a29f6d3fc55b4364911a959a3c56c82f3df85277
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
67
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
74
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
81
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
88
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
95
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
102
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
109
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
116
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
123
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
130
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
137
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
144
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
151
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
158
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
165
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
172
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
179
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
186
187 static int sub_api_initialized;
188
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
199
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
202
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *param);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static void transport_direct_request_timeout(struct se_cmd *cmd);
208 static void transport_free_dev_tasks(struct se_cmd *cmd);
209 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
210 unsigned long long starting_lba, u32 sectors,
211 enum dma_data_direction data_direction,
212 struct list_head *mem_list, int set_counts);
213 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
214 u32 dma_size);
215 static int transport_generic_remove(struct se_cmd *cmd,
216 int release_to_pool, int session_reinstatement);
217 static int transport_get_sectors(struct se_cmd *cmd);
218 static int transport_map_sg_to_mem(struct se_cmd *cmd,
219 struct list_head *se_mem_list, struct scatterlist *sgl,
220 u32 *se_mem_cnt);
221 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
222 unsigned char *dst, struct list_head *se_mem_list);
223 static void transport_release_fe_cmd(struct se_cmd *cmd);
224 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
225 struct se_queue_obj *qobj);
226 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
227 static void transport_stop_all_task_timers(struct se_cmd *cmd);
228
229 int init_se_kmem_caches(void)
230 {
231 se_cmd_cache = kmem_cache_create("se_cmd_cache",
232 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
233 if (!(se_cmd_cache)) {
234 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
235 goto out;
236 }
237 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
238 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
239 0, NULL);
240 if (!(se_tmr_req_cache)) {
241 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
242 " failed\n");
243 goto out;
244 }
245 se_sess_cache = kmem_cache_create("se_sess_cache",
246 sizeof(struct se_session), __alignof__(struct se_session),
247 0, NULL);
248 if (!(se_sess_cache)) {
249 printk(KERN_ERR "kmem_cache_create() for struct se_session"
250 " failed\n");
251 goto out;
252 }
253 se_ua_cache = kmem_cache_create("se_ua_cache",
254 sizeof(struct se_ua), __alignof__(struct se_ua),
255 0, NULL);
256 if (!(se_ua_cache)) {
257 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
258 goto out;
259 }
260 se_mem_cache = kmem_cache_create("se_mem_cache",
261 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
262 if (!(se_mem_cache)) {
263 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
264 goto out;
265 }
266 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
267 sizeof(struct t10_pr_registration),
268 __alignof__(struct t10_pr_registration), 0, NULL);
269 if (!(t10_pr_reg_cache)) {
270 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
271 " failed\n");
272 goto out;
273 }
274 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
275 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
276 0, NULL);
277 if (!(t10_alua_lu_gp_cache)) {
278 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
279 " failed\n");
280 goto out;
281 }
282 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
283 sizeof(struct t10_alua_lu_gp_member),
284 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
285 if (!(t10_alua_lu_gp_mem_cache)) {
286 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
287 "cache failed\n");
288 goto out;
289 }
290 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
291 sizeof(struct t10_alua_tg_pt_gp),
292 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
293 if (!(t10_alua_tg_pt_gp_cache)) {
294 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
295 "cache failed\n");
296 goto out;
297 }
298 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
299 "t10_alua_tg_pt_gp_mem_cache",
300 sizeof(struct t10_alua_tg_pt_gp_member),
301 __alignof__(struct t10_alua_tg_pt_gp_member),
302 0, NULL);
303 if (!(t10_alua_tg_pt_gp_mem_cache)) {
304 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
305 "mem_t failed\n");
306 goto out;
307 }
308
309 return 0;
310 out:
311 if (se_cmd_cache)
312 kmem_cache_destroy(se_cmd_cache);
313 if (se_tmr_req_cache)
314 kmem_cache_destroy(se_tmr_req_cache);
315 if (se_sess_cache)
316 kmem_cache_destroy(se_sess_cache);
317 if (se_ua_cache)
318 kmem_cache_destroy(se_ua_cache);
319 if (se_mem_cache)
320 kmem_cache_destroy(se_mem_cache);
321 if (t10_pr_reg_cache)
322 kmem_cache_destroy(t10_pr_reg_cache);
323 if (t10_alua_lu_gp_cache)
324 kmem_cache_destroy(t10_alua_lu_gp_cache);
325 if (t10_alua_lu_gp_mem_cache)
326 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
327 if (t10_alua_tg_pt_gp_cache)
328 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
329 if (t10_alua_tg_pt_gp_mem_cache)
330 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
331 return -ENOMEM;
332 }
333
334 void release_se_kmem_caches(void)
335 {
336 kmem_cache_destroy(se_cmd_cache);
337 kmem_cache_destroy(se_tmr_req_cache);
338 kmem_cache_destroy(se_sess_cache);
339 kmem_cache_destroy(se_ua_cache);
340 kmem_cache_destroy(se_mem_cache);
341 kmem_cache_destroy(t10_pr_reg_cache);
342 kmem_cache_destroy(t10_alua_lu_gp_cache);
343 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
344 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
345 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
346 }
347
348 /* This code ensures unique mib indexes are handed out. */
349 static DEFINE_SPINLOCK(scsi_mib_index_lock);
350 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
351
352 /*
353 * Allocate a new row index for the entry type specified
354 */
355 u32 scsi_get_new_index(scsi_index_t type)
356 {
357 u32 new_index;
358
359 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
360
361 spin_lock(&scsi_mib_index_lock);
362 new_index = ++scsi_mib_index[type];
363 spin_unlock(&scsi_mib_index_lock);
364
365 return new_index;
366 }
367
368 void transport_init_queue_obj(struct se_queue_obj *qobj)
369 {
370 atomic_set(&qobj->queue_cnt, 0);
371 INIT_LIST_HEAD(&qobj->qobj_list);
372 init_waitqueue_head(&qobj->thread_wq);
373 spin_lock_init(&qobj->cmd_queue_lock);
374 }
375 EXPORT_SYMBOL(transport_init_queue_obj);
376
377 static int transport_subsystem_reqmods(void)
378 {
379 int ret;
380
381 ret = request_module("target_core_iblock");
382 if (ret != 0)
383 printk(KERN_ERR "Unable to load target_core_iblock\n");
384
385 ret = request_module("target_core_file");
386 if (ret != 0)
387 printk(KERN_ERR "Unable to load target_core_file\n");
388
389 ret = request_module("target_core_pscsi");
390 if (ret != 0)
391 printk(KERN_ERR "Unable to load target_core_pscsi\n");
392
393 ret = request_module("target_core_stgt");
394 if (ret != 0)
395 printk(KERN_ERR "Unable to load target_core_stgt\n");
396
397 return 0;
398 }
399
400 int transport_subsystem_check_init(void)
401 {
402 int ret;
403
404 if (sub_api_initialized)
405 return 0;
406 /*
407 * Request the loading of known TCM subsystem plugins..
408 */
409 ret = transport_subsystem_reqmods();
410 if (ret < 0)
411 return ret;
412
413 sub_api_initialized = 1;
414 return 0;
415 }
416
417 struct se_session *transport_init_session(void)
418 {
419 struct se_session *se_sess;
420
421 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
422 if (!(se_sess)) {
423 printk(KERN_ERR "Unable to allocate struct se_session from"
424 " se_sess_cache\n");
425 return ERR_PTR(-ENOMEM);
426 }
427 INIT_LIST_HEAD(&se_sess->sess_list);
428 INIT_LIST_HEAD(&se_sess->sess_acl_list);
429
430 return se_sess;
431 }
432 EXPORT_SYMBOL(transport_init_session);
433
434 /*
435 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
436 */
437 void __transport_register_session(
438 struct se_portal_group *se_tpg,
439 struct se_node_acl *se_nacl,
440 struct se_session *se_sess,
441 void *fabric_sess_ptr)
442 {
443 unsigned char buf[PR_REG_ISID_LEN];
444
445 se_sess->se_tpg = se_tpg;
446 se_sess->fabric_sess_ptr = fabric_sess_ptr;
447 /*
448 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
449 *
450 * Only set for struct se_session's that will actually be moving I/O.
451 * eg: *NOT* discovery sessions.
452 */
453 if (se_nacl) {
454 /*
455 * If the fabric module supports an ISID based TransportID,
456 * save this value in binary from the fabric I_T Nexus now.
457 */
458 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
459 memset(&buf[0], 0, PR_REG_ISID_LEN);
460 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
461 &buf[0], PR_REG_ISID_LEN);
462 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
463 }
464 spin_lock_irq(&se_nacl->nacl_sess_lock);
465 /*
466 * The se_nacl->nacl_sess pointer will be set to the
467 * last active I_T Nexus for each struct se_node_acl.
468 */
469 se_nacl->nacl_sess = se_sess;
470
471 list_add_tail(&se_sess->sess_acl_list,
472 &se_nacl->acl_sess_list);
473 spin_unlock_irq(&se_nacl->nacl_sess_lock);
474 }
475 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
476
477 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
478 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
479 }
480 EXPORT_SYMBOL(__transport_register_session);
481
482 void transport_register_session(
483 struct se_portal_group *se_tpg,
484 struct se_node_acl *se_nacl,
485 struct se_session *se_sess,
486 void *fabric_sess_ptr)
487 {
488 spin_lock_bh(&se_tpg->session_lock);
489 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
490 spin_unlock_bh(&se_tpg->session_lock);
491 }
492 EXPORT_SYMBOL(transport_register_session);
493
494 void transport_deregister_session_configfs(struct se_session *se_sess)
495 {
496 struct se_node_acl *se_nacl;
497 unsigned long flags;
498 /*
499 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
500 */
501 se_nacl = se_sess->se_node_acl;
502 if ((se_nacl)) {
503 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
504 list_del(&se_sess->sess_acl_list);
505 /*
506 * If the session list is empty, then clear the pointer.
507 * Otherwise, set the struct se_session pointer from the tail
508 * element of the per struct se_node_acl active session list.
509 */
510 if (list_empty(&se_nacl->acl_sess_list))
511 se_nacl->nacl_sess = NULL;
512 else {
513 se_nacl->nacl_sess = container_of(
514 se_nacl->acl_sess_list.prev,
515 struct se_session, sess_acl_list);
516 }
517 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
518 }
519 }
520 EXPORT_SYMBOL(transport_deregister_session_configfs);
521
522 void transport_free_session(struct se_session *se_sess)
523 {
524 kmem_cache_free(se_sess_cache, se_sess);
525 }
526 EXPORT_SYMBOL(transport_free_session);
527
528 void transport_deregister_session(struct se_session *se_sess)
529 {
530 struct se_portal_group *se_tpg = se_sess->se_tpg;
531 struct se_node_acl *se_nacl;
532
533 if (!(se_tpg)) {
534 transport_free_session(se_sess);
535 return;
536 }
537
538 spin_lock_bh(&se_tpg->session_lock);
539 list_del(&se_sess->sess_list);
540 se_sess->se_tpg = NULL;
541 se_sess->fabric_sess_ptr = NULL;
542 spin_unlock_bh(&se_tpg->session_lock);
543
544 /*
545 * Determine if we need to do extra work for this initiator node's
546 * struct se_node_acl if it had been previously dynamically generated.
547 */
548 se_nacl = se_sess->se_node_acl;
549 if ((se_nacl)) {
550 spin_lock_bh(&se_tpg->acl_node_lock);
551 if (se_nacl->dynamic_node_acl) {
552 if (!(se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
553 se_tpg))) {
554 list_del(&se_nacl->acl_list);
555 se_tpg->num_node_acls--;
556 spin_unlock_bh(&se_tpg->acl_node_lock);
557
558 core_tpg_wait_for_nacl_pr_ref(se_nacl);
559 core_free_device_list_for_node(se_nacl, se_tpg);
560 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
561 se_nacl);
562 spin_lock_bh(&se_tpg->acl_node_lock);
563 }
564 }
565 spin_unlock_bh(&se_tpg->acl_node_lock);
566 }
567
568 transport_free_session(se_sess);
569
570 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
571 se_tpg->se_tpg_tfo->get_fabric_name());
572 }
573 EXPORT_SYMBOL(transport_deregister_session);
574
575 /*
576 * Called with cmd->t_task.t_state_lock held.
577 */
578 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
579 {
580 struct se_device *dev;
581 struct se_task *task;
582 unsigned long flags;
583
584 list_for_each_entry(task, &cmd->t_task.t_task_list, t_list) {
585 dev = task->se_dev;
586 if (!(dev))
587 continue;
588
589 if (atomic_read(&task->task_active))
590 continue;
591
592 if (!(atomic_read(&task->task_state_active)))
593 continue;
594
595 spin_lock_irqsave(&dev->execute_task_lock, flags);
596 list_del(&task->t_state_list);
597 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
598 cmd->se_tfo->tfo_get_task_tag(cmd), dev, task);
599 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
600
601 atomic_set(&task->task_state_active, 0);
602 atomic_dec(&cmd->t_task.t_task_cdbs_ex_left);
603 }
604 }
605
606 /* transport_cmd_check_stop():
607 *
608 * 'transport_off = 1' determines if t_transport_active should be cleared.
609 * 'transport_off = 2' determines if task_dev_state should be removed.
610 *
611 * A non-zero u8 t_state sets cmd->t_state.
612 * Returns 1 when command is stopped, else 0.
613 */
614 static int transport_cmd_check_stop(
615 struct se_cmd *cmd,
616 int transport_off,
617 u8 t_state)
618 {
619 unsigned long flags;
620
621 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
622 /*
623 * Determine if IOCTL context caller in requesting the stopping of this
624 * command for LUN shutdown purposes.
625 */
626 if (atomic_read(&cmd->t_task.transport_lun_stop)) {
627 DEBUG_CS("%s:%d atomic_read(&cmd->t_task.transport_lun_stop)"
628 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
629 cmd->se_tfo->get_task_tag(cmd));
630
631 cmd->deferred_t_state = cmd->t_state;
632 cmd->t_state = TRANSPORT_DEFERRED_CMD;
633 atomic_set(&cmd->t_task.t_transport_active, 0);
634 if (transport_off == 2)
635 transport_all_task_dev_remove_state(cmd);
636 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
637
638 complete(&cmd->t_task.transport_lun_stop_comp);
639 return 1;
640 }
641 /*
642 * Determine if frontend context caller is requesting the stopping of
643 * this command for frontend exceptions.
644 */
645 if (atomic_read(&cmd->t_task.t_transport_stop)) {
646 DEBUG_CS("%s:%d atomic_read(&cmd->t_task.t_transport_stop) =="
647 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
648 cmd->se_tfo->get_task_tag(cmd));
649
650 cmd->deferred_t_state = cmd->t_state;
651 cmd->t_state = TRANSPORT_DEFERRED_CMD;
652 if (transport_off == 2)
653 transport_all_task_dev_remove_state(cmd);
654
655 /*
656 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
657 * to FE.
658 */
659 if (transport_off == 2)
660 cmd->se_lun = NULL;
661 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
662
663 complete(&cmd->t_task.t_transport_stop_comp);
664 return 1;
665 }
666 if (transport_off) {
667 atomic_set(&cmd->t_task.t_transport_active, 0);
668 if (transport_off == 2) {
669 transport_all_task_dev_remove_state(cmd);
670 /*
671 * Clear struct se_cmd->se_lun before the transport_off == 2
672 * handoff to fabric module.
673 */
674 cmd->se_lun = NULL;
675 /*
676 * Some fabric modules like tcm_loop can release
677 * their internally allocated I/O reference now and
678 * struct se_cmd now.
679 */
680 if (cmd->se_tfo->check_stop_free != NULL) {
681 spin_unlock_irqrestore(
682 &cmd->t_task.t_state_lock, flags);
683
684 cmd->se_tfo->check_stop_free(cmd);
685 return 1;
686 }
687 }
688 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
689
690 return 0;
691 } else if (t_state)
692 cmd->t_state = t_state;
693 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
694
695 return 0;
696 }
697
698 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
699 {
700 return transport_cmd_check_stop(cmd, 2, 0);
701 }
702
703 static void transport_lun_remove_cmd(struct se_cmd *cmd)
704 {
705 struct se_lun *lun = cmd->se_lun;
706 unsigned long flags;
707
708 if (!lun)
709 return;
710
711 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
712 if (!(atomic_read(&cmd->t_task.transport_dev_active))) {
713 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
714 goto check_lun;
715 }
716 atomic_set(&cmd->t_task.transport_dev_active, 0);
717 transport_all_task_dev_remove_state(cmd);
718 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
719
720
721 check_lun:
722 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
723 if (atomic_read(&cmd->t_task.transport_lun_active)) {
724 list_del(&cmd->se_lun_node);
725 atomic_set(&cmd->t_task.transport_lun_active, 0);
726 #if 0
727 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
728 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
729 #endif
730 }
731 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
732 }
733
734 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
735 {
736 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
737 transport_lun_remove_cmd(cmd);
738
739 if (transport_cmd_check_stop_to_fabric(cmd))
740 return;
741 if (remove)
742 transport_generic_remove(cmd, 0, 0);
743 }
744
745 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
746 {
747 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
748
749 if (transport_cmd_check_stop_to_fabric(cmd))
750 return;
751
752 transport_generic_remove(cmd, 0, 0);
753 }
754
755 static void transport_add_cmd_to_queue(
756 struct se_cmd *cmd,
757 int t_state)
758 {
759 struct se_device *dev = cmd->se_dev;
760 struct se_queue_obj *qobj = &dev->dev_queue_obj;
761 unsigned long flags;
762
763 INIT_LIST_HEAD(&cmd->se_queue_node);
764
765 if (t_state) {
766 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
767 cmd->t_state = t_state;
768 atomic_set(&cmd->t_task.t_transport_active, 1);
769 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
770 }
771
772 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
773 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
774 atomic_inc(&cmd->t_task.t_transport_queue_active);
775 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
776
777 atomic_inc(&qobj->queue_cnt);
778 wake_up_interruptible(&qobj->thread_wq);
779 }
780
781 static struct se_cmd *
782 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
783 {
784 struct se_cmd *cmd;
785 unsigned long flags;
786
787 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
788 if (list_empty(&qobj->qobj_list)) {
789 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
790 return NULL;
791 }
792 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
793
794 atomic_dec(&cmd->t_task.t_transport_queue_active);
795
796 list_del(&cmd->se_queue_node);
797 atomic_dec(&qobj->queue_cnt);
798 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
799
800 return cmd;
801 }
802
803 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
804 struct se_queue_obj *qobj)
805 {
806 struct se_cmd *t;
807 unsigned long flags;
808
809 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
810 if (!(atomic_read(&cmd->t_task.t_transport_queue_active))) {
811 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
812 return;
813 }
814
815 list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
816 if (t == cmd) {
817 atomic_dec(&cmd->t_task.t_transport_queue_active);
818 atomic_dec(&qobj->queue_cnt);
819 list_del(&cmd->se_queue_node);
820 break;
821 }
822 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
823
824 if (atomic_read(&cmd->t_task.t_transport_queue_active)) {
825 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
826 cmd->se_tfo->get_task_tag(cmd),
827 atomic_read(&cmd->t_task.t_transport_queue_active));
828 }
829 }
830
831 /*
832 * Completion function used by TCM subsystem plugins (such as FILEIO)
833 * for queueing up response from struct se_subsystem_api->do_task()
834 */
835 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
836 {
837 struct se_task *task = list_entry(cmd->t_task.t_task_list.next,
838 struct se_task, t_list);
839
840 if (good) {
841 cmd->scsi_status = SAM_STAT_GOOD;
842 task->task_scsi_status = GOOD;
843 } else {
844 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
845 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
846 task->task_se_cmd->transport_error_status =
847 PYX_TRANSPORT_ILLEGAL_REQUEST;
848 }
849
850 transport_complete_task(task, good);
851 }
852 EXPORT_SYMBOL(transport_complete_sync_cache);
853
854 /* transport_complete_task():
855 *
856 * Called from interrupt and non interrupt context depending
857 * on the transport plugin.
858 */
859 void transport_complete_task(struct se_task *task, int success)
860 {
861 struct se_cmd *cmd = task->task_se_cmd;
862 struct se_device *dev = task->se_dev;
863 int t_state;
864 unsigned long flags;
865 #if 0
866 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
867 cmd->t_task.t_task_cdb[0], dev);
868 #endif
869 if (dev)
870 atomic_inc(&dev->depth_left);
871
872 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
873 atomic_set(&task->task_active, 0);
874
875 /*
876 * See if any sense data exists, if so set the TASK_SENSE flag.
877 * Also check for any other post completion work that needs to be
878 * done by the plugins.
879 */
880 if (dev && dev->transport->transport_complete) {
881 if (dev->transport->transport_complete(task) != 0) {
882 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
883 task->task_sense = 1;
884 success = 1;
885 }
886 }
887
888 /*
889 * See if we are waiting for outstanding struct se_task
890 * to complete for an exception condition
891 */
892 if (atomic_read(&task->task_stop)) {
893 /*
894 * Decrement cmd->t_task.t_se_count if this task had
895 * previously thrown its timeout exception handler.
896 */
897 if (atomic_read(&task->task_timeout)) {
898 atomic_dec(&cmd->t_task.t_se_count);
899 atomic_set(&task->task_timeout, 0);
900 }
901 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
902
903 complete(&task->task_stop_comp);
904 return;
905 }
906 /*
907 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
908 * left counter to determine when the struct se_cmd is ready to be queued to
909 * the processing thread.
910 */
911 if (atomic_read(&task->task_timeout)) {
912 if (!(atomic_dec_and_test(
913 &cmd->t_task.t_task_cdbs_timeout_left))) {
914 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
915 flags);
916 return;
917 }
918 t_state = TRANSPORT_COMPLETE_TIMEOUT;
919 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
920
921 transport_add_cmd_to_queue(cmd, t_state);
922 return;
923 }
924 atomic_dec(&cmd->t_task.t_task_cdbs_timeout_left);
925
926 /*
927 * Decrement the outstanding t_task_cdbs_left count. The last
928 * struct se_task from struct se_cmd will complete itself into the
929 * device queue depending upon int success.
930 */
931 if (!(atomic_dec_and_test(&cmd->t_task.t_task_cdbs_left))) {
932 if (!success)
933 cmd->t_task.t_tasks_failed = 1;
934
935 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
936 return;
937 }
938
939 if (!success || cmd->t_task.t_tasks_failed) {
940 t_state = TRANSPORT_COMPLETE_FAILURE;
941 if (!task->task_error_status) {
942 task->task_error_status =
943 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
944 cmd->transport_error_status =
945 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
946 }
947 } else {
948 atomic_set(&cmd->t_task.t_transport_complete, 1);
949 t_state = TRANSPORT_COMPLETE_OK;
950 }
951 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
952
953 transport_add_cmd_to_queue(cmd, t_state);
954 }
955 EXPORT_SYMBOL(transport_complete_task);
956
957 /*
958 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
959 * struct se_task list are ready to be added to the active execution list
960 * struct se_device
961
962 * Called with se_dev_t->execute_task_lock called.
963 */
964 static inline int transport_add_task_check_sam_attr(
965 struct se_task *task,
966 struct se_task *task_prev,
967 struct se_device *dev)
968 {
969 /*
970 * No SAM Task attribute emulation enabled, add to tail of
971 * execution queue
972 */
973 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
974 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
975 return 0;
976 }
977 /*
978 * HEAD_OF_QUEUE attribute for received CDB, which means
979 * the first task that is associated with a struct se_cmd goes to
980 * head of the struct se_device->execute_task_list, and task_prev
981 * after that for each subsequent task
982 */
983 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
984 list_add(&task->t_execute_list,
985 (task_prev != NULL) ?
986 &task_prev->t_execute_list :
987 &dev->execute_task_list);
988
989 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
990 " in execution queue\n",
991 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
992 return 1;
993 }
994 /*
995 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
996 * transitioned from Dermant -> Active state, and are added to the end
997 * of the struct se_device->execute_task_list
998 */
999 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1000 return 0;
1001 }
1002
1003 /* __transport_add_task_to_execute_queue():
1004 *
1005 * Called with se_dev_t->execute_task_lock called.
1006 */
1007 static void __transport_add_task_to_execute_queue(
1008 struct se_task *task,
1009 struct se_task *task_prev,
1010 struct se_device *dev)
1011 {
1012 int head_of_queue;
1013
1014 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1015 atomic_inc(&dev->execute_tasks);
1016
1017 if (atomic_read(&task->task_state_active))
1018 return;
1019 /*
1020 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1021 * state list as well. Running with SAM Task Attribute emulation
1022 * will always return head_of_queue == 0 here
1023 */
1024 if (head_of_queue)
1025 list_add(&task->t_state_list, (task_prev) ?
1026 &task_prev->t_state_list :
1027 &dev->state_task_list);
1028 else
1029 list_add_tail(&task->t_state_list, &dev->state_task_list);
1030
1031 atomic_set(&task->task_state_active, 1);
1032
1033 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1034 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
1035 task, dev);
1036 }
1037
1038 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1039 {
1040 struct se_device *dev;
1041 struct se_task *task;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
1045 list_for_each_entry(task, &cmd->t_task.t_task_list, t_list) {
1046 dev = task->se_dev;
1047
1048 if (atomic_read(&task->task_state_active))
1049 continue;
1050
1051 spin_lock(&dev->execute_task_lock);
1052 list_add_tail(&task->t_state_list, &dev->state_task_list);
1053 atomic_set(&task->task_state_active, 1);
1054
1055 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1056 task->se_cmd->se_tfo->get_task_tag(
1057 task->task_se_cmd), task, dev);
1058
1059 spin_unlock(&dev->execute_task_lock);
1060 }
1061 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
1062 }
1063
1064 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1065 {
1066 struct se_device *dev = cmd->se_dev;
1067 struct se_task *task, *task_prev = NULL;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&dev->execute_task_lock, flags);
1071 list_for_each_entry(task, &cmd->t_task.t_task_list, t_list) {
1072 if (atomic_read(&task->task_execute_queue))
1073 continue;
1074 /*
1075 * __transport_add_task_to_execute_queue() handles the
1076 * SAM Task Attribute emulation if enabled
1077 */
1078 __transport_add_task_to_execute_queue(task, task_prev, dev);
1079 atomic_set(&task->task_execute_queue, 1);
1080 task_prev = task;
1081 }
1082 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1083 }
1084
1085 /* transport_remove_task_from_execute_queue():
1086 *
1087 *
1088 */
1089 void transport_remove_task_from_execute_queue(
1090 struct se_task *task,
1091 struct se_device *dev)
1092 {
1093 unsigned long flags;
1094
1095 if (atomic_read(&task->task_execute_queue) == 0) {
1096 dump_stack();
1097 return;
1098 }
1099
1100 spin_lock_irqsave(&dev->execute_task_lock, flags);
1101 list_del(&task->t_execute_list);
1102 atomic_set(&task->task_execute_queue, 0);
1103 atomic_dec(&dev->execute_tasks);
1104 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1105 }
1106
1107 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1108 {
1109 switch (cmd->data_direction) {
1110 case DMA_NONE:
1111 return "NONE";
1112 case DMA_FROM_DEVICE:
1113 return "READ";
1114 case DMA_TO_DEVICE:
1115 return "WRITE";
1116 case DMA_BIDIRECTIONAL:
1117 return "BIDI";
1118 default:
1119 break;
1120 }
1121
1122 return "UNKNOWN";
1123 }
1124
1125 void transport_dump_dev_state(
1126 struct se_device *dev,
1127 char *b,
1128 int *bl)
1129 {
1130 *bl += sprintf(b + *bl, "Status: ");
1131 switch (dev->dev_status) {
1132 case TRANSPORT_DEVICE_ACTIVATED:
1133 *bl += sprintf(b + *bl, "ACTIVATED");
1134 break;
1135 case TRANSPORT_DEVICE_DEACTIVATED:
1136 *bl += sprintf(b + *bl, "DEACTIVATED");
1137 break;
1138 case TRANSPORT_DEVICE_SHUTDOWN:
1139 *bl += sprintf(b + *bl, "SHUTDOWN");
1140 break;
1141 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1142 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1143 *bl += sprintf(b + *bl, "OFFLINE");
1144 break;
1145 default:
1146 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1147 break;
1148 }
1149
1150 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1151 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1152 dev->queue_depth);
1153 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1154 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1155 *bl += sprintf(b + *bl, " ");
1156 }
1157
1158 /* transport_release_all_cmds():
1159 *
1160 *
1161 */
1162 static void transport_release_all_cmds(struct se_device *dev)
1163 {
1164 struct se_cmd *cmd, *tcmd;
1165 int bug_out = 0, t_state;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1169 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1170 se_queue_node) {
1171 t_state = cmd->t_state;
1172 list_del(&cmd->se_queue_node);
1173 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1174 flags);
1175
1176 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1177 " t_state: %u directly\n",
1178 cmd->se_tfo->get_task_tag(cmd),
1179 cmd->se_tfo->get_cmd_state(cmd), t_state);
1180
1181 transport_release_fe_cmd(cmd);
1182 bug_out = 1;
1183
1184 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1185 }
1186 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1187 #if 0
1188 if (bug_out)
1189 BUG();
1190 #endif
1191 }
1192
1193 void transport_dump_vpd_proto_id(
1194 struct t10_vpd *vpd,
1195 unsigned char *p_buf,
1196 int p_buf_len)
1197 {
1198 unsigned char buf[VPD_TMP_BUF_SIZE];
1199 int len;
1200
1201 memset(buf, 0, VPD_TMP_BUF_SIZE);
1202 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1203
1204 switch (vpd->protocol_identifier) {
1205 case 0x00:
1206 sprintf(buf+len, "Fibre Channel\n");
1207 break;
1208 case 0x10:
1209 sprintf(buf+len, "Parallel SCSI\n");
1210 break;
1211 case 0x20:
1212 sprintf(buf+len, "SSA\n");
1213 break;
1214 case 0x30:
1215 sprintf(buf+len, "IEEE 1394\n");
1216 break;
1217 case 0x40:
1218 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1219 " Protocol\n");
1220 break;
1221 case 0x50:
1222 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1223 break;
1224 case 0x60:
1225 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1226 break;
1227 case 0x70:
1228 sprintf(buf+len, "Automation/Drive Interface Transport"
1229 " Protocol\n");
1230 break;
1231 case 0x80:
1232 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1233 break;
1234 default:
1235 sprintf(buf+len, "Unknown 0x%02x\n",
1236 vpd->protocol_identifier);
1237 break;
1238 }
1239
1240 if (p_buf)
1241 strncpy(p_buf, buf, p_buf_len);
1242 else
1243 printk(KERN_INFO "%s", buf);
1244 }
1245
1246 void
1247 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1248 {
1249 /*
1250 * Check if the Protocol Identifier Valid (PIV) bit is set..
1251 *
1252 * from spc3r23.pdf section 7.5.1
1253 */
1254 if (page_83[1] & 0x80) {
1255 vpd->protocol_identifier = (page_83[0] & 0xf0);
1256 vpd->protocol_identifier_set = 1;
1257 transport_dump_vpd_proto_id(vpd, NULL, 0);
1258 }
1259 }
1260 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1261
1262 int transport_dump_vpd_assoc(
1263 struct t10_vpd *vpd,
1264 unsigned char *p_buf,
1265 int p_buf_len)
1266 {
1267 unsigned char buf[VPD_TMP_BUF_SIZE];
1268 int ret = 0;
1269 int len;
1270
1271 memset(buf, 0, VPD_TMP_BUF_SIZE);
1272 len = sprintf(buf, "T10 VPD Identifier Association: ");
1273
1274 switch (vpd->association) {
1275 case 0x00:
1276 sprintf(buf+len, "addressed logical unit\n");
1277 break;
1278 case 0x10:
1279 sprintf(buf+len, "target port\n");
1280 break;
1281 case 0x20:
1282 sprintf(buf+len, "SCSI target device\n");
1283 break;
1284 default:
1285 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1286 ret = -EINVAL;
1287 break;
1288 }
1289
1290 if (p_buf)
1291 strncpy(p_buf, buf, p_buf_len);
1292 else
1293 printk("%s", buf);
1294
1295 return ret;
1296 }
1297
1298 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1299 {
1300 /*
1301 * The VPD identification association..
1302 *
1303 * from spc3r23.pdf Section 7.6.3.1 Table 297
1304 */
1305 vpd->association = (page_83[1] & 0x30);
1306 return transport_dump_vpd_assoc(vpd, NULL, 0);
1307 }
1308 EXPORT_SYMBOL(transport_set_vpd_assoc);
1309
1310 int transport_dump_vpd_ident_type(
1311 struct t10_vpd *vpd,
1312 unsigned char *p_buf,
1313 int p_buf_len)
1314 {
1315 unsigned char buf[VPD_TMP_BUF_SIZE];
1316 int ret = 0;
1317 int len;
1318
1319 memset(buf, 0, VPD_TMP_BUF_SIZE);
1320 len = sprintf(buf, "T10 VPD Identifier Type: ");
1321
1322 switch (vpd->device_identifier_type) {
1323 case 0x00:
1324 sprintf(buf+len, "Vendor specific\n");
1325 break;
1326 case 0x01:
1327 sprintf(buf+len, "T10 Vendor ID based\n");
1328 break;
1329 case 0x02:
1330 sprintf(buf+len, "EUI-64 based\n");
1331 break;
1332 case 0x03:
1333 sprintf(buf+len, "NAA\n");
1334 break;
1335 case 0x04:
1336 sprintf(buf+len, "Relative target port identifier\n");
1337 break;
1338 case 0x08:
1339 sprintf(buf+len, "SCSI name string\n");
1340 break;
1341 default:
1342 sprintf(buf+len, "Unsupported: 0x%02x\n",
1343 vpd->device_identifier_type);
1344 ret = -EINVAL;
1345 break;
1346 }
1347
1348 if (p_buf) {
1349 if (p_buf_len < strlen(buf)+1)
1350 return -EINVAL;
1351 strncpy(p_buf, buf, p_buf_len);
1352 } else {
1353 printk("%s", buf);
1354 }
1355
1356 return ret;
1357 }
1358
1359 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1360 {
1361 /*
1362 * The VPD identifier type..
1363 *
1364 * from spc3r23.pdf Section 7.6.3.1 Table 298
1365 */
1366 vpd->device_identifier_type = (page_83[1] & 0x0f);
1367 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1368 }
1369 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1370
1371 int transport_dump_vpd_ident(
1372 struct t10_vpd *vpd,
1373 unsigned char *p_buf,
1374 int p_buf_len)
1375 {
1376 unsigned char buf[VPD_TMP_BUF_SIZE];
1377 int ret = 0;
1378
1379 memset(buf, 0, VPD_TMP_BUF_SIZE);
1380
1381 switch (vpd->device_identifier_code_set) {
1382 case 0x01: /* Binary */
1383 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1384 &vpd->device_identifier[0]);
1385 break;
1386 case 0x02: /* ASCII */
1387 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1388 &vpd->device_identifier[0]);
1389 break;
1390 case 0x03: /* UTF-8 */
1391 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1392 &vpd->device_identifier[0]);
1393 break;
1394 default:
1395 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1396 " 0x%02x", vpd->device_identifier_code_set);
1397 ret = -EINVAL;
1398 break;
1399 }
1400
1401 if (p_buf)
1402 strncpy(p_buf, buf, p_buf_len);
1403 else
1404 printk("%s", buf);
1405
1406 return ret;
1407 }
1408
1409 int
1410 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1411 {
1412 static const char hex_str[] = "0123456789abcdef";
1413 int j = 0, i = 4; /* offset to start of the identifer */
1414
1415 /*
1416 * The VPD Code Set (encoding)
1417 *
1418 * from spc3r23.pdf Section 7.6.3.1 Table 296
1419 */
1420 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1421 switch (vpd->device_identifier_code_set) {
1422 case 0x01: /* Binary */
1423 vpd->device_identifier[j++] =
1424 hex_str[vpd->device_identifier_type];
1425 while (i < (4 + page_83[3])) {
1426 vpd->device_identifier[j++] =
1427 hex_str[(page_83[i] & 0xf0) >> 4];
1428 vpd->device_identifier[j++] =
1429 hex_str[page_83[i] & 0x0f];
1430 i++;
1431 }
1432 break;
1433 case 0x02: /* ASCII */
1434 case 0x03: /* UTF-8 */
1435 while (i < (4 + page_83[3]))
1436 vpd->device_identifier[j++] = page_83[i++];
1437 break;
1438 default:
1439 break;
1440 }
1441
1442 return transport_dump_vpd_ident(vpd, NULL, 0);
1443 }
1444 EXPORT_SYMBOL(transport_set_vpd_ident);
1445
1446 static void core_setup_task_attr_emulation(struct se_device *dev)
1447 {
1448 /*
1449 * If this device is from Target_Core_Mod/pSCSI, disable the
1450 * SAM Task Attribute emulation.
1451 *
1452 * This is currently not available in upsream Linux/SCSI Target
1453 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1454 */
1455 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1456 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1457 return;
1458 }
1459
1460 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1461 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1462 " device\n", dev->transport->name,
1463 dev->transport->get_device_rev(dev));
1464 }
1465
1466 static void scsi_dump_inquiry(struct se_device *dev)
1467 {
1468 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1469 int i, device_type;
1470 /*
1471 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1472 */
1473 printk(" Vendor: ");
1474 for (i = 0; i < 8; i++)
1475 if (wwn->vendor[i] >= 0x20)
1476 printk("%c", wwn->vendor[i]);
1477 else
1478 printk(" ");
1479
1480 printk(" Model: ");
1481 for (i = 0; i < 16; i++)
1482 if (wwn->model[i] >= 0x20)
1483 printk("%c", wwn->model[i]);
1484 else
1485 printk(" ");
1486
1487 printk(" Revision: ");
1488 for (i = 0; i < 4; i++)
1489 if (wwn->revision[i] >= 0x20)
1490 printk("%c", wwn->revision[i]);
1491 else
1492 printk(" ");
1493
1494 printk("\n");
1495
1496 device_type = dev->transport->get_device_type(dev);
1497 printk(" Type: %s ", scsi_device_type(device_type));
1498 printk(" ANSI SCSI revision: %02x\n",
1499 dev->transport->get_device_rev(dev));
1500 }
1501
1502 struct se_device *transport_add_device_to_core_hba(
1503 struct se_hba *hba,
1504 struct se_subsystem_api *transport,
1505 struct se_subsystem_dev *se_dev,
1506 u32 device_flags,
1507 void *transport_dev,
1508 struct se_dev_limits *dev_limits,
1509 const char *inquiry_prod,
1510 const char *inquiry_rev)
1511 {
1512 int force_pt;
1513 struct se_device *dev;
1514
1515 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1516 if (!(dev)) {
1517 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1518 return NULL;
1519 }
1520
1521 transport_init_queue_obj(&dev->dev_queue_obj);
1522 dev->dev_flags = device_flags;
1523 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1524 dev->dev_ptr = transport_dev;
1525 dev->se_hba = hba;
1526 dev->se_sub_dev = se_dev;
1527 dev->transport = transport;
1528 atomic_set(&dev->active_cmds, 0);
1529 INIT_LIST_HEAD(&dev->dev_list);
1530 INIT_LIST_HEAD(&dev->dev_sep_list);
1531 INIT_LIST_HEAD(&dev->dev_tmr_list);
1532 INIT_LIST_HEAD(&dev->execute_task_list);
1533 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1534 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1535 INIT_LIST_HEAD(&dev->state_task_list);
1536 spin_lock_init(&dev->execute_task_lock);
1537 spin_lock_init(&dev->delayed_cmd_lock);
1538 spin_lock_init(&dev->ordered_cmd_lock);
1539 spin_lock_init(&dev->state_task_lock);
1540 spin_lock_init(&dev->dev_alua_lock);
1541 spin_lock_init(&dev->dev_reservation_lock);
1542 spin_lock_init(&dev->dev_status_lock);
1543 spin_lock_init(&dev->dev_status_thr_lock);
1544 spin_lock_init(&dev->se_port_lock);
1545 spin_lock_init(&dev->se_tmr_lock);
1546
1547 dev->queue_depth = dev_limits->queue_depth;
1548 atomic_set(&dev->depth_left, dev->queue_depth);
1549 atomic_set(&dev->dev_ordered_id, 0);
1550
1551 se_dev_set_default_attribs(dev, dev_limits);
1552
1553 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1554 dev->creation_time = get_jiffies_64();
1555 spin_lock_init(&dev->stats_lock);
1556
1557 spin_lock(&hba->device_lock);
1558 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1559 hba->dev_count++;
1560 spin_unlock(&hba->device_lock);
1561 /*
1562 * Setup the SAM Task Attribute emulation for struct se_device
1563 */
1564 core_setup_task_attr_emulation(dev);
1565 /*
1566 * Force PR and ALUA passthrough emulation with internal object use.
1567 */
1568 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1569 /*
1570 * Setup the Reservations infrastructure for struct se_device
1571 */
1572 core_setup_reservations(dev, force_pt);
1573 /*
1574 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1575 */
1576 if (core_setup_alua(dev, force_pt) < 0)
1577 goto out;
1578
1579 /*
1580 * Startup the struct se_device processing thread
1581 */
1582 dev->process_thread = kthread_run(transport_processing_thread, dev,
1583 "LIO_%s", dev->transport->name);
1584 if (IS_ERR(dev->process_thread)) {
1585 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1586 dev->transport->name);
1587 goto out;
1588 }
1589
1590 /*
1591 * Preload the initial INQUIRY const values if we are doing
1592 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1593 * passthrough because this is being provided by the backend LLD.
1594 * This is required so that transport_get_inquiry() copies these
1595 * originals once back into DEV_T10_WWN(dev) for the virtual device
1596 * setup.
1597 */
1598 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1599 if (!inquiry_prod || !inquiry_rev) {
1600 printk(KERN_ERR "All non TCM/pSCSI plugins require"
1601 " INQUIRY consts\n");
1602 goto out;
1603 }
1604
1605 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1606 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1607 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1608 }
1609 scsi_dump_inquiry(dev);
1610
1611 return dev;
1612 out:
1613 kthread_stop(dev->process_thread);
1614
1615 spin_lock(&hba->device_lock);
1616 list_del(&dev->dev_list);
1617 hba->dev_count--;
1618 spin_unlock(&hba->device_lock);
1619
1620 se_release_vpd_for_dev(dev);
1621
1622 kfree(dev);
1623
1624 return NULL;
1625 }
1626 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1627
1628 /* transport_generic_prepare_cdb():
1629 *
1630 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1631 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1632 * The point of this is since we are mapping iSCSI LUNs to
1633 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1634 * devices and HBAs for a loop.
1635 */
1636 static inline void transport_generic_prepare_cdb(
1637 unsigned char *cdb)
1638 {
1639 switch (cdb[0]) {
1640 case READ_10: /* SBC - RDProtect */
1641 case READ_12: /* SBC - RDProtect */
1642 case READ_16: /* SBC - RDProtect */
1643 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1644 case VERIFY: /* SBC - VRProtect */
1645 case VERIFY_16: /* SBC - VRProtect */
1646 case WRITE_VERIFY: /* SBC - VRProtect */
1647 case WRITE_VERIFY_12: /* SBC - VRProtect */
1648 break;
1649 default:
1650 cdb[1] &= 0x1f; /* clear logical unit number */
1651 break;
1652 }
1653 }
1654
1655 static struct se_task *
1656 transport_generic_get_task(struct se_cmd *cmd,
1657 enum dma_data_direction data_direction)
1658 {
1659 struct se_task *task;
1660 struct se_device *dev = cmd->se_dev;
1661 unsigned long flags;
1662
1663 task = dev->transport->alloc_task(cmd);
1664 if (!task) {
1665 printk(KERN_ERR "Unable to allocate struct se_task\n");
1666 return NULL;
1667 }
1668
1669 INIT_LIST_HEAD(&task->t_list);
1670 INIT_LIST_HEAD(&task->t_execute_list);
1671 INIT_LIST_HEAD(&task->t_state_list);
1672 init_completion(&task->task_stop_comp);
1673 task->task_no = cmd->t_task.t_tasks_no++;
1674 task->task_se_cmd = cmd;
1675 task->se_dev = dev;
1676 task->task_data_direction = data_direction;
1677
1678 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
1679 list_add_tail(&task->t_list, &cmd->t_task.t_task_list);
1680 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
1681
1682 return task;
1683 }
1684
1685 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1686
1687 /*
1688 * Used by fabric modules containing a local struct se_cmd within their
1689 * fabric dependent per I/O descriptor.
1690 */
1691 void transport_init_se_cmd(
1692 struct se_cmd *cmd,
1693 struct target_core_fabric_ops *tfo,
1694 struct se_session *se_sess,
1695 u32 data_length,
1696 int data_direction,
1697 int task_attr,
1698 unsigned char *sense_buffer)
1699 {
1700 INIT_LIST_HEAD(&cmd->se_lun_node);
1701 INIT_LIST_HEAD(&cmd->se_delayed_node);
1702 INIT_LIST_HEAD(&cmd->se_ordered_node);
1703
1704 INIT_LIST_HEAD(&cmd->t_task.t_mem_list);
1705 INIT_LIST_HEAD(&cmd->t_task.t_mem_bidi_list);
1706 INIT_LIST_HEAD(&cmd->t_task.t_task_list);
1707 init_completion(&cmd->t_task.transport_lun_fe_stop_comp);
1708 init_completion(&cmd->t_task.transport_lun_stop_comp);
1709 init_completion(&cmd->t_task.t_transport_stop_comp);
1710 spin_lock_init(&cmd->t_task.t_state_lock);
1711 atomic_set(&cmd->t_task.transport_dev_active, 1);
1712
1713 cmd->se_tfo = tfo;
1714 cmd->se_sess = se_sess;
1715 cmd->data_length = data_length;
1716 cmd->data_direction = data_direction;
1717 cmd->sam_task_attr = task_attr;
1718 cmd->sense_buffer = sense_buffer;
1719 }
1720 EXPORT_SYMBOL(transport_init_se_cmd);
1721
1722 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1723 {
1724 /*
1725 * Check if SAM Task Attribute emulation is enabled for this
1726 * struct se_device storage object
1727 */
1728 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1729 return 0;
1730
1731 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1732 DEBUG_STA("SAM Task Attribute ACA"
1733 " emulation is not supported\n");
1734 return -EINVAL;
1735 }
1736 /*
1737 * Used to determine when ORDERED commands should go from
1738 * Dormant to Active status.
1739 */
1740 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1741 smp_mb__after_atomic_inc();
1742 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1743 cmd->se_ordered_id, cmd->sam_task_attr,
1744 TRANSPORT(cmd->se_dev)->name);
1745 return 0;
1746 }
1747
1748 void transport_free_se_cmd(
1749 struct se_cmd *se_cmd)
1750 {
1751 if (se_cmd->se_tmr_req)
1752 core_tmr_release_req(se_cmd->se_tmr_req);
1753 /*
1754 * Check and free any extended CDB buffer that was allocated
1755 */
1756 if (se_cmd->t_task.t_task_cdb != se_cmd->t_task.__t_task_cdb)
1757 kfree(se_cmd->t_task.t_task_cdb);
1758 }
1759 EXPORT_SYMBOL(transport_free_se_cmd);
1760
1761 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1762
1763 /* transport_generic_allocate_tasks():
1764 *
1765 * Called from fabric RX Thread.
1766 */
1767 int transport_generic_allocate_tasks(
1768 struct se_cmd *cmd,
1769 unsigned char *cdb)
1770 {
1771 int ret;
1772
1773 transport_generic_prepare_cdb(cdb);
1774
1775 /*
1776 * This is needed for early exceptions.
1777 */
1778 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1779
1780 /*
1781 * Ensure that the received CDB is less than the max (252 + 8) bytes
1782 * for VARIABLE_LENGTH_CMD
1783 */
1784 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1785 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1786 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1787 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1788 return -EINVAL;
1789 }
1790 /*
1791 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1792 * allocate the additional extended CDB buffer now.. Otherwise
1793 * setup the pointer from __t_task_cdb to t_task_cdb.
1794 */
1795 if (scsi_command_size(cdb) > sizeof(cmd->t_task.__t_task_cdb)) {
1796 cmd->t_task.t_task_cdb = kzalloc(scsi_command_size(cdb),
1797 GFP_KERNEL);
1798 if (!(cmd->t_task.t_task_cdb)) {
1799 printk(KERN_ERR "Unable to allocate cmd->t_task.t_task_cdb"
1800 " %u > sizeof(cmd->t_task.__t_task_cdb): %lu ops\n",
1801 scsi_command_size(cdb),
1802 (unsigned long)sizeof(cmd->t_task.__t_task_cdb));
1803 return -ENOMEM;
1804 }
1805 } else
1806 cmd->t_task.t_task_cdb = &cmd->t_task.__t_task_cdb[0];
1807 /*
1808 * Copy the original CDB into cmd->t_task.
1809 */
1810 memcpy(cmd->t_task.t_task_cdb, cdb, scsi_command_size(cdb));
1811 /*
1812 * Setup the received CDB based on SCSI defined opcodes and
1813 * perform unit attention, persistent reservations and ALUA
1814 * checks for virtual device backends. The cmd->t_task.t_task_cdb
1815 * pointer is expected to be setup before we reach this point.
1816 */
1817 ret = transport_generic_cmd_sequencer(cmd, cdb);
1818 if (ret < 0)
1819 return ret;
1820 /*
1821 * Check for SAM Task Attribute Emulation
1822 */
1823 if (transport_check_alloc_task_attr(cmd) < 0) {
1824 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1825 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1826 return -EINVAL;
1827 }
1828 spin_lock(&cmd->se_lun->lun_sep_lock);
1829 if (cmd->se_lun->lun_sep)
1830 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1831 spin_unlock(&cmd->se_lun->lun_sep_lock);
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1835
1836 /*
1837 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1838 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1839 */
1840 int transport_generic_handle_cdb(
1841 struct se_cmd *cmd)
1842 {
1843 if (!cmd->se_lun) {
1844 dump_stack();
1845 printk(KERN_ERR "cmd->se_lun is NULL\n");
1846 return -EINVAL;
1847 }
1848
1849 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1850 return 0;
1851 }
1852 EXPORT_SYMBOL(transport_generic_handle_cdb);
1853
1854 /*
1855 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1856 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1857 * complete setup in TCM process context w/ TFO->new_cmd_map().
1858 */
1859 int transport_generic_handle_cdb_map(
1860 struct se_cmd *cmd)
1861 {
1862 if (!cmd->se_lun) {
1863 dump_stack();
1864 printk(KERN_ERR "cmd->se_lun is NULL\n");
1865 return -EINVAL;
1866 }
1867
1868 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1869 return 0;
1870 }
1871 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1872
1873 /* transport_generic_handle_data():
1874 *
1875 *
1876 */
1877 int transport_generic_handle_data(
1878 struct se_cmd *cmd)
1879 {
1880 /*
1881 * For the software fabric case, then we assume the nexus is being
1882 * failed/shutdown when signals are pending from the kthread context
1883 * caller, so we return a failure. For the HW target mode case running
1884 * in interrupt code, the signal_pending() check is skipped.
1885 */
1886 if (!in_interrupt() && signal_pending(current))
1887 return -EPERM;
1888 /*
1889 * If the received CDB has aleady been ABORTED by the generic
1890 * target engine, we now call transport_check_aborted_status()
1891 * to queue any delated TASK_ABORTED status for the received CDB to the
1892 * fabric module as we are expecting no further incoming DATA OUT
1893 * sequences at this point.
1894 */
1895 if (transport_check_aborted_status(cmd, 1) != 0)
1896 return 0;
1897
1898 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1899 return 0;
1900 }
1901 EXPORT_SYMBOL(transport_generic_handle_data);
1902
1903 /* transport_generic_handle_tmr():
1904 *
1905 *
1906 */
1907 int transport_generic_handle_tmr(
1908 struct se_cmd *cmd)
1909 {
1910 /*
1911 * This is needed for early exceptions.
1912 */
1913 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1914
1915 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1916 return 0;
1917 }
1918 EXPORT_SYMBOL(transport_generic_handle_tmr);
1919
1920 void transport_generic_free_cmd_intr(
1921 struct se_cmd *cmd)
1922 {
1923 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1924 }
1925 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1926
1927 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1928 {
1929 struct se_task *task, *task_tmp;
1930 unsigned long flags;
1931 int ret = 0;
1932
1933 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
1934 cmd->se_tfo->get_task_tag(cmd));
1935
1936 /*
1937 * No tasks remain in the execution queue
1938 */
1939 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
1940 list_for_each_entry_safe(task, task_tmp,
1941 &cmd->t_task.t_task_list, t_list) {
1942 DEBUG_TS("task_no[%d] - Processing task %p\n",
1943 task->task_no, task);
1944 /*
1945 * If the struct se_task has not been sent and is not active,
1946 * remove the struct se_task from the execution queue.
1947 */
1948 if (!atomic_read(&task->task_sent) &&
1949 !atomic_read(&task->task_active)) {
1950 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
1951 flags);
1952 transport_remove_task_from_execute_queue(task,
1953 task->se_dev);
1954
1955 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
1956 task->task_no);
1957 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
1958 continue;
1959 }
1960
1961 /*
1962 * If the struct se_task is active, sleep until it is returned
1963 * from the plugin.
1964 */
1965 if (atomic_read(&task->task_active)) {
1966 atomic_set(&task->task_stop, 1);
1967 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
1968 flags);
1969
1970 DEBUG_TS("task_no[%d] - Waiting to complete\n",
1971 task->task_no);
1972 wait_for_completion(&task->task_stop_comp);
1973 DEBUG_TS("task_no[%d] - Stopped successfully\n",
1974 task->task_no);
1975
1976 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
1977 atomic_dec(&cmd->t_task.t_task_cdbs_left);
1978
1979 atomic_set(&task->task_active, 0);
1980 atomic_set(&task->task_stop, 0);
1981 } else {
1982 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
1983 ret++;
1984 }
1985
1986 __transport_stop_task_timer(task, &flags);
1987 }
1988 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
1989
1990 return ret;
1991 }
1992
1993 /*
1994 * Handle SAM-esque emulation for generic transport request failures.
1995 */
1996 static void transport_generic_request_failure(
1997 struct se_cmd *cmd,
1998 struct se_device *dev,
1999 int complete,
2000 int sc)
2001 {
2002 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2003 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
2004 cmd->t_task.t_task_cdb[0]);
2005 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2006 " %d/%d transport_error_status: %d\n",
2007 cmd->se_tfo->get_cmd_state(cmd),
2008 cmd->t_state, cmd->deferred_t_state,
2009 cmd->transport_error_status);
2010 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2011 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2012 " t_transport_active: %d t_transport_stop: %d"
2013 " t_transport_sent: %d\n", cmd->t_task.t_task_cdbs,
2014 atomic_read(&cmd->t_task.t_task_cdbs_left),
2015 atomic_read(&cmd->t_task.t_task_cdbs_sent),
2016 atomic_read(&cmd->t_task.t_task_cdbs_ex_left),
2017 atomic_read(&cmd->t_task.t_transport_active),
2018 atomic_read(&cmd->t_task.t_transport_stop),
2019 atomic_read(&cmd->t_task.t_transport_sent));
2020
2021 transport_stop_all_task_timers(cmd);
2022
2023 if (dev)
2024 atomic_inc(&dev->depth_left);
2025 /*
2026 * For SAM Task Attribute emulation for failed struct se_cmd
2027 */
2028 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2029 transport_complete_task_attr(cmd);
2030
2031 if (complete) {
2032 transport_direct_request_timeout(cmd);
2033 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2034 }
2035
2036 switch (cmd->transport_error_status) {
2037 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2038 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2039 break;
2040 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2041 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2042 break;
2043 case PYX_TRANSPORT_INVALID_CDB_FIELD:
2044 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2045 break;
2046 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2047 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2048 break;
2049 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2050 if (!sc)
2051 transport_new_cmd_failure(cmd);
2052 /*
2053 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2054 * we force this session to fall back to session
2055 * recovery.
2056 */
2057 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2058 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2059
2060 goto check_stop;
2061 case PYX_TRANSPORT_LU_COMM_FAILURE:
2062 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2063 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2064 break;
2065 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2066 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2067 break;
2068 case PYX_TRANSPORT_WRITE_PROTECTED:
2069 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2070 break;
2071 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2072 /*
2073 * No SENSE Data payload for this case, set SCSI Status
2074 * and queue the response to $FABRIC_MOD.
2075 *
2076 * Uses linux/include/scsi/scsi.h SAM status codes defs
2077 */
2078 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2079 /*
2080 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2081 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2082 * CONFLICT STATUS.
2083 *
2084 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2085 */
2086 if (cmd->se_sess &&
2087 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2088 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2089 cmd->orig_fe_lun, 0x2C,
2090 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2091
2092 cmd->se_tfo->queue_status(cmd);
2093 goto check_stop;
2094 case PYX_TRANSPORT_USE_SENSE_REASON:
2095 /*
2096 * struct se_cmd->scsi_sense_reason already set
2097 */
2098 break;
2099 default:
2100 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2101 cmd->t_task.t_task_cdb[0],
2102 cmd->transport_error_status);
2103 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2104 break;
2105 }
2106
2107 if (!sc)
2108 transport_new_cmd_failure(cmd);
2109 else
2110 transport_send_check_condition_and_sense(cmd,
2111 cmd->scsi_sense_reason, 0);
2112 check_stop:
2113 transport_lun_remove_cmd(cmd);
2114 if (!(transport_cmd_check_stop_to_fabric(cmd)))
2115 ;
2116 }
2117
2118 static void transport_direct_request_timeout(struct se_cmd *cmd)
2119 {
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
2123 if (!(atomic_read(&cmd->t_task.t_transport_timeout))) {
2124 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2125 return;
2126 }
2127 if (atomic_read(&cmd->t_task.t_task_cdbs_timeout_left)) {
2128 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2129 return;
2130 }
2131
2132 atomic_sub(atomic_read(&cmd->t_task.t_transport_timeout),
2133 &cmd->t_task.t_se_count);
2134 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2135 }
2136
2137 static void transport_generic_request_timeout(struct se_cmd *cmd)
2138 {
2139 unsigned long flags;
2140
2141 /*
2142 * Reset cmd->t_task.t_se_count to allow transport_generic_remove()
2143 * to allow last call to free memory resources.
2144 */
2145 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
2146 if (atomic_read(&cmd->t_task.t_transport_timeout) > 1) {
2147 int tmp = (atomic_read(&cmd->t_task.t_transport_timeout) - 1);
2148
2149 atomic_sub(tmp, &cmd->t_task.t_se_count);
2150 }
2151 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2152
2153 transport_generic_remove(cmd, 0, 0);
2154 }
2155
2156 static int
2157 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2158 {
2159 unsigned char *buf;
2160
2161 buf = kzalloc(data_length, GFP_KERNEL);
2162 if (!(buf)) {
2163 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2164 return -ENOMEM;
2165 }
2166
2167 cmd->t_task.t_tasks_se_num = 0;
2168 cmd->t_task.t_task_buf = buf;
2169
2170 return 0;
2171 }
2172
2173 static inline u32 transport_lba_21(unsigned char *cdb)
2174 {
2175 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2176 }
2177
2178 static inline u32 transport_lba_32(unsigned char *cdb)
2179 {
2180 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2181 }
2182
2183 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2184 {
2185 unsigned int __v1, __v2;
2186
2187 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2188 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2189
2190 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2191 }
2192
2193 /*
2194 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2195 */
2196 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2197 {
2198 unsigned int __v1, __v2;
2199
2200 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2201 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2202
2203 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2204 }
2205
2206 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2207 {
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&se_cmd->t_task.t_state_lock, flags);
2211 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2212 spin_unlock_irqrestore(&se_cmd->t_task.t_state_lock, flags);
2213 }
2214
2215 /*
2216 * Called from interrupt context.
2217 */
2218 static void transport_task_timeout_handler(unsigned long data)
2219 {
2220 struct se_task *task = (struct se_task *)data;
2221 struct se_cmd *cmd = task->task_se_cmd;
2222 unsigned long flags;
2223
2224 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2225
2226 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
2227 if (task->task_flags & TF_STOP) {
2228 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2229 return;
2230 }
2231 task->task_flags &= ~TF_RUNNING;
2232
2233 /*
2234 * Determine if transport_complete_task() has already been called.
2235 */
2236 if (!(atomic_read(&task->task_active))) {
2237 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2238 " == 0\n", task, cmd);
2239 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2240 return;
2241 }
2242
2243 atomic_inc(&cmd->t_task.t_se_count);
2244 atomic_inc(&cmd->t_task.t_transport_timeout);
2245 cmd->t_task.t_tasks_failed = 1;
2246
2247 atomic_set(&task->task_timeout, 1);
2248 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2249 task->task_scsi_status = 1;
2250
2251 if (atomic_read(&task->task_stop)) {
2252 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2253 " == 1\n", task, cmd);
2254 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2255 complete(&task->task_stop_comp);
2256 return;
2257 }
2258
2259 if (!(atomic_dec_and_test(&cmd->t_task.t_task_cdbs_left))) {
2260 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2261 " t_task_cdbs_left\n", task, cmd);
2262 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2263 return;
2264 }
2265 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2266 task, cmd);
2267
2268 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2269 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2270
2271 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2272 }
2273
2274 /*
2275 * Called with cmd->t_task.t_state_lock held.
2276 */
2277 static void transport_start_task_timer(struct se_task *task)
2278 {
2279 struct se_device *dev = task->se_dev;
2280 int timeout;
2281
2282 if (task->task_flags & TF_RUNNING)
2283 return;
2284 /*
2285 * If the task_timeout is disabled, exit now.
2286 */
2287 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2288 if (!(timeout))
2289 return;
2290
2291 init_timer(&task->task_timer);
2292 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2293 task->task_timer.data = (unsigned long) task;
2294 task->task_timer.function = transport_task_timeout_handler;
2295
2296 task->task_flags |= TF_RUNNING;
2297 add_timer(&task->task_timer);
2298 #if 0
2299 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2300 " %d\n", task->task_se_cmd, task, timeout);
2301 #endif
2302 }
2303
2304 /*
2305 * Called with spin_lock_irq(&cmd->t_task.t_state_lock) held.
2306 */
2307 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2308 {
2309 struct se_cmd *cmd = task->task_se_cmd;
2310
2311 if (!(task->task_flags & TF_RUNNING))
2312 return;
2313
2314 task->task_flags |= TF_STOP;
2315 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, *flags);
2316
2317 del_timer_sync(&task->task_timer);
2318
2319 spin_lock_irqsave(&cmd->t_task.t_state_lock, *flags);
2320 task->task_flags &= ~TF_RUNNING;
2321 task->task_flags &= ~TF_STOP;
2322 }
2323
2324 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2325 {
2326 struct se_task *task = NULL, *task_tmp;
2327 unsigned long flags;
2328
2329 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
2330 list_for_each_entry_safe(task, task_tmp,
2331 &cmd->t_task.t_task_list, t_list)
2332 __transport_stop_task_timer(task, &flags);
2333 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2334 }
2335
2336 static inline int transport_tcq_window_closed(struct se_device *dev)
2337 {
2338 if (dev->dev_tcq_window_closed++ <
2339 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2340 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2341 } else
2342 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2343
2344 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2345 return 0;
2346 }
2347
2348 /*
2349 * Called from Fabric Module context from transport_execute_tasks()
2350 *
2351 * The return of this function determins if the tasks from struct se_cmd
2352 * get added to the execution queue in transport_execute_tasks(),
2353 * or are added to the delayed or ordered lists here.
2354 */
2355 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2356 {
2357 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2358 return 1;
2359 /*
2360 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2361 * to allow the passed struct se_cmd list of tasks to the front of the list.
2362 */
2363 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2364 atomic_inc(&cmd->se_dev->dev_hoq_count);
2365 smp_mb__after_atomic_inc();
2366 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2367 " 0x%02x, se_ordered_id: %u\n",
2368 cmd->t_task->t_task_cdb[0],
2369 cmd->se_ordered_id);
2370 return 1;
2371 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2372 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2373 list_add_tail(&cmd->se_ordered_node,
2374 &cmd->se_dev->ordered_cmd_list);
2375 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2376
2377 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2378 smp_mb__after_atomic_inc();
2379
2380 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2381 " list, se_ordered_id: %u\n",
2382 cmd->t_task.t_task_cdb[0],
2383 cmd->se_ordered_id);
2384 /*
2385 * Add ORDERED command to tail of execution queue if
2386 * no other older commands exist that need to be
2387 * completed first.
2388 */
2389 if (!(atomic_read(&cmd->se_dev->simple_cmds)))
2390 return 1;
2391 } else {
2392 /*
2393 * For SIMPLE and UNTAGGED Task Attribute commands
2394 */
2395 atomic_inc(&cmd->se_dev->simple_cmds);
2396 smp_mb__after_atomic_inc();
2397 }
2398 /*
2399 * Otherwise if one or more outstanding ORDERED task attribute exist,
2400 * add the dormant task(s) built for the passed struct se_cmd to the
2401 * execution queue and become in Active state for this struct se_device.
2402 */
2403 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2404 /*
2405 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2406 * will be drained upon completion of HEAD_OF_QUEUE task.
2407 */
2408 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2409 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2410 list_add_tail(&cmd->se_delayed_node,
2411 &cmd->se_dev->delayed_cmd_list);
2412 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2413
2414 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2415 " delayed CMD list, se_ordered_id: %u\n",
2416 cmd->t_task.t_task_cdb[0], cmd->sam_task_attr,
2417 cmd->se_ordered_id);
2418 /*
2419 * Return zero to let transport_execute_tasks() know
2420 * not to add the delayed tasks to the execution list.
2421 */
2422 return 0;
2423 }
2424 /*
2425 * Otherwise, no ORDERED task attributes exist..
2426 */
2427 return 1;
2428 }
2429
2430 /*
2431 * Called from fabric module context in transport_generic_new_cmd() and
2432 * transport_generic_process_write()
2433 */
2434 static int transport_execute_tasks(struct se_cmd *cmd)
2435 {
2436 int add_tasks;
2437
2438 if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2439 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2440 cmd->transport_error_status =
2441 PYX_TRANSPORT_LU_COMM_FAILURE;
2442 transport_generic_request_failure(cmd, NULL, 0, 1);
2443 return 0;
2444 }
2445 }
2446 /*
2447 * Call transport_cmd_check_stop() to see if a fabric exception
2448 * has occurred that prevents execution.
2449 */
2450 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2451 /*
2452 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2453 * attribute for the tasks of the received struct se_cmd CDB
2454 */
2455 add_tasks = transport_execute_task_attr(cmd);
2456 if (!add_tasks)
2457 goto execute_tasks;
2458 /*
2459 * This calls transport_add_tasks_from_cmd() to handle
2460 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2461 * (if enabled) in __transport_add_task_to_execute_queue() and
2462 * transport_add_task_check_sam_attr().
2463 */
2464 transport_add_tasks_from_cmd(cmd);
2465 }
2466 /*
2467 * Kick the execution queue for the cmd associated struct se_device
2468 * storage object.
2469 */
2470 execute_tasks:
2471 __transport_execute_tasks(cmd->se_dev);
2472 return 0;
2473 }
2474
2475 /*
2476 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2477 * from struct se_device->execute_task_list and
2478 *
2479 * Called from transport_processing_thread()
2480 */
2481 static int __transport_execute_tasks(struct se_device *dev)
2482 {
2483 int error;
2484 struct se_cmd *cmd = NULL;
2485 struct se_task *task = NULL;
2486 unsigned long flags;
2487
2488 /*
2489 * Check if there is enough room in the device and HBA queue to send
2490 * struct se_transport_task's to the selected transport.
2491 */
2492 check_depth:
2493 if (!atomic_read(&dev->depth_left))
2494 return transport_tcq_window_closed(dev);
2495
2496 dev->dev_tcq_window_closed = 0;
2497
2498 spin_lock_irq(&dev->execute_task_lock);
2499 if (list_empty(&dev->execute_task_list)) {
2500 spin_unlock_irq(&dev->execute_task_lock);
2501 return 0;
2502 }
2503 task = list_first_entry(&dev->execute_task_list,
2504 struct se_task, t_execute_list);
2505 list_del(&task->t_execute_list);
2506 atomic_set(&task->task_execute_queue, 0);
2507 atomic_dec(&dev->execute_tasks);
2508 spin_unlock_irq(&dev->execute_task_lock);
2509
2510 atomic_dec(&dev->depth_left);
2511
2512 cmd = task->task_se_cmd;
2513
2514 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
2515 atomic_set(&task->task_active, 1);
2516 atomic_set(&task->task_sent, 1);
2517 atomic_inc(&cmd->t_task.t_task_cdbs_sent);
2518
2519 if (atomic_read(&cmd->t_task.t_task_cdbs_sent) ==
2520 cmd->t_task.t_task_cdbs)
2521 atomic_set(&cmd->transport_sent, 1);
2522
2523 transport_start_task_timer(task);
2524 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2525 /*
2526 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2527 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2528 * struct se_subsystem_api->do_task() caller below.
2529 */
2530 if (cmd->transport_emulate_cdb) {
2531 error = cmd->transport_emulate_cdb(cmd);
2532 if (error != 0) {
2533 cmd->transport_error_status = error;
2534 atomic_set(&task->task_active, 0);
2535 atomic_set(&cmd->transport_sent, 0);
2536 transport_stop_tasks_for_cmd(cmd);
2537 transport_generic_request_failure(cmd, dev, 0, 1);
2538 goto check_depth;
2539 }
2540 /*
2541 * Handle the successful completion for transport_emulate_cdb()
2542 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2543 * Otherwise the caller is expected to complete the task with
2544 * proper status.
2545 */
2546 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2547 cmd->scsi_status = SAM_STAT_GOOD;
2548 task->task_scsi_status = GOOD;
2549 transport_complete_task(task, 1);
2550 }
2551 } else {
2552 /*
2553 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2554 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2555 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2556 * LUN emulation code.
2557 *
2558 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2559 * call ->do_task() directly and let the underlying TCM subsystem plugin
2560 * code handle the CDB emulation.
2561 */
2562 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2563 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2564 error = transport_emulate_control_cdb(task);
2565 else
2566 error = dev->transport->do_task(task);
2567
2568 if (error != 0) {
2569 cmd->transport_error_status = error;
2570 atomic_set(&task->task_active, 0);
2571 atomic_set(&cmd->transport_sent, 0);
2572 transport_stop_tasks_for_cmd(cmd);
2573 transport_generic_request_failure(cmd, dev, 0, 1);
2574 }
2575 }
2576
2577 goto check_depth;
2578
2579 return 0;
2580 }
2581
2582 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2583 {
2584 unsigned long flags;
2585 /*
2586 * Any unsolicited data will get dumped for failed command inside of
2587 * the fabric plugin
2588 */
2589 spin_lock_irqsave(&se_cmd->t_task.t_state_lock, flags);
2590 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2591 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2592 spin_unlock_irqrestore(&se_cmd->t_task.t_state_lock, flags);
2593
2594 se_cmd->se_tfo->new_cmd_failure(se_cmd);
2595 }
2596
2597 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2598
2599 static inline u32 transport_get_sectors_6(
2600 unsigned char *cdb,
2601 struct se_cmd *cmd,
2602 int *ret)
2603 {
2604 struct se_device *dev = cmd->se_dev;
2605
2606 /*
2607 * Assume TYPE_DISK for non struct se_device objects.
2608 * Use 8-bit sector value.
2609 */
2610 if (!dev)
2611 goto type_disk;
2612
2613 /*
2614 * Use 24-bit allocation length for TYPE_TAPE.
2615 */
2616 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2617 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2618
2619 /*
2620 * Everything else assume TYPE_DISK Sector CDB location.
2621 * Use 8-bit sector value.
2622 */
2623 type_disk:
2624 return (u32)cdb[4];
2625 }
2626
2627 static inline u32 transport_get_sectors_10(
2628 unsigned char *cdb,
2629 struct se_cmd *cmd,
2630 int *ret)
2631 {
2632 struct se_device *dev = cmd->se_dev;
2633
2634 /*
2635 * Assume TYPE_DISK for non struct se_device objects.
2636 * Use 16-bit sector value.
2637 */
2638 if (!dev)
2639 goto type_disk;
2640
2641 /*
2642 * XXX_10 is not defined in SSC, throw an exception
2643 */
2644 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2645 *ret = -EINVAL;
2646 return 0;
2647 }
2648
2649 /*
2650 * Everything else assume TYPE_DISK Sector CDB location.
2651 * Use 16-bit sector value.
2652 */
2653 type_disk:
2654 return (u32)(cdb[7] << 8) + cdb[8];
2655 }
2656
2657 static inline u32 transport_get_sectors_12(
2658 unsigned char *cdb,
2659 struct se_cmd *cmd,
2660 int *ret)
2661 {
2662 struct se_device *dev = cmd->se_dev;
2663
2664 /*
2665 * Assume TYPE_DISK for non struct se_device objects.
2666 * Use 32-bit sector value.
2667 */
2668 if (!dev)
2669 goto type_disk;
2670
2671 /*
2672 * XXX_12 is not defined in SSC, throw an exception
2673 */
2674 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2675 *ret = -EINVAL;
2676 return 0;
2677 }
2678
2679 /*
2680 * Everything else assume TYPE_DISK Sector CDB location.
2681 * Use 32-bit sector value.
2682 */
2683 type_disk:
2684 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2685 }
2686
2687 static inline u32 transport_get_sectors_16(
2688 unsigned char *cdb,
2689 struct se_cmd *cmd,
2690 int *ret)
2691 {
2692 struct se_device *dev = cmd->se_dev;
2693
2694 /*
2695 * Assume TYPE_DISK for non struct se_device objects.
2696 * Use 32-bit sector value.
2697 */
2698 if (!dev)
2699 goto type_disk;
2700
2701 /*
2702 * Use 24-bit allocation length for TYPE_TAPE.
2703 */
2704 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2705 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2706
2707 type_disk:
2708 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2709 (cdb[12] << 8) + cdb[13];
2710 }
2711
2712 /*
2713 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2714 */
2715 static inline u32 transport_get_sectors_32(
2716 unsigned char *cdb,
2717 struct se_cmd *cmd,
2718 int *ret)
2719 {
2720 /*
2721 * Assume TYPE_DISK for non struct se_device objects.
2722 * Use 32-bit sector value.
2723 */
2724 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2725 (cdb[30] << 8) + cdb[31];
2726
2727 }
2728
2729 static inline u32 transport_get_size(
2730 u32 sectors,
2731 unsigned char *cdb,
2732 struct se_cmd *cmd)
2733 {
2734 struct se_device *dev = cmd->se_dev;
2735
2736 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2737 if (cdb[1] & 1) { /* sectors */
2738 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2739 } else /* bytes */
2740 return sectors;
2741 }
2742 #if 0
2743 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2744 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2745 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2746 dev->transport->name);
2747 #endif
2748 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2749 }
2750
2751 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2752 {
2753 unsigned char result = 0;
2754 /*
2755 * MSB
2756 */
2757 if ((val[0] >= 'a') && (val[0] <= 'f'))
2758 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2759 else
2760 if ((val[0] >= 'A') && (val[0] <= 'F'))
2761 result = ((val[0] - 'A' + 10) & 0xf) << 4;
2762 else /* digit */
2763 result = ((val[0] - '0') & 0xf) << 4;
2764 /*
2765 * LSB
2766 */
2767 if ((val[1] >= 'a') && (val[1] <= 'f'))
2768 result |= ((val[1] - 'a' + 10) & 0xf);
2769 else
2770 if ((val[1] >= 'A') && (val[1] <= 'F'))
2771 result |= ((val[1] - 'A' + 10) & 0xf);
2772 else /* digit */
2773 result |= ((val[1] - '0') & 0xf);
2774
2775 return result;
2776 }
2777 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2778
2779 static void transport_xor_callback(struct se_cmd *cmd)
2780 {
2781 unsigned char *buf, *addr;
2782 struct se_mem *se_mem;
2783 unsigned int offset;
2784 int i;
2785 /*
2786 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2787 *
2788 * 1) read the specified logical block(s);
2789 * 2) transfer logical blocks from the data-out buffer;
2790 * 3) XOR the logical blocks transferred from the data-out buffer with
2791 * the logical blocks read, storing the resulting XOR data in a buffer;
2792 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2793 * blocks transferred from the data-out buffer; and
2794 * 5) transfer the resulting XOR data to the data-in buffer.
2795 */
2796 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2797 if (!(buf)) {
2798 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2799 return;
2800 }
2801 /*
2802 * Copy the scatterlist WRITE buffer located at cmd->t_task.t_mem_list
2803 * into the locally allocated *buf
2804 */
2805 transport_memcpy_se_mem_read_contig(cmd, buf, &cmd->t_task.t_mem_list);
2806 /*
2807 * Now perform the XOR against the BIDI read memory located at
2808 * cmd->t_task.t_mem_bidi_list
2809 */
2810
2811 offset = 0;
2812 list_for_each_entry(se_mem, &cmd->t_task.t_mem_bidi_list, se_list) {
2813 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2814 if (!(addr))
2815 goto out;
2816
2817 for (i = 0; i < se_mem->se_len; i++)
2818 *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2819
2820 offset += se_mem->se_len;
2821 kunmap_atomic(addr, KM_USER0);
2822 }
2823 out:
2824 kfree(buf);
2825 }
2826
2827 /*
2828 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2829 */
2830 static int transport_get_sense_data(struct se_cmd *cmd)
2831 {
2832 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2833 struct se_device *dev;
2834 struct se_task *task = NULL, *task_tmp;
2835 unsigned long flags;
2836 u32 offset = 0;
2837
2838 WARN_ON(!cmd->se_lun);
2839
2840 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
2841 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2842 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2843 return 0;
2844 }
2845
2846 list_for_each_entry_safe(task, task_tmp,
2847 &cmd->t_task.t_task_list, t_list) {
2848
2849 if (!task->task_sense)
2850 continue;
2851
2852 dev = task->se_dev;
2853 if (!(dev))
2854 continue;
2855
2856 if (!dev->transport->get_sense_buffer) {
2857 printk(KERN_ERR "dev->transport->get_sense_buffer"
2858 " is NULL\n");
2859 continue;
2860 }
2861
2862 sense_buffer = dev->transport->get_sense_buffer(task);
2863 if (!(sense_buffer)) {
2864 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
2865 " sense buffer for task with sense\n",
2866 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2867 continue;
2868 }
2869 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2870
2871 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2872 TRANSPORT_SENSE_BUFFER);
2873
2874 memcpy(&buffer[offset], sense_buffer,
2875 TRANSPORT_SENSE_BUFFER);
2876 cmd->scsi_status = task->task_scsi_status;
2877 /* Automatically padded */
2878 cmd->scsi_sense_length =
2879 (TRANSPORT_SENSE_BUFFER + offset);
2880
2881 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2882 " and sense\n",
2883 dev->se_hba->hba_id, dev->transport->name,
2884 cmd->scsi_status);
2885 return 0;
2886 }
2887 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
2888
2889 return -1;
2890 }
2891
2892 static int transport_allocate_resources(struct se_cmd *cmd)
2893 {
2894 u32 length = cmd->data_length;
2895
2896 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
2897 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
2898 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
2899 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
2900 return transport_generic_allocate_buf(cmd, length);
2901 else
2902 return 0;
2903 }
2904
2905 static int
2906 transport_handle_reservation_conflict(struct se_cmd *cmd)
2907 {
2908 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2909 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2910 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2911 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2912 /*
2913 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2914 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2915 * CONFLICT STATUS.
2916 *
2917 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2918 */
2919 if (cmd->se_sess &&
2920 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2921 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2922 cmd->orig_fe_lun, 0x2C,
2923 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2924 return -EINVAL;
2925 }
2926
2927 /* transport_generic_cmd_sequencer():
2928 *
2929 * Generic Command Sequencer that should work for most DAS transport
2930 * drivers.
2931 *
2932 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2933 * RX Thread.
2934 *
2935 * FIXME: Need to support other SCSI OPCODES where as well.
2936 */
2937 static int transport_generic_cmd_sequencer(
2938 struct se_cmd *cmd,
2939 unsigned char *cdb)
2940 {
2941 struct se_device *dev = cmd->se_dev;
2942 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2943 int ret = 0, sector_ret = 0, passthrough;
2944 u32 sectors = 0, size = 0, pr_reg_type = 0;
2945 u16 service_action;
2946 u8 alua_ascq = 0;
2947 /*
2948 * Check for an existing UNIT ATTENTION condition
2949 */
2950 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2951 cmd->transport_wait_for_tasks =
2952 &transport_nop_wait_for_tasks;
2953 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2954 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2955 return -EINVAL;
2956 }
2957 /*
2958 * Check status of Asymmetric Logical Unit Assignment port
2959 */
2960 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2961 if (ret != 0) {
2962 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2963 /*
2964 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2965 * The ALUA additional sense code qualifier (ASCQ) is determined
2966 * by the ALUA primary or secondary access state..
2967 */
2968 if (ret > 0) {
2969 #if 0
2970 printk(KERN_INFO "[%s]: ALUA TG Port not available,"
2971 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2972 cmd->se_tfo->get_fabric_name(), alua_ascq);
2973 #endif
2974 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2975 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2976 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2977 return -EINVAL;
2978 }
2979 goto out_invalid_cdb_field;
2980 }
2981 /*
2982 * Check status for SPC-3 Persistent Reservations
2983 */
2984 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2985 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2986 cmd, cdb, pr_reg_type) != 0)
2987 return transport_handle_reservation_conflict(cmd);
2988 /*
2989 * This means the CDB is allowed for the SCSI Initiator port
2990 * when said port is *NOT* holding the legacy SPC-2 or
2991 * SPC-3 Persistent Reservation.
2992 */
2993 }
2994
2995 switch (cdb[0]) {
2996 case READ_6:
2997 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2998 if (sector_ret)
2999 goto out_unsupported_cdb;
3000 size = transport_get_size(sectors, cdb, cmd);
3001 cmd->transport_split_cdb = &split_cdb_XX_6;
3002 cmd->t_task.t_task_lba = transport_lba_21(cdb);
3003 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3004 break;
3005 case READ_10:
3006 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3007 if (sector_ret)
3008 goto out_unsupported_cdb;
3009 size = transport_get_size(sectors, cdb, cmd);
3010 cmd->transport_split_cdb = &split_cdb_XX_10;
3011 cmd->t_task.t_task_lba = transport_lba_32(cdb);
3012 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3013 break;
3014 case READ_12:
3015 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3016 if (sector_ret)
3017 goto out_unsupported_cdb;
3018 size = transport_get_size(sectors, cdb, cmd);
3019 cmd->transport_split_cdb = &split_cdb_XX_12;
3020 cmd->t_task.t_task_lba = transport_lba_32(cdb);
3021 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3022 break;
3023 case READ_16:
3024 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3025 if (sector_ret)
3026 goto out_unsupported_cdb;
3027 size = transport_get_size(sectors, cdb, cmd);
3028 cmd->transport_split_cdb = &split_cdb_XX_16;
3029 cmd->t_task.t_task_lba = transport_lba_64(cdb);
3030 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3031 break;
3032 case WRITE_6:
3033 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3034 if (sector_ret)
3035 goto out_unsupported_cdb;
3036 size = transport_get_size(sectors, cdb, cmd);
3037 cmd->transport_split_cdb = &split_cdb_XX_6;
3038 cmd->t_task.t_task_lba = transport_lba_21(cdb);
3039 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3040 break;
3041 case WRITE_10:
3042 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3043 if (sector_ret)
3044 goto out_unsupported_cdb;
3045 size = transport_get_size(sectors, cdb, cmd);
3046 cmd->transport_split_cdb = &split_cdb_XX_10;
3047 cmd->t_task.t_task_lba = transport_lba_32(cdb);
3048 cmd->t_task.t_tasks_fua = (cdb[1] & 0x8);
3049 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3050 break;
3051 case WRITE_12:
3052 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3053 if (sector_ret)
3054 goto out_unsupported_cdb;
3055 size = transport_get_size(sectors, cdb, cmd);
3056 cmd->transport_split_cdb = &split_cdb_XX_12;
3057 cmd->t_task.t_task_lba = transport_lba_32(cdb);
3058 cmd->t_task.t_tasks_fua = (cdb[1] & 0x8);
3059 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3060 break;
3061 case WRITE_16:
3062 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3063 if (sector_ret)
3064 goto out_unsupported_cdb;
3065 size = transport_get_size(sectors, cdb, cmd);
3066 cmd->transport_split_cdb = &split_cdb_XX_16;
3067 cmd->t_task.t_task_lba = transport_lba_64(cdb);
3068 cmd->t_task.t_tasks_fua = (cdb[1] & 0x8);
3069 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3070 break;
3071 case XDWRITEREAD_10:
3072 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3073 !(cmd->t_task.t_tasks_bidi))
3074 goto out_invalid_cdb_field;
3075 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3076 if (sector_ret)
3077 goto out_unsupported_cdb;
3078 size = transport_get_size(sectors, cdb, cmd);
3079 cmd->transport_split_cdb = &split_cdb_XX_10;
3080 cmd->t_task.t_task_lba = transport_lba_32(cdb);
3081 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3082 passthrough = (dev->transport->transport_type ==
3083 TRANSPORT_PLUGIN_PHBA_PDEV);
3084 /*
3085 * Skip the remaining assignments for TCM/PSCSI passthrough
3086 */
3087 if (passthrough)
3088 break;
3089 /*
3090 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3091 */
3092 cmd->transport_complete_callback = &transport_xor_callback;
3093 cmd->t_task.t_tasks_fua = (cdb[1] & 0x8);
3094 break;
3095 case VARIABLE_LENGTH_CMD:
3096 service_action = get_unaligned_be16(&cdb[8]);
3097 /*
3098 * Determine if this is TCM/PSCSI device and we should disable
3099 * internal emulation for this CDB.
3100 */
3101 passthrough = (dev->transport->transport_type ==
3102 TRANSPORT_PLUGIN_PHBA_PDEV);
3103
3104 switch (service_action) {
3105 case XDWRITEREAD_32:
3106 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3107 if (sector_ret)
3108 goto out_unsupported_cdb;
3109 size = transport_get_size(sectors, cdb, cmd);
3110 /*
3111 * Use WRITE_32 and READ_32 opcodes for the emulated
3112 * XDWRITE_READ_32 logic.
3113 */
3114 cmd->transport_split_cdb = &split_cdb_XX_32;
3115 cmd->t_task.t_task_lba = transport_lba_64_ext(cdb);
3116 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3117
3118 /*
3119 * Skip the remaining assignments for TCM/PSCSI passthrough
3120 */
3121 if (passthrough)
3122 break;
3123
3124 /*
3125 * Setup BIDI XOR callback to be run during
3126 * transport_generic_complete_ok()
3127 */
3128 cmd->transport_complete_callback = &transport_xor_callback;
3129 cmd->t_task.t_tasks_fua = (cdb[10] & 0x8);
3130 break;
3131 case WRITE_SAME_32:
3132 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3133 if (sector_ret)
3134 goto out_unsupported_cdb;
3135 size = transport_get_size(sectors, cdb, cmd);
3136 cmd->t_task.t_task_lba = get_unaligned_be64(&cdb[12]);
3137 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3138
3139 /*
3140 * Skip the remaining assignments for TCM/PSCSI passthrough
3141 */
3142 if (passthrough)
3143 break;
3144
3145 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3146 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3147 " bits not supported for Block Discard"
3148 " Emulation\n");
3149 goto out_invalid_cdb_field;
3150 }
3151 /*
3152 * Currently for the emulated case we only accept
3153 * tpws with the UNMAP=1 bit set.
3154 */
3155 if (!(cdb[10] & 0x08)) {
3156 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3157 " supported for Block Discard Emulation\n");
3158 goto out_invalid_cdb_field;
3159 }
3160 break;
3161 default:
3162 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3163 " 0x%04x not supported\n", service_action);
3164 goto out_unsupported_cdb;
3165 }
3166 break;
3167 case MAINTENANCE_IN:
3168 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3169 /* MAINTENANCE_IN from SCC-2 */
3170 /*
3171 * Check for emulated MI_REPORT_TARGET_PGS.
3172 */
3173 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3174 cmd->transport_emulate_cdb =
3175 (su_dev->t10_alua.alua_type ==
3176 SPC3_ALUA_EMULATED) ?
3177 core_emulate_report_target_port_groups :
3178 NULL;
3179 }
3180 size = (cdb[6] << 24) | (cdb[7] << 16) |
3181 (cdb[8] << 8) | cdb[9];
3182 } else {
3183 /* GPCMD_SEND_KEY from multi media commands */
3184 size = (cdb[8] << 8) + cdb[9];
3185 }
3186 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3187 break;
3188 case MODE_SELECT:
3189 size = cdb[4];
3190 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3191 break;
3192 case MODE_SELECT_10:
3193 size = (cdb[7] << 8) + cdb[8];
3194 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3195 break;
3196 case MODE_SENSE:
3197 size = cdb[4];
3198 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3199 break;
3200 case MODE_SENSE_10:
3201 case GPCMD_READ_BUFFER_CAPACITY:
3202 case GPCMD_SEND_OPC:
3203 case LOG_SELECT:
3204 case LOG_SENSE:
3205 size = (cdb[7] << 8) + cdb[8];
3206 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3207 break;
3208 case READ_BLOCK_LIMITS:
3209 size = READ_BLOCK_LEN;
3210 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3211 break;
3212 case GPCMD_GET_CONFIGURATION:
3213 case GPCMD_READ_FORMAT_CAPACITIES:
3214 case GPCMD_READ_DISC_INFO:
3215 case GPCMD_READ_TRACK_RZONE_INFO:
3216 size = (cdb[7] << 8) + cdb[8];
3217 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3218 break;
3219 case PERSISTENT_RESERVE_IN:
3220 case PERSISTENT_RESERVE_OUT:
3221 cmd->transport_emulate_cdb =
3222 (su_dev->t10_pr.res_type ==
3223 SPC3_PERSISTENT_RESERVATIONS) ?
3224 core_scsi3_emulate_pr : NULL;
3225 size = (cdb[7] << 8) + cdb[8];
3226 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3227 break;
3228 case GPCMD_MECHANISM_STATUS:
3229 case GPCMD_READ_DVD_STRUCTURE:
3230 size = (cdb[8] << 8) + cdb[9];
3231 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3232 break;
3233 case READ_POSITION:
3234 size = READ_POSITION_LEN;
3235 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3236 break;
3237 case MAINTENANCE_OUT:
3238 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3239 /* MAINTENANCE_OUT from SCC-2
3240 *
3241 * Check for emulated MO_SET_TARGET_PGS.
3242 */
3243 if (cdb[1] == MO_SET_TARGET_PGS) {
3244 cmd->transport_emulate_cdb =
3245 (su_dev->t10_alua.alua_type ==
3246 SPC3_ALUA_EMULATED) ?
3247 core_emulate_set_target_port_groups :
3248 NULL;
3249 }
3250
3251 size = (cdb[6] << 24) | (cdb[7] << 16) |
3252 (cdb[8] << 8) | cdb[9];
3253 } else {
3254 /* GPCMD_REPORT_KEY from multi media commands */
3255 size = (cdb[8] << 8) + cdb[9];
3256 }
3257 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3258 break;
3259 case INQUIRY:
3260 size = (cdb[3] << 8) + cdb[4];
3261 /*
3262 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3263 * See spc4r17 section 5.3
3264 */
3265 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3266 cmd->sam_task_attr = MSG_HEAD_TAG;
3267 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3268 break;
3269 case READ_BUFFER:
3270 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3271 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3272 break;
3273 case READ_CAPACITY:
3274 size = READ_CAP_LEN;
3275 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3276 break;
3277 case READ_MEDIA_SERIAL_NUMBER:
3278 case SECURITY_PROTOCOL_IN:
3279 case SECURITY_PROTOCOL_OUT:
3280 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3281 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3282 break;
3283 case SERVICE_ACTION_IN:
3284 case ACCESS_CONTROL_IN:
3285 case ACCESS_CONTROL_OUT:
3286 case EXTENDED_COPY:
3287 case READ_ATTRIBUTE:
3288 case RECEIVE_COPY_RESULTS:
3289 case WRITE_ATTRIBUTE:
3290 size = (cdb[10] << 24) | (cdb[11] << 16) |
3291 (cdb[12] << 8) | cdb[13];
3292 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3293 break;
3294 case RECEIVE_DIAGNOSTIC:
3295 case SEND_DIAGNOSTIC:
3296 size = (cdb[3] << 8) | cdb[4];
3297 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3298 break;
3299 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3300 #if 0
3301 case GPCMD_READ_CD:
3302 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3303 size = (2336 * sectors);
3304 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3305 break;
3306 #endif
3307 case READ_TOC:
3308 size = cdb[8];
3309 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3310 break;
3311 case REQUEST_SENSE:
3312 size = cdb[4];
3313 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3314 break;
3315 case READ_ELEMENT_STATUS:
3316 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3317 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3318 break;
3319 case WRITE_BUFFER:
3320 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3321 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3322 break;
3323 case RESERVE:
3324 case RESERVE_10:
3325 /*
3326 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3327 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3328 */
3329 if (cdb[0] == RESERVE_10)
3330 size = (cdb[7] << 8) | cdb[8];
3331 else
3332 size = cmd->data_length;
3333
3334 /*
3335 * Setup the legacy emulated handler for SPC-2 and
3336 * >= SPC-3 compatible reservation handling (CRH=1)
3337 * Otherwise, we assume the underlying SCSI logic is
3338 * is running in SPC_PASSTHROUGH, and wants reservations
3339 * emulation disabled.
3340 */
3341 cmd->transport_emulate_cdb =
3342 (su_dev->t10_pr.res_type !=
3343 SPC_PASSTHROUGH) ?
3344 core_scsi2_emulate_crh : NULL;
3345 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3346 break;
3347 case RELEASE:
3348 case RELEASE_10:
3349 /*
3350 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3351 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3352 */
3353 if (cdb[0] == RELEASE_10)
3354 size = (cdb[7] << 8) | cdb[8];
3355 else
3356 size = cmd->data_length;
3357
3358 cmd->transport_emulate_cdb =
3359 (su_dev->t10_pr.res_type !=
3360 SPC_PASSTHROUGH) ?
3361 core_scsi2_emulate_crh : NULL;
3362 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3363 break;
3364 case SYNCHRONIZE_CACHE:
3365 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3366 /*
3367 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3368 */
3369 if (cdb[0] == SYNCHRONIZE_CACHE) {
3370 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3371 cmd->t_task.t_task_lba = transport_lba_32(cdb);
3372 } else {
3373 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3374 cmd->t_task.t_task_lba = transport_lba_64(cdb);
3375 }
3376 if (sector_ret)
3377 goto out_unsupported_cdb;
3378
3379 size = transport_get_size(sectors, cdb, cmd);
3380 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3381
3382 /*
3383 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3384 */
3385 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3386 break;
3387 /*
3388 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3389 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3390 */
3391 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3392 /*
3393 * Check to ensure that LBA + Range does not exceed past end of
3394 * device.
3395 */
3396 if (transport_get_sectors(cmd) < 0)
3397 goto out_invalid_cdb_field;
3398 break;
3399 case UNMAP:
3400 size = get_unaligned_be16(&cdb[7]);
3401 passthrough = (dev->transport->transport_type ==
3402 TRANSPORT_PLUGIN_PHBA_PDEV);
3403 /*
3404 * Determine if the received UNMAP used to for direct passthrough
3405 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3406 * signaling the use of internal transport_generic_unmap() emulation
3407 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3408 * subsystem plugin backstores.
3409 */
3410 if (!(passthrough))
3411 cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3412
3413 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3414 break;
3415 case WRITE_SAME_16:
3416 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3417 if (sector_ret)
3418 goto out_unsupported_cdb;
3419 size = transport_get_size(sectors, cdb, cmd);
3420 cmd->t_task.t_task_lba = get_unaligned_be64(&cdb[2]);
3421 passthrough = (dev->transport->transport_type ==
3422 TRANSPORT_PLUGIN_PHBA_PDEV);
3423 /*
3424 * Determine if the received WRITE_SAME_16 is used to for direct
3425 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3426 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3427 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3428 * TCM/FILEIO subsystem plugin backstores.
3429 */
3430 if (!(passthrough)) {
3431 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3432 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3433 " bits not supported for Block Discard"
3434 " Emulation\n");
3435 goto out_invalid_cdb_field;
3436 }
3437 /*
3438 * Currently for the emulated case we only accept
3439 * tpws with the UNMAP=1 bit set.
3440 */
3441 if (!(cdb[1] & 0x08)) {
3442 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3443 " supported for Block Discard Emulation\n");
3444 goto out_invalid_cdb_field;
3445 }
3446 }
3447 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3448 break;
3449 case ALLOW_MEDIUM_REMOVAL:
3450 case GPCMD_CLOSE_TRACK:
3451 case ERASE:
3452 case INITIALIZE_ELEMENT_STATUS:
3453 case GPCMD_LOAD_UNLOAD:
3454 case REZERO_UNIT:
3455 case SEEK_10:
3456 case GPCMD_SET_SPEED:
3457 case SPACE:
3458 case START_STOP:
3459 case TEST_UNIT_READY:
3460 case VERIFY:
3461 case WRITE_FILEMARKS:
3462 case MOVE_MEDIUM:
3463 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3464 break;
3465 case REPORT_LUNS:
3466 cmd->transport_emulate_cdb =
3467 transport_core_report_lun_response;
3468 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3469 /*
3470 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3471 * See spc4r17 section 5.3
3472 */
3473 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3474 cmd->sam_task_attr = MSG_HEAD_TAG;
3475 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3476 break;
3477 default:
3478 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3479 " 0x%02x, sending CHECK_CONDITION.\n",
3480 cmd->se_tfo->get_fabric_name(), cdb[0]);
3481 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3482 goto out_unsupported_cdb;
3483 }
3484
3485 if (size != cmd->data_length) {
3486 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3487 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3488 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3489 cmd->data_length, size, cdb[0]);
3490
3491 cmd->cmd_spdtl = size;
3492
3493 if (cmd->data_direction == DMA_TO_DEVICE) {
3494 printk(KERN_ERR "Rejecting underflow/overflow"
3495 " WRITE data\n");
3496 goto out_invalid_cdb_field;
3497 }
3498 /*
3499 * Reject READ_* or WRITE_* with overflow/underflow for
3500 * type SCF_SCSI_DATA_SG_IO_CDB.
3501 */
3502 if (!(ret) && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3503 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3504 " CDB on non 512-byte sector setup subsystem"
3505 " plugin: %s\n", dev->transport->name);
3506 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3507 goto out_invalid_cdb_field;
3508 }
3509
3510 if (size > cmd->data_length) {
3511 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3512 cmd->residual_count = (size - cmd->data_length);
3513 } else {
3514 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3515 cmd->residual_count = (cmd->data_length - size);
3516 }
3517 cmd->data_length = size;
3518 }
3519
3520 transport_set_supported_SAM_opcode(cmd);
3521 return ret;
3522
3523 out_unsupported_cdb:
3524 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3525 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3526 return -EINVAL;
3527 out_invalid_cdb_field:
3528 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3529 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3530 return -EINVAL;
3531 }
3532
3533 static inline void transport_release_tasks(struct se_cmd *);
3534
3535 /*
3536 * This function will copy a contiguous *src buffer into a destination
3537 * struct scatterlist array.
3538 */
3539 static void transport_memcpy_write_contig(
3540 struct se_cmd *cmd,
3541 struct scatterlist *sg_d,
3542 unsigned char *src)
3543 {
3544 u32 i = 0, length = 0, total_length = cmd->data_length;
3545 void *dst;
3546
3547 while (total_length) {
3548 length = sg_d[i].length;
3549
3550 if (length > total_length)
3551 length = total_length;
3552
3553 dst = sg_virt(&sg_d[i]);
3554
3555 memcpy(dst, src, length);
3556
3557 if (!(total_length -= length))
3558 return;
3559
3560 src += length;
3561 i++;
3562 }
3563 }
3564
3565 /*
3566 * This function will copy a struct scatterlist array *sg_s into a destination
3567 * contiguous *dst buffer.
3568 */
3569 static void transport_memcpy_read_contig(
3570 struct se_cmd *cmd,
3571 unsigned char *dst,
3572 struct scatterlist *sg_s)
3573 {
3574 u32 i = 0, length = 0, total_length = cmd->data_length;
3575 void *src;
3576
3577 while (total_length) {
3578 length = sg_s[i].length;
3579
3580 if (length > total_length)
3581 length = total_length;
3582
3583 src = sg_virt(&sg_s[i]);
3584
3585 memcpy(dst, src, length);
3586
3587 if (!(total_length -= length))
3588 return;
3589
3590 dst += length;
3591 i++;
3592 }
3593 }
3594
3595 static void transport_memcpy_se_mem_read_contig(
3596 struct se_cmd *cmd,
3597 unsigned char *dst,
3598 struct list_head *se_mem_list)
3599 {
3600 struct se_mem *se_mem;
3601 void *src;
3602 u32 length = 0, total_length = cmd->data_length;
3603
3604 list_for_each_entry(se_mem, se_mem_list, se_list) {
3605 length = se_mem->se_len;
3606
3607 if (length > total_length)
3608 length = total_length;
3609
3610 src = page_address(se_mem->se_page) + se_mem->se_off;
3611
3612 memcpy(dst, src, length);
3613
3614 if (!(total_length -= length))
3615 return;
3616
3617 dst += length;
3618 }
3619 }
3620
3621 /*
3622 * Called from transport_generic_complete_ok() and
3623 * transport_generic_request_failure() to determine which dormant/delayed
3624 * and ordered cmds need to have their tasks added to the execution queue.
3625 */
3626 static void transport_complete_task_attr(struct se_cmd *cmd)
3627 {
3628 struct se_device *dev = cmd->se_dev;
3629 struct se_cmd *cmd_p, *cmd_tmp;
3630 int new_active_tasks = 0;
3631
3632 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3633 atomic_dec(&dev->simple_cmds);
3634 smp_mb__after_atomic_dec();
3635 dev->dev_cur_ordered_id++;
3636 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3637 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3638 cmd->se_ordered_id);
3639 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3640 atomic_dec(&dev->dev_hoq_count);
3641 smp_mb__after_atomic_dec();
3642 dev->dev_cur_ordered_id++;
3643 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3644 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3645 cmd->se_ordered_id);
3646 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3647 spin_lock(&dev->ordered_cmd_lock);
3648 list_del(&cmd->se_ordered_node);
3649 atomic_dec(&dev->dev_ordered_sync);
3650 smp_mb__after_atomic_dec();
3651 spin_unlock(&dev->ordered_cmd_lock);
3652
3653 dev->dev_cur_ordered_id++;
3654 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3655 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3656 }
3657 /*
3658 * Process all commands up to the last received
3659 * ORDERED task attribute which requires another blocking
3660 * boundary
3661 */
3662 spin_lock(&dev->delayed_cmd_lock);
3663 list_for_each_entry_safe(cmd_p, cmd_tmp,
3664 &dev->delayed_cmd_list, se_delayed_node) {
3665
3666 list_del(&cmd_p->se_delayed_node);
3667 spin_unlock(&dev->delayed_cmd_lock);
3668
3669 DEBUG_STA("Calling add_tasks() for"
3670 " cmd_p: 0x%02x Task Attr: 0x%02x"
3671 " Dormant -> Active, se_ordered_id: %u\n",
3672 T_TASK(cmd_p)->t_task_cdb[0],
3673 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3674
3675 transport_add_tasks_from_cmd(cmd_p);
3676 new_active_tasks++;
3677
3678 spin_lock(&dev->delayed_cmd_lock);
3679 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3680 break;
3681 }
3682 spin_unlock(&dev->delayed_cmd_lock);
3683 /*
3684 * If new tasks have become active, wake up the transport thread
3685 * to do the processing of the Active tasks.
3686 */
3687 if (new_active_tasks != 0)
3688 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3689 }
3690
3691 static void transport_generic_complete_ok(struct se_cmd *cmd)
3692 {
3693 int reason = 0;
3694 /*
3695 * Check if we need to move delayed/dormant tasks from cmds on the
3696 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3697 * Attribute.
3698 */
3699 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3700 transport_complete_task_attr(cmd);
3701 /*
3702 * Check if we need to retrieve a sense buffer from
3703 * the struct se_cmd in question.
3704 */
3705 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3706 if (transport_get_sense_data(cmd) < 0)
3707 reason = TCM_NON_EXISTENT_LUN;
3708
3709 /*
3710 * Only set when an struct se_task->task_scsi_status returned
3711 * a non GOOD status.
3712 */
3713 if (cmd->scsi_status) {
3714 transport_send_check_condition_and_sense(
3715 cmd, reason, 1);
3716 transport_lun_remove_cmd(cmd);
3717 transport_cmd_check_stop_to_fabric(cmd);
3718 return;
3719 }
3720 }
3721 /*
3722 * Check for a callback, used by amongst other things
3723 * XDWRITE_READ_10 emulation.
3724 */
3725 if (cmd->transport_complete_callback)
3726 cmd->transport_complete_callback(cmd);
3727
3728 switch (cmd->data_direction) {
3729 case DMA_FROM_DEVICE:
3730 spin_lock(&cmd->se_lun->lun_sep_lock);
3731 if (cmd->se_lun->lun_sep) {
3732 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3733 cmd->data_length;
3734 }
3735 spin_unlock(&cmd->se_lun->lun_sep_lock);
3736 /*
3737 * If enabled by TCM fabirc module pre-registered SGL
3738 * memory, perform the memcpy() from the TCM internal
3739 * contigious buffer back to the original SGL.
3740 */
3741 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3742 transport_memcpy_write_contig(cmd,
3743 cmd->t_task.t_task_pt_sgl,
3744 cmd->t_task.t_task_buf);
3745
3746 cmd->se_tfo->queue_data_in(cmd);
3747 break;
3748 case DMA_TO_DEVICE:
3749 spin_lock(&cmd->se_lun->lun_sep_lock);
3750 if (cmd->se_lun->lun_sep) {
3751 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3752 cmd->data_length;
3753 }
3754 spin_unlock(&cmd->se_lun->lun_sep_lock);
3755 /*
3756 * Check if we need to send READ payload for BIDI-COMMAND
3757 */
3758 if (!list_empty(&cmd->t_task.t_mem_bidi_list)) {
3759 spin_lock(&cmd->se_lun->lun_sep_lock);
3760 if (cmd->se_lun->lun_sep) {
3761 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3762 cmd->data_length;
3763 }
3764 spin_unlock(&cmd->se_lun->lun_sep_lock);
3765 cmd->se_tfo->queue_data_in(cmd);
3766 break;
3767 }
3768 /* Fall through for DMA_TO_DEVICE */
3769 case DMA_NONE:
3770 cmd->se_tfo->queue_status(cmd);
3771 break;
3772 default:
3773 break;
3774 }
3775
3776 transport_lun_remove_cmd(cmd);
3777 transport_cmd_check_stop_to_fabric(cmd);
3778 }
3779
3780 static void transport_free_dev_tasks(struct se_cmd *cmd)
3781 {
3782 struct se_task *task, *task_tmp;
3783 unsigned long flags;
3784
3785 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
3786 list_for_each_entry_safe(task, task_tmp,
3787 &cmd->t_task.t_task_list, t_list) {
3788 if (atomic_read(&task->task_active))
3789 continue;
3790
3791 kfree(task->task_sg_bidi);
3792 kfree(task->task_sg);
3793
3794 list_del(&task->t_list);
3795
3796 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3797 if (task->se_dev)
3798 task->se_dev->transport->free_task(task);
3799 else
3800 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3801 task->task_no);
3802 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
3803 }
3804 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3805 }
3806
3807 static inline void transport_free_pages(struct se_cmd *cmd)
3808 {
3809 struct se_mem *se_mem, *se_mem_tmp;
3810 int free_page = 1;
3811
3812 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3813 free_page = 0;
3814 if (cmd->se_dev->transport->do_se_mem_map)
3815 free_page = 0;
3816
3817 if (cmd->t_task.t_task_buf) {
3818 kfree(cmd->t_task.t_task_buf);
3819 cmd->t_task.t_task_buf = NULL;
3820 return;
3821 }
3822
3823 /*
3824 * Caller will handle releasing of struct se_mem.
3825 */
3826 if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3827 return;
3828
3829 list_for_each_entry_safe(se_mem, se_mem_tmp,
3830 &cmd->t_task.t_mem_list, se_list) {
3831 /*
3832 * We only release call __free_page(struct se_mem->se_page) when
3833 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3834 */
3835 if (free_page)
3836 __free_page(se_mem->se_page);
3837
3838 list_del(&se_mem->se_list);
3839 kmem_cache_free(se_mem_cache, se_mem);
3840 }
3841 cmd->t_task.t_tasks_se_num = 0;
3842
3843 list_for_each_entry_safe(se_mem, se_mem_tmp,
3844 &cmd->t_task.t_mem_bidi_list, se_list) {
3845 /*
3846 * We only release call __free_page(struct se_mem->se_page) when
3847 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3848 */
3849 if (free_page)
3850 __free_page(se_mem->se_page);
3851
3852 list_del(&se_mem->se_list);
3853 kmem_cache_free(se_mem_cache, se_mem);
3854 }
3855 cmd->t_task.t_tasks_se_bidi_num = 0;
3856 }
3857
3858 static inline void transport_release_tasks(struct se_cmd *cmd)
3859 {
3860 transport_free_dev_tasks(cmd);
3861 }
3862
3863 static inline int transport_dec_and_check(struct se_cmd *cmd)
3864 {
3865 unsigned long flags;
3866
3867 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
3868 if (atomic_read(&cmd->t_task.t_fe_count)) {
3869 if (!(atomic_dec_and_test(&cmd->t_task.t_fe_count))) {
3870 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
3871 flags);
3872 return 1;
3873 }
3874 }
3875
3876 if (atomic_read(&cmd->t_task.t_se_count)) {
3877 if (!(atomic_dec_and_test(&cmd->t_task.t_se_count))) {
3878 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
3879 flags);
3880 return 1;
3881 }
3882 }
3883 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3884
3885 return 0;
3886 }
3887
3888 static void transport_release_fe_cmd(struct se_cmd *cmd)
3889 {
3890 unsigned long flags;
3891
3892 if (transport_dec_and_check(cmd))
3893 return;
3894
3895 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
3896 if (!(atomic_read(&cmd->t_task.transport_dev_active))) {
3897 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3898 goto free_pages;
3899 }
3900 atomic_set(&cmd->t_task.transport_dev_active, 0);
3901 transport_all_task_dev_remove_state(cmd);
3902 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3903
3904 transport_release_tasks(cmd);
3905 free_pages:
3906 transport_free_pages(cmd);
3907 transport_free_se_cmd(cmd);
3908 cmd->se_tfo->release_cmd_direct(cmd);
3909 }
3910
3911 static int transport_generic_remove(
3912 struct se_cmd *cmd,
3913 int release_to_pool,
3914 int session_reinstatement)
3915 {
3916 unsigned long flags;
3917
3918 if (transport_dec_and_check(cmd)) {
3919 if (session_reinstatement) {
3920 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
3921 transport_all_task_dev_remove_state(cmd);
3922 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
3923 flags);
3924 }
3925 return 1;
3926 }
3927
3928 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
3929 if (!(atomic_read(&cmd->t_task.transport_dev_active))) {
3930 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3931 goto free_pages;
3932 }
3933 atomic_set(&cmd->t_task.transport_dev_active, 0);
3934 transport_all_task_dev_remove_state(cmd);
3935 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
3936
3937 transport_release_tasks(cmd);
3938
3939 free_pages:
3940 transport_free_pages(cmd);
3941
3942 if (release_to_pool) {
3943 transport_release_cmd_to_pool(cmd);
3944 } else {
3945 transport_free_se_cmd(cmd);
3946 cmd->se_tfo->release_cmd_direct(cmd);
3947 }
3948
3949 return 0;
3950 }
3951
3952 /*
3953 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
3954 * @cmd: Associated se_cmd descriptor
3955 * @mem: SGL style memory for TCM WRITE / READ
3956 * @sg_mem_num: Number of SGL elements
3957 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3958 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3959 *
3960 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3961 * of parameters.
3962 */
3963 int transport_generic_map_mem_to_cmd(
3964 struct se_cmd *cmd,
3965 struct scatterlist *sgl,
3966 u32 sgl_count,
3967 struct scatterlist *sgl_bidi,
3968 u32 sgl_bidi_count)
3969 {
3970 u32 mapped_sg_count = 0;
3971 int ret;
3972
3973 if (!sgl || !sgl_count)
3974 return 0;
3975
3976 /*
3977 * Convert sgls (sgl, sgl_bidi) to list of se_mems
3978 */
3979 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3980 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3981 /*
3982 * For CDB using TCM struct se_mem linked list scatterlist memory
3983 * processed into a TCM struct se_subsystem_dev, we do the mapping
3984 * from the passed physical memory to struct se_mem->se_page here.
3985 */
3986 ret = transport_map_sg_to_mem(cmd,
3987 &cmd->t_task.t_mem_list, sgl, &mapped_sg_count);
3988 if (ret < 0)
3989 return -ENOMEM;
3990
3991 cmd->t_task.t_tasks_se_num = mapped_sg_count;
3992 /*
3993 * Setup BIDI READ list of struct se_mem elements
3994 */
3995 if (sgl_bidi && sgl_bidi_count) {
3996 mapped_sg_count = 0;
3997 ret = transport_map_sg_to_mem(cmd,
3998 &cmd->t_task.t_mem_bidi_list, sgl_bidi,
3999 &mapped_sg_count);
4000 if (ret < 0)
4001 return -ENOMEM;
4002
4003 cmd->t_task.t_tasks_se_bidi_num = mapped_sg_count;
4004 }
4005 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4006
4007 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4008 if (sgl_bidi || sgl_bidi_count) {
4009 printk(KERN_ERR "BIDI-Commands not supported using "
4010 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4011 return -ENOSYS;
4012 }
4013 /*
4014 * For incoming CDBs using a contiguous buffer internall with TCM,
4015 * save the passed struct scatterlist memory. After TCM storage object
4016 * processing has completed for this struct se_cmd, TCM core will call
4017 * transport_memcpy_[write,read]_contig() as necessary from
4018 * transport_generic_complete_ok() and transport_write_pending() in order
4019 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4020 * struct scatterlist format.
4021 */
4022 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4023 cmd->t_task.t_task_pt_sgl = sgl;
4024 /* don't need sgl count? We assume it contains cmd->data_length data */
4025 }
4026
4027 return 0;
4028 }
4029 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4030
4031
4032 static inline long long transport_dev_end_lba(struct se_device *dev)
4033 {
4034 return dev->transport->get_blocks(dev) + 1;
4035 }
4036
4037 static int transport_get_sectors(struct se_cmd *cmd)
4038 {
4039 struct se_device *dev = cmd->se_dev;
4040
4041 cmd->t_task.t_tasks_sectors =
4042 (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
4043 if (!(cmd->t_task.t_tasks_sectors))
4044 cmd->t_task.t_tasks_sectors = 1;
4045
4046 if (dev->transport->get_device_type(dev) != TYPE_DISK)
4047 return 0;
4048
4049 if ((cmd->t_task.t_task_lba + cmd->t_task.t_tasks_sectors) >
4050 transport_dev_end_lba(dev)) {
4051 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4052 " transport_dev_end_lba(): %llu\n",
4053 cmd->t_task.t_task_lba, cmd->t_task.t_tasks_sectors,
4054 transport_dev_end_lba(dev));
4055 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4056 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4057 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4058 }
4059
4060 return 0;
4061 }
4062
4063 static int transport_new_cmd_obj(struct se_cmd *cmd)
4064 {
4065 struct se_device *dev = cmd->se_dev;
4066 u32 task_cdbs = 0, rc;
4067
4068 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4069 task_cdbs++;
4070 cmd->t_task.t_task_cdbs++;
4071 } else {
4072 int set_counts = 1;
4073
4074 /*
4075 * Setup any BIDI READ tasks and memory from
4076 * cmd->t_task.t_mem_bidi_list so the READ struct se_tasks
4077 * are queued first for the non pSCSI passthrough case.
4078 */
4079 if (!list_empty(&cmd->t_task.t_mem_bidi_list) &&
4080 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4081 rc = transport_generic_get_cdb_count(cmd,
4082 cmd->t_task.t_task_lba,
4083 cmd->t_task.t_tasks_sectors,
4084 DMA_FROM_DEVICE, &cmd->t_task.t_mem_bidi_list,
4085 set_counts);
4086 if (!(rc)) {
4087 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4088 cmd->scsi_sense_reason =
4089 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4090 return PYX_TRANSPORT_LU_COMM_FAILURE;
4091 }
4092 set_counts = 0;
4093 }
4094 /*
4095 * Setup the tasks and memory from cmd->t_task.t_mem_list
4096 * Note for BIDI transfers this will contain the WRITE payload
4097 */
4098 task_cdbs = transport_generic_get_cdb_count(cmd,
4099 cmd->t_task.t_task_lba,
4100 cmd->t_task.t_tasks_sectors,
4101 cmd->data_direction, &cmd->t_task.t_mem_list,
4102 set_counts);
4103 if (!(task_cdbs)) {
4104 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4105 cmd->scsi_sense_reason =
4106 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4107 return PYX_TRANSPORT_LU_COMM_FAILURE;
4108 }
4109 cmd->t_task.t_task_cdbs += task_cdbs;
4110
4111 #if 0
4112 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4113 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4114 cmd->t_task.t_task_lba, cmd->t_task.t_tasks_sectors,
4115 cmd->t_task.t_task_cdbs);
4116 #endif
4117 }
4118
4119 atomic_set(&cmd->t_task.t_task_cdbs_left, task_cdbs);
4120 atomic_set(&cmd->t_task.t_task_cdbs_ex_left, task_cdbs);
4121 atomic_set(&cmd->t_task.t_task_cdbs_timeout_left, task_cdbs);
4122 return 0;
4123 }
4124
4125 static int
4126 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4127 {
4128 unsigned char *buf;
4129 struct se_mem *se_mem;
4130
4131 /*
4132 * If the device uses memory mapping this is enough.
4133 */
4134 if (cmd->se_dev->transport->do_se_mem_map)
4135 return 0;
4136
4137 while (length) {
4138 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4139 if (!(se_mem)) {
4140 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4141 goto out;
4142 }
4143
4144 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4145 se_mem->se_page = alloc_pages(GFP_KERNEL, 0);
4146 if (!(se_mem->se_page)) {
4147 printk(KERN_ERR "alloc_pages() failed\n");
4148 goto out;
4149 }
4150
4151 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4152 if (!(buf)) {
4153 printk(KERN_ERR "kmap_atomic() failed\n");
4154 goto out;
4155 }
4156 INIT_LIST_HEAD(&se_mem->se_list);
4157 se_mem->se_len = (length > dma_size) ? dma_size : length;
4158 memset(buf, 0, se_mem->se_len);
4159 kunmap_atomic(buf, KM_IRQ0);
4160
4161 list_add_tail(&se_mem->se_list, &cmd->t_task.t_mem_list);
4162 cmd->t_task.t_tasks_se_num++;
4163
4164 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4165 " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4166 se_mem->se_off);
4167
4168 length -= se_mem->se_len;
4169 }
4170
4171 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4172 cmd->t_task.t_tasks_se_num);
4173
4174 return 0;
4175 out:
4176 if (se_mem)
4177 __free_pages(se_mem->se_page, 0);
4178 kmem_cache_free(se_mem_cache, se_mem);
4179 return -ENOMEM;
4180 }
4181
4182 int transport_init_task_sg(
4183 struct se_task *task,
4184 struct se_mem *in_se_mem,
4185 u32 task_offset)
4186 {
4187 struct se_cmd *se_cmd = task->task_se_cmd;
4188 struct se_device *se_dev = se_cmd->se_dev;
4189 struct se_mem *se_mem = in_se_mem;
4190 struct target_core_fabric_ops *tfo = se_cmd->se_tfo;
4191 u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4192
4193 while (task_size != 0) {
4194 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4195 " se_mem->se_off(%u) task_offset(%u)\n",
4196 se_mem->se_page, se_mem->se_len,
4197 se_mem->se_off, task_offset);
4198
4199 if (task_offset == 0) {
4200 if (task_size >= se_mem->se_len) {
4201 sg_length = se_mem->se_len;
4202
4203 if (!(list_is_last(&se_mem->se_list,
4204 &se_cmd->t_task.t_mem_list)))
4205 se_mem = list_entry(se_mem->se_list.next,
4206 struct se_mem, se_list);
4207 } else {
4208 sg_length = task_size;
4209 task_size -= sg_length;
4210 goto next;
4211 }
4212
4213 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4214 sg_length, task_size);
4215 } else {
4216 if ((se_mem->se_len - task_offset) > task_size) {
4217 sg_length = task_size;
4218 task_size -= sg_length;
4219 goto next;
4220 } else {
4221 sg_length = (se_mem->se_len - task_offset);
4222
4223 if (!(list_is_last(&se_mem->se_list,
4224 &se_cmd->t_task.t_mem_list)))
4225 se_mem = list_entry(se_mem->se_list.next,
4226 struct se_mem, se_list);
4227 }
4228
4229 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4230 sg_length, task_size);
4231
4232 task_offset = 0;
4233 }
4234 task_size -= sg_length;
4235 next:
4236 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4237 task->task_no, task_size);
4238
4239 task->task_sg_num++;
4240 }
4241 /*
4242 * Check if the fabric module driver is requesting that all
4243 * struct se_task->task_sg[] be chained together.. If so,
4244 * then allocate an extra padding SG entry for linking and
4245 * marking the end of the chained SGL.
4246 */
4247 if (tfo->task_sg_chaining) {
4248 task_sg_num_padded = (task->task_sg_num + 1);
4249 task->task_padded_sg = 1;
4250 } else
4251 task_sg_num_padded = task->task_sg_num;
4252
4253 task->task_sg = kzalloc(task_sg_num_padded *
4254 sizeof(struct scatterlist), GFP_KERNEL);
4255 if (!(task->task_sg)) {
4256 printk(KERN_ERR "Unable to allocate memory for"
4257 " task->task_sg\n");
4258 return -ENOMEM;
4259 }
4260 sg_init_table(&task->task_sg[0], task_sg_num_padded);
4261 /*
4262 * Setup task->task_sg_bidi for SCSI READ payload for
4263 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4264 */
4265 if (!list_empty(&se_cmd->t_task.t_mem_bidi_list) &&
4266 (se_dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4267 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4268 sizeof(struct scatterlist), GFP_KERNEL);
4269 if (!(task->task_sg_bidi)) {
4270 kfree(task->task_sg);
4271 task->task_sg = NULL;
4272 printk(KERN_ERR "Unable to allocate memory for"
4273 " task->task_sg_bidi\n");
4274 return -ENOMEM;
4275 }
4276 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4277 }
4278 /*
4279 * For the chaining case, setup the proper end of SGL for the
4280 * initial submission struct task into struct se_subsystem_api.
4281 * This will be cleared later by transport_do_task_sg_chain()
4282 */
4283 if (task->task_padded_sg) {
4284 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4285 /*
4286 * Added the 'if' check before marking end of bi-directional
4287 * scatterlist (which gets created only in case of request
4288 * (RD + WR).
4289 */
4290 if (task->task_sg_bidi)
4291 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4292 }
4293
4294 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4295 " task_sg_num_padded(%u)\n", task->task_sg_num,
4296 task_sg_num_padded);
4297
4298 return task->task_sg_num;
4299 }
4300
4301 static inline int transport_set_tasks_sectors_disk(
4302 struct se_task *task,
4303 struct se_device *dev,
4304 unsigned long long lba,
4305 u32 sectors,
4306 int *max_sectors_set)
4307 {
4308 if ((lba + sectors) > transport_dev_end_lba(dev)) {
4309 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4310
4311 if (task->task_sectors > dev->se_sub_dev->se_dev_attrib.max_sectors) {
4312 task->task_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4313 *max_sectors_set = 1;
4314 }
4315 } else {
4316 if (sectors > dev->se_sub_dev->se_dev_attrib.max_sectors) {
4317 task->task_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4318 *max_sectors_set = 1;
4319 } else
4320 task->task_sectors = sectors;
4321 }
4322
4323 return 0;
4324 }
4325
4326 static inline int transport_set_tasks_sectors_non_disk(
4327 struct se_task *task,
4328 struct se_device *dev,
4329 unsigned long long lba,
4330 u32 sectors,
4331 int *max_sectors_set)
4332 {
4333 if (sectors > dev->se_sub_dev->se_dev_attrib.max_sectors) {
4334 task->task_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4335 *max_sectors_set = 1;
4336 } else
4337 task->task_sectors = sectors;
4338
4339 return 0;
4340 }
4341
4342 static inline int transport_set_tasks_sectors(
4343 struct se_task *task,
4344 struct se_device *dev,
4345 unsigned long long lba,
4346 u32 sectors,
4347 int *max_sectors_set)
4348 {
4349 return (dev->transport->get_device_type(dev) == TYPE_DISK) ?
4350 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4351 max_sectors_set) :
4352 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4353 max_sectors_set);
4354 }
4355
4356 /*
4357 * Convert a sgl into a linked list of se_mems.
4358 */
4359 static int transport_map_sg_to_mem(
4360 struct se_cmd *cmd,
4361 struct list_head *se_mem_list,
4362 struct scatterlist *sg,
4363 u32 *sg_count)
4364 {
4365 struct se_mem *se_mem;
4366 u32 cmd_size = cmd->data_length;
4367
4368 WARN_ON(!sg);
4369
4370 while (cmd_size) {
4371 /*
4372 * NOTE: it is safe to return -ENOMEM at any time in creating this
4373 * list because transport_free_pages() will eventually be called, and is
4374 * smart enough to deallocate all list items for sg and sg_bidi lists.
4375 */
4376 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4377 if (!(se_mem)) {
4378 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4379 return -ENOMEM;
4380 }
4381 INIT_LIST_HEAD(&se_mem->se_list);
4382 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4383 " sg_page: %p offset: %d length: %d\n", cmd_size,
4384 sg_page(sg), sg->offset, sg->length);
4385
4386 se_mem->se_page = sg_page(sg);
4387 se_mem->se_off = sg->offset;
4388
4389 if (cmd_size > sg->length) {
4390 se_mem->se_len = sg->length;
4391 sg = sg_next(sg);
4392 } else
4393 se_mem->se_len = cmd_size;
4394
4395 cmd_size -= se_mem->se_len;
4396 (*sg_count)++;
4397
4398 DEBUG_MEM("sg_to_mem: sg_count: %u cmd_size: %u\n",
4399 sg_count, cmd_size);
4400 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4401 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4402
4403 list_add_tail(&se_mem->se_list, se_mem_list);
4404 }
4405
4406 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments\n", sg_count);
4407
4408 return 0;
4409 }
4410
4411 /* transport_map_mem_to_sg():
4412 *
4413 *
4414 */
4415 int transport_map_mem_to_sg(
4416 struct se_task *task,
4417 struct list_head *se_mem_list,
4418 void *in_mem,
4419 struct se_mem *in_se_mem,
4420 struct se_mem **out_se_mem,
4421 u32 *se_mem_cnt,
4422 u32 *task_offset)
4423 {
4424 struct se_cmd *se_cmd = task->task_se_cmd;
4425 struct se_mem *se_mem = in_se_mem;
4426 struct scatterlist *sg = (struct scatterlist *)in_mem;
4427 u32 task_size = task->task_size, sg_no = 0;
4428
4429 if (!sg) {
4430 printk(KERN_ERR "Unable to locate valid struct"
4431 " scatterlist pointer\n");
4432 return -EINVAL;
4433 }
4434
4435 while (task_size != 0) {
4436 /*
4437 * Setup the contigious array of scatterlists for
4438 * this struct se_task.
4439 */
4440 sg_assign_page(sg, se_mem->se_page);
4441
4442 if (*task_offset == 0) {
4443 sg->offset = se_mem->se_off;
4444
4445 if (task_size >= se_mem->se_len) {
4446 sg->length = se_mem->se_len;
4447
4448 if (!(list_is_last(&se_mem->se_list,
4449 &se_cmd->t_task.t_mem_list))) {
4450 se_mem = list_entry(se_mem->se_list.next,
4451 struct se_mem, se_list);
4452 (*se_mem_cnt)++;
4453 }
4454 } else {
4455 sg->length = task_size;
4456 /*
4457 * Determine if we need to calculate an offset
4458 * into the struct se_mem on the next go around..
4459 */
4460 task_size -= sg->length;
4461 if (!(task_size))
4462 *task_offset = sg->length;
4463
4464 goto next;
4465 }
4466
4467 } else {
4468 sg->offset = (*task_offset + se_mem->se_off);
4469
4470 if ((se_mem->se_len - *task_offset) > task_size) {
4471 sg->length = task_size;
4472 /*
4473 * Determine if we need to calculate an offset
4474 * into the struct se_mem on the next go around..
4475 */
4476 task_size -= sg->length;
4477 if (!(task_size))
4478 *task_offset += sg->length;
4479
4480 goto next;
4481 } else {
4482 sg->length = (se_mem->se_len - *task_offset);
4483
4484 if (!(list_is_last(&se_mem->se_list,
4485 &se_cmd->t_task.t_mem_list))) {
4486 se_mem = list_entry(se_mem->se_list.next,
4487 struct se_mem, se_list);
4488 (*se_mem_cnt)++;
4489 }
4490 }
4491
4492 *task_offset = 0;
4493 }
4494 task_size -= sg->length;
4495 next:
4496 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4497 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4498 sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4499
4500 sg_no++;
4501 if (!(task_size))
4502 break;
4503
4504 sg = sg_next(sg);
4505
4506 if (task_size > se_cmd->data_length)
4507 BUG();
4508 }
4509 *out_se_mem = se_mem;
4510
4511 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4512 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4513
4514 return 0;
4515 }
4516
4517 /*
4518 * This function can be used by HW target mode drivers to create a linked
4519 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4520 * This is intended to be called during the completion path by TCM Core
4521 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4522 */
4523 void transport_do_task_sg_chain(struct se_cmd *cmd)
4524 {
4525 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4526 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4527 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4528 struct se_task *task;
4529 struct target_core_fabric_ops *tfo = cmd->se_tfo;
4530 u32 task_sg_num = 0, sg_count = 0;
4531 int i;
4532
4533 if (tfo->task_sg_chaining == 0) {
4534 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4535 " %s\n", tfo->get_fabric_name());
4536 dump_stack();
4537 return;
4538 }
4539 /*
4540 * Walk the struct se_task list and setup scatterlist chains
4541 * for each contiguosly allocated struct se_task->task_sg[].
4542 */
4543 list_for_each_entry(task, &cmd->t_task.t_task_list, t_list) {
4544 if (!(task->task_sg) || !(task->task_padded_sg))
4545 continue;
4546
4547 if (sg_head && sg_link) {
4548 sg_head_cur = &task->task_sg[0];
4549 sg_link_cur = &task->task_sg[task->task_sg_num];
4550 /*
4551 * Either add chain or mark end of scatterlist
4552 */
4553 if (!(list_is_last(&task->t_list,
4554 &cmd->t_task.t_task_list))) {
4555 /*
4556 * Clear existing SGL termination bit set in
4557 * transport_init_task_sg(), see sg_mark_end()
4558 */
4559 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4560 sg_end_cur->page_link &= ~0x02;
4561
4562 sg_chain(sg_head, task_sg_num, sg_head_cur);
4563 sg_count += task->task_sg_num;
4564 task_sg_num = (task->task_sg_num + 1);
4565 } else {
4566 sg_chain(sg_head, task_sg_num, sg_head_cur);
4567 sg_count += task->task_sg_num;
4568 task_sg_num = task->task_sg_num;
4569 }
4570
4571 sg_head = sg_head_cur;
4572 sg_link = sg_link_cur;
4573 continue;
4574 }
4575 sg_head = sg_first = &task->task_sg[0];
4576 sg_link = &task->task_sg[task->task_sg_num];
4577 /*
4578 * Check for single task..
4579 */
4580 if (!(list_is_last(&task->t_list, &cmd->t_task.t_task_list))) {
4581 /*
4582 * Clear existing SGL termination bit set in
4583 * transport_init_task_sg(), see sg_mark_end()
4584 */
4585 sg_end = &task->task_sg[task->task_sg_num - 1];
4586 sg_end->page_link &= ~0x02;
4587 sg_count += task->task_sg_num;
4588 task_sg_num = (task->task_sg_num + 1);
4589 } else {
4590 sg_count += task->task_sg_num;
4591 task_sg_num = task->task_sg_num;
4592 }
4593 }
4594 /*
4595 * Setup the starting pointer and total t_tasks_sg_linked_no including
4596 * padding SGs for linking and to mark the end.
4597 */
4598 cmd->t_task.t_tasks_sg_chained = sg_first;
4599 cmd->t_task.t_tasks_sg_chained_no = sg_count;
4600
4601 DEBUG_CMD_M("Setup cmd: %p cmd->t_task.t_tasks_sg_chained: %p and"
4602 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_task.t_tasks_sg_chained,
4603 cmd->t_task.t_tasks_sg_chained_no);
4604
4605 for_each_sg(cmd->t_task.t_tasks_sg_chained, sg,
4606 cmd->t_task.t_tasks_sg_chained_no, i) {
4607
4608 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d\n",
4609 i, sg, sg_page(sg), sg->length, sg->offset);
4610 if (sg_is_chain(sg))
4611 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4612 if (sg_is_last(sg))
4613 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4614 }
4615 }
4616 EXPORT_SYMBOL(transport_do_task_sg_chain);
4617
4618 static int transport_do_se_mem_map(
4619 struct se_device *dev,
4620 struct se_task *task,
4621 struct list_head *se_mem_list,
4622 void *in_mem,
4623 struct se_mem *in_se_mem,
4624 struct se_mem **out_se_mem,
4625 u32 *se_mem_cnt,
4626 u32 *task_offset_in)
4627 {
4628 u32 task_offset = *task_offset_in;
4629 int ret = 0;
4630 /*
4631 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4632 * has been done by the transport plugin.
4633 */
4634 if (dev->transport->do_se_mem_map) {
4635 ret = dev->transport->do_se_mem_map(task, se_mem_list,
4636 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4637 task_offset_in);
4638 if (ret == 0)
4639 task->task_se_cmd->t_task.t_tasks_se_num += *se_mem_cnt;
4640
4641 return ret;
4642 }
4643
4644 BUG_ON(list_empty(se_mem_list));
4645 /*
4646 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4647 * WRITE payloads.. If we need to do BIDI READ passthrough for
4648 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4649 * transport_init_task_sg() -> transport_map_mem_to_sg() will do the
4650 * allocation for task->task_sg_bidi, and the subsequent call to
4651 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4652 */
4653 if (!(task->task_sg_bidi)) {
4654 /*
4655 * Assume default that transport plugin speaks preallocated
4656 * scatterlists.
4657 */
4658 ret = transport_init_task_sg(task, in_se_mem, task_offset);
4659 if (ret <= 0)
4660 return ret;
4661 /*
4662 * struct se_task->task_sg now contains the struct scatterlist array.
4663 */
4664 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4665 in_se_mem, out_se_mem, se_mem_cnt,
4666 task_offset_in);
4667 }
4668 /*
4669 * Handle the se_mem_list -> struct task->task_sg_bidi
4670 * memory map for the extra BIDI READ payload
4671 */
4672 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4673 in_se_mem, out_se_mem, se_mem_cnt,
4674 task_offset_in);
4675 }
4676
4677 static u32 transport_generic_get_cdb_count(
4678 struct se_cmd *cmd,
4679 unsigned long long lba,
4680 u32 sectors,
4681 enum dma_data_direction data_direction,
4682 struct list_head *mem_list,
4683 int set_counts)
4684 {
4685 unsigned char *cdb = NULL;
4686 struct se_task *task;
4687 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4688 struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4689 struct se_device *dev = cmd->se_dev;
4690 int max_sectors_set = 0, ret;
4691 u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4692
4693 if (!mem_list) {
4694 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4695 "_cdb_count()\n");
4696 return 0;
4697 }
4698 /*
4699 * While using RAMDISK_DR backstores is the only case where
4700 * mem_list will ever be empty at this point.
4701 */
4702 if (!(list_empty(mem_list)))
4703 se_mem = list_first_entry(mem_list, struct se_mem, se_list);
4704 /*
4705 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4706 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4707 */
4708 if (!list_empty(&cmd->t_task.t_mem_bidi_list) &&
4709 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4710 se_mem_bidi = list_first_entry(&cmd->t_task.t_mem_bidi_list,
4711 struct se_mem, se_list);
4712
4713 while (sectors) {
4714 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4715 cmd->se_tfo->get_task_tag(cmd), lba, sectors,
4716 transport_dev_end_lba(dev));
4717
4718 task = transport_generic_get_task(cmd, data_direction);
4719 if (!(task))
4720 goto out;
4721
4722 transport_set_tasks_sectors(task, dev, lba, sectors,
4723 &max_sectors_set);
4724
4725 task->task_lba = lba;
4726 lba += task->task_sectors;
4727 sectors -= task->task_sectors;
4728 task->task_size = (task->task_sectors *
4729 dev->se_sub_dev->se_dev_attrib.block_size);
4730
4731 cdb = dev->transport->get_cdb(task);
4732 if ((cdb)) {
4733 memcpy(cdb, cmd->t_task.t_task_cdb,
4734 scsi_command_size(cmd->t_task.t_task_cdb));
4735 cmd->transport_split_cdb(task->task_lba,
4736 &task->task_sectors, cdb);
4737 }
4738
4739 /*
4740 * Perform the SE OBJ plugin and/or Transport plugin specific
4741 * mapping for cmd->t_task.t_mem_list. And setup the
4742 * task->task_sg and if necessary task->task_sg_bidi
4743 */
4744 ret = transport_do_se_mem_map(dev, task, mem_list,
4745 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4746 &task_offset_in);
4747 if (ret < 0)
4748 goto out;
4749
4750 se_mem = se_mem_lout;
4751 /*
4752 * Setup the cmd->t_task.t_mem_bidi_list -> task->task_sg_bidi
4753 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4754 *
4755 * Note that the first call to transport_do_se_mem_map() above will
4756 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4757 * -> transport_init_task_sg(), and the second here will do the
4758 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4759 */
4760 if (task->task_sg_bidi != NULL) {
4761 ret = transport_do_se_mem_map(dev, task,
4762 &cmd->t_task.t_mem_bidi_list, NULL,
4763 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4764 &task_offset_in);
4765 if (ret < 0)
4766 goto out;
4767
4768 se_mem_bidi = se_mem_bidi_lout;
4769 }
4770 task_cdbs++;
4771
4772 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4773 task_cdbs, task->task_sg_num);
4774
4775 if (max_sectors_set) {
4776 max_sectors_set = 0;
4777 continue;
4778 }
4779
4780 if (!sectors)
4781 break;
4782 }
4783
4784 if (set_counts) {
4785 atomic_inc(&cmd->t_task.t_fe_count);
4786 atomic_inc(&cmd->t_task.t_se_count);
4787 }
4788
4789 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
4790 cmd->se_tfo->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
4791 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
4792
4793 return task_cdbs;
4794 out:
4795 return 0;
4796 }
4797
4798 static int
4799 transport_map_control_cmd_to_task(struct se_cmd *cmd)
4800 {
4801 struct se_device *dev = cmd->se_dev;
4802 unsigned char *cdb;
4803 struct se_task *task;
4804 int ret;
4805
4806 task = transport_generic_get_task(cmd, cmd->data_direction);
4807 if (!task)
4808 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4809
4810 cdb = dev->transport->get_cdb(task);
4811 if (cdb)
4812 memcpy(cdb, cmd->t_task.t_task_cdb,
4813 scsi_command_size(cmd->t_task.t_task_cdb));
4814
4815 task->task_size = cmd->data_length;
4816 task->task_sg_num =
4817 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
4818
4819 atomic_inc(&cmd->t_task.t_fe_count);
4820 atomic_inc(&cmd->t_task.t_se_count);
4821
4822 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4823 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4824 u32 se_mem_cnt = 0, task_offset = 0;
4825
4826 if (!list_empty(&cmd->t_task.t_mem_list))
4827 se_mem = list_first_entry(&cmd->t_task.t_mem_list,
4828 struct se_mem, se_list);
4829
4830 ret = transport_do_se_mem_map(dev, task,
4831 &cmd->t_task.t_mem_list, NULL, se_mem,
4832 &se_mem_lout, &se_mem_cnt, &task_offset);
4833 if (ret < 0)
4834 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4835
4836 if (dev->transport->map_task_SG)
4837 return dev->transport->map_task_SG(task);
4838 return 0;
4839 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4840 if (dev->transport->map_task_non_SG)
4841 return dev->transport->map_task_non_SG(task);
4842 return 0;
4843 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4844 if (dev->transport->cdb_none)
4845 return dev->transport->cdb_none(task);
4846 return 0;
4847 } else {
4848 BUG();
4849 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4850 }
4851 }
4852
4853 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4854 *
4855 * Allocate storage transport resources from a set of values predefined
4856 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4857 * Any non zero return here is treated as an "out of resource' op here.
4858 */
4859 /*
4860 * Generate struct se_task(s) and/or their payloads for this CDB.
4861 */
4862 static int transport_generic_new_cmd(struct se_cmd *cmd)
4863 {
4864 struct se_portal_group *se_tpg;
4865 struct se_task *task;
4866 struct se_device *dev = cmd->se_dev;
4867 int ret = 0;
4868
4869 /*
4870 * Determine is the TCM fabric module has already allocated physical
4871 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4872 * to setup beforehand the linked list of physical memory at
4873 * cmd->t_task.t_mem_list of struct se_mem->se_page
4874 */
4875 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
4876 ret = transport_allocate_resources(cmd);
4877 if (ret < 0)
4878 return ret;
4879 }
4880
4881 ret = transport_get_sectors(cmd);
4882 if (ret < 0)
4883 return ret;
4884
4885 ret = transport_new_cmd_obj(cmd);
4886 if (ret < 0)
4887 return ret;
4888
4889 /*
4890 * Determine if the calling TCM fabric module is talking to
4891 * Linux/NET via kernel sockets and needs to allocate a
4892 * struct iovec array to complete the struct se_cmd
4893 */
4894 se_tpg = cmd->se_lun->lun_sep->sep_tpg;
4895 if (se_tpg->se_tpg_tfo->alloc_cmd_iovecs != NULL) {
4896 ret = se_tpg->se_tpg_tfo->alloc_cmd_iovecs(cmd);
4897 if (ret < 0)
4898 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4899 }
4900
4901 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4902 list_for_each_entry(task, &cmd->t_task.t_task_list, t_list) {
4903 if (atomic_read(&task->task_sent))
4904 continue;
4905 if (!dev->transport->map_task_SG)
4906 continue;
4907
4908 ret = dev->transport->map_task_SG(task);
4909 if (ret < 0)
4910 return ret;
4911 }
4912 } else {
4913 ret = transport_map_control_cmd_to_task(cmd);
4914 if (ret < 0)
4915 return ret;
4916 }
4917
4918 /*
4919 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
4920 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4921 * will be added to the struct se_device execution queue after its WRITE
4922 * data has arrived. (ie: It gets handled by the transport processing
4923 * thread a second time)
4924 */
4925 if (cmd->data_direction == DMA_TO_DEVICE) {
4926 transport_add_tasks_to_state_queue(cmd);
4927 return transport_generic_write_pending(cmd);
4928 }
4929 /*
4930 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4931 * to the execution queue.
4932 */
4933 transport_execute_tasks(cmd);
4934 return 0;
4935 }
4936
4937 /* transport_generic_process_write():
4938 *
4939 *
4940 */
4941 void transport_generic_process_write(struct se_cmd *cmd)
4942 {
4943 #if 0
4944 /*
4945 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
4946 * original EDTL
4947 */
4948 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
4949 if (!cmd->t_task.t_tasks_se_num) {
4950 unsigned char *dst, *buf =
4951 (unsigned char *)cmd->t_task.t_task_buf;
4952
4953 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
4954 if (!(dst)) {
4955 printk(KERN_ERR "Unable to allocate memory for"
4956 " WRITE underflow\n");
4957 transport_generic_request_failure(cmd, NULL,
4958 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4959 return;
4960 }
4961 memcpy(dst, buf, cmd->cmd_spdtl);
4962
4963 kfree(cmd->t_task.t_task_buf);
4964 cmd->t_task.t_task_buf = dst;
4965 } else {
4966 struct scatterlist *sg =
4967 (struct scatterlist *sg)cmd->t_task.t_task_buf;
4968 struct scatterlist *orig_sg;
4969
4970 orig_sg = kzalloc(sizeof(struct scatterlist) *
4971 cmd->t_task.t_tasks_se_num,
4972 GFP_KERNEL))) {
4973 if (!(orig_sg)) {
4974 printk(KERN_ERR "Unable to allocate memory"
4975 " for WRITE underflow\n");
4976 transport_generic_request_failure(cmd, NULL,
4977 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4978 return;
4979 }
4980
4981 memcpy(orig_sg, cmd->t_task.t_task_buf,
4982 sizeof(struct scatterlist) *
4983 cmd->t_task.t_tasks_se_num);
4984
4985 cmd->data_length = cmd->cmd_spdtl;
4986 /*
4987 * FIXME, clear out original struct se_task and state
4988 * information.
4989 */
4990 if (transport_generic_new_cmd(cmd) < 0) {
4991 transport_generic_request_failure(cmd, NULL,
4992 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4993 kfree(orig_sg);
4994 return;
4995 }
4996
4997 transport_memcpy_write_sg(cmd, orig_sg);
4998 }
4999 }
5000 #endif
5001 transport_execute_tasks(cmd);
5002 }
5003 EXPORT_SYMBOL(transport_generic_process_write);
5004
5005 /* transport_generic_write_pending():
5006 *
5007 *
5008 */
5009 static int transport_generic_write_pending(struct se_cmd *cmd)
5010 {
5011 unsigned long flags;
5012 int ret;
5013
5014 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5015 cmd->t_state = TRANSPORT_WRITE_PENDING;
5016 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5017 /*
5018 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5019 * from the passed Linux/SCSI struct scatterlist located at
5020 * se_cmd->t_task.t_task_pt_buf to the contiguous buffer at
5021 * se_cmd->t_task.t_task_buf.
5022 */
5023 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5024 transport_memcpy_read_contig(cmd,
5025 cmd->t_task.t_task_buf,
5026 cmd->t_task.t_task_pt_sgl);
5027 /*
5028 * Clear the se_cmd for WRITE_PENDING status in order to set
5029 * cmd->t_task.t_transport_active=0 so that transport_generic_handle_data
5030 * can be called from HW target mode interrupt code. This is safe
5031 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
5032 * because the se_cmd->se_lun pointer is not being cleared.
5033 */
5034 transport_cmd_check_stop(cmd, 1, 0);
5035
5036 /*
5037 * Call the fabric write_pending function here to let the
5038 * frontend know that WRITE buffers are ready.
5039 */
5040 ret = cmd->se_tfo->write_pending(cmd);
5041 if (ret < 0)
5042 return ret;
5043
5044 return PYX_TRANSPORT_WRITE_PENDING;
5045 }
5046
5047 /* transport_release_cmd_to_pool():
5048 *
5049 *
5050 */
5051 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5052 {
5053 BUG_ON(!cmd->se_tfo);
5054
5055 transport_free_se_cmd(cmd);
5056 cmd->se_tfo->release_cmd_to_pool(cmd);
5057 }
5058 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5059
5060 /* transport_generic_free_cmd():
5061 *
5062 * Called from processing frontend to release storage engine resources
5063 */
5064 void transport_generic_free_cmd(
5065 struct se_cmd *cmd,
5066 int wait_for_tasks,
5067 int release_to_pool,
5068 int session_reinstatement)
5069 {
5070 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
5071 transport_release_cmd_to_pool(cmd);
5072 else {
5073 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5074
5075 if (cmd->se_lun) {
5076 #if 0
5077 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5078 " cmd->se_lun\n", cmd,
5079 cmd->se_tfo->get_task_tag(cmd));
5080 #endif
5081 transport_lun_remove_cmd(cmd);
5082 }
5083
5084 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5085 cmd->transport_wait_for_tasks(cmd, 0, 0);
5086
5087 transport_free_dev_tasks(cmd);
5088
5089 transport_generic_remove(cmd, release_to_pool,
5090 session_reinstatement);
5091 }
5092 }
5093 EXPORT_SYMBOL(transport_generic_free_cmd);
5094
5095 static void transport_nop_wait_for_tasks(
5096 struct se_cmd *cmd,
5097 int remove_cmd,
5098 int session_reinstatement)
5099 {
5100 return;
5101 }
5102
5103 /* transport_lun_wait_for_tasks():
5104 *
5105 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5106 * an struct se_lun to be successfully shutdown.
5107 */
5108 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5109 {
5110 unsigned long flags;
5111 int ret;
5112 /*
5113 * If the frontend has already requested this struct se_cmd to
5114 * be stopped, we can safely ignore this struct se_cmd.
5115 */
5116 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5117 if (atomic_read(&cmd->t_task.t_transport_stop)) {
5118 atomic_set(&cmd->t_task.transport_lun_stop, 0);
5119 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5120 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
5121 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5122 transport_cmd_check_stop(cmd, 1, 0);
5123 return -EPERM;
5124 }
5125 atomic_set(&cmd->t_task.transport_lun_fe_stop, 1);
5126 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5127
5128 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
5129
5130 ret = transport_stop_tasks_for_cmd(cmd);
5131
5132 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5133 " %d\n", cmd, cmd->t_task.t_task_cdbs, ret);
5134 if (!ret) {
5135 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5136 cmd->se_tfo->get_task_tag(cmd));
5137 wait_for_completion(&cmd->t_task.transport_lun_stop_comp);
5138 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5139 cmd->se_tfo->get_task_tag(cmd));
5140 }
5141 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
5142
5143 return 0;
5144 }
5145
5146 /* #define DEBUG_CLEAR_LUN */
5147 #ifdef DEBUG_CLEAR_LUN
5148 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5149 #else
5150 #define DEBUG_CLEAR_L(x...)
5151 #endif
5152
5153 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5154 {
5155 struct se_cmd *cmd = NULL;
5156 unsigned long lun_flags, cmd_flags;
5157 /*
5158 * Do exception processing and return CHECK_CONDITION status to the
5159 * Initiator Port.
5160 */
5161 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5162 while (!list_empty(&lun->lun_cmd_list)) {
5163 cmd = list_first_entry(&lun->lun_cmd_list,
5164 struct se_cmd, se_lun_node);
5165 list_del(&cmd->se_lun_node);
5166
5167 atomic_set(&cmd->t_task.transport_lun_active, 0);
5168 /*
5169 * This will notify iscsi_target_transport.c:
5170 * transport_cmd_check_stop() that a LUN shutdown is in
5171 * progress for the iscsi_cmd_t.
5172 */
5173 spin_lock(&cmd->t_task.t_state_lock);
5174 DEBUG_CLEAR_L("SE_LUN[%d] - Setting cmd->t_task.transport"
5175 "_lun_stop for ITT: 0x%08x\n",
5176 cmd->se_lun->unpacked_lun,
5177 cmd->se_tfo->get_task_tag(cmd));
5178 atomic_set(&cmd->t_task.transport_lun_stop, 1);
5179 spin_unlock(&cmd->t_task.t_state_lock);
5180
5181 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5182
5183 if (!(cmd->se_lun)) {
5184 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5185 cmd->se_tfo->get_task_tag(cmd),
5186 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
5187 BUG();
5188 }
5189 /*
5190 * If the Storage engine still owns the iscsi_cmd_t, determine
5191 * and/or stop its context.
5192 */
5193 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5194 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
5195 cmd->se_tfo->get_task_tag(cmd));
5196
5197 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
5198 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5199 continue;
5200 }
5201
5202 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5203 "_wait_for_tasks(): SUCCESS\n",
5204 cmd->se_lun->unpacked_lun,
5205 cmd->se_tfo->get_task_tag(cmd));
5206
5207 spin_lock_irqsave(&cmd->t_task.t_state_lock, cmd_flags);
5208 if (!(atomic_read(&cmd->t_task.transport_dev_active))) {
5209 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, cmd_flags);
5210 goto check_cond;
5211 }
5212 atomic_set(&cmd->t_task.transport_dev_active, 0);
5213 transport_all_task_dev_remove_state(cmd);
5214 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, cmd_flags);
5215
5216 transport_free_dev_tasks(cmd);
5217 /*
5218 * The Storage engine stopped this struct se_cmd before it was
5219 * send to the fabric frontend for delivery back to the
5220 * Initiator Node. Return this SCSI CDB back with an
5221 * CHECK_CONDITION status.
5222 */
5223 check_cond:
5224 transport_send_check_condition_and_sense(cmd,
5225 TCM_NON_EXISTENT_LUN, 0);
5226 /*
5227 * If the fabric frontend is waiting for this iscsi_cmd_t to
5228 * be released, notify the waiting thread now that LU has
5229 * finished accessing it.
5230 */
5231 spin_lock_irqsave(&cmd->t_task.t_state_lock, cmd_flags);
5232 if (atomic_read(&cmd->t_task.transport_lun_fe_stop)) {
5233 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5234 " struct se_cmd: %p ITT: 0x%08x\n",
5235 lun->unpacked_lun,
5236 cmd, cmd->se_tfo->get_task_tag(cmd));
5237
5238 spin_unlock_irqrestore(&cmd->t_task.t_state_lock,
5239 cmd_flags);
5240 transport_cmd_check_stop(cmd, 1, 0);
5241 complete(&cmd->t_task.transport_lun_fe_stop_comp);
5242 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5243 continue;
5244 }
5245 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5246 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
5247
5248 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, cmd_flags);
5249 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5250 }
5251 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5252 }
5253
5254 static int transport_clear_lun_thread(void *p)
5255 {
5256 struct se_lun *lun = (struct se_lun *)p;
5257
5258 __transport_clear_lun_from_sessions(lun);
5259 complete(&lun->lun_shutdown_comp);
5260
5261 return 0;
5262 }
5263
5264 int transport_clear_lun_from_sessions(struct se_lun *lun)
5265 {
5266 struct task_struct *kt;
5267
5268 kt = kthread_run(transport_clear_lun_thread, lun,
5269 "tcm_cl_%u", lun->unpacked_lun);
5270 if (IS_ERR(kt)) {
5271 printk(KERN_ERR "Unable to start clear_lun thread\n");
5272 return PTR_ERR(kt);
5273 }
5274 wait_for_completion(&lun->lun_shutdown_comp);
5275
5276 return 0;
5277 }
5278
5279 /* transport_generic_wait_for_tasks():
5280 *
5281 * Called from frontend or passthrough context to wait for storage engine
5282 * to pause and/or release frontend generated struct se_cmd.
5283 */
5284 static void transport_generic_wait_for_tasks(
5285 struct se_cmd *cmd,
5286 int remove_cmd,
5287 int session_reinstatement)
5288 {
5289 unsigned long flags;
5290
5291 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5292 return;
5293
5294 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5295 /*
5296 * If we are already stopped due to an external event (ie: LUN shutdown)
5297 * sleep until the connection can have the passed struct se_cmd back.
5298 * The cmd->t_task.transport_lun_stopped_sem will be upped by
5299 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5300 * has completed its operation on the struct se_cmd.
5301 */
5302 if (atomic_read(&cmd->t_task.transport_lun_stop)) {
5303
5304 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5305 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
5306 "_stop_comp); for ITT: 0x%08x\n",
5307 cmd->se_tfo->get_task_tag(cmd));
5308 /*
5309 * There is a special case for WRITES where a FE exception +
5310 * LUN shutdown means ConfigFS context is still sleeping on
5311 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5312 * We go ahead and up transport_lun_stop_comp just to be sure
5313 * here.
5314 */
5315 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5316 complete(&cmd->t_task.transport_lun_stop_comp);
5317 wait_for_completion(&cmd->t_task.transport_lun_fe_stop_comp);
5318 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5319
5320 transport_all_task_dev_remove_state(cmd);
5321 /*
5322 * At this point, the frontend who was the originator of this
5323 * struct se_cmd, now owns the structure and can be released through
5324 * normal means below.
5325 */
5326 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5327 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
5328 "stop_comp); for ITT: 0x%08x\n",
5329 cmd->se_tfo->get_task_tag(cmd));
5330
5331 atomic_set(&cmd->t_task.transport_lun_stop, 0);
5332 }
5333 if (!atomic_read(&cmd->t_task.t_transport_active) ||
5334 atomic_read(&cmd->t_task.t_transport_aborted))
5335 goto remove;
5336
5337 atomic_set(&cmd->t_task.t_transport_stop, 1);
5338
5339 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5340 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5341 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
5342 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
5343 cmd->deferred_t_state);
5344
5345 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5346
5347 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
5348
5349 wait_for_completion(&cmd->t_task.t_transport_stop_comp);
5350
5351 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5352 atomic_set(&cmd->t_task.t_transport_active, 0);
5353 atomic_set(&cmd->t_task.t_transport_stop, 0);
5354
5355 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5356 "&cmd->t_task.t_transport_stop_comp) for ITT: 0x%08x\n",
5357 cmd->se_tfo->get_task_tag(cmd));
5358 remove:
5359 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5360 if (!remove_cmd)
5361 return;
5362
5363 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5364 }
5365
5366 static int transport_get_sense_codes(
5367 struct se_cmd *cmd,
5368 u8 *asc,
5369 u8 *ascq)
5370 {
5371 *asc = cmd->scsi_asc;
5372 *ascq = cmd->scsi_ascq;
5373
5374 return 0;
5375 }
5376
5377 static int transport_set_sense_codes(
5378 struct se_cmd *cmd,
5379 u8 asc,
5380 u8 ascq)
5381 {
5382 cmd->scsi_asc = asc;
5383 cmd->scsi_ascq = ascq;
5384
5385 return 0;
5386 }
5387
5388 int transport_send_check_condition_and_sense(
5389 struct se_cmd *cmd,
5390 u8 reason,
5391 int from_transport)
5392 {
5393 unsigned char *buffer = cmd->sense_buffer;
5394 unsigned long flags;
5395 int offset;
5396 u8 asc = 0, ascq = 0;
5397
5398 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5399 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5400 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5401 return 0;
5402 }
5403 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5404 spin_unlock_irqrestore(&cmd->t_task.t_state_lock, flags);
5405
5406 if (!reason && from_transport)
5407 goto after_reason;
5408
5409 if (!from_transport)
5410 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5411 /*
5412 * Data Segment and SenseLength of the fabric response PDU.
5413 *
5414 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5415 * from include/scsi/scsi_cmnd.h
5416 */
5417 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
5418 TRANSPORT_SENSE_BUFFER);
5419 /*
5420 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5421 * SENSE KEY values from include/scsi/scsi.h
5422 */
5423 switch (reason) {
5424 case TCM_NON_EXISTENT_LUN:
5425 case TCM_UNSUPPORTED_SCSI_OPCODE:
5426 case TCM_SECTOR_COUNT_TOO_MANY:
5427 /* CURRENT ERROR */
5428 buffer[offset] = 0x70;
5429 /* ILLEGAL REQUEST */
5430 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5431 /* INVALID COMMAND OPERATION CODE */
5432 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5433 break;
5434 case TCM_UNKNOWN_MODE_PAGE:
5435 /* CURRENT ERROR */
5436 buffer[offset] = 0x70;
5437 /* ILLEGAL REQUEST */
5438 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5439 /* INVALID FIELD IN CDB */
5440 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5441 break;
5442 case TCM_CHECK_CONDITION_ABORT_CMD:
5443 /* CURRENT ERROR */
5444 buffer[offset] = 0x70;
5445 /* ABORTED COMMAND */
5446 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5447 /* BUS DEVICE RESET FUNCTION OCCURRED */
5448 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5449 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5450 break;
5451 case TCM_INCORRECT_AMOUNT_OF_DATA:
5452 /* CURRENT ERROR */
5453 buffer[offset] = 0x70;
5454 /* ABORTED COMMAND */
5455 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5456 /* WRITE ERROR */
5457 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5458 /* NOT ENOUGH UNSOLICITED DATA */
5459 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5460 break;
5461 case TCM_INVALID_CDB_FIELD:
5462 /* CURRENT ERROR */
5463 buffer[offset] = 0x70;
5464 /* ABORTED COMMAND */
5465 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5466 /* INVALID FIELD IN CDB */
5467 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5468 break;
5469 case TCM_INVALID_PARAMETER_LIST:
5470 /* CURRENT ERROR */
5471 buffer[offset] = 0x70;
5472 /* ABORTED COMMAND */
5473 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5474 /* INVALID FIELD IN PARAMETER LIST */
5475 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5476 break;
5477 case TCM_UNEXPECTED_UNSOLICITED_DATA:
5478 /* CURRENT ERROR */
5479 buffer[offset] = 0x70;
5480 /* ABORTED COMMAND */
5481 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5482 /* WRITE ERROR */
5483 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5484 /* UNEXPECTED_UNSOLICITED_DATA */
5485 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5486 break;
5487 case TCM_SERVICE_CRC_ERROR:
5488 /* CURRENT ERROR */
5489 buffer[offset] = 0x70;
5490 /* ABORTED COMMAND */
5491 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5492 /* PROTOCOL SERVICE CRC ERROR */
5493 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5494 /* N/A */
5495 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5496 break;
5497 case TCM_SNACK_REJECTED:
5498 /* CURRENT ERROR */
5499 buffer[offset] = 0x70;
5500 /* ABORTED COMMAND */
5501 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5502 /* READ ERROR */
5503 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5504 /* FAILED RETRANSMISSION REQUEST */
5505 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5506 break;
5507 case TCM_WRITE_PROTECTED:
5508 /* CURRENT ERROR */
5509 buffer[offset] = 0x70;
5510 /* DATA PROTECT */
5511 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5512 /* WRITE PROTECTED */
5513 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5514 break;
5515 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5516 /* CURRENT ERROR */
5517 buffer[offset] = 0x70;
5518 /* UNIT ATTENTION */
5519 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5520 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5521 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5522 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5523 break;
5524 case TCM_CHECK_CONDITION_NOT_READY:
5525 /* CURRENT ERROR */
5526 buffer[offset] = 0x70;
5527 /* Not Ready */
5528 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5529 transport_get_sense_codes(cmd, &asc, &ascq);
5530 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5531 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5532 break;
5533 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5534 default:
5535 /* CURRENT ERROR */
5536 buffer[offset] = 0x70;
5537 /* ILLEGAL REQUEST */
5538 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5539 /* LOGICAL UNIT COMMUNICATION FAILURE */
5540 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5541 break;
5542 }
5543 /*
5544 * This code uses linux/include/scsi/scsi.h SAM status codes!
5545 */
5546 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5547 /*
5548 * Automatically padded, this value is encoded in the fabric's
5549 * data_length response PDU containing the SCSI defined sense data.
5550 */
5551 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
5552
5553 after_reason:
5554 cmd->se_tfo->queue_status(cmd);
5555 return 0;
5556 }
5557 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5558
5559 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5560 {
5561 int ret = 0;
5562
5563 if (atomic_read(&cmd->t_task.t_transport_aborted) != 0) {
5564 if (!(send_status) ||
5565 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5566 return 1;
5567 #if 0
5568 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5569 " status for CDB: 0x%02x ITT: 0x%08x\n",
5570 cmd->t_task.t_task_cdb[0],
5571 cmd->se_tfo->get_task_tag(cmd));
5572 #endif
5573 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5574 cmd->se_tfo->queue_status(cmd);
5575 ret = 1;
5576 }
5577 return ret;
5578 }
5579 EXPORT_SYMBOL(transport_check_aborted_status);
5580
5581 void transport_send_task_abort(struct se_cmd *cmd)
5582 {
5583 /*
5584 * If there are still expected incoming fabric WRITEs, we wait
5585 * until until they have completed before sending a TASK_ABORTED
5586 * response. This response with TASK_ABORTED status will be
5587 * queued back to fabric module by transport_check_aborted_status().
5588 */
5589 if (cmd->data_direction == DMA_TO_DEVICE) {
5590 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
5591 atomic_inc(&cmd->t_task.t_transport_aborted);
5592 smp_mb__after_atomic_inc();
5593 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5594 transport_new_cmd_failure(cmd);
5595 return;
5596 }
5597 }
5598 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5599 #if 0
5600 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5601 " ITT: 0x%08x\n", cmd->t_task.t_task_cdb[0],
5602 cmd->se_tfo->get_task_tag(cmd));
5603 #endif
5604 cmd->se_tfo->queue_status(cmd);
5605 }
5606
5607 /* transport_generic_do_tmr():
5608 *
5609 *
5610 */
5611 int transport_generic_do_tmr(struct se_cmd *cmd)
5612 {
5613 struct se_cmd *ref_cmd;
5614 struct se_device *dev = cmd->se_dev;
5615 struct se_tmr_req *tmr = cmd->se_tmr_req;
5616 int ret;
5617
5618 switch (tmr->function) {
5619 case TMR_ABORT_TASK:
5620 ref_cmd = tmr->ref_cmd;
5621 tmr->response = TMR_FUNCTION_REJECTED;
5622 break;
5623 case TMR_ABORT_TASK_SET:
5624 case TMR_CLEAR_ACA:
5625 case TMR_CLEAR_TASK_SET:
5626 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5627 break;
5628 case TMR_LUN_RESET:
5629 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5630 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5631 TMR_FUNCTION_REJECTED;
5632 break;
5633 case TMR_TARGET_WARM_RESET:
5634 tmr->response = TMR_FUNCTION_REJECTED;
5635 break;
5636 case TMR_TARGET_COLD_RESET:
5637 tmr->response = TMR_FUNCTION_REJECTED;
5638 break;
5639 default:
5640 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5641 tmr->function);
5642 tmr->response = TMR_FUNCTION_REJECTED;
5643 break;
5644 }
5645
5646 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5647 cmd->se_tfo->queue_tm_rsp(cmd);
5648
5649 transport_cmd_check_stop(cmd, 2, 0);
5650 return 0;
5651 }
5652
5653 /*
5654 * Called with spin_lock_irq(&dev->execute_task_lock); held
5655 *
5656 */
5657 static struct se_task *
5658 transport_get_task_from_state_list(struct se_device *dev)
5659 {
5660 struct se_task *task;
5661
5662 if (list_empty(&dev->state_task_list))
5663 return NULL;
5664
5665 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5666 break;
5667
5668 list_del(&task->t_state_list);
5669 atomic_set(&task->task_state_active, 0);
5670
5671 return task;
5672 }
5673
5674 static void transport_processing_shutdown(struct se_device *dev)
5675 {
5676 struct se_cmd *cmd;
5677 struct se_task *task;
5678 unsigned long flags;
5679 /*
5680 * Empty the struct se_device's struct se_task state list.
5681 */
5682 spin_lock_irqsave(&dev->execute_task_lock, flags);
5683 while ((task = transport_get_task_from_state_list(dev))) {
5684 if (!task->task_se_cmd) {
5685 printk(KERN_ERR "task->task_se_cmd is NULL!\n");
5686 continue;
5687 }
5688 cmd = task->task_se_cmd;
5689
5690 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5691
5692 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5693
5694 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5695 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5696 " %d/%d cdb: 0x%02x\n", cmd, task,
5697 cmd->se_tfo->get_task_tag(cmd), cmd->cmd_sn,
5698 cmd->se_tfo->get_cmd_state(cmd), cmd->deferred_i_state,
5699 cmd->t_state, cmd->deferred_t_state,
5700 cmd->t_task.t_task_cdb[0]);
5701 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5702 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5703 " t_transport_stop: %d t_transport_sent: %d\n",
5704 cmd->se_tfo->get_task_tag(cmd),
5705 cmd->t_task.t_task_cdbs,
5706 atomic_read(&cmd->t_task.t_task_cdbs_left),
5707 atomic_read(&cmd->t_task.t_task_cdbs_sent),
5708 atomic_read(&cmd->t_task.t_transport_active),
5709 atomic_read(&cmd->t_task.t_transport_stop),
5710 atomic_read(&cmd->t_task.t_transport_sent));
5711
5712 if (atomic_read(&task->task_active)) {
5713 atomic_set(&task->task_stop, 1);
5714 spin_unlock_irqrestore(
5715 &cmd->t_task.t_state_lock, flags);
5716
5717 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5718 " %p\n", task, dev);
5719 wait_for_completion(&task->task_stop_comp);
5720 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5721 task, dev);
5722
5723 spin_lock_irqsave(&cmd->t_task.t_state_lock, flags);
5724 atomic_dec(&cmd->t_task.t_task_cdbs_left);
5725
5726 atomic_set(&task->task_active, 0);
5727 atomic_set(&task->task_stop, 0);
5728 } else {
5729 if (atomic_read(&task->task_execute_queue) != 0)
5730 transport_remove_task_from_execute_queue(task, dev);
5731 }
5732 __transport_stop_task_timer(task, &flags);
5733
5734 if (!(atomic_dec_and_test(&cmd->t_task.t_task_cdbs_ex_left))) {
5735 spin_unlock_irqrestore(
5736 &cmd->t_task.t_state_lock, flags);
5737
5738 DEBUG_DO("Skipping task: %p, dev: %p for"
5739 " t_task_cdbs_ex_left: %d\n", task, dev,
5740 atomic_read(&cmd->t_task.t_task_cdbs_ex_left));
5741
5742 spin_lock_irqsave(&dev->execute_task_lock, flags);
5743 continue;
5744 }
5745
5746 if (atomic_read(&cmd->t_task.t_transport_active)) {
5747 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5748 " %p\n", task, dev);
5749
5750 if (atomic_read(&cmd->t_task.t_fe_count)) {
5751 spin_unlock_irqrestore(
5752 &cmd->t_task.t_state_lock, flags);
5753 transport_send_check_condition_and_sense(
5754 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5755 0);
5756 transport_remove_cmd_from_queue(cmd,
5757 &cmd->se_dev->dev_queue_obj);
5758
5759 transport_lun_remove_cmd(cmd);
5760 transport_cmd_check_stop(cmd, 1, 0);
5761 } else {
5762 spin_unlock_irqrestore(
5763 &cmd->t_task.t_state_lock, flags);
5764
5765 transport_remove_cmd_from_queue(cmd,
5766 &cmd->se_dev->dev_queue_obj);
5767
5768 transport_lun_remove_cmd(cmd);
5769
5770 if (transport_cmd_check_stop(cmd, 1, 0))
5771 transport_generic_remove(cmd, 0, 0);
5772 }
5773
5774 spin_lock_irqsave(&dev->execute_task_lock, flags);
5775 continue;
5776 }
5777 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
5778 task, dev);
5779
5780 if (atomic_read(&cmd->t_task.t_fe_count)) {
5781 spin_unlock_irqrestore(
5782 &cmd->t_task.t_state_lock, flags);
5783 transport_send_check_condition_and_sense(cmd,
5784 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5785 transport_remove_cmd_from_queue(cmd,
5786 &cmd->se_dev->dev_queue_obj);
5787
5788 transport_lun_remove_cmd(cmd);
5789 transport_cmd_check_stop(cmd, 1, 0);
5790 } else {
5791 spin_unlock_irqrestore(
5792 &cmd->t_task.t_state_lock, flags);
5793
5794 transport_remove_cmd_from_queue(cmd,
5795 &cmd->se_dev->dev_queue_obj);
5796 transport_lun_remove_cmd(cmd);
5797
5798 if (transport_cmd_check_stop(cmd, 1, 0))
5799 transport_generic_remove(cmd, 0, 0);
5800 }
5801
5802 spin_lock_irqsave(&dev->execute_task_lock, flags);
5803 }
5804 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5805 /*
5806 * Empty the struct se_device's struct se_cmd list.
5807 */
5808 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5809
5810 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
5811 cmd, cmd->t_state);
5812
5813 if (atomic_read(&cmd->t_task.t_fe_count)) {
5814 transport_send_check_condition_and_sense(cmd,
5815 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5816
5817 transport_lun_remove_cmd(cmd);
5818 transport_cmd_check_stop(cmd, 1, 0);
5819 } else {
5820 transport_lun_remove_cmd(cmd);
5821 if (transport_cmd_check_stop(cmd, 1, 0))
5822 transport_generic_remove(cmd, 0, 0);
5823 }
5824 }
5825 }
5826
5827 /* transport_processing_thread():
5828 *
5829 *
5830 */
5831 static int transport_processing_thread(void *param)
5832 {
5833 int ret;
5834 struct se_cmd *cmd;
5835 struct se_device *dev = (struct se_device *) param;
5836
5837 set_user_nice(current, -20);
5838
5839 while (!kthread_should_stop()) {
5840 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5841 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5842 kthread_should_stop());
5843 if (ret < 0)
5844 goto out;
5845
5846 spin_lock_irq(&dev->dev_status_lock);
5847 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5848 spin_unlock_irq(&dev->dev_status_lock);
5849 transport_processing_shutdown(dev);
5850 continue;
5851 }
5852 spin_unlock_irq(&dev->dev_status_lock);
5853
5854 get_cmd:
5855 __transport_execute_tasks(dev);
5856
5857 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5858 if (!cmd)
5859 continue;
5860
5861 switch (cmd->t_state) {
5862 case TRANSPORT_NEW_CMD_MAP:
5863 if (!(cmd->se_tfo->new_cmd_map)) {
5864 printk(KERN_ERR "cmd->se_tfo->new_cmd_map is"
5865 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5866 BUG();
5867 }
5868 ret = cmd->se_tfo->new_cmd_map(cmd);
5869 if (ret < 0) {
5870 cmd->transport_error_status = ret;
5871 transport_generic_request_failure(cmd, NULL,
5872 0, (cmd->data_direction !=
5873 DMA_TO_DEVICE));
5874 break;
5875 }
5876 /* Fall through */
5877 case TRANSPORT_NEW_CMD:
5878 ret = transport_generic_new_cmd(cmd);
5879 if (ret < 0) {
5880 cmd->transport_error_status = ret;
5881 transport_generic_request_failure(cmd, NULL,
5882 0, (cmd->data_direction !=
5883 DMA_TO_DEVICE));
5884 }
5885 break;
5886 case TRANSPORT_PROCESS_WRITE:
5887 transport_generic_process_write(cmd);
5888 break;
5889 case TRANSPORT_COMPLETE_OK:
5890 transport_stop_all_task_timers(cmd);
5891 transport_generic_complete_ok(cmd);
5892 break;
5893 case TRANSPORT_REMOVE:
5894 transport_generic_remove(cmd, 1, 0);
5895 break;
5896 case TRANSPORT_FREE_CMD_INTR:
5897 transport_generic_free_cmd(cmd, 0, 1, 0);
5898 break;
5899 case TRANSPORT_PROCESS_TMR:
5900 transport_generic_do_tmr(cmd);
5901 break;
5902 case TRANSPORT_COMPLETE_FAILURE:
5903 transport_generic_request_failure(cmd, NULL, 1, 1);
5904 break;
5905 case TRANSPORT_COMPLETE_TIMEOUT:
5906 transport_stop_all_task_timers(cmd);
5907 transport_generic_request_timeout(cmd);
5908 break;
5909 default:
5910 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
5911 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5912 " %u\n", cmd->t_state, cmd->deferred_t_state,
5913 cmd->se_tfo->get_task_tag(cmd),
5914 cmd->se_tfo->get_cmd_state(cmd),
5915 cmd->se_lun->unpacked_lun);
5916 BUG();
5917 }
5918
5919 goto get_cmd;
5920 }
5921
5922 out:
5923 transport_release_all_cmds(dev);
5924 dev->process_thread = NULL;
5925 return 0;
5926 }
This page took 0.15264 seconds and 4 git commands to generate.