Merge branch 'for-3.14' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
122 "t10_alua_tg_pt_gp_mem_cache",
123 sizeof(struct t10_alua_tg_pt_gp_member),
124 __alignof__(struct t10_alua_tg_pt_gp_member),
125 0, NULL);
126 if (!t10_alua_tg_pt_gp_mem_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "mem_t failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131
132 target_completion_wq = alloc_workqueue("target_completion",
133 WQ_MEM_RECLAIM, 0);
134 if (!target_completion_wq)
135 goto out_free_tg_pt_gp_mem_cache;
136
137 return 0;
138
139 out_free_tg_pt_gp_mem_cache:
140 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
141 out_free_tg_pt_gp_cache:
142 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
143 out_free_lu_gp_mem_cache:
144 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
145 out_free_lu_gp_cache:
146 kmem_cache_destroy(t10_alua_lu_gp_cache);
147 out_free_pr_reg_cache:
148 kmem_cache_destroy(t10_pr_reg_cache);
149 out_free_ua_cache:
150 kmem_cache_destroy(se_ua_cache);
151 out_free_sess_cache:
152 kmem_cache_destroy(se_sess_cache);
153 out:
154 return -ENOMEM;
155 }
156
157 void release_se_kmem_caches(void)
158 {
159 destroy_workqueue(target_completion_wq);
160 kmem_cache_destroy(se_sess_cache);
161 kmem_cache_destroy(se_ua_cache);
162 kmem_cache_destroy(t10_pr_reg_cache);
163 kmem_cache_destroy(t10_alua_lu_gp_cache);
164 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
167 }
168
169 /* This code ensures unique mib indexes are handed out. */
170 static DEFINE_SPINLOCK(scsi_mib_index_lock);
171 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172
173 /*
174 * Allocate a new row index for the entry type specified
175 */
176 u32 scsi_get_new_index(scsi_index_t type)
177 {
178 u32 new_index;
179
180 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
181
182 spin_lock(&scsi_mib_index_lock);
183 new_index = ++scsi_mib_index[type];
184 spin_unlock(&scsi_mib_index_lock);
185
186 return new_index;
187 }
188
189 void transport_subsystem_check_init(void)
190 {
191 int ret;
192 static int sub_api_initialized;
193
194 if (sub_api_initialized)
195 return;
196
197 ret = request_module("target_core_iblock");
198 if (ret != 0)
199 pr_err("Unable to load target_core_iblock\n");
200
201 ret = request_module("target_core_file");
202 if (ret != 0)
203 pr_err("Unable to load target_core_file\n");
204
205 ret = request_module("target_core_pscsi");
206 if (ret != 0)
207 pr_err("Unable to load target_core_pscsi\n");
208
209 sub_api_initialized = 1;
210 }
211
212 struct se_session *transport_init_session(void)
213 {
214 struct se_session *se_sess;
215
216 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
217 if (!se_sess) {
218 pr_err("Unable to allocate struct se_session from"
219 " se_sess_cache\n");
220 return ERR_PTR(-ENOMEM);
221 }
222 INIT_LIST_HEAD(&se_sess->sess_list);
223 INIT_LIST_HEAD(&se_sess->sess_acl_list);
224 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
225 INIT_LIST_HEAD(&se_sess->sess_wait_list);
226 spin_lock_init(&se_sess->sess_cmd_lock);
227 kref_init(&se_sess->sess_kref);
228
229 return se_sess;
230 }
231 EXPORT_SYMBOL(transport_init_session);
232
233 int transport_alloc_session_tags(struct se_session *se_sess,
234 unsigned int tag_num, unsigned int tag_size)
235 {
236 int rc;
237
238 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
239 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
240 if (!se_sess->sess_cmd_map) {
241 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
242 if (!se_sess->sess_cmd_map) {
243 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
244 return -ENOMEM;
245 }
246 }
247
248 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
249 if (rc < 0) {
250 pr_err("Unable to init se_sess->sess_tag_pool,"
251 " tag_num: %u\n", tag_num);
252 if (is_vmalloc_addr(se_sess->sess_cmd_map))
253 vfree(se_sess->sess_cmd_map);
254 else
255 kfree(se_sess->sess_cmd_map);
256 se_sess->sess_cmd_map = NULL;
257 return -ENOMEM;
258 }
259
260 return 0;
261 }
262 EXPORT_SYMBOL(transport_alloc_session_tags);
263
264 struct se_session *transport_init_session_tags(unsigned int tag_num,
265 unsigned int tag_size)
266 {
267 struct se_session *se_sess;
268 int rc;
269
270 se_sess = transport_init_session();
271 if (IS_ERR(se_sess))
272 return se_sess;
273
274 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
275 if (rc < 0) {
276 transport_free_session(se_sess);
277 return ERR_PTR(-ENOMEM);
278 }
279
280 return se_sess;
281 }
282 EXPORT_SYMBOL(transport_init_session_tags);
283
284 /*
285 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
286 */
287 void __transport_register_session(
288 struct se_portal_group *se_tpg,
289 struct se_node_acl *se_nacl,
290 struct se_session *se_sess,
291 void *fabric_sess_ptr)
292 {
293 unsigned char buf[PR_REG_ISID_LEN];
294
295 se_sess->se_tpg = se_tpg;
296 se_sess->fabric_sess_ptr = fabric_sess_ptr;
297 /*
298 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
299 *
300 * Only set for struct se_session's that will actually be moving I/O.
301 * eg: *NOT* discovery sessions.
302 */
303 if (se_nacl) {
304 /*
305 * If the fabric module supports an ISID based TransportID,
306 * save this value in binary from the fabric I_T Nexus now.
307 */
308 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
309 memset(&buf[0], 0, PR_REG_ISID_LEN);
310 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
311 &buf[0], PR_REG_ISID_LEN);
312 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
313 }
314 kref_get(&se_nacl->acl_kref);
315
316 spin_lock_irq(&se_nacl->nacl_sess_lock);
317 /*
318 * The se_nacl->nacl_sess pointer will be set to the
319 * last active I_T Nexus for each struct se_node_acl.
320 */
321 se_nacl->nacl_sess = se_sess;
322
323 list_add_tail(&se_sess->sess_acl_list,
324 &se_nacl->acl_sess_list);
325 spin_unlock_irq(&se_nacl->nacl_sess_lock);
326 }
327 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
328
329 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
330 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
331 }
332 EXPORT_SYMBOL(__transport_register_session);
333
334 void transport_register_session(
335 struct se_portal_group *se_tpg,
336 struct se_node_acl *se_nacl,
337 struct se_session *se_sess,
338 void *fabric_sess_ptr)
339 {
340 unsigned long flags;
341
342 spin_lock_irqsave(&se_tpg->session_lock, flags);
343 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
344 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
345 }
346 EXPORT_SYMBOL(transport_register_session);
347
348 static void target_release_session(struct kref *kref)
349 {
350 struct se_session *se_sess = container_of(kref,
351 struct se_session, sess_kref);
352 struct se_portal_group *se_tpg = se_sess->se_tpg;
353
354 se_tpg->se_tpg_tfo->close_session(se_sess);
355 }
356
357 void target_get_session(struct se_session *se_sess)
358 {
359 kref_get(&se_sess->sess_kref);
360 }
361 EXPORT_SYMBOL(target_get_session);
362
363 void target_put_session(struct se_session *se_sess)
364 {
365 struct se_portal_group *tpg = se_sess->se_tpg;
366
367 if (tpg->se_tpg_tfo->put_session != NULL) {
368 tpg->se_tpg_tfo->put_session(se_sess);
369 return;
370 }
371 kref_put(&se_sess->sess_kref, target_release_session);
372 }
373 EXPORT_SYMBOL(target_put_session);
374
375 static void target_complete_nacl(struct kref *kref)
376 {
377 struct se_node_acl *nacl = container_of(kref,
378 struct se_node_acl, acl_kref);
379
380 complete(&nacl->acl_free_comp);
381 }
382
383 void target_put_nacl(struct se_node_acl *nacl)
384 {
385 kref_put(&nacl->acl_kref, target_complete_nacl);
386 }
387
388 void transport_deregister_session_configfs(struct se_session *se_sess)
389 {
390 struct se_node_acl *se_nacl;
391 unsigned long flags;
392 /*
393 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
394 */
395 se_nacl = se_sess->se_node_acl;
396 if (se_nacl) {
397 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
398 if (se_nacl->acl_stop == 0)
399 list_del(&se_sess->sess_acl_list);
400 /*
401 * If the session list is empty, then clear the pointer.
402 * Otherwise, set the struct se_session pointer from the tail
403 * element of the per struct se_node_acl active session list.
404 */
405 if (list_empty(&se_nacl->acl_sess_list))
406 se_nacl->nacl_sess = NULL;
407 else {
408 se_nacl->nacl_sess = container_of(
409 se_nacl->acl_sess_list.prev,
410 struct se_session, sess_acl_list);
411 }
412 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
413 }
414 }
415 EXPORT_SYMBOL(transport_deregister_session_configfs);
416
417 void transport_free_session(struct se_session *se_sess)
418 {
419 if (se_sess->sess_cmd_map) {
420 percpu_ida_destroy(&se_sess->sess_tag_pool);
421 if (is_vmalloc_addr(se_sess->sess_cmd_map))
422 vfree(se_sess->sess_cmd_map);
423 else
424 kfree(se_sess->sess_cmd_map);
425 }
426 kmem_cache_free(se_sess_cache, se_sess);
427 }
428 EXPORT_SYMBOL(transport_free_session);
429
430 void transport_deregister_session(struct se_session *se_sess)
431 {
432 struct se_portal_group *se_tpg = se_sess->se_tpg;
433 struct target_core_fabric_ops *se_tfo;
434 struct se_node_acl *se_nacl;
435 unsigned long flags;
436 bool comp_nacl = true;
437
438 if (!se_tpg) {
439 transport_free_session(se_sess);
440 return;
441 }
442 se_tfo = se_tpg->se_tpg_tfo;
443
444 spin_lock_irqsave(&se_tpg->session_lock, flags);
445 list_del(&se_sess->sess_list);
446 se_sess->se_tpg = NULL;
447 se_sess->fabric_sess_ptr = NULL;
448 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
449
450 /*
451 * Determine if we need to do extra work for this initiator node's
452 * struct se_node_acl if it had been previously dynamically generated.
453 */
454 se_nacl = se_sess->se_node_acl;
455
456 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
457 if (se_nacl && se_nacl->dynamic_node_acl) {
458 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
459 list_del(&se_nacl->acl_list);
460 se_tpg->num_node_acls--;
461 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
462 core_tpg_wait_for_nacl_pr_ref(se_nacl);
463 core_free_device_list_for_node(se_nacl, se_tpg);
464 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
465
466 comp_nacl = false;
467 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
468 }
469 }
470 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
471
472 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
473 se_tpg->se_tpg_tfo->get_fabric_name());
474 /*
475 * If last kref is dropping now for an explicit NodeACL, awake sleeping
476 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
477 * removal context.
478 */
479 if (se_nacl && comp_nacl == true)
480 target_put_nacl(se_nacl);
481
482 transport_free_session(se_sess);
483 }
484 EXPORT_SYMBOL(transport_deregister_session);
485
486 /*
487 * Called with cmd->t_state_lock held.
488 */
489 static void target_remove_from_state_list(struct se_cmd *cmd)
490 {
491 struct se_device *dev = cmd->se_dev;
492 unsigned long flags;
493
494 if (!dev)
495 return;
496
497 if (cmd->transport_state & CMD_T_BUSY)
498 return;
499
500 spin_lock_irqsave(&dev->execute_task_lock, flags);
501 if (cmd->state_active) {
502 list_del(&cmd->state_list);
503 cmd->state_active = false;
504 }
505 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
506 }
507
508 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
509 bool write_pending)
510 {
511 unsigned long flags;
512
513 spin_lock_irqsave(&cmd->t_state_lock, flags);
514 if (write_pending)
515 cmd->t_state = TRANSPORT_WRITE_PENDING;
516
517 if (remove_from_lists) {
518 target_remove_from_state_list(cmd);
519
520 /*
521 * Clear struct se_cmd->se_lun before the handoff to FE.
522 */
523 cmd->se_lun = NULL;
524 }
525
526 /*
527 * Determine if frontend context caller is requesting the stopping of
528 * this command for frontend exceptions.
529 */
530 if (cmd->transport_state & CMD_T_STOP) {
531 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
532 __func__, __LINE__,
533 cmd->se_tfo->get_task_tag(cmd));
534
535 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
536
537 complete(&cmd->t_transport_stop_comp);
538 return 1;
539 }
540
541 cmd->transport_state &= ~CMD_T_ACTIVE;
542 if (remove_from_lists) {
543 /*
544 * Some fabric modules like tcm_loop can release
545 * their internally allocated I/O reference now and
546 * struct se_cmd now.
547 *
548 * Fabric modules are expected to return '1' here if the
549 * se_cmd being passed is released at this point,
550 * or zero if not being released.
551 */
552 if (cmd->se_tfo->check_stop_free != NULL) {
553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
554 return cmd->se_tfo->check_stop_free(cmd);
555 }
556 }
557
558 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
559 return 0;
560 }
561
562 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
563 {
564 return transport_cmd_check_stop(cmd, true, false);
565 }
566
567 static void transport_lun_remove_cmd(struct se_cmd *cmd)
568 {
569 struct se_lun *lun = cmd->se_lun;
570
571 if (!lun || !cmd->lun_ref_active)
572 return;
573
574 percpu_ref_put(&lun->lun_ref);
575 }
576
577 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
578 {
579 if (transport_cmd_check_stop_to_fabric(cmd))
580 return;
581 if (remove)
582 transport_put_cmd(cmd);
583 }
584
585 static void target_complete_failure_work(struct work_struct *work)
586 {
587 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
588
589 transport_generic_request_failure(cmd,
590 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
591 }
592
593 /*
594 * Used when asking transport to copy Sense Data from the underlying
595 * Linux/SCSI struct scsi_cmnd
596 */
597 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
598 {
599 struct se_device *dev = cmd->se_dev;
600
601 WARN_ON(!cmd->se_lun);
602
603 if (!dev)
604 return NULL;
605
606 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
607 return NULL;
608
609 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
610
611 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
612 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
613 return cmd->sense_buffer;
614 }
615
616 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
617 {
618 struct se_device *dev = cmd->se_dev;
619 int success = scsi_status == GOOD;
620 unsigned long flags;
621
622 cmd->scsi_status = scsi_status;
623
624
625 spin_lock_irqsave(&cmd->t_state_lock, flags);
626 cmd->transport_state &= ~CMD_T_BUSY;
627
628 if (dev && dev->transport->transport_complete) {
629 dev->transport->transport_complete(cmd,
630 cmd->t_data_sg,
631 transport_get_sense_buffer(cmd));
632 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
633 success = 1;
634 }
635
636 /*
637 * See if we are waiting to complete for an exception condition.
638 */
639 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
640 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
641 complete(&cmd->task_stop_comp);
642 return;
643 }
644
645 if (!success)
646 cmd->transport_state |= CMD_T_FAILED;
647
648 /*
649 * Check for case where an explicit ABORT_TASK has been received
650 * and transport_wait_for_tasks() will be waiting for completion..
651 */
652 if (cmd->transport_state & CMD_T_ABORTED &&
653 cmd->transport_state & CMD_T_STOP) {
654 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
655 complete(&cmd->t_transport_stop_comp);
656 return;
657 } else if (cmd->transport_state & CMD_T_FAILED) {
658 INIT_WORK(&cmd->work, target_complete_failure_work);
659 } else {
660 INIT_WORK(&cmd->work, target_complete_ok_work);
661 }
662
663 cmd->t_state = TRANSPORT_COMPLETE;
664 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
665 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
666
667 queue_work(target_completion_wq, &cmd->work);
668 }
669 EXPORT_SYMBOL(target_complete_cmd);
670
671 static void target_add_to_state_list(struct se_cmd *cmd)
672 {
673 struct se_device *dev = cmd->se_dev;
674 unsigned long flags;
675
676 spin_lock_irqsave(&dev->execute_task_lock, flags);
677 if (!cmd->state_active) {
678 list_add_tail(&cmd->state_list, &dev->state_list);
679 cmd->state_active = true;
680 }
681 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
682 }
683
684 /*
685 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
686 */
687 static void transport_write_pending_qf(struct se_cmd *cmd);
688 static void transport_complete_qf(struct se_cmd *cmd);
689
690 void target_qf_do_work(struct work_struct *work)
691 {
692 struct se_device *dev = container_of(work, struct se_device,
693 qf_work_queue);
694 LIST_HEAD(qf_cmd_list);
695 struct se_cmd *cmd, *cmd_tmp;
696
697 spin_lock_irq(&dev->qf_cmd_lock);
698 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
699 spin_unlock_irq(&dev->qf_cmd_lock);
700
701 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
702 list_del(&cmd->se_qf_node);
703 atomic_dec(&dev->dev_qf_count);
704 smp_mb__after_atomic_dec();
705
706 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
707 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
708 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
709 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
710 : "UNKNOWN");
711
712 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
713 transport_write_pending_qf(cmd);
714 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
715 transport_complete_qf(cmd);
716 }
717 }
718
719 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
720 {
721 switch (cmd->data_direction) {
722 case DMA_NONE:
723 return "NONE";
724 case DMA_FROM_DEVICE:
725 return "READ";
726 case DMA_TO_DEVICE:
727 return "WRITE";
728 case DMA_BIDIRECTIONAL:
729 return "BIDI";
730 default:
731 break;
732 }
733
734 return "UNKNOWN";
735 }
736
737 void transport_dump_dev_state(
738 struct se_device *dev,
739 char *b,
740 int *bl)
741 {
742 *bl += sprintf(b + *bl, "Status: ");
743 if (dev->export_count)
744 *bl += sprintf(b + *bl, "ACTIVATED");
745 else
746 *bl += sprintf(b + *bl, "DEACTIVATED");
747
748 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
749 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
750 dev->dev_attrib.block_size,
751 dev->dev_attrib.hw_max_sectors);
752 *bl += sprintf(b + *bl, " ");
753 }
754
755 void transport_dump_vpd_proto_id(
756 struct t10_vpd *vpd,
757 unsigned char *p_buf,
758 int p_buf_len)
759 {
760 unsigned char buf[VPD_TMP_BUF_SIZE];
761 int len;
762
763 memset(buf, 0, VPD_TMP_BUF_SIZE);
764 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
765
766 switch (vpd->protocol_identifier) {
767 case 0x00:
768 sprintf(buf+len, "Fibre Channel\n");
769 break;
770 case 0x10:
771 sprintf(buf+len, "Parallel SCSI\n");
772 break;
773 case 0x20:
774 sprintf(buf+len, "SSA\n");
775 break;
776 case 0x30:
777 sprintf(buf+len, "IEEE 1394\n");
778 break;
779 case 0x40:
780 sprintf(buf+len, "SCSI Remote Direct Memory Access"
781 " Protocol\n");
782 break;
783 case 0x50:
784 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
785 break;
786 case 0x60:
787 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
788 break;
789 case 0x70:
790 sprintf(buf+len, "Automation/Drive Interface Transport"
791 " Protocol\n");
792 break;
793 case 0x80:
794 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
795 break;
796 default:
797 sprintf(buf+len, "Unknown 0x%02x\n",
798 vpd->protocol_identifier);
799 break;
800 }
801
802 if (p_buf)
803 strncpy(p_buf, buf, p_buf_len);
804 else
805 pr_debug("%s", buf);
806 }
807
808 void
809 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
810 {
811 /*
812 * Check if the Protocol Identifier Valid (PIV) bit is set..
813 *
814 * from spc3r23.pdf section 7.5.1
815 */
816 if (page_83[1] & 0x80) {
817 vpd->protocol_identifier = (page_83[0] & 0xf0);
818 vpd->protocol_identifier_set = 1;
819 transport_dump_vpd_proto_id(vpd, NULL, 0);
820 }
821 }
822 EXPORT_SYMBOL(transport_set_vpd_proto_id);
823
824 int transport_dump_vpd_assoc(
825 struct t10_vpd *vpd,
826 unsigned char *p_buf,
827 int p_buf_len)
828 {
829 unsigned char buf[VPD_TMP_BUF_SIZE];
830 int ret = 0;
831 int len;
832
833 memset(buf, 0, VPD_TMP_BUF_SIZE);
834 len = sprintf(buf, "T10 VPD Identifier Association: ");
835
836 switch (vpd->association) {
837 case 0x00:
838 sprintf(buf+len, "addressed logical unit\n");
839 break;
840 case 0x10:
841 sprintf(buf+len, "target port\n");
842 break;
843 case 0x20:
844 sprintf(buf+len, "SCSI target device\n");
845 break;
846 default:
847 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
848 ret = -EINVAL;
849 break;
850 }
851
852 if (p_buf)
853 strncpy(p_buf, buf, p_buf_len);
854 else
855 pr_debug("%s", buf);
856
857 return ret;
858 }
859
860 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
861 {
862 /*
863 * The VPD identification association..
864 *
865 * from spc3r23.pdf Section 7.6.3.1 Table 297
866 */
867 vpd->association = (page_83[1] & 0x30);
868 return transport_dump_vpd_assoc(vpd, NULL, 0);
869 }
870 EXPORT_SYMBOL(transport_set_vpd_assoc);
871
872 int transport_dump_vpd_ident_type(
873 struct t10_vpd *vpd,
874 unsigned char *p_buf,
875 int p_buf_len)
876 {
877 unsigned char buf[VPD_TMP_BUF_SIZE];
878 int ret = 0;
879 int len;
880
881 memset(buf, 0, VPD_TMP_BUF_SIZE);
882 len = sprintf(buf, "T10 VPD Identifier Type: ");
883
884 switch (vpd->device_identifier_type) {
885 case 0x00:
886 sprintf(buf+len, "Vendor specific\n");
887 break;
888 case 0x01:
889 sprintf(buf+len, "T10 Vendor ID based\n");
890 break;
891 case 0x02:
892 sprintf(buf+len, "EUI-64 based\n");
893 break;
894 case 0x03:
895 sprintf(buf+len, "NAA\n");
896 break;
897 case 0x04:
898 sprintf(buf+len, "Relative target port identifier\n");
899 break;
900 case 0x08:
901 sprintf(buf+len, "SCSI name string\n");
902 break;
903 default:
904 sprintf(buf+len, "Unsupported: 0x%02x\n",
905 vpd->device_identifier_type);
906 ret = -EINVAL;
907 break;
908 }
909
910 if (p_buf) {
911 if (p_buf_len < strlen(buf)+1)
912 return -EINVAL;
913 strncpy(p_buf, buf, p_buf_len);
914 } else {
915 pr_debug("%s", buf);
916 }
917
918 return ret;
919 }
920
921 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
922 {
923 /*
924 * The VPD identifier type..
925 *
926 * from spc3r23.pdf Section 7.6.3.1 Table 298
927 */
928 vpd->device_identifier_type = (page_83[1] & 0x0f);
929 return transport_dump_vpd_ident_type(vpd, NULL, 0);
930 }
931 EXPORT_SYMBOL(transport_set_vpd_ident_type);
932
933 int transport_dump_vpd_ident(
934 struct t10_vpd *vpd,
935 unsigned char *p_buf,
936 int p_buf_len)
937 {
938 unsigned char buf[VPD_TMP_BUF_SIZE];
939 int ret = 0;
940
941 memset(buf, 0, VPD_TMP_BUF_SIZE);
942
943 switch (vpd->device_identifier_code_set) {
944 case 0x01: /* Binary */
945 snprintf(buf, sizeof(buf),
946 "T10 VPD Binary Device Identifier: %s\n",
947 &vpd->device_identifier[0]);
948 break;
949 case 0x02: /* ASCII */
950 snprintf(buf, sizeof(buf),
951 "T10 VPD ASCII Device Identifier: %s\n",
952 &vpd->device_identifier[0]);
953 break;
954 case 0x03: /* UTF-8 */
955 snprintf(buf, sizeof(buf),
956 "T10 VPD UTF-8 Device Identifier: %s\n",
957 &vpd->device_identifier[0]);
958 break;
959 default:
960 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
961 " 0x%02x", vpd->device_identifier_code_set);
962 ret = -EINVAL;
963 break;
964 }
965
966 if (p_buf)
967 strncpy(p_buf, buf, p_buf_len);
968 else
969 pr_debug("%s", buf);
970
971 return ret;
972 }
973
974 int
975 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
976 {
977 static const char hex_str[] = "0123456789abcdef";
978 int j = 0, i = 4; /* offset to start of the identifier */
979
980 /*
981 * The VPD Code Set (encoding)
982 *
983 * from spc3r23.pdf Section 7.6.3.1 Table 296
984 */
985 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
986 switch (vpd->device_identifier_code_set) {
987 case 0x01: /* Binary */
988 vpd->device_identifier[j++] =
989 hex_str[vpd->device_identifier_type];
990 while (i < (4 + page_83[3])) {
991 vpd->device_identifier[j++] =
992 hex_str[(page_83[i] & 0xf0) >> 4];
993 vpd->device_identifier[j++] =
994 hex_str[page_83[i] & 0x0f];
995 i++;
996 }
997 break;
998 case 0x02: /* ASCII */
999 case 0x03: /* UTF-8 */
1000 while (i < (4 + page_83[3]))
1001 vpd->device_identifier[j++] = page_83[i++];
1002 break;
1003 default:
1004 break;
1005 }
1006
1007 return transport_dump_vpd_ident(vpd, NULL, 0);
1008 }
1009 EXPORT_SYMBOL(transport_set_vpd_ident);
1010
1011 sense_reason_t
1012 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1013 {
1014 struct se_device *dev = cmd->se_dev;
1015
1016 if (cmd->unknown_data_length) {
1017 cmd->data_length = size;
1018 } else if (size != cmd->data_length) {
1019 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1020 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1021 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1022 cmd->data_length, size, cmd->t_task_cdb[0]);
1023
1024 if (cmd->data_direction == DMA_TO_DEVICE) {
1025 pr_err("Rejecting underflow/overflow"
1026 " WRITE data\n");
1027 return TCM_INVALID_CDB_FIELD;
1028 }
1029 /*
1030 * Reject READ_* or WRITE_* with overflow/underflow for
1031 * type SCF_SCSI_DATA_CDB.
1032 */
1033 if (dev->dev_attrib.block_size != 512) {
1034 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1035 " CDB on non 512-byte sector setup subsystem"
1036 " plugin: %s\n", dev->transport->name);
1037 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1038 return TCM_INVALID_CDB_FIELD;
1039 }
1040 /*
1041 * For the overflow case keep the existing fabric provided
1042 * ->data_length. Otherwise for the underflow case, reset
1043 * ->data_length to the smaller SCSI expected data transfer
1044 * length.
1045 */
1046 if (size > cmd->data_length) {
1047 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1048 cmd->residual_count = (size - cmd->data_length);
1049 } else {
1050 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1051 cmd->residual_count = (cmd->data_length - size);
1052 cmd->data_length = size;
1053 }
1054 }
1055
1056 return 0;
1057
1058 }
1059
1060 /*
1061 * Used by fabric modules containing a local struct se_cmd within their
1062 * fabric dependent per I/O descriptor.
1063 */
1064 void transport_init_se_cmd(
1065 struct se_cmd *cmd,
1066 struct target_core_fabric_ops *tfo,
1067 struct se_session *se_sess,
1068 u32 data_length,
1069 int data_direction,
1070 int task_attr,
1071 unsigned char *sense_buffer)
1072 {
1073 INIT_LIST_HEAD(&cmd->se_delayed_node);
1074 INIT_LIST_HEAD(&cmd->se_qf_node);
1075 INIT_LIST_HEAD(&cmd->se_cmd_list);
1076 INIT_LIST_HEAD(&cmd->state_list);
1077 init_completion(&cmd->t_transport_stop_comp);
1078 init_completion(&cmd->cmd_wait_comp);
1079 init_completion(&cmd->task_stop_comp);
1080 spin_lock_init(&cmd->t_state_lock);
1081 cmd->transport_state = CMD_T_DEV_ACTIVE;
1082
1083 cmd->se_tfo = tfo;
1084 cmd->se_sess = se_sess;
1085 cmd->data_length = data_length;
1086 cmd->data_direction = data_direction;
1087 cmd->sam_task_attr = task_attr;
1088 cmd->sense_buffer = sense_buffer;
1089
1090 cmd->state_active = false;
1091 }
1092 EXPORT_SYMBOL(transport_init_se_cmd);
1093
1094 static sense_reason_t
1095 transport_check_alloc_task_attr(struct se_cmd *cmd)
1096 {
1097 struct se_device *dev = cmd->se_dev;
1098
1099 /*
1100 * Check if SAM Task Attribute emulation is enabled for this
1101 * struct se_device storage object
1102 */
1103 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1104 return 0;
1105
1106 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1107 pr_debug("SAM Task Attribute ACA"
1108 " emulation is not supported\n");
1109 return TCM_INVALID_CDB_FIELD;
1110 }
1111 /*
1112 * Used to determine when ORDERED commands should go from
1113 * Dormant to Active status.
1114 */
1115 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1116 smp_mb__after_atomic_inc();
1117 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1118 cmd->se_ordered_id, cmd->sam_task_attr,
1119 dev->transport->name);
1120 return 0;
1121 }
1122
1123 sense_reason_t
1124 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1125 {
1126 struct se_device *dev = cmd->se_dev;
1127 sense_reason_t ret;
1128
1129 /*
1130 * Ensure that the received CDB is less than the max (252 + 8) bytes
1131 * for VARIABLE_LENGTH_CMD
1132 */
1133 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1134 pr_err("Received SCSI CDB with command_size: %d that"
1135 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1136 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1137 return TCM_INVALID_CDB_FIELD;
1138 }
1139 /*
1140 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1141 * allocate the additional extended CDB buffer now.. Otherwise
1142 * setup the pointer from __t_task_cdb to t_task_cdb.
1143 */
1144 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1145 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1146 GFP_KERNEL);
1147 if (!cmd->t_task_cdb) {
1148 pr_err("Unable to allocate cmd->t_task_cdb"
1149 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1150 scsi_command_size(cdb),
1151 (unsigned long)sizeof(cmd->__t_task_cdb));
1152 return TCM_OUT_OF_RESOURCES;
1153 }
1154 } else
1155 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1156 /*
1157 * Copy the original CDB into cmd->
1158 */
1159 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1160
1161 trace_target_sequencer_start(cmd);
1162
1163 /*
1164 * Check for an existing UNIT ATTENTION condition
1165 */
1166 ret = target_scsi3_ua_check(cmd);
1167 if (ret)
1168 return ret;
1169
1170 ret = target_alua_state_check(cmd);
1171 if (ret)
1172 return ret;
1173
1174 ret = target_check_reservation(cmd);
1175 if (ret) {
1176 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1177 return ret;
1178 }
1179
1180 ret = dev->transport->parse_cdb(cmd);
1181 if (ret)
1182 return ret;
1183
1184 ret = transport_check_alloc_task_attr(cmd);
1185 if (ret)
1186 return ret;
1187
1188 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1189
1190 spin_lock(&cmd->se_lun->lun_sep_lock);
1191 if (cmd->se_lun->lun_sep)
1192 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1193 spin_unlock(&cmd->se_lun->lun_sep_lock);
1194 return 0;
1195 }
1196 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1197
1198 /*
1199 * Used by fabric module frontends to queue tasks directly.
1200 * Many only be used from process context only
1201 */
1202 int transport_handle_cdb_direct(
1203 struct se_cmd *cmd)
1204 {
1205 sense_reason_t ret;
1206
1207 if (!cmd->se_lun) {
1208 dump_stack();
1209 pr_err("cmd->se_lun is NULL\n");
1210 return -EINVAL;
1211 }
1212 if (in_interrupt()) {
1213 dump_stack();
1214 pr_err("transport_generic_handle_cdb cannot be called"
1215 " from interrupt context\n");
1216 return -EINVAL;
1217 }
1218 /*
1219 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1220 * outstanding descriptors are handled correctly during shutdown via
1221 * transport_wait_for_tasks()
1222 *
1223 * Also, we don't take cmd->t_state_lock here as we only expect
1224 * this to be called for initial descriptor submission.
1225 */
1226 cmd->t_state = TRANSPORT_NEW_CMD;
1227 cmd->transport_state |= CMD_T_ACTIVE;
1228
1229 /*
1230 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1231 * so follow TRANSPORT_NEW_CMD processing thread context usage
1232 * and call transport_generic_request_failure() if necessary..
1233 */
1234 ret = transport_generic_new_cmd(cmd);
1235 if (ret)
1236 transport_generic_request_failure(cmd, ret);
1237 return 0;
1238 }
1239 EXPORT_SYMBOL(transport_handle_cdb_direct);
1240
1241 sense_reason_t
1242 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1243 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1244 {
1245 if (!sgl || !sgl_count)
1246 return 0;
1247
1248 /*
1249 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1250 * scatterlists already have been set to follow what the fabric
1251 * passes for the original expected data transfer length.
1252 */
1253 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1254 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1255 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1256 return TCM_INVALID_CDB_FIELD;
1257 }
1258
1259 cmd->t_data_sg = sgl;
1260 cmd->t_data_nents = sgl_count;
1261
1262 if (sgl_bidi && sgl_bidi_count) {
1263 cmd->t_bidi_data_sg = sgl_bidi;
1264 cmd->t_bidi_data_nents = sgl_bidi_count;
1265 }
1266 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1267 return 0;
1268 }
1269
1270 /*
1271 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1272 * se_cmd + use pre-allocated SGL memory.
1273 *
1274 * @se_cmd: command descriptor to submit
1275 * @se_sess: associated se_sess for endpoint
1276 * @cdb: pointer to SCSI CDB
1277 * @sense: pointer to SCSI sense buffer
1278 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1279 * @data_length: fabric expected data transfer length
1280 * @task_addr: SAM task attribute
1281 * @data_dir: DMA data direction
1282 * @flags: flags for command submission from target_sc_flags_tables
1283 * @sgl: struct scatterlist memory for unidirectional mapping
1284 * @sgl_count: scatterlist count for unidirectional mapping
1285 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1286 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1287 *
1288 * Returns non zero to signal active I/O shutdown failure. All other
1289 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1290 * but still return zero here.
1291 *
1292 * This may only be called from process context, and also currently
1293 * assumes internal allocation of fabric payload buffer by target-core.
1294 */
1295 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1296 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1297 u32 data_length, int task_attr, int data_dir, int flags,
1298 struct scatterlist *sgl, u32 sgl_count,
1299 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1300 {
1301 struct se_portal_group *se_tpg;
1302 sense_reason_t rc;
1303 int ret;
1304
1305 se_tpg = se_sess->se_tpg;
1306 BUG_ON(!se_tpg);
1307 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1308 BUG_ON(in_interrupt());
1309 /*
1310 * Initialize se_cmd for target operation. From this point
1311 * exceptions are handled by sending exception status via
1312 * target_core_fabric_ops->queue_status() callback
1313 */
1314 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1315 data_length, data_dir, task_attr, sense);
1316 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1317 se_cmd->unknown_data_length = 1;
1318 /*
1319 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1320 * se_sess->sess_cmd_list. A second kref_get here is necessary
1321 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1322 * kref_put() to happen during fabric packet acknowledgement.
1323 */
1324 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1325 if (ret)
1326 return ret;
1327 /*
1328 * Signal bidirectional data payloads to target-core
1329 */
1330 if (flags & TARGET_SCF_BIDI_OP)
1331 se_cmd->se_cmd_flags |= SCF_BIDI;
1332 /*
1333 * Locate se_lun pointer and attach it to struct se_cmd
1334 */
1335 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1336 if (rc) {
1337 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1338 target_put_sess_cmd(se_sess, se_cmd);
1339 return 0;
1340 }
1341
1342 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1343 if (rc != 0) {
1344 transport_generic_request_failure(se_cmd, rc);
1345 return 0;
1346 }
1347 /*
1348 * When a non zero sgl_count has been passed perform SGL passthrough
1349 * mapping for pre-allocated fabric memory instead of having target
1350 * core perform an internal SGL allocation..
1351 */
1352 if (sgl_count != 0) {
1353 BUG_ON(!sgl);
1354
1355 /*
1356 * A work-around for tcm_loop as some userspace code via
1357 * scsi-generic do not memset their associated read buffers,
1358 * so go ahead and do that here for type non-data CDBs. Also
1359 * note that this is currently guaranteed to be a single SGL
1360 * for this case by target core in target_setup_cmd_from_cdb()
1361 * -> transport_generic_cmd_sequencer().
1362 */
1363 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1364 se_cmd->data_direction == DMA_FROM_DEVICE) {
1365 unsigned char *buf = NULL;
1366
1367 if (sgl)
1368 buf = kmap(sg_page(sgl)) + sgl->offset;
1369
1370 if (buf) {
1371 memset(buf, 0, sgl->length);
1372 kunmap(sg_page(sgl));
1373 }
1374 }
1375
1376 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1377 sgl_bidi, sgl_bidi_count);
1378 if (rc != 0) {
1379 transport_generic_request_failure(se_cmd, rc);
1380 return 0;
1381 }
1382 }
1383 /*
1384 * Check if we need to delay processing because of ALUA
1385 * Active/NonOptimized primary access state..
1386 */
1387 core_alua_check_nonop_delay(se_cmd);
1388
1389 transport_handle_cdb_direct(se_cmd);
1390 return 0;
1391 }
1392 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1393
1394 /*
1395 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1396 *
1397 * @se_cmd: command descriptor to submit
1398 * @se_sess: associated se_sess for endpoint
1399 * @cdb: pointer to SCSI CDB
1400 * @sense: pointer to SCSI sense buffer
1401 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1402 * @data_length: fabric expected data transfer length
1403 * @task_addr: SAM task attribute
1404 * @data_dir: DMA data direction
1405 * @flags: flags for command submission from target_sc_flags_tables
1406 *
1407 * Returns non zero to signal active I/O shutdown failure. All other
1408 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1409 * but still return zero here.
1410 *
1411 * This may only be called from process context, and also currently
1412 * assumes internal allocation of fabric payload buffer by target-core.
1413 *
1414 * It also assumes interal target core SGL memory allocation.
1415 */
1416 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1417 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1418 u32 data_length, int task_attr, int data_dir, int flags)
1419 {
1420 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1421 unpacked_lun, data_length, task_attr, data_dir,
1422 flags, NULL, 0, NULL, 0);
1423 }
1424 EXPORT_SYMBOL(target_submit_cmd);
1425
1426 static void target_complete_tmr_failure(struct work_struct *work)
1427 {
1428 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1429
1430 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1431 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1432
1433 transport_cmd_check_stop_to_fabric(se_cmd);
1434 }
1435
1436 /**
1437 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1438 * for TMR CDBs
1439 *
1440 * @se_cmd: command descriptor to submit
1441 * @se_sess: associated se_sess for endpoint
1442 * @sense: pointer to SCSI sense buffer
1443 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1444 * @fabric_context: fabric context for TMR req
1445 * @tm_type: Type of TM request
1446 * @gfp: gfp type for caller
1447 * @tag: referenced task tag for TMR_ABORT_TASK
1448 * @flags: submit cmd flags
1449 *
1450 * Callable from all contexts.
1451 **/
1452
1453 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1454 unsigned char *sense, u32 unpacked_lun,
1455 void *fabric_tmr_ptr, unsigned char tm_type,
1456 gfp_t gfp, unsigned int tag, int flags)
1457 {
1458 struct se_portal_group *se_tpg;
1459 int ret;
1460
1461 se_tpg = se_sess->se_tpg;
1462 BUG_ON(!se_tpg);
1463
1464 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1465 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1466 /*
1467 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1468 * allocation failure.
1469 */
1470 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1471 if (ret < 0)
1472 return -ENOMEM;
1473
1474 if (tm_type == TMR_ABORT_TASK)
1475 se_cmd->se_tmr_req->ref_task_tag = tag;
1476
1477 /* See target_submit_cmd for commentary */
1478 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1479 if (ret) {
1480 core_tmr_release_req(se_cmd->se_tmr_req);
1481 return ret;
1482 }
1483
1484 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1485 if (ret) {
1486 /*
1487 * For callback during failure handling, push this work off
1488 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1489 */
1490 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1491 schedule_work(&se_cmd->work);
1492 return 0;
1493 }
1494 transport_generic_handle_tmr(se_cmd);
1495 return 0;
1496 }
1497 EXPORT_SYMBOL(target_submit_tmr);
1498
1499 /*
1500 * If the cmd is active, request it to be stopped and sleep until it
1501 * has completed.
1502 */
1503 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1504 {
1505 bool was_active = false;
1506
1507 if (cmd->transport_state & CMD_T_BUSY) {
1508 cmd->transport_state |= CMD_T_REQUEST_STOP;
1509 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1510
1511 pr_debug("cmd %p waiting to complete\n", cmd);
1512 wait_for_completion(&cmd->task_stop_comp);
1513 pr_debug("cmd %p stopped successfully\n", cmd);
1514
1515 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1516 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1517 cmd->transport_state &= ~CMD_T_BUSY;
1518 was_active = true;
1519 }
1520
1521 return was_active;
1522 }
1523
1524 /*
1525 * Handle SAM-esque emulation for generic transport request failures.
1526 */
1527 void transport_generic_request_failure(struct se_cmd *cmd,
1528 sense_reason_t sense_reason)
1529 {
1530 int ret = 0;
1531
1532 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1533 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1534 cmd->t_task_cdb[0]);
1535 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1536 cmd->se_tfo->get_cmd_state(cmd),
1537 cmd->t_state, sense_reason);
1538 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1539 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1540 (cmd->transport_state & CMD_T_STOP) != 0,
1541 (cmd->transport_state & CMD_T_SENT) != 0);
1542
1543 /*
1544 * For SAM Task Attribute emulation for failed struct se_cmd
1545 */
1546 transport_complete_task_attr(cmd);
1547 /*
1548 * Handle special case for COMPARE_AND_WRITE failure, where the
1549 * callback is expected to drop the per device ->caw_mutex.
1550 */
1551 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1552 cmd->transport_complete_callback)
1553 cmd->transport_complete_callback(cmd);
1554
1555 switch (sense_reason) {
1556 case TCM_NON_EXISTENT_LUN:
1557 case TCM_UNSUPPORTED_SCSI_OPCODE:
1558 case TCM_INVALID_CDB_FIELD:
1559 case TCM_INVALID_PARAMETER_LIST:
1560 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1561 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1562 case TCM_UNKNOWN_MODE_PAGE:
1563 case TCM_WRITE_PROTECTED:
1564 case TCM_ADDRESS_OUT_OF_RANGE:
1565 case TCM_CHECK_CONDITION_ABORT_CMD:
1566 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1567 case TCM_CHECK_CONDITION_NOT_READY:
1568 break;
1569 case TCM_OUT_OF_RESOURCES:
1570 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1571 break;
1572 case TCM_RESERVATION_CONFLICT:
1573 /*
1574 * No SENSE Data payload for this case, set SCSI Status
1575 * and queue the response to $FABRIC_MOD.
1576 *
1577 * Uses linux/include/scsi/scsi.h SAM status codes defs
1578 */
1579 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1580 /*
1581 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1582 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1583 * CONFLICT STATUS.
1584 *
1585 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1586 */
1587 if (cmd->se_sess &&
1588 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1589 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1590 cmd->orig_fe_lun, 0x2C,
1591 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1592
1593 trace_target_cmd_complete(cmd);
1594 ret = cmd->se_tfo-> queue_status(cmd);
1595 if (ret == -EAGAIN || ret == -ENOMEM)
1596 goto queue_full;
1597 goto check_stop;
1598 default:
1599 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1600 cmd->t_task_cdb[0], sense_reason);
1601 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1602 break;
1603 }
1604
1605 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1606 if (ret == -EAGAIN || ret == -ENOMEM)
1607 goto queue_full;
1608
1609 check_stop:
1610 transport_lun_remove_cmd(cmd);
1611 if (!transport_cmd_check_stop_to_fabric(cmd))
1612 ;
1613 return;
1614
1615 queue_full:
1616 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1617 transport_handle_queue_full(cmd, cmd->se_dev);
1618 }
1619 EXPORT_SYMBOL(transport_generic_request_failure);
1620
1621 void __target_execute_cmd(struct se_cmd *cmd)
1622 {
1623 sense_reason_t ret;
1624
1625 if (cmd->execute_cmd) {
1626 ret = cmd->execute_cmd(cmd);
1627 if (ret) {
1628 spin_lock_irq(&cmd->t_state_lock);
1629 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1630 spin_unlock_irq(&cmd->t_state_lock);
1631
1632 transport_generic_request_failure(cmd, ret);
1633 }
1634 }
1635 }
1636
1637 static bool target_handle_task_attr(struct se_cmd *cmd)
1638 {
1639 struct se_device *dev = cmd->se_dev;
1640
1641 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1642 return false;
1643
1644 /*
1645 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1646 * to allow the passed struct se_cmd list of tasks to the front of the list.
1647 */
1648 switch (cmd->sam_task_attr) {
1649 case MSG_HEAD_TAG:
1650 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1651 "se_ordered_id: %u\n",
1652 cmd->t_task_cdb[0], cmd->se_ordered_id);
1653 return false;
1654 case MSG_ORDERED_TAG:
1655 atomic_inc(&dev->dev_ordered_sync);
1656 smp_mb__after_atomic_inc();
1657
1658 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1659 " se_ordered_id: %u\n",
1660 cmd->t_task_cdb[0], cmd->se_ordered_id);
1661
1662 /*
1663 * Execute an ORDERED command if no other older commands
1664 * exist that need to be completed first.
1665 */
1666 if (!atomic_read(&dev->simple_cmds))
1667 return false;
1668 break;
1669 default:
1670 /*
1671 * For SIMPLE and UNTAGGED Task Attribute commands
1672 */
1673 atomic_inc(&dev->simple_cmds);
1674 smp_mb__after_atomic_inc();
1675 break;
1676 }
1677
1678 if (atomic_read(&dev->dev_ordered_sync) == 0)
1679 return false;
1680
1681 spin_lock(&dev->delayed_cmd_lock);
1682 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1683 spin_unlock(&dev->delayed_cmd_lock);
1684
1685 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1686 " delayed CMD list, se_ordered_id: %u\n",
1687 cmd->t_task_cdb[0], cmd->sam_task_attr,
1688 cmd->se_ordered_id);
1689 return true;
1690 }
1691
1692 void target_execute_cmd(struct se_cmd *cmd)
1693 {
1694 /*
1695 * If the received CDB has aleady been aborted stop processing it here.
1696 */
1697 if (transport_check_aborted_status(cmd, 1))
1698 return;
1699
1700 /*
1701 * Determine if frontend context caller is requesting the stopping of
1702 * this command for frontend exceptions.
1703 */
1704 spin_lock_irq(&cmd->t_state_lock);
1705 if (cmd->transport_state & CMD_T_STOP) {
1706 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1707 __func__, __LINE__,
1708 cmd->se_tfo->get_task_tag(cmd));
1709
1710 spin_unlock_irq(&cmd->t_state_lock);
1711 complete(&cmd->t_transport_stop_comp);
1712 return;
1713 }
1714
1715 cmd->t_state = TRANSPORT_PROCESSING;
1716 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1717 spin_unlock_irq(&cmd->t_state_lock);
1718
1719 if (target_handle_task_attr(cmd)) {
1720 spin_lock_irq(&cmd->t_state_lock);
1721 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1722 spin_unlock_irq(&cmd->t_state_lock);
1723 return;
1724 }
1725
1726 __target_execute_cmd(cmd);
1727 }
1728 EXPORT_SYMBOL(target_execute_cmd);
1729
1730 /*
1731 * Process all commands up to the last received ORDERED task attribute which
1732 * requires another blocking boundary
1733 */
1734 static void target_restart_delayed_cmds(struct se_device *dev)
1735 {
1736 for (;;) {
1737 struct se_cmd *cmd;
1738
1739 spin_lock(&dev->delayed_cmd_lock);
1740 if (list_empty(&dev->delayed_cmd_list)) {
1741 spin_unlock(&dev->delayed_cmd_lock);
1742 break;
1743 }
1744
1745 cmd = list_entry(dev->delayed_cmd_list.next,
1746 struct se_cmd, se_delayed_node);
1747 list_del(&cmd->se_delayed_node);
1748 spin_unlock(&dev->delayed_cmd_lock);
1749
1750 __target_execute_cmd(cmd);
1751
1752 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1753 break;
1754 }
1755 }
1756
1757 /*
1758 * Called from I/O completion to determine which dormant/delayed
1759 * and ordered cmds need to have their tasks added to the execution queue.
1760 */
1761 static void transport_complete_task_attr(struct se_cmd *cmd)
1762 {
1763 struct se_device *dev = cmd->se_dev;
1764
1765 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1766 return;
1767
1768 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1769 atomic_dec(&dev->simple_cmds);
1770 smp_mb__after_atomic_dec();
1771 dev->dev_cur_ordered_id++;
1772 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1773 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1774 cmd->se_ordered_id);
1775 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1776 dev->dev_cur_ordered_id++;
1777 pr_debug("Incremented dev_cur_ordered_id: %u for"
1778 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1779 cmd->se_ordered_id);
1780 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1781 atomic_dec(&dev->dev_ordered_sync);
1782 smp_mb__after_atomic_dec();
1783
1784 dev->dev_cur_ordered_id++;
1785 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1786 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1787 }
1788
1789 target_restart_delayed_cmds(dev);
1790 }
1791
1792 static void transport_complete_qf(struct se_cmd *cmd)
1793 {
1794 int ret = 0;
1795
1796 transport_complete_task_attr(cmd);
1797
1798 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1799 trace_target_cmd_complete(cmd);
1800 ret = cmd->se_tfo->queue_status(cmd);
1801 if (ret)
1802 goto out;
1803 }
1804
1805 switch (cmd->data_direction) {
1806 case DMA_FROM_DEVICE:
1807 trace_target_cmd_complete(cmd);
1808 ret = cmd->se_tfo->queue_data_in(cmd);
1809 break;
1810 case DMA_TO_DEVICE:
1811 if (cmd->se_cmd_flags & SCF_BIDI) {
1812 ret = cmd->se_tfo->queue_data_in(cmd);
1813 if (ret < 0)
1814 break;
1815 }
1816 /* Fall through for DMA_TO_DEVICE */
1817 case DMA_NONE:
1818 trace_target_cmd_complete(cmd);
1819 ret = cmd->se_tfo->queue_status(cmd);
1820 break;
1821 default:
1822 break;
1823 }
1824
1825 out:
1826 if (ret < 0) {
1827 transport_handle_queue_full(cmd, cmd->se_dev);
1828 return;
1829 }
1830 transport_lun_remove_cmd(cmd);
1831 transport_cmd_check_stop_to_fabric(cmd);
1832 }
1833
1834 static void transport_handle_queue_full(
1835 struct se_cmd *cmd,
1836 struct se_device *dev)
1837 {
1838 spin_lock_irq(&dev->qf_cmd_lock);
1839 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1840 atomic_inc(&dev->dev_qf_count);
1841 smp_mb__after_atomic_inc();
1842 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1843
1844 schedule_work(&cmd->se_dev->qf_work_queue);
1845 }
1846
1847 static void target_complete_ok_work(struct work_struct *work)
1848 {
1849 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1850 int ret;
1851
1852 /*
1853 * Check if we need to move delayed/dormant tasks from cmds on the
1854 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1855 * Attribute.
1856 */
1857 transport_complete_task_attr(cmd);
1858
1859 /*
1860 * Check to schedule QUEUE_FULL work, or execute an existing
1861 * cmd->transport_qf_callback()
1862 */
1863 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1864 schedule_work(&cmd->se_dev->qf_work_queue);
1865
1866 /*
1867 * Check if we need to send a sense buffer from
1868 * the struct se_cmd in question.
1869 */
1870 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1871 WARN_ON(!cmd->scsi_status);
1872 ret = transport_send_check_condition_and_sense(
1873 cmd, 0, 1);
1874 if (ret == -EAGAIN || ret == -ENOMEM)
1875 goto queue_full;
1876
1877 transport_lun_remove_cmd(cmd);
1878 transport_cmd_check_stop_to_fabric(cmd);
1879 return;
1880 }
1881 /*
1882 * Check for a callback, used by amongst other things
1883 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1884 */
1885 if (cmd->transport_complete_callback) {
1886 sense_reason_t rc;
1887
1888 rc = cmd->transport_complete_callback(cmd);
1889 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1890 return;
1891 } else if (rc) {
1892 ret = transport_send_check_condition_and_sense(cmd,
1893 rc, 0);
1894 if (ret == -EAGAIN || ret == -ENOMEM)
1895 goto queue_full;
1896
1897 transport_lun_remove_cmd(cmd);
1898 transport_cmd_check_stop_to_fabric(cmd);
1899 return;
1900 }
1901 }
1902
1903 switch (cmd->data_direction) {
1904 case DMA_FROM_DEVICE:
1905 spin_lock(&cmd->se_lun->lun_sep_lock);
1906 if (cmd->se_lun->lun_sep) {
1907 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1908 cmd->data_length;
1909 }
1910 spin_unlock(&cmd->se_lun->lun_sep_lock);
1911
1912 trace_target_cmd_complete(cmd);
1913 ret = cmd->se_tfo->queue_data_in(cmd);
1914 if (ret == -EAGAIN || ret == -ENOMEM)
1915 goto queue_full;
1916 break;
1917 case DMA_TO_DEVICE:
1918 spin_lock(&cmd->se_lun->lun_sep_lock);
1919 if (cmd->se_lun->lun_sep) {
1920 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1921 cmd->data_length;
1922 }
1923 spin_unlock(&cmd->se_lun->lun_sep_lock);
1924 /*
1925 * Check if we need to send READ payload for BIDI-COMMAND
1926 */
1927 if (cmd->se_cmd_flags & SCF_BIDI) {
1928 spin_lock(&cmd->se_lun->lun_sep_lock);
1929 if (cmd->se_lun->lun_sep) {
1930 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1931 cmd->data_length;
1932 }
1933 spin_unlock(&cmd->se_lun->lun_sep_lock);
1934 ret = cmd->se_tfo->queue_data_in(cmd);
1935 if (ret == -EAGAIN || ret == -ENOMEM)
1936 goto queue_full;
1937 break;
1938 }
1939 /* Fall through for DMA_TO_DEVICE */
1940 case DMA_NONE:
1941 trace_target_cmd_complete(cmd);
1942 ret = cmd->se_tfo->queue_status(cmd);
1943 if (ret == -EAGAIN || ret == -ENOMEM)
1944 goto queue_full;
1945 break;
1946 default:
1947 break;
1948 }
1949
1950 transport_lun_remove_cmd(cmd);
1951 transport_cmd_check_stop_to_fabric(cmd);
1952 return;
1953
1954 queue_full:
1955 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1956 " data_direction: %d\n", cmd, cmd->data_direction);
1957 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1958 transport_handle_queue_full(cmd, cmd->se_dev);
1959 }
1960
1961 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1962 {
1963 struct scatterlist *sg;
1964 int count;
1965
1966 for_each_sg(sgl, sg, nents, count)
1967 __free_page(sg_page(sg));
1968
1969 kfree(sgl);
1970 }
1971
1972 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
1973 {
1974 /*
1975 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
1976 * emulation, and free + reset pointers if necessary..
1977 */
1978 if (!cmd->t_data_sg_orig)
1979 return;
1980
1981 kfree(cmd->t_data_sg);
1982 cmd->t_data_sg = cmd->t_data_sg_orig;
1983 cmd->t_data_sg_orig = NULL;
1984 cmd->t_data_nents = cmd->t_data_nents_orig;
1985 cmd->t_data_nents_orig = 0;
1986 }
1987
1988 static inline void transport_free_pages(struct se_cmd *cmd)
1989 {
1990 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
1991 transport_reset_sgl_orig(cmd);
1992 return;
1993 }
1994 transport_reset_sgl_orig(cmd);
1995
1996 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1997 cmd->t_data_sg = NULL;
1998 cmd->t_data_nents = 0;
1999
2000 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2001 cmd->t_bidi_data_sg = NULL;
2002 cmd->t_bidi_data_nents = 0;
2003 }
2004
2005 /**
2006 * transport_release_cmd - free a command
2007 * @cmd: command to free
2008 *
2009 * This routine unconditionally frees a command, and reference counting
2010 * or list removal must be done in the caller.
2011 */
2012 static int transport_release_cmd(struct se_cmd *cmd)
2013 {
2014 BUG_ON(!cmd->se_tfo);
2015
2016 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2017 core_tmr_release_req(cmd->se_tmr_req);
2018 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2019 kfree(cmd->t_task_cdb);
2020 /*
2021 * If this cmd has been setup with target_get_sess_cmd(), drop
2022 * the kref and call ->release_cmd() in kref callback.
2023 */
2024 return target_put_sess_cmd(cmd->se_sess, cmd);
2025 }
2026
2027 /**
2028 * transport_put_cmd - release a reference to a command
2029 * @cmd: command to release
2030 *
2031 * This routine releases our reference to the command and frees it if possible.
2032 */
2033 static int transport_put_cmd(struct se_cmd *cmd)
2034 {
2035 transport_free_pages(cmd);
2036 return transport_release_cmd(cmd);
2037 }
2038
2039 void *transport_kmap_data_sg(struct se_cmd *cmd)
2040 {
2041 struct scatterlist *sg = cmd->t_data_sg;
2042 struct page **pages;
2043 int i;
2044
2045 /*
2046 * We need to take into account a possible offset here for fabrics like
2047 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2048 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2049 */
2050 if (!cmd->t_data_nents)
2051 return NULL;
2052
2053 BUG_ON(!sg);
2054 if (cmd->t_data_nents == 1)
2055 return kmap(sg_page(sg)) + sg->offset;
2056
2057 /* >1 page. use vmap */
2058 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2059 if (!pages)
2060 return NULL;
2061
2062 /* convert sg[] to pages[] */
2063 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2064 pages[i] = sg_page(sg);
2065 }
2066
2067 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2068 kfree(pages);
2069 if (!cmd->t_data_vmap)
2070 return NULL;
2071
2072 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2073 }
2074 EXPORT_SYMBOL(transport_kmap_data_sg);
2075
2076 void transport_kunmap_data_sg(struct se_cmd *cmd)
2077 {
2078 if (!cmd->t_data_nents) {
2079 return;
2080 } else if (cmd->t_data_nents == 1) {
2081 kunmap(sg_page(cmd->t_data_sg));
2082 return;
2083 }
2084
2085 vunmap(cmd->t_data_vmap);
2086 cmd->t_data_vmap = NULL;
2087 }
2088 EXPORT_SYMBOL(transport_kunmap_data_sg);
2089
2090 int
2091 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2092 bool zero_page)
2093 {
2094 struct scatterlist *sg;
2095 struct page *page;
2096 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2097 unsigned int nent;
2098 int i = 0;
2099
2100 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2101 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2102 if (!sg)
2103 return -ENOMEM;
2104
2105 sg_init_table(sg, nent);
2106
2107 while (length) {
2108 u32 page_len = min_t(u32, length, PAGE_SIZE);
2109 page = alloc_page(GFP_KERNEL | zero_flag);
2110 if (!page)
2111 goto out;
2112
2113 sg_set_page(&sg[i], page, page_len, 0);
2114 length -= page_len;
2115 i++;
2116 }
2117 *sgl = sg;
2118 *nents = nent;
2119 return 0;
2120
2121 out:
2122 while (i > 0) {
2123 i--;
2124 __free_page(sg_page(&sg[i]));
2125 }
2126 kfree(sg);
2127 return -ENOMEM;
2128 }
2129
2130 /*
2131 * Allocate any required resources to execute the command. For writes we
2132 * might not have the payload yet, so notify the fabric via a call to
2133 * ->write_pending instead. Otherwise place it on the execution queue.
2134 */
2135 sense_reason_t
2136 transport_generic_new_cmd(struct se_cmd *cmd)
2137 {
2138 int ret = 0;
2139
2140 /*
2141 * Determine is the TCM fabric module has already allocated physical
2142 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2143 * beforehand.
2144 */
2145 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2146 cmd->data_length) {
2147 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2148
2149 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2150 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2151 u32 bidi_length;
2152
2153 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2154 bidi_length = cmd->t_task_nolb *
2155 cmd->se_dev->dev_attrib.block_size;
2156 else
2157 bidi_length = cmd->data_length;
2158
2159 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2160 &cmd->t_bidi_data_nents,
2161 bidi_length, zero_flag);
2162 if (ret < 0)
2163 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2164 }
2165
2166 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2167 cmd->data_length, zero_flag);
2168 if (ret < 0)
2169 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2170 }
2171 /*
2172 * If this command is not a write we can execute it right here,
2173 * for write buffers we need to notify the fabric driver first
2174 * and let it call back once the write buffers are ready.
2175 */
2176 target_add_to_state_list(cmd);
2177 if (cmd->data_direction != DMA_TO_DEVICE) {
2178 target_execute_cmd(cmd);
2179 return 0;
2180 }
2181 transport_cmd_check_stop(cmd, false, true);
2182
2183 ret = cmd->se_tfo->write_pending(cmd);
2184 if (ret == -EAGAIN || ret == -ENOMEM)
2185 goto queue_full;
2186
2187 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2188 WARN_ON(ret);
2189
2190 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2191
2192 queue_full:
2193 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2194 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2195 transport_handle_queue_full(cmd, cmd->se_dev);
2196 return 0;
2197 }
2198 EXPORT_SYMBOL(transport_generic_new_cmd);
2199
2200 static void transport_write_pending_qf(struct se_cmd *cmd)
2201 {
2202 int ret;
2203
2204 ret = cmd->se_tfo->write_pending(cmd);
2205 if (ret == -EAGAIN || ret == -ENOMEM) {
2206 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2207 cmd);
2208 transport_handle_queue_full(cmd, cmd->se_dev);
2209 }
2210 }
2211
2212 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2213 {
2214 unsigned long flags;
2215 int ret = 0;
2216
2217 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2218 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2219 transport_wait_for_tasks(cmd);
2220
2221 ret = transport_release_cmd(cmd);
2222 } else {
2223 if (wait_for_tasks)
2224 transport_wait_for_tasks(cmd);
2225 /*
2226 * Handle WRITE failure case where transport_generic_new_cmd()
2227 * has already added se_cmd to state_list, but fabric has
2228 * failed command before I/O submission.
2229 */
2230 if (cmd->state_active) {
2231 spin_lock_irqsave(&cmd->t_state_lock, flags);
2232 target_remove_from_state_list(cmd);
2233 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2234 }
2235
2236 if (cmd->se_lun)
2237 transport_lun_remove_cmd(cmd);
2238
2239 ret = transport_put_cmd(cmd);
2240 }
2241 return ret;
2242 }
2243 EXPORT_SYMBOL(transport_generic_free_cmd);
2244
2245 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2246 * @se_sess: session to reference
2247 * @se_cmd: command descriptor to add
2248 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2249 */
2250 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2251 bool ack_kref)
2252 {
2253 unsigned long flags;
2254 int ret = 0;
2255
2256 kref_init(&se_cmd->cmd_kref);
2257 /*
2258 * Add a second kref if the fabric caller is expecting to handle
2259 * fabric acknowledgement that requires two target_put_sess_cmd()
2260 * invocations before se_cmd descriptor release.
2261 */
2262 if (ack_kref == true) {
2263 kref_get(&se_cmd->cmd_kref);
2264 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2265 }
2266
2267 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2268 if (se_sess->sess_tearing_down) {
2269 ret = -ESHUTDOWN;
2270 goto out;
2271 }
2272 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2273 out:
2274 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2275 return ret;
2276 }
2277 EXPORT_SYMBOL(target_get_sess_cmd);
2278
2279 static void target_release_cmd_kref(struct kref *kref)
2280 {
2281 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2282 struct se_session *se_sess = se_cmd->se_sess;
2283
2284 if (list_empty(&se_cmd->se_cmd_list)) {
2285 spin_unlock(&se_sess->sess_cmd_lock);
2286 se_cmd->se_tfo->release_cmd(se_cmd);
2287 return;
2288 }
2289 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2290 spin_unlock(&se_sess->sess_cmd_lock);
2291 complete(&se_cmd->cmd_wait_comp);
2292 return;
2293 }
2294 list_del(&se_cmd->se_cmd_list);
2295 spin_unlock(&se_sess->sess_cmd_lock);
2296
2297 se_cmd->se_tfo->release_cmd(se_cmd);
2298 }
2299
2300 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2301 * @se_sess: session to reference
2302 * @se_cmd: command descriptor to drop
2303 */
2304 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2305 {
2306 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2307 &se_sess->sess_cmd_lock);
2308 }
2309 EXPORT_SYMBOL(target_put_sess_cmd);
2310
2311 /* target_sess_cmd_list_set_waiting - Flag all commands in
2312 * sess_cmd_list to complete cmd_wait_comp. Set
2313 * sess_tearing_down so no more commands are queued.
2314 * @se_sess: session to flag
2315 */
2316 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2317 {
2318 struct se_cmd *se_cmd;
2319 unsigned long flags;
2320
2321 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2322 if (se_sess->sess_tearing_down) {
2323 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2324 return;
2325 }
2326 se_sess->sess_tearing_down = 1;
2327 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2328
2329 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2330 se_cmd->cmd_wait_set = 1;
2331
2332 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2333 }
2334 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2335
2336 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2337 * @se_sess: session to wait for active I/O
2338 */
2339 void target_wait_for_sess_cmds(struct se_session *se_sess)
2340 {
2341 struct se_cmd *se_cmd, *tmp_cmd;
2342 unsigned long flags;
2343
2344 list_for_each_entry_safe(se_cmd, tmp_cmd,
2345 &se_sess->sess_wait_list, se_cmd_list) {
2346 list_del(&se_cmd->se_cmd_list);
2347
2348 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2349 " %d\n", se_cmd, se_cmd->t_state,
2350 se_cmd->se_tfo->get_cmd_state(se_cmd));
2351
2352 wait_for_completion(&se_cmd->cmd_wait_comp);
2353 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2354 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2355 se_cmd->se_tfo->get_cmd_state(se_cmd));
2356
2357 se_cmd->se_tfo->release_cmd(se_cmd);
2358 }
2359
2360 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2361 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2362 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2363
2364 }
2365 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2366
2367 static int transport_clear_lun_ref_thread(void *p)
2368 {
2369 struct se_lun *lun = p;
2370
2371 percpu_ref_kill(&lun->lun_ref);
2372
2373 wait_for_completion(&lun->lun_ref_comp);
2374 complete(&lun->lun_shutdown_comp);
2375
2376 return 0;
2377 }
2378
2379 int transport_clear_lun_ref(struct se_lun *lun)
2380 {
2381 struct task_struct *kt;
2382
2383 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2384 "tcm_cl_%u", lun->unpacked_lun);
2385 if (IS_ERR(kt)) {
2386 pr_err("Unable to start clear_lun thread\n");
2387 return PTR_ERR(kt);
2388 }
2389 wait_for_completion(&lun->lun_shutdown_comp);
2390
2391 return 0;
2392 }
2393
2394 /**
2395 * transport_wait_for_tasks - wait for completion to occur
2396 * @cmd: command to wait
2397 *
2398 * Called from frontend fabric context to wait for storage engine
2399 * to pause and/or release frontend generated struct se_cmd.
2400 */
2401 bool transport_wait_for_tasks(struct se_cmd *cmd)
2402 {
2403 unsigned long flags;
2404
2405 spin_lock_irqsave(&cmd->t_state_lock, flags);
2406 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2407 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2408 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2409 return false;
2410 }
2411
2412 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2413 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2414 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2415 return false;
2416 }
2417
2418 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2419 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2420 return false;
2421 }
2422
2423 cmd->transport_state |= CMD_T_STOP;
2424
2425 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2426 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2427 cmd, cmd->se_tfo->get_task_tag(cmd),
2428 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2429
2430 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2431
2432 wait_for_completion(&cmd->t_transport_stop_comp);
2433
2434 spin_lock_irqsave(&cmd->t_state_lock, flags);
2435 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2436
2437 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2438 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2439 cmd->se_tfo->get_task_tag(cmd));
2440
2441 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2442
2443 return true;
2444 }
2445 EXPORT_SYMBOL(transport_wait_for_tasks);
2446
2447 static int transport_get_sense_codes(
2448 struct se_cmd *cmd,
2449 u8 *asc,
2450 u8 *ascq)
2451 {
2452 *asc = cmd->scsi_asc;
2453 *ascq = cmd->scsi_ascq;
2454
2455 return 0;
2456 }
2457
2458 int
2459 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2460 sense_reason_t reason, int from_transport)
2461 {
2462 unsigned char *buffer = cmd->sense_buffer;
2463 unsigned long flags;
2464 u8 asc = 0, ascq = 0;
2465
2466 spin_lock_irqsave(&cmd->t_state_lock, flags);
2467 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2468 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2469 return 0;
2470 }
2471 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2472 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2473
2474 if (!reason && from_transport)
2475 goto after_reason;
2476
2477 if (!from_transport)
2478 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2479
2480 /*
2481 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2482 * SENSE KEY values from include/scsi/scsi.h
2483 */
2484 switch (reason) {
2485 case TCM_NO_SENSE:
2486 /* CURRENT ERROR */
2487 buffer[0] = 0x70;
2488 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2489 /* Not Ready */
2490 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2491 /* NO ADDITIONAL SENSE INFORMATION */
2492 buffer[SPC_ASC_KEY_OFFSET] = 0;
2493 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2494 break;
2495 case TCM_NON_EXISTENT_LUN:
2496 /* CURRENT ERROR */
2497 buffer[0] = 0x70;
2498 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2499 /* ILLEGAL REQUEST */
2500 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2501 /* LOGICAL UNIT NOT SUPPORTED */
2502 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2503 break;
2504 case TCM_UNSUPPORTED_SCSI_OPCODE:
2505 case TCM_SECTOR_COUNT_TOO_MANY:
2506 /* CURRENT ERROR */
2507 buffer[0] = 0x70;
2508 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2509 /* ILLEGAL REQUEST */
2510 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2511 /* INVALID COMMAND OPERATION CODE */
2512 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2513 break;
2514 case TCM_UNKNOWN_MODE_PAGE:
2515 /* CURRENT ERROR */
2516 buffer[0] = 0x70;
2517 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2518 /* ILLEGAL REQUEST */
2519 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2520 /* INVALID FIELD IN CDB */
2521 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2522 break;
2523 case TCM_CHECK_CONDITION_ABORT_CMD:
2524 /* CURRENT ERROR */
2525 buffer[0] = 0x70;
2526 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2527 /* ABORTED COMMAND */
2528 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2529 /* BUS DEVICE RESET FUNCTION OCCURRED */
2530 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2531 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2532 break;
2533 case TCM_INCORRECT_AMOUNT_OF_DATA:
2534 /* CURRENT ERROR */
2535 buffer[0] = 0x70;
2536 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2537 /* ABORTED COMMAND */
2538 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2539 /* WRITE ERROR */
2540 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2541 /* NOT ENOUGH UNSOLICITED DATA */
2542 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2543 break;
2544 case TCM_INVALID_CDB_FIELD:
2545 /* CURRENT ERROR */
2546 buffer[0] = 0x70;
2547 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2548 /* ILLEGAL REQUEST */
2549 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2550 /* INVALID FIELD IN CDB */
2551 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2552 break;
2553 case TCM_INVALID_PARAMETER_LIST:
2554 /* CURRENT ERROR */
2555 buffer[0] = 0x70;
2556 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2557 /* ILLEGAL REQUEST */
2558 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2559 /* INVALID FIELD IN PARAMETER LIST */
2560 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2561 break;
2562 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2563 /* CURRENT ERROR */
2564 buffer[0] = 0x70;
2565 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2566 /* ILLEGAL REQUEST */
2567 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2568 /* PARAMETER LIST LENGTH ERROR */
2569 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2570 break;
2571 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2572 /* CURRENT ERROR */
2573 buffer[0] = 0x70;
2574 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2575 /* ABORTED COMMAND */
2576 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2577 /* WRITE ERROR */
2578 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2579 /* UNEXPECTED_UNSOLICITED_DATA */
2580 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2581 break;
2582 case TCM_SERVICE_CRC_ERROR:
2583 /* CURRENT ERROR */
2584 buffer[0] = 0x70;
2585 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2586 /* ABORTED COMMAND */
2587 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2588 /* PROTOCOL SERVICE CRC ERROR */
2589 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2590 /* N/A */
2591 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2592 break;
2593 case TCM_SNACK_REJECTED:
2594 /* CURRENT ERROR */
2595 buffer[0] = 0x70;
2596 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2597 /* ABORTED COMMAND */
2598 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2599 /* READ ERROR */
2600 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2601 /* FAILED RETRANSMISSION REQUEST */
2602 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2603 break;
2604 case TCM_WRITE_PROTECTED:
2605 /* CURRENT ERROR */
2606 buffer[0] = 0x70;
2607 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2608 /* DATA PROTECT */
2609 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2610 /* WRITE PROTECTED */
2611 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2612 break;
2613 case TCM_ADDRESS_OUT_OF_RANGE:
2614 /* CURRENT ERROR */
2615 buffer[0] = 0x70;
2616 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2617 /* ILLEGAL REQUEST */
2618 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2619 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2620 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2621 break;
2622 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2623 /* CURRENT ERROR */
2624 buffer[0] = 0x70;
2625 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2626 /* UNIT ATTENTION */
2627 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2628 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2629 buffer[SPC_ASC_KEY_OFFSET] = asc;
2630 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2631 break;
2632 case TCM_CHECK_CONDITION_NOT_READY:
2633 /* CURRENT ERROR */
2634 buffer[0] = 0x70;
2635 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2636 /* Not Ready */
2637 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2638 transport_get_sense_codes(cmd, &asc, &ascq);
2639 buffer[SPC_ASC_KEY_OFFSET] = asc;
2640 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2641 break;
2642 case TCM_MISCOMPARE_VERIFY:
2643 /* CURRENT ERROR */
2644 buffer[0] = 0x70;
2645 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2646 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2647 /* MISCOMPARE DURING VERIFY OPERATION */
2648 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2649 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2650 break;
2651 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2652 default:
2653 /* CURRENT ERROR */
2654 buffer[0] = 0x70;
2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2656 /*
2657 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2658 * Solaris initiators. Returning NOT READY instead means the
2659 * operations will be retried a finite number of times and we
2660 * can survive intermittent errors.
2661 */
2662 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2663 /* LOGICAL UNIT COMMUNICATION FAILURE */
2664 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2665 break;
2666 }
2667 /*
2668 * This code uses linux/include/scsi/scsi.h SAM status codes!
2669 */
2670 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2671 /*
2672 * Automatically padded, this value is encoded in the fabric's
2673 * data_length response PDU containing the SCSI defined sense data.
2674 */
2675 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2676
2677 after_reason:
2678 trace_target_cmd_complete(cmd);
2679 return cmd->se_tfo->queue_status(cmd);
2680 }
2681 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2682
2683 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2684 {
2685 if (!(cmd->transport_state & CMD_T_ABORTED))
2686 return 0;
2687
2688 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2689 return 1;
2690
2691 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2692 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2693
2694 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2695 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2696 trace_target_cmd_complete(cmd);
2697 cmd->se_tfo->queue_status(cmd);
2698
2699 return 1;
2700 }
2701 EXPORT_SYMBOL(transport_check_aborted_status);
2702
2703 void transport_send_task_abort(struct se_cmd *cmd)
2704 {
2705 unsigned long flags;
2706
2707 spin_lock_irqsave(&cmd->t_state_lock, flags);
2708 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2709 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2710 return;
2711 }
2712 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2713
2714 /*
2715 * If there are still expected incoming fabric WRITEs, we wait
2716 * until until they have completed before sending a TASK_ABORTED
2717 * response. This response with TASK_ABORTED status will be
2718 * queued back to fabric module by transport_check_aborted_status().
2719 */
2720 if (cmd->data_direction == DMA_TO_DEVICE) {
2721 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2722 cmd->transport_state |= CMD_T_ABORTED;
2723 smp_mb__after_atomic_inc();
2724 return;
2725 }
2726 }
2727 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2728
2729 transport_lun_remove_cmd(cmd);
2730
2731 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2732 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2733 cmd->se_tfo->get_task_tag(cmd));
2734
2735 trace_target_cmd_complete(cmd);
2736 cmd->se_tfo->queue_status(cmd);
2737 }
2738
2739 static void target_tmr_work(struct work_struct *work)
2740 {
2741 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2742 struct se_device *dev = cmd->se_dev;
2743 struct se_tmr_req *tmr = cmd->se_tmr_req;
2744 int ret;
2745
2746 switch (tmr->function) {
2747 case TMR_ABORT_TASK:
2748 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2749 break;
2750 case TMR_ABORT_TASK_SET:
2751 case TMR_CLEAR_ACA:
2752 case TMR_CLEAR_TASK_SET:
2753 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2754 break;
2755 case TMR_LUN_RESET:
2756 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2757 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2758 TMR_FUNCTION_REJECTED;
2759 break;
2760 case TMR_TARGET_WARM_RESET:
2761 tmr->response = TMR_FUNCTION_REJECTED;
2762 break;
2763 case TMR_TARGET_COLD_RESET:
2764 tmr->response = TMR_FUNCTION_REJECTED;
2765 break;
2766 default:
2767 pr_err("Uknown TMR function: 0x%02x.\n",
2768 tmr->function);
2769 tmr->response = TMR_FUNCTION_REJECTED;
2770 break;
2771 }
2772
2773 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2774 cmd->se_tfo->queue_tm_rsp(cmd);
2775
2776 transport_cmd_check_stop_to_fabric(cmd);
2777 }
2778
2779 int transport_generic_handle_tmr(
2780 struct se_cmd *cmd)
2781 {
2782 INIT_WORK(&cmd->work, target_tmr_work);
2783 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2784 return 0;
2785 }
2786 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.152609 seconds and 5 git commands to generate.