89b85dd36cce020d9d3efdfa8a1a82d485264fac
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_scdb.h"
58 #include "target_core_ua.h"
59
60 static int sub_api_initialized;
61
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static int transport_complete_qf(struct se_cmd *cmd);
77 static void transport_handle_queue_full(struct se_cmd *cmd,
78 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
79 static void transport_direct_request_timeout(struct se_cmd *cmd);
80 static void transport_free_dev_tasks(struct se_cmd *cmd);
81 static u32 transport_allocate_tasks(struct se_cmd *cmd,
82 unsigned long long starting_lba,
83 enum dma_data_direction data_direction,
84 struct scatterlist *sgl, unsigned int nents);
85 static int transport_generic_get_mem(struct se_cmd *cmd);
86 static void transport_put_cmd(struct se_cmd *cmd);
87 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
88 struct se_queue_obj *qobj);
89 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
90 static void transport_stop_all_task_timers(struct se_cmd *cmd);
91
92 int init_se_kmem_caches(void)
93 {
94 se_cmd_cache = kmem_cache_create("se_cmd_cache",
95 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
96 if (!se_cmd_cache) {
97 pr_err("kmem_cache_create for struct se_cmd failed\n");
98 goto out;
99 }
100 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
101 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
102 0, NULL);
103 if (!se_tmr_req_cache) {
104 pr_err("kmem_cache_create() for struct se_tmr_req"
105 " failed\n");
106 goto out;
107 }
108 se_sess_cache = kmem_cache_create("se_sess_cache",
109 sizeof(struct se_session), __alignof__(struct se_session),
110 0, NULL);
111 if (!se_sess_cache) {
112 pr_err("kmem_cache_create() for struct se_session"
113 " failed\n");
114 goto out;
115 }
116 se_ua_cache = kmem_cache_create("se_ua_cache",
117 sizeof(struct se_ua), __alignof__(struct se_ua),
118 0, NULL);
119 if (!se_ua_cache) {
120 pr_err("kmem_cache_create() for struct se_ua failed\n");
121 goto out;
122 }
123 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
124 sizeof(struct t10_pr_registration),
125 __alignof__(struct t10_pr_registration), 0, NULL);
126 if (!t10_pr_reg_cache) {
127 pr_err("kmem_cache_create() for struct t10_pr_registration"
128 " failed\n");
129 goto out;
130 }
131 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
132 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
133 0, NULL);
134 if (!t10_alua_lu_gp_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
136 " failed\n");
137 goto out;
138 }
139 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
140 sizeof(struct t10_alua_lu_gp_member),
141 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
142 if (!t10_alua_lu_gp_mem_cache) {
143 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
144 "cache failed\n");
145 goto out;
146 }
147 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
148 sizeof(struct t10_alua_tg_pt_gp),
149 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
150 if (!t10_alua_tg_pt_gp_cache) {
151 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
152 "cache failed\n");
153 goto out;
154 }
155 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
156 "t10_alua_tg_pt_gp_mem_cache",
157 sizeof(struct t10_alua_tg_pt_gp_member),
158 __alignof__(struct t10_alua_tg_pt_gp_member),
159 0, NULL);
160 if (!t10_alua_tg_pt_gp_mem_cache) {
161 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
162 "mem_t failed\n");
163 goto out;
164 }
165
166 return 0;
167 out:
168 if (se_cmd_cache)
169 kmem_cache_destroy(se_cmd_cache);
170 if (se_tmr_req_cache)
171 kmem_cache_destroy(se_tmr_req_cache);
172 if (se_sess_cache)
173 kmem_cache_destroy(se_sess_cache);
174 if (se_ua_cache)
175 kmem_cache_destroy(se_ua_cache);
176 if (t10_pr_reg_cache)
177 kmem_cache_destroy(t10_pr_reg_cache);
178 if (t10_alua_lu_gp_cache)
179 kmem_cache_destroy(t10_alua_lu_gp_cache);
180 if (t10_alua_lu_gp_mem_cache)
181 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
182 if (t10_alua_tg_pt_gp_cache)
183 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
184 if (t10_alua_tg_pt_gp_mem_cache)
185 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
186 return -ENOMEM;
187 }
188
189 void release_se_kmem_caches(void)
190 {
191 kmem_cache_destroy(se_cmd_cache);
192 kmem_cache_destroy(se_tmr_req_cache);
193 kmem_cache_destroy(se_sess_cache);
194 kmem_cache_destroy(se_ua_cache);
195 kmem_cache_destroy(t10_pr_reg_cache);
196 kmem_cache_destroy(t10_alua_lu_gp_cache);
197 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
198 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
199 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
200 }
201
202 /* This code ensures unique mib indexes are handed out. */
203 static DEFINE_SPINLOCK(scsi_mib_index_lock);
204 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
205
206 /*
207 * Allocate a new row index for the entry type specified
208 */
209 u32 scsi_get_new_index(scsi_index_t type)
210 {
211 u32 new_index;
212
213 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
214
215 spin_lock(&scsi_mib_index_lock);
216 new_index = ++scsi_mib_index[type];
217 spin_unlock(&scsi_mib_index_lock);
218
219 return new_index;
220 }
221
222 void transport_init_queue_obj(struct se_queue_obj *qobj)
223 {
224 atomic_set(&qobj->queue_cnt, 0);
225 INIT_LIST_HEAD(&qobj->qobj_list);
226 init_waitqueue_head(&qobj->thread_wq);
227 spin_lock_init(&qobj->cmd_queue_lock);
228 }
229 EXPORT_SYMBOL(transport_init_queue_obj);
230
231 static int transport_subsystem_reqmods(void)
232 {
233 int ret;
234
235 ret = request_module("target_core_iblock");
236 if (ret != 0)
237 pr_err("Unable to load target_core_iblock\n");
238
239 ret = request_module("target_core_file");
240 if (ret != 0)
241 pr_err("Unable to load target_core_file\n");
242
243 ret = request_module("target_core_pscsi");
244 if (ret != 0)
245 pr_err("Unable to load target_core_pscsi\n");
246
247 ret = request_module("target_core_stgt");
248 if (ret != 0)
249 pr_err("Unable to load target_core_stgt\n");
250
251 return 0;
252 }
253
254 int transport_subsystem_check_init(void)
255 {
256 int ret;
257
258 if (sub_api_initialized)
259 return 0;
260 /*
261 * Request the loading of known TCM subsystem plugins..
262 */
263 ret = transport_subsystem_reqmods();
264 if (ret < 0)
265 return ret;
266
267 sub_api_initialized = 1;
268 return 0;
269 }
270
271 struct se_session *transport_init_session(void)
272 {
273 struct se_session *se_sess;
274
275 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
276 if (!se_sess) {
277 pr_err("Unable to allocate struct se_session from"
278 " se_sess_cache\n");
279 return ERR_PTR(-ENOMEM);
280 }
281 INIT_LIST_HEAD(&se_sess->sess_list);
282 INIT_LIST_HEAD(&se_sess->sess_acl_list);
283
284 return se_sess;
285 }
286 EXPORT_SYMBOL(transport_init_session);
287
288 /*
289 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
290 */
291 void __transport_register_session(
292 struct se_portal_group *se_tpg,
293 struct se_node_acl *se_nacl,
294 struct se_session *se_sess,
295 void *fabric_sess_ptr)
296 {
297 unsigned char buf[PR_REG_ISID_LEN];
298
299 se_sess->se_tpg = se_tpg;
300 se_sess->fabric_sess_ptr = fabric_sess_ptr;
301 /*
302 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
303 *
304 * Only set for struct se_session's that will actually be moving I/O.
305 * eg: *NOT* discovery sessions.
306 */
307 if (se_nacl) {
308 /*
309 * If the fabric module supports an ISID based TransportID,
310 * save this value in binary from the fabric I_T Nexus now.
311 */
312 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
313 memset(&buf[0], 0, PR_REG_ISID_LEN);
314 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
315 &buf[0], PR_REG_ISID_LEN);
316 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
317 }
318 spin_lock_irq(&se_nacl->nacl_sess_lock);
319 /*
320 * The se_nacl->nacl_sess pointer will be set to the
321 * last active I_T Nexus for each struct se_node_acl.
322 */
323 se_nacl->nacl_sess = se_sess;
324
325 list_add_tail(&se_sess->sess_acl_list,
326 &se_nacl->acl_sess_list);
327 spin_unlock_irq(&se_nacl->nacl_sess_lock);
328 }
329 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
330
331 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
332 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
333 }
334 EXPORT_SYMBOL(__transport_register_session);
335
336 void transport_register_session(
337 struct se_portal_group *se_tpg,
338 struct se_node_acl *se_nacl,
339 struct se_session *se_sess,
340 void *fabric_sess_ptr)
341 {
342 spin_lock_bh(&se_tpg->session_lock);
343 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
344 spin_unlock_bh(&se_tpg->session_lock);
345 }
346 EXPORT_SYMBOL(transport_register_session);
347
348 void transport_deregister_session_configfs(struct se_session *se_sess)
349 {
350 struct se_node_acl *se_nacl;
351 unsigned long flags;
352 /*
353 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
354 */
355 se_nacl = se_sess->se_node_acl;
356 if (se_nacl) {
357 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
358 list_del(&se_sess->sess_acl_list);
359 /*
360 * If the session list is empty, then clear the pointer.
361 * Otherwise, set the struct se_session pointer from the tail
362 * element of the per struct se_node_acl active session list.
363 */
364 if (list_empty(&se_nacl->acl_sess_list))
365 se_nacl->nacl_sess = NULL;
366 else {
367 se_nacl->nacl_sess = container_of(
368 se_nacl->acl_sess_list.prev,
369 struct se_session, sess_acl_list);
370 }
371 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
372 }
373 }
374 EXPORT_SYMBOL(transport_deregister_session_configfs);
375
376 void transport_free_session(struct se_session *se_sess)
377 {
378 kmem_cache_free(se_sess_cache, se_sess);
379 }
380 EXPORT_SYMBOL(transport_free_session);
381
382 void transport_deregister_session(struct se_session *se_sess)
383 {
384 struct se_portal_group *se_tpg = se_sess->se_tpg;
385 struct se_node_acl *se_nacl;
386 unsigned long flags;
387
388 if (!se_tpg) {
389 transport_free_session(se_sess);
390 return;
391 }
392
393 spin_lock_irqsave(&se_tpg->session_lock, flags);
394 list_del(&se_sess->sess_list);
395 se_sess->se_tpg = NULL;
396 se_sess->fabric_sess_ptr = NULL;
397 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
398
399 /*
400 * Determine if we need to do extra work for this initiator node's
401 * struct se_node_acl if it had been previously dynamically generated.
402 */
403 se_nacl = se_sess->se_node_acl;
404 if (se_nacl) {
405 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
406 if (se_nacl->dynamic_node_acl) {
407 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
408 se_tpg)) {
409 list_del(&se_nacl->acl_list);
410 se_tpg->num_node_acls--;
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412
413 core_tpg_wait_for_nacl_pr_ref(se_nacl);
414 core_free_device_list_for_node(se_nacl, se_tpg);
415 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
416 se_nacl);
417 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
418 }
419 }
420 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
421 }
422
423 transport_free_session(se_sess);
424
425 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
426 se_tpg->se_tpg_tfo->get_fabric_name());
427 }
428 EXPORT_SYMBOL(transport_deregister_session);
429
430 /*
431 * Called with cmd->t_state_lock held.
432 */
433 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
434 {
435 struct se_device *dev;
436 struct se_task *task;
437 unsigned long flags;
438
439 list_for_each_entry(task, &cmd->t_task_list, t_list) {
440 dev = task->se_dev;
441 if (!dev)
442 continue;
443
444 if (atomic_read(&task->task_active))
445 continue;
446
447 if (!atomic_read(&task->task_state_active))
448 continue;
449
450 spin_lock_irqsave(&dev->execute_task_lock, flags);
451 list_del(&task->t_state_list);
452 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
453 cmd->se_tfo->get_task_tag(cmd), dev, task);
454 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
455
456 atomic_set(&task->task_state_active, 0);
457 atomic_dec(&cmd->t_task_cdbs_ex_left);
458 }
459 }
460
461 /* transport_cmd_check_stop():
462 *
463 * 'transport_off = 1' determines if t_transport_active should be cleared.
464 * 'transport_off = 2' determines if task_dev_state should be removed.
465 *
466 * A non-zero u8 t_state sets cmd->t_state.
467 * Returns 1 when command is stopped, else 0.
468 */
469 static int transport_cmd_check_stop(
470 struct se_cmd *cmd,
471 int transport_off,
472 u8 t_state)
473 {
474 unsigned long flags;
475
476 spin_lock_irqsave(&cmd->t_state_lock, flags);
477 /*
478 * Determine if IOCTL context caller in requesting the stopping of this
479 * command for LUN shutdown purposes.
480 */
481 if (atomic_read(&cmd->transport_lun_stop)) {
482 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
483 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
484 cmd->se_tfo->get_task_tag(cmd));
485
486 cmd->deferred_t_state = cmd->t_state;
487 cmd->t_state = TRANSPORT_DEFERRED_CMD;
488 atomic_set(&cmd->t_transport_active, 0);
489 if (transport_off == 2)
490 transport_all_task_dev_remove_state(cmd);
491 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
492
493 complete(&cmd->transport_lun_stop_comp);
494 return 1;
495 }
496 /*
497 * Determine if frontend context caller is requesting the stopping of
498 * this command for frontend exceptions.
499 */
500 if (atomic_read(&cmd->t_transport_stop)) {
501 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
502 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
503 cmd->se_tfo->get_task_tag(cmd));
504
505 cmd->deferred_t_state = cmd->t_state;
506 cmd->t_state = TRANSPORT_DEFERRED_CMD;
507 if (transport_off == 2)
508 transport_all_task_dev_remove_state(cmd);
509
510 /*
511 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
512 * to FE.
513 */
514 if (transport_off == 2)
515 cmd->se_lun = NULL;
516 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
517
518 complete(&cmd->t_transport_stop_comp);
519 return 1;
520 }
521 if (transport_off) {
522 atomic_set(&cmd->t_transport_active, 0);
523 if (transport_off == 2) {
524 transport_all_task_dev_remove_state(cmd);
525 /*
526 * Clear struct se_cmd->se_lun before the transport_off == 2
527 * handoff to fabric module.
528 */
529 cmd->se_lun = NULL;
530 /*
531 * Some fabric modules like tcm_loop can release
532 * their internally allocated I/O reference now and
533 * struct se_cmd now.
534 */
535 if (cmd->se_tfo->check_stop_free != NULL) {
536 spin_unlock_irqrestore(
537 &cmd->t_state_lock, flags);
538
539 cmd->se_tfo->check_stop_free(cmd);
540 return 1;
541 }
542 }
543 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
544
545 return 0;
546 } else if (t_state)
547 cmd->t_state = t_state;
548 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
549
550 return 0;
551 }
552
553 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
554 {
555 return transport_cmd_check_stop(cmd, 2, 0);
556 }
557
558 static void transport_lun_remove_cmd(struct se_cmd *cmd)
559 {
560 struct se_lun *lun = cmd->se_lun;
561 unsigned long flags;
562
563 if (!lun)
564 return;
565
566 spin_lock_irqsave(&cmd->t_state_lock, flags);
567 if (!atomic_read(&cmd->transport_dev_active)) {
568 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
569 goto check_lun;
570 }
571 atomic_set(&cmd->transport_dev_active, 0);
572 transport_all_task_dev_remove_state(cmd);
573 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
574
575
576 check_lun:
577 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
578 if (atomic_read(&cmd->transport_lun_active)) {
579 list_del(&cmd->se_lun_node);
580 atomic_set(&cmd->transport_lun_active, 0);
581 #if 0
582 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
583 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
584 #endif
585 }
586 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
587 }
588
589 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
590 {
591 if (!cmd->se_tmr_req)
592 transport_lun_remove_cmd(cmd);
593
594 if (transport_cmd_check_stop_to_fabric(cmd))
595 return;
596 if (remove) {
597 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
598 transport_put_cmd(cmd);
599 }
600 }
601
602 static void transport_add_cmd_to_queue(
603 struct se_cmd *cmd,
604 int t_state)
605 {
606 struct se_device *dev = cmd->se_dev;
607 struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 unsigned long flags;
609
610 if (t_state) {
611 spin_lock_irqsave(&cmd->t_state_lock, flags);
612 cmd->t_state = t_state;
613 atomic_set(&cmd->t_transport_active, 1);
614 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 }
616
617 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619 /* If the cmd is already on the list, remove it before we add it */
620 if (!list_empty(&cmd->se_queue_node))
621 list_del(&cmd->se_queue_node);
622 else
623 atomic_inc(&qobj->queue_cnt);
624
625 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
626 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
627 list_add(&cmd->se_queue_node, &qobj->qobj_list);
628 } else
629 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
630 atomic_set(&cmd->t_transport_queue_active, 1);
631 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
632
633 wake_up_interruptible(&qobj->thread_wq);
634 }
635
636 static struct se_cmd *
637 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
638 {
639 struct se_cmd *cmd;
640 unsigned long flags;
641
642 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
643 if (list_empty(&qobj->qobj_list)) {
644 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
645 return NULL;
646 }
647 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
648
649 atomic_set(&cmd->t_transport_queue_active, 0);
650
651 list_del_init(&cmd->se_queue_node);
652 atomic_dec(&qobj->queue_cnt);
653 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654
655 return cmd;
656 }
657
658 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
659 struct se_queue_obj *qobj)
660 {
661 unsigned long flags;
662
663 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
664 if (!atomic_read(&cmd->t_transport_queue_active)) {
665 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666 return;
667 }
668 atomic_set(&cmd->t_transport_queue_active, 0);
669 atomic_dec(&qobj->queue_cnt);
670 list_del_init(&cmd->se_queue_node);
671 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
672
673 if (atomic_read(&cmd->t_transport_queue_active)) {
674 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
675 cmd->se_tfo->get_task_tag(cmd),
676 atomic_read(&cmd->t_transport_queue_active));
677 }
678 }
679
680 /*
681 * Completion function used by TCM subsystem plugins (such as FILEIO)
682 * for queueing up response from struct se_subsystem_api->do_task()
683 */
684 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
685 {
686 struct se_task *task = list_entry(cmd->t_task_list.next,
687 struct se_task, t_list);
688
689 if (good) {
690 cmd->scsi_status = SAM_STAT_GOOD;
691 task->task_scsi_status = GOOD;
692 } else {
693 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
694 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
695 task->task_se_cmd->transport_error_status =
696 PYX_TRANSPORT_ILLEGAL_REQUEST;
697 }
698
699 transport_complete_task(task, good);
700 }
701 EXPORT_SYMBOL(transport_complete_sync_cache);
702
703 /* transport_complete_task():
704 *
705 * Called from interrupt and non interrupt context depending
706 * on the transport plugin.
707 */
708 void transport_complete_task(struct se_task *task, int success)
709 {
710 struct se_cmd *cmd = task->task_se_cmd;
711 struct se_device *dev = task->se_dev;
712 int t_state;
713 unsigned long flags;
714 #if 0
715 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
716 cmd->t_task_cdb[0], dev);
717 #endif
718 if (dev)
719 atomic_inc(&dev->depth_left);
720
721 spin_lock_irqsave(&cmd->t_state_lock, flags);
722 atomic_set(&task->task_active, 0);
723
724 /*
725 * See if any sense data exists, if so set the TASK_SENSE flag.
726 * Also check for any other post completion work that needs to be
727 * done by the plugins.
728 */
729 if (dev && dev->transport->transport_complete) {
730 if (dev->transport->transport_complete(task) != 0) {
731 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
732 task->task_sense = 1;
733 success = 1;
734 }
735 }
736
737 /*
738 * See if we are waiting for outstanding struct se_task
739 * to complete for an exception condition
740 */
741 if (atomic_read(&task->task_stop)) {
742 /*
743 * Decrement cmd->t_se_count if this task had
744 * previously thrown its timeout exception handler.
745 */
746 if (atomic_read(&task->task_timeout)) {
747 atomic_dec(&cmd->t_se_count);
748 atomic_set(&task->task_timeout, 0);
749 }
750 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
751
752 complete(&task->task_stop_comp);
753 return;
754 }
755 /*
756 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
757 * left counter to determine when the struct se_cmd is ready to be queued to
758 * the processing thread.
759 */
760 if (atomic_read(&task->task_timeout)) {
761 if (!atomic_dec_and_test(
762 &cmd->t_task_cdbs_timeout_left)) {
763 spin_unlock_irqrestore(&cmd->t_state_lock,
764 flags);
765 return;
766 }
767 t_state = TRANSPORT_COMPLETE_TIMEOUT;
768 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
769
770 transport_add_cmd_to_queue(cmd, t_state);
771 return;
772 }
773 atomic_dec(&cmd->t_task_cdbs_timeout_left);
774
775 /*
776 * Decrement the outstanding t_task_cdbs_left count. The last
777 * struct se_task from struct se_cmd will complete itself into the
778 * device queue depending upon int success.
779 */
780 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
781 if (!success)
782 cmd->t_tasks_failed = 1;
783
784 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
785 return;
786 }
787
788 if (!success || cmd->t_tasks_failed) {
789 t_state = TRANSPORT_COMPLETE_FAILURE;
790 if (!task->task_error_status) {
791 task->task_error_status =
792 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
793 cmd->transport_error_status =
794 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
795 }
796 } else {
797 atomic_set(&cmd->t_transport_complete, 1);
798 t_state = TRANSPORT_COMPLETE_OK;
799 }
800 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
801
802 transport_add_cmd_to_queue(cmd, t_state);
803 }
804 EXPORT_SYMBOL(transport_complete_task);
805
806 /*
807 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
808 * struct se_task list are ready to be added to the active execution list
809 * struct se_device
810
811 * Called with se_dev_t->execute_task_lock called.
812 */
813 static inline int transport_add_task_check_sam_attr(
814 struct se_task *task,
815 struct se_task *task_prev,
816 struct se_device *dev)
817 {
818 /*
819 * No SAM Task attribute emulation enabled, add to tail of
820 * execution queue
821 */
822 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
823 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
824 return 0;
825 }
826 /*
827 * HEAD_OF_QUEUE attribute for received CDB, which means
828 * the first task that is associated with a struct se_cmd goes to
829 * head of the struct se_device->execute_task_list, and task_prev
830 * after that for each subsequent task
831 */
832 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
833 list_add(&task->t_execute_list,
834 (task_prev != NULL) ?
835 &task_prev->t_execute_list :
836 &dev->execute_task_list);
837
838 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
839 " in execution queue\n",
840 task->task_se_cmd->t_task_cdb[0]);
841 return 1;
842 }
843 /*
844 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
845 * transitioned from Dermant -> Active state, and are added to the end
846 * of the struct se_device->execute_task_list
847 */
848 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
849 return 0;
850 }
851
852 /* __transport_add_task_to_execute_queue():
853 *
854 * Called with se_dev_t->execute_task_lock called.
855 */
856 static void __transport_add_task_to_execute_queue(
857 struct se_task *task,
858 struct se_task *task_prev,
859 struct se_device *dev)
860 {
861 int head_of_queue;
862
863 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
864 atomic_inc(&dev->execute_tasks);
865
866 if (atomic_read(&task->task_state_active))
867 return;
868 /*
869 * Determine if this task needs to go to HEAD_OF_QUEUE for the
870 * state list as well. Running with SAM Task Attribute emulation
871 * will always return head_of_queue == 0 here
872 */
873 if (head_of_queue)
874 list_add(&task->t_state_list, (task_prev) ?
875 &task_prev->t_state_list :
876 &dev->state_task_list);
877 else
878 list_add_tail(&task->t_state_list, &dev->state_task_list);
879
880 atomic_set(&task->task_state_active, 1);
881
882 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
883 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
884 task, dev);
885 }
886
887 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
888 {
889 struct se_device *dev;
890 struct se_task *task;
891 unsigned long flags;
892
893 spin_lock_irqsave(&cmd->t_state_lock, flags);
894 list_for_each_entry(task, &cmd->t_task_list, t_list) {
895 dev = task->se_dev;
896
897 if (atomic_read(&task->task_state_active))
898 continue;
899
900 spin_lock(&dev->execute_task_lock);
901 list_add_tail(&task->t_state_list, &dev->state_task_list);
902 atomic_set(&task->task_state_active, 1);
903
904 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
905 task->task_se_cmd->se_tfo->get_task_tag(
906 task->task_se_cmd), task, dev);
907
908 spin_unlock(&dev->execute_task_lock);
909 }
910 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
911 }
912
913 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
914 {
915 struct se_device *dev = cmd->se_dev;
916 struct se_task *task, *task_prev = NULL;
917 unsigned long flags;
918
919 spin_lock_irqsave(&dev->execute_task_lock, flags);
920 list_for_each_entry(task, &cmd->t_task_list, t_list) {
921 if (atomic_read(&task->task_execute_queue))
922 continue;
923 /*
924 * __transport_add_task_to_execute_queue() handles the
925 * SAM Task Attribute emulation if enabled
926 */
927 __transport_add_task_to_execute_queue(task, task_prev, dev);
928 atomic_set(&task->task_execute_queue, 1);
929 task_prev = task;
930 }
931 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
932 }
933
934 /* transport_remove_task_from_execute_queue():
935 *
936 *
937 */
938 void transport_remove_task_from_execute_queue(
939 struct se_task *task,
940 struct se_device *dev)
941 {
942 unsigned long flags;
943
944 if (atomic_read(&task->task_execute_queue) == 0) {
945 dump_stack();
946 return;
947 }
948
949 spin_lock_irqsave(&dev->execute_task_lock, flags);
950 list_del(&task->t_execute_list);
951 atomic_set(&task->task_execute_queue, 0);
952 atomic_dec(&dev->execute_tasks);
953 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
954 }
955
956 /*
957 * Handle QUEUE_FULL / -EAGAIN status
958 */
959
960 static void target_qf_do_work(struct work_struct *work)
961 {
962 struct se_device *dev = container_of(work, struct se_device,
963 qf_work_queue);
964 LIST_HEAD(qf_cmd_list);
965 struct se_cmd *cmd, *cmd_tmp;
966
967 spin_lock_irq(&dev->qf_cmd_lock);
968 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
969 spin_unlock_irq(&dev->qf_cmd_lock);
970
971 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
972 list_del(&cmd->se_qf_node);
973 atomic_dec(&dev->dev_qf_count);
974 smp_mb__after_atomic_dec();
975
976 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
977 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
978 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
979 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
980 : "UNKNOWN");
981 /*
982 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
983 * has been added to head of queue
984 */
985 transport_add_cmd_to_queue(cmd, cmd->t_state);
986 }
987 }
988
989 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
990 {
991 switch (cmd->data_direction) {
992 case DMA_NONE:
993 return "NONE";
994 case DMA_FROM_DEVICE:
995 return "READ";
996 case DMA_TO_DEVICE:
997 return "WRITE";
998 case DMA_BIDIRECTIONAL:
999 return "BIDI";
1000 default:
1001 break;
1002 }
1003
1004 return "UNKNOWN";
1005 }
1006
1007 void transport_dump_dev_state(
1008 struct se_device *dev,
1009 char *b,
1010 int *bl)
1011 {
1012 *bl += sprintf(b + *bl, "Status: ");
1013 switch (dev->dev_status) {
1014 case TRANSPORT_DEVICE_ACTIVATED:
1015 *bl += sprintf(b + *bl, "ACTIVATED");
1016 break;
1017 case TRANSPORT_DEVICE_DEACTIVATED:
1018 *bl += sprintf(b + *bl, "DEACTIVATED");
1019 break;
1020 case TRANSPORT_DEVICE_SHUTDOWN:
1021 *bl += sprintf(b + *bl, "SHUTDOWN");
1022 break;
1023 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1024 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1025 *bl += sprintf(b + *bl, "OFFLINE");
1026 break;
1027 default:
1028 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1029 break;
1030 }
1031
1032 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1033 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1034 dev->queue_depth);
1035 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1036 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1037 *bl += sprintf(b + *bl, " ");
1038 }
1039
1040 void transport_dump_vpd_proto_id(
1041 struct t10_vpd *vpd,
1042 unsigned char *p_buf,
1043 int p_buf_len)
1044 {
1045 unsigned char buf[VPD_TMP_BUF_SIZE];
1046 int len;
1047
1048 memset(buf, 0, VPD_TMP_BUF_SIZE);
1049 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1050
1051 switch (vpd->protocol_identifier) {
1052 case 0x00:
1053 sprintf(buf+len, "Fibre Channel\n");
1054 break;
1055 case 0x10:
1056 sprintf(buf+len, "Parallel SCSI\n");
1057 break;
1058 case 0x20:
1059 sprintf(buf+len, "SSA\n");
1060 break;
1061 case 0x30:
1062 sprintf(buf+len, "IEEE 1394\n");
1063 break;
1064 case 0x40:
1065 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1066 " Protocol\n");
1067 break;
1068 case 0x50:
1069 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1070 break;
1071 case 0x60:
1072 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1073 break;
1074 case 0x70:
1075 sprintf(buf+len, "Automation/Drive Interface Transport"
1076 " Protocol\n");
1077 break;
1078 case 0x80:
1079 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1080 break;
1081 default:
1082 sprintf(buf+len, "Unknown 0x%02x\n",
1083 vpd->protocol_identifier);
1084 break;
1085 }
1086
1087 if (p_buf)
1088 strncpy(p_buf, buf, p_buf_len);
1089 else
1090 pr_debug("%s", buf);
1091 }
1092
1093 void
1094 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1095 {
1096 /*
1097 * Check if the Protocol Identifier Valid (PIV) bit is set..
1098 *
1099 * from spc3r23.pdf section 7.5.1
1100 */
1101 if (page_83[1] & 0x80) {
1102 vpd->protocol_identifier = (page_83[0] & 0xf0);
1103 vpd->protocol_identifier_set = 1;
1104 transport_dump_vpd_proto_id(vpd, NULL, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1108
1109 int transport_dump_vpd_assoc(
1110 struct t10_vpd *vpd,
1111 unsigned char *p_buf,
1112 int p_buf_len)
1113 {
1114 unsigned char buf[VPD_TMP_BUF_SIZE];
1115 int ret = 0;
1116 int len;
1117
1118 memset(buf, 0, VPD_TMP_BUF_SIZE);
1119 len = sprintf(buf, "T10 VPD Identifier Association: ");
1120
1121 switch (vpd->association) {
1122 case 0x00:
1123 sprintf(buf+len, "addressed logical unit\n");
1124 break;
1125 case 0x10:
1126 sprintf(buf+len, "target port\n");
1127 break;
1128 case 0x20:
1129 sprintf(buf+len, "SCSI target device\n");
1130 break;
1131 default:
1132 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1133 ret = -EINVAL;
1134 break;
1135 }
1136
1137 if (p_buf)
1138 strncpy(p_buf, buf, p_buf_len);
1139 else
1140 pr_debug("%s", buf);
1141
1142 return ret;
1143 }
1144
1145 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1146 {
1147 /*
1148 * The VPD identification association..
1149 *
1150 * from spc3r23.pdf Section 7.6.3.1 Table 297
1151 */
1152 vpd->association = (page_83[1] & 0x30);
1153 return transport_dump_vpd_assoc(vpd, NULL, 0);
1154 }
1155 EXPORT_SYMBOL(transport_set_vpd_assoc);
1156
1157 int transport_dump_vpd_ident_type(
1158 struct t10_vpd *vpd,
1159 unsigned char *p_buf,
1160 int p_buf_len)
1161 {
1162 unsigned char buf[VPD_TMP_BUF_SIZE];
1163 int ret = 0;
1164 int len;
1165
1166 memset(buf, 0, VPD_TMP_BUF_SIZE);
1167 len = sprintf(buf, "T10 VPD Identifier Type: ");
1168
1169 switch (vpd->device_identifier_type) {
1170 case 0x00:
1171 sprintf(buf+len, "Vendor specific\n");
1172 break;
1173 case 0x01:
1174 sprintf(buf+len, "T10 Vendor ID based\n");
1175 break;
1176 case 0x02:
1177 sprintf(buf+len, "EUI-64 based\n");
1178 break;
1179 case 0x03:
1180 sprintf(buf+len, "NAA\n");
1181 break;
1182 case 0x04:
1183 sprintf(buf+len, "Relative target port identifier\n");
1184 break;
1185 case 0x08:
1186 sprintf(buf+len, "SCSI name string\n");
1187 break;
1188 default:
1189 sprintf(buf+len, "Unsupported: 0x%02x\n",
1190 vpd->device_identifier_type);
1191 ret = -EINVAL;
1192 break;
1193 }
1194
1195 if (p_buf) {
1196 if (p_buf_len < strlen(buf)+1)
1197 return -EINVAL;
1198 strncpy(p_buf, buf, p_buf_len);
1199 } else {
1200 pr_debug("%s", buf);
1201 }
1202
1203 return ret;
1204 }
1205
1206 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1207 {
1208 /*
1209 * The VPD identifier type..
1210 *
1211 * from spc3r23.pdf Section 7.6.3.1 Table 298
1212 */
1213 vpd->device_identifier_type = (page_83[1] & 0x0f);
1214 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1215 }
1216 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1217
1218 int transport_dump_vpd_ident(
1219 struct t10_vpd *vpd,
1220 unsigned char *p_buf,
1221 int p_buf_len)
1222 {
1223 unsigned char buf[VPD_TMP_BUF_SIZE];
1224 int ret = 0;
1225
1226 memset(buf, 0, VPD_TMP_BUF_SIZE);
1227
1228 switch (vpd->device_identifier_code_set) {
1229 case 0x01: /* Binary */
1230 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1231 &vpd->device_identifier[0]);
1232 break;
1233 case 0x02: /* ASCII */
1234 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1235 &vpd->device_identifier[0]);
1236 break;
1237 case 0x03: /* UTF-8 */
1238 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1239 &vpd->device_identifier[0]);
1240 break;
1241 default:
1242 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1243 " 0x%02x", vpd->device_identifier_code_set);
1244 ret = -EINVAL;
1245 break;
1246 }
1247
1248 if (p_buf)
1249 strncpy(p_buf, buf, p_buf_len);
1250 else
1251 pr_debug("%s", buf);
1252
1253 return ret;
1254 }
1255
1256 int
1257 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1258 {
1259 static const char hex_str[] = "0123456789abcdef";
1260 int j = 0, i = 4; /* offset to start of the identifer */
1261
1262 /*
1263 * The VPD Code Set (encoding)
1264 *
1265 * from spc3r23.pdf Section 7.6.3.1 Table 296
1266 */
1267 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1268 switch (vpd->device_identifier_code_set) {
1269 case 0x01: /* Binary */
1270 vpd->device_identifier[j++] =
1271 hex_str[vpd->device_identifier_type];
1272 while (i < (4 + page_83[3])) {
1273 vpd->device_identifier[j++] =
1274 hex_str[(page_83[i] & 0xf0) >> 4];
1275 vpd->device_identifier[j++] =
1276 hex_str[page_83[i] & 0x0f];
1277 i++;
1278 }
1279 break;
1280 case 0x02: /* ASCII */
1281 case 0x03: /* UTF-8 */
1282 while (i < (4 + page_83[3]))
1283 vpd->device_identifier[j++] = page_83[i++];
1284 break;
1285 default:
1286 break;
1287 }
1288
1289 return transport_dump_vpd_ident(vpd, NULL, 0);
1290 }
1291 EXPORT_SYMBOL(transport_set_vpd_ident);
1292
1293 static void core_setup_task_attr_emulation(struct se_device *dev)
1294 {
1295 /*
1296 * If this device is from Target_Core_Mod/pSCSI, disable the
1297 * SAM Task Attribute emulation.
1298 *
1299 * This is currently not available in upsream Linux/SCSI Target
1300 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1301 */
1302 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1303 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1304 return;
1305 }
1306
1307 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1308 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1309 " device\n", dev->transport->name,
1310 dev->transport->get_device_rev(dev));
1311 }
1312
1313 static void scsi_dump_inquiry(struct se_device *dev)
1314 {
1315 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1316 int i, device_type;
1317 /*
1318 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1319 */
1320 pr_debug(" Vendor: ");
1321 for (i = 0; i < 8; i++)
1322 if (wwn->vendor[i] >= 0x20)
1323 pr_debug("%c", wwn->vendor[i]);
1324 else
1325 pr_debug(" ");
1326
1327 pr_debug(" Model: ");
1328 for (i = 0; i < 16; i++)
1329 if (wwn->model[i] >= 0x20)
1330 pr_debug("%c", wwn->model[i]);
1331 else
1332 pr_debug(" ");
1333
1334 pr_debug(" Revision: ");
1335 for (i = 0; i < 4; i++)
1336 if (wwn->revision[i] >= 0x20)
1337 pr_debug("%c", wwn->revision[i]);
1338 else
1339 pr_debug(" ");
1340
1341 pr_debug("\n");
1342
1343 device_type = dev->transport->get_device_type(dev);
1344 pr_debug(" Type: %s ", scsi_device_type(device_type));
1345 pr_debug(" ANSI SCSI revision: %02x\n",
1346 dev->transport->get_device_rev(dev));
1347 }
1348
1349 struct se_device *transport_add_device_to_core_hba(
1350 struct se_hba *hba,
1351 struct se_subsystem_api *transport,
1352 struct se_subsystem_dev *se_dev,
1353 u32 device_flags,
1354 void *transport_dev,
1355 struct se_dev_limits *dev_limits,
1356 const char *inquiry_prod,
1357 const char *inquiry_rev)
1358 {
1359 int force_pt;
1360 struct se_device *dev;
1361
1362 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1363 if (!dev) {
1364 pr_err("Unable to allocate memory for se_dev_t\n");
1365 return NULL;
1366 }
1367
1368 transport_init_queue_obj(&dev->dev_queue_obj);
1369 dev->dev_flags = device_flags;
1370 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1371 dev->dev_ptr = transport_dev;
1372 dev->se_hba = hba;
1373 dev->se_sub_dev = se_dev;
1374 dev->transport = transport;
1375 atomic_set(&dev->active_cmds, 0);
1376 INIT_LIST_HEAD(&dev->dev_list);
1377 INIT_LIST_HEAD(&dev->dev_sep_list);
1378 INIT_LIST_HEAD(&dev->dev_tmr_list);
1379 INIT_LIST_HEAD(&dev->execute_task_list);
1380 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1381 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1382 INIT_LIST_HEAD(&dev->state_task_list);
1383 INIT_LIST_HEAD(&dev->qf_cmd_list);
1384 spin_lock_init(&dev->execute_task_lock);
1385 spin_lock_init(&dev->delayed_cmd_lock);
1386 spin_lock_init(&dev->ordered_cmd_lock);
1387 spin_lock_init(&dev->state_task_lock);
1388 spin_lock_init(&dev->dev_alua_lock);
1389 spin_lock_init(&dev->dev_reservation_lock);
1390 spin_lock_init(&dev->dev_status_lock);
1391 spin_lock_init(&dev->dev_status_thr_lock);
1392 spin_lock_init(&dev->se_port_lock);
1393 spin_lock_init(&dev->se_tmr_lock);
1394 spin_lock_init(&dev->qf_cmd_lock);
1395
1396 dev->queue_depth = dev_limits->queue_depth;
1397 atomic_set(&dev->depth_left, dev->queue_depth);
1398 atomic_set(&dev->dev_ordered_id, 0);
1399
1400 se_dev_set_default_attribs(dev, dev_limits);
1401
1402 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1403 dev->creation_time = get_jiffies_64();
1404 spin_lock_init(&dev->stats_lock);
1405
1406 spin_lock(&hba->device_lock);
1407 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1408 hba->dev_count++;
1409 spin_unlock(&hba->device_lock);
1410 /*
1411 * Setup the SAM Task Attribute emulation for struct se_device
1412 */
1413 core_setup_task_attr_emulation(dev);
1414 /*
1415 * Force PR and ALUA passthrough emulation with internal object use.
1416 */
1417 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1418 /*
1419 * Setup the Reservations infrastructure for struct se_device
1420 */
1421 core_setup_reservations(dev, force_pt);
1422 /*
1423 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1424 */
1425 if (core_setup_alua(dev, force_pt) < 0)
1426 goto out;
1427
1428 /*
1429 * Startup the struct se_device processing thread
1430 */
1431 dev->process_thread = kthread_run(transport_processing_thread, dev,
1432 "LIO_%s", dev->transport->name);
1433 if (IS_ERR(dev->process_thread)) {
1434 pr_err("Unable to create kthread: LIO_%s\n",
1435 dev->transport->name);
1436 goto out;
1437 }
1438 /*
1439 * Setup work_queue for QUEUE_FULL
1440 */
1441 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1442 /*
1443 * Preload the initial INQUIRY const values if we are doing
1444 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1445 * passthrough because this is being provided by the backend LLD.
1446 * This is required so that transport_get_inquiry() copies these
1447 * originals once back into DEV_T10_WWN(dev) for the virtual device
1448 * setup.
1449 */
1450 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1451 if (!inquiry_prod || !inquiry_rev) {
1452 pr_err("All non TCM/pSCSI plugins require"
1453 " INQUIRY consts\n");
1454 goto out;
1455 }
1456
1457 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1458 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1459 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1460 }
1461 scsi_dump_inquiry(dev);
1462
1463 return dev;
1464 out:
1465 kthread_stop(dev->process_thread);
1466
1467 spin_lock(&hba->device_lock);
1468 list_del(&dev->dev_list);
1469 hba->dev_count--;
1470 spin_unlock(&hba->device_lock);
1471
1472 se_release_vpd_for_dev(dev);
1473
1474 kfree(dev);
1475
1476 return NULL;
1477 }
1478 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1479
1480 /* transport_generic_prepare_cdb():
1481 *
1482 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1483 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1484 * The point of this is since we are mapping iSCSI LUNs to
1485 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1486 * devices and HBAs for a loop.
1487 */
1488 static inline void transport_generic_prepare_cdb(
1489 unsigned char *cdb)
1490 {
1491 switch (cdb[0]) {
1492 case READ_10: /* SBC - RDProtect */
1493 case READ_12: /* SBC - RDProtect */
1494 case READ_16: /* SBC - RDProtect */
1495 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1496 case VERIFY: /* SBC - VRProtect */
1497 case VERIFY_16: /* SBC - VRProtect */
1498 case WRITE_VERIFY: /* SBC - VRProtect */
1499 case WRITE_VERIFY_12: /* SBC - VRProtect */
1500 break;
1501 default:
1502 cdb[1] &= 0x1f; /* clear logical unit number */
1503 break;
1504 }
1505 }
1506
1507 static struct se_task *
1508 transport_generic_get_task(struct se_cmd *cmd,
1509 enum dma_data_direction data_direction)
1510 {
1511 struct se_task *task;
1512 struct se_device *dev = cmd->se_dev;
1513
1514 task = dev->transport->alloc_task(cmd->t_task_cdb);
1515 if (!task) {
1516 pr_err("Unable to allocate struct se_task\n");
1517 return NULL;
1518 }
1519
1520 INIT_LIST_HEAD(&task->t_list);
1521 INIT_LIST_HEAD(&task->t_execute_list);
1522 INIT_LIST_HEAD(&task->t_state_list);
1523 init_completion(&task->task_stop_comp);
1524 task->task_se_cmd = cmd;
1525 task->se_dev = dev;
1526 task->task_data_direction = data_direction;
1527
1528 return task;
1529 }
1530
1531 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1532
1533 /*
1534 * Used by fabric modules containing a local struct se_cmd within their
1535 * fabric dependent per I/O descriptor.
1536 */
1537 void transport_init_se_cmd(
1538 struct se_cmd *cmd,
1539 struct target_core_fabric_ops *tfo,
1540 struct se_session *se_sess,
1541 u32 data_length,
1542 int data_direction,
1543 int task_attr,
1544 unsigned char *sense_buffer)
1545 {
1546 INIT_LIST_HEAD(&cmd->se_lun_node);
1547 INIT_LIST_HEAD(&cmd->se_delayed_node);
1548 INIT_LIST_HEAD(&cmd->se_ordered_node);
1549 INIT_LIST_HEAD(&cmd->se_qf_node);
1550 INIT_LIST_HEAD(&cmd->se_queue_node);
1551
1552 INIT_LIST_HEAD(&cmd->t_task_list);
1553 init_completion(&cmd->transport_lun_fe_stop_comp);
1554 init_completion(&cmd->transport_lun_stop_comp);
1555 init_completion(&cmd->t_transport_stop_comp);
1556 spin_lock_init(&cmd->t_state_lock);
1557 atomic_set(&cmd->transport_dev_active, 1);
1558
1559 cmd->se_tfo = tfo;
1560 cmd->se_sess = se_sess;
1561 cmd->data_length = data_length;
1562 cmd->data_direction = data_direction;
1563 cmd->sam_task_attr = task_attr;
1564 cmd->sense_buffer = sense_buffer;
1565 }
1566 EXPORT_SYMBOL(transport_init_se_cmd);
1567
1568 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1569 {
1570 /*
1571 * Check if SAM Task Attribute emulation is enabled for this
1572 * struct se_device storage object
1573 */
1574 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1575 return 0;
1576
1577 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1578 pr_debug("SAM Task Attribute ACA"
1579 " emulation is not supported\n");
1580 return -EINVAL;
1581 }
1582 /*
1583 * Used to determine when ORDERED commands should go from
1584 * Dormant to Active status.
1585 */
1586 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1587 smp_mb__after_atomic_inc();
1588 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1589 cmd->se_ordered_id, cmd->sam_task_attr,
1590 cmd->se_dev->transport->name);
1591 return 0;
1592 }
1593
1594 /* transport_generic_allocate_tasks():
1595 *
1596 * Called from fabric RX Thread.
1597 */
1598 int transport_generic_allocate_tasks(
1599 struct se_cmd *cmd,
1600 unsigned char *cdb)
1601 {
1602 int ret;
1603
1604 transport_generic_prepare_cdb(cdb);
1605 /*
1606 * Ensure that the received CDB is less than the max (252 + 8) bytes
1607 * for VARIABLE_LENGTH_CMD
1608 */
1609 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1610 pr_err("Received SCSI CDB with command_size: %d that"
1611 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1612 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1613 return -EINVAL;
1614 }
1615 /*
1616 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1617 * allocate the additional extended CDB buffer now.. Otherwise
1618 * setup the pointer from __t_task_cdb to t_task_cdb.
1619 */
1620 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1621 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1622 GFP_KERNEL);
1623 if (!cmd->t_task_cdb) {
1624 pr_err("Unable to allocate cmd->t_task_cdb"
1625 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1626 scsi_command_size(cdb),
1627 (unsigned long)sizeof(cmd->__t_task_cdb));
1628 return -ENOMEM;
1629 }
1630 } else
1631 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1632 /*
1633 * Copy the original CDB into cmd->
1634 */
1635 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1636 /*
1637 * Setup the received CDB based on SCSI defined opcodes and
1638 * perform unit attention, persistent reservations and ALUA
1639 * checks for virtual device backends. The cmd->t_task_cdb
1640 * pointer is expected to be setup before we reach this point.
1641 */
1642 ret = transport_generic_cmd_sequencer(cmd, cdb);
1643 if (ret < 0)
1644 return ret;
1645 /*
1646 * Check for SAM Task Attribute Emulation
1647 */
1648 if (transport_check_alloc_task_attr(cmd) < 0) {
1649 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1650 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1651 return -EINVAL;
1652 }
1653 spin_lock(&cmd->se_lun->lun_sep_lock);
1654 if (cmd->se_lun->lun_sep)
1655 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1656 spin_unlock(&cmd->se_lun->lun_sep_lock);
1657 return 0;
1658 }
1659 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1660
1661 static void transport_generic_request_failure(struct se_cmd *,
1662 struct se_device *, int, int);
1663 /*
1664 * Used by fabric module frontends to queue tasks directly.
1665 * Many only be used from process context only
1666 */
1667 int transport_handle_cdb_direct(
1668 struct se_cmd *cmd)
1669 {
1670 int ret;
1671
1672 if (!cmd->se_lun) {
1673 dump_stack();
1674 pr_err("cmd->se_lun is NULL\n");
1675 return -EINVAL;
1676 }
1677 if (in_interrupt()) {
1678 dump_stack();
1679 pr_err("transport_generic_handle_cdb cannot be called"
1680 " from interrupt context\n");
1681 return -EINVAL;
1682 }
1683 /*
1684 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1685 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1686 * in existing usage to ensure that outstanding descriptors are handled
1687 * correctly during shutdown via transport_wait_for_tasks()
1688 *
1689 * Also, we don't take cmd->t_state_lock here as we only expect
1690 * this to be called for initial descriptor submission.
1691 */
1692 cmd->t_state = TRANSPORT_NEW_CMD;
1693 atomic_set(&cmd->t_transport_active, 1);
1694 /*
1695 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1696 * so follow TRANSPORT_NEW_CMD processing thread context usage
1697 * and call transport_generic_request_failure() if necessary..
1698 */
1699 ret = transport_generic_new_cmd(cmd);
1700 if (ret == -EAGAIN)
1701 return 0;
1702 else if (ret < 0) {
1703 cmd->transport_error_status = ret;
1704 transport_generic_request_failure(cmd, NULL, 0,
1705 (cmd->data_direction != DMA_TO_DEVICE));
1706 }
1707 return 0;
1708 }
1709 EXPORT_SYMBOL(transport_handle_cdb_direct);
1710
1711 /*
1712 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1713 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1714 * complete setup in TCM process context w/ TFO->new_cmd_map().
1715 */
1716 int transport_generic_handle_cdb_map(
1717 struct se_cmd *cmd)
1718 {
1719 if (!cmd->se_lun) {
1720 dump_stack();
1721 pr_err("cmd->se_lun is NULL\n");
1722 return -EINVAL;
1723 }
1724
1725 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1726 return 0;
1727 }
1728 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1729
1730 /* transport_generic_handle_data():
1731 *
1732 *
1733 */
1734 int transport_generic_handle_data(
1735 struct se_cmd *cmd)
1736 {
1737 /*
1738 * For the software fabric case, then we assume the nexus is being
1739 * failed/shutdown when signals are pending from the kthread context
1740 * caller, so we return a failure. For the HW target mode case running
1741 * in interrupt code, the signal_pending() check is skipped.
1742 */
1743 if (!in_interrupt() && signal_pending(current))
1744 return -EPERM;
1745 /*
1746 * If the received CDB has aleady been ABORTED by the generic
1747 * target engine, we now call transport_check_aborted_status()
1748 * to queue any delated TASK_ABORTED status for the received CDB to the
1749 * fabric module as we are expecting no further incoming DATA OUT
1750 * sequences at this point.
1751 */
1752 if (transport_check_aborted_status(cmd, 1) != 0)
1753 return 0;
1754
1755 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1756 return 0;
1757 }
1758 EXPORT_SYMBOL(transport_generic_handle_data);
1759
1760 /* transport_generic_handle_tmr():
1761 *
1762 *
1763 */
1764 int transport_generic_handle_tmr(
1765 struct se_cmd *cmd)
1766 {
1767 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1768 return 0;
1769 }
1770 EXPORT_SYMBOL(transport_generic_handle_tmr);
1771
1772 void transport_generic_free_cmd_intr(
1773 struct se_cmd *cmd)
1774 {
1775 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1776 }
1777 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1778
1779 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1780 {
1781 struct se_task *task, *task_tmp;
1782 unsigned long flags;
1783 int ret = 0;
1784
1785 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1786 cmd->se_tfo->get_task_tag(cmd));
1787
1788 /*
1789 * No tasks remain in the execution queue
1790 */
1791 spin_lock_irqsave(&cmd->t_state_lock, flags);
1792 list_for_each_entry_safe(task, task_tmp,
1793 &cmd->t_task_list, t_list) {
1794 pr_debug("task_no[%d] - Processing task %p\n",
1795 task->task_no, task);
1796 /*
1797 * If the struct se_task has not been sent and is not active,
1798 * remove the struct se_task from the execution queue.
1799 */
1800 if (!atomic_read(&task->task_sent) &&
1801 !atomic_read(&task->task_active)) {
1802 spin_unlock_irqrestore(&cmd->t_state_lock,
1803 flags);
1804 transport_remove_task_from_execute_queue(task,
1805 task->se_dev);
1806
1807 pr_debug("task_no[%d] - Removed from execute queue\n",
1808 task->task_no);
1809 spin_lock_irqsave(&cmd->t_state_lock, flags);
1810 continue;
1811 }
1812
1813 /*
1814 * If the struct se_task is active, sleep until it is returned
1815 * from the plugin.
1816 */
1817 if (atomic_read(&task->task_active)) {
1818 atomic_set(&task->task_stop, 1);
1819 spin_unlock_irqrestore(&cmd->t_state_lock,
1820 flags);
1821
1822 pr_debug("task_no[%d] - Waiting to complete\n",
1823 task->task_no);
1824 wait_for_completion(&task->task_stop_comp);
1825 pr_debug("task_no[%d] - Stopped successfully\n",
1826 task->task_no);
1827
1828 spin_lock_irqsave(&cmd->t_state_lock, flags);
1829 atomic_dec(&cmd->t_task_cdbs_left);
1830
1831 atomic_set(&task->task_active, 0);
1832 atomic_set(&task->task_stop, 0);
1833 } else {
1834 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1835 ret++;
1836 }
1837
1838 __transport_stop_task_timer(task, &flags);
1839 }
1840 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1841
1842 return ret;
1843 }
1844
1845 /*
1846 * Handle SAM-esque emulation for generic transport request failures.
1847 */
1848 static void transport_generic_request_failure(
1849 struct se_cmd *cmd,
1850 struct se_device *dev,
1851 int complete,
1852 int sc)
1853 {
1854 int ret = 0;
1855
1856 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1857 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1858 cmd->t_task_cdb[0]);
1859 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1860 " %d/%d transport_error_status: %d\n",
1861 cmd->se_tfo->get_cmd_state(cmd),
1862 cmd->t_state, cmd->deferred_t_state,
1863 cmd->transport_error_status);
1864 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1865 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1866 " t_transport_active: %d t_transport_stop: %d"
1867 " t_transport_sent: %d\n", cmd->t_task_list_num,
1868 atomic_read(&cmd->t_task_cdbs_left),
1869 atomic_read(&cmd->t_task_cdbs_sent),
1870 atomic_read(&cmd->t_task_cdbs_ex_left),
1871 atomic_read(&cmd->t_transport_active),
1872 atomic_read(&cmd->t_transport_stop),
1873 atomic_read(&cmd->t_transport_sent));
1874
1875 transport_stop_all_task_timers(cmd);
1876
1877 if (dev)
1878 atomic_inc(&dev->depth_left);
1879 /*
1880 * For SAM Task Attribute emulation for failed struct se_cmd
1881 */
1882 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1883 transport_complete_task_attr(cmd);
1884
1885 if (complete) {
1886 transport_direct_request_timeout(cmd);
1887 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1888 }
1889
1890 switch (cmd->transport_error_status) {
1891 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1892 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1893 break;
1894 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1895 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1896 break;
1897 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1898 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1899 break;
1900 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1901 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1902 break;
1903 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1904 if (!sc)
1905 transport_new_cmd_failure(cmd);
1906 /*
1907 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1908 * we force this session to fall back to session
1909 * recovery.
1910 */
1911 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1912 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1913
1914 goto check_stop;
1915 case PYX_TRANSPORT_LU_COMM_FAILURE:
1916 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1917 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1918 break;
1919 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1920 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1921 break;
1922 case PYX_TRANSPORT_WRITE_PROTECTED:
1923 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1924 break;
1925 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1926 /*
1927 * No SENSE Data payload for this case, set SCSI Status
1928 * and queue the response to $FABRIC_MOD.
1929 *
1930 * Uses linux/include/scsi/scsi.h SAM status codes defs
1931 */
1932 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1933 /*
1934 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1935 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1936 * CONFLICT STATUS.
1937 *
1938 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1939 */
1940 if (cmd->se_sess &&
1941 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1942 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1943 cmd->orig_fe_lun, 0x2C,
1944 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1945
1946 ret = cmd->se_tfo->queue_status(cmd);
1947 if (ret == -EAGAIN)
1948 goto queue_full;
1949 goto check_stop;
1950 case PYX_TRANSPORT_USE_SENSE_REASON:
1951 /*
1952 * struct se_cmd->scsi_sense_reason already set
1953 */
1954 break;
1955 default:
1956 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1957 cmd->t_task_cdb[0],
1958 cmd->transport_error_status);
1959 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1960 break;
1961 }
1962 /*
1963 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1964 * make the call to transport_send_check_condition_and_sense()
1965 * directly. Otherwise expect the fabric to make the call to
1966 * transport_send_check_condition_and_sense() after handling
1967 * possible unsoliticied write data payloads.
1968 */
1969 if (!sc && !cmd->se_tfo->new_cmd_map)
1970 transport_new_cmd_failure(cmd);
1971 else {
1972 ret = transport_send_check_condition_and_sense(cmd,
1973 cmd->scsi_sense_reason, 0);
1974 if (ret == -EAGAIN)
1975 goto queue_full;
1976 }
1977
1978 check_stop:
1979 transport_lun_remove_cmd(cmd);
1980 if (!transport_cmd_check_stop_to_fabric(cmd))
1981 ;
1982 return;
1983
1984 queue_full:
1985 cmd->t_state = TRANSPORT_COMPLETE_OK;
1986 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
1987 }
1988
1989 static void transport_direct_request_timeout(struct se_cmd *cmd)
1990 {
1991 unsigned long flags;
1992
1993 spin_lock_irqsave(&cmd->t_state_lock, flags);
1994 if (!atomic_read(&cmd->t_transport_timeout)) {
1995 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1996 return;
1997 }
1998 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1999 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2000 return;
2001 }
2002
2003 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2004 &cmd->t_se_count);
2005 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2006 }
2007
2008 static void transport_generic_request_timeout(struct se_cmd *cmd)
2009 {
2010 unsigned long flags;
2011
2012 /*
2013 * Reset cmd->t_se_count to allow transport_put_cmd()
2014 * to allow last call to free memory resources.
2015 */
2016 spin_lock_irqsave(&cmd->t_state_lock, flags);
2017 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2018 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2019
2020 atomic_sub(tmp, &cmd->t_se_count);
2021 }
2022 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2023
2024 transport_put_cmd(cmd);
2025 }
2026
2027 static inline u32 transport_lba_21(unsigned char *cdb)
2028 {
2029 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2030 }
2031
2032 static inline u32 transport_lba_32(unsigned char *cdb)
2033 {
2034 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2035 }
2036
2037 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2038 {
2039 unsigned int __v1, __v2;
2040
2041 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2042 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2043
2044 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2045 }
2046
2047 /*
2048 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2049 */
2050 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2051 {
2052 unsigned int __v1, __v2;
2053
2054 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2055 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2056
2057 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2058 }
2059
2060 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2061 {
2062 unsigned long flags;
2063
2064 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2065 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2066 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2067 }
2068
2069 /*
2070 * Called from interrupt context.
2071 */
2072 static void transport_task_timeout_handler(unsigned long data)
2073 {
2074 struct se_task *task = (struct se_task *)data;
2075 struct se_cmd *cmd = task->task_se_cmd;
2076 unsigned long flags;
2077
2078 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2079
2080 spin_lock_irqsave(&cmd->t_state_lock, flags);
2081 if (task->task_flags & TF_STOP) {
2082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2083 return;
2084 }
2085 task->task_flags &= ~TF_RUNNING;
2086
2087 /*
2088 * Determine if transport_complete_task() has already been called.
2089 */
2090 if (!atomic_read(&task->task_active)) {
2091 pr_debug("transport task: %p cmd: %p timeout task_active"
2092 " == 0\n", task, cmd);
2093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094 return;
2095 }
2096
2097 atomic_inc(&cmd->t_se_count);
2098 atomic_inc(&cmd->t_transport_timeout);
2099 cmd->t_tasks_failed = 1;
2100
2101 atomic_set(&task->task_timeout, 1);
2102 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2103 task->task_scsi_status = 1;
2104
2105 if (atomic_read(&task->task_stop)) {
2106 pr_debug("transport task: %p cmd: %p timeout task_stop"
2107 " == 1\n", task, cmd);
2108 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2109 complete(&task->task_stop_comp);
2110 return;
2111 }
2112
2113 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2114 pr_debug("transport task: %p cmd: %p timeout non zero"
2115 " t_task_cdbs_left\n", task, cmd);
2116 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2117 return;
2118 }
2119 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2120 task, cmd);
2121
2122 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2123 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2124
2125 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2126 }
2127
2128 /*
2129 * Called with cmd->t_state_lock held.
2130 */
2131 static void transport_start_task_timer(struct se_task *task)
2132 {
2133 struct se_device *dev = task->se_dev;
2134 int timeout;
2135
2136 if (task->task_flags & TF_RUNNING)
2137 return;
2138 /*
2139 * If the task_timeout is disabled, exit now.
2140 */
2141 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2142 if (!timeout)
2143 return;
2144
2145 init_timer(&task->task_timer);
2146 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2147 task->task_timer.data = (unsigned long) task;
2148 task->task_timer.function = transport_task_timeout_handler;
2149
2150 task->task_flags |= TF_RUNNING;
2151 add_timer(&task->task_timer);
2152 #if 0
2153 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2154 " %d\n", task->task_se_cmd, task, timeout);
2155 #endif
2156 }
2157
2158 /*
2159 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2160 */
2161 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2162 {
2163 struct se_cmd *cmd = task->task_se_cmd;
2164
2165 if (!task->task_flags & TF_RUNNING)
2166 return;
2167
2168 task->task_flags |= TF_STOP;
2169 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2170
2171 del_timer_sync(&task->task_timer);
2172
2173 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2174 task->task_flags &= ~TF_RUNNING;
2175 task->task_flags &= ~TF_STOP;
2176 }
2177
2178 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2179 {
2180 struct se_task *task = NULL, *task_tmp;
2181 unsigned long flags;
2182
2183 spin_lock_irqsave(&cmd->t_state_lock, flags);
2184 list_for_each_entry_safe(task, task_tmp,
2185 &cmd->t_task_list, t_list)
2186 __transport_stop_task_timer(task, &flags);
2187 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188 }
2189
2190 static inline int transport_tcq_window_closed(struct se_device *dev)
2191 {
2192 if (dev->dev_tcq_window_closed++ <
2193 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2194 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2195 } else
2196 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2197
2198 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2199 return 0;
2200 }
2201
2202 /*
2203 * Called from Fabric Module context from transport_execute_tasks()
2204 *
2205 * The return of this function determins if the tasks from struct se_cmd
2206 * get added to the execution queue in transport_execute_tasks(),
2207 * or are added to the delayed or ordered lists here.
2208 */
2209 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2210 {
2211 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2212 return 1;
2213 /*
2214 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2215 * to allow the passed struct se_cmd list of tasks to the front of the list.
2216 */
2217 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2218 atomic_inc(&cmd->se_dev->dev_hoq_count);
2219 smp_mb__after_atomic_inc();
2220 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2221 " 0x%02x, se_ordered_id: %u\n",
2222 cmd->t_task_cdb[0],
2223 cmd->se_ordered_id);
2224 return 1;
2225 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2226 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2227 list_add_tail(&cmd->se_ordered_node,
2228 &cmd->se_dev->ordered_cmd_list);
2229 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2230
2231 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2232 smp_mb__after_atomic_inc();
2233
2234 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2235 " list, se_ordered_id: %u\n",
2236 cmd->t_task_cdb[0],
2237 cmd->se_ordered_id);
2238 /*
2239 * Add ORDERED command to tail of execution queue if
2240 * no other older commands exist that need to be
2241 * completed first.
2242 */
2243 if (!atomic_read(&cmd->se_dev->simple_cmds))
2244 return 1;
2245 } else {
2246 /*
2247 * For SIMPLE and UNTAGGED Task Attribute commands
2248 */
2249 atomic_inc(&cmd->se_dev->simple_cmds);
2250 smp_mb__after_atomic_inc();
2251 }
2252 /*
2253 * Otherwise if one or more outstanding ORDERED task attribute exist,
2254 * add the dormant task(s) built for the passed struct se_cmd to the
2255 * execution queue and become in Active state for this struct se_device.
2256 */
2257 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2258 /*
2259 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2260 * will be drained upon completion of HEAD_OF_QUEUE task.
2261 */
2262 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2263 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2264 list_add_tail(&cmd->se_delayed_node,
2265 &cmd->se_dev->delayed_cmd_list);
2266 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2267
2268 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2269 " delayed CMD list, se_ordered_id: %u\n",
2270 cmd->t_task_cdb[0], cmd->sam_task_attr,
2271 cmd->se_ordered_id);
2272 /*
2273 * Return zero to let transport_execute_tasks() know
2274 * not to add the delayed tasks to the execution list.
2275 */
2276 return 0;
2277 }
2278 /*
2279 * Otherwise, no ORDERED task attributes exist..
2280 */
2281 return 1;
2282 }
2283
2284 /*
2285 * Called from fabric module context in transport_generic_new_cmd() and
2286 * transport_generic_process_write()
2287 */
2288 static int transport_execute_tasks(struct se_cmd *cmd)
2289 {
2290 int add_tasks;
2291
2292 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2293 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2294 transport_generic_request_failure(cmd, NULL, 0, 1);
2295 return 0;
2296 }
2297
2298 /*
2299 * Call transport_cmd_check_stop() to see if a fabric exception
2300 * has occurred that prevents execution.
2301 */
2302 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2303 /*
2304 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2305 * attribute for the tasks of the received struct se_cmd CDB
2306 */
2307 add_tasks = transport_execute_task_attr(cmd);
2308 if (!add_tasks)
2309 goto execute_tasks;
2310 /*
2311 * This calls transport_add_tasks_from_cmd() to handle
2312 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2313 * (if enabled) in __transport_add_task_to_execute_queue() and
2314 * transport_add_task_check_sam_attr().
2315 */
2316 transport_add_tasks_from_cmd(cmd);
2317 }
2318 /*
2319 * Kick the execution queue for the cmd associated struct se_device
2320 * storage object.
2321 */
2322 execute_tasks:
2323 __transport_execute_tasks(cmd->se_dev);
2324 return 0;
2325 }
2326
2327 /*
2328 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2329 * from struct se_device->execute_task_list and
2330 *
2331 * Called from transport_processing_thread()
2332 */
2333 static int __transport_execute_tasks(struct se_device *dev)
2334 {
2335 int error;
2336 struct se_cmd *cmd = NULL;
2337 struct se_task *task = NULL;
2338 unsigned long flags;
2339
2340 /*
2341 * Check if there is enough room in the device and HBA queue to send
2342 * struct se_tasks to the selected transport.
2343 */
2344 check_depth:
2345 if (!atomic_read(&dev->depth_left))
2346 return transport_tcq_window_closed(dev);
2347
2348 dev->dev_tcq_window_closed = 0;
2349
2350 spin_lock_irq(&dev->execute_task_lock);
2351 if (list_empty(&dev->execute_task_list)) {
2352 spin_unlock_irq(&dev->execute_task_lock);
2353 return 0;
2354 }
2355 task = list_first_entry(&dev->execute_task_list,
2356 struct se_task, t_execute_list);
2357 list_del(&task->t_execute_list);
2358 atomic_set(&task->task_execute_queue, 0);
2359 atomic_dec(&dev->execute_tasks);
2360 spin_unlock_irq(&dev->execute_task_lock);
2361
2362 atomic_dec(&dev->depth_left);
2363
2364 cmd = task->task_se_cmd;
2365
2366 spin_lock_irqsave(&cmd->t_state_lock, flags);
2367 atomic_set(&task->task_active, 1);
2368 atomic_set(&task->task_sent, 1);
2369 atomic_inc(&cmd->t_task_cdbs_sent);
2370
2371 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2372 cmd->t_task_list_num)
2373 atomic_set(&cmd->transport_sent, 1);
2374
2375 transport_start_task_timer(task);
2376 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2377 /*
2378 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2379 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2380 * struct se_subsystem_api->do_task() caller below.
2381 */
2382 if (cmd->transport_emulate_cdb) {
2383 error = cmd->transport_emulate_cdb(cmd);
2384 if (error != 0) {
2385 cmd->transport_error_status = error;
2386 atomic_set(&task->task_active, 0);
2387 atomic_set(&cmd->transport_sent, 0);
2388 transport_stop_tasks_for_cmd(cmd);
2389 transport_generic_request_failure(cmd, dev, 0, 1);
2390 goto check_depth;
2391 }
2392 /*
2393 * Handle the successful completion for transport_emulate_cdb()
2394 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2395 * Otherwise the caller is expected to complete the task with
2396 * proper status.
2397 */
2398 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2399 cmd->scsi_status = SAM_STAT_GOOD;
2400 task->task_scsi_status = GOOD;
2401 transport_complete_task(task, 1);
2402 }
2403 } else {
2404 /*
2405 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2406 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2407 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2408 * LUN emulation code.
2409 *
2410 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2411 * call ->do_task() directly and let the underlying TCM subsystem plugin
2412 * code handle the CDB emulation.
2413 */
2414 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2415 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2416 error = transport_emulate_control_cdb(task);
2417 else
2418 error = dev->transport->do_task(task);
2419
2420 if (error != 0) {
2421 cmd->transport_error_status = error;
2422 atomic_set(&task->task_active, 0);
2423 atomic_set(&cmd->transport_sent, 0);
2424 transport_stop_tasks_for_cmd(cmd);
2425 transport_generic_request_failure(cmd, dev, 0, 1);
2426 }
2427 }
2428
2429 goto check_depth;
2430
2431 return 0;
2432 }
2433
2434 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2435 {
2436 unsigned long flags;
2437 /*
2438 * Any unsolicited data will get dumped for failed command inside of
2439 * the fabric plugin
2440 */
2441 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2442 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2443 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2444 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2445 }
2446
2447 static inline u32 transport_get_sectors_6(
2448 unsigned char *cdb,
2449 struct se_cmd *cmd,
2450 int *ret)
2451 {
2452 struct se_device *dev = cmd->se_dev;
2453
2454 /*
2455 * Assume TYPE_DISK for non struct se_device objects.
2456 * Use 8-bit sector value.
2457 */
2458 if (!dev)
2459 goto type_disk;
2460
2461 /*
2462 * Use 24-bit allocation length for TYPE_TAPE.
2463 */
2464 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2465 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2466
2467 /*
2468 * Everything else assume TYPE_DISK Sector CDB location.
2469 * Use 8-bit sector value.
2470 */
2471 type_disk:
2472 return (u32)cdb[4];
2473 }
2474
2475 static inline u32 transport_get_sectors_10(
2476 unsigned char *cdb,
2477 struct se_cmd *cmd,
2478 int *ret)
2479 {
2480 struct se_device *dev = cmd->se_dev;
2481
2482 /*
2483 * Assume TYPE_DISK for non struct se_device objects.
2484 * Use 16-bit sector value.
2485 */
2486 if (!dev)
2487 goto type_disk;
2488
2489 /*
2490 * XXX_10 is not defined in SSC, throw an exception
2491 */
2492 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2493 *ret = -EINVAL;
2494 return 0;
2495 }
2496
2497 /*
2498 * Everything else assume TYPE_DISK Sector CDB location.
2499 * Use 16-bit sector value.
2500 */
2501 type_disk:
2502 return (u32)(cdb[7] << 8) + cdb[8];
2503 }
2504
2505 static inline u32 transport_get_sectors_12(
2506 unsigned char *cdb,
2507 struct se_cmd *cmd,
2508 int *ret)
2509 {
2510 struct se_device *dev = cmd->se_dev;
2511
2512 /*
2513 * Assume TYPE_DISK for non struct se_device objects.
2514 * Use 32-bit sector value.
2515 */
2516 if (!dev)
2517 goto type_disk;
2518
2519 /*
2520 * XXX_12 is not defined in SSC, throw an exception
2521 */
2522 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2523 *ret = -EINVAL;
2524 return 0;
2525 }
2526
2527 /*
2528 * Everything else assume TYPE_DISK Sector CDB location.
2529 * Use 32-bit sector value.
2530 */
2531 type_disk:
2532 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2533 }
2534
2535 static inline u32 transport_get_sectors_16(
2536 unsigned char *cdb,
2537 struct se_cmd *cmd,
2538 int *ret)
2539 {
2540 struct se_device *dev = cmd->se_dev;
2541
2542 /*
2543 * Assume TYPE_DISK for non struct se_device objects.
2544 * Use 32-bit sector value.
2545 */
2546 if (!dev)
2547 goto type_disk;
2548
2549 /*
2550 * Use 24-bit allocation length for TYPE_TAPE.
2551 */
2552 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2553 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2554
2555 type_disk:
2556 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2557 (cdb[12] << 8) + cdb[13];
2558 }
2559
2560 /*
2561 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2562 */
2563 static inline u32 transport_get_sectors_32(
2564 unsigned char *cdb,
2565 struct se_cmd *cmd,
2566 int *ret)
2567 {
2568 /*
2569 * Assume TYPE_DISK for non struct se_device objects.
2570 * Use 32-bit sector value.
2571 */
2572 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2573 (cdb[30] << 8) + cdb[31];
2574
2575 }
2576
2577 static inline u32 transport_get_size(
2578 u32 sectors,
2579 unsigned char *cdb,
2580 struct se_cmd *cmd)
2581 {
2582 struct se_device *dev = cmd->se_dev;
2583
2584 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2585 if (cdb[1] & 1) { /* sectors */
2586 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2587 } else /* bytes */
2588 return sectors;
2589 }
2590 #if 0
2591 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2592 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2593 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2594 dev->transport->name);
2595 #endif
2596 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2597 }
2598
2599 static void transport_xor_callback(struct se_cmd *cmd)
2600 {
2601 unsigned char *buf, *addr;
2602 struct scatterlist *sg;
2603 unsigned int offset;
2604 int i;
2605 int count;
2606 /*
2607 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2608 *
2609 * 1) read the specified logical block(s);
2610 * 2) transfer logical blocks from the data-out buffer;
2611 * 3) XOR the logical blocks transferred from the data-out buffer with
2612 * the logical blocks read, storing the resulting XOR data in a buffer;
2613 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2614 * blocks transferred from the data-out buffer; and
2615 * 5) transfer the resulting XOR data to the data-in buffer.
2616 */
2617 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2618 if (!buf) {
2619 pr_err("Unable to allocate xor_callback buf\n");
2620 return;
2621 }
2622 /*
2623 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2624 * into the locally allocated *buf
2625 */
2626 sg_copy_to_buffer(cmd->t_data_sg,
2627 cmd->t_data_nents,
2628 buf,
2629 cmd->data_length);
2630
2631 /*
2632 * Now perform the XOR against the BIDI read memory located at
2633 * cmd->t_mem_bidi_list
2634 */
2635
2636 offset = 0;
2637 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2638 addr = kmap_atomic(sg_page(sg), KM_USER0);
2639 if (!addr)
2640 goto out;
2641
2642 for (i = 0; i < sg->length; i++)
2643 *(addr + sg->offset + i) ^= *(buf + offset + i);
2644
2645 offset += sg->length;
2646 kunmap_atomic(addr, KM_USER0);
2647 }
2648
2649 out:
2650 kfree(buf);
2651 }
2652
2653 /*
2654 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2655 */
2656 static int transport_get_sense_data(struct se_cmd *cmd)
2657 {
2658 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2659 struct se_device *dev;
2660 struct se_task *task = NULL, *task_tmp;
2661 unsigned long flags;
2662 u32 offset = 0;
2663
2664 WARN_ON(!cmd->se_lun);
2665
2666 spin_lock_irqsave(&cmd->t_state_lock, flags);
2667 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2668 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2669 return 0;
2670 }
2671
2672 list_for_each_entry_safe(task, task_tmp,
2673 &cmd->t_task_list, t_list) {
2674
2675 if (!task->task_sense)
2676 continue;
2677
2678 dev = task->se_dev;
2679 if (!dev)
2680 continue;
2681
2682 if (!dev->transport->get_sense_buffer) {
2683 pr_err("dev->transport->get_sense_buffer"
2684 " is NULL\n");
2685 continue;
2686 }
2687
2688 sense_buffer = dev->transport->get_sense_buffer(task);
2689 if (!sense_buffer) {
2690 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2691 " sense buffer for task with sense\n",
2692 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2693 continue;
2694 }
2695 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2696
2697 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2698 TRANSPORT_SENSE_BUFFER);
2699
2700 memcpy(&buffer[offset], sense_buffer,
2701 TRANSPORT_SENSE_BUFFER);
2702 cmd->scsi_status = task->task_scsi_status;
2703 /* Automatically padded */
2704 cmd->scsi_sense_length =
2705 (TRANSPORT_SENSE_BUFFER + offset);
2706
2707 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2708 " and sense\n",
2709 dev->se_hba->hba_id, dev->transport->name,
2710 cmd->scsi_status);
2711 return 0;
2712 }
2713 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2714
2715 return -1;
2716 }
2717
2718 static int
2719 transport_handle_reservation_conflict(struct se_cmd *cmd)
2720 {
2721 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2722 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2723 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2724 /*
2725 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2726 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2727 * CONFLICT STATUS.
2728 *
2729 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2730 */
2731 if (cmd->se_sess &&
2732 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2733 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2734 cmd->orig_fe_lun, 0x2C,
2735 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2736 return -EINVAL;
2737 }
2738
2739 static inline long long transport_dev_end_lba(struct se_device *dev)
2740 {
2741 return dev->transport->get_blocks(dev) + 1;
2742 }
2743
2744 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2745 {
2746 struct se_device *dev = cmd->se_dev;
2747 u32 sectors;
2748
2749 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2750 return 0;
2751
2752 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2753
2754 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2755 pr_err("LBA: %llu Sectors: %u exceeds"
2756 " transport_dev_end_lba(): %llu\n",
2757 cmd->t_task_lba, sectors,
2758 transport_dev_end_lba(dev));
2759 return -EINVAL;
2760 }
2761
2762 return 0;
2763 }
2764
2765 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2766 {
2767 /*
2768 * Determine if the received WRITE_SAME is used to for direct
2769 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2770 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2771 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2772 */
2773 int passthrough = (dev->transport->transport_type ==
2774 TRANSPORT_PLUGIN_PHBA_PDEV);
2775
2776 if (!passthrough) {
2777 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2778 pr_err("WRITE_SAME PBDATA and LBDATA"
2779 " bits not supported for Block Discard"
2780 " Emulation\n");
2781 return -ENOSYS;
2782 }
2783 /*
2784 * Currently for the emulated case we only accept
2785 * tpws with the UNMAP=1 bit set.
2786 */
2787 if (!(flags[0] & 0x08)) {
2788 pr_err("WRITE_SAME w/o UNMAP bit not"
2789 " supported for Block Discard Emulation\n");
2790 return -ENOSYS;
2791 }
2792 }
2793
2794 return 0;
2795 }
2796
2797 /* transport_generic_cmd_sequencer():
2798 *
2799 * Generic Command Sequencer that should work for most DAS transport
2800 * drivers.
2801 *
2802 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2803 * RX Thread.
2804 *
2805 * FIXME: Need to support other SCSI OPCODES where as well.
2806 */
2807 static int transport_generic_cmd_sequencer(
2808 struct se_cmd *cmd,
2809 unsigned char *cdb)
2810 {
2811 struct se_device *dev = cmd->se_dev;
2812 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2813 int ret = 0, sector_ret = 0, passthrough;
2814 u32 sectors = 0, size = 0, pr_reg_type = 0;
2815 u16 service_action;
2816 u8 alua_ascq = 0;
2817 /*
2818 * Check for an existing UNIT ATTENTION condition
2819 */
2820 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2821 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2822 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2823 return -EINVAL;
2824 }
2825 /*
2826 * Check status of Asymmetric Logical Unit Assignment port
2827 */
2828 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2829 if (ret != 0) {
2830 /*
2831 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2832 * The ALUA additional sense code qualifier (ASCQ) is determined
2833 * by the ALUA primary or secondary access state..
2834 */
2835 if (ret > 0) {
2836 #if 0
2837 pr_debug("[%s]: ALUA TG Port not available,"
2838 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2839 cmd->se_tfo->get_fabric_name(), alua_ascq);
2840 #endif
2841 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2842 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2843 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2844 return -EINVAL;
2845 }
2846 goto out_invalid_cdb_field;
2847 }
2848 /*
2849 * Check status for SPC-3 Persistent Reservations
2850 */
2851 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2852 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2853 cmd, cdb, pr_reg_type) != 0)
2854 return transport_handle_reservation_conflict(cmd);
2855 /*
2856 * This means the CDB is allowed for the SCSI Initiator port
2857 * when said port is *NOT* holding the legacy SPC-2 or
2858 * SPC-3 Persistent Reservation.
2859 */
2860 }
2861
2862 switch (cdb[0]) {
2863 case READ_6:
2864 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2865 if (sector_ret)
2866 goto out_unsupported_cdb;
2867 size = transport_get_size(sectors, cdb, cmd);
2868 cmd->transport_split_cdb = &split_cdb_XX_6;
2869 cmd->t_task_lba = transport_lba_21(cdb);
2870 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2871 break;
2872 case READ_10:
2873 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2874 if (sector_ret)
2875 goto out_unsupported_cdb;
2876 size = transport_get_size(sectors, cdb, cmd);
2877 cmd->transport_split_cdb = &split_cdb_XX_10;
2878 cmd->t_task_lba = transport_lba_32(cdb);
2879 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2880 break;
2881 case READ_12:
2882 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2883 if (sector_ret)
2884 goto out_unsupported_cdb;
2885 size = transport_get_size(sectors, cdb, cmd);
2886 cmd->transport_split_cdb = &split_cdb_XX_12;
2887 cmd->t_task_lba = transport_lba_32(cdb);
2888 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2889 break;
2890 case READ_16:
2891 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2892 if (sector_ret)
2893 goto out_unsupported_cdb;
2894 size = transport_get_size(sectors, cdb, cmd);
2895 cmd->transport_split_cdb = &split_cdb_XX_16;
2896 cmd->t_task_lba = transport_lba_64(cdb);
2897 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2898 break;
2899 case WRITE_6:
2900 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2901 if (sector_ret)
2902 goto out_unsupported_cdb;
2903 size = transport_get_size(sectors, cdb, cmd);
2904 cmd->transport_split_cdb = &split_cdb_XX_6;
2905 cmd->t_task_lba = transport_lba_21(cdb);
2906 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2907 break;
2908 case WRITE_10:
2909 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2910 if (sector_ret)
2911 goto out_unsupported_cdb;
2912 size = transport_get_size(sectors, cdb, cmd);
2913 cmd->transport_split_cdb = &split_cdb_XX_10;
2914 cmd->t_task_lba = transport_lba_32(cdb);
2915 cmd->t_tasks_fua = (cdb[1] & 0x8);
2916 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2917 break;
2918 case WRITE_12:
2919 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2920 if (sector_ret)
2921 goto out_unsupported_cdb;
2922 size = transport_get_size(sectors, cdb, cmd);
2923 cmd->transport_split_cdb = &split_cdb_XX_12;
2924 cmd->t_task_lba = transport_lba_32(cdb);
2925 cmd->t_tasks_fua = (cdb[1] & 0x8);
2926 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2927 break;
2928 case WRITE_16:
2929 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2930 if (sector_ret)
2931 goto out_unsupported_cdb;
2932 size = transport_get_size(sectors, cdb, cmd);
2933 cmd->transport_split_cdb = &split_cdb_XX_16;
2934 cmd->t_task_lba = transport_lba_64(cdb);
2935 cmd->t_tasks_fua = (cdb[1] & 0x8);
2936 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2937 break;
2938 case XDWRITEREAD_10:
2939 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2940 !(cmd->t_tasks_bidi))
2941 goto out_invalid_cdb_field;
2942 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2943 if (sector_ret)
2944 goto out_unsupported_cdb;
2945 size = transport_get_size(sectors, cdb, cmd);
2946 cmd->transport_split_cdb = &split_cdb_XX_10;
2947 cmd->t_task_lba = transport_lba_32(cdb);
2948 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2949 passthrough = (dev->transport->transport_type ==
2950 TRANSPORT_PLUGIN_PHBA_PDEV);
2951 /*
2952 * Skip the remaining assignments for TCM/PSCSI passthrough
2953 */
2954 if (passthrough)
2955 break;
2956 /*
2957 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2958 */
2959 cmd->transport_complete_callback = &transport_xor_callback;
2960 cmd->t_tasks_fua = (cdb[1] & 0x8);
2961 break;
2962 case VARIABLE_LENGTH_CMD:
2963 service_action = get_unaligned_be16(&cdb[8]);
2964 /*
2965 * Determine if this is TCM/PSCSI device and we should disable
2966 * internal emulation for this CDB.
2967 */
2968 passthrough = (dev->transport->transport_type ==
2969 TRANSPORT_PLUGIN_PHBA_PDEV);
2970
2971 switch (service_action) {
2972 case XDWRITEREAD_32:
2973 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2974 if (sector_ret)
2975 goto out_unsupported_cdb;
2976 size = transport_get_size(sectors, cdb, cmd);
2977 /*
2978 * Use WRITE_32 and READ_32 opcodes for the emulated
2979 * XDWRITE_READ_32 logic.
2980 */
2981 cmd->transport_split_cdb = &split_cdb_XX_32;
2982 cmd->t_task_lba = transport_lba_64_ext(cdb);
2983 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2984
2985 /*
2986 * Skip the remaining assignments for TCM/PSCSI passthrough
2987 */
2988 if (passthrough)
2989 break;
2990
2991 /*
2992 * Setup BIDI XOR callback to be run during
2993 * transport_generic_complete_ok()
2994 */
2995 cmd->transport_complete_callback = &transport_xor_callback;
2996 cmd->t_tasks_fua = (cdb[10] & 0x8);
2997 break;
2998 case WRITE_SAME_32:
2999 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3000 if (sector_ret)
3001 goto out_unsupported_cdb;
3002
3003 if (sectors)
3004 size = transport_get_size(1, cdb, cmd);
3005 else {
3006 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3007 " supported\n");
3008 goto out_invalid_cdb_field;
3009 }
3010
3011 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3012 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3013
3014 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3015 goto out_invalid_cdb_field;
3016
3017 break;
3018 default:
3019 pr_err("VARIABLE_LENGTH_CMD service action"
3020 " 0x%04x not supported\n", service_action);
3021 goto out_unsupported_cdb;
3022 }
3023 break;
3024 case MAINTENANCE_IN:
3025 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3026 /* MAINTENANCE_IN from SCC-2 */
3027 /*
3028 * Check for emulated MI_REPORT_TARGET_PGS.
3029 */
3030 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3031 cmd->transport_emulate_cdb =
3032 (su_dev->t10_alua.alua_type ==
3033 SPC3_ALUA_EMULATED) ?
3034 core_emulate_report_target_port_groups :
3035 NULL;
3036 }
3037 size = (cdb[6] << 24) | (cdb[7] << 16) |
3038 (cdb[8] << 8) | cdb[9];
3039 } else {
3040 /* GPCMD_SEND_KEY from multi media commands */
3041 size = (cdb[8] << 8) + cdb[9];
3042 }
3043 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3044 break;
3045 case MODE_SELECT:
3046 size = cdb[4];
3047 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3048 break;
3049 case MODE_SELECT_10:
3050 size = (cdb[7] << 8) + cdb[8];
3051 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052 break;
3053 case MODE_SENSE:
3054 size = cdb[4];
3055 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3056 break;
3057 case MODE_SENSE_10:
3058 case GPCMD_READ_BUFFER_CAPACITY:
3059 case GPCMD_SEND_OPC:
3060 case LOG_SELECT:
3061 case LOG_SENSE:
3062 size = (cdb[7] << 8) + cdb[8];
3063 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3064 break;
3065 case READ_BLOCK_LIMITS:
3066 size = READ_BLOCK_LEN;
3067 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3068 break;
3069 case GPCMD_GET_CONFIGURATION:
3070 case GPCMD_READ_FORMAT_CAPACITIES:
3071 case GPCMD_READ_DISC_INFO:
3072 case GPCMD_READ_TRACK_RZONE_INFO:
3073 size = (cdb[7] << 8) + cdb[8];
3074 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3075 break;
3076 case PERSISTENT_RESERVE_IN:
3077 case PERSISTENT_RESERVE_OUT:
3078 cmd->transport_emulate_cdb =
3079 (su_dev->t10_pr.res_type ==
3080 SPC3_PERSISTENT_RESERVATIONS) ?
3081 core_scsi3_emulate_pr : NULL;
3082 size = (cdb[7] << 8) + cdb[8];
3083 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3084 break;
3085 case GPCMD_MECHANISM_STATUS:
3086 case GPCMD_READ_DVD_STRUCTURE:
3087 size = (cdb[8] << 8) + cdb[9];
3088 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3089 break;
3090 case READ_POSITION:
3091 size = READ_POSITION_LEN;
3092 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3093 break;
3094 case MAINTENANCE_OUT:
3095 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3096 /* MAINTENANCE_OUT from SCC-2
3097 *
3098 * Check for emulated MO_SET_TARGET_PGS.
3099 */
3100 if (cdb[1] == MO_SET_TARGET_PGS) {
3101 cmd->transport_emulate_cdb =
3102 (su_dev->t10_alua.alua_type ==
3103 SPC3_ALUA_EMULATED) ?
3104 core_emulate_set_target_port_groups :
3105 NULL;
3106 }
3107
3108 size = (cdb[6] << 24) | (cdb[7] << 16) |
3109 (cdb[8] << 8) | cdb[9];
3110 } else {
3111 /* GPCMD_REPORT_KEY from multi media commands */
3112 size = (cdb[8] << 8) + cdb[9];
3113 }
3114 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3115 break;
3116 case INQUIRY:
3117 size = (cdb[3] << 8) + cdb[4];
3118 /*
3119 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3120 * See spc4r17 section 5.3
3121 */
3122 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3123 cmd->sam_task_attr = MSG_HEAD_TAG;
3124 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3125 break;
3126 case READ_BUFFER:
3127 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3128 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3129 break;
3130 case READ_CAPACITY:
3131 size = READ_CAP_LEN;
3132 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3133 break;
3134 case READ_MEDIA_SERIAL_NUMBER:
3135 case SECURITY_PROTOCOL_IN:
3136 case SECURITY_PROTOCOL_OUT:
3137 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3138 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3139 break;
3140 case SERVICE_ACTION_IN:
3141 case ACCESS_CONTROL_IN:
3142 case ACCESS_CONTROL_OUT:
3143 case EXTENDED_COPY:
3144 case READ_ATTRIBUTE:
3145 case RECEIVE_COPY_RESULTS:
3146 case WRITE_ATTRIBUTE:
3147 size = (cdb[10] << 24) | (cdb[11] << 16) |
3148 (cdb[12] << 8) | cdb[13];
3149 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3150 break;
3151 case RECEIVE_DIAGNOSTIC:
3152 case SEND_DIAGNOSTIC:
3153 size = (cdb[3] << 8) | cdb[4];
3154 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3155 break;
3156 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3157 #if 0
3158 case GPCMD_READ_CD:
3159 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3160 size = (2336 * sectors);
3161 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3162 break;
3163 #endif
3164 case READ_TOC:
3165 size = cdb[8];
3166 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3167 break;
3168 case REQUEST_SENSE:
3169 size = cdb[4];
3170 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3171 break;
3172 case READ_ELEMENT_STATUS:
3173 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3174 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3175 break;
3176 case WRITE_BUFFER:
3177 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3178 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3179 break;
3180 case RESERVE:
3181 case RESERVE_10:
3182 /*
3183 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3184 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3185 */
3186 if (cdb[0] == RESERVE_10)
3187 size = (cdb[7] << 8) | cdb[8];
3188 else
3189 size = cmd->data_length;
3190
3191 /*
3192 * Setup the legacy emulated handler for SPC-2 and
3193 * >= SPC-3 compatible reservation handling (CRH=1)
3194 * Otherwise, we assume the underlying SCSI logic is
3195 * is running in SPC_PASSTHROUGH, and wants reservations
3196 * emulation disabled.
3197 */
3198 cmd->transport_emulate_cdb =
3199 (su_dev->t10_pr.res_type !=
3200 SPC_PASSTHROUGH) ?
3201 core_scsi2_emulate_crh : NULL;
3202 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3203 break;
3204 case RELEASE:
3205 case RELEASE_10:
3206 /*
3207 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3208 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3209 */
3210 if (cdb[0] == RELEASE_10)
3211 size = (cdb[7] << 8) | cdb[8];
3212 else
3213 size = cmd->data_length;
3214
3215 cmd->transport_emulate_cdb =
3216 (su_dev->t10_pr.res_type !=
3217 SPC_PASSTHROUGH) ?
3218 core_scsi2_emulate_crh : NULL;
3219 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3220 break;
3221 case SYNCHRONIZE_CACHE:
3222 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3223 /*
3224 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3225 */
3226 if (cdb[0] == SYNCHRONIZE_CACHE) {
3227 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3228 cmd->t_task_lba = transport_lba_32(cdb);
3229 } else {
3230 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3231 cmd->t_task_lba = transport_lba_64(cdb);
3232 }
3233 if (sector_ret)
3234 goto out_unsupported_cdb;
3235
3236 size = transport_get_size(sectors, cdb, cmd);
3237 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3238
3239 /*
3240 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3241 */
3242 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3243 break;
3244 /*
3245 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3246 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3247 */
3248 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3249 /*
3250 * Check to ensure that LBA + Range does not exceed past end of
3251 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3252 */
3253 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3254 if (transport_cmd_get_valid_sectors(cmd) < 0)
3255 goto out_invalid_cdb_field;
3256 }
3257 break;
3258 case UNMAP:
3259 size = get_unaligned_be16(&cdb[7]);
3260 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3261 break;
3262 case WRITE_SAME_16:
3263 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3264 if (sector_ret)
3265 goto out_unsupported_cdb;
3266
3267 if (sectors)
3268 size = transport_get_size(1, cdb, cmd);
3269 else {
3270 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3271 goto out_invalid_cdb_field;
3272 }
3273
3274 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3275 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3276
3277 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3278 goto out_invalid_cdb_field;
3279 break;
3280 case WRITE_SAME:
3281 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3282 if (sector_ret)
3283 goto out_unsupported_cdb;
3284
3285 if (sectors)
3286 size = transport_get_size(1, cdb, cmd);
3287 else {
3288 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3289 goto out_invalid_cdb_field;
3290 }
3291
3292 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3293 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3294 /*
3295 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3296 * of byte 1 bit 3 UNMAP instead of original reserved field
3297 */
3298 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3299 goto out_invalid_cdb_field;
3300 break;
3301 case ALLOW_MEDIUM_REMOVAL:
3302 case GPCMD_CLOSE_TRACK:
3303 case ERASE:
3304 case INITIALIZE_ELEMENT_STATUS:
3305 case GPCMD_LOAD_UNLOAD:
3306 case REZERO_UNIT:
3307 case SEEK_10:
3308 case GPCMD_SET_SPEED:
3309 case SPACE:
3310 case START_STOP:
3311 case TEST_UNIT_READY:
3312 case VERIFY:
3313 case WRITE_FILEMARKS:
3314 case MOVE_MEDIUM:
3315 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3316 break;
3317 case REPORT_LUNS:
3318 cmd->transport_emulate_cdb =
3319 transport_core_report_lun_response;
3320 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3321 /*
3322 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3323 * See spc4r17 section 5.3
3324 */
3325 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3326 cmd->sam_task_attr = MSG_HEAD_TAG;
3327 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3328 break;
3329 default:
3330 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3331 " 0x%02x, sending CHECK_CONDITION.\n",
3332 cmd->se_tfo->get_fabric_name(), cdb[0]);
3333 goto out_unsupported_cdb;
3334 }
3335
3336 if (size != cmd->data_length) {
3337 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3338 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3339 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3340 cmd->data_length, size, cdb[0]);
3341
3342 cmd->cmd_spdtl = size;
3343
3344 if (cmd->data_direction == DMA_TO_DEVICE) {
3345 pr_err("Rejecting underflow/overflow"
3346 " WRITE data\n");
3347 goto out_invalid_cdb_field;
3348 }
3349 /*
3350 * Reject READ_* or WRITE_* with overflow/underflow for
3351 * type SCF_SCSI_DATA_SG_IO_CDB.
3352 */
3353 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3354 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3355 " CDB on non 512-byte sector setup subsystem"
3356 " plugin: %s\n", dev->transport->name);
3357 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3358 goto out_invalid_cdb_field;
3359 }
3360
3361 if (size > cmd->data_length) {
3362 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3363 cmd->residual_count = (size - cmd->data_length);
3364 } else {
3365 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3366 cmd->residual_count = (cmd->data_length - size);
3367 }
3368 cmd->data_length = size;
3369 }
3370
3371 /* Let's limit control cdbs to a page, for simplicity's sake. */
3372 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3373 size > PAGE_SIZE)
3374 goto out_invalid_cdb_field;
3375
3376 transport_set_supported_SAM_opcode(cmd);
3377 return ret;
3378
3379 out_unsupported_cdb:
3380 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3381 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3382 return -EINVAL;
3383 out_invalid_cdb_field:
3384 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3385 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3386 return -EINVAL;
3387 }
3388
3389 /*
3390 * Called from transport_generic_complete_ok() and
3391 * transport_generic_request_failure() to determine which dormant/delayed
3392 * and ordered cmds need to have their tasks added to the execution queue.
3393 */
3394 static void transport_complete_task_attr(struct se_cmd *cmd)
3395 {
3396 struct se_device *dev = cmd->se_dev;
3397 struct se_cmd *cmd_p, *cmd_tmp;
3398 int new_active_tasks = 0;
3399
3400 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3401 atomic_dec(&dev->simple_cmds);
3402 smp_mb__after_atomic_dec();
3403 dev->dev_cur_ordered_id++;
3404 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3405 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3406 cmd->se_ordered_id);
3407 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3408 atomic_dec(&dev->dev_hoq_count);
3409 smp_mb__after_atomic_dec();
3410 dev->dev_cur_ordered_id++;
3411 pr_debug("Incremented dev_cur_ordered_id: %u for"
3412 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3413 cmd->se_ordered_id);
3414 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3415 spin_lock(&dev->ordered_cmd_lock);
3416 list_del(&cmd->se_ordered_node);
3417 atomic_dec(&dev->dev_ordered_sync);
3418 smp_mb__after_atomic_dec();
3419 spin_unlock(&dev->ordered_cmd_lock);
3420
3421 dev->dev_cur_ordered_id++;
3422 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3423 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3424 }
3425 /*
3426 * Process all commands up to the last received
3427 * ORDERED task attribute which requires another blocking
3428 * boundary
3429 */
3430 spin_lock(&dev->delayed_cmd_lock);
3431 list_for_each_entry_safe(cmd_p, cmd_tmp,
3432 &dev->delayed_cmd_list, se_delayed_node) {
3433
3434 list_del(&cmd_p->se_delayed_node);
3435 spin_unlock(&dev->delayed_cmd_lock);
3436
3437 pr_debug("Calling add_tasks() for"
3438 " cmd_p: 0x%02x Task Attr: 0x%02x"
3439 " Dormant -> Active, se_ordered_id: %u\n",
3440 cmd_p->t_task_cdb[0],
3441 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3442
3443 transport_add_tasks_from_cmd(cmd_p);
3444 new_active_tasks++;
3445
3446 spin_lock(&dev->delayed_cmd_lock);
3447 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3448 break;
3449 }
3450 spin_unlock(&dev->delayed_cmd_lock);
3451 /*
3452 * If new tasks have become active, wake up the transport thread
3453 * to do the processing of the Active tasks.
3454 */
3455 if (new_active_tasks != 0)
3456 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3457 }
3458
3459 static int transport_complete_qf(struct se_cmd *cmd)
3460 {
3461 int ret = 0;
3462
3463 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3464 return cmd->se_tfo->queue_status(cmd);
3465
3466 switch (cmd->data_direction) {
3467 case DMA_FROM_DEVICE:
3468 ret = cmd->se_tfo->queue_data_in(cmd);
3469 break;
3470 case DMA_TO_DEVICE:
3471 if (cmd->t_bidi_data_sg) {
3472 ret = cmd->se_tfo->queue_data_in(cmd);
3473 if (ret < 0)
3474 return ret;
3475 }
3476 /* Fall through for DMA_TO_DEVICE */
3477 case DMA_NONE:
3478 ret = cmd->se_tfo->queue_status(cmd);
3479 break;
3480 default:
3481 break;
3482 }
3483
3484 return ret;
3485 }
3486
3487 static void transport_handle_queue_full(
3488 struct se_cmd *cmd,
3489 struct se_device *dev,
3490 int (*qf_callback)(struct se_cmd *))
3491 {
3492 spin_lock_irq(&dev->qf_cmd_lock);
3493 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3494 cmd->transport_qf_callback = qf_callback;
3495 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3496 atomic_inc(&dev->dev_qf_count);
3497 smp_mb__after_atomic_inc();
3498 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3499
3500 schedule_work(&cmd->se_dev->qf_work_queue);
3501 }
3502
3503 static void transport_generic_complete_ok(struct se_cmd *cmd)
3504 {
3505 int reason = 0, ret;
3506 /*
3507 * Check if we need to move delayed/dormant tasks from cmds on the
3508 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3509 * Attribute.
3510 */
3511 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3512 transport_complete_task_attr(cmd);
3513 /*
3514 * Check to schedule QUEUE_FULL work, or execute an existing
3515 * cmd->transport_qf_callback()
3516 */
3517 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3518 schedule_work(&cmd->se_dev->qf_work_queue);
3519
3520 if (cmd->transport_qf_callback) {
3521 ret = cmd->transport_qf_callback(cmd);
3522 if (ret < 0)
3523 goto queue_full;
3524
3525 cmd->transport_qf_callback = NULL;
3526 goto done;
3527 }
3528 /*
3529 * Check if we need to retrieve a sense buffer from
3530 * the struct se_cmd in question.
3531 */
3532 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3533 if (transport_get_sense_data(cmd) < 0)
3534 reason = TCM_NON_EXISTENT_LUN;
3535
3536 /*
3537 * Only set when an struct se_task->task_scsi_status returned
3538 * a non GOOD status.
3539 */
3540 if (cmd->scsi_status) {
3541 ret = transport_send_check_condition_and_sense(
3542 cmd, reason, 1);
3543 if (ret == -EAGAIN)
3544 goto queue_full;
3545
3546 transport_lun_remove_cmd(cmd);
3547 transport_cmd_check_stop_to_fabric(cmd);
3548 return;
3549 }
3550 }
3551 /*
3552 * Check for a callback, used by amongst other things
3553 * XDWRITE_READ_10 emulation.
3554 */
3555 if (cmd->transport_complete_callback)
3556 cmd->transport_complete_callback(cmd);
3557
3558 switch (cmd->data_direction) {
3559 case DMA_FROM_DEVICE:
3560 spin_lock(&cmd->se_lun->lun_sep_lock);
3561 if (cmd->se_lun->lun_sep) {
3562 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3563 cmd->data_length;
3564 }
3565 spin_unlock(&cmd->se_lun->lun_sep_lock);
3566
3567 ret = cmd->se_tfo->queue_data_in(cmd);
3568 if (ret == -EAGAIN)
3569 goto queue_full;
3570 break;
3571 case DMA_TO_DEVICE:
3572 spin_lock(&cmd->se_lun->lun_sep_lock);
3573 if (cmd->se_lun->lun_sep) {
3574 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3575 cmd->data_length;
3576 }
3577 spin_unlock(&cmd->se_lun->lun_sep_lock);
3578 /*
3579 * Check if we need to send READ payload for BIDI-COMMAND
3580 */
3581 if (cmd->t_bidi_data_sg) {
3582 spin_lock(&cmd->se_lun->lun_sep_lock);
3583 if (cmd->se_lun->lun_sep) {
3584 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3585 cmd->data_length;
3586 }
3587 spin_unlock(&cmd->se_lun->lun_sep_lock);
3588 ret = cmd->se_tfo->queue_data_in(cmd);
3589 if (ret == -EAGAIN)
3590 goto queue_full;
3591 break;
3592 }
3593 /* Fall through for DMA_TO_DEVICE */
3594 case DMA_NONE:
3595 ret = cmd->se_tfo->queue_status(cmd);
3596 if (ret == -EAGAIN)
3597 goto queue_full;
3598 break;
3599 default:
3600 break;
3601 }
3602
3603 done:
3604 transport_lun_remove_cmd(cmd);
3605 transport_cmd_check_stop_to_fabric(cmd);
3606 return;
3607
3608 queue_full:
3609 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3610 " data_direction: %d\n", cmd, cmd->data_direction);
3611 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3612 }
3613
3614 static void transport_free_dev_tasks(struct se_cmd *cmd)
3615 {
3616 struct se_task *task, *task_tmp;
3617 unsigned long flags;
3618
3619 spin_lock_irqsave(&cmd->t_state_lock, flags);
3620 list_for_each_entry_safe(task, task_tmp,
3621 &cmd->t_task_list, t_list) {
3622 if (atomic_read(&task->task_active))
3623 continue;
3624
3625 kfree(task->task_sg_bidi);
3626 kfree(task->task_sg);
3627
3628 list_del(&task->t_list);
3629
3630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3631 if (task->se_dev)
3632 task->se_dev->transport->free_task(task);
3633 else
3634 pr_err("task[%u] - task->se_dev is NULL\n",
3635 task->task_no);
3636 spin_lock_irqsave(&cmd->t_state_lock, flags);
3637 }
3638 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3639 }
3640
3641 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3642 {
3643 struct scatterlist *sg;
3644 int count;
3645
3646 for_each_sg(sgl, sg, nents, count)
3647 __free_page(sg_page(sg));
3648
3649 kfree(sgl);
3650 }
3651
3652 static inline void transport_free_pages(struct se_cmd *cmd)
3653 {
3654 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3655 return;
3656
3657 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3658 cmd->t_data_sg = NULL;
3659 cmd->t_data_nents = 0;
3660
3661 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3662 cmd->t_bidi_data_sg = NULL;
3663 cmd->t_bidi_data_nents = 0;
3664 }
3665
3666 /**
3667 * transport_put_cmd - release a reference to a command
3668 * @cmd: command to release
3669 *
3670 * This routine releases our reference to the command and frees it if possible.
3671 */
3672 static void transport_put_cmd(struct se_cmd *cmd)
3673 {
3674 unsigned long flags;
3675 int free_tasks = 0;
3676
3677 spin_lock_irqsave(&cmd->t_state_lock, flags);
3678 if (atomic_read(&cmd->t_fe_count)) {
3679 if (!atomic_dec_and_test(&cmd->t_fe_count))
3680 goto out_busy;
3681 }
3682
3683 if (atomic_read(&cmd->t_se_count)) {
3684 if (!atomic_dec_and_test(&cmd->t_se_count))
3685 goto out_busy;
3686 }
3687
3688 if (atomic_read(&cmd->transport_dev_active)) {
3689 atomic_set(&cmd->transport_dev_active, 0);
3690 transport_all_task_dev_remove_state(cmd);
3691 free_tasks = 1;
3692 }
3693 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3694
3695 if (free_tasks != 0)
3696 transport_free_dev_tasks(cmd);
3697
3698 transport_free_pages(cmd);
3699 transport_release_cmd(cmd);
3700 return;
3701 out_busy:
3702 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3703 }
3704
3705 /*
3706 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3707 * allocating in the core.
3708 * @cmd: Associated se_cmd descriptor
3709 * @mem: SGL style memory for TCM WRITE / READ
3710 * @sg_mem_num: Number of SGL elements
3711 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3712 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3713 *
3714 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3715 * of parameters.
3716 */
3717 int transport_generic_map_mem_to_cmd(
3718 struct se_cmd *cmd,
3719 struct scatterlist *sgl,
3720 u32 sgl_count,
3721 struct scatterlist *sgl_bidi,
3722 u32 sgl_bidi_count)
3723 {
3724 if (!sgl || !sgl_count)
3725 return 0;
3726
3727 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3728 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3729
3730 cmd->t_data_sg = sgl;
3731 cmd->t_data_nents = sgl_count;
3732
3733 if (sgl_bidi && sgl_bidi_count) {
3734 cmd->t_bidi_data_sg = sgl_bidi;
3735 cmd->t_bidi_data_nents = sgl_bidi_count;
3736 }
3737 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3738 }
3739
3740 return 0;
3741 }
3742 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3743
3744 static int transport_new_cmd_obj(struct se_cmd *cmd)
3745 {
3746 struct se_device *dev = cmd->se_dev;
3747 int set_counts = 1, rc, task_cdbs;
3748
3749 /*
3750 * Setup any BIDI READ tasks and memory from
3751 * cmd->t_mem_bidi_list so the READ struct se_tasks
3752 * are queued first for the non pSCSI passthrough case.
3753 */
3754 if (cmd->t_bidi_data_sg &&
3755 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3756 rc = transport_allocate_tasks(cmd,
3757 cmd->t_task_lba,
3758 DMA_FROM_DEVICE,
3759 cmd->t_bidi_data_sg,
3760 cmd->t_bidi_data_nents);
3761 if (rc <= 0) {
3762 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3763 cmd->scsi_sense_reason =
3764 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3765 return -EINVAL;
3766 }
3767 atomic_inc(&cmd->t_fe_count);
3768 atomic_inc(&cmd->t_se_count);
3769 set_counts = 0;
3770 }
3771 /*
3772 * Setup the tasks and memory from cmd->t_mem_list
3773 * Note for BIDI transfers this will contain the WRITE payload
3774 */
3775 task_cdbs = transport_allocate_tasks(cmd,
3776 cmd->t_task_lba,
3777 cmd->data_direction,
3778 cmd->t_data_sg,
3779 cmd->t_data_nents);
3780 if (task_cdbs <= 0) {
3781 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3782 cmd->scsi_sense_reason =
3783 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3784 return -EINVAL;
3785 }
3786
3787 if (set_counts) {
3788 atomic_inc(&cmd->t_fe_count);
3789 atomic_inc(&cmd->t_se_count);
3790 }
3791
3792 cmd->t_task_list_num = task_cdbs;
3793
3794 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3795 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3796 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3797 return 0;
3798 }
3799
3800 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3801 {
3802 struct scatterlist *sg = cmd->t_data_sg;
3803
3804 BUG_ON(!sg);
3805 /*
3806 * We need to take into account a possible offset here for fabrics like
3807 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3808 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3809 */
3810 return kmap(sg_page(sg)) + sg->offset;
3811 }
3812 EXPORT_SYMBOL(transport_kmap_first_data_page);
3813
3814 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3815 {
3816 kunmap(sg_page(cmd->t_data_sg));
3817 }
3818 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3819
3820 static int
3821 transport_generic_get_mem(struct se_cmd *cmd)
3822 {
3823 u32 length = cmd->data_length;
3824 unsigned int nents;
3825 struct page *page;
3826 int i = 0;
3827
3828 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3829 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3830 if (!cmd->t_data_sg)
3831 return -ENOMEM;
3832
3833 cmd->t_data_nents = nents;
3834 sg_init_table(cmd->t_data_sg, nents);
3835
3836 while (length) {
3837 u32 page_len = min_t(u32, length, PAGE_SIZE);
3838 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3839 if (!page)
3840 goto out;
3841
3842 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3843 length -= page_len;
3844 i++;
3845 }
3846 return 0;
3847
3848 out:
3849 while (i >= 0) {
3850 __free_page(sg_page(&cmd->t_data_sg[i]));
3851 i--;
3852 }
3853 kfree(cmd->t_data_sg);
3854 cmd->t_data_sg = NULL;
3855 return -ENOMEM;
3856 }
3857
3858 /* Reduce sectors if they are too long for the device */
3859 static inline sector_t transport_limit_task_sectors(
3860 struct se_device *dev,
3861 unsigned long long lba,
3862 sector_t sectors)
3863 {
3864 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3865
3866 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3867 if ((lba + sectors) > transport_dev_end_lba(dev))
3868 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3869
3870 return sectors;
3871 }
3872
3873
3874 /*
3875 * This function can be used by HW target mode drivers to create a linked
3876 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3877 * This is intended to be called during the completion path by TCM Core
3878 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3879 */
3880 void transport_do_task_sg_chain(struct se_cmd *cmd)
3881 {
3882 struct scatterlist *sg_first = NULL;
3883 struct scatterlist *sg_prev = NULL;
3884 int sg_prev_nents = 0;
3885 struct scatterlist *sg;
3886 struct se_task *task;
3887 u32 chained_nents = 0;
3888 int i;
3889
3890 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3891
3892 /*
3893 * Walk the struct se_task list and setup scatterlist chains
3894 * for each contiguously allocated struct se_task->task_sg[].
3895 */
3896 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3897 if (!task->task_sg)
3898 continue;
3899
3900 if (!sg_first) {
3901 sg_first = task->task_sg;
3902 chained_nents = task->task_sg_nents;
3903 } else {
3904 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3905 chained_nents += task->task_sg_nents;
3906 }
3907 /*
3908 * For the padded tasks, use the extra SGL vector allocated
3909 * in transport_allocate_data_tasks() for the sg_prev_nents
3910 * offset into sg_chain() above.. The last task of a
3911 * multi-task list, or a single task will not have
3912 * task->task_sg_padded set..
3913 */
3914 if (task->task_padded_sg)
3915 sg_prev_nents = (task->task_sg_nents + 1);
3916 else
3917 sg_prev_nents = task->task_sg_nents;
3918
3919 sg_prev = task->task_sg;
3920 }
3921 /*
3922 * Setup the starting pointer and total t_tasks_sg_linked_no including
3923 * padding SGs for linking and to mark the end.
3924 */
3925 cmd->t_tasks_sg_chained = sg_first;
3926 cmd->t_tasks_sg_chained_no = chained_nents;
3927
3928 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3929 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3930 cmd->t_tasks_sg_chained_no);
3931
3932 for_each_sg(cmd->t_tasks_sg_chained, sg,
3933 cmd->t_tasks_sg_chained_no, i) {
3934
3935 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3936 i, sg, sg_page(sg), sg->length, sg->offset);
3937 if (sg_is_chain(sg))
3938 pr_debug("SG: %p sg_is_chain=1\n", sg);
3939 if (sg_is_last(sg))
3940 pr_debug("SG: %p sg_is_last=1\n", sg);
3941 }
3942 }
3943 EXPORT_SYMBOL(transport_do_task_sg_chain);
3944
3945 /*
3946 * Break up cmd into chunks transport can handle
3947 */
3948 static int transport_allocate_data_tasks(
3949 struct se_cmd *cmd,
3950 unsigned long long lba,
3951 enum dma_data_direction data_direction,
3952 struct scatterlist *sgl,
3953 unsigned int sgl_nents)
3954 {
3955 unsigned char *cdb = NULL;
3956 struct se_task *task;
3957 struct se_device *dev = cmd->se_dev;
3958 unsigned long flags;
3959 int task_count, i;
3960 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3961 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3962 struct scatterlist *sg;
3963 struct scatterlist *cmd_sg;
3964
3965 WARN_ON(cmd->data_length % sector_size);
3966 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3967 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3968
3969 cmd_sg = sgl;
3970 for (i = 0; i < task_count; i++) {
3971 unsigned int task_size, task_sg_nents_padded;
3972 int count;
3973
3974 task = transport_generic_get_task(cmd, data_direction);
3975 if (!task)
3976 return -ENOMEM;
3977
3978 task->task_lba = lba;
3979 task->task_sectors = min(sectors, dev_max_sectors);
3980 task->task_size = task->task_sectors * sector_size;
3981
3982 cdb = dev->transport->get_cdb(task);
3983 BUG_ON(!cdb);
3984
3985 memcpy(cdb, cmd->t_task_cdb,
3986 scsi_command_size(cmd->t_task_cdb));
3987
3988 /* Update new cdb with updated lba/sectors */
3989 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
3990 /*
3991 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3992 * in order to calculate the number per task SGL entries
3993 */
3994 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3995 /*
3996 * Check if the fabric module driver is requesting that all
3997 * struct se_task->task_sg[] be chained together.. If so,
3998 * then allocate an extra padding SG entry for linking and
3999 * marking the end of the chained SGL for every task except
4000 * the last one for (task_count > 1) operation, or skipping
4001 * the extra padding for the (task_count == 1) case.
4002 */
4003 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4004 task_sg_nents_padded = (task->task_sg_nents + 1);
4005 task->task_padded_sg = 1;
4006 } else
4007 task_sg_nents_padded = task->task_sg_nents;
4008
4009 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4010 task_sg_nents_padded, GFP_KERNEL);
4011 if (!task->task_sg) {
4012 cmd->se_dev->transport->free_task(task);
4013 return -ENOMEM;
4014 }
4015
4016 sg_init_table(task->task_sg, task_sg_nents_padded);
4017
4018 task_size = task->task_size;
4019
4020 /* Build new sgl, only up to task_size */
4021 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4022 if (cmd_sg->length > task_size)
4023 break;
4024
4025 *sg = *cmd_sg;
4026 task_size -= cmd_sg->length;
4027 cmd_sg = sg_next(cmd_sg);
4028 }
4029
4030 lba += task->task_sectors;
4031 sectors -= task->task_sectors;
4032
4033 spin_lock_irqsave(&cmd->t_state_lock, flags);
4034 list_add_tail(&task->t_list, &cmd->t_task_list);
4035 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4036 }
4037
4038 return task_count;
4039 }
4040
4041 static int
4042 transport_allocate_control_task(struct se_cmd *cmd)
4043 {
4044 struct se_device *dev = cmd->se_dev;
4045 unsigned char *cdb;
4046 struct se_task *task;
4047 unsigned long flags;
4048
4049 task = transport_generic_get_task(cmd, cmd->data_direction);
4050 if (!task)
4051 return -ENOMEM;
4052
4053 cdb = dev->transport->get_cdb(task);
4054 BUG_ON(!cdb);
4055 memcpy(cdb, cmd->t_task_cdb,
4056 scsi_command_size(cmd->t_task_cdb));
4057
4058 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4059 GFP_KERNEL);
4060 if (!task->task_sg) {
4061 cmd->se_dev->transport->free_task(task);
4062 return -ENOMEM;
4063 }
4064
4065 memcpy(task->task_sg, cmd->t_data_sg,
4066 sizeof(struct scatterlist) * cmd->t_data_nents);
4067 task->task_size = cmd->data_length;
4068 task->task_sg_nents = cmd->t_data_nents;
4069
4070 spin_lock_irqsave(&cmd->t_state_lock, flags);
4071 list_add_tail(&task->t_list, &cmd->t_task_list);
4072 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4073
4074 /* Success! Return number of tasks allocated */
4075 return 1;
4076 }
4077
4078 static u32 transport_allocate_tasks(
4079 struct se_cmd *cmd,
4080 unsigned long long lba,
4081 enum dma_data_direction data_direction,
4082 struct scatterlist *sgl,
4083 unsigned int sgl_nents)
4084 {
4085 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4086 if (transport_cmd_get_valid_sectors(cmd) < 0)
4087 return -EINVAL;
4088
4089 return transport_allocate_data_tasks(cmd, lba, data_direction,
4090 sgl, sgl_nents);
4091 } else
4092 return transport_allocate_control_task(cmd);
4093
4094 }
4095
4096
4097 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4098 *
4099 * Allocate storage transport resources from a set of values predefined
4100 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4101 * Any non zero return here is treated as an "out of resource' op here.
4102 */
4103 /*
4104 * Generate struct se_task(s) and/or their payloads for this CDB.
4105 */
4106 int transport_generic_new_cmd(struct se_cmd *cmd)
4107 {
4108 int ret = 0;
4109
4110 /*
4111 * Determine is the TCM fabric module has already allocated physical
4112 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4113 * beforehand.
4114 */
4115 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4116 cmd->data_length) {
4117 ret = transport_generic_get_mem(cmd);
4118 if (ret < 0)
4119 return ret;
4120 }
4121 /*
4122 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4123 * control or data CDB types, and perform the map to backend subsystem
4124 * code from SGL memory allocated here by transport_generic_get_mem(), or
4125 * via pre-existing SGL memory setup explictly by fabric module code with
4126 * transport_generic_map_mem_to_cmd().
4127 */
4128 ret = transport_new_cmd_obj(cmd);
4129 if (ret < 0)
4130 return ret;
4131 /*
4132 * For WRITEs, let the fabric know its buffer is ready..
4133 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4134 * will be added to the struct se_device execution queue after its WRITE
4135 * data has arrived. (ie: It gets handled by the transport processing
4136 * thread a second time)
4137 */
4138 if (cmd->data_direction == DMA_TO_DEVICE) {
4139 transport_add_tasks_to_state_queue(cmd);
4140 return transport_generic_write_pending(cmd);
4141 }
4142 /*
4143 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4144 * to the execution queue.
4145 */
4146 transport_execute_tasks(cmd);
4147 return 0;
4148 }
4149 EXPORT_SYMBOL(transport_generic_new_cmd);
4150
4151 /* transport_generic_process_write():
4152 *
4153 *
4154 */
4155 void transport_generic_process_write(struct se_cmd *cmd)
4156 {
4157 transport_execute_tasks(cmd);
4158 }
4159 EXPORT_SYMBOL(transport_generic_process_write);
4160
4161 static int transport_write_pending_qf(struct se_cmd *cmd)
4162 {
4163 return cmd->se_tfo->write_pending(cmd);
4164 }
4165
4166 /* transport_generic_write_pending():
4167 *
4168 *
4169 */
4170 static int transport_generic_write_pending(struct se_cmd *cmd)
4171 {
4172 unsigned long flags;
4173 int ret;
4174
4175 spin_lock_irqsave(&cmd->t_state_lock, flags);
4176 cmd->t_state = TRANSPORT_WRITE_PENDING;
4177 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4178
4179 if (cmd->transport_qf_callback) {
4180 ret = cmd->transport_qf_callback(cmd);
4181 if (ret == -EAGAIN)
4182 goto queue_full;
4183 else if (ret < 0)
4184 return ret;
4185
4186 cmd->transport_qf_callback = NULL;
4187 return 0;
4188 }
4189
4190 /*
4191 * Clear the se_cmd for WRITE_PENDING status in order to set
4192 * cmd->t_transport_active=0 so that transport_generic_handle_data
4193 * can be called from HW target mode interrupt code. This is safe
4194 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4195 * because the se_cmd->se_lun pointer is not being cleared.
4196 */
4197 transport_cmd_check_stop(cmd, 1, 0);
4198
4199 /*
4200 * Call the fabric write_pending function here to let the
4201 * frontend know that WRITE buffers are ready.
4202 */
4203 ret = cmd->se_tfo->write_pending(cmd);
4204 if (ret == -EAGAIN)
4205 goto queue_full;
4206 else if (ret < 0)
4207 return ret;
4208
4209 return PYX_TRANSPORT_WRITE_PENDING;
4210
4211 queue_full:
4212 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4213 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4214 transport_handle_queue_full(cmd, cmd->se_dev,
4215 transport_write_pending_qf);
4216 return ret;
4217 }
4218
4219 /**
4220 * transport_release_cmd - free a command
4221 * @cmd: command to free
4222 *
4223 * This routine unconditionally frees a command, and reference counting
4224 * or list removal must be done in the caller.
4225 */
4226 void transport_release_cmd(struct se_cmd *cmd)
4227 {
4228 BUG_ON(!cmd->se_tfo);
4229
4230 if (cmd->se_tmr_req)
4231 core_tmr_release_req(cmd->se_tmr_req);
4232 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4233 kfree(cmd->t_task_cdb);
4234 cmd->se_tfo->release_cmd(cmd);
4235 }
4236 EXPORT_SYMBOL(transport_release_cmd);
4237
4238 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4239 {
4240 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4241 if (wait_for_tasks && cmd->se_tmr_req)
4242 transport_wait_for_tasks(cmd);
4243
4244 transport_release_cmd(cmd);
4245 } else {
4246 if (wait_for_tasks)
4247 transport_wait_for_tasks(cmd);
4248
4249 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4250
4251 if (cmd->se_lun)
4252 transport_lun_remove_cmd(cmd);
4253
4254 transport_free_dev_tasks(cmd);
4255
4256 transport_put_cmd(cmd);
4257 }
4258 }
4259 EXPORT_SYMBOL(transport_generic_free_cmd);
4260
4261 /* transport_lun_wait_for_tasks():
4262 *
4263 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4264 * an struct se_lun to be successfully shutdown.
4265 */
4266 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4267 {
4268 unsigned long flags;
4269 int ret;
4270 /*
4271 * If the frontend has already requested this struct se_cmd to
4272 * be stopped, we can safely ignore this struct se_cmd.
4273 */
4274 spin_lock_irqsave(&cmd->t_state_lock, flags);
4275 if (atomic_read(&cmd->t_transport_stop)) {
4276 atomic_set(&cmd->transport_lun_stop, 0);
4277 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4278 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4279 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4280 transport_cmd_check_stop(cmd, 1, 0);
4281 return -EPERM;
4282 }
4283 atomic_set(&cmd->transport_lun_fe_stop, 1);
4284 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4285
4286 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4287
4288 ret = transport_stop_tasks_for_cmd(cmd);
4289
4290 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4291 " %d\n", cmd, cmd->t_task_list_num, ret);
4292 if (!ret) {
4293 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4294 cmd->se_tfo->get_task_tag(cmd));
4295 wait_for_completion(&cmd->transport_lun_stop_comp);
4296 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4297 cmd->se_tfo->get_task_tag(cmd));
4298 }
4299 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4300
4301 return 0;
4302 }
4303
4304 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4305 {
4306 struct se_cmd *cmd = NULL;
4307 unsigned long lun_flags, cmd_flags;
4308 /*
4309 * Do exception processing and return CHECK_CONDITION status to the
4310 * Initiator Port.
4311 */
4312 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4313 while (!list_empty(&lun->lun_cmd_list)) {
4314 cmd = list_first_entry(&lun->lun_cmd_list,
4315 struct se_cmd, se_lun_node);
4316 list_del(&cmd->se_lun_node);
4317
4318 atomic_set(&cmd->transport_lun_active, 0);
4319 /*
4320 * This will notify iscsi_target_transport.c:
4321 * transport_cmd_check_stop() that a LUN shutdown is in
4322 * progress for the iscsi_cmd_t.
4323 */
4324 spin_lock(&cmd->t_state_lock);
4325 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4326 "_lun_stop for ITT: 0x%08x\n",
4327 cmd->se_lun->unpacked_lun,
4328 cmd->se_tfo->get_task_tag(cmd));
4329 atomic_set(&cmd->transport_lun_stop, 1);
4330 spin_unlock(&cmd->t_state_lock);
4331
4332 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4333
4334 if (!cmd->se_lun) {
4335 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4336 cmd->se_tfo->get_task_tag(cmd),
4337 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4338 BUG();
4339 }
4340 /*
4341 * If the Storage engine still owns the iscsi_cmd_t, determine
4342 * and/or stop its context.
4343 */
4344 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4345 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4346 cmd->se_tfo->get_task_tag(cmd));
4347
4348 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4349 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4350 continue;
4351 }
4352
4353 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4354 "_wait_for_tasks(): SUCCESS\n",
4355 cmd->se_lun->unpacked_lun,
4356 cmd->se_tfo->get_task_tag(cmd));
4357
4358 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4359 if (!atomic_read(&cmd->transport_dev_active)) {
4360 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4361 goto check_cond;
4362 }
4363 atomic_set(&cmd->transport_dev_active, 0);
4364 transport_all_task_dev_remove_state(cmd);
4365 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4366
4367 transport_free_dev_tasks(cmd);
4368 /*
4369 * The Storage engine stopped this struct se_cmd before it was
4370 * send to the fabric frontend for delivery back to the
4371 * Initiator Node. Return this SCSI CDB back with an
4372 * CHECK_CONDITION status.
4373 */
4374 check_cond:
4375 transport_send_check_condition_and_sense(cmd,
4376 TCM_NON_EXISTENT_LUN, 0);
4377 /*
4378 * If the fabric frontend is waiting for this iscsi_cmd_t to
4379 * be released, notify the waiting thread now that LU has
4380 * finished accessing it.
4381 */
4382 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4383 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4384 pr_debug("SE_LUN[%d] - Detected FE stop for"
4385 " struct se_cmd: %p ITT: 0x%08x\n",
4386 lun->unpacked_lun,
4387 cmd, cmd->se_tfo->get_task_tag(cmd));
4388
4389 spin_unlock_irqrestore(&cmd->t_state_lock,
4390 cmd_flags);
4391 transport_cmd_check_stop(cmd, 1, 0);
4392 complete(&cmd->transport_lun_fe_stop_comp);
4393 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4394 continue;
4395 }
4396 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4397 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4398
4399 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4400 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4401 }
4402 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4403 }
4404
4405 static int transport_clear_lun_thread(void *p)
4406 {
4407 struct se_lun *lun = (struct se_lun *)p;
4408
4409 __transport_clear_lun_from_sessions(lun);
4410 complete(&lun->lun_shutdown_comp);
4411
4412 return 0;
4413 }
4414
4415 int transport_clear_lun_from_sessions(struct se_lun *lun)
4416 {
4417 struct task_struct *kt;
4418
4419 kt = kthread_run(transport_clear_lun_thread, lun,
4420 "tcm_cl_%u", lun->unpacked_lun);
4421 if (IS_ERR(kt)) {
4422 pr_err("Unable to start clear_lun thread\n");
4423 return PTR_ERR(kt);
4424 }
4425 wait_for_completion(&lun->lun_shutdown_comp);
4426
4427 return 0;
4428 }
4429
4430 /**
4431 * transport_wait_for_tasks - wait for completion to occur
4432 * @cmd: command to wait
4433 *
4434 * Called from frontend fabric context to wait for storage engine
4435 * to pause and/or release frontend generated struct se_cmd.
4436 */
4437 void transport_wait_for_tasks(struct se_cmd *cmd)
4438 {
4439 unsigned long flags;
4440
4441 spin_lock_irqsave(&cmd->t_state_lock, flags);
4442 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4443 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4444 return;
4445 }
4446 /*
4447 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4448 * has been set in transport_set_supported_SAM_opcode().
4449 */
4450 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4451 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4452 return;
4453 }
4454 /*
4455 * If we are already stopped due to an external event (ie: LUN shutdown)
4456 * sleep until the connection can have the passed struct se_cmd back.
4457 * The cmd->transport_lun_stopped_sem will be upped by
4458 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4459 * has completed its operation on the struct se_cmd.
4460 */
4461 if (atomic_read(&cmd->transport_lun_stop)) {
4462
4463 pr_debug("wait_for_tasks: Stopping"
4464 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4465 "_stop_comp); for ITT: 0x%08x\n",
4466 cmd->se_tfo->get_task_tag(cmd));
4467 /*
4468 * There is a special case for WRITES where a FE exception +
4469 * LUN shutdown means ConfigFS context is still sleeping on
4470 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4471 * We go ahead and up transport_lun_stop_comp just to be sure
4472 * here.
4473 */
4474 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4475 complete(&cmd->transport_lun_stop_comp);
4476 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4477 spin_lock_irqsave(&cmd->t_state_lock, flags);
4478
4479 transport_all_task_dev_remove_state(cmd);
4480 /*
4481 * At this point, the frontend who was the originator of this
4482 * struct se_cmd, now owns the structure and can be released through
4483 * normal means below.
4484 */
4485 pr_debug("wait_for_tasks: Stopped"
4486 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4487 "stop_comp); for ITT: 0x%08x\n",
4488 cmd->se_tfo->get_task_tag(cmd));
4489
4490 atomic_set(&cmd->transport_lun_stop, 0);
4491 }
4492 if (!atomic_read(&cmd->t_transport_active) ||
4493 atomic_read(&cmd->t_transport_aborted)) {
4494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4495 return;
4496 }
4497
4498 atomic_set(&cmd->t_transport_stop, 1);
4499
4500 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4501 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4502 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4503 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4504 cmd->deferred_t_state);
4505
4506 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4507
4508 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4509
4510 wait_for_completion(&cmd->t_transport_stop_comp);
4511
4512 spin_lock_irqsave(&cmd->t_state_lock, flags);
4513 atomic_set(&cmd->t_transport_active, 0);
4514 atomic_set(&cmd->t_transport_stop, 0);
4515
4516 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4517 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4518 cmd->se_tfo->get_task_tag(cmd));
4519
4520 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4521 }
4522 EXPORT_SYMBOL(transport_wait_for_tasks);
4523
4524 static int transport_get_sense_codes(
4525 struct se_cmd *cmd,
4526 u8 *asc,
4527 u8 *ascq)
4528 {
4529 *asc = cmd->scsi_asc;
4530 *ascq = cmd->scsi_ascq;
4531
4532 return 0;
4533 }
4534
4535 static int transport_set_sense_codes(
4536 struct se_cmd *cmd,
4537 u8 asc,
4538 u8 ascq)
4539 {
4540 cmd->scsi_asc = asc;
4541 cmd->scsi_ascq = ascq;
4542
4543 return 0;
4544 }
4545
4546 int transport_send_check_condition_and_sense(
4547 struct se_cmd *cmd,
4548 u8 reason,
4549 int from_transport)
4550 {
4551 unsigned char *buffer = cmd->sense_buffer;
4552 unsigned long flags;
4553 int offset;
4554 u8 asc = 0, ascq = 0;
4555
4556 spin_lock_irqsave(&cmd->t_state_lock, flags);
4557 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4558 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4559 return 0;
4560 }
4561 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4562 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4563
4564 if (!reason && from_transport)
4565 goto after_reason;
4566
4567 if (!from_transport)
4568 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4569 /*
4570 * Data Segment and SenseLength of the fabric response PDU.
4571 *
4572 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4573 * from include/scsi/scsi_cmnd.h
4574 */
4575 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4576 TRANSPORT_SENSE_BUFFER);
4577 /*
4578 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4579 * SENSE KEY values from include/scsi/scsi.h
4580 */
4581 switch (reason) {
4582 case TCM_NON_EXISTENT_LUN:
4583 /* CURRENT ERROR */
4584 buffer[offset] = 0x70;
4585 /* ILLEGAL REQUEST */
4586 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4587 /* LOGICAL UNIT NOT SUPPORTED */
4588 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4589 break;
4590 case TCM_UNSUPPORTED_SCSI_OPCODE:
4591 case TCM_SECTOR_COUNT_TOO_MANY:
4592 /* CURRENT ERROR */
4593 buffer[offset] = 0x70;
4594 /* ILLEGAL REQUEST */
4595 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4596 /* INVALID COMMAND OPERATION CODE */
4597 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4598 break;
4599 case TCM_UNKNOWN_MODE_PAGE:
4600 /* CURRENT ERROR */
4601 buffer[offset] = 0x70;
4602 /* ILLEGAL REQUEST */
4603 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4604 /* INVALID FIELD IN CDB */
4605 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4606 break;
4607 case TCM_CHECK_CONDITION_ABORT_CMD:
4608 /* CURRENT ERROR */
4609 buffer[offset] = 0x70;
4610 /* ABORTED COMMAND */
4611 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4612 /* BUS DEVICE RESET FUNCTION OCCURRED */
4613 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4614 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4615 break;
4616 case TCM_INCORRECT_AMOUNT_OF_DATA:
4617 /* CURRENT ERROR */
4618 buffer[offset] = 0x70;
4619 /* ABORTED COMMAND */
4620 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4621 /* WRITE ERROR */
4622 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4623 /* NOT ENOUGH UNSOLICITED DATA */
4624 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4625 break;
4626 case TCM_INVALID_CDB_FIELD:
4627 /* CURRENT ERROR */
4628 buffer[offset] = 0x70;
4629 /* ABORTED COMMAND */
4630 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4631 /* INVALID FIELD IN CDB */
4632 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4633 break;
4634 case TCM_INVALID_PARAMETER_LIST:
4635 /* CURRENT ERROR */
4636 buffer[offset] = 0x70;
4637 /* ABORTED COMMAND */
4638 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4639 /* INVALID FIELD IN PARAMETER LIST */
4640 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4641 break;
4642 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4643 /* CURRENT ERROR */
4644 buffer[offset] = 0x70;
4645 /* ABORTED COMMAND */
4646 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4647 /* WRITE ERROR */
4648 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4649 /* UNEXPECTED_UNSOLICITED_DATA */
4650 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4651 break;
4652 case TCM_SERVICE_CRC_ERROR:
4653 /* CURRENT ERROR */
4654 buffer[offset] = 0x70;
4655 /* ABORTED COMMAND */
4656 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4657 /* PROTOCOL SERVICE CRC ERROR */
4658 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4659 /* N/A */
4660 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4661 break;
4662 case TCM_SNACK_REJECTED:
4663 /* CURRENT ERROR */
4664 buffer[offset] = 0x70;
4665 /* ABORTED COMMAND */
4666 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4667 /* READ ERROR */
4668 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4669 /* FAILED RETRANSMISSION REQUEST */
4670 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4671 break;
4672 case TCM_WRITE_PROTECTED:
4673 /* CURRENT ERROR */
4674 buffer[offset] = 0x70;
4675 /* DATA PROTECT */
4676 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4677 /* WRITE PROTECTED */
4678 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4679 break;
4680 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4681 /* CURRENT ERROR */
4682 buffer[offset] = 0x70;
4683 /* UNIT ATTENTION */
4684 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4685 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4686 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4687 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4688 break;
4689 case TCM_CHECK_CONDITION_NOT_READY:
4690 /* CURRENT ERROR */
4691 buffer[offset] = 0x70;
4692 /* Not Ready */
4693 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4694 transport_get_sense_codes(cmd, &asc, &ascq);
4695 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4696 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4697 break;
4698 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4699 default:
4700 /* CURRENT ERROR */
4701 buffer[offset] = 0x70;
4702 /* ILLEGAL REQUEST */
4703 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4704 /* LOGICAL UNIT COMMUNICATION FAILURE */
4705 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4706 break;
4707 }
4708 /*
4709 * This code uses linux/include/scsi/scsi.h SAM status codes!
4710 */
4711 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4712 /*
4713 * Automatically padded, this value is encoded in the fabric's
4714 * data_length response PDU containing the SCSI defined sense data.
4715 */
4716 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4717
4718 after_reason:
4719 return cmd->se_tfo->queue_status(cmd);
4720 }
4721 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4722
4723 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4724 {
4725 int ret = 0;
4726
4727 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4728 if (!send_status ||
4729 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4730 return 1;
4731 #if 0
4732 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4733 " status for CDB: 0x%02x ITT: 0x%08x\n",
4734 cmd->t_task_cdb[0],
4735 cmd->se_tfo->get_task_tag(cmd));
4736 #endif
4737 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4738 cmd->se_tfo->queue_status(cmd);
4739 ret = 1;
4740 }
4741 return ret;
4742 }
4743 EXPORT_SYMBOL(transport_check_aborted_status);
4744
4745 void transport_send_task_abort(struct se_cmd *cmd)
4746 {
4747 unsigned long flags;
4748
4749 spin_lock_irqsave(&cmd->t_state_lock, flags);
4750 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4751 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4752 return;
4753 }
4754 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4755
4756 /*
4757 * If there are still expected incoming fabric WRITEs, we wait
4758 * until until they have completed before sending a TASK_ABORTED
4759 * response. This response with TASK_ABORTED status will be
4760 * queued back to fabric module by transport_check_aborted_status().
4761 */
4762 if (cmd->data_direction == DMA_TO_DEVICE) {
4763 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4764 atomic_inc(&cmd->t_transport_aborted);
4765 smp_mb__after_atomic_inc();
4766 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4767 transport_new_cmd_failure(cmd);
4768 return;
4769 }
4770 }
4771 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4772 #if 0
4773 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4774 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4775 cmd->se_tfo->get_task_tag(cmd));
4776 #endif
4777 cmd->se_tfo->queue_status(cmd);
4778 }
4779
4780 /* transport_generic_do_tmr():
4781 *
4782 *
4783 */
4784 int transport_generic_do_tmr(struct se_cmd *cmd)
4785 {
4786 struct se_device *dev = cmd->se_dev;
4787 struct se_tmr_req *tmr = cmd->se_tmr_req;
4788 int ret;
4789
4790 switch (tmr->function) {
4791 case TMR_ABORT_TASK:
4792 tmr->response = TMR_FUNCTION_REJECTED;
4793 break;
4794 case TMR_ABORT_TASK_SET:
4795 case TMR_CLEAR_ACA:
4796 case TMR_CLEAR_TASK_SET:
4797 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4798 break;
4799 case TMR_LUN_RESET:
4800 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4801 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4802 TMR_FUNCTION_REJECTED;
4803 break;
4804 case TMR_TARGET_WARM_RESET:
4805 tmr->response = TMR_FUNCTION_REJECTED;
4806 break;
4807 case TMR_TARGET_COLD_RESET:
4808 tmr->response = TMR_FUNCTION_REJECTED;
4809 break;
4810 default:
4811 pr_err("Uknown TMR function: 0x%02x.\n",
4812 tmr->function);
4813 tmr->response = TMR_FUNCTION_REJECTED;
4814 break;
4815 }
4816
4817 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4818 cmd->se_tfo->queue_tm_rsp(cmd);
4819
4820 transport_cmd_check_stop(cmd, 2, 0);
4821 return 0;
4822 }
4823
4824 /* transport_processing_thread():
4825 *
4826 *
4827 */
4828 static int transport_processing_thread(void *param)
4829 {
4830 int ret;
4831 struct se_cmd *cmd;
4832 struct se_device *dev = (struct se_device *) param;
4833
4834 set_user_nice(current, -20);
4835
4836 while (!kthread_should_stop()) {
4837 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4838 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4839 kthread_should_stop());
4840 if (ret < 0)
4841 goto out;
4842
4843 get_cmd:
4844 __transport_execute_tasks(dev);
4845
4846 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4847 if (!cmd)
4848 continue;
4849
4850 switch (cmd->t_state) {
4851 case TRANSPORT_NEW_CMD:
4852 BUG();
4853 break;
4854 case TRANSPORT_NEW_CMD_MAP:
4855 if (!cmd->se_tfo->new_cmd_map) {
4856 pr_err("cmd->se_tfo->new_cmd_map is"
4857 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4858 BUG();
4859 }
4860 ret = cmd->se_tfo->new_cmd_map(cmd);
4861 if (ret < 0) {
4862 cmd->transport_error_status = ret;
4863 transport_generic_request_failure(cmd, NULL,
4864 0, (cmd->data_direction !=
4865 DMA_TO_DEVICE));
4866 break;
4867 }
4868 ret = transport_generic_new_cmd(cmd);
4869 if (ret == -EAGAIN)
4870 break;
4871 else if (ret < 0) {
4872 cmd->transport_error_status = ret;
4873 transport_generic_request_failure(cmd, NULL,
4874 0, (cmd->data_direction !=
4875 DMA_TO_DEVICE));
4876 }
4877 break;
4878 case TRANSPORT_PROCESS_WRITE:
4879 transport_generic_process_write(cmd);
4880 break;
4881 case TRANSPORT_COMPLETE_OK:
4882 transport_stop_all_task_timers(cmd);
4883 transport_generic_complete_ok(cmd);
4884 break;
4885 case TRANSPORT_REMOVE:
4886 transport_put_cmd(cmd);
4887 break;
4888 case TRANSPORT_FREE_CMD_INTR:
4889 transport_generic_free_cmd(cmd, 0);
4890 break;
4891 case TRANSPORT_PROCESS_TMR:
4892 transport_generic_do_tmr(cmd);
4893 break;
4894 case TRANSPORT_COMPLETE_FAILURE:
4895 transport_generic_request_failure(cmd, NULL, 1, 1);
4896 break;
4897 case TRANSPORT_COMPLETE_TIMEOUT:
4898 transport_stop_all_task_timers(cmd);
4899 transport_generic_request_timeout(cmd);
4900 break;
4901 case TRANSPORT_COMPLETE_QF_WP:
4902 transport_generic_write_pending(cmd);
4903 break;
4904 default:
4905 pr_err("Unknown t_state: %d deferred_t_state:"
4906 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4907 " %u\n", cmd->t_state, cmd->deferred_t_state,
4908 cmd->se_tfo->get_task_tag(cmd),
4909 cmd->se_tfo->get_cmd_state(cmd),
4910 cmd->se_lun->unpacked_lun);
4911 BUG();
4912 }
4913
4914 goto get_cmd;
4915 }
4916
4917 out:
4918 WARN_ON(!list_empty(&dev->state_task_list));
4919 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4920 dev->process_thread = NULL;
4921 return 0;
4922 }
This page took 0.131032 seconds and 4 git commands to generate.