_for_tasks():
4177 *
4178 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4179 * an struct se_lun to be successfully shutdown.
4180 */
4181 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4182 {
4183 unsigned long flags;
4184 int ret;
4185 /*
4186 * If the frontend has already requested this struct se_cmd to
4187 * be stopped, we can safely ignore this struct se_cmd.
4188 */
4189 spin_lock_irqsave(&cmd->t_state_lock, flags);
4190 if (atomic_read(&cmd->t_transport_stop)) {
4191 atomic_set(&cmd->transport_lun_stop, 0);
4192 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4193 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4194 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4195 transport_cmd_check_stop(cmd, 1, 0);
4196 return -EPERM;
4197 }
4198 atomic_set(&cmd->transport_lun_fe_stop, 1);
4199 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4200
4201 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4202
4203 ret = transport_stop_tasks_for_cmd(cmd);
4204
4205 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4206 " %d\n", cmd, cmd->t_task_list_num, ret);
4207 if (!ret) {
4208 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4209 cmd->se_tfo->get_task_tag(cmd));
4210 wait_for_completion(&cmd->transport_lun_stop_comp);
4211 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4212 cmd->se_tfo->get_task_tag(cmd));
4213 }
4214 transport_remove_cmd_from_queue(cmd);
4215
4216 return 0;
4217 }
4218
4219 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4220 {
4221 struct se_cmd *cmd = NULL;
4222 unsigned long lun_flags, cmd_flags;
4223 /*
4224 * Do exception processing and return CHECK_CONDITION status to the
4225 * Initiator Port.
4226 */
4227 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4228 while (!list_empty(&lun->lun_cmd_list)) {
4229 cmd = list_first_entry(&lun->lun_cmd_list,
4230 struct se_cmd, se_lun_node);
4231 list_del(&cmd->se_lun_node);
4232
4233 atomic_set(&cmd->transport_lun_active, 0);
4234 /*
4235 * This will notify iscsi_target_transport.c:
4236 * transport_cmd_check_stop() that a LUN shutdown is in
4237 * progress for the iscsi_cmd_t.
4238 */
4239 spin_lock(&cmd->t_state_lock);
4240 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4241 "_lun_stop for ITT: 0x%08x\n",
4242 cmd->se_lun->unpacked_lun,
4243 cmd->se_tfo->get_task_tag(cmd));
4244 atomic_set(&cmd->transport_lun_stop, 1);
4245 spin_unlock(&cmd->t_state_lock);
4246
4247 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4248
4249 if (!cmd->se_lun) {
4250 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4251 cmd->se_tfo->get_task_tag(cmd),
4252 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4253 BUG();
4254 }
4255 /*
4256 * If the Storage engine still owns the iscsi_cmd_t, determine
4257 * and/or stop its context.
4258 */
4259 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4260 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4261 cmd->se_tfo->get_task_tag(cmd));
4262
4263 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4264 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4265 continue;
4266 }
4267
4268 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4269 "_wait_for_tasks(): SUCCESS\n",
4270 cmd->se_lun->unpacked_lun,
4271 cmd->se_tfo->get_task_tag(cmd));
4272
4273 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4274 if (!atomic_read(&cmd->transport_dev_active)) {
4275 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4276 goto check_cond;
4277 }
4278 atomic_set(&cmd->transport_dev_active, 0);
4279 transport_all_task_dev_remove_state(cmd);
4280 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4281
4282 transport_free_dev_tasks(cmd);
4283 /*
4284 * The Storage engine stopped this struct se_cmd before it was
4285 * send to the fabric frontend for delivery back to the
4286 * Initiator Node. Return this SCSI CDB back with an
4287 * CHECK_CONDITION status.
4288 */
4289 check_cond:
4290 transport_send_check_condition_and_sense(cmd,
4291 TCM_NON_EXISTENT_LUN, 0);
4292 /*
4293 * If the fabric frontend is waiting for this iscsi_cmd_t to
4294 * be released, notify the waiting thread now that LU has
4295 * finished accessing it.
4296 */
4297 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4298 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4299 pr_debug("SE_LUN[%d] - Detected FE stop for"
4300 " struct se_cmd: %p ITT: 0x%08x\n",
4301 lun->unpacked_lun,
4302 cmd, cmd->se_tfo->get_task_tag(cmd));
4303
4304 spin_unlock_irqrestore(&cmd->t_state_lock,
4305 cmd_flags);
4306 transport_cmd_check_stop(cmd, 1, 0);
4307 complete(&cmd->transport_lun_fe_stop_comp);
4308 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4309 continue;
4310 }
4311 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4312 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4313
4314 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4315 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4316 }
4317 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4318 }
4319
4320 static int transport_clear_lun_thread(void *p)
4321 {
4322 struct se_lun *lun = (struct se_lun *)p;
4323
4324 __transport_clear_lun_from_sessions(lun);
4325 complete(&lun->lun_shutdown_comp);
4326
4327 return 0;
4328 }
4329
4330 int transport_clear_lun_from_sessions(struct se_lun *lun)
4331 {
4332 struct task_struct *kt;
4333
4334 kt = kthread_run(transport_clear_lun_thread, lun,
4335 "tcm_cl_%u", lun->unpacked_lun);
4336 if (IS_ERR(kt)) {
4337 pr_err("Unable to start clear_lun thread\n");
4338 return PTR_ERR(kt);
4339 }
4340 wait_for_completion(&lun->lun_shutdown_comp);
4341
4342 return 0;
4343 }
4344
4345 /**
4346 * transport_wait_for_tasks - wait for completion to occur
4347 * @cmd: command to wait
4348 *
4349 * Called from frontend fabric context to wait for storage engine
4350 * to pause and/or release frontend generated struct se_cmd.
4351 */
4352 void transport_wait_for_tasks(struct se_cmd *cmd)
4353 {
4354 unsigned long flags;
4355
4356 spin_lock_irqsave(&cmd->t_state_lock, flags);
4357 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4358 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4359 return;
4360 }
4361 /*
4362 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4363 * has been set in transport_set_supported_SAM_opcode().
4364 */
4365 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4366 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4367 return;
4368 }
4369 /*
4370 * If we are already stopped due to an external event (ie: LUN shutdown)
4371 * sleep until the connection can have the passed struct se_cmd back.
4372 * The cmd->transport_lun_stopped_sem will be upped by
4373 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4374 * has completed its operation on the struct se_cmd.
4375 */
4376 if (atomic_read(&cmd->transport_lun_stop)) {
4377
4378 pr_debug("wait_for_tasks: Stopping"
4379 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4380 "_stop_comp); for ITT: 0x%08x\n",
4381 cmd->se_tfo->get_task_tag(cmd));
4382 /*
4383 * There is a special case for WRITES where a FE exception +
4384 * LUN shutdown means ConfigFS context is still sleeping on
4385 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4386 * We go ahead and up transport_lun_stop_comp just to be sure
4387 * here.
4388 */
4389 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4390 complete(&cmd->transport_lun_stop_comp);
4391 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4392 spin_lock_irqsave(&cmd->t_state_lock, flags);
4393
4394 transport_all_task_dev_remove_state(cmd);
4395 /*
4396 * At this point, the frontend who was the originator of this
4397 * struct se_cmd, now owns the structure and can be released through
4398 * normal means below.
4399 */
4400 pr_debug("wait_for_tasks: Stopped"
4401 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4402 "stop_comp); for ITT: 0x%08x\n",
4403 cmd->se_tfo->get_task_tag(cmd));
4404
4405 atomic_set(&cmd->transport_lun_stop, 0);
4406 }
4407 if (!atomic_read(&cmd->t_transport_active) ||
4408 atomic_read(&cmd->t_transport_aborted)) {
4409 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4410 return;
4411 }
4412
4413 atomic_set(&cmd->t_transport_stop, 1);
4414
4415 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4416 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4417 cmd, cmd->se_tfo->get_task_tag(cmd),
4418 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4419
4420 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4421
4422 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4423
4424 wait_for_completion(&cmd->t_transport_stop_comp);
4425
4426 spin_lock_irqsave(&cmd->t_state_lock, flags);
4427 atomic_set(&cmd->t_transport_active, 0);
4428 atomic_set(&cmd->t_transport_stop, 0);
4429
4430 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4431 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4432 cmd->se_tfo->get_task_tag(cmd));
4433
4434 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4435 }
4436 EXPORT_SYMBOL(transport_wait_for_tasks);
4437
4438 static int transport_get_sense_codes(
4439 struct se_cmd *cmd,
4440 u8 *asc,
4441 u8 *ascq)
4442 {
4443 *asc = cmd->scsi_asc;
4444 *ascq = cmd->scsi_ascq;
4445
4446 return 0;
4447 }
4448
4449 static int transport_set_sense_codes(
4450 struct se_cmd *cmd,
4451 u8 asc,
4452 u8 ascq)
4453 {
4454 cmd->scsi_asc = asc;
4455 cmd->scsi_ascq = ascq;
4456
4457 return 0;
4458 }
4459
4460 int transport_send_check_condition_and_sense(
4461 struct se_cmd *cmd,
4462 u8 reason,
4463 int from_transport)
4464 {
4465 unsigned char *buffer = cmd->sense_buffer;
4466 unsigned long flags;
4467 int offset;
4468 u8 asc = 0, ascq = 0;
4469
4470 spin_lock_irqsave(&cmd->t_state_lock, flags);
4471 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4472 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4473 return 0;
4474 }
4475 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4476 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4477
4478 if (!reason && from_transport)
4479 goto after_reason;
4480
4481 if (!from_transport)
4482 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4483 /*
4484 * Data Segment and SenseLength of the fabric response PDU.
4485 *
4486 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4487 * from include/scsi/scsi_cmnd.h
4488 */
4489 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4490 TRANSPORT_SENSE_BUFFER);
4491 /*
4492 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4493 * SENSE KEY values from include/scsi/scsi.h
4494 */
4495 switch (reason) {
4496 case TCM_NON_EXISTENT_LUN:
4497 /* CURRENT ERROR */
4498 buffer[offset] = 0x70;
4499 /* ILLEGAL REQUEST */
4500 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4501 /* LOGICAL UNIT NOT SUPPORTED */
4502 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4503 break;
4504 case TCM_UNSUPPORTED_SCSI_OPCODE:
4505 case TCM_SECTOR_COUNT_TOO_MANY:
4506 /* CURRENT ERROR */
4507 buffer[offset] = 0x70;
4508 /* ILLEGAL REQUEST */
4509 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4510 /* INVALID COMMAND OPERATION CODE */
4511 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4512 break;
4513 case TCM_UNKNOWN_MODE_PAGE:
4514 /* CURRENT ERROR */
4515 buffer[offset] = 0x70;
4516 /* ILLEGAL REQUEST */
4517 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4518 /* INVALID FIELD IN CDB */
4519 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4520 break;
4521 case TCM_CHECK_CONDITION_ABORT_CMD:
4522 /* CURRENT ERROR */
4523 buffer[offset] = 0x70;
4524 /* ABORTED COMMAND */
4525 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4526 /* BUS DEVICE RESET FUNCTION OCCURRED */
4527 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4528 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4529 break;
4530 case TCM_INCORRECT_AMOUNT_OF_DATA:
4531 /* CURRENT ERROR */
4532 buffer[offset] = 0x70;
4533 /* ABORTED COMMAND */
4534 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4535 /* WRITE ERROR */
4536 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4537 /* NOT ENOUGH UNSOLICITED DATA */
4538 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4539 break;
4540 case TCM_INVALID_CDB_FIELD:
4541 /* CURRENT ERROR */
4542 buffer[offset] = 0x70;
4543 /* ABORTED COMMAND */
4544 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4545 /* INVALID FIELD IN CDB */
4546 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4547 break;
4548 case TCM_INVALID_PARAMETER_LIST:
4549 /* CURRENT ERROR */
4550 buffer[offset] = 0x70;
4551 /* ABORTED COMMAND */
4552 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4553 /* INVALID FIELD IN PARAMETER LIST */
4554 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4555 break;
4556 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4557 /* CURRENT ERROR */
4558 buffer[offset] = 0x70;
4559 /* ABORTED COMMAND */
4560 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4561 /* WRITE ERROR */
4562 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4563 /* UNEXPECTED_UNSOLICITED_DATA */
4564 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4565 break;
4566 case TCM_SERVICE_CRC_ERROR:
4567 /* CURRENT ERROR */
4568 buffer[offset] = 0x70;
4569 /* ABORTED COMMAND */
4570 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4571 /* PROTOCOL SERVICE CRC ERROR */
4572 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4573 /* N/A */
4574 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4575 break;
4576 case TCM_SNACK_REJECTED:
4577 /* CURRENT ERROR */
4578 buffer[offset] = 0x70;
4579 /* ABORTED COMMAND */
4580 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4581 /* READ ERROR */
4582 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4583 /* FAILED RETRANSMISSION REQUEST */
4584 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4585 break;
4586 case TCM_WRITE_PROTECTED:
4587 /* CURRENT ERROR */
4588 buffer[offset] = 0x70;
4589 /* DATA PROTECT */
4590 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4591 /* WRITE PROTECTED */
4592 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4593 break;
4594 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4595 /* CURRENT ERROR */
4596 buffer[offset] = 0x70;
4597 /* UNIT ATTENTION */
4598 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4599 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4600 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4601 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4602 break;
4603 case TCM_CHECK_CONDITION_NOT_READY:
4604 /* CURRENT ERROR */
4605 buffer[offset] = 0x70;
4606 /* Not Ready */
4607 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4608 transport_get_sense_codes(cmd, &asc, &ascq);
4609 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4610 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4611 break;
4612 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4613 default:
4614 /* CURRENT ERROR */
4615 buffer[offset] = 0x70;
4616 /* ILLEGAL REQUEST */
4617 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4618 /* LOGICAL UNIT COMMUNICATION FAILURE */
4619 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4620 break;
4621 }
4622 /*
4623 * This code uses linux/include/scsi/scsi.h SAM status codes!
4624 */
4625 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4626 /*
4627 * Automatically padded, this value is encoded in the fabric's
4628 * data_length response PDU containing the SCSI defined sense data.
4629 */
4630 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4631
4632 after_reason:
4633 return cmd->se_tfo->queue_status(cmd);
4634 }
4635 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4636
4637 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4638 {
4639 int ret = 0;
4640
4641 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4642 if (!send_status ||
4643 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4644 return 1;
4645 #if 0
4646 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4647 " status for CDB: 0x%02x ITT: 0x%08x\n",
4648 cmd->t_task_cdb[0],
4649 cmd->se_tfo->get_task_tag(cmd));
4650 #endif
4651 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4652 cmd->se_tfo->queue_status(cmd);
4653 ret = 1;
4654 }
4655 return ret;
4656 }
4657 EXPORT_SYMBOL(transport_check_aborted_status);
4658
4659 void transport_send_task_abort(struct se_cmd *cmd)
4660 {
4661 unsigned long flags;
4662
4663 spin_lock_irqsave(&cmd->t_state_lock, flags);
4664 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4665 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4666 return;
4667 }
4668 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4669
4670 /*
4671 * If there are still expected incoming fabric WRITEs, we wait
4672 * until until they have completed before sending a TASK_ABORTED
4673 * response. This response with TASK_ABORTED status will be
4674 * queued back to fabric module by transport_check_aborted_status().
4675 */
4676 if (cmd->data_direction == DMA_TO_DEVICE) {
4677 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4678 atomic_inc(&cmd->t_transport_aborted);
4679 smp_mb__after_atomic_inc();
4680 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4681 transport_new_cmd_failure(cmd);
4682 return;
4683 }
4684 }
4685 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4686 #if 0
4687 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4688 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4689 cmd->se_tfo->get_task_tag(cmd));
4690 #endif
4691 cmd->se_tfo->queue_status(cmd);
4692 }
4693
4694 /* transport_generic_do_tmr():
4695 *
4696 *
4697 */
4698 int transport_generic_do_tmr(struct se_cmd *cmd)
4699 {
4700 struct se_device *dev = cmd->se_dev;
4701 struct se_tmr_req *tmr = cmd->se_tmr_req;
4702 int ret;
4703
4704 switch (tmr->function) {
4705 case TMR_ABORT_TASK:
4706 tmr->response = TMR_FUNCTION_REJECTED;
4707 break;
4708 case TMR_ABORT_TASK_SET:
4709 case TMR_CLEAR_ACA:
4710 case TMR_CLEAR_TASK_SET:
4711 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4712 break;
4713 case TMR_LUN_RESET:
4714 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4715 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4716 TMR_FUNCTION_REJECTED;
4717 break;
4718 case TMR_TARGET_WARM_RESET:
4719 tmr->response = TMR_FUNCTION_REJECTED;
4720 break;
4721 case TMR_TARGET_COLD_RESET:
4722 tmr->response = TMR_FUNCTION_REJECTED;
4723 break;
4724 default:
4725 pr_err("Uknown TMR function: 0x%02x.\n",
4726 tmr->function);
4727 tmr->response = TMR_FUNCTION_REJECTED;
4728 break;
4729 }
4730
4731 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4732 cmd->se_tfo->queue_tm_rsp(cmd);
4733
4734 transport_cmd_check_stop_to_fabric(cmd);
4735 return 0;
4736 }
4737
4738 /* transport_processing_thread():
4739 *
4740 *
4741 */
4742 static int transport_processing_thread(void *param)
4743 {
4744 int ret;
4745 struct se_cmd *cmd;
4746 struct se_device *dev = (struct se_device *) param;
4747
4748 set_user_nice(current, -20);
4749
4750 while (!kthread_should_stop()) {
4751 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4752 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4753 kthread_should_stop());
4754 if (ret < 0)
4755 goto out;
4756
4757 get_cmd:
4758 __transport_execute_tasks(dev);
4759
4760 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4761 if (!cmd)
4762 continue;
4763
4764 switch (cmd->t_state) {
4765 case TRANSPORT_NEW_CMD:
4766 BUG();
4767 break;
4768 case TRANSPORT_NEW_CMD_MAP:
4769 if (!cmd->se_tfo->new_cmd_map) {
4770 pr_err("cmd->se_tfo->new_cmd_map is"
4771 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4772 BUG();
4773 }
4774 ret = cmd->se_tfo->new_cmd_map(cmd);
4775 if (ret < 0) {
4776 cmd->transport_error_status = ret;
4777 transport_generic_request_failure(cmd,
4778 0, (cmd->data_direction !=
4779 DMA_TO_DEVICE));
4780 break;
4781 }
4782 ret = transport_generic_new_cmd(cmd);
4783 if (ret == -EAGAIN)
4784 break;
4785 else if (ret < 0) {
4786 cmd->transport_error_status = ret;
4787 transport_generic_request_failure(cmd,
4788 0, (cmd->data_direction !=
4789 DMA_TO_DEVICE));
4790 }
4791 break;
4792 case TRANSPORT_PROCESS_WRITE:
4793 transport_generic_process_write(cmd);
4794 break;
4795 case TRANSPORT_FREE_CMD_INTR:
4796 transport_generic_free_cmd(cmd, 0);
4797 break;
4798 case TRANSPORT_PROCESS_TMR:
4799 transport_generic_do_tmr(cmd);
4800 break;
4801 case TRANSPORT_COMPLETE_QF_WP:
4802 transport_write_pending_qf(cmd);
4803 break;
4804 case TRANSPORT_COMPLETE_QF_OK:
4805 transport_complete_qf(cmd);
4806 break;
4807 default:
4808 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4809 "i_state: %d on SE LUN: %u\n",
4810 cmd->t_state,
4811 cmd->se_tfo->get_task_tag(cmd),
4812 cmd->se_tfo->get_cmd_state(cmd),
4813 cmd->se_lun->unpacked_lun);
4814 BUG();
4815 }
4816
4817 goto get_cmd;
4818 }
4819
4820 out:
4821 WARN_ON(!list_empty(&dev->state_task_list));
4822 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4823 dev->process_thread = NULL;
4824 return 0;
4825 }
This page took 0.158346 seconds and 5 git commands to generate.