rmap: introduce rmap_walk_locked()
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 kref_init(&se_sess->sess_kref);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 se_sess = transport_init_session(sup_prot_ops);
285 if (IS_ERR(se_sess))
286 return se_sess;
287
288 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289 if (rc < 0) {
290 transport_free_session(se_sess);
291 return ERR_PTR(-ENOMEM);
292 }
293
294 return se_sess;
295 }
296 EXPORT_SYMBOL(transport_init_session_tags);
297
298 /*
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300 */
301 void __transport_register_session(
302 struct se_portal_group *se_tpg,
303 struct se_node_acl *se_nacl,
304 struct se_session *se_sess,
305 void *fabric_sess_ptr)
306 {
307 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 unsigned char buf[PR_REG_ISID_LEN];
309
310 se_sess->se_tpg = se_tpg;
311 se_sess->fabric_sess_ptr = fabric_sess_ptr;
312 /*
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
314 *
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
317 */
318 if (se_nacl) {
319 /*
320 *
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
323 *
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
327 * registered LUNs.
328 */
329 if (se_nacl->saved_prot_type)
330 se_sess->sess_prot_type = se_nacl->saved_prot_type;
331 else if (tfo->tpg_check_prot_fabric_only)
332 se_sess->sess_prot_type = se_nacl->saved_prot_type =
333 tfo->tpg_check_prot_fabric_only(se_tpg);
334 /*
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
337 */
338 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
339 memset(&buf[0], 0, PR_REG_ISID_LEN);
340 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
341 &buf[0], PR_REG_ISID_LEN);
342 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
343 }
344
345 spin_lock_irq(&se_nacl->nacl_sess_lock);
346 /*
347 * The se_nacl->nacl_sess pointer will be set to the
348 * last active I_T Nexus for each struct se_node_acl.
349 */
350 se_nacl->nacl_sess = se_sess;
351
352 list_add_tail(&se_sess->sess_acl_list,
353 &se_nacl->acl_sess_list);
354 spin_unlock_irq(&se_nacl->nacl_sess_lock);
355 }
356 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
357
358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
360 }
361 EXPORT_SYMBOL(__transport_register_session);
362
363 void transport_register_session(
364 struct se_portal_group *se_tpg,
365 struct se_node_acl *se_nacl,
366 struct se_session *se_sess,
367 void *fabric_sess_ptr)
368 {
369 unsigned long flags;
370
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
373 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
374 }
375 EXPORT_SYMBOL(transport_register_session);
376
377 static void target_release_session(struct kref *kref)
378 {
379 struct se_session *se_sess = container_of(kref,
380 struct se_session, sess_kref);
381 struct se_portal_group *se_tpg = se_sess->se_tpg;
382
383 se_tpg->se_tpg_tfo->close_session(se_sess);
384 }
385
386 int target_get_session(struct se_session *se_sess)
387 {
388 return kref_get_unless_zero(&se_sess->sess_kref);
389 }
390 EXPORT_SYMBOL(target_get_session);
391
392 void target_put_session(struct se_session *se_sess)
393 {
394 kref_put(&se_sess->sess_kref, target_release_session);
395 }
396 EXPORT_SYMBOL(target_put_session);
397
398 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
399 {
400 struct se_session *se_sess;
401 ssize_t len = 0;
402
403 spin_lock_bh(&se_tpg->session_lock);
404 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
405 if (!se_sess->se_node_acl)
406 continue;
407 if (!se_sess->se_node_acl->dynamic_node_acl)
408 continue;
409 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
410 break;
411
412 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
413 se_sess->se_node_acl->initiatorname);
414 len += 1; /* Include NULL terminator */
415 }
416 spin_unlock_bh(&se_tpg->session_lock);
417
418 return len;
419 }
420 EXPORT_SYMBOL(target_show_dynamic_sessions);
421
422 static void target_complete_nacl(struct kref *kref)
423 {
424 struct se_node_acl *nacl = container_of(kref,
425 struct se_node_acl, acl_kref);
426
427 complete(&nacl->acl_free_comp);
428 }
429
430 void target_put_nacl(struct se_node_acl *nacl)
431 {
432 kref_put(&nacl->acl_kref, target_complete_nacl);
433 }
434 EXPORT_SYMBOL(target_put_nacl);
435
436 void transport_deregister_session_configfs(struct se_session *se_sess)
437 {
438 struct se_node_acl *se_nacl;
439 unsigned long flags;
440 /*
441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
442 */
443 se_nacl = se_sess->se_node_acl;
444 if (se_nacl) {
445 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
446 if (se_nacl->acl_stop == 0)
447 list_del(&se_sess->sess_acl_list);
448 /*
449 * If the session list is empty, then clear the pointer.
450 * Otherwise, set the struct se_session pointer from the tail
451 * element of the per struct se_node_acl active session list.
452 */
453 if (list_empty(&se_nacl->acl_sess_list))
454 se_nacl->nacl_sess = NULL;
455 else {
456 se_nacl->nacl_sess = container_of(
457 se_nacl->acl_sess_list.prev,
458 struct se_session, sess_acl_list);
459 }
460 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
461 }
462 }
463 EXPORT_SYMBOL(transport_deregister_session_configfs);
464
465 void transport_free_session(struct se_session *se_sess)
466 {
467 struct se_node_acl *se_nacl = se_sess->se_node_acl;
468 /*
469 * Drop the se_node_acl->nacl_kref obtained from within
470 * core_tpg_get_initiator_node_acl().
471 */
472 if (se_nacl) {
473 se_sess->se_node_acl = NULL;
474 target_put_nacl(se_nacl);
475 }
476 if (se_sess->sess_cmd_map) {
477 percpu_ida_destroy(&se_sess->sess_tag_pool);
478 kvfree(se_sess->sess_cmd_map);
479 }
480 kmem_cache_free(se_sess_cache, se_sess);
481 }
482 EXPORT_SYMBOL(transport_free_session);
483
484 void transport_deregister_session(struct se_session *se_sess)
485 {
486 struct se_portal_group *se_tpg = se_sess->se_tpg;
487 const struct target_core_fabric_ops *se_tfo;
488 struct se_node_acl *se_nacl;
489 unsigned long flags;
490 bool drop_nacl = false;
491
492 if (!se_tpg) {
493 transport_free_session(se_sess);
494 return;
495 }
496 se_tfo = se_tpg->se_tpg_tfo;
497
498 spin_lock_irqsave(&se_tpg->session_lock, flags);
499 list_del(&se_sess->sess_list);
500 se_sess->se_tpg = NULL;
501 se_sess->fabric_sess_ptr = NULL;
502 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
503
504 /*
505 * Determine if we need to do extra work for this initiator node's
506 * struct se_node_acl if it had been previously dynamically generated.
507 */
508 se_nacl = se_sess->se_node_acl;
509
510 mutex_lock(&se_tpg->acl_node_mutex);
511 if (se_nacl && se_nacl->dynamic_node_acl) {
512 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
513 list_del(&se_nacl->acl_list);
514 drop_nacl = true;
515 }
516 }
517 mutex_unlock(&se_tpg->acl_node_mutex);
518
519 if (drop_nacl) {
520 core_tpg_wait_for_nacl_pr_ref(se_nacl);
521 core_free_device_list_for_node(se_nacl, se_tpg);
522 se_sess->se_node_acl = NULL;
523 kfree(se_nacl);
524 }
525 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
526 se_tpg->se_tpg_tfo->get_fabric_name());
527 /*
528 * If last kref is dropping now for an explicit NodeACL, awake sleeping
529 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
530 * removal context from within transport_free_session() code.
531 */
532
533 transport_free_session(se_sess);
534 }
535 EXPORT_SYMBOL(transport_deregister_session);
536
537 static void target_remove_from_state_list(struct se_cmd *cmd)
538 {
539 struct se_device *dev = cmd->se_dev;
540 unsigned long flags;
541
542 if (!dev)
543 return;
544
545 if (cmd->transport_state & CMD_T_BUSY)
546 return;
547
548 spin_lock_irqsave(&dev->execute_task_lock, flags);
549 if (cmd->state_active) {
550 list_del(&cmd->state_list);
551 cmd->state_active = false;
552 }
553 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
554 }
555
556 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
557 bool write_pending)
558 {
559 unsigned long flags;
560
561 if (remove_from_lists) {
562 target_remove_from_state_list(cmd);
563
564 /*
565 * Clear struct se_cmd->se_lun before the handoff to FE.
566 */
567 cmd->se_lun = NULL;
568 }
569
570 spin_lock_irqsave(&cmd->t_state_lock, flags);
571 if (write_pending)
572 cmd->t_state = TRANSPORT_WRITE_PENDING;
573
574 /*
575 * Determine if frontend context caller is requesting the stopping of
576 * this command for frontend exceptions.
577 */
578 if (cmd->transport_state & CMD_T_STOP) {
579 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
580 __func__, __LINE__, cmd->tag);
581
582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583
584 complete_all(&cmd->t_transport_stop_comp);
585 return 1;
586 }
587
588 cmd->transport_state &= ~CMD_T_ACTIVE;
589 if (remove_from_lists) {
590 /*
591 * Some fabric modules like tcm_loop can release
592 * their internally allocated I/O reference now and
593 * struct se_cmd now.
594 *
595 * Fabric modules are expected to return '1' here if the
596 * se_cmd being passed is released at this point,
597 * or zero if not being released.
598 */
599 if (cmd->se_tfo->check_stop_free != NULL) {
600 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
601 return cmd->se_tfo->check_stop_free(cmd);
602 }
603 }
604
605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606 return 0;
607 }
608
609 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
610 {
611 return transport_cmd_check_stop(cmd, true, false);
612 }
613
614 static void transport_lun_remove_cmd(struct se_cmd *cmd)
615 {
616 struct se_lun *lun = cmd->se_lun;
617
618 if (!lun)
619 return;
620
621 if (cmpxchg(&cmd->lun_ref_active, true, false))
622 percpu_ref_put(&lun->lun_ref);
623 }
624
625 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
626 {
627 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
628
629 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
630 transport_lun_remove_cmd(cmd);
631 /*
632 * Allow the fabric driver to unmap any resources before
633 * releasing the descriptor via TFO->release_cmd()
634 */
635 if (remove)
636 cmd->se_tfo->aborted_task(cmd);
637
638 if (transport_cmd_check_stop_to_fabric(cmd))
639 return;
640 if (remove && ack_kref)
641 transport_put_cmd(cmd);
642 }
643
644 static void target_complete_failure_work(struct work_struct *work)
645 {
646 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
647
648 transport_generic_request_failure(cmd,
649 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
650 }
651
652 /*
653 * Used when asking transport to copy Sense Data from the underlying
654 * Linux/SCSI struct scsi_cmnd
655 */
656 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
657 {
658 struct se_device *dev = cmd->se_dev;
659
660 WARN_ON(!cmd->se_lun);
661
662 if (!dev)
663 return NULL;
664
665 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
666 return NULL;
667
668 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
669
670 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
671 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
672 return cmd->sense_buffer;
673 }
674
675 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
676 {
677 struct se_device *dev = cmd->se_dev;
678 int success = scsi_status == GOOD;
679 unsigned long flags;
680
681 cmd->scsi_status = scsi_status;
682
683
684 spin_lock_irqsave(&cmd->t_state_lock, flags);
685 cmd->transport_state &= ~CMD_T_BUSY;
686
687 if (dev && dev->transport->transport_complete) {
688 dev->transport->transport_complete(cmd,
689 cmd->t_data_sg,
690 transport_get_sense_buffer(cmd));
691 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
692 success = 1;
693 }
694
695 /*
696 * Check for case where an explicit ABORT_TASK has been received
697 * and transport_wait_for_tasks() will be waiting for completion..
698 */
699 if (cmd->transport_state & CMD_T_ABORTED ||
700 cmd->transport_state & CMD_T_STOP) {
701 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
702 complete_all(&cmd->t_transport_stop_comp);
703 return;
704 } else if (!success) {
705 INIT_WORK(&cmd->work, target_complete_failure_work);
706 } else {
707 INIT_WORK(&cmd->work, target_complete_ok_work);
708 }
709
710 cmd->t_state = TRANSPORT_COMPLETE;
711 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
712 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
713
714 if (cmd->se_cmd_flags & SCF_USE_CPUID)
715 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
716 else
717 queue_work(target_completion_wq, &cmd->work);
718 }
719 EXPORT_SYMBOL(target_complete_cmd);
720
721 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
722 {
723 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
724 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
725 cmd->residual_count += cmd->data_length - length;
726 } else {
727 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
728 cmd->residual_count = cmd->data_length - length;
729 }
730
731 cmd->data_length = length;
732 }
733
734 target_complete_cmd(cmd, scsi_status);
735 }
736 EXPORT_SYMBOL(target_complete_cmd_with_length);
737
738 static void target_add_to_state_list(struct se_cmd *cmd)
739 {
740 struct se_device *dev = cmd->se_dev;
741 unsigned long flags;
742
743 spin_lock_irqsave(&dev->execute_task_lock, flags);
744 if (!cmd->state_active) {
745 list_add_tail(&cmd->state_list, &dev->state_list);
746 cmd->state_active = true;
747 }
748 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
749 }
750
751 /*
752 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
753 */
754 static void transport_write_pending_qf(struct se_cmd *cmd);
755 static void transport_complete_qf(struct se_cmd *cmd);
756
757 void target_qf_do_work(struct work_struct *work)
758 {
759 struct se_device *dev = container_of(work, struct se_device,
760 qf_work_queue);
761 LIST_HEAD(qf_cmd_list);
762 struct se_cmd *cmd, *cmd_tmp;
763
764 spin_lock_irq(&dev->qf_cmd_lock);
765 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
766 spin_unlock_irq(&dev->qf_cmd_lock);
767
768 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
769 list_del(&cmd->se_qf_node);
770 atomic_dec_mb(&dev->dev_qf_count);
771
772 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
773 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
774 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
775 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
776 : "UNKNOWN");
777
778 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
779 transport_write_pending_qf(cmd);
780 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
781 transport_complete_qf(cmd);
782 }
783 }
784
785 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
786 {
787 switch (cmd->data_direction) {
788 case DMA_NONE:
789 return "NONE";
790 case DMA_FROM_DEVICE:
791 return "READ";
792 case DMA_TO_DEVICE:
793 return "WRITE";
794 case DMA_BIDIRECTIONAL:
795 return "BIDI";
796 default:
797 break;
798 }
799
800 return "UNKNOWN";
801 }
802
803 void transport_dump_dev_state(
804 struct se_device *dev,
805 char *b,
806 int *bl)
807 {
808 *bl += sprintf(b + *bl, "Status: ");
809 if (dev->export_count)
810 *bl += sprintf(b + *bl, "ACTIVATED");
811 else
812 *bl += sprintf(b + *bl, "DEACTIVATED");
813
814 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
815 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
816 dev->dev_attrib.block_size,
817 dev->dev_attrib.hw_max_sectors);
818 *bl += sprintf(b + *bl, " ");
819 }
820
821 void transport_dump_vpd_proto_id(
822 struct t10_vpd *vpd,
823 unsigned char *p_buf,
824 int p_buf_len)
825 {
826 unsigned char buf[VPD_TMP_BUF_SIZE];
827 int len;
828
829 memset(buf, 0, VPD_TMP_BUF_SIZE);
830 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
831
832 switch (vpd->protocol_identifier) {
833 case 0x00:
834 sprintf(buf+len, "Fibre Channel\n");
835 break;
836 case 0x10:
837 sprintf(buf+len, "Parallel SCSI\n");
838 break;
839 case 0x20:
840 sprintf(buf+len, "SSA\n");
841 break;
842 case 0x30:
843 sprintf(buf+len, "IEEE 1394\n");
844 break;
845 case 0x40:
846 sprintf(buf+len, "SCSI Remote Direct Memory Access"
847 " Protocol\n");
848 break;
849 case 0x50:
850 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
851 break;
852 case 0x60:
853 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
854 break;
855 case 0x70:
856 sprintf(buf+len, "Automation/Drive Interface Transport"
857 " Protocol\n");
858 break;
859 case 0x80:
860 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
861 break;
862 default:
863 sprintf(buf+len, "Unknown 0x%02x\n",
864 vpd->protocol_identifier);
865 break;
866 }
867
868 if (p_buf)
869 strncpy(p_buf, buf, p_buf_len);
870 else
871 pr_debug("%s", buf);
872 }
873
874 void
875 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
876 {
877 /*
878 * Check if the Protocol Identifier Valid (PIV) bit is set..
879 *
880 * from spc3r23.pdf section 7.5.1
881 */
882 if (page_83[1] & 0x80) {
883 vpd->protocol_identifier = (page_83[0] & 0xf0);
884 vpd->protocol_identifier_set = 1;
885 transport_dump_vpd_proto_id(vpd, NULL, 0);
886 }
887 }
888 EXPORT_SYMBOL(transport_set_vpd_proto_id);
889
890 int transport_dump_vpd_assoc(
891 struct t10_vpd *vpd,
892 unsigned char *p_buf,
893 int p_buf_len)
894 {
895 unsigned char buf[VPD_TMP_BUF_SIZE];
896 int ret = 0;
897 int len;
898
899 memset(buf, 0, VPD_TMP_BUF_SIZE);
900 len = sprintf(buf, "T10 VPD Identifier Association: ");
901
902 switch (vpd->association) {
903 case 0x00:
904 sprintf(buf+len, "addressed logical unit\n");
905 break;
906 case 0x10:
907 sprintf(buf+len, "target port\n");
908 break;
909 case 0x20:
910 sprintf(buf+len, "SCSI target device\n");
911 break;
912 default:
913 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
914 ret = -EINVAL;
915 break;
916 }
917
918 if (p_buf)
919 strncpy(p_buf, buf, p_buf_len);
920 else
921 pr_debug("%s", buf);
922
923 return ret;
924 }
925
926 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
927 {
928 /*
929 * The VPD identification association..
930 *
931 * from spc3r23.pdf Section 7.6.3.1 Table 297
932 */
933 vpd->association = (page_83[1] & 0x30);
934 return transport_dump_vpd_assoc(vpd, NULL, 0);
935 }
936 EXPORT_SYMBOL(transport_set_vpd_assoc);
937
938 int transport_dump_vpd_ident_type(
939 struct t10_vpd *vpd,
940 unsigned char *p_buf,
941 int p_buf_len)
942 {
943 unsigned char buf[VPD_TMP_BUF_SIZE];
944 int ret = 0;
945 int len;
946
947 memset(buf, 0, VPD_TMP_BUF_SIZE);
948 len = sprintf(buf, "T10 VPD Identifier Type: ");
949
950 switch (vpd->device_identifier_type) {
951 case 0x00:
952 sprintf(buf+len, "Vendor specific\n");
953 break;
954 case 0x01:
955 sprintf(buf+len, "T10 Vendor ID based\n");
956 break;
957 case 0x02:
958 sprintf(buf+len, "EUI-64 based\n");
959 break;
960 case 0x03:
961 sprintf(buf+len, "NAA\n");
962 break;
963 case 0x04:
964 sprintf(buf+len, "Relative target port identifier\n");
965 break;
966 case 0x08:
967 sprintf(buf+len, "SCSI name string\n");
968 break;
969 default:
970 sprintf(buf+len, "Unsupported: 0x%02x\n",
971 vpd->device_identifier_type);
972 ret = -EINVAL;
973 break;
974 }
975
976 if (p_buf) {
977 if (p_buf_len < strlen(buf)+1)
978 return -EINVAL;
979 strncpy(p_buf, buf, p_buf_len);
980 } else {
981 pr_debug("%s", buf);
982 }
983
984 return ret;
985 }
986
987 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
988 {
989 /*
990 * The VPD identifier type..
991 *
992 * from spc3r23.pdf Section 7.6.3.1 Table 298
993 */
994 vpd->device_identifier_type = (page_83[1] & 0x0f);
995 return transport_dump_vpd_ident_type(vpd, NULL, 0);
996 }
997 EXPORT_SYMBOL(transport_set_vpd_ident_type);
998
999 int transport_dump_vpd_ident(
1000 struct t10_vpd *vpd,
1001 unsigned char *p_buf,
1002 int p_buf_len)
1003 {
1004 unsigned char buf[VPD_TMP_BUF_SIZE];
1005 int ret = 0;
1006
1007 memset(buf, 0, VPD_TMP_BUF_SIZE);
1008
1009 switch (vpd->device_identifier_code_set) {
1010 case 0x01: /* Binary */
1011 snprintf(buf, sizeof(buf),
1012 "T10 VPD Binary Device Identifier: %s\n",
1013 &vpd->device_identifier[0]);
1014 break;
1015 case 0x02: /* ASCII */
1016 snprintf(buf, sizeof(buf),
1017 "T10 VPD ASCII Device Identifier: %s\n",
1018 &vpd->device_identifier[0]);
1019 break;
1020 case 0x03: /* UTF-8 */
1021 snprintf(buf, sizeof(buf),
1022 "T10 VPD UTF-8 Device Identifier: %s\n",
1023 &vpd->device_identifier[0]);
1024 break;
1025 default:
1026 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1027 " 0x%02x", vpd->device_identifier_code_set);
1028 ret = -EINVAL;
1029 break;
1030 }
1031
1032 if (p_buf)
1033 strncpy(p_buf, buf, p_buf_len);
1034 else
1035 pr_debug("%s", buf);
1036
1037 return ret;
1038 }
1039
1040 int
1041 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1042 {
1043 static const char hex_str[] = "0123456789abcdef";
1044 int j = 0, i = 4; /* offset to start of the identifier */
1045
1046 /*
1047 * The VPD Code Set (encoding)
1048 *
1049 * from spc3r23.pdf Section 7.6.3.1 Table 296
1050 */
1051 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1052 switch (vpd->device_identifier_code_set) {
1053 case 0x01: /* Binary */
1054 vpd->device_identifier[j++] =
1055 hex_str[vpd->device_identifier_type];
1056 while (i < (4 + page_83[3])) {
1057 vpd->device_identifier[j++] =
1058 hex_str[(page_83[i] & 0xf0) >> 4];
1059 vpd->device_identifier[j++] =
1060 hex_str[page_83[i] & 0x0f];
1061 i++;
1062 }
1063 break;
1064 case 0x02: /* ASCII */
1065 case 0x03: /* UTF-8 */
1066 while (i < (4 + page_83[3]))
1067 vpd->device_identifier[j++] = page_83[i++];
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 return transport_dump_vpd_ident(vpd, NULL, 0);
1074 }
1075 EXPORT_SYMBOL(transport_set_vpd_ident);
1076
1077 static sense_reason_t
1078 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1079 unsigned int size)
1080 {
1081 u32 mtl;
1082
1083 if (!cmd->se_tfo->max_data_sg_nents)
1084 return TCM_NO_SENSE;
1085 /*
1086 * Check if fabric enforced maximum SGL entries per I/O descriptor
1087 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1088 * residual_count and reduce original cmd->data_length to maximum
1089 * length based on single PAGE_SIZE entry scatter-lists.
1090 */
1091 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1092 if (cmd->data_length > mtl) {
1093 /*
1094 * If an existing CDB overflow is present, calculate new residual
1095 * based on CDB size minus fabric maximum transfer length.
1096 *
1097 * If an existing CDB underflow is present, calculate new residual
1098 * based on original cmd->data_length minus fabric maximum transfer
1099 * length.
1100 *
1101 * Otherwise, set the underflow residual based on cmd->data_length
1102 * minus fabric maximum transfer length.
1103 */
1104 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1105 cmd->residual_count = (size - mtl);
1106 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1107 u32 orig_dl = size + cmd->residual_count;
1108 cmd->residual_count = (orig_dl - mtl);
1109 } else {
1110 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1111 cmd->residual_count = (cmd->data_length - mtl);
1112 }
1113 cmd->data_length = mtl;
1114 /*
1115 * Reset sbc_check_prot() calculated protection payload
1116 * length based upon the new smaller MTL.
1117 */
1118 if (cmd->prot_length) {
1119 u32 sectors = (mtl / dev->dev_attrib.block_size);
1120 cmd->prot_length = dev->prot_length * sectors;
1121 }
1122 }
1123 return TCM_NO_SENSE;
1124 }
1125
1126 sense_reason_t
1127 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1128 {
1129 struct se_device *dev = cmd->se_dev;
1130
1131 if (cmd->unknown_data_length) {
1132 cmd->data_length = size;
1133 } else if (size != cmd->data_length) {
1134 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1135 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1136 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1137 cmd->data_length, size, cmd->t_task_cdb[0]);
1138
1139 if (cmd->data_direction == DMA_TO_DEVICE &&
1140 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1141 pr_err("Rejecting underflow/overflow WRITE data\n");
1142 return TCM_INVALID_CDB_FIELD;
1143 }
1144 /*
1145 * Reject READ_* or WRITE_* with overflow/underflow for
1146 * type SCF_SCSI_DATA_CDB.
1147 */
1148 if (dev->dev_attrib.block_size != 512) {
1149 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1150 " CDB on non 512-byte sector setup subsystem"
1151 " plugin: %s\n", dev->transport->name);
1152 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1153 return TCM_INVALID_CDB_FIELD;
1154 }
1155 /*
1156 * For the overflow case keep the existing fabric provided
1157 * ->data_length. Otherwise for the underflow case, reset
1158 * ->data_length to the smaller SCSI expected data transfer
1159 * length.
1160 */
1161 if (size > cmd->data_length) {
1162 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1163 cmd->residual_count = (size - cmd->data_length);
1164 } else {
1165 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1166 cmd->residual_count = (cmd->data_length - size);
1167 cmd->data_length = size;
1168 }
1169 }
1170
1171 return target_check_max_data_sg_nents(cmd, dev, size);
1172
1173 }
1174
1175 /*
1176 * Used by fabric modules containing a local struct se_cmd within their
1177 * fabric dependent per I/O descriptor.
1178 *
1179 * Preserves the value of @cmd->tag.
1180 */
1181 void transport_init_se_cmd(
1182 struct se_cmd *cmd,
1183 const struct target_core_fabric_ops *tfo,
1184 struct se_session *se_sess,
1185 u32 data_length,
1186 int data_direction,
1187 int task_attr,
1188 unsigned char *sense_buffer)
1189 {
1190 INIT_LIST_HEAD(&cmd->se_delayed_node);
1191 INIT_LIST_HEAD(&cmd->se_qf_node);
1192 INIT_LIST_HEAD(&cmd->se_cmd_list);
1193 INIT_LIST_HEAD(&cmd->state_list);
1194 init_completion(&cmd->t_transport_stop_comp);
1195 init_completion(&cmd->cmd_wait_comp);
1196 spin_lock_init(&cmd->t_state_lock);
1197 kref_init(&cmd->cmd_kref);
1198 cmd->transport_state = CMD_T_DEV_ACTIVE;
1199
1200 cmd->se_tfo = tfo;
1201 cmd->se_sess = se_sess;
1202 cmd->data_length = data_length;
1203 cmd->data_direction = data_direction;
1204 cmd->sam_task_attr = task_attr;
1205 cmd->sense_buffer = sense_buffer;
1206
1207 cmd->state_active = false;
1208 }
1209 EXPORT_SYMBOL(transport_init_se_cmd);
1210
1211 static sense_reason_t
1212 transport_check_alloc_task_attr(struct se_cmd *cmd)
1213 {
1214 struct se_device *dev = cmd->se_dev;
1215
1216 /*
1217 * Check if SAM Task Attribute emulation is enabled for this
1218 * struct se_device storage object
1219 */
1220 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1221 return 0;
1222
1223 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1224 pr_debug("SAM Task Attribute ACA"
1225 " emulation is not supported\n");
1226 return TCM_INVALID_CDB_FIELD;
1227 }
1228
1229 return 0;
1230 }
1231
1232 sense_reason_t
1233 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1234 {
1235 struct se_device *dev = cmd->se_dev;
1236 sense_reason_t ret;
1237
1238 /*
1239 * Ensure that the received CDB is less than the max (252 + 8) bytes
1240 * for VARIABLE_LENGTH_CMD
1241 */
1242 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1243 pr_err("Received SCSI CDB with command_size: %d that"
1244 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1245 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1246 return TCM_INVALID_CDB_FIELD;
1247 }
1248 /*
1249 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1250 * allocate the additional extended CDB buffer now.. Otherwise
1251 * setup the pointer from __t_task_cdb to t_task_cdb.
1252 */
1253 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1254 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1255 GFP_KERNEL);
1256 if (!cmd->t_task_cdb) {
1257 pr_err("Unable to allocate cmd->t_task_cdb"
1258 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1259 scsi_command_size(cdb),
1260 (unsigned long)sizeof(cmd->__t_task_cdb));
1261 return TCM_OUT_OF_RESOURCES;
1262 }
1263 } else
1264 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1265 /*
1266 * Copy the original CDB into cmd->
1267 */
1268 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1269
1270 trace_target_sequencer_start(cmd);
1271
1272 /*
1273 * Check for an existing UNIT ATTENTION condition
1274 */
1275 ret = target_scsi3_ua_check(cmd);
1276 if (ret)
1277 return ret;
1278
1279 ret = target_alua_state_check(cmd);
1280 if (ret)
1281 return ret;
1282
1283 ret = target_check_reservation(cmd);
1284 if (ret) {
1285 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1286 return ret;
1287 }
1288
1289 ret = dev->transport->parse_cdb(cmd);
1290 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1291 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1292 cmd->se_tfo->get_fabric_name(),
1293 cmd->se_sess->se_node_acl->initiatorname,
1294 cmd->t_task_cdb[0]);
1295 if (ret)
1296 return ret;
1297
1298 ret = transport_check_alloc_task_attr(cmd);
1299 if (ret)
1300 return ret;
1301
1302 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1303 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1307
1308 /*
1309 * Used by fabric module frontends to queue tasks directly.
1310 * May only be used from process context.
1311 */
1312 int transport_handle_cdb_direct(
1313 struct se_cmd *cmd)
1314 {
1315 sense_reason_t ret;
1316
1317 if (!cmd->se_lun) {
1318 dump_stack();
1319 pr_err("cmd->se_lun is NULL\n");
1320 return -EINVAL;
1321 }
1322 if (in_interrupt()) {
1323 dump_stack();
1324 pr_err("transport_generic_handle_cdb cannot be called"
1325 " from interrupt context\n");
1326 return -EINVAL;
1327 }
1328 /*
1329 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1330 * outstanding descriptors are handled correctly during shutdown via
1331 * transport_wait_for_tasks()
1332 *
1333 * Also, we don't take cmd->t_state_lock here as we only expect
1334 * this to be called for initial descriptor submission.
1335 */
1336 cmd->t_state = TRANSPORT_NEW_CMD;
1337 cmd->transport_state |= CMD_T_ACTIVE;
1338
1339 /*
1340 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1341 * so follow TRANSPORT_NEW_CMD processing thread context usage
1342 * and call transport_generic_request_failure() if necessary..
1343 */
1344 ret = transport_generic_new_cmd(cmd);
1345 if (ret)
1346 transport_generic_request_failure(cmd, ret);
1347 return 0;
1348 }
1349 EXPORT_SYMBOL(transport_handle_cdb_direct);
1350
1351 sense_reason_t
1352 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1353 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1354 {
1355 if (!sgl || !sgl_count)
1356 return 0;
1357
1358 /*
1359 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1360 * scatterlists already have been set to follow what the fabric
1361 * passes for the original expected data transfer length.
1362 */
1363 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1364 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1365 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1366 return TCM_INVALID_CDB_FIELD;
1367 }
1368
1369 cmd->t_data_sg = sgl;
1370 cmd->t_data_nents = sgl_count;
1371 cmd->t_bidi_data_sg = sgl_bidi;
1372 cmd->t_bidi_data_nents = sgl_bidi_count;
1373
1374 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1375 return 0;
1376 }
1377
1378 /*
1379 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1380 * se_cmd + use pre-allocated SGL memory.
1381 *
1382 * @se_cmd: command descriptor to submit
1383 * @se_sess: associated se_sess for endpoint
1384 * @cdb: pointer to SCSI CDB
1385 * @sense: pointer to SCSI sense buffer
1386 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1387 * @data_length: fabric expected data transfer length
1388 * @task_addr: SAM task attribute
1389 * @data_dir: DMA data direction
1390 * @flags: flags for command submission from target_sc_flags_tables
1391 * @sgl: struct scatterlist memory for unidirectional mapping
1392 * @sgl_count: scatterlist count for unidirectional mapping
1393 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1394 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1395 * @sgl_prot: struct scatterlist memory protection information
1396 * @sgl_prot_count: scatterlist count for protection information
1397 *
1398 * Task tags are supported if the caller has set @se_cmd->tag.
1399 *
1400 * Returns non zero to signal active I/O shutdown failure. All other
1401 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1402 * but still return zero here.
1403 *
1404 * This may only be called from process context, and also currently
1405 * assumes internal allocation of fabric payload buffer by target-core.
1406 */
1407 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1408 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1409 u32 data_length, int task_attr, int data_dir, int flags,
1410 struct scatterlist *sgl, u32 sgl_count,
1411 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1412 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1413 {
1414 struct se_portal_group *se_tpg;
1415 sense_reason_t rc;
1416 int ret;
1417
1418 se_tpg = se_sess->se_tpg;
1419 BUG_ON(!se_tpg);
1420 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1421 BUG_ON(in_interrupt());
1422 /*
1423 * Initialize se_cmd for target operation. From this point
1424 * exceptions are handled by sending exception status via
1425 * target_core_fabric_ops->queue_status() callback
1426 */
1427 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1428 data_length, data_dir, task_attr, sense);
1429
1430 if (flags & TARGET_SCF_USE_CPUID)
1431 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1432 else
1433 se_cmd->cpuid = WORK_CPU_UNBOUND;
1434
1435 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1436 se_cmd->unknown_data_length = 1;
1437 /*
1438 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1439 * se_sess->sess_cmd_list. A second kref_get here is necessary
1440 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1441 * kref_put() to happen during fabric packet acknowledgement.
1442 */
1443 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1444 if (ret)
1445 return ret;
1446 /*
1447 * Signal bidirectional data payloads to target-core
1448 */
1449 if (flags & TARGET_SCF_BIDI_OP)
1450 se_cmd->se_cmd_flags |= SCF_BIDI;
1451 /*
1452 * Locate se_lun pointer and attach it to struct se_cmd
1453 */
1454 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1455 if (rc) {
1456 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1457 target_put_sess_cmd(se_cmd);
1458 return 0;
1459 }
1460
1461 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1462 if (rc != 0) {
1463 transport_generic_request_failure(se_cmd, rc);
1464 return 0;
1465 }
1466
1467 /*
1468 * Save pointers for SGLs containing protection information,
1469 * if present.
1470 */
1471 if (sgl_prot_count) {
1472 se_cmd->t_prot_sg = sgl_prot;
1473 se_cmd->t_prot_nents = sgl_prot_count;
1474 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1475 }
1476
1477 /*
1478 * When a non zero sgl_count has been passed perform SGL passthrough
1479 * mapping for pre-allocated fabric memory instead of having target
1480 * core perform an internal SGL allocation..
1481 */
1482 if (sgl_count != 0) {
1483 BUG_ON(!sgl);
1484
1485 /*
1486 * A work-around for tcm_loop as some userspace code via
1487 * scsi-generic do not memset their associated read buffers,
1488 * so go ahead and do that here for type non-data CDBs. Also
1489 * note that this is currently guaranteed to be a single SGL
1490 * for this case by target core in target_setup_cmd_from_cdb()
1491 * -> transport_generic_cmd_sequencer().
1492 */
1493 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1494 se_cmd->data_direction == DMA_FROM_DEVICE) {
1495 unsigned char *buf = NULL;
1496
1497 if (sgl)
1498 buf = kmap(sg_page(sgl)) + sgl->offset;
1499
1500 if (buf) {
1501 memset(buf, 0, sgl->length);
1502 kunmap(sg_page(sgl));
1503 }
1504 }
1505
1506 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1507 sgl_bidi, sgl_bidi_count);
1508 if (rc != 0) {
1509 transport_generic_request_failure(se_cmd, rc);
1510 return 0;
1511 }
1512 }
1513
1514 /*
1515 * Check if we need to delay processing because of ALUA
1516 * Active/NonOptimized primary access state..
1517 */
1518 core_alua_check_nonop_delay(se_cmd);
1519
1520 transport_handle_cdb_direct(se_cmd);
1521 return 0;
1522 }
1523 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1524
1525 /*
1526 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1527 *
1528 * @se_cmd: command descriptor to submit
1529 * @se_sess: associated se_sess for endpoint
1530 * @cdb: pointer to SCSI CDB
1531 * @sense: pointer to SCSI sense buffer
1532 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1533 * @data_length: fabric expected data transfer length
1534 * @task_addr: SAM task attribute
1535 * @data_dir: DMA data direction
1536 * @flags: flags for command submission from target_sc_flags_tables
1537 *
1538 * Task tags are supported if the caller has set @se_cmd->tag.
1539 *
1540 * Returns non zero to signal active I/O shutdown failure. All other
1541 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1542 * but still return zero here.
1543 *
1544 * This may only be called from process context, and also currently
1545 * assumes internal allocation of fabric payload buffer by target-core.
1546 *
1547 * It also assumes interal target core SGL memory allocation.
1548 */
1549 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1550 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1551 u32 data_length, int task_attr, int data_dir, int flags)
1552 {
1553 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1554 unpacked_lun, data_length, task_attr, data_dir,
1555 flags, NULL, 0, NULL, 0, NULL, 0);
1556 }
1557 EXPORT_SYMBOL(target_submit_cmd);
1558
1559 static void target_complete_tmr_failure(struct work_struct *work)
1560 {
1561 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1562
1563 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1564 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1565
1566 transport_cmd_check_stop_to_fabric(se_cmd);
1567 }
1568
1569 /**
1570 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1571 * for TMR CDBs
1572 *
1573 * @se_cmd: command descriptor to submit
1574 * @se_sess: associated se_sess for endpoint
1575 * @sense: pointer to SCSI sense buffer
1576 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1577 * @fabric_context: fabric context for TMR req
1578 * @tm_type: Type of TM request
1579 * @gfp: gfp type for caller
1580 * @tag: referenced task tag for TMR_ABORT_TASK
1581 * @flags: submit cmd flags
1582 *
1583 * Callable from all contexts.
1584 **/
1585
1586 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1587 unsigned char *sense, u64 unpacked_lun,
1588 void *fabric_tmr_ptr, unsigned char tm_type,
1589 gfp_t gfp, u64 tag, int flags)
1590 {
1591 struct se_portal_group *se_tpg;
1592 int ret;
1593
1594 se_tpg = se_sess->se_tpg;
1595 BUG_ON(!se_tpg);
1596
1597 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1598 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1599 /*
1600 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1601 * allocation failure.
1602 */
1603 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1604 if (ret < 0)
1605 return -ENOMEM;
1606
1607 if (tm_type == TMR_ABORT_TASK)
1608 se_cmd->se_tmr_req->ref_task_tag = tag;
1609
1610 /* See target_submit_cmd for commentary */
1611 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1612 if (ret) {
1613 core_tmr_release_req(se_cmd->se_tmr_req);
1614 return ret;
1615 }
1616
1617 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1618 if (ret) {
1619 /*
1620 * For callback during failure handling, push this work off
1621 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1622 */
1623 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1624 schedule_work(&se_cmd->work);
1625 return 0;
1626 }
1627 transport_generic_handle_tmr(se_cmd);
1628 return 0;
1629 }
1630 EXPORT_SYMBOL(target_submit_tmr);
1631
1632 /*
1633 * Handle SAM-esque emulation for generic transport request failures.
1634 */
1635 void transport_generic_request_failure(struct se_cmd *cmd,
1636 sense_reason_t sense_reason)
1637 {
1638 int ret = 0, post_ret = 0;
1639
1640 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1641 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1642 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1643 cmd->se_tfo->get_cmd_state(cmd),
1644 cmd->t_state, sense_reason);
1645 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1646 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1647 (cmd->transport_state & CMD_T_STOP) != 0,
1648 (cmd->transport_state & CMD_T_SENT) != 0);
1649
1650 /*
1651 * For SAM Task Attribute emulation for failed struct se_cmd
1652 */
1653 transport_complete_task_attr(cmd);
1654 /*
1655 * Handle special case for COMPARE_AND_WRITE failure, where the
1656 * callback is expected to drop the per device ->caw_sem.
1657 */
1658 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1659 cmd->transport_complete_callback)
1660 cmd->transport_complete_callback(cmd, false, &post_ret);
1661
1662 switch (sense_reason) {
1663 case TCM_NON_EXISTENT_LUN:
1664 case TCM_UNSUPPORTED_SCSI_OPCODE:
1665 case TCM_INVALID_CDB_FIELD:
1666 case TCM_INVALID_PARAMETER_LIST:
1667 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1668 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1669 case TCM_UNKNOWN_MODE_PAGE:
1670 case TCM_WRITE_PROTECTED:
1671 case TCM_ADDRESS_OUT_OF_RANGE:
1672 case TCM_CHECK_CONDITION_ABORT_CMD:
1673 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1674 case TCM_CHECK_CONDITION_NOT_READY:
1675 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1676 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1677 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1678 break;
1679 case TCM_OUT_OF_RESOURCES:
1680 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1681 break;
1682 case TCM_RESERVATION_CONFLICT:
1683 /*
1684 * No SENSE Data payload for this case, set SCSI Status
1685 * and queue the response to $FABRIC_MOD.
1686 *
1687 * Uses linux/include/scsi/scsi.h SAM status codes defs
1688 */
1689 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1690 /*
1691 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1692 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1693 * CONFLICT STATUS.
1694 *
1695 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1696 */
1697 if (cmd->se_sess &&
1698 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1699 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1700 cmd->orig_fe_lun, 0x2C,
1701 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1702 }
1703 trace_target_cmd_complete(cmd);
1704 ret = cmd->se_tfo->queue_status(cmd);
1705 if (ret == -EAGAIN || ret == -ENOMEM)
1706 goto queue_full;
1707 goto check_stop;
1708 default:
1709 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1710 cmd->t_task_cdb[0], sense_reason);
1711 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1712 break;
1713 }
1714
1715 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1716 if (ret == -EAGAIN || ret == -ENOMEM)
1717 goto queue_full;
1718
1719 check_stop:
1720 transport_lun_remove_cmd(cmd);
1721 transport_cmd_check_stop_to_fabric(cmd);
1722 return;
1723
1724 queue_full:
1725 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1726 transport_handle_queue_full(cmd, cmd->se_dev);
1727 }
1728 EXPORT_SYMBOL(transport_generic_request_failure);
1729
1730 void __target_execute_cmd(struct se_cmd *cmd)
1731 {
1732 sense_reason_t ret;
1733
1734 if (cmd->execute_cmd) {
1735 ret = cmd->execute_cmd(cmd);
1736 if (ret) {
1737 spin_lock_irq(&cmd->t_state_lock);
1738 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1739 spin_unlock_irq(&cmd->t_state_lock);
1740
1741 transport_generic_request_failure(cmd, ret);
1742 }
1743 }
1744 }
1745
1746 static int target_write_prot_action(struct se_cmd *cmd)
1747 {
1748 u32 sectors;
1749 /*
1750 * Perform WRITE_INSERT of PI using software emulation when backend
1751 * device has PI enabled, if the transport has not already generated
1752 * PI using hardware WRITE_INSERT offload.
1753 */
1754 switch (cmd->prot_op) {
1755 case TARGET_PROT_DOUT_INSERT:
1756 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1757 sbc_dif_generate(cmd);
1758 break;
1759 case TARGET_PROT_DOUT_STRIP:
1760 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1761 break;
1762
1763 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1764 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1765 sectors, 0, cmd->t_prot_sg, 0);
1766 if (unlikely(cmd->pi_err)) {
1767 spin_lock_irq(&cmd->t_state_lock);
1768 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1769 spin_unlock_irq(&cmd->t_state_lock);
1770 transport_generic_request_failure(cmd, cmd->pi_err);
1771 return -1;
1772 }
1773 break;
1774 default:
1775 break;
1776 }
1777
1778 return 0;
1779 }
1780
1781 static bool target_handle_task_attr(struct se_cmd *cmd)
1782 {
1783 struct se_device *dev = cmd->se_dev;
1784
1785 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1786 return false;
1787
1788 /*
1789 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1790 * to allow the passed struct se_cmd list of tasks to the front of the list.
1791 */
1792 switch (cmd->sam_task_attr) {
1793 case TCM_HEAD_TAG:
1794 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1795 cmd->t_task_cdb[0]);
1796 return false;
1797 case TCM_ORDERED_TAG:
1798 atomic_inc_mb(&dev->dev_ordered_sync);
1799
1800 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1801 cmd->t_task_cdb[0]);
1802
1803 /*
1804 * Execute an ORDERED command if no other older commands
1805 * exist that need to be completed first.
1806 */
1807 if (!atomic_read(&dev->simple_cmds))
1808 return false;
1809 break;
1810 default:
1811 /*
1812 * For SIMPLE and UNTAGGED Task Attribute commands
1813 */
1814 atomic_inc_mb(&dev->simple_cmds);
1815 break;
1816 }
1817
1818 if (atomic_read(&dev->dev_ordered_sync) == 0)
1819 return false;
1820
1821 spin_lock(&dev->delayed_cmd_lock);
1822 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1823 spin_unlock(&dev->delayed_cmd_lock);
1824
1825 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1826 cmd->t_task_cdb[0], cmd->sam_task_attr);
1827 return true;
1828 }
1829
1830 static int __transport_check_aborted_status(struct se_cmd *, int);
1831
1832 void target_execute_cmd(struct se_cmd *cmd)
1833 {
1834 /*
1835 * Determine if frontend context caller is requesting the stopping of
1836 * this command for frontend exceptions.
1837 *
1838 * If the received CDB has aleady been aborted stop processing it here.
1839 */
1840 spin_lock_irq(&cmd->t_state_lock);
1841 if (__transport_check_aborted_status(cmd, 1)) {
1842 spin_unlock_irq(&cmd->t_state_lock);
1843 return;
1844 }
1845 if (cmd->transport_state & CMD_T_STOP) {
1846 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1847 __func__, __LINE__, cmd->tag);
1848
1849 spin_unlock_irq(&cmd->t_state_lock);
1850 complete_all(&cmd->t_transport_stop_comp);
1851 return;
1852 }
1853
1854 cmd->t_state = TRANSPORT_PROCESSING;
1855 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1856 spin_unlock_irq(&cmd->t_state_lock);
1857
1858 if (target_write_prot_action(cmd))
1859 return;
1860
1861 if (target_handle_task_attr(cmd)) {
1862 spin_lock_irq(&cmd->t_state_lock);
1863 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1864 spin_unlock_irq(&cmd->t_state_lock);
1865 return;
1866 }
1867
1868 __target_execute_cmd(cmd);
1869 }
1870 EXPORT_SYMBOL(target_execute_cmd);
1871
1872 /*
1873 * Process all commands up to the last received ORDERED task attribute which
1874 * requires another blocking boundary
1875 */
1876 static void target_restart_delayed_cmds(struct se_device *dev)
1877 {
1878 for (;;) {
1879 struct se_cmd *cmd;
1880
1881 spin_lock(&dev->delayed_cmd_lock);
1882 if (list_empty(&dev->delayed_cmd_list)) {
1883 spin_unlock(&dev->delayed_cmd_lock);
1884 break;
1885 }
1886
1887 cmd = list_entry(dev->delayed_cmd_list.next,
1888 struct se_cmd, se_delayed_node);
1889 list_del(&cmd->se_delayed_node);
1890 spin_unlock(&dev->delayed_cmd_lock);
1891
1892 __target_execute_cmd(cmd);
1893
1894 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1895 break;
1896 }
1897 }
1898
1899 /*
1900 * Called from I/O completion to determine which dormant/delayed
1901 * and ordered cmds need to have their tasks added to the execution queue.
1902 */
1903 static void transport_complete_task_attr(struct se_cmd *cmd)
1904 {
1905 struct se_device *dev = cmd->se_dev;
1906
1907 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1908 return;
1909
1910 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1911 atomic_dec_mb(&dev->simple_cmds);
1912 dev->dev_cur_ordered_id++;
1913 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1914 dev->dev_cur_ordered_id);
1915 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1916 dev->dev_cur_ordered_id++;
1917 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1918 dev->dev_cur_ordered_id);
1919 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1920 atomic_dec_mb(&dev->dev_ordered_sync);
1921
1922 dev->dev_cur_ordered_id++;
1923 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1924 dev->dev_cur_ordered_id);
1925 }
1926
1927 target_restart_delayed_cmds(dev);
1928 }
1929
1930 static void transport_complete_qf(struct se_cmd *cmd)
1931 {
1932 int ret = 0;
1933
1934 transport_complete_task_attr(cmd);
1935
1936 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1937 trace_target_cmd_complete(cmd);
1938 ret = cmd->se_tfo->queue_status(cmd);
1939 goto out;
1940 }
1941
1942 switch (cmd->data_direction) {
1943 case DMA_FROM_DEVICE:
1944 trace_target_cmd_complete(cmd);
1945 ret = cmd->se_tfo->queue_data_in(cmd);
1946 break;
1947 case DMA_TO_DEVICE:
1948 if (cmd->se_cmd_flags & SCF_BIDI) {
1949 ret = cmd->se_tfo->queue_data_in(cmd);
1950 break;
1951 }
1952 /* Fall through for DMA_TO_DEVICE */
1953 case DMA_NONE:
1954 trace_target_cmd_complete(cmd);
1955 ret = cmd->se_tfo->queue_status(cmd);
1956 break;
1957 default:
1958 break;
1959 }
1960
1961 out:
1962 if (ret < 0) {
1963 transport_handle_queue_full(cmd, cmd->se_dev);
1964 return;
1965 }
1966 transport_lun_remove_cmd(cmd);
1967 transport_cmd_check_stop_to_fabric(cmd);
1968 }
1969
1970 static void transport_handle_queue_full(
1971 struct se_cmd *cmd,
1972 struct se_device *dev)
1973 {
1974 spin_lock_irq(&dev->qf_cmd_lock);
1975 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1976 atomic_inc_mb(&dev->dev_qf_count);
1977 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1978
1979 schedule_work(&cmd->se_dev->qf_work_queue);
1980 }
1981
1982 static bool target_read_prot_action(struct se_cmd *cmd)
1983 {
1984 switch (cmd->prot_op) {
1985 case TARGET_PROT_DIN_STRIP:
1986 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1987 u32 sectors = cmd->data_length >>
1988 ilog2(cmd->se_dev->dev_attrib.block_size);
1989
1990 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1991 sectors, 0, cmd->t_prot_sg,
1992 0);
1993 if (cmd->pi_err)
1994 return true;
1995 }
1996 break;
1997 case TARGET_PROT_DIN_INSERT:
1998 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
1999 break;
2000
2001 sbc_dif_generate(cmd);
2002 break;
2003 default:
2004 break;
2005 }
2006
2007 return false;
2008 }
2009
2010 static void target_complete_ok_work(struct work_struct *work)
2011 {
2012 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2013 int ret;
2014
2015 /*
2016 * Check if we need to move delayed/dormant tasks from cmds on the
2017 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2018 * Attribute.
2019 */
2020 transport_complete_task_attr(cmd);
2021
2022 /*
2023 * Check to schedule QUEUE_FULL work, or execute an existing
2024 * cmd->transport_qf_callback()
2025 */
2026 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2027 schedule_work(&cmd->se_dev->qf_work_queue);
2028
2029 /*
2030 * Check if we need to send a sense buffer from
2031 * the struct se_cmd in question.
2032 */
2033 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2034 WARN_ON(!cmd->scsi_status);
2035 ret = transport_send_check_condition_and_sense(
2036 cmd, 0, 1);
2037 if (ret == -EAGAIN || ret == -ENOMEM)
2038 goto queue_full;
2039
2040 transport_lun_remove_cmd(cmd);
2041 transport_cmd_check_stop_to_fabric(cmd);
2042 return;
2043 }
2044 /*
2045 * Check for a callback, used by amongst other things
2046 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2047 */
2048 if (cmd->transport_complete_callback) {
2049 sense_reason_t rc;
2050 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2051 bool zero_dl = !(cmd->data_length);
2052 int post_ret = 0;
2053
2054 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2055 if (!rc && !post_ret) {
2056 if (caw && zero_dl)
2057 goto queue_rsp;
2058
2059 return;
2060 } else if (rc) {
2061 ret = transport_send_check_condition_and_sense(cmd,
2062 rc, 0);
2063 if (ret == -EAGAIN || ret == -ENOMEM)
2064 goto queue_full;
2065
2066 transport_lun_remove_cmd(cmd);
2067 transport_cmd_check_stop_to_fabric(cmd);
2068 return;
2069 }
2070 }
2071
2072 queue_rsp:
2073 switch (cmd->data_direction) {
2074 case DMA_FROM_DEVICE:
2075 atomic_long_add(cmd->data_length,
2076 &cmd->se_lun->lun_stats.tx_data_octets);
2077 /*
2078 * Perform READ_STRIP of PI using software emulation when
2079 * backend had PI enabled, if the transport will not be
2080 * performing hardware READ_STRIP offload.
2081 */
2082 if (target_read_prot_action(cmd)) {
2083 ret = transport_send_check_condition_and_sense(cmd,
2084 cmd->pi_err, 0);
2085 if (ret == -EAGAIN || ret == -ENOMEM)
2086 goto queue_full;
2087
2088 transport_lun_remove_cmd(cmd);
2089 transport_cmd_check_stop_to_fabric(cmd);
2090 return;
2091 }
2092
2093 trace_target_cmd_complete(cmd);
2094 ret = cmd->se_tfo->queue_data_in(cmd);
2095 if (ret == -EAGAIN || ret == -ENOMEM)
2096 goto queue_full;
2097 break;
2098 case DMA_TO_DEVICE:
2099 atomic_long_add(cmd->data_length,
2100 &cmd->se_lun->lun_stats.rx_data_octets);
2101 /*
2102 * Check if we need to send READ payload for BIDI-COMMAND
2103 */
2104 if (cmd->se_cmd_flags & SCF_BIDI) {
2105 atomic_long_add(cmd->data_length,
2106 &cmd->se_lun->lun_stats.tx_data_octets);
2107 ret = cmd->se_tfo->queue_data_in(cmd);
2108 if (ret == -EAGAIN || ret == -ENOMEM)
2109 goto queue_full;
2110 break;
2111 }
2112 /* Fall through for DMA_TO_DEVICE */
2113 case DMA_NONE:
2114 trace_target_cmd_complete(cmd);
2115 ret = cmd->se_tfo->queue_status(cmd);
2116 if (ret == -EAGAIN || ret == -ENOMEM)
2117 goto queue_full;
2118 break;
2119 default:
2120 break;
2121 }
2122
2123 transport_lun_remove_cmd(cmd);
2124 transport_cmd_check_stop_to_fabric(cmd);
2125 return;
2126
2127 queue_full:
2128 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2129 " data_direction: %d\n", cmd, cmd->data_direction);
2130 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2131 transport_handle_queue_full(cmd, cmd->se_dev);
2132 }
2133
2134 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2135 {
2136 struct scatterlist *sg;
2137 int count;
2138
2139 for_each_sg(sgl, sg, nents, count)
2140 __free_page(sg_page(sg));
2141
2142 kfree(sgl);
2143 }
2144
2145 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2146 {
2147 /*
2148 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2149 * emulation, and free + reset pointers if necessary..
2150 */
2151 if (!cmd->t_data_sg_orig)
2152 return;
2153
2154 kfree(cmd->t_data_sg);
2155 cmd->t_data_sg = cmd->t_data_sg_orig;
2156 cmd->t_data_sg_orig = NULL;
2157 cmd->t_data_nents = cmd->t_data_nents_orig;
2158 cmd->t_data_nents_orig = 0;
2159 }
2160
2161 static inline void transport_free_pages(struct se_cmd *cmd)
2162 {
2163 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2164 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2165 cmd->t_prot_sg = NULL;
2166 cmd->t_prot_nents = 0;
2167 }
2168
2169 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2170 /*
2171 * Release special case READ buffer payload required for
2172 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2173 */
2174 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2175 transport_free_sgl(cmd->t_bidi_data_sg,
2176 cmd->t_bidi_data_nents);
2177 cmd->t_bidi_data_sg = NULL;
2178 cmd->t_bidi_data_nents = 0;
2179 }
2180 transport_reset_sgl_orig(cmd);
2181 return;
2182 }
2183 transport_reset_sgl_orig(cmd);
2184
2185 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2186 cmd->t_data_sg = NULL;
2187 cmd->t_data_nents = 0;
2188
2189 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2190 cmd->t_bidi_data_sg = NULL;
2191 cmd->t_bidi_data_nents = 0;
2192 }
2193
2194 /**
2195 * transport_put_cmd - release a reference to a command
2196 * @cmd: command to release
2197 *
2198 * This routine releases our reference to the command and frees it if possible.
2199 */
2200 static int transport_put_cmd(struct se_cmd *cmd)
2201 {
2202 BUG_ON(!cmd->se_tfo);
2203 /*
2204 * If this cmd has been setup with target_get_sess_cmd(), drop
2205 * the kref and call ->release_cmd() in kref callback.
2206 */
2207 return target_put_sess_cmd(cmd);
2208 }
2209
2210 void *transport_kmap_data_sg(struct se_cmd *cmd)
2211 {
2212 struct scatterlist *sg = cmd->t_data_sg;
2213 struct page **pages;
2214 int i;
2215
2216 /*
2217 * We need to take into account a possible offset here for fabrics like
2218 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2219 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2220 */
2221 if (!cmd->t_data_nents)
2222 return NULL;
2223
2224 BUG_ON(!sg);
2225 if (cmd->t_data_nents == 1)
2226 return kmap(sg_page(sg)) + sg->offset;
2227
2228 /* >1 page. use vmap */
2229 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2230 if (!pages)
2231 return NULL;
2232
2233 /* convert sg[] to pages[] */
2234 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2235 pages[i] = sg_page(sg);
2236 }
2237
2238 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2239 kfree(pages);
2240 if (!cmd->t_data_vmap)
2241 return NULL;
2242
2243 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2244 }
2245 EXPORT_SYMBOL(transport_kmap_data_sg);
2246
2247 void transport_kunmap_data_sg(struct se_cmd *cmd)
2248 {
2249 if (!cmd->t_data_nents) {
2250 return;
2251 } else if (cmd->t_data_nents == 1) {
2252 kunmap(sg_page(cmd->t_data_sg));
2253 return;
2254 }
2255
2256 vunmap(cmd->t_data_vmap);
2257 cmd->t_data_vmap = NULL;
2258 }
2259 EXPORT_SYMBOL(transport_kunmap_data_sg);
2260
2261 int
2262 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2263 bool zero_page)
2264 {
2265 struct scatterlist *sg;
2266 struct page *page;
2267 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2268 unsigned int nent;
2269 int i = 0;
2270
2271 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2272 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2273 if (!sg)
2274 return -ENOMEM;
2275
2276 sg_init_table(sg, nent);
2277
2278 while (length) {
2279 u32 page_len = min_t(u32, length, PAGE_SIZE);
2280 page = alloc_page(GFP_KERNEL | zero_flag);
2281 if (!page)
2282 goto out;
2283
2284 sg_set_page(&sg[i], page, page_len, 0);
2285 length -= page_len;
2286 i++;
2287 }
2288 *sgl = sg;
2289 *nents = nent;
2290 return 0;
2291
2292 out:
2293 while (i > 0) {
2294 i--;
2295 __free_page(sg_page(&sg[i]));
2296 }
2297 kfree(sg);
2298 return -ENOMEM;
2299 }
2300
2301 /*
2302 * Allocate any required resources to execute the command. For writes we
2303 * might not have the payload yet, so notify the fabric via a call to
2304 * ->write_pending instead. Otherwise place it on the execution queue.
2305 */
2306 sense_reason_t
2307 transport_generic_new_cmd(struct se_cmd *cmd)
2308 {
2309 int ret = 0;
2310 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2311
2312 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2313 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2314 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2315 cmd->prot_length, true);
2316 if (ret < 0)
2317 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2318 }
2319
2320 /*
2321 * Determine is the TCM fabric module has already allocated physical
2322 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2323 * beforehand.
2324 */
2325 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2326 cmd->data_length) {
2327
2328 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2329 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2330 u32 bidi_length;
2331
2332 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2333 bidi_length = cmd->t_task_nolb *
2334 cmd->se_dev->dev_attrib.block_size;
2335 else
2336 bidi_length = cmd->data_length;
2337
2338 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2339 &cmd->t_bidi_data_nents,
2340 bidi_length, zero_flag);
2341 if (ret < 0)
2342 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2343 }
2344
2345 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2346 cmd->data_length, zero_flag);
2347 if (ret < 0)
2348 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2349 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2350 cmd->data_length) {
2351 /*
2352 * Special case for COMPARE_AND_WRITE with fabrics
2353 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2354 */
2355 u32 caw_length = cmd->t_task_nolb *
2356 cmd->se_dev->dev_attrib.block_size;
2357
2358 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2359 &cmd->t_bidi_data_nents,
2360 caw_length, zero_flag);
2361 if (ret < 0)
2362 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2363 }
2364 /*
2365 * If this command is not a write we can execute it right here,
2366 * for write buffers we need to notify the fabric driver first
2367 * and let it call back once the write buffers are ready.
2368 */
2369 target_add_to_state_list(cmd);
2370 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2371 target_execute_cmd(cmd);
2372 return 0;
2373 }
2374 transport_cmd_check_stop(cmd, false, true);
2375
2376 ret = cmd->se_tfo->write_pending(cmd);
2377 if (ret == -EAGAIN || ret == -ENOMEM)
2378 goto queue_full;
2379
2380 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2381 WARN_ON(ret);
2382
2383 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2384
2385 queue_full:
2386 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2387 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2388 transport_handle_queue_full(cmd, cmd->se_dev);
2389 return 0;
2390 }
2391 EXPORT_SYMBOL(transport_generic_new_cmd);
2392
2393 static void transport_write_pending_qf(struct se_cmd *cmd)
2394 {
2395 int ret;
2396
2397 ret = cmd->se_tfo->write_pending(cmd);
2398 if (ret == -EAGAIN || ret == -ENOMEM) {
2399 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2400 cmd);
2401 transport_handle_queue_full(cmd, cmd->se_dev);
2402 }
2403 }
2404
2405 static bool
2406 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2407 unsigned long *flags);
2408
2409 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2410 {
2411 unsigned long flags;
2412
2413 spin_lock_irqsave(&cmd->t_state_lock, flags);
2414 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2415 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2416 }
2417
2418 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2419 {
2420 int ret = 0;
2421 bool aborted = false, tas = false;
2422
2423 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2424 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2425 target_wait_free_cmd(cmd, &aborted, &tas);
2426
2427 if (!aborted || tas)
2428 ret = transport_put_cmd(cmd);
2429 } else {
2430 if (wait_for_tasks)
2431 target_wait_free_cmd(cmd, &aborted, &tas);
2432 /*
2433 * Handle WRITE failure case where transport_generic_new_cmd()
2434 * has already added se_cmd to state_list, but fabric has
2435 * failed command before I/O submission.
2436 */
2437 if (cmd->state_active)
2438 target_remove_from_state_list(cmd);
2439
2440 if (cmd->se_lun)
2441 transport_lun_remove_cmd(cmd);
2442
2443 if (!aborted || tas)
2444 ret = transport_put_cmd(cmd);
2445 }
2446 /*
2447 * If the task has been internally aborted due to TMR ABORT_TASK
2448 * or LUN_RESET, target_core_tmr.c is responsible for performing
2449 * the remaining calls to target_put_sess_cmd(), and not the
2450 * callers of this function.
2451 */
2452 if (aborted) {
2453 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2454 wait_for_completion(&cmd->cmd_wait_comp);
2455 cmd->se_tfo->release_cmd(cmd);
2456 ret = 1;
2457 }
2458 return ret;
2459 }
2460 EXPORT_SYMBOL(transport_generic_free_cmd);
2461
2462 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2463 * @se_cmd: command descriptor to add
2464 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2465 */
2466 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2467 {
2468 struct se_session *se_sess = se_cmd->se_sess;
2469 unsigned long flags;
2470 int ret = 0;
2471
2472 /*
2473 * Add a second kref if the fabric caller is expecting to handle
2474 * fabric acknowledgement that requires two target_put_sess_cmd()
2475 * invocations before se_cmd descriptor release.
2476 */
2477 if (ack_kref)
2478 kref_get(&se_cmd->cmd_kref);
2479
2480 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2481 if (se_sess->sess_tearing_down) {
2482 ret = -ESHUTDOWN;
2483 goto out;
2484 }
2485 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2486 out:
2487 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2488
2489 if (ret && ack_kref)
2490 target_put_sess_cmd(se_cmd);
2491
2492 return ret;
2493 }
2494 EXPORT_SYMBOL(target_get_sess_cmd);
2495
2496 static void target_free_cmd_mem(struct se_cmd *cmd)
2497 {
2498 transport_free_pages(cmd);
2499
2500 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2501 core_tmr_release_req(cmd->se_tmr_req);
2502 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2503 kfree(cmd->t_task_cdb);
2504 }
2505
2506 static void target_release_cmd_kref(struct kref *kref)
2507 {
2508 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2509 struct se_session *se_sess = se_cmd->se_sess;
2510 unsigned long flags;
2511 bool fabric_stop;
2512
2513 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2514 if (list_empty(&se_cmd->se_cmd_list)) {
2515 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2516 target_free_cmd_mem(se_cmd);
2517 se_cmd->se_tfo->release_cmd(se_cmd);
2518 return;
2519 }
2520
2521 spin_lock(&se_cmd->t_state_lock);
2522 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2523 spin_unlock(&se_cmd->t_state_lock);
2524
2525 if (se_cmd->cmd_wait_set || fabric_stop) {
2526 list_del_init(&se_cmd->se_cmd_list);
2527 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2528 target_free_cmd_mem(se_cmd);
2529 complete(&se_cmd->cmd_wait_comp);
2530 return;
2531 }
2532 list_del_init(&se_cmd->se_cmd_list);
2533 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2534
2535 target_free_cmd_mem(se_cmd);
2536 se_cmd->se_tfo->release_cmd(se_cmd);
2537 }
2538
2539 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2540 * @se_cmd: command descriptor to drop
2541 */
2542 int target_put_sess_cmd(struct se_cmd *se_cmd)
2543 {
2544 struct se_session *se_sess = se_cmd->se_sess;
2545
2546 if (!se_sess) {
2547 target_free_cmd_mem(se_cmd);
2548 se_cmd->se_tfo->release_cmd(se_cmd);
2549 return 1;
2550 }
2551 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2552 }
2553 EXPORT_SYMBOL(target_put_sess_cmd);
2554
2555 /* target_sess_cmd_list_set_waiting - Flag all commands in
2556 * sess_cmd_list to complete cmd_wait_comp. Set
2557 * sess_tearing_down so no more commands are queued.
2558 * @se_sess: session to flag
2559 */
2560 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2561 {
2562 struct se_cmd *se_cmd;
2563 unsigned long flags;
2564 int rc;
2565
2566 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2567 if (se_sess->sess_tearing_down) {
2568 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2569 return;
2570 }
2571 se_sess->sess_tearing_down = 1;
2572 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2573
2574 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2575 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2576 if (rc) {
2577 se_cmd->cmd_wait_set = 1;
2578 spin_lock(&se_cmd->t_state_lock);
2579 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2580 spin_unlock(&se_cmd->t_state_lock);
2581 }
2582 }
2583
2584 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2585 }
2586 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2587
2588 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2589 * @se_sess: session to wait for active I/O
2590 */
2591 void target_wait_for_sess_cmds(struct se_session *se_sess)
2592 {
2593 struct se_cmd *se_cmd, *tmp_cmd;
2594 unsigned long flags;
2595 bool tas;
2596
2597 list_for_each_entry_safe(se_cmd, tmp_cmd,
2598 &se_sess->sess_wait_list, se_cmd_list) {
2599 list_del_init(&se_cmd->se_cmd_list);
2600
2601 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2602 " %d\n", se_cmd, se_cmd->t_state,
2603 se_cmd->se_tfo->get_cmd_state(se_cmd));
2604
2605 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2606 tas = (se_cmd->transport_state & CMD_T_TAS);
2607 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2608
2609 if (!target_put_sess_cmd(se_cmd)) {
2610 if (tas)
2611 target_put_sess_cmd(se_cmd);
2612 }
2613
2614 wait_for_completion(&se_cmd->cmd_wait_comp);
2615 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2616 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2617 se_cmd->se_tfo->get_cmd_state(se_cmd));
2618
2619 se_cmd->se_tfo->release_cmd(se_cmd);
2620 }
2621
2622 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2623 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2624 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2625
2626 }
2627 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2628
2629 void transport_clear_lun_ref(struct se_lun *lun)
2630 {
2631 percpu_ref_kill(&lun->lun_ref);
2632 wait_for_completion(&lun->lun_ref_comp);
2633 }
2634
2635 static bool
2636 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2637 bool *aborted, bool *tas, unsigned long *flags)
2638 __releases(&cmd->t_state_lock)
2639 __acquires(&cmd->t_state_lock)
2640 {
2641
2642 assert_spin_locked(&cmd->t_state_lock);
2643 WARN_ON_ONCE(!irqs_disabled());
2644
2645 if (fabric_stop)
2646 cmd->transport_state |= CMD_T_FABRIC_STOP;
2647
2648 if (cmd->transport_state & CMD_T_ABORTED)
2649 *aborted = true;
2650
2651 if (cmd->transport_state & CMD_T_TAS)
2652 *tas = true;
2653
2654 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2655 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2656 return false;
2657
2658 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2659 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2660 return false;
2661
2662 if (!(cmd->transport_state & CMD_T_ACTIVE))
2663 return false;
2664
2665 if (fabric_stop && *aborted)
2666 return false;
2667
2668 cmd->transport_state |= CMD_T_STOP;
2669
2670 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2671 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2672 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2673
2674 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2675
2676 wait_for_completion(&cmd->t_transport_stop_comp);
2677
2678 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2679 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2680
2681 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2682 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2683
2684 return true;
2685 }
2686
2687 /**
2688 * transport_wait_for_tasks - wait for completion to occur
2689 * @cmd: command to wait
2690 *
2691 * Called from frontend fabric context to wait for storage engine
2692 * to pause and/or release frontend generated struct se_cmd.
2693 */
2694 bool transport_wait_for_tasks(struct se_cmd *cmd)
2695 {
2696 unsigned long flags;
2697 bool ret, aborted = false, tas = false;
2698
2699 spin_lock_irqsave(&cmd->t_state_lock, flags);
2700 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2701 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2702
2703 return ret;
2704 }
2705 EXPORT_SYMBOL(transport_wait_for_tasks);
2706
2707 struct sense_info {
2708 u8 key;
2709 u8 asc;
2710 u8 ascq;
2711 bool add_sector_info;
2712 };
2713
2714 static const struct sense_info sense_info_table[] = {
2715 [TCM_NO_SENSE] = {
2716 .key = NOT_READY
2717 },
2718 [TCM_NON_EXISTENT_LUN] = {
2719 .key = ILLEGAL_REQUEST,
2720 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2721 },
2722 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2723 .key = ILLEGAL_REQUEST,
2724 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2725 },
2726 [TCM_SECTOR_COUNT_TOO_MANY] = {
2727 .key = ILLEGAL_REQUEST,
2728 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2729 },
2730 [TCM_UNKNOWN_MODE_PAGE] = {
2731 .key = ILLEGAL_REQUEST,
2732 .asc = 0x24, /* INVALID FIELD IN CDB */
2733 },
2734 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2735 .key = ABORTED_COMMAND,
2736 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2737 .ascq = 0x03,
2738 },
2739 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2740 .key = ABORTED_COMMAND,
2741 .asc = 0x0c, /* WRITE ERROR */
2742 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2743 },
2744 [TCM_INVALID_CDB_FIELD] = {
2745 .key = ILLEGAL_REQUEST,
2746 .asc = 0x24, /* INVALID FIELD IN CDB */
2747 },
2748 [TCM_INVALID_PARAMETER_LIST] = {
2749 .key = ILLEGAL_REQUEST,
2750 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2751 },
2752 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2753 .key = ILLEGAL_REQUEST,
2754 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2755 },
2756 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2757 .key = ILLEGAL_REQUEST,
2758 .asc = 0x0c, /* WRITE ERROR */
2759 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2760 },
2761 [TCM_SERVICE_CRC_ERROR] = {
2762 .key = ABORTED_COMMAND,
2763 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2764 .ascq = 0x05, /* N/A */
2765 },
2766 [TCM_SNACK_REJECTED] = {
2767 .key = ABORTED_COMMAND,
2768 .asc = 0x11, /* READ ERROR */
2769 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2770 },
2771 [TCM_WRITE_PROTECTED] = {
2772 .key = DATA_PROTECT,
2773 .asc = 0x27, /* WRITE PROTECTED */
2774 },
2775 [TCM_ADDRESS_OUT_OF_RANGE] = {
2776 .key = ILLEGAL_REQUEST,
2777 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2778 },
2779 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2780 .key = UNIT_ATTENTION,
2781 },
2782 [TCM_CHECK_CONDITION_NOT_READY] = {
2783 .key = NOT_READY,
2784 },
2785 [TCM_MISCOMPARE_VERIFY] = {
2786 .key = MISCOMPARE,
2787 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2788 .ascq = 0x00,
2789 },
2790 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2791 .key = ABORTED_COMMAND,
2792 .asc = 0x10,
2793 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2794 .add_sector_info = true,
2795 },
2796 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2797 .key = ABORTED_COMMAND,
2798 .asc = 0x10,
2799 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2800 .add_sector_info = true,
2801 },
2802 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2803 .key = ABORTED_COMMAND,
2804 .asc = 0x10,
2805 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2806 .add_sector_info = true,
2807 },
2808 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2809 /*
2810 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2811 * Solaris initiators. Returning NOT READY instead means the
2812 * operations will be retried a finite number of times and we
2813 * can survive intermittent errors.
2814 */
2815 .key = NOT_READY,
2816 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2817 },
2818 };
2819
2820 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2821 {
2822 const struct sense_info *si;
2823 u8 *buffer = cmd->sense_buffer;
2824 int r = (__force int)reason;
2825 u8 asc, ascq;
2826 bool desc_format = target_sense_desc_format(cmd->se_dev);
2827
2828 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2829 si = &sense_info_table[r];
2830 else
2831 si = &sense_info_table[(__force int)
2832 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2833
2834 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2835 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2836 WARN_ON_ONCE(asc == 0);
2837 } else if (si->asc == 0) {
2838 WARN_ON_ONCE(cmd->scsi_asc == 0);
2839 asc = cmd->scsi_asc;
2840 ascq = cmd->scsi_ascq;
2841 } else {
2842 asc = si->asc;
2843 ascq = si->ascq;
2844 }
2845
2846 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2847 if (si->add_sector_info)
2848 return scsi_set_sense_information(buffer,
2849 cmd->scsi_sense_length,
2850 cmd->bad_sector);
2851
2852 return 0;
2853 }
2854
2855 int
2856 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2857 sense_reason_t reason, int from_transport)
2858 {
2859 unsigned long flags;
2860
2861 spin_lock_irqsave(&cmd->t_state_lock, flags);
2862 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2863 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2864 return 0;
2865 }
2866 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2867 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2868
2869 if (!from_transport) {
2870 int rc;
2871
2872 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2873 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2874 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2875 rc = translate_sense_reason(cmd, reason);
2876 if (rc)
2877 return rc;
2878 }
2879
2880 trace_target_cmd_complete(cmd);
2881 return cmd->se_tfo->queue_status(cmd);
2882 }
2883 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2884
2885 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2886 __releases(&cmd->t_state_lock)
2887 __acquires(&cmd->t_state_lock)
2888 {
2889 assert_spin_locked(&cmd->t_state_lock);
2890 WARN_ON_ONCE(!irqs_disabled());
2891
2892 if (!(cmd->transport_state & CMD_T_ABORTED))
2893 return 0;
2894 /*
2895 * If cmd has been aborted but either no status is to be sent or it has
2896 * already been sent, just return
2897 */
2898 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2899 if (send_status)
2900 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2901 return 1;
2902 }
2903
2904 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2905 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2906
2907 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2908 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2909 trace_target_cmd_complete(cmd);
2910
2911 spin_unlock_irq(&cmd->t_state_lock);
2912 cmd->se_tfo->queue_status(cmd);
2913 spin_lock_irq(&cmd->t_state_lock);
2914
2915 return 1;
2916 }
2917
2918 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2919 {
2920 int ret;
2921
2922 spin_lock_irq(&cmd->t_state_lock);
2923 ret = __transport_check_aborted_status(cmd, send_status);
2924 spin_unlock_irq(&cmd->t_state_lock);
2925
2926 return ret;
2927 }
2928 EXPORT_SYMBOL(transport_check_aborted_status);
2929
2930 void transport_send_task_abort(struct se_cmd *cmd)
2931 {
2932 unsigned long flags;
2933
2934 spin_lock_irqsave(&cmd->t_state_lock, flags);
2935 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2936 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2937 return;
2938 }
2939 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2940
2941 /*
2942 * If there are still expected incoming fabric WRITEs, we wait
2943 * until until they have completed before sending a TASK_ABORTED
2944 * response. This response with TASK_ABORTED status will be
2945 * queued back to fabric module by transport_check_aborted_status().
2946 */
2947 if (cmd->data_direction == DMA_TO_DEVICE) {
2948 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2949 spin_lock_irqsave(&cmd->t_state_lock, flags);
2950 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
2951 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2952 goto send_abort;
2953 }
2954 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2955 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2956 return;
2957 }
2958 }
2959 send_abort:
2960 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2961
2962 transport_lun_remove_cmd(cmd);
2963
2964 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
2965 cmd->t_task_cdb[0], cmd->tag);
2966
2967 trace_target_cmd_complete(cmd);
2968 cmd->se_tfo->queue_status(cmd);
2969 }
2970
2971 static void target_tmr_work(struct work_struct *work)
2972 {
2973 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2974 struct se_device *dev = cmd->se_dev;
2975 struct se_tmr_req *tmr = cmd->se_tmr_req;
2976 unsigned long flags;
2977 int ret;
2978
2979 spin_lock_irqsave(&cmd->t_state_lock, flags);
2980 if (cmd->transport_state & CMD_T_ABORTED) {
2981 tmr->response = TMR_FUNCTION_REJECTED;
2982 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2983 goto check_stop;
2984 }
2985 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2986
2987 switch (tmr->function) {
2988 case TMR_ABORT_TASK:
2989 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2990 break;
2991 case TMR_ABORT_TASK_SET:
2992 case TMR_CLEAR_ACA:
2993 case TMR_CLEAR_TASK_SET:
2994 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2995 break;
2996 case TMR_LUN_RESET:
2997 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2998 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2999 TMR_FUNCTION_REJECTED;
3000 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3001 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3002 cmd->orig_fe_lun, 0x29,
3003 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3004 }
3005 break;
3006 case TMR_TARGET_WARM_RESET:
3007 tmr->response = TMR_FUNCTION_REJECTED;
3008 break;
3009 case TMR_TARGET_COLD_RESET:
3010 tmr->response = TMR_FUNCTION_REJECTED;
3011 break;
3012 default:
3013 pr_err("Uknown TMR function: 0x%02x.\n",
3014 tmr->function);
3015 tmr->response = TMR_FUNCTION_REJECTED;
3016 break;
3017 }
3018
3019 spin_lock_irqsave(&cmd->t_state_lock, flags);
3020 if (cmd->transport_state & CMD_T_ABORTED) {
3021 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3022 goto check_stop;
3023 }
3024 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3026
3027 cmd->se_tfo->queue_tm_rsp(cmd);
3028
3029 check_stop:
3030 transport_cmd_check_stop_to_fabric(cmd);
3031 }
3032
3033 int transport_generic_handle_tmr(
3034 struct se_cmd *cmd)
3035 {
3036 unsigned long flags;
3037
3038 spin_lock_irqsave(&cmd->t_state_lock, flags);
3039 cmd->transport_state |= CMD_T_ACTIVE;
3040 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3041
3042 INIT_WORK(&cmd->work, target_tmr_work);
3043 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3044 return 0;
3045 }
3046 EXPORT_SYMBOL(transport_generic_handle_tmr);
3047
3048 bool
3049 target_check_wce(struct se_device *dev)
3050 {
3051 bool wce = false;
3052
3053 if (dev->transport->get_write_cache)
3054 wce = dev->transport->get_write_cache(dev);
3055 else if (dev->dev_attrib.emulate_write_cache > 0)
3056 wce = true;
3057
3058 return wce;
3059 }
3060
3061 bool
3062 target_check_fua(struct se_device *dev)
3063 {
3064 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3065 }
This page took 0.105338 seconds and 5 git commands to generate.