target: Remove legacy + unused device active I/O shutdown code
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_scdb.h"
58 #include "target_core_ua.h"
59
60 static int sub_api_initialized;
61
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 /* Used for transport_dev_get_map_*() */
73 typedef int (*map_func_t)(struct se_task *, u32);
74
75 static int transport_generic_write_pending(struct se_cmd *);
76 static int transport_processing_thread(void *param);
77 static int __transport_execute_tasks(struct se_device *dev);
78 static void transport_complete_task_attr(struct se_cmd *cmd);
79 static int transport_complete_qf(struct se_cmd *cmd);
80 static void transport_handle_queue_full(struct se_cmd *cmd,
81 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
82 static void transport_direct_request_timeout(struct se_cmd *cmd);
83 static void transport_free_dev_tasks(struct se_cmd *cmd);
84 static u32 transport_allocate_tasks(struct se_cmd *cmd,
85 unsigned long long starting_lba,
86 enum dma_data_direction data_direction,
87 struct scatterlist *sgl, unsigned int nents);
88 static int transport_generic_get_mem(struct se_cmd *cmd);
89 static void transport_put_cmd(struct se_cmd *cmd);
90 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
91 struct se_queue_obj *qobj);
92 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
93 static void transport_stop_all_task_timers(struct se_cmd *cmd);
94
95 int init_se_kmem_caches(void)
96 {
97 se_cmd_cache = kmem_cache_create("se_cmd_cache",
98 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
99 if (!se_cmd_cache) {
100 pr_err("kmem_cache_create for struct se_cmd failed\n");
101 goto out;
102 }
103 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
104 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
105 0, NULL);
106 if (!se_tmr_req_cache) {
107 pr_err("kmem_cache_create() for struct se_tmr_req"
108 " failed\n");
109 goto out;
110 }
111 se_sess_cache = kmem_cache_create("se_sess_cache",
112 sizeof(struct se_session), __alignof__(struct se_session),
113 0, NULL);
114 if (!se_sess_cache) {
115 pr_err("kmem_cache_create() for struct se_session"
116 " failed\n");
117 goto out;
118 }
119 se_ua_cache = kmem_cache_create("se_ua_cache",
120 sizeof(struct se_ua), __alignof__(struct se_ua),
121 0, NULL);
122 if (!se_ua_cache) {
123 pr_err("kmem_cache_create() for struct se_ua failed\n");
124 goto out;
125 }
126 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
127 sizeof(struct t10_pr_registration),
128 __alignof__(struct t10_pr_registration), 0, NULL);
129 if (!t10_pr_reg_cache) {
130 pr_err("kmem_cache_create() for struct t10_pr_registration"
131 " failed\n");
132 goto out;
133 }
134 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
135 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
136 0, NULL);
137 if (!t10_alua_lu_gp_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
139 " failed\n");
140 goto out;
141 }
142 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
143 sizeof(struct t10_alua_lu_gp_member),
144 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
145 if (!t10_alua_lu_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
147 "cache failed\n");
148 goto out;
149 }
150 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
151 sizeof(struct t10_alua_tg_pt_gp),
152 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
153 if (!t10_alua_tg_pt_gp_cache) {
154 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
155 "cache failed\n");
156 goto out;
157 }
158 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
159 "t10_alua_tg_pt_gp_mem_cache",
160 sizeof(struct t10_alua_tg_pt_gp_member),
161 __alignof__(struct t10_alua_tg_pt_gp_member),
162 0, NULL);
163 if (!t10_alua_tg_pt_gp_mem_cache) {
164 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
165 "mem_t failed\n");
166 goto out;
167 }
168
169 return 0;
170 out:
171 if (se_cmd_cache)
172 kmem_cache_destroy(se_cmd_cache);
173 if (se_tmr_req_cache)
174 kmem_cache_destroy(se_tmr_req_cache);
175 if (se_sess_cache)
176 kmem_cache_destroy(se_sess_cache);
177 if (se_ua_cache)
178 kmem_cache_destroy(se_ua_cache);
179 if (t10_pr_reg_cache)
180 kmem_cache_destroy(t10_pr_reg_cache);
181 if (t10_alua_lu_gp_cache)
182 kmem_cache_destroy(t10_alua_lu_gp_cache);
183 if (t10_alua_lu_gp_mem_cache)
184 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
185 if (t10_alua_tg_pt_gp_cache)
186 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
187 if (t10_alua_tg_pt_gp_mem_cache)
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 return -ENOMEM;
190 }
191
192 void release_se_kmem_caches(void)
193 {
194 kmem_cache_destroy(se_cmd_cache);
195 kmem_cache_destroy(se_tmr_req_cache);
196 kmem_cache_destroy(se_sess_cache);
197 kmem_cache_destroy(se_ua_cache);
198 kmem_cache_destroy(t10_pr_reg_cache);
199 kmem_cache_destroy(t10_alua_lu_gp_cache);
200 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
201 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
202 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
203 }
204
205 /* This code ensures unique mib indexes are handed out. */
206 static DEFINE_SPINLOCK(scsi_mib_index_lock);
207 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
208
209 /*
210 * Allocate a new row index for the entry type specified
211 */
212 u32 scsi_get_new_index(scsi_index_t type)
213 {
214 u32 new_index;
215
216 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
217
218 spin_lock(&scsi_mib_index_lock);
219 new_index = ++scsi_mib_index[type];
220 spin_unlock(&scsi_mib_index_lock);
221
222 return new_index;
223 }
224
225 void transport_init_queue_obj(struct se_queue_obj *qobj)
226 {
227 atomic_set(&qobj->queue_cnt, 0);
228 INIT_LIST_HEAD(&qobj->qobj_list);
229 init_waitqueue_head(&qobj->thread_wq);
230 spin_lock_init(&qobj->cmd_queue_lock);
231 }
232 EXPORT_SYMBOL(transport_init_queue_obj);
233
234 static int transport_subsystem_reqmods(void)
235 {
236 int ret;
237
238 ret = request_module("target_core_iblock");
239 if (ret != 0)
240 pr_err("Unable to load target_core_iblock\n");
241
242 ret = request_module("target_core_file");
243 if (ret != 0)
244 pr_err("Unable to load target_core_file\n");
245
246 ret = request_module("target_core_pscsi");
247 if (ret != 0)
248 pr_err("Unable to load target_core_pscsi\n");
249
250 ret = request_module("target_core_stgt");
251 if (ret != 0)
252 pr_err("Unable to load target_core_stgt\n");
253
254 return 0;
255 }
256
257 int transport_subsystem_check_init(void)
258 {
259 int ret;
260
261 if (sub_api_initialized)
262 return 0;
263 /*
264 * Request the loading of known TCM subsystem plugins..
265 */
266 ret = transport_subsystem_reqmods();
267 if (ret < 0)
268 return ret;
269
270 sub_api_initialized = 1;
271 return 0;
272 }
273
274 struct se_session *transport_init_session(void)
275 {
276 struct se_session *se_sess;
277
278 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
279 if (!se_sess) {
280 pr_err("Unable to allocate struct se_session from"
281 " se_sess_cache\n");
282 return ERR_PTR(-ENOMEM);
283 }
284 INIT_LIST_HEAD(&se_sess->sess_list);
285 INIT_LIST_HEAD(&se_sess->sess_acl_list);
286
287 return se_sess;
288 }
289 EXPORT_SYMBOL(transport_init_session);
290
291 /*
292 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
293 */
294 void __transport_register_session(
295 struct se_portal_group *se_tpg,
296 struct se_node_acl *se_nacl,
297 struct se_session *se_sess,
298 void *fabric_sess_ptr)
299 {
300 unsigned char buf[PR_REG_ISID_LEN];
301
302 se_sess->se_tpg = se_tpg;
303 se_sess->fabric_sess_ptr = fabric_sess_ptr;
304 /*
305 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
306 *
307 * Only set for struct se_session's that will actually be moving I/O.
308 * eg: *NOT* discovery sessions.
309 */
310 if (se_nacl) {
311 /*
312 * If the fabric module supports an ISID based TransportID,
313 * save this value in binary from the fabric I_T Nexus now.
314 */
315 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
316 memset(&buf[0], 0, PR_REG_ISID_LEN);
317 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
318 &buf[0], PR_REG_ISID_LEN);
319 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
320 }
321 spin_lock_irq(&se_nacl->nacl_sess_lock);
322 /*
323 * The se_nacl->nacl_sess pointer will be set to the
324 * last active I_T Nexus for each struct se_node_acl.
325 */
326 se_nacl->nacl_sess = se_sess;
327
328 list_add_tail(&se_sess->sess_acl_list,
329 &se_nacl->acl_sess_list);
330 spin_unlock_irq(&se_nacl->nacl_sess_lock);
331 }
332 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
333
334 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
335 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
336 }
337 EXPORT_SYMBOL(__transport_register_session);
338
339 void transport_register_session(
340 struct se_portal_group *se_tpg,
341 struct se_node_acl *se_nacl,
342 struct se_session *se_sess,
343 void *fabric_sess_ptr)
344 {
345 spin_lock_bh(&se_tpg->session_lock);
346 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
347 spin_unlock_bh(&se_tpg->session_lock);
348 }
349 EXPORT_SYMBOL(transport_register_session);
350
351 void transport_deregister_session_configfs(struct se_session *se_sess)
352 {
353 struct se_node_acl *se_nacl;
354 unsigned long flags;
355 /*
356 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
357 */
358 se_nacl = se_sess->se_node_acl;
359 if (se_nacl) {
360 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
361 list_del(&se_sess->sess_acl_list);
362 /*
363 * If the session list is empty, then clear the pointer.
364 * Otherwise, set the struct se_session pointer from the tail
365 * element of the per struct se_node_acl active session list.
366 */
367 if (list_empty(&se_nacl->acl_sess_list))
368 se_nacl->nacl_sess = NULL;
369 else {
370 se_nacl->nacl_sess = container_of(
371 se_nacl->acl_sess_list.prev,
372 struct se_session, sess_acl_list);
373 }
374 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
375 }
376 }
377 EXPORT_SYMBOL(transport_deregister_session_configfs);
378
379 void transport_free_session(struct se_session *se_sess)
380 {
381 kmem_cache_free(se_sess_cache, se_sess);
382 }
383 EXPORT_SYMBOL(transport_free_session);
384
385 void transport_deregister_session(struct se_session *se_sess)
386 {
387 struct se_portal_group *se_tpg = se_sess->se_tpg;
388 struct se_node_acl *se_nacl;
389 unsigned long flags;
390
391 if (!se_tpg) {
392 transport_free_session(se_sess);
393 return;
394 }
395
396 spin_lock_irqsave(&se_tpg->session_lock, flags);
397 list_del(&se_sess->sess_list);
398 se_sess->se_tpg = NULL;
399 se_sess->fabric_sess_ptr = NULL;
400 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
401
402 /*
403 * Determine if we need to do extra work for this initiator node's
404 * struct se_node_acl if it had been previously dynamically generated.
405 */
406 se_nacl = se_sess->se_node_acl;
407 if (se_nacl) {
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 if (se_nacl->dynamic_node_acl) {
410 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
411 se_tpg)) {
412 list_del(&se_nacl->acl_list);
413 se_tpg->num_node_acls--;
414 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
415
416 core_tpg_wait_for_nacl_pr_ref(se_nacl);
417 core_free_device_list_for_node(se_nacl, se_tpg);
418 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
419 se_nacl);
420 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
421 }
422 }
423 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
424 }
425
426 transport_free_session(se_sess);
427
428 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
429 se_tpg->se_tpg_tfo->get_fabric_name());
430 }
431 EXPORT_SYMBOL(transport_deregister_session);
432
433 /*
434 * Called with cmd->t_state_lock held.
435 */
436 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
437 {
438 struct se_device *dev;
439 struct se_task *task;
440 unsigned long flags;
441
442 list_for_each_entry(task, &cmd->t_task_list, t_list) {
443 dev = task->se_dev;
444 if (!dev)
445 continue;
446
447 if (atomic_read(&task->task_active))
448 continue;
449
450 if (!atomic_read(&task->task_state_active))
451 continue;
452
453 spin_lock_irqsave(&dev->execute_task_lock, flags);
454 list_del(&task->t_state_list);
455 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
456 cmd->se_tfo->get_task_tag(cmd), dev, task);
457 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
458
459 atomic_set(&task->task_state_active, 0);
460 atomic_dec(&cmd->t_task_cdbs_ex_left);
461 }
462 }
463
464 /* transport_cmd_check_stop():
465 *
466 * 'transport_off = 1' determines if t_transport_active should be cleared.
467 * 'transport_off = 2' determines if task_dev_state should be removed.
468 *
469 * A non-zero u8 t_state sets cmd->t_state.
470 * Returns 1 when command is stopped, else 0.
471 */
472 static int transport_cmd_check_stop(
473 struct se_cmd *cmd,
474 int transport_off,
475 u8 t_state)
476 {
477 unsigned long flags;
478
479 spin_lock_irqsave(&cmd->t_state_lock, flags);
480 /*
481 * Determine if IOCTL context caller in requesting the stopping of this
482 * command for LUN shutdown purposes.
483 */
484 if (atomic_read(&cmd->transport_lun_stop)) {
485 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
486 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
487 cmd->se_tfo->get_task_tag(cmd));
488
489 cmd->deferred_t_state = cmd->t_state;
490 cmd->t_state = TRANSPORT_DEFERRED_CMD;
491 atomic_set(&cmd->t_transport_active, 0);
492 if (transport_off == 2)
493 transport_all_task_dev_remove_state(cmd);
494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496 complete(&cmd->transport_lun_stop_comp);
497 return 1;
498 }
499 /*
500 * Determine if frontend context caller is requesting the stopping of
501 * this command for frontend exceptions.
502 */
503 if (atomic_read(&cmd->t_transport_stop)) {
504 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
505 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
506 cmd->se_tfo->get_task_tag(cmd));
507
508 cmd->deferred_t_state = cmd->t_state;
509 cmd->t_state = TRANSPORT_DEFERRED_CMD;
510 if (transport_off == 2)
511 transport_all_task_dev_remove_state(cmd);
512
513 /*
514 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
515 * to FE.
516 */
517 if (transport_off == 2)
518 cmd->se_lun = NULL;
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521 complete(&cmd->t_transport_stop_comp);
522 return 1;
523 }
524 if (transport_off) {
525 atomic_set(&cmd->t_transport_active, 0);
526 if (transport_off == 2) {
527 transport_all_task_dev_remove_state(cmd);
528 /*
529 * Clear struct se_cmd->se_lun before the transport_off == 2
530 * handoff to fabric module.
531 */
532 cmd->se_lun = NULL;
533 /*
534 * Some fabric modules like tcm_loop can release
535 * their internally allocated I/O reference now and
536 * struct se_cmd now.
537 */
538 if (cmd->se_tfo->check_stop_free != NULL) {
539 spin_unlock_irqrestore(
540 &cmd->t_state_lock, flags);
541
542 cmd->se_tfo->check_stop_free(cmd);
543 return 1;
544 }
545 }
546 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
547
548 return 0;
549 } else if (t_state)
550 cmd->t_state = t_state;
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552
553 return 0;
554 }
555
556 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
557 {
558 return transport_cmd_check_stop(cmd, 2, 0);
559 }
560
561 static void transport_lun_remove_cmd(struct se_cmd *cmd)
562 {
563 struct se_lun *lun = cmd->se_lun;
564 unsigned long flags;
565
566 if (!lun)
567 return;
568
569 spin_lock_irqsave(&cmd->t_state_lock, flags);
570 if (!atomic_read(&cmd->transport_dev_active)) {
571 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
572 goto check_lun;
573 }
574 atomic_set(&cmd->transport_dev_active, 0);
575 transport_all_task_dev_remove_state(cmd);
576 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577
578
579 check_lun:
580 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
581 if (atomic_read(&cmd->transport_lun_active)) {
582 list_del(&cmd->se_lun_node);
583 atomic_set(&cmd->transport_lun_active, 0);
584 #if 0
585 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
586 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
587 #endif
588 }
589 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
590 }
591
592 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
593 {
594 if (!cmd->se_tmr_req)
595 transport_lun_remove_cmd(cmd);
596
597 if (transport_cmd_check_stop_to_fabric(cmd))
598 return;
599 if (remove) {
600 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
601 transport_put_cmd(cmd);
602 }
603 }
604
605 static void transport_add_cmd_to_queue(
606 struct se_cmd *cmd,
607 int t_state)
608 {
609 struct se_device *dev = cmd->se_dev;
610 struct se_queue_obj *qobj = &dev->dev_queue_obj;
611 unsigned long flags;
612
613 if (t_state) {
614 spin_lock_irqsave(&cmd->t_state_lock, flags);
615 cmd->t_state = t_state;
616 atomic_set(&cmd->t_transport_active, 1);
617 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
618 }
619
620 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
621
622 /* If the cmd is already on the list, remove it before we add it */
623 if (!list_empty(&cmd->se_queue_node))
624 list_del(&cmd->se_queue_node);
625 else
626 atomic_inc(&qobj->queue_cnt);
627
628 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
629 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
630 list_add(&cmd->se_queue_node, &qobj->qobj_list);
631 } else
632 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
633 atomic_set(&cmd->t_transport_queue_active, 1);
634 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
635
636 wake_up_interruptible(&qobj->thread_wq);
637 }
638
639 static struct se_cmd *
640 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
641 {
642 struct se_cmd *cmd;
643 unsigned long flags;
644
645 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
646 if (list_empty(&qobj->qobj_list)) {
647 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648 return NULL;
649 }
650 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
651
652 atomic_set(&cmd->t_transport_queue_active, 0);
653
654 list_del_init(&cmd->se_queue_node);
655 atomic_dec(&qobj->queue_cnt);
656 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
657
658 return cmd;
659 }
660
661 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
662 struct se_queue_obj *qobj)
663 {
664 unsigned long flags;
665
666 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
667 if (!atomic_read(&cmd->t_transport_queue_active)) {
668 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
669 return;
670 }
671 atomic_set(&cmd->t_transport_queue_active, 0);
672 atomic_dec(&qobj->queue_cnt);
673 list_del_init(&cmd->se_queue_node);
674 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
675
676 if (atomic_read(&cmd->t_transport_queue_active)) {
677 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
678 cmd->se_tfo->get_task_tag(cmd),
679 atomic_read(&cmd->t_transport_queue_active));
680 }
681 }
682
683 /*
684 * Completion function used by TCM subsystem plugins (such as FILEIO)
685 * for queueing up response from struct se_subsystem_api->do_task()
686 */
687 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
688 {
689 struct se_task *task = list_entry(cmd->t_task_list.next,
690 struct se_task, t_list);
691
692 if (good) {
693 cmd->scsi_status = SAM_STAT_GOOD;
694 task->task_scsi_status = GOOD;
695 } else {
696 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
697 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
698 task->task_se_cmd->transport_error_status =
699 PYX_TRANSPORT_ILLEGAL_REQUEST;
700 }
701
702 transport_complete_task(task, good);
703 }
704 EXPORT_SYMBOL(transport_complete_sync_cache);
705
706 /* transport_complete_task():
707 *
708 * Called from interrupt and non interrupt context depending
709 * on the transport plugin.
710 */
711 void transport_complete_task(struct se_task *task, int success)
712 {
713 struct se_cmd *cmd = task->task_se_cmd;
714 struct se_device *dev = task->se_dev;
715 int t_state;
716 unsigned long flags;
717 #if 0
718 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
719 cmd->t_task_cdb[0], dev);
720 #endif
721 if (dev)
722 atomic_inc(&dev->depth_left);
723
724 spin_lock_irqsave(&cmd->t_state_lock, flags);
725 atomic_set(&task->task_active, 0);
726
727 /*
728 * See if any sense data exists, if so set the TASK_SENSE flag.
729 * Also check for any other post completion work that needs to be
730 * done by the plugins.
731 */
732 if (dev && dev->transport->transport_complete) {
733 if (dev->transport->transport_complete(task) != 0) {
734 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
735 task->task_sense = 1;
736 success = 1;
737 }
738 }
739
740 /*
741 * See if we are waiting for outstanding struct se_task
742 * to complete for an exception condition
743 */
744 if (atomic_read(&task->task_stop)) {
745 /*
746 * Decrement cmd->t_se_count if this task had
747 * previously thrown its timeout exception handler.
748 */
749 if (atomic_read(&task->task_timeout)) {
750 atomic_dec(&cmd->t_se_count);
751 atomic_set(&task->task_timeout, 0);
752 }
753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754
755 complete(&task->task_stop_comp);
756 return;
757 }
758 /*
759 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
760 * left counter to determine when the struct se_cmd is ready to be queued to
761 * the processing thread.
762 */
763 if (atomic_read(&task->task_timeout)) {
764 if (!atomic_dec_and_test(
765 &cmd->t_task_cdbs_timeout_left)) {
766 spin_unlock_irqrestore(&cmd->t_state_lock,
767 flags);
768 return;
769 }
770 t_state = TRANSPORT_COMPLETE_TIMEOUT;
771 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
772
773 transport_add_cmd_to_queue(cmd, t_state);
774 return;
775 }
776 atomic_dec(&cmd->t_task_cdbs_timeout_left);
777
778 /*
779 * Decrement the outstanding t_task_cdbs_left count. The last
780 * struct se_task from struct se_cmd will complete itself into the
781 * device queue depending upon int success.
782 */
783 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
784 if (!success)
785 cmd->t_tasks_failed = 1;
786
787 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
788 return;
789 }
790
791 if (!success || cmd->t_tasks_failed) {
792 t_state = TRANSPORT_COMPLETE_FAILURE;
793 if (!task->task_error_status) {
794 task->task_error_status =
795 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
796 cmd->transport_error_status =
797 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
798 }
799 } else {
800 atomic_set(&cmd->t_transport_complete, 1);
801 t_state = TRANSPORT_COMPLETE_OK;
802 }
803 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
804
805 transport_add_cmd_to_queue(cmd, t_state);
806 }
807 EXPORT_SYMBOL(transport_complete_task);
808
809 /*
810 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
811 * struct se_task list are ready to be added to the active execution list
812 * struct se_device
813
814 * Called with se_dev_t->execute_task_lock called.
815 */
816 static inline int transport_add_task_check_sam_attr(
817 struct se_task *task,
818 struct se_task *task_prev,
819 struct se_device *dev)
820 {
821 /*
822 * No SAM Task attribute emulation enabled, add to tail of
823 * execution queue
824 */
825 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
826 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
827 return 0;
828 }
829 /*
830 * HEAD_OF_QUEUE attribute for received CDB, which means
831 * the first task that is associated with a struct se_cmd goes to
832 * head of the struct se_device->execute_task_list, and task_prev
833 * after that for each subsequent task
834 */
835 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
836 list_add(&task->t_execute_list,
837 (task_prev != NULL) ?
838 &task_prev->t_execute_list :
839 &dev->execute_task_list);
840
841 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
842 " in execution queue\n",
843 task->task_se_cmd->t_task_cdb[0]);
844 return 1;
845 }
846 /*
847 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
848 * transitioned from Dermant -> Active state, and are added to the end
849 * of the struct se_device->execute_task_list
850 */
851 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
852 return 0;
853 }
854
855 /* __transport_add_task_to_execute_queue():
856 *
857 * Called with se_dev_t->execute_task_lock called.
858 */
859 static void __transport_add_task_to_execute_queue(
860 struct se_task *task,
861 struct se_task *task_prev,
862 struct se_device *dev)
863 {
864 int head_of_queue;
865
866 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
867 atomic_inc(&dev->execute_tasks);
868
869 if (atomic_read(&task->task_state_active))
870 return;
871 /*
872 * Determine if this task needs to go to HEAD_OF_QUEUE for the
873 * state list as well. Running with SAM Task Attribute emulation
874 * will always return head_of_queue == 0 here
875 */
876 if (head_of_queue)
877 list_add(&task->t_state_list, (task_prev) ?
878 &task_prev->t_state_list :
879 &dev->state_task_list);
880 else
881 list_add_tail(&task->t_state_list, &dev->state_task_list);
882
883 atomic_set(&task->task_state_active, 1);
884
885 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
886 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
887 task, dev);
888 }
889
890 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
891 {
892 struct se_device *dev;
893 struct se_task *task;
894 unsigned long flags;
895
896 spin_lock_irqsave(&cmd->t_state_lock, flags);
897 list_for_each_entry(task, &cmd->t_task_list, t_list) {
898 dev = task->se_dev;
899
900 if (atomic_read(&task->task_state_active))
901 continue;
902
903 spin_lock(&dev->execute_task_lock);
904 list_add_tail(&task->t_state_list, &dev->state_task_list);
905 atomic_set(&task->task_state_active, 1);
906
907 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
908 task->task_se_cmd->se_tfo->get_task_tag(
909 task->task_se_cmd), task, dev);
910
911 spin_unlock(&dev->execute_task_lock);
912 }
913 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
914 }
915
916 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
917 {
918 struct se_device *dev = cmd->se_dev;
919 struct se_task *task, *task_prev = NULL;
920 unsigned long flags;
921
922 spin_lock_irqsave(&dev->execute_task_lock, flags);
923 list_for_each_entry(task, &cmd->t_task_list, t_list) {
924 if (atomic_read(&task->task_execute_queue))
925 continue;
926 /*
927 * __transport_add_task_to_execute_queue() handles the
928 * SAM Task Attribute emulation if enabled
929 */
930 __transport_add_task_to_execute_queue(task, task_prev, dev);
931 atomic_set(&task->task_execute_queue, 1);
932 task_prev = task;
933 }
934 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
935 }
936
937 /* transport_remove_task_from_execute_queue():
938 *
939 *
940 */
941 void transport_remove_task_from_execute_queue(
942 struct se_task *task,
943 struct se_device *dev)
944 {
945 unsigned long flags;
946
947 if (atomic_read(&task->task_execute_queue) == 0) {
948 dump_stack();
949 return;
950 }
951
952 spin_lock_irqsave(&dev->execute_task_lock, flags);
953 list_del(&task->t_execute_list);
954 atomic_set(&task->task_execute_queue, 0);
955 atomic_dec(&dev->execute_tasks);
956 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
957 }
958
959 /*
960 * Handle QUEUE_FULL / -EAGAIN status
961 */
962
963 static void target_qf_do_work(struct work_struct *work)
964 {
965 struct se_device *dev = container_of(work, struct se_device,
966 qf_work_queue);
967 LIST_HEAD(qf_cmd_list);
968 struct se_cmd *cmd, *cmd_tmp;
969
970 spin_lock_irq(&dev->qf_cmd_lock);
971 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
972 spin_unlock_irq(&dev->qf_cmd_lock);
973
974 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
975 list_del(&cmd->se_qf_node);
976 atomic_dec(&dev->dev_qf_count);
977 smp_mb__after_atomic_dec();
978
979 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
980 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
981 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
982 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
983 : "UNKNOWN");
984 /*
985 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
986 * has been added to head of queue
987 */
988 transport_add_cmd_to_queue(cmd, cmd->t_state);
989 }
990 }
991
992 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
993 {
994 switch (cmd->data_direction) {
995 case DMA_NONE:
996 return "NONE";
997 case DMA_FROM_DEVICE:
998 return "READ";
999 case DMA_TO_DEVICE:
1000 return "WRITE";
1001 case DMA_BIDIRECTIONAL:
1002 return "BIDI";
1003 default:
1004 break;
1005 }
1006
1007 return "UNKNOWN";
1008 }
1009
1010 void transport_dump_dev_state(
1011 struct se_device *dev,
1012 char *b,
1013 int *bl)
1014 {
1015 *bl += sprintf(b + *bl, "Status: ");
1016 switch (dev->dev_status) {
1017 case TRANSPORT_DEVICE_ACTIVATED:
1018 *bl += sprintf(b + *bl, "ACTIVATED");
1019 break;
1020 case TRANSPORT_DEVICE_DEACTIVATED:
1021 *bl += sprintf(b + *bl, "DEACTIVATED");
1022 break;
1023 case TRANSPORT_DEVICE_SHUTDOWN:
1024 *bl += sprintf(b + *bl, "SHUTDOWN");
1025 break;
1026 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1027 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1028 *bl += sprintf(b + *bl, "OFFLINE");
1029 break;
1030 default:
1031 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1032 break;
1033 }
1034
1035 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1036 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1037 dev->queue_depth);
1038 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1039 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1040 *bl += sprintf(b + *bl, " ");
1041 }
1042
1043 void transport_dump_vpd_proto_id(
1044 struct t10_vpd *vpd,
1045 unsigned char *p_buf,
1046 int p_buf_len)
1047 {
1048 unsigned char buf[VPD_TMP_BUF_SIZE];
1049 int len;
1050
1051 memset(buf, 0, VPD_TMP_BUF_SIZE);
1052 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1053
1054 switch (vpd->protocol_identifier) {
1055 case 0x00:
1056 sprintf(buf+len, "Fibre Channel\n");
1057 break;
1058 case 0x10:
1059 sprintf(buf+len, "Parallel SCSI\n");
1060 break;
1061 case 0x20:
1062 sprintf(buf+len, "SSA\n");
1063 break;
1064 case 0x30:
1065 sprintf(buf+len, "IEEE 1394\n");
1066 break;
1067 case 0x40:
1068 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1069 " Protocol\n");
1070 break;
1071 case 0x50:
1072 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1073 break;
1074 case 0x60:
1075 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1076 break;
1077 case 0x70:
1078 sprintf(buf+len, "Automation/Drive Interface Transport"
1079 " Protocol\n");
1080 break;
1081 case 0x80:
1082 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1083 break;
1084 default:
1085 sprintf(buf+len, "Unknown 0x%02x\n",
1086 vpd->protocol_identifier);
1087 break;
1088 }
1089
1090 if (p_buf)
1091 strncpy(p_buf, buf, p_buf_len);
1092 else
1093 pr_debug("%s", buf);
1094 }
1095
1096 void
1097 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1098 {
1099 /*
1100 * Check if the Protocol Identifier Valid (PIV) bit is set..
1101 *
1102 * from spc3r23.pdf section 7.5.1
1103 */
1104 if (page_83[1] & 0x80) {
1105 vpd->protocol_identifier = (page_83[0] & 0xf0);
1106 vpd->protocol_identifier_set = 1;
1107 transport_dump_vpd_proto_id(vpd, NULL, 0);
1108 }
1109 }
1110 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1111
1112 int transport_dump_vpd_assoc(
1113 struct t10_vpd *vpd,
1114 unsigned char *p_buf,
1115 int p_buf_len)
1116 {
1117 unsigned char buf[VPD_TMP_BUF_SIZE];
1118 int ret = 0;
1119 int len;
1120
1121 memset(buf, 0, VPD_TMP_BUF_SIZE);
1122 len = sprintf(buf, "T10 VPD Identifier Association: ");
1123
1124 switch (vpd->association) {
1125 case 0x00:
1126 sprintf(buf+len, "addressed logical unit\n");
1127 break;
1128 case 0x10:
1129 sprintf(buf+len, "target port\n");
1130 break;
1131 case 0x20:
1132 sprintf(buf+len, "SCSI target device\n");
1133 break;
1134 default:
1135 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1136 ret = -EINVAL;
1137 break;
1138 }
1139
1140 if (p_buf)
1141 strncpy(p_buf, buf, p_buf_len);
1142 else
1143 pr_debug("%s", buf);
1144
1145 return ret;
1146 }
1147
1148 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150 /*
1151 * The VPD identification association..
1152 *
1153 * from spc3r23.pdf Section 7.6.3.1 Table 297
1154 */
1155 vpd->association = (page_83[1] & 0x30);
1156 return transport_dump_vpd_assoc(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_assoc);
1159
1160 int transport_dump_vpd_ident_type(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1164 {
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1167 int len;
1168
1169 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 len = sprintf(buf, "T10 VPD Identifier Type: ");
1171
1172 switch (vpd->device_identifier_type) {
1173 case 0x00:
1174 sprintf(buf+len, "Vendor specific\n");
1175 break;
1176 case 0x01:
1177 sprintf(buf+len, "T10 Vendor ID based\n");
1178 break;
1179 case 0x02:
1180 sprintf(buf+len, "EUI-64 based\n");
1181 break;
1182 case 0x03:
1183 sprintf(buf+len, "NAA\n");
1184 break;
1185 case 0x04:
1186 sprintf(buf+len, "Relative target port identifier\n");
1187 break;
1188 case 0x08:
1189 sprintf(buf+len, "SCSI name string\n");
1190 break;
1191 default:
1192 sprintf(buf+len, "Unsupported: 0x%02x\n",
1193 vpd->device_identifier_type);
1194 ret = -EINVAL;
1195 break;
1196 }
1197
1198 if (p_buf) {
1199 if (p_buf_len < strlen(buf)+1)
1200 return -EINVAL;
1201 strncpy(p_buf, buf, p_buf_len);
1202 } else {
1203 pr_debug("%s", buf);
1204 }
1205
1206 return ret;
1207 }
1208
1209 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1210 {
1211 /*
1212 * The VPD identifier type..
1213 *
1214 * from spc3r23.pdf Section 7.6.3.1 Table 298
1215 */
1216 vpd->device_identifier_type = (page_83[1] & 0x0f);
1217 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1218 }
1219 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1220
1221 int transport_dump_vpd_ident(
1222 struct t10_vpd *vpd,
1223 unsigned char *p_buf,
1224 int p_buf_len)
1225 {
1226 unsigned char buf[VPD_TMP_BUF_SIZE];
1227 int ret = 0;
1228
1229 memset(buf, 0, VPD_TMP_BUF_SIZE);
1230
1231 switch (vpd->device_identifier_code_set) {
1232 case 0x01: /* Binary */
1233 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1234 &vpd->device_identifier[0]);
1235 break;
1236 case 0x02: /* ASCII */
1237 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1238 &vpd->device_identifier[0]);
1239 break;
1240 case 0x03: /* UTF-8 */
1241 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1242 &vpd->device_identifier[0]);
1243 break;
1244 default:
1245 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1246 " 0x%02x", vpd->device_identifier_code_set);
1247 ret = -EINVAL;
1248 break;
1249 }
1250
1251 if (p_buf)
1252 strncpy(p_buf, buf, p_buf_len);
1253 else
1254 pr_debug("%s", buf);
1255
1256 return ret;
1257 }
1258
1259 int
1260 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1261 {
1262 static const char hex_str[] = "0123456789abcdef";
1263 int j = 0, i = 4; /* offset to start of the identifer */
1264
1265 /*
1266 * The VPD Code Set (encoding)
1267 *
1268 * from spc3r23.pdf Section 7.6.3.1 Table 296
1269 */
1270 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1271 switch (vpd->device_identifier_code_set) {
1272 case 0x01: /* Binary */
1273 vpd->device_identifier[j++] =
1274 hex_str[vpd->device_identifier_type];
1275 while (i < (4 + page_83[3])) {
1276 vpd->device_identifier[j++] =
1277 hex_str[(page_83[i] & 0xf0) >> 4];
1278 vpd->device_identifier[j++] =
1279 hex_str[page_83[i] & 0x0f];
1280 i++;
1281 }
1282 break;
1283 case 0x02: /* ASCII */
1284 case 0x03: /* UTF-8 */
1285 while (i < (4 + page_83[3]))
1286 vpd->device_identifier[j++] = page_83[i++];
1287 break;
1288 default:
1289 break;
1290 }
1291
1292 return transport_dump_vpd_ident(vpd, NULL, 0);
1293 }
1294 EXPORT_SYMBOL(transport_set_vpd_ident);
1295
1296 static void core_setup_task_attr_emulation(struct se_device *dev)
1297 {
1298 /*
1299 * If this device is from Target_Core_Mod/pSCSI, disable the
1300 * SAM Task Attribute emulation.
1301 *
1302 * This is currently not available in upsream Linux/SCSI Target
1303 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1304 */
1305 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1306 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1307 return;
1308 }
1309
1310 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1311 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1312 " device\n", dev->transport->name,
1313 dev->transport->get_device_rev(dev));
1314 }
1315
1316 static void scsi_dump_inquiry(struct se_device *dev)
1317 {
1318 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1319 int i, device_type;
1320 /*
1321 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1322 */
1323 pr_debug(" Vendor: ");
1324 for (i = 0; i < 8; i++)
1325 if (wwn->vendor[i] >= 0x20)
1326 pr_debug("%c", wwn->vendor[i]);
1327 else
1328 pr_debug(" ");
1329
1330 pr_debug(" Model: ");
1331 for (i = 0; i < 16; i++)
1332 if (wwn->model[i] >= 0x20)
1333 pr_debug("%c", wwn->model[i]);
1334 else
1335 pr_debug(" ");
1336
1337 pr_debug(" Revision: ");
1338 for (i = 0; i < 4; i++)
1339 if (wwn->revision[i] >= 0x20)
1340 pr_debug("%c", wwn->revision[i]);
1341 else
1342 pr_debug(" ");
1343
1344 pr_debug("\n");
1345
1346 device_type = dev->transport->get_device_type(dev);
1347 pr_debug(" Type: %s ", scsi_device_type(device_type));
1348 pr_debug(" ANSI SCSI revision: %02x\n",
1349 dev->transport->get_device_rev(dev));
1350 }
1351
1352 struct se_device *transport_add_device_to_core_hba(
1353 struct se_hba *hba,
1354 struct se_subsystem_api *transport,
1355 struct se_subsystem_dev *se_dev,
1356 u32 device_flags,
1357 void *transport_dev,
1358 struct se_dev_limits *dev_limits,
1359 const char *inquiry_prod,
1360 const char *inquiry_rev)
1361 {
1362 int force_pt;
1363 struct se_device *dev;
1364
1365 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1366 if (!dev) {
1367 pr_err("Unable to allocate memory for se_dev_t\n");
1368 return NULL;
1369 }
1370
1371 transport_init_queue_obj(&dev->dev_queue_obj);
1372 dev->dev_flags = device_flags;
1373 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1374 dev->dev_ptr = transport_dev;
1375 dev->se_hba = hba;
1376 dev->se_sub_dev = se_dev;
1377 dev->transport = transport;
1378 atomic_set(&dev->active_cmds, 0);
1379 INIT_LIST_HEAD(&dev->dev_list);
1380 INIT_LIST_HEAD(&dev->dev_sep_list);
1381 INIT_LIST_HEAD(&dev->dev_tmr_list);
1382 INIT_LIST_HEAD(&dev->execute_task_list);
1383 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1384 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1385 INIT_LIST_HEAD(&dev->state_task_list);
1386 INIT_LIST_HEAD(&dev->qf_cmd_list);
1387 spin_lock_init(&dev->execute_task_lock);
1388 spin_lock_init(&dev->delayed_cmd_lock);
1389 spin_lock_init(&dev->ordered_cmd_lock);
1390 spin_lock_init(&dev->state_task_lock);
1391 spin_lock_init(&dev->dev_alua_lock);
1392 spin_lock_init(&dev->dev_reservation_lock);
1393 spin_lock_init(&dev->dev_status_lock);
1394 spin_lock_init(&dev->dev_status_thr_lock);
1395 spin_lock_init(&dev->se_port_lock);
1396 spin_lock_init(&dev->se_tmr_lock);
1397 spin_lock_init(&dev->qf_cmd_lock);
1398
1399 dev->queue_depth = dev_limits->queue_depth;
1400 atomic_set(&dev->depth_left, dev->queue_depth);
1401 atomic_set(&dev->dev_ordered_id, 0);
1402
1403 se_dev_set_default_attribs(dev, dev_limits);
1404
1405 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1406 dev->creation_time = get_jiffies_64();
1407 spin_lock_init(&dev->stats_lock);
1408
1409 spin_lock(&hba->device_lock);
1410 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1411 hba->dev_count++;
1412 spin_unlock(&hba->device_lock);
1413 /*
1414 * Setup the SAM Task Attribute emulation for struct se_device
1415 */
1416 core_setup_task_attr_emulation(dev);
1417 /*
1418 * Force PR and ALUA passthrough emulation with internal object use.
1419 */
1420 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1421 /*
1422 * Setup the Reservations infrastructure for struct se_device
1423 */
1424 core_setup_reservations(dev, force_pt);
1425 /*
1426 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1427 */
1428 if (core_setup_alua(dev, force_pt) < 0)
1429 goto out;
1430
1431 /*
1432 * Startup the struct se_device processing thread
1433 */
1434 dev->process_thread = kthread_run(transport_processing_thread, dev,
1435 "LIO_%s", dev->transport->name);
1436 if (IS_ERR(dev->process_thread)) {
1437 pr_err("Unable to create kthread: LIO_%s\n",
1438 dev->transport->name);
1439 goto out;
1440 }
1441 /*
1442 * Setup work_queue for QUEUE_FULL
1443 */
1444 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1445 /*
1446 * Preload the initial INQUIRY const values if we are doing
1447 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1448 * passthrough because this is being provided by the backend LLD.
1449 * This is required so that transport_get_inquiry() copies these
1450 * originals once back into DEV_T10_WWN(dev) for the virtual device
1451 * setup.
1452 */
1453 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1454 if (!inquiry_prod || !inquiry_rev) {
1455 pr_err("All non TCM/pSCSI plugins require"
1456 " INQUIRY consts\n");
1457 goto out;
1458 }
1459
1460 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1461 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1462 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1463 }
1464 scsi_dump_inquiry(dev);
1465
1466 return dev;
1467 out:
1468 kthread_stop(dev->process_thread);
1469
1470 spin_lock(&hba->device_lock);
1471 list_del(&dev->dev_list);
1472 hba->dev_count--;
1473 spin_unlock(&hba->device_lock);
1474
1475 se_release_vpd_for_dev(dev);
1476
1477 kfree(dev);
1478
1479 return NULL;
1480 }
1481 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1482
1483 /* transport_generic_prepare_cdb():
1484 *
1485 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1486 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1487 * The point of this is since we are mapping iSCSI LUNs to
1488 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1489 * devices and HBAs for a loop.
1490 */
1491 static inline void transport_generic_prepare_cdb(
1492 unsigned char *cdb)
1493 {
1494 switch (cdb[0]) {
1495 case READ_10: /* SBC - RDProtect */
1496 case READ_12: /* SBC - RDProtect */
1497 case READ_16: /* SBC - RDProtect */
1498 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1499 case VERIFY: /* SBC - VRProtect */
1500 case VERIFY_16: /* SBC - VRProtect */
1501 case WRITE_VERIFY: /* SBC - VRProtect */
1502 case WRITE_VERIFY_12: /* SBC - VRProtect */
1503 break;
1504 default:
1505 cdb[1] &= 0x1f; /* clear logical unit number */
1506 break;
1507 }
1508 }
1509
1510 static struct se_task *
1511 transport_generic_get_task(struct se_cmd *cmd,
1512 enum dma_data_direction data_direction)
1513 {
1514 struct se_task *task;
1515 struct se_device *dev = cmd->se_dev;
1516
1517 task = dev->transport->alloc_task(cmd->t_task_cdb);
1518 if (!task) {
1519 pr_err("Unable to allocate struct se_task\n");
1520 return NULL;
1521 }
1522
1523 INIT_LIST_HEAD(&task->t_list);
1524 INIT_LIST_HEAD(&task->t_execute_list);
1525 INIT_LIST_HEAD(&task->t_state_list);
1526 init_completion(&task->task_stop_comp);
1527 task->task_se_cmd = cmd;
1528 task->se_dev = dev;
1529 task->task_data_direction = data_direction;
1530
1531 return task;
1532 }
1533
1534 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1535
1536 /*
1537 * Used by fabric modules containing a local struct se_cmd within their
1538 * fabric dependent per I/O descriptor.
1539 */
1540 void transport_init_se_cmd(
1541 struct se_cmd *cmd,
1542 struct target_core_fabric_ops *tfo,
1543 struct se_session *se_sess,
1544 u32 data_length,
1545 int data_direction,
1546 int task_attr,
1547 unsigned char *sense_buffer)
1548 {
1549 INIT_LIST_HEAD(&cmd->se_lun_node);
1550 INIT_LIST_HEAD(&cmd->se_delayed_node);
1551 INIT_LIST_HEAD(&cmd->se_ordered_node);
1552 INIT_LIST_HEAD(&cmd->se_qf_node);
1553 INIT_LIST_HEAD(&cmd->se_queue_node);
1554
1555 INIT_LIST_HEAD(&cmd->t_task_list);
1556 init_completion(&cmd->transport_lun_fe_stop_comp);
1557 init_completion(&cmd->transport_lun_stop_comp);
1558 init_completion(&cmd->t_transport_stop_comp);
1559 spin_lock_init(&cmd->t_state_lock);
1560 atomic_set(&cmd->transport_dev_active, 1);
1561
1562 cmd->se_tfo = tfo;
1563 cmd->se_sess = se_sess;
1564 cmd->data_length = data_length;
1565 cmd->data_direction = data_direction;
1566 cmd->sam_task_attr = task_attr;
1567 cmd->sense_buffer = sense_buffer;
1568 }
1569 EXPORT_SYMBOL(transport_init_se_cmd);
1570
1571 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1572 {
1573 /*
1574 * Check if SAM Task Attribute emulation is enabled for this
1575 * struct se_device storage object
1576 */
1577 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1578 return 0;
1579
1580 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1581 pr_debug("SAM Task Attribute ACA"
1582 " emulation is not supported\n");
1583 return -EINVAL;
1584 }
1585 /*
1586 * Used to determine when ORDERED commands should go from
1587 * Dormant to Active status.
1588 */
1589 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1590 smp_mb__after_atomic_inc();
1591 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1592 cmd->se_ordered_id, cmd->sam_task_attr,
1593 cmd->se_dev->transport->name);
1594 return 0;
1595 }
1596
1597 /* transport_generic_allocate_tasks():
1598 *
1599 * Called from fabric RX Thread.
1600 */
1601 int transport_generic_allocate_tasks(
1602 struct se_cmd *cmd,
1603 unsigned char *cdb)
1604 {
1605 int ret;
1606
1607 transport_generic_prepare_cdb(cdb);
1608 /*
1609 * Ensure that the received CDB is less than the max (252 + 8) bytes
1610 * for VARIABLE_LENGTH_CMD
1611 */
1612 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1613 pr_err("Received SCSI CDB with command_size: %d that"
1614 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1615 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1616 return -EINVAL;
1617 }
1618 /*
1619 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1620 * allocate the additional extended CDB buffer now.. Otherwise
1621 * setup the pointer from __t_task_cdb to t_task_cdb.
1622 */
1623 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1624 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1625 GFP_KERNEL);
1626 if (!cmd->t_task_cdb) {
1627 pr_err("Unable to allocate cmd->t_task_cdb"
1628 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1629 scsi_command_size(cdb),
1630 (unsigned long)sizeof(cmd->__t_task_cdb));
1631 return -ENOMEM;
1632 }
1633 } else
1634 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1635 /*
1636 * Copy the original CDB into cmd->
1637 */
1638 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1639 /*
1640 * Setup the received CDB based on SCSI defined opcodes and
1641 * perform unit attention, persistent reservations and ALUA
1642 * checks for virtual device backends. The cmd->t_task_cdb
1643 * pointer is expected to be setup before we reach this point.
1644 */
1645 ret = transport_generic_cmd_sequencer(cmd, cdb);
1646 if (ret < 0)
1647 return ret;
1648 /*
1649 * Check for SAM Task Attribute Emulation
1650 */
1651 if (transport_check_alloc_task_attr(cmd) < 0) {
1652 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1653 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1654 return -EINVAL;
1655 }
1656 spin_lock(&cmd->se_lun->lun_sep_lock);
1657 if (cmd->se_lun->lun_sep)
1658 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1659 spin_unlock(&cmd->se_lun->lun_sep_lock);
1660 return 0;
1661 }
1662 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1663
1664 static void transport_generic_request_failure(struct se_cmd *,
1665 struct se_device *, int, int);
1666 /*
1667 * Used by fabric module frontends to queue tasks directly.
1668 * Many only be used from process context only
1669 */
1670 int transport_handle_cdb_direct(
1671 struct se_cmd *cmd)
1672 {
1673 int ret;
1674
1675 if (!cmd->se_lun) {
1676 dump_stack();
1677 pr_err("cmd->se_lun is NULL\n");
1678 return -EINVAL;
1679 }
1680 if (in_interrupt()) {
1681 dump_stack();
1682 pr_err("transport_generic_handle_cdb cannot be called"
1683 " from interrupt context\n");
1684 return -EINVAL;
1685 }
1686 /*
1687 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1688 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1689 * in existing usage to ensure that outstanding descriptors are handled
1690 * correctly during shutdown via transport_wait_for_tasks()
1691 *
1692 * Also, we don't take cmd->t_state_lock here as we only expect
1693 * this to be called for initial descriptor submission.
1694 */
1695 cmd->t_state = TRANSPORT_NEW_CMD;
1696 atomic_set(&cmd->t_transport_active, 1);
1697 /*
1698 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1699 * so follow TRANSPORT_NEW_CMD processing thread context usage
1700 * and call transport_generic_request_failure() if necessary..
1701 */
1702 ret = transport_generic_new_cmd(cmd);
1703 if (ret == -EAGAIN)
1704 return 0;
1705 else if (ret < 0) {
1706 cmd->transport_error_status = ret;
1707 transport_generic_request_failure(cmd, NULL, 0,
1708 (cmd->data_direction != DMA_TO_DEVICE));
1709 }
1710 return 0;
1711 }
1712 EXPORT_SYMBOL(transport_handle_cdb_direct);
1713
1714 /*
1715 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1716 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1717 * complete setup in TCM process context w/ TFO->new_cmd_map().
1718 */
1719 int transport_generic_handle_cdb_map(
1720 struct se_cmd *cmd)
1721 {
1722 if (!cmd->se_lun) {
1723 dump_stack();
1724 pr_err("cmd->se_lun is NULL\n");
1725 return -EINVAL;
1726 }
1727
1728 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1729 return 0;
1730 }
1731 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1732
1733 /* transport_generic_handle_data():
1734 *
1735 *
1736 */
1737 int transport_generic_handle_data(
1738 struct se_cmd *cmd)
1739 {
1740 /*
1741 * For the software fabric case, then we assume the nexus is being
1742 * failed/shutdown when signals are pending from the kthread context
1743 * caller, so we return a failure. For the HW target mode case running
1744 * in interrupt code, the signal_pending() check is skipped.
1745 */
1746 if (!in_interrupt() && signal_pending(current))
1747 return -EPERM;
1748 /*
1749 * If the received CDB has aleady been ABORTED by the generic
1750 * target engine, we now call transport_check_aborted_status()
1751 * to queue any delated TASK_ABORTED status for the received CDB to the
1752 * fabric module as we are expecting no further incoming DATA OUT
1753 * sequences at this point.
1754 */
1755 if (transport_check_aborted_status(cmd, 1) != 0)
1756 return 0;
1757
1758 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1759 return 0;
1760 }
1761 EXPORT_SYMBOL(transport_generic_handle_data);
1762
1763 /* transport_generic_handle_tmr():
1764 *
1765 *
1766 */
1767 int transport_generic_handle_tmr(
1768 struct se_cmd *cmd)
1769 {
1770 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1771 return 0;
1772 }
1773 EXPORT_SYMBOL(transport_generic_handle_tmr);
1774
1775 void transport_generic_free_cmd_intr(
1776 struct se_cmd *cmd)
1777 {
1778 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1779 }
1780 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1781
1782 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1783 {
1784 struct se_task *task, *task_tmp;
1785 unsigned long flags;
1786 int ret = 0;
1787
1788 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1789 cmd->se_tfo->get_task_tag(cmd));
1790
1791 /*
1792 * No tasks remain in the execution queue
1793 */
1794 spin_lock_irqsave(&cmd->t_state_lock, flags);
1795 list_for_each_entry_safe(task, task_tmp,
1796 &cmd->t_task_list, t_list) {
1797 pr_debug("task_no[%d] - Processing task %p\n",
1798 task->task_no, task);
1799 /*
1800 * If the struct se_task has not been sent and is not active,
1801 * remove the struct se_task from the execution queue.
1802 */
1803 if (!atomic_read(&task->task_sent) &&
1804 !atomic_read(&task->task_active)) {
1805 spin_unlock_irqrestore(&cmd->t_state_lock,
1806 flags);
1807 transport_remove_task_from_execute_queue(task,
1808 task->se_dev);
1809
1810 pr_debug("task_no[%d] - Removed from execute queue\n",
1811 task->task_no);
1812 spin_lock_irqsave(&cmd->t_state_lock, flags);
1813 continue;
1814 }
1815
1816 /*
1817 * If the struct se_task is active, sleep until it is returned
1818 * from the plugin.
1819 */
1820 if (atomic_read(&task->task_active)) {
1821 atomic_set(&task->task_stop, 1);
1822 spin_unlock_irqrestore(&cmd->t_state_lock,
1823 flags);
1824
1825 pr_debug("task_no[%d] - Waiting to complete\n",
1826 task->task_no);
1827 wait_for_completion(&task->task_stop_comp);
1828 pr_debug("task_no[%d] - Stopped successfully\n",
1829 task->task_no);
1830
1831 spin_lock_irqsave(&cmd->t_state_lock, flags);
1832 atomic_dec(&cmd->t_task_cdbs_left);
1833
1834 atomic_set(&task->task_active, 0);
1835 atomic_set(&task->task_stop, 0);
1836 } else {
1837 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1838 ret++;
1839 }
1840
1841 __transport_stop_task_timer(task, &flags);
1842 }
1843 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1844
1845 return ret;
1846 }
1847
1848 /*
1849 * Handle SAM-esque emulation for generic transport request failures.
1850 */
1851 static void transport_generic_request_failure(
1852 struct se_cmd *cmd,
1853 struct se_device *dev,
1854 int complete,
1855 int sc)
1856 {
1857 int ret = 0;
1858
1859 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1860 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1861 cmd->t_task_cdb[0]);
1862 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1863 " %d/%d transport_error_status: %d\n",
1864 cmd->se_tfo->get_cmd_state(cmd),
1865 cmd->t_state, cmd->deferred_t_state,
1866 cmd->transport_error_status);
1867 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1868 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1869 " t_transport_active: %d t_transport_stop: %d"
1870 " t_transport_sent: %d\n", cmd->t_task_list_num,
1871 atomic_read(&cmd->t_task_cdbs_left),
1872 atomic_read(&cmd->t_task_cdbs_sent),
1873 atomic_read(&cmd->t_task_cdbs_ex_left),
1874 atomic_read(&cmd->t_transport_active),
1875 atomic_read(&cmd->t_transport_stop),
1876 atomic_read(&cmd->t_transport_sent));
1877
1878 transport_stop_all_task_timers(cmd);
1879
1880 if (dev)
1881 atomic_inc(&dev->depth_left);
1882 /*
1883 * For SAM Task Attribute emulation for failed struct se_cmd
1884 */
1885 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1886 transport_complete_task_attr(cmd);
1887
1888 if (complete) {
1889 transport_direct_request_timeout(cmd);
1890 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1891 }
1892
1893 switch (cmd->transport_error_status) {
1894 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1895 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1896 break;
1897 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1898 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1899 break;
1900 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1901 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1902 break;
1903 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1904 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1905 break;
1906 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1907 if (!sc)
1908 transport_new_cmd_failure(cmd);
1909 /*
1910 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1911 * we force this session to fall back to session
1912 * recovery.
1913 */
1914 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1915 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1916
1917 goto check_stop;
1918 case PYX_TRANSPORT_LU_COMM_FAILURE:
1919 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1920 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1921 break;
1922 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1923 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1924 break;
1925 case PYX_TRANSPORT_WRITE_PROTECTED:
1926 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1927 break;
1928 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1929 /*
1930 * No SENSE Data payload for this case, set SCSI Status
1931 * and queue the response to $FABRIC_MOD.
1932 *
1933 * Uses linux/include/scsi/scsi.h SAM status codes defs
1934 */
1935 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1936 /*
1937 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1938 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1939 * CONFLICT STATUS.
1940 *
1941 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1942 */
1943 if (cmd->se_sess &&
1944 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1945 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1946 cmd->orig_fe_lun, 0x2C,
1947 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1948
1949 ret = cmd->se_tfo->queue_status(cmd);
1950 if (ret == -EAGAIN)
1951 goto queue_full;
1952 goto check_stop;
1953 case PYX_TRANSPORT_USE_SENSE_REASON:
1954 /*
1955 * struct se_cmd->scsi_sense_reason already set
1956 */
1957 break;
1958 default:
1959 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1960 cmd->t_task_cdb[0],
1961 cmd->transport_error_status);
1962 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1963 break;
1964 }
1965 /*
1966 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1967 * make the call to transport_send_check_condition_and_sense()
1968 * directly. Otherwise expect the fabric to make the call to
1969 * transport_send_check_condition_and_sense() after handling
1970 * possible unsoliticied write data payloads.
1971 */
1972 if (!sc && !cmd->se_tfo->new_cmd_map)
1973 transport_new_cmd_failure(cmd);
1974 else {
1975 ret = transport_send_check_condition_and_sense(cmd,
1976 cmd->scsi_sense_reason, 0);
1977 if (ret == -EAGAIN)
1978 goto queue_full;
1979 }
1980
1981 check_stop:
1982 transport_lun_remove_cmd(cmd);
1983 if (!transport_cmd_check_stop_to_fabric(cmd))
1984 ;
1985 return;
1986
1987 queue_full:
1988 cmd->t_state = TRANSPORT_COMPLETE_OK;
1989 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
1990 }
1991
1992 static void transport_direct_request_timeout(struct se_cmd *cmd)
1993 {
1994 unsigned long flags;
1995
1996 spin_lock_irqsave(&cmd->t_state_lock, flags);
1997 if (!atomic_read(&cmd->t_transport_timeout)) {
1998 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1999 return;
2000 }
2001 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2002 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2003 return;
2004 }
2005
2006 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2007 &cmd->t_se_count);
2008 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2009 }
2010
2011 static void transport_generic_request_timeout(struct se_cmd *cmd)
2012 {
2013 unsigned long flags;
2014
2015 /*
2016 * Reset cmd->t_se_count to allow transport_put_cmd()
2017 * to allow last call to free memory resources.
2018 */
2019 spin_lock_irqsave(&cmd->t_state_lock, flags);
2020 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2021 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2022
2023 atomic_sub(tmp, &cmd->t_se_count);
2024 }
2025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2026
2027 transport_put_cmd(cmd);
2028 }
2029
2030 static inline u32 transport_lba_21(unsigned char *cdb)
2031 {
2032 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2033 }
2034
2035 static inline u32 transport_lba_32(unsigned char *cdb)
2036 {
2037 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2038 }
2039
2040 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2041 {
2042 unsigned int __v1, __v2;
2043
2044 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2045 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2046
2047 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2048 }
2049
2050 /*
2051 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2052 */
2053 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2054 {
2055 unsigned int __v1, __v2;
2056
2057 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2058 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2059
2060 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2061 }
2062
2063 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2064 {
2065 unsigned long flags;
2066
2067 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2068 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2069 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2070 }
2071
2072 /*
2073 * Called from interrupt context.
2074 */
2075 static void transport_task_timeout_handler(unsigned long data)
2076 {
2077 struct se_task *task = (struct se_task *)data;
2078 struct se_cmd *cmd = task->task_se_cmd;
2079 unsigned long flags;
2080
2081 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2082
2083 spin_lock_irqsave(&cmd->t_state_lock, flags);
2084 if (task->task_flags & TF_STOP) {
2085 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2086 return;
2087 }
2088 task->task_flags &= ~TF_RUNNING;
2089
2090 /*
2091 * Determine if transport_complete_task() has already been called.
2092 */
2093 if (!atomic_read(&task->task_active)) {
2094 pr_debug("transport task: %p cmd: %p timeout task_active"
2095 " == 0\n", task, cmd);
2096 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2097 return;
2098 }
2099
2100 atomic_inc(&cmd->t_se_count);
2101 atomic_inc(&cmd->t_transport_timeout);
2102 cmd->t_tasks_failed = 1;
2103
2104 atomic_set(&task->task_timeout, 1);
2105 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2106 task->task_scsi_status = 1;
2107
2108 if (atomic_read(&task->task_stop)) {
2109 pr_debug("transport task: %p cmd: %p timeout task_stop"
2110 " == 1\n", task, cmd);
2111 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112 complete(&task->task_stop_comp);
2113 return;
2114 }
2115
2116 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2117 pr_debug("transport task: %p cmd: %p timeout non zero"
2118 " t_task_cdbs_left\n", task, cmd);
2119 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2120 return;
2121 }
2122 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2123 task, cmd);
2124
2125 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2126 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2127
2128 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2129 }
2130
2131 /*
2132 * Called with cmd->t_state_lock held.
2133 */
2134 static void transport_start_task_timer(struct se_task *task)
2135 {
2136 struct se_device *dev = task->se_dev;
2137 int timeout;
2138
2139 if (task->task_flags & TF_RUNNING)
2140 return;
2141 /*
2142 * If the task_timeout is disabled, exit now.
2143 */
2144 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2145 if (!timeout)
2146 return;
2147
2148 init_timer(&task->task_timer);
2149 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2150 task->task_timer.data = (unsigned long) task;
2151 task->task_timer.function = transport_task_timeout_handler;
2152
2153 task->task_flags |= TF_RUNNING;
2154 add_timer(&task->task_timer);
2155 #if 0
2156 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2157 " %d\n", task->task_se_cmd, task, timeout);
2158 #endif
2159 }
2160
2161 /*
2162 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2163 */
2164 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2165 {
2166 struct se_cmd *cmd = task->task_se_cmd;
2167
2168 if (!task->task_flags & TF_RUNNING)
2169 return;
2170
2171 task->task_flags |= TF_STOP;
2172 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2173
2174 del_timer_sync(&task->task_timer);
2175
2176 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2177 task->task_flags &= ~TF_RUNNING;
2178 task->task_flags &= ~TF_STOP;
2179 }
2180
2181 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2182 {
2183 struct se_task *task = NULL, *task_tmp;
2184 unsigned long flags;
2185
2186 spin_lock_irqsave(&cmd->t_state_lock, flags);
2187 list_for_each_entry_safe(task, task_tmp,
2188 &cmd->t_task_list, t_list)
2189 __transport_stop_task_timer(task, &flags);
2190 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2191 }
2192
2193 static inline int transport_tcq_window_closed(struct se_device *dev)
2194 {
2195 if (dev->dev_tcq_window_closed++ <
2196 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2197 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2198 } else
2199 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2200
2201 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2202 return 0;
2203 }
2204
2205 /*
2206 * Called from Fabric Module context from transport_execute_tasks()
2207 *
2208 * The return of this function determins if the tasks from struct se_cmd
2209 * get added to the execution queue in transport_execute_tasks(),
2210 * or are added to the delayed or ordered lists here.
2211 */
2212 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2213 {
2214 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2215 return 1;
2216 /*
2217 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2218 * to allow the passed struct se_cmd list of tasks to the front of the list.
2219 */
2220 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2221 atomic_inc(&cmd->se_dev->dev_hoq_count);
2222 smp_mb__after_atomic_inc();
2223 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2224 " 0x%02x, se_ordered_id: %u\n",
2225 cmd->t_task_cdb[0],
2226 cmd->se_ordered_id);
2227 return 1;
2228 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2229 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2230 list_add_tail(&cmd->se_ordered_node,
2231 &cmd->se_dev->ordered_cmd_list);
2232 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2233
2234 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2235 smp_mb__after_atomic_inc();
2236
2237 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2238 " list, se_ordered_id: %u\n",
2239 cmd->t_task_cdb[0],
2240 cmd->se_ordered_id);
2241 /*
2242 * Add ORDERED command to tail of execution queue if
2243 * no other older commands exist that need to be
2244 * completed first.
2245 */
2246 if (!atomic_read(&cmd->se_dev->simple_cmds))
2247 return 1;
2248 } else {
2249 /*
2250 * For SIMPLE and UNTAGGED Task Attribute commands
2251 */
2252 atomic_inc(&cmd->se_dev->simple_cmds);
2253 smp_mb__after_atomic_inc();
2254 }
2255 /*
2256 * Otherwise if one or more outstanding ORDERED task attribute exist,
2257 * add the dormant task(s) built for the passed struct se_cmd to the
2258 * execution queue and become in Active state for this struct se_device.
2259 */
2260 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2261 /*
2262 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2263 * will be drained upon completion of HEAD_OF_QUEUE task.
2264 */
2265 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2266 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2267 list_add_tail(&cmd->se_delayed_node,
2268 &cmd->se_dev->delayed_cmd_list);
2269 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2270
2271 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2272 " delayed CMD list, se_ordered_id: %u\n",
2273 cmd->t_task_cdb[0], cmd->sam_task_attr,
2274 cmd->se_ordered_id);
2275 /*
2276 * Return zero to let transport_execute_tasks() know
2277 * not to add the delayed tasks to the execution list.
2278 */
2279 return 0;
2280 }
2281 /*
2282 * Otherwise, no ORDERED task attributes exist..
2283 */
2284 return 1;
2285 }
2286
2287 /*
2288 * Called from fabric module context in transport_generic_new_cmd() and
2289 * transport_generic_process_write()
2290 */
2291 static int transport_execute_tasks(struct se_cmd *cmd)
2292 {
2293 int add_tasks;
2294
2295 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2296 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2297 transport_generic_request_failure(cmd, NULL, 0, 1);
2298 return 0;
2299 }
2300
2301 /*
2302 * Call transport_cmd_check_stop() to see if a fabric exception
2303 * has occurred that prevents execution.
2304 */
2305 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2306 /*
2307 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2308 * attribute for the tasks of the received struct se_cmd CDB
2309 */
2310 add_tasks = transport_execute_task_attr(cmd);
2311 if (!add_tasks)
2312 goto execute_tasks;
2313 /*
2314 * This calls transport_add_tasks_from_cmd() to handle
2315 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2316 * (if enabled) in __transport_add_task_to_execute_queue() and
2317 * transport_add_task_check_sam_attr().
2318 */
2319 transport_add_tasks_from_cmd(cmd);
2320 }
2321 /*
2322 * Kick the execution queue for the cmd associated struct se_device
2323 * storage object.
2324 */
2325 execute_tasks:
2326 __transport_execute_tasks(cmd->se_dev);
2327 return 0;
2328 }
2329
2330 /*
2331 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2332 * from struct se_device->execute_task_list and
2333 *
2334 * Called from transport_processing_thread()
2335 */
2336 static int __transport_execute_tasks(struct se_device *dev)
2337 {
2338 int error;
2339 struct se_cmd *cmd = NULL;
2340 struct se_task *task = NULL;
2341 unsigned long flags;
2342
2343 /*
2344 * Check if there is enough room in the device and HBA queue to send
2345 * struct se_tasks to the selected transport.
2346 */
2347 check_depth:
2348 if (!atomic_read(&dev->depth_left))
2349 return transport_tcq_window_closed(dev);
2350
2351 dev->dev_tcq_window_closed = 0;
2352
2353 spin_lock_irq(&dev->execute_task_lock);
2354 if (list_empty(&dev->execute_task_list)) {
2355 spin_unlock_irq(&dev->execute_task_lock);
2356 return 0;
2357 }
2358 task = list_first_entry(&dev->execute_task_list,
2359 struct se_task, t_execute_list);
2360 list_del(&task->t_execute_list);
2361 atomic_set(&task->task_execute_queue, 0);
2362 atomic_dec(&dev->execute_tasks);
2363 spin_unlock_irq(&dev->execute_task_lock);
2364
2365 atomic_dec(&dev->depth_left);
2366
2367 cmd = task->task_se_cmd;
2368
2369 spin_lock_irqsave(&cmd->t_state_lock, flags);
2370 atomic_set(&task->task_active, 1);
2371 atomic_set(&task->task_sent, 1);
2372 atomic_inc(&cmd->t_task_cdbs_sent);
2373
2374 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2375 cmd->t_task_list_num)
2376 atomic_set(&cmd->transport_sent, 1);
2377
2378 transport_start_task_timer(task);
2379 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2380 /*
2381 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2382 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2383 * struct se_subsystem_api->do_task() caller below.
2384 */
2385 if (cmd->transport_emulate_cdb) {
2386 error = cmd->transport_emulate_cdb(cmd);
2387 if (error != 0) {
2388 cmd->transport_error_status = error;
2389 atomic_set(&task->task_active, 0);
2390 atomic_set(&cmd->transport_sent, 0);
2391 transport_stop_tasks_for_cmd(cmd);
2392 transport_generic_request_failure(cmd, dev, 0, 1);
2393 goto check_depth;
2394 }
2395 /*
2396 * Handle the successful completion for transport_emulate_cdb()
2397 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2398 * Otherwise the caller is expected to complete the task with
2399 * proper status.
2400 */
2401 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2402 cmd->scsi_status = SAM_STAT_GOOD;
2403 task->task_scsi_status = GOOD;
2404 transport_complete_task(task, 1);
2405 }
2406 } else {
2407 /*
2408 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2409 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2410 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2411 * LUN emulation code.
2412 *
2413 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2414 * call ->do_task() directly and let the underlying TCM subsystem plugin
2415 * code handle the CDB emulation.
2416 */
2417 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2418 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2419 error = transport_emulate_control_cdb(task);
2420 else
2421 error = dev->transport->do_task(task);
2422
2423 if (error != 0) {
2424 cmd->transport_error_status = error;
2425 atomic_set(&task->task_active, 0);
2426 atomic_set(&cmd->transport_sent, 0);
2427 transport_stop_tasks_for_cmd(cmd);
2428 transport_generic_request_failure(cmd, dev, 0, 1);
2429 }
2430 }
2431
2432 goto check_depth;
2433
2434 return 0;
2435 }
2436
2437 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2438 {
2439 unsigned long flags;
2440 /*
2441 * Any unsolicited data will get dumped for failed command inside of
2442 * the fabric plugin
2443 */
2444 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2445 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2446 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2447 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2448 }
2449
2450 static inline u32 transport_get_sectors_6(
2451 unsigned char *cdb,
2452 struct se_cmd *cmd,
2453 int *ret)
2454 {
2455 struct se_device *dev = cmd->se_dev;
2456
2457 /*
2458 * Assume TYPE_DISK for non struct se_device objects.
2459 * Use 8-bit sector value.
2460 */
2461 if (!dev)
2462 goto type_disk;
2463
2464 /*
2465 * Use 24-bit allocation length for TYPE_TAPE.
2466 */
2467 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2468 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2469
2470 /*
2471 * Everything else assume TYPE_DISK Sector CDB location.
2472 * Use 8-bit sector value.
2473 */
2474 type_disk:
2475 return (u32)cdb[4];
2476 }
2477
2478 static inline u32 transport_get_sectors_10(
2479 unsigned char *cdb,
2480 struct se_cmd *cmd,
2481 int *ret)
2482 {
2483 struct se_device *dev = cmd->se_dev;
2484
2485 /*
2486 * Assume TYPE_DISK for non struct se_device objects.
2487 * Use 16-bit sector value.
2488 */
2489 if (!dev)
2490 goto type_disk;
2491
2492 /*
2493 * XXX_10 is not defined in SSC, throw an exception
2494 */
2495 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2496 *ret = -EINVAL;
2497 return 0;
2498 }
2499
2500 /*
2501 * Everything else assume TYPE_DISK Sector CDB location.
2502 * Use 16-bit sector value.
2503 */
2504 type_disk:
2505 return (u32)(cdb[7] << 8) + cdb[8];
2506 }
2507
2508 static inline u32 transport_get_sectors_12(
2509 unsigned char *cdb,
2510 struct se_cmd *cmd,
2511 int *ret)
2512 {
2513 struct se_device *dev = cmd->se_dev;
2514
2515 /*
2516 * Assume TYPE_DISK for non struct se_device objects.
2517 * Use 32-bit sector value.
2518 */
2519 if (!dev)
2520 goto type_disk;
2521
2522 /*
2523 * XXX_12 is not defined in SSC, throw an exception
2524 */
2525 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2526 *ret = -EINVAL;
2527 return 0;
2528 }
2529
2530 /*
2531 * Everything else assume TYPE_DISK Sector CDB location.
2532 * Use 32-bit sector value.
2533 */
2534 type_disk:
2535 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2536 }
2537
2538 static inline u32 transport_get_sectors_16(
2539 unsigned char *cdb,
2540 struct se_cmd *cmd,
2541 int *ret)
2542 {
2543 struct se_device *dev = cmd->se_dev;
2544
2545 /*
2546 * Assume TYPE_DISK for non struct se_device objects.
2547 * Use 32-bit sector value.
2548 */
2549 if (!dev)
2550 goto type_disk;
2551
2552 /*
2553 * Use 24-bit allocation length for TYPE_TAPE.
2554 */
2555 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2556 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2557
2558 type_disk:
2559 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2560 (cdb[12] << 8) + cdb[13];
2561 }
2562
2563 /*
2564 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2565 */
2566 static inline u32 transport_get_sectors_32(
2567 unsigned char *cdb,
2568 struct se_cmd *cmd,
2569 int *ret)
2570 {
2571 /*
2572 * Assume TYPE_DISK for non struct se_device objects.
2573 * Use 32-bit sector value.
2574 */
2575 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2576 (cdb[30] << 8) + cdb[31];
2577
2578 }
2579
2580 static inline u32 transport_get_size(
2581 u32 sectors,
2582 unsigned char *cdb,
2583 struct se_cmd *cmd)
2584 {
2585 struct se_device *dev = cmd->se_dev;
2586
2587 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2588 if (cdb[1] & 1) { /* sectors */
2589 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2590 } else /* bytes */
2591 return sectors;
2592 }
2593 #if 0
2594 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2595 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2596 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2597 dev->transport->name);
2598 #endif
2599 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2600 }
2601
2602 static void transport_xor_callback(struct se_cmd *cmd)
2603 {
2604 unsigned char *buf, *addr;
2605 struct scatterlist *sg;
2606 unsigned int offset;
2607 int i;
2608 int count;
2609 /*
2610 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2611 *
2612 * 1) read the specified logical block(s);
2613 * 2) transfer logical blocks from the data-out buffer;
2614 * 3) XOR the logical blocks transferred from the data-out buffer with
2615 * the logical blocks read, storing the resulting XOR data in a buffer;
2616 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2617 * blocks transferred from the data-out buffer; and
2618 * 5) transfer the resulting XOR data to the data-in buffer.
2619 */
2620 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2621 if (!buf) {
2622 pr_err("Unable to allocate xor_callback buf\n");
2623 return;
2624 }
2625 /*
2626 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2627 * into the locally allocated *buf
2628 */
2629 sg_copy_to_buffer(cmd->t_data_sg,
2630 cmd->t_data_nents,
2631 buf,
2632 cmd->data_length);
2633
2634 /*
2635 * Now perform the XOR against the BIDI read memory located at
2636 * cmd->t_mem_bidi_list
2637 */
2638
2639 offset = 0;
2640 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2641 addr = kmap_atomic(sg_page(sg), KM_USER0);
2642 if (!addr)
2643 goto out;
2644
2645 for (i = 0; i < sg->length; i++)
2646 *(addr + sg->offset + i) ^= *(buf + offset + i);
2647
2648 offset += sg->length;
2649 kunmap_atomic(addr, KM_USER0);
2650 }
2651
2652 out:
2653 kfree(buf);
2654 }
2655
2656 /*
2657 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2658 */
2659 static int transport_get_sense_data(struct se_cmd *cmd)
2660 {
2661 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2662 struct se_device *dev;
2663 struct se_task *task = NULL, *task_tmp;
2664 unsigned long flags;
2665 u32 offset = 0;
2666
2667 WARN_ON(!cmd->se_lun);
2668
2669 spin_lock_irqsave(&cmd->t_state_lock, flags);
2670 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2671 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2672 return 0;
2673 }
2674
2675 list_for_each_entry_safe(task, task_tmp,
2676 &cmd->t_task_list, t_list) {
2677
2678 if (!task->task_sense)
2679 continue;
2680
2681 dev = task->se_dev;
2682 if (!dev)
2683 continue;
2684
2685 if (!dev->transport->get_sense_buffer) {
2686 pr_err("dev->transport->get_sense_buffer"
2687 " is NULL\n");
2688 continue;
2689 }
2690
2691 sense_buffer = dev->transport->get_sense_buffer(task);
2692 if (!sense_buffer) {
2693 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2694 " sense buffer for task with sense\n",
2695 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2696 continue;
2697 }
2698 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2699
2700 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2701 TRANSPORT_SENSE_BUFFER);
2702
2703 memcpy(&buffer[offset], sense_buffer,
2704 TRANSPORT_SENSE_BUFFER);
2705 cmd->scsi_status = task->task_scsi_status;
2706 /* Automatically padded */
2707 cmd->scsi_sense_length =
2708 (TRANSPORT_SENSE_BUFFER + offset);
2709
2710 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2711 " and sense\n",
2712 dev->se_hba->hba_id, dev->transport->name,
2713 cmd->scsi_status);
2714 return 0;
2715 }
2716 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2717
2718 return -1;
2719 }
2720
2721 static int
2722 transport_handle_reservation_conflict(struct se_cmd *cmd)
2723 {
2724 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2725 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2726 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2727 /*
2728 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2729 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2730 * CONFLICT STATUS.
2731 *
2732 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2733 */
2734 if (cmd->se_sess &&
2735 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2736 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2737 cmd->orig_fe_lun, 0x2C,
2738 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2739 return -EINVAL;
2740 }
2741
2742 static inline long long transport_dev_end_lba(struct se_device *dev)
2743 {
2744 return dev->transport->get_blocks(dev) + 1;
2745 }
2746
2747 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2748 {
2749 struct se_device *dev = cmd->se_dev;
2750 u32 sectors;
2751
2752 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2753 return 0;
2754
2755 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2756
2757 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2758 pr_err("LBA: %llu Sectors: %u exceeds"
2759 " transport_dev_end_lba(): %llu\n",
2760 cmd->t_task_lba, sectors,
2761 transport_dev_end_lba(dev));
2762 return -EINVAL;
2763 }
2764
2765 return 0;
2766 }
2767
2768 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2769 {
2770 /*
2771 * Determine if the received WRITE_SAME is used to for direct
2772 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2773 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2774 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2775 */
2776 int passthrough = (dev->transport->transport_type ==
2777 TRANSPORT_PLUGIN_PHBA_PDEV);
2778
2779 if (!passthrough) {
2780 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2781 pr_err("WRITE_SAME PBDATA and LBDATA"
2782 " bits not supported for Block Discard"
2783 " Emulation\n");
2784 return -ENOSYS;
2785 }
2786 /*
2787 * Currently for the emulated case we only accept
2788 * tpws with the UNMAP=1 bit set.
2789 */
2790 if (!(flags[0] & 0x08)) {
2791 pr_err("WRITE_SAME w/o UNMAP bit not"
2792 " supported for Block Discard Emulation\n");
2793 return -ENOSYS;
2794 }
2795 }
2796
2797 return 0;
2798 }
2799
2800 /* transport_generic_cmd_sequencer():
2801 *
2802 * Generic Command Sequencer that should work for most DAS transport
2803 * drivers.
2804 *
2805 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2806 * RX Thread.
2807 *
2808 * FIXME: Need to support other SCSI OPCODES where as well.
2809 */
2810 static int transport_generic_cmd_sequencer(
2811 struct se_cmd *cmd,
2812 unsigned char *cdb)
2813 {
2814 struct se_device *dev = cmd->se_dev;
2815 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2816 int ret = 0, sector_ret = 0, passthrough;
2817 u32 sectors = 0, size = 0, pr_reg_type = 0;
2818 u16 service_action;
2819 u8 alua_ascq = 0;
2820 /*
2821 * Check for an existing UNIT ATTENTION condition
2822 */
2823 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2824 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2825 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2826 return -EINVAL;
2827 }
2828 /*
2829 * Check status of Asymmetric Logical Unit Assignment port
2830 */
2831 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2832 if (ret != 0) {
2833 /*
2834 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2835 * The ALUA additional sense code qualifier (ASCQ) is determined
2836 * by the ALUA primary or secondary access state..
2837 */
2838 if (ret > 0) {
2839 #if 0
2840 pr_debug("[%s]: ALUA TG Port not available,"
2841 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2842 cmd->se_tfo->get_fabric_name(), alua_ascq);
2843 #endif
2844 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2845 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2846 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2847 return -EINVAL;
2848 }
2849 goto out_invalid_cdb_field;
2850 }
2851 /*
2852 * Check status for SPC-3 Persistent Reservations
2853 */
2854 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2855 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2856 cmd, cdb, pr_reg_type) != 0)
2857 return transport_handle_reservation_conflict(cmd);
2858 /*
2859 * This means the CDB is allowed for the SCSI Initiator port
2860 * when said port is *NOT* holding the legacy SPC-2 or
2861 * SPC-3 Persistent Reservation.
2862 */
2863 }
2864
2865 switch (cdb[0]) {
2866 case READ_6:
2867 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2868 if (sector_ret)
2869 goto out_unsupported_cdb;
2870 size = transport_get_size(sectors, cdb, cmd);
2871 cmd->transport_split_cdb = &split_cdb_XX_6;
2872 cmd->t_task_lba = transport_lba_21(cdb);
2873 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2874 break;
2875 case READ_10:
2876 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2877 if (sector_ret)
2878 goto out_unsupported_cdb;
2879 size = transport_get_size(sectors, cdb, cmd);
2880 cmd->transport_split_cdb = &split_cdb_XX_10;
2881 cmd->t_task_lba = transport_lba_32(cdb);
2882 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2883 break;
2884 case READ_12:
2885 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2886 if (sector_ret)
2887 goto out_unsupported_cdb;
2888 size = transport_get_size(sectors, cdb, cmd);
2889 cmd->transport_split_cdb = &split_cdb_XX_12;
2890 cmd->t_task_lba = transport_lba_32(cdb);
2891 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2892 break;
2893 case READ_16:
2894 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2895 if (sector_ret)
2896 goto out_unsupported_cdb;
2897 size = transport_get_size(sectors, cdb, cmd);
2898 cmd->transport_split_cdb = &split_cdb_XX_16;
2899 cmd->t_task_lba = transport_lba_64(cdb);
2900 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2901 break;
2902 case WRITE_6:
2903 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2904 if (sector_ret)
2905 goto out_unsupported_cdb;
2906 size = transport_get_size(sectors, cdb, cmd);
2907 cmd->transport_split_cdb = &split_cdb_XX_6;
2908 cmd->t_task_lba = transport_lba_21(cdb);
2909 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2910 break;
2911 case WRITE_10:
2912 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2913 if (sector_ret)
2914 goto out_unsupported_cdb;
2915 size = transport_get_size(sectors, cdb, cmd);
2916 cmd->transport_split_cdb = &split_cdb_XX_10;
2917 cmd->t_task_lba = transport_lba_32(cdb);
2918 cmd->t_tasks_fua = (cdb[1] & 0x8);
2919 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2920 break;
2921 case WRITE_12:
2922 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2923 if (sector_ret)
2924 goto out_unsupported_cdb;
2925 size = transport_get_size(sectors, cdb, cmd);
2926 cmd->transport_split_cdb = &split_cdb_XX_12;
2927 cmd->t_task_lba = transport_lba_32(cdb);
2928 cmd->t_tasks_fua = (cdb[1] & 0x8);
2929 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2930 break;
2931 case WRITE_16:
2932 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2933 if (sector_ret)
2934 goto out_unsupported_cdb;
2935 size = transport_get_size(sectors, cdb, cmd);
2936 cmd->transport_split_cdb = &split_cdb_XX_16;
2937 cmd->t_task_lba = transport_lba_64(cdb);
2938 cmd->t_tasks_fua = (cdb[1] & 0x8);
2939 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2940 break;
2941 case XDWRITEREAD_10:
2942 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2943 !(cmd->t_tasks_bidi))
2944 goto out_invalid_cdb_field;
2945 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2946 if (sector_ret)
2947 goto out_unsupported_cdb;
2948 size = transport_get_size(sectors, cdb, cmd);
2949 cmd->transport_split_cdb = &split_cdb_XX_10;
2950 cmd->t_task_lba = transport_lba_32(cdb);
2951 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2952 passthrough = (dev->transport->transport_type ==
2953 TRANSPORT_PLUGIN_PHBA_PDEV);
2954 /*
2955 * Skip the remaining assignments for TCM/PSCSI passthrough
2956 */
2957 if (passthrough)
2958 break;
2959 /*
2960 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2961 */
2962 cmd->transport_complete_callback = &transport_xor_callback;
2963 cmd->t_tasks_fua = (cdb[1] & 0x8);
2964 break;
2965 case VARIABLE_LENGTH_CMD:
2966 service_action = get_unaligned_be16(&cdb[8]);
2967 /*
2968 * Determine if this is TCM/PSCSI device and we should disable
2969 * internal emulation for this CDB.
2970 */
2971 passthrough = (dev->transport->transport_type ==
2972 TRANSPORT_PLUGIN_PHBA_PDEV);
2973
2974 switch (service_action) {
2975 case XDWRITEREAD_32:
2976 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2977 if (sector_ret)
2978 goto out_unsupported_cdb;
2979 size = transport_get_size(sectors, cdb, cmd);
2980 /*
2981 * Use WRITE_32 and READ_32 opcodes for the emulated
2982 * XDWRITE_READ_32 logic.
2983 */
2984 cmd->transport_split_cdb = &split_cdb_XX_32;
2985 cmd->t_task_lba = transport_lba_64_ext(cdb);
2986 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2987
2988 /*
2989 * Skip the remaining assignments for TCM/PSCSI passthrough
2990 */
2991 if (passthrough)
2992 break;
2993
2994 /*
2995 * Setup BIDI XOR callback to be run during
2996 * transport_generic_complete_ok()
2997 */
2998 cmd->transport_complete_callback = &transport_xor_callback;
2999 cmd->t_tasks_fua = (cdb[10] & 0x8);
3000 break;
3001 case WRITE_SAME_32:
3002 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3003 if (sector_ret)
3004 goto out_unsupported_cdb;
3005
3006 if (sectors)
3007 size = transport_get_size(1, cdb, cmd);
3008 else {
3009 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3010 " supported\n");
3011 goto out_invalid_cdb_field;
3012 }
3013
3014 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3015 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3016
3017 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3018 goto out_invalid_cdb_field;
3019
3020 break;
3021 default:
3022 pr_err("VARIABLE_LENGTH_CMD service action"
3023 " 0x%04x not supported\n", service_action);
3024 goto out_unsupported_cdb;
3025 }
3026 break;
3027 case MAINTENANCE_IN:
3028 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3029 /* MAINTENANCE_IN from SCC-2 */
3030 /*
3031 * Check for emulated MI_REPORT_TARGET_PGS.
3032 */
3033 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3034 cmd->transport_emulate_cdb =
3035 (su_dev->t10_alua.alua_type ==
3036 SPC3_ALUA_EMULATED) ?
3037 core_emulate_report_target_port_groups :
3038 NULL;
3039 }
3040 size = (cdb[6] << 24) | (cdb[7] << 16) |
3041 (cdb[8] << 8) | cdb[9];
3042 } else {
3043 /* GPCMD_SEND_KEY from multi media commands */
3044 size = (cdb[8] << 8) + cdb[9];
3045 }
3046 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3047 break;
3048 case MODE_SELECT:
3049 size = cdb[4];
3050 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3051 break;
3052 case MODE_SELECT_10:
3053 size = (cdb[7] << 8) + cdb[8];
3054 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3055 break;
3056 case MODE_SENSE:
3057 size = cdb[4];
3058 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3059 break;
3060 case MODE_SENSE_10:
3061 case GPCMD_READ_BUFFER_CAPACITY:
3062 case GPCMD_SEND_OPC:
3063 case LOG_SELECT:
3064 case LOG_SENSE:
3065 size = (cdb[7] << 8) + cdb[8];
3066 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3067 break;
3068 case READ_BLOCK_LIMITS:
3069 size = READ_BLOCK_LEN;
3070 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3071 break;
3072 case GPCMD_GET_CONFIGURATION:
3073 case GPCMD_READ_FORMAT_CAPACITIES:
3074 case GPCMD_READ_DISC_INFO:
3075 case GPCMD_READ_TRACK_RZONE_INFO:
3076 size = (cdb[7] << 8) + cdb[8];
3077 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3078 break;
3079 case PERSISTENT_RESERVE_IN:
3080 case PERSISTENT_RESERVE_OUT:
3081 cmd->transport_emulate_cdb =
3082 (su_dev->t10_pr.res_type ==
3083 SPC3_PERSISTENT_RESERVATIONS) ?
3084 core_scsi3_emulate_pr : NULL;
3085 size = (cdb[7] << 8) + cdb[8];
3086 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3087 break;
3088 case GPCMD_MECHANISM_STATUS:
3089 case GPCMD_READ_DVD_STRUCTURE:
3090 size = (cdb[8] << 8) + cdb[9];
3091 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092 break;
3093 case READ_POSITION:
3094 size = READ_POSITION_LEN;
3095 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3096 break;
3097 case MAINTENANCE_OUT:
3098 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3099 /* MAINTENANCE_OUT from SCC-2
3100 *
3101 * Check for emulated MO_SET_TARGET_PGS.
3102 */
3103 if (cdb[1] == MO_SET_TARGET_PGS) {
3104 cmd->transport_emulate_cdb =
3105 (su_dev->t10_alua.alua_type ==
3106 SPC3_ALUA_EMULATED) ?
3107 core_emulate_set_target_port_groups :
3108 NULL;
3109 }
3110
3111 size = (cdb[6] << 24) | (cdb[7] << 16) |
3112 (cdb[8] << 8) | cdb[9];
3113 } else {
3114 /* GPCMD_REPORT_KEY from multi media commands */
3115 size = (cdb[8] << 8) + cdb[9];
3116 }
3117 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3118 break;
3119 case INQUIRY:
3120 size = (cdb[3] << 8) + cdb[4];
3121 /*
3122 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3123 * See spc4r17 section 5.3
3124 */
3125 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3126 cmd->sam_task_attr = MSG_HEAD_TAG;
3127 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3128 break;
3129 case READ_BUFFER:
3130 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3131 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3132 break;
3133 case READ_CAPACITY:
3134 size = READ_CAP_LEN;
3135 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3136 break;
3137 case READ_MEDIA_SERIAL_NUMBER:
3138 case SECURITY_PROTOCOL_IN:
3139 case SECURITY_PROTOCOL_OUT:
3140 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3141 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3142 break;
3143 case SERVICE_ACTION_IN:
3144 case ACCESS_CONTROL_IN:
3145 case ACCESS_CONTROL_OUT:
3146 case EXTENDED_COPY:
3147 case READ_ATTRIBUTE:
3148 case RECEIVE_COPY_RESULTS:
3149 case WRITE_ATTRIBUTE:
3150 size = (cdb[10] << 24) | (cdb[11] << 16) |
3151 (cdb[12] << 8) | cdb[13];
3152 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3153 break;
3154 case RECEIVE_DIAGNOSTIC:
3155 case SEND_DIAGNOSTIC:
3156 size = (cdb[3] << 8) | cdb[4];
3157 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3158 break;
3159 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3160 #if 0
3161 case GPCMD_READ_CD:
3162 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3163 size = (2336 * sectors);
3164 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3165 break;
3166 #endif
3167 case READ_TOC:
3168 size = cdb[8];
3169 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3170 break;
3171 case REQUEST_SENSE:
3172 size = cdb[4];
3173 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3174 break;
3175 case READ_ELEMENT_STATUS:
3176 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3177 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3178 break;
3179 case WRITE_BUFFER:
3180 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3181 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3182 break;
3183 case RESERVE:
3184 case RESERVE_10:
3185 /*
3186 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3187 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3188 */
3189 if (cdb[0] == RESERVE_10)
3190 size = (cdb[7] << 8) | cdb[8];
3191 else
3192 size = cmd->data_length;
3193
3194 /*
3195 * Setup the legacy emulated handler for SPC-2 and
3196 * >= SPC-3 compatible reservation handling (CRH=1)
3197 * Otherwise, we assume the underlying SCSI logic is
3198 * is running in SPC_PASSTHROUGH, and wants reservations
3199 * emulation disabled.
3200 */
3201 cmd->transport_emulate_cdb =
3202 (su_dev->t10_pr.res_type !=
3203 SPC_PASSTHROUGH) ?
3204 core_scsi2_emulate_crh : NULL;
3205 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3206 break;
3207 case RELEASE:
3208 case RELEASE_10:
3209 /*
3210 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3211 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3212 */
3213 if (cdb[0] == RELEASE_10)
3214 size = (cdb[7] << 8) | cdb[8];
3215 else
3216 size = cmd->data_length;
3217
3218 cmd->transport_emulate_cdb =
3219 (su_dev->t10_pr.res_type !=
3220 SPC_PASSTHROUGH) ?
3221 core_scsi2_emulate_crh : NULL;
3222 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3223 break;
3224 case SYNCHRONIZE_CACHE:
3225 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3226 /*
3227 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3228 */
3229 if (cdb[0] == SYNCHRONIZE_CACHE) {
3230 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3231 cmd->t_task_lba = transport_lba_32(cdb);
3232 } else {
3233 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3234 cmd->t_task_lba = transport_lba_64(cdb);
3235 }
3236 if (sector_ret)
3237 goto out_unsupported_cdb;
3238
3239 size = transport_get_size(sectors, cdb, cmd);
3240 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3241
3242 /*
3243 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3244 */
3245 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3246 break;
3247 /*
3248 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3249 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3250 */
3251 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3252 /*
3253 * Check to ensure that LBA + Range does not exceed past end of
3254 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3255 */
3256 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3257 if (transport_cmd_get_valid_sectors(cmd) < 0)
3258 goto out_invalid_cdb_field;
3259 }
3260 break;
3261 case UNMAP:
3262 size = get_unaligned_be16(&cdb[7]);
3263 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3264 break;
3265 case WRITE_SAME_16:
3266 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3267 if (sector_ret)
3268 goto out_unsupported_cdb;
3269
3270 if (sectors)
3271 size = transport_get_size(1, cdb, cmd);
3272 else {
3273 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3274 goto out_invalid_cdb_field;
3275 }
3276
3277 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3278 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3279
3280 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3281 goto out_invalid_cdb_field;
3282 break;
3283 case WRITE_SAME:
3284 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3285 if (sector_ret)
3286 goto out_unsupported_cdb;
3287
3288 if (sectors)
3289 size = transport_get_size(1, cdb, cmd);
3290 else {
3291 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3292 goto out_invalid_cdb_field;
3293 }
3294
3295 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3296 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3297 /*
3298 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3299 * of byte 1 bit 3 UNMAP instead of original reserved field
3300 */
3301 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3302 goto out_invalid_cdb_field;
3303 break;
3304 case ALLOW_MEDIUM_REMOVAL:
3305 case GPCMD_CLOSE_TRACK:
3306 case ERASE:
3307 case INITIALIZE_ELEMENT_STATUS:
3308 case GPCMD_LOAD_UNLOAD:
3309 case REZERO_UNIT:
3310 case SEEK_10:
3311 case GPCMD_SET_SPEED:
3312 case SPACE:
3313 case START_STOP:
3314 case TEST_UNIT_READY:
3315 case VERIFY:
3316 case WRITE_FILEMARKS:
3317 case MOVE_MEDIUM:
3318 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3319 break;
3320 case REPORT_LUNS:
3321 cmd->transport_emulate_cdb =
3322 transport_core_report_lun_response;
3323 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3324 /*
3325 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3326 * See spc4r17 section 5.3
3327 */
3328 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3329 cmd->sam_task_attr = MSG_HEAD_TAG;
3330 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3331 break;
3332 default:
3333 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3334 " 0x%02x, sending CHECK_CONDITION.\n",
3335 cmd->se_tfo->get_fabric_name(), cdb[0]);
3336 goto out_unsupported_cdb;
3337 }
3338
3339 if (size != cmd->data_length) {
3340 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3341 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3342 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3343 cmd->data_length, size, cdb[0]);
3344
3345 cmd->cmd_spdtl = size;
3346
3347 if (cmd->data_direction == DMA_TO_DEVICE) {
3348 pr_err("Rejecting underflow/overflow"
3349 " WRITE data\n");
3350 goto out_invalid_cdb_field;
3351 }
3352 /*
3353 * Reject READ_* or WRITE_* with overflow/underflow for
3354 * type SCF_SCSI_DATA_SG_IO_CDB.
3355 */
3356 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3357 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3358 " CDB on non 512-byte sector setup subsystem"
3359 " plugin: %s\n", dev->transport->name);
3360 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3361 goto out_invalid_cdb_field;
3362 }
3363
3364 if (size > cmd->data_length) {
3365 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3366 cmd->residual_count = (size - cmd->data_length);
3367 } else {
3368 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3369 cmd->residual_count = (cmd->data_length - size);
3370 }
3371 cmd->data_length = size;
3372 }
3373
3374 /* Let's limit control cdbs to a page, for simplicity's sake. */
3375 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3376 size > PAGE_SIZE)
3377 goto out_invalid_cdb_field;
3378
3379 transport_set_supported_SAM_opcode(cmd);
3380 return ret;
3381
3382 out_unsupported_cdb:
3383 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3384 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3385 return -EINVAL;
3386 out_invalid_cdb_field:
3387 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3388 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3389 return -EINVAL;
3390 }
3391
3392 /*
3393 * Called from transport_generic_complete_ok() and
3394 * transport_generic_request_failure() to determine which dormant/delayed
3395 * and ordered cmds need to have their tasks added to the execution queue.
3396 */
3397 static void transport_complete_task_attr(struct se_cmd *cmd)
3398 {
3399 struct se_device *dev = cmd->se_dev;
3400 struct se_cmd *cmd_p, *cmd_tmp;
3401 int new_active_tasks = 0;
3402
3403 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3404 atomic_dec(&dev->simple_cmds);
3405 smp_mb__after_atomic_dec();
3406 dev->dev_cur_ordered_id++;
3407 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3408 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3409 cmd->se_ordered_id);
3410 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3411 atomic_dec(&dev->dev_hoq_count);
3412 smp_mb__after_atomic_dec();
3413 dev->dev_cur_ordered_id++;
3414 pr_debug("Incremented dev_cur_ordered_id: %u for"
3415 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3416 cmd->se_ordered_id);
3417 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3418 spin_lock(&dev->ordered_cmd_lock);
3419 list_del(&cmd->se_ordered_node);
3420 atomic_dec(&dev->dev_ordered_sync);
3421 smp_mb__after_atomic_dec();
3422 spin_unlock(&dev->ordered_cmd_lock);
3423
3424 dev->dev_cur_ordered_id++;
3425 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3426 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3427 }
3428 /*
3429 * Process all commands up to the last received
3430 * ORDERED task attribute which requires another blocking
3431 * boundary
3432 */
3433 spin_lock(&dev->delayed_cmd_lock);
3434 list_for_each_entry_safe(cmd_p, cmd_tmp,
3435 &dev->delayed_cmd_list, se_delayed_node) {
3436
3437 list_del(&cmd_p->se_delayed_node);
3438 spin_unlock(&dev->delayed_cmd_lock);
3439
3440 pr_debug("Calling add_tasks() for"
3441 " cmd_p: 0x%02x Task Attr: 0x%02x"
3442 " Dormant -> Active, se_ordered_id: %u\n",
3443 cmd_p->t_task_cdb[0],
3444 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3445
3446 transport_add_tasks_from_cmd(cmd_p);
3447 new_active_tasks++;
3448
3449 spin_lock(&dev->delayed_cmd_lock);
3450 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3451 break;
3452 }
3453 spin_unlock(&dev->delayed_cmd_lock);
3454 /*
3455 * If new tasks have become active, wake up the transport thread
3456 * to do the processing of the Active tasks.
3457 */
3458 if (new_active_tasks != 0)
3459 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3460 }
3461
3462 static int transport_complete_qf(struct se_cmd *cmd)
3463 {
3464 int ret = 0;
3465
3466 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3467 return cmd->se_tfo->queue_status(cmd);
3468
3469 switch (cmd->data_direction) {
3470 case DMA_FROM_DEVICE:
3471 ret = cmd->se_tfo->queue_data_in(cmd);
3472 break;
3473 case DMA_TO_DEVICE:
3474 if (cmd->t_bidi_data_sg) {
3475 ret = cmd->se_tfo->queue_data_in(cmd);
3476 if (ret < 0)
3477 return ret;
3478 }
3479 /* Fall through for DMA_TO_DEVICE */
3480 case DMA_NONE:
3481 ret = cmd->se_tfo->queue_status(cmd);
3482 break;
3483 default:
3484 break;
3485 }
3486
3487 return ret;
3488 }
3489
3490 static void transport_handle_queue_full(
3491 struct se_cmd *cmd,
3492 struct se_device *dev,
3493 int (*qf_callback)(struct se_cmd *))
3494 {
3495 spin_lock_irq(&dev->qf_cmd_lock);
3496 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3497 cmd->transport_qf_callback = qf_callback;
3498 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3499 atomic_inc(&dev->dev_qf_count);
3500 smp_mb__after_atomic_inc();
3501 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3502
3503 schedule_work(&cmd->se_dev->qf_work_queue);
3504 }
3505
3506 static void transport_generic_complete_ok(struct se_cmd *cmd)
3507 {
3508 int reason = 0, ret;
3509 /*
3510 * Check if we need to move delayed/dormant tasks from cmds on the
3511 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3512 * Attribute.
3513 */
3514 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3515 transport_complete_task_attr(cmd);
3516 /*
3517 * Check to schedule QUEUE_FULL work, or execute an existing
3518 * cmd->transport_qf_callback()
3519 */
3520 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3521 schedule_work(&cmd->se_dev->qf_work_queue);
3522
3523 if (cmd->transport_qf_callback) {
3524 ret = cmd->transport_qf_callback(cmd);
3525 if (ret < 0)
3526 goto queue_full;
3527
3528 cmd->transport_qf_callback = NULL;
3529 goto done;
3530 }
3531 /*
3532 * Check if we need to retrieve a sense buffer from
3533 * the struct se_cmd in question.
3534 */
3535 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3536 if (transport_get_sense_data(cmd) < 0)
3537 reason = TCM_NON_EXISTENT_LUN;
3538
3539 /*
3540 * Only set when an struct se_task->task_scsi_status returned
3541 * a non GOOD status.
3542 */
3543 if (cmd->scsi_status) {
3544 ret = transport_send_check_condition_and_sense(
3545 cmd, reason, 1);
3546 if (ret == -EAGAIN)
3547 goto queue_full;
3548
3549 transport_lun_remove_cmd(cmd);
3550 transport_cmd_check_stop_to_fabric(cmd);
3551 return;
3552 }
3553 }
3554 /*
3555 * Check for a callback, used by amongst other things
3556 * XDWRITE_READ_10 emulation.
3557 */
3558 if (cmd->transport_complete_callback)
3559 cmd->transport_complete_callback(cmd);
3560
3561 switch (cmd->data_direction) {
3562 case DMA_FROM_DEVICE:
3563 spin_lock(&cmd->se_lun->lun_sep_lock);
3564 if (cmd->se_lun->lun_sep) {
3565 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3566 cmd->data_length;
3567 }
3568 spin_unlock(&cmd->se_lun->lun_sep_lock);
3569
3570 ret = cmd->se_tfo->queue_data_in(cmd);
3571 if (ret == -EAGAIN)
3572 goto queue_full;
3573 break;
3574 case DMA_TO_DEVICE:
3575 spin_lock(&cmd->se_lun->lun_sep_lock);
3576 if (cmd->se_lun->lun_sep) {
3577 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3578 cmd->data_length;
3579 }
3580 spin_unlock(&cmd->se_lun->lun_sep_lock);
3581 /*
3582 * Check if we need to send READ payload for BIDI-COMMAND
3583 */
3584 if (cmd->t_bidi_data_sg) {
3585 spin_lock(&cmd->se_lun->lun_sep_lock);
3586 if (cmd->se_lun->lun_sep) {
3587 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3588 cmd->data_length;
3589 }
3590 spin_unlock(&cmd->se_lun->lun_sep_lock);
3591 ret = cmd->se_tfo->queue_data_in(cmd);
3592 if (ret == -EAGAIN)
3593 goto queue_full;
3594 break;
3595 }
3596 /* Fall through for DMA_TO_DEVICE */
3597 case DMA_NONE:
3598 ret = cmd->se_tfo->queue_status(cmd);
3599 if (ret == -EAGAIN)
3600 goto queue_full;
3601 break;
3602 default:
3603 break;
3604 }
3605
3606 done:
3607 transport_lun_remove_cmd(cmd);
3608 transport_cmd_check_stop_to_fabric(cmd);
3609 return;
3610
3611 queue_full:
3612 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3613 " data_direction: %d\n", cmd, cmd->data_direction);
3614 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3615 }
3616
3617 static void transport_free_dev_tasks(struct se_cmd *cmd)
3618 {
3619 struct se_task *task, *task_tmp;
3620 unsigned long flags;
3621
3622 spin_lock_irqsave(&cmd->t_state_lock, flags);
3623 list_for_each_entry_safe(task, task_tmp,
3624 &cmd->t_task_list, t_list) {
3625 if (atomic_read(&task->task_active))
3626 continue;
3627
3628 kfree(task->task_sg_bidi);
3629 kfree(task->task_sg);
3630
3631 list_del(&task->t_list);
3632
3633 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3634 if (task->se_dev)
3635 task->se_dev->transport->free_task(task);
3636 else
3637 pr_err("task[%u] - task->se_dev is NULL\n",
3638 task->task_no);
3639 spin_lock_irqsave(&cmd->t_state_lock, flags);
3640 }
3641 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3642 }
3643
3644 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3645 {
3646 struct scatterlist *sg;
3647 int count;
3648
3649 for_each_sg(sgl, sg, nents, count)
3650 __free_page(sg_page(sg));
3651
3652 kfree(sgl);
3653 }
3654
3655 static inline void transport_free_pages(struct se_cmd *cmd)
3656 {
3657 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3658 return;
3659
3660 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3661 cmd->t_data_sg = NULL;
3662 cmd->t_data_nents = 0;
3663
3664 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3665 cmd->t_bidi_data_sg = NULL;
3666 cmd->t_bidi_data_nents = 0;
3667 }
3668
3669 /**
3670 * transport_put_cmd - release a reference to a command
3671 * @cmd: command to release
3672 *
3673 * This routine releases our reference to the command and frees it if possible.
3674 */
3675 static void transport_put_cmd(struct se_cmd *cmd)
3676 {
3677 unsigned long flags;
3678 int free_tasks = 0;
3679
3680 spin_lock_irqsave(&cmd->t_state_lock, flags);
3681 if (atomic_read(&cmd->t_fe_count)) {
3682 if (!atomic_dec_and_test(&cmd->t_fe_count))
3683 goto out_busy;
3684 }
3685
3686 if (atomic_read(&cmd->t_se_count)) {
3687 if (!atomic_dec_and_test(&cmd->t_se_count))
3688 goto out_busy;
3689 }
3690
3691 if (atomic_read(&cmd->transport_dev_active)) {
3692 atomic_set(&cmd->transport_dev_active, 0);
3693 transport_all_task_dev_remove_state(cmd);
3694 free_tasks = 1;
3695 }
3696 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3697
3698 if (free_tasks != 0)
3699 transport_free_dev_tasks(cmd);
3700
3701 transport_free_pages(cmd);
3702 transport_release_cmd(cmd);
3703 return;
3704 out_busy:
3705 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3706 }
3707
3708 /*
3709 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3710 * allocating in the core.
3711 * @cmd: Associated se_cmd descriptor
3712 * @mem: SGL style memory for TCM WRITE / READ
3713 * @sg_mem_num: Number of SGL elements
3714 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3715 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3716 *
3717 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3718 * of parameters.
3719 */
3720 int transport_generic_map_mem_to_cmd(
3721 struct se_cmd *cmd,
3722 struct scatterlist *sgl,
3723 u32 sgl_count,
3724 struct scatterlist *sgl_bidi,
3725 u32 sgl_bidi_count)
3726 {
3727 if (!sgl || !sgl_count)
3728 return 0;
3729
3730 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3731 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3732
3733 cmd->t_data_sg = sgl;
3734 cmd->t_data_nents = sgl_count;
3735
3736 if (sgl_bidi && sgl_bidi_count) {
3737 cmd->t_bidi_data_sg = sgl_bidi;
3738 cmd->t_bidi_data_nents = sgl_bidi_count;
3739 }
3740 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3741 }
3742
3743 return 0;
3744 }
3745 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3746
3747 static int transport_new_cmd_obj(struct se_cmd *cmd)
3748 {
3749 struct se_device *dev = cmd->se_dev;
3750 int set_counts = 1, rc, task_cdbs;
3751
3752 /*
3753 * Setup any BIDI READ tasks and memory from
3754 * cmd->t_mem_bidi_list so the READ struct se_tasks
3755 * are queued first for the non pSCSI passthrough case.
3756 */
3757 if (cmd->t_bidi_data_sg &&
3758 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3759 rc = transport_allocate_tasks(cmd,
3760 cmd->t_task_lba,
3761 DMA_FROM_DEVICE,
3762 cmd->t_bidi_data_sg,
3763 cmd->t_bidi_data_nents);
3764 if (rc <= 0) {
3765 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3766 cmd->scsi_sense_reason =
3767 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3768 return -EINVAL;
3769 }
3770 atomic_inc(&cmd->t_fe_count);
3771 atomic_inc(&cmd->t_se_count);
3772 set_counts = 0;
3773 }
3774 /*
3775 * Setup the tasks and memory from cmd->t_mem_list
3776 * Note for BIDI transfers this will contain the WRITE payload
3777 */
3778 task_cdbs = transport_allocate_tasks(cmd,
3779 cmd->t_task_lba,
3780 cmd->data_direction,
3781 cmd->t_data_sg,
3782 cmd->t_data_nents);
3783 if (task_cdbs <= 0) {
3784 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3785 cmd->scsi_sense_reason =
3786 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3787 return -EINVAL;
3788 }
3789
3790 if (set_counts) {
3791 atomic_inc(&cmd->t_fe_count);
3792 atomic_inc(&cmd->t_se_count);
3793 }
3794
3795 cmd->t_task_list_num = task_cdbs;
3796
3797 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3798 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3799 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3800 return 0;
3801 }
3802
3803 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3804 {
3805 struct scatterlist *sg = cmd->t_data_sg;
3806
3807 BUG_ON(!sg);
3808 /*
3809 * We need to take into account a possible offset here for fabrics like
3810 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3811 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3812 */
3813 return kmap(sg_page(sg)) + sg->offset;
3814 }
3815 EXPORT_SYMBOL(transport_kmap_first_data_page);
3816
3817 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3818 {
3819 kunmap(sg_page(cmd->t_data_sg));
3820 }
3821 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3822
3823 static int
3824 transport_generic_get_mem(struct se_cmd *cmd)
3825 {
3826 u32 length = cmd->data_length;
3827 unsigned int nents;
3828 struct page *page;
3829 int i = 0;
3830
3831 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3832 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3833 if (!cmd->t_data_sg)
3834 return -ENOMEM;
3835
3836 cmd->t_data_nents = nents;
3837 sg_init_table(cmd->t_data_sg, nents);
3838
3839 while (length) {
3840 u32 page_len = min_t(u32, length, PAGE_SIZE);
3841 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3842 if (!page)
3843 goto out;
3844
3845 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3846 length -= page_len;
3847 i++;
3848 }
3849 return 0;
3850
3851 out:
3852 while (i >= 0) {
3853 __free_page(sg_page(&cmd->t_data_sg[i]));
3854 i--;
3855 }
3856 kfree(cmd->t_data_sg);
3857 cmd->t_data_sg = NULL;
3858 return -ENOMEM;
3859 }
3860
3861 /* Reduce sectors if they are too long for the device */
3862 static inline sector_t transport_limit_task_sectors(
3863 struct se_device *dev,
3864 unsigned long long lba,
3865 sector_t sectors)
3866 {
3867 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3868
3869 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3870 if ((lba + sectors) > transport_dev_end_lba(dev))
3871 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3872
3873 return sectors;
3874 }
3875
3876
3877 /*
3878 * This function can be used by HW target mode drivers to create a linked
3879 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3880 * This is intended to be called during the completion path by TCM Core
3881 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3882 */
3883 void transport_do_task_sg_chain(struct se_cmd *cmd)
3884 {
3885 struct scatterlist *sg_first = NULL;
3886 struct scatterlist *sg_prev = NULL;
3887 int sg_prev_nents = 0;
3888 struct scatterlist *sg;
3889 struct se_task *task;
3890 u32 chained_nents = 0;
3891 int i;
3892
3893 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3894
3895 /*
3896 * Walk the struct se_task list and setup scatterlist chains
3897 * for each contiguously allocated struct se_task->task_sg[].
3898 */
3899 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3900 if (!task->task_sg)
3901 continue;
3902
3903 if (!sg_first) {
3904 sg_first = task->task_sg;
3905 chained_nents = task->task_sg_nents;
3906 } else {
3907 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3908 chained_nents += task->task_sg_nents;
3909 }
3910 /*
3911 * For the padded tasks, use the extra SGL vector allocated
3912 * in transport_allocate_data_tasks() for the sg_prev_nents
3913 * offset into sg_chain() above.. The last task of a
3914 * multi-task list, or a single task will not have
3915 * task->task_sg_padded set..
3916 */
3917 if (task->task_padded_sg)
3918 sg_prev_nents = (task->task_sg_nents + 1);
3919 else
3920 sg_prev_nents = task->task_sg_nents;
3921
3922 sg_prev = task->task_sg;
3923 }
3924 /*
3925 * Setup the starting pointer and total t_tasks_sg_linked_no including
3926 * padding SGs for linking and to mark the end.
3927 */
3928 cmd->t_tasks_sg_chained = sg_first;
3929 cmd->t_tasks_sg_chained_no = chained_nents;
3930
3931 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3932 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3933 cmd->t_tasks_sg_chained_no);
3934
3935 for_each_sg(cmd->t_tasks_sg_chained, sg,
3936 cmd->t_tasks_sg_chained_no, i) {
3937
3938 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3939 i, sg, sg_page(sg), sg->length, sg->offset);
3940 if (sg_is_chain(sg))
3941 pr_debug("SG: %p sg_is_chain=1\n", sg);
3942 if (sg_is_last(sg))
3943 pr_debug("SG: %p sg_is_last=1\n", sg);
3944 }
3945 }
3946 EXPORT_SYMBOL(transport_do_task_sg_chain);
3947
3948 /*
3949 * Break up cmd into chunks transport can handle
3950 */
3951 static int transport_allocate_data_tasks(
3952 struct se_cmd *cmd,
3953 unsigned long long lba,
3954 enum dma_data_direction data_direction,
3955 struct scatterlist *sgl,
3956 unsigned int sgl_nents)
3957 {
3958 unsigned char *cdb = NULL;
3959 struct se_task *task;
3960 struct se_device *dev = cmd->se_dev;
3961 unsigned long flags;
3962 int task_count, i;
3963 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3964 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3965 struct scatterlist *sg;
3966 struct scatterlist *cmd_sg;
3967
3968 WARN_ON(cmd->data_length % sector_size);
3969 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3970 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3971
3972 cmd_sg = sgl;
3973 for (i = 0; i < task_count; i++) {
3974 unsigned int task_size, task_sg_nents_padded;
3975 int count;
3976
3977 task = transport_generic_get_task(cmd, data_direction);
3978 if (!task)
3979 return -ENOMEM;
3980
3981 task->task_lba = lba;
3982 task->task_sectors = min(sectors, dev_max_sectors);
3983 task->task_size = task->task_sectors * sector_size;
3984
3985 cdb = dev->transport->get_cdb(task);
3986 BUG_ON(!cdb);
3987
3988 memcpy(cdb, cmd->t_task_cdb,
3989 scsi_command_size(cmd->t_task_cdb));
3990
3991 /* Update new cdb with updated lba/sectors */
3992 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
3993 /*
3994 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3995 * in order to calculate the number per task SGL entries
3996 */
3997 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3998 /*
3999 * Check if the fabric module driver is requesting that all
4000 * struct se_task->task_sg[] be chained together.. If so,
4001 * then allocate an extra padding SG entry for linking and
4002 * marking the end of the chained SGL for every task except
4003 * the last one for (task_count > 1) operation, or skipping
4004 * the extra padding for the (task_count == 1) case.
4005 */
4006 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4007 task_sg_nents_padded = (task->task_sg_nents + 1);
4008 task->task_padded_sg = 1;
4009 } else
4010 task_sg_nents_padded = task->task_sg_nents;
4011
4012 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4013 task_sg_nents_padded, GFP_KERNEL);
4014 if (!task->task_sg) {
4015 cmd->se_dev->transport->free_task(task);
4016 return -ENOMEM;
4017 }
4018
4019 sg_init_table(task->task_sg, task_sg_nents_padded);
4020
4021 task_size = task->task_size;
4022
4023 /* Build new sgl, only up to task_size */
4024 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4025 if (cmd_sg->length > task_size)
4026 break;
4027
4028 *sg = *cmd_sg;
4029 task_size -= cmd_sg->length;
4030 cmd_sg = sg_next(cmd_sg);
4031 }
4032
4033 lba += task->task_sectors;
4034 sectors -= task->task_sectors;
4035
4036 spin_lock_irqsave(&cmd->t_state_lock, flags);
4037 list_add_tail(&task->t_list, &cmd->t_task_list);
4038 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4039 }
4040
4041 return task_count;
4042 }
4043
4044 static int
4045 transport_allocate_control_task(struct se_cmd *cmd)
4046 {
4047 struct se_device *dev = cmd->se_dev;
4048 unsigned char *cdb;
4049 struct se_task *task;
4050 unsigned long flags;
4051
4052 task = transport_generic_get_task(cmd, cmd->data_direction);
4053 if (!task)
4054 return -ENOMEM;
4055
4056 cdb = dev->transport->get_cdb(task);
4057 BUG_ON(!cdb);
4058 memcpy(cdb, cmd->t_task_cdb,
4059 scsi_command_size(cmd->t_task_cdb));
4060
4061 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4062 GFP_KERNEL);
4063 if (!task->task_sg) {
4064 cmd->se_dev->transport->free_task(task);
4065 return -ENOMEM;
4066 }
4067
4068 memcpy(task->task_sg, cmd->t_data_sg,
4069 sizeof(struct scatterlist) * cmd->t_data_nents);
4070 task->task_size = cmd->data_length;
4071 task->task_sg_nents = cmd->t_data_nents;
4072
4073 spin_lock_irqsave(&cmd->t_state_lock, flags);
4074 list_add_tail(&task->t_list, &cmd->t_task_list);
4075 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4076
4077 /* Success! Return number of tasks allocated */
4078 return 1;
4079 }
4080
4081 static u32 transport_allocate_tasks(
4082 struct se_cmd *cmd,
4083 unsigned long long lba,
4084 enum dma_data_direction data_direction,
4085 struct scatterlist *sgl,
4086 unsigned int sgl_nents)
4087 {
4088 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4089 if (transport_cmd_get_valid_sectors(cmd) < 0)
4090 return -EINVAL;
4091
4092 return transport_allocate_data_tasks(cmd, lba, data_direction,
4093 sgl, sgl_nents);
4094 } else
4095 return transport_allocate_control_task(cmd);
4096
4097 }
4098
4099
4100 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4101 *
4102 * Allocate storage transport resources from a set of values predefined
4103 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4104 * Any non zero return here is treated as an "out of resource' op here.
4105 */
4106 /*
4107 * Generate struct se_task(s) and/or their payloads for this CDB.
4108 */
4109 int transport_generic_new_cmd(struct se_cmd *cmd)
4110 {
4111 int ret = 0;
4112
4113 /*
4114 * Determine is the TCM fabric module has already allocated physical
4115 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4116 * beforehand.
4117 */
4118 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4119 cmd->data_length) {
4120 ret = transport_generic_get_mem(cmd);
4121 if (ret < 0)
4122 return ret;
4123 }
4124 /*
4125 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4126 * control or data CDB types, and perform the map to backend subsystem
4127 * code from SGL memory allocated here by transport_generic_get_mem(), or
4128 * via pre-existing SGL memory setup explictly by fabric module code with
4129 * transport_generic_map_mem_to_cmd().
4130 */
4131 ret = transport_new_cmd_obj(cmd);
4132 if (ret < 0)
4133 return ret;
4134 /*
4135 * For WRITEs, let the fabric know its buffer is ready..
4136 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4137 * will be added to the struct se_device execution queue after its WRITE
4138 * data has arrived. (ie: It gets handled by the transport processing
4139 * thread a second time)
4140 */
4141 if (cmd->data_direction == DMA_TO_DEVICE) {
4142 transport_add_tasks_to_state_queue(cmd);
4143 return transport_generic_write_pending(cmd);
4144 }
4145 /*
4146 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4147 * to the execution queue.
4148 */
4149 transport_execute_tasks(cmd);
4150 return 0;
4151 }
4152 EXPORT_SYMBOL(transport_generic_new_cmd);
4153
4154 /* transport_generic_process_write():
4155 *
4156 *
4157 */
4158 void transport_generic_process_write(struct se_cmd *cmd)
4159 {
4160 transport_execute_tasks(cmd);
4161 }
4162 EXPORT_SYMBOL(transport_generic_process_write);
4163
4164 static int transport_write_pending_qf(struct se_cmd *cmd)
4165 {
4166 return cmd->se_tfo->write_pending(cmd);
4167 }
4168
4169 /* transport_generic_write_pending():
4170 *
4171 *
4172 */
4173 static int transport_generic_write_pending(struct se_cmd *cmd)
4174 {
4175 unsigned long flags;
4176 int ret;
4177
4178 spin_lock_irqsave(&cmd->t_state_lock, flags);
4179 cmd->t_state = TRANSPORT_WRITE_PENDING;
4180 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4181
4182 if (cmd->transport_qf_callback) {
4183 ret = cmd->transport_qf_callback(cmd);
4184 if (ret == -EAGAIN)
4185 goto queue_full;
4186 else if (ret < 0)
4187 return ret;
4188
4189 cmd->transport_qf_callback = NULL;
4190 return 0;
4191 }
4192
4193 /*
4194 * Clear the se_cmd for WRITE_PENDING status in order to set
4195 * cmd->t_transport_active=0 so that transport_generic_handle_data
4196 * can be called from HW target mode interrupt code. This is safe
4197 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4198 * because the se_cmd->se_lun pointer is not being cleared.
4199 */
4200 transport_cmd_check_stop(cmd, 1, 0);
4201
4202 /*
4203 * Call the fabric write_pending function here to let the
4204 * frontend know that WRITE buffers are ready.
4205 */
4206 ret = cmd->se_tfo->write_pending(cmd);
4207 if (ret == -EAGAIN)
4208 goto queue_full;
4209 else if (ret < 0)
4210 return ret;
4211
4212 return PYX_TRANSPORT_WRITE_PENDING;
4213
4214 queue_full:
4215 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4216 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4217 transport_handle_queue_full(cmd, cmd->se_dev,
4218 transport_write_pending_qf);
4219 return ret;
4220 }
4221
4222 /**
4223 * transport_release_cmd - free a command
4224 * @cmd: command to free
4225 *
4226 * This routine unconditionally frees a command, and reference counting
4227 * or list removal must be done in the caller.
4228 */
4229 void transport_release_cmd(struct se_cmd *cmd)
4230 {
4231 BUG_ON(!cmd->se_tfo);
4232
4233 if (cmd->se_tmr_req)
4234 core_tmr_release_req(cmd->se_tmr_req);
4235 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4236 kfree(cmd->t_task_cdb);
4237 cmd->se_tfo->release_cmd(cmd);
4238 }
4239 EXPORT_SYMBOL(transport_release_cmd);
4240
4241 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4242 {
4243 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4244 if (wait_for_tasks && cmd->se_tmr_req)
4245 transport_wait_for_tasks(cmd);
4246
4247 transport_release_cmd(cmd);
4248 } else {
4249 if (wait_for_tasks)
4250 transport_wait_for_tasks(cmd);
4251
4252 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4253
4254 if (cmd->se_lun)
4255 transport_lun_remove_cmd(cmd);
4256
4257 transport_free_dev_tasks(cmd);
4258
4259 transport_put_cmd(cmd);
4260 }
4261 }
4262 EXPORT_SYMBOL(transport_generic_free_cmd);
4263
4264 /* transport_lun_wait_for_tasks():
4265 *
4266 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4267 * an struct se_lun to be successfully shutdown.
4268 */
4269 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4270 {
4271 unsigned long flags;
4272 int ret;
4273 /*
4274 * If the frontend has already requested this struct se_cmd to
4275 * be stopped, we can safely ignore this struct se_cmd.
4276 */
4277 spin_lock_irqsave(&cmd->t_state_lock, flags);
4278 if (atomic_read(&cmd->t_transport_stop)) {
4279 atomic_set(&cmd->transport_lun_stop, 0);
4280 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4281 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4282 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4283 transport_cmd_check_stop(cmd, 1, 0);
4284 return -EPERM;
4285 }
4286 atomic_set(&cmd->transport_lun_fe_stop, 1);
4287 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4288
4289 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4290
4291 ret = transport_stop_tasks_for_cmd(cmd);
4292
4293 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4294 " %d\n", cmd, cmd->t_task_list_num, ret);
4295 if (!ret) {
4296 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4297 cmd->se_tfo->get_task_tag(cmd));
4298 wait_for_completion(&cmd->transport_lun_stop_comp);
4299 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4300 cmd->se_tfo->get_task_tag(cmd));
4301 }
4302 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4303
4304 return 0;
4305 }
4306
4307 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4308 {
4309 struct se_cmd *cmd = NULL;
4310 unsigned long lun_flags, cmd_flags;
4311 /*
4312 * Do exception processing and return CHECK_CONDITION status to the
4313 * Initiator Port.
4314 */
4315 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4316 while (!list_empty(&lun->lun_cmd_list)) {
4317 cmd = list_first_entry(&lun->lun_cmd_list,
4318 struct se_cmd, se_lun_node);
4319 list_del(&cmd->se_lun_node);
4320
4321 atomic_set(&cmd->transport_lun_active, 0);
4322 /*
4323 * This will notify iscsi_target_transport.c:
4324 * transport_cmd_check_stop() that a LUN shutdown is in
4325 * progress for the iscsi_cmd_t.
4326 */
4327 spin_lock(&cmd->t_state_lock);
4328 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4329 "_lun_stop for ITT: 0x%08x\n",
4330 cmd->se_lun->unpacked_lun,
4331 cmd->se_tfo->get_task_tag(cmd));
4332 atomic_set(&cmd->transport_lun_stop, 1);
4333 spin_unlock(&cmd->t_state_lock);
4334
4335 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4336
4337 if (!cmd->se_lun) {
4338 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4339 cmd->se_tfo->get_task_tag(cmd),
4340 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4341 BUG();
4342 }
4343 /*
4344 * If the Storage engine still owns the iscsi_cmd_t, determine
4345 * and/or stop its context.
4346 */
4347 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4348 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4349 cmd->se_tfo->get_task_tag(cmd));
4350
4351 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4352 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4353 continue;
4354 }
4355
4356 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4357 "_wait_for_tasks(): SUCCESS\n",
4358 cmd->se_lun->unpacked_lun,
4359 cmd->se_tfo->get_task_tag(cmd));
4360
4361 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4362 if (!atomic_read(&cmd->transport_dev_active)) {
4363 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4364 goto check_cond;
4365 }
4366 atomic_set(&cmd->transport_dev_active, 0);
4367 transport_all_task_dev_remove_state(cmd);
4368 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4369
4370 transport_free_dev_tasks(cmd);
4371 /*
4372 * The Storage engine stopped this struct se_cmd before it was
4373 * send to the fabric frontend for delivery back to the
4374 * Initiator Node. Return this SCSI CDB back with an
4375 * CHECK_CONDITION status.
4376 */
4377 check_cond:
4378 transport_send_check_condition_and_sense(cmd,
4379 TCM_NON_EXISTENT_LUN, 0);
4380 /*
4381 * If the fabric frontend is waiting for this iscsi_cmd_t to
4382 * be released, notify the waiting thread now that LU has
4383 * finished accessing it.
4384 */
4385 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4386 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4387 pr_debug("SE_LUN[%d] - Detected FE stop for"
4388 " struct se_cmd: %p ITT: 0x%08x\n",
4389 lun->unpacked_lun,
4390 cmd, cmd->se_tfo->get_task_tag(cmd));
4391
4392 spin_unlock_irqrestore(&cmd->t_state_lock,
4393 cmd_flags);
4394 transport_cmd_check_stop(cmd, 1, 0);
4395 complete(&cmd->transport_lun_fe_stop_comp);
4396 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4397 continue;
4398 }
4399 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4400 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4401
4402 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4403 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4404 }
4405 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4406 }
4407
4408 static int transport_clear_lun_thread(void *p)
4409 {
4410 struct se_lun *lun = (struct se_lun *)p;
4411
4412 __transport_clear_lun_from_sessions(lun);
4413 complete(&lun->lun_shutdown_comp);
4414
4415 return 0;
4416 }
4417
4418 int transport_clear_lun_from_sessions(struct se_lun *lun)
4419 {
4420 struct task_struct *kt;
4421
4422 kt = kthread_run(transport_clear_lun_thread, lun,
4423 "tcm_cl_%u", lun->unpacked_lun);
4424 if (IS_ERR(kt)) {
4425 pr_err("Unable to start clear_lun thread\n");
4426 return PTR_ERR(kt);
4427 }
4428 wait_for_completion(&lun->lun_shutdown_comp);
4429
4430 return 0;
4431 }
4432
4433 /**
4434 * transport_wait_for_tasks - wait for completion to occur
4435 * @cmd: command to wait
4436 *
4437 * Called from frontend fabric context to wait for storage engine
4438 * to pause and/or release frontend generated struct se_cmd.
4439 */
4440 void transport_wait_for_tasks(struct se_cmd *cmd)
4441 {
4442 unsigned long flags;
4443
4444 spin_lock_irqsave(&cmd->t_state_lock, flags);
4445 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4446 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4447 return;
4448 }
4449 /*
4450 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4451 * has been set in transport_set_supported_SAM_opcode().
4452 */
4453 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4454 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4455 return;
4456 }
4457 /*
4458 * If we are already stopped due to an external event (ie: LUN shutdown)
4459 * sleep until the connection can have the passed struct se_cmd back.
4460 * The cmd->transport_lun_stopped_sem will be upped by
4461 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4462 * has completed its operation on the struct se_cmd.
4463 */
4464 if (atomic_read(&cmd->transport_lun_stop)) {
4465
4466 pr_debug("wait_for_tasks: Stopping"
4467 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4468 "_stop_comp); for ITT: 0x%08x\n",
4469 cmd->se_tfo->get_task_tag(cmd));
4470 /*
4471 * There is a special case for WRITES where a FE exception +
4472 * LUN shutdown means ConfigFS context is still sleeping on
4473 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4474 * We go ahead and up transport_lun_stop_comp just to be sure
4475 * here.
4476 */
4477 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4478 complete(&cmd->transport_lun_stop_comp);
4479 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4480 spin_lock_irqsave(&cmd->t_state_lock, flags);
4481
4482 transport_all_task_dev_remove_state(cmd);
4483 /*
4484 * At this point, the frontend who was the originator of this
4485 * struct se_cmd, now owns the structure and can be released through
4486 * normal means below.
4487 */
4488 pr_debug("wait_for_tasks: Stopped"
4489 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4490 "stop_comp); for ITT: 0x%08x\n",
4491 cmd->se_tfo->get_task_tag(cmd));
4492
4493 atomic_set(&cmd->transport_lun_stop, 0);
4494 }
4495 if (!atomic_read(&cmd->t_transport_active) ||
4496 atomic_read(&cmd->t_transport_aborted)) {
4497 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4498 return;
4499 }
4500
4501 atomic_set(&cmd->t_transport_stop, 1);
4502
4503 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4504 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4505 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4506 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4507 cmd->deferred_t_state);
4508
4509 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4510
4511 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4512
4513 wait_for_completion(&cmd->t_transport_stop_comp);
4514
4515 spin_lock_irqsave(&cmd->t_state_lock, flags);
4516 atomic_set(&cmd->t_transport_active, 0);
4517 atomic_set(&cmd->t_transport_stop, 0);
4518
4519 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4520 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4521 cmd->se_tfo->get_task_tag(cmd));
4522
4523 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4524 }
4525 EXPORT_SYMBOL(transport_wait_for_tasks);
4526
4527 static int transport_get_sense_codes(
4528 struct se_cmd *cmd,
4529 u8 *asc,
4530 u8 *ascq)
4531 {
4532 *asc = cmd->scsi_asc;
4533 *ascq = cmd->scsi_ascq;
4534
4535 return 0;
4536 }
4537
4538 static int transport_set_sense_codes(
4539 struct se_cmd *cmd,
4540 u8 asc,
4541 u8 ascq)
4542 {
4543 cmd->scsi_asc = asc;
4544 cmd->scsi_ascq = ascq;
4545
4546 return 0;
4547 }
4548
4549 int transport_send_check_condition_and_sense(
4550 struct se_cmd *cmd,
4551 u8 reason,
4552 int from_transport)
4553 {
4554 unsigned char *buffer = cmd->sense_buffer;
4555 unsigned long flags;
4556 int offset;
4557 u8 asc = 0, ascq = 0;
4558
4559 spin_lock_irqsave(&cmd->t_state_lock, flags);
4560 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4561 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4562 return 0;
4563 }
4564 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4565 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4566
4567 if (!reason && from_transport)
4568 goto after_reason;
4569
4570 if (!from_transport)
4571 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4572 /*
4573 * Data Segment and SenseLength of the fabric response PDU.
4574 *
4575 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4576 * from include/scsi/scsi_cmnd.h
4577 */
4578 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4579 TRANSPORT_SENSE_BUFFER);
4580 /*
4581 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4582 * SENSE KEY values from include/scsi/scsi.h
4583 */
4584 switch (reason) {
4585 case TCM_NON_EXISTENT_LUN:
4586 /* CURRENT ERROR */
4587 buffer[offset] = 0x70;
4588 /* ILLEGAL REQUEST */
4589 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4590 /* LOGICAL UNIT NOT SUPPORTED */
4591 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4592 break;
4593 case TCM_UNSUPPORTED_SCSI_OPCODE:
4594 case TCM_SECTOR_COUNT_TOO_MANY:
4595 /* CURRENT ERROR */
4596 buffer[offset] = 0x70;
4597 /* ILLEGAL REQUEST */
4598 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4599 /* INVALID COMMAND OPERATION CODE */
4600 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4601 break;
4602 case TCM_UNKNOWN_MODE_PAGE:
4603 /* CURRENT ERROR */
4604 buffer[offset] = 0x70;
4605 /* ILLEGAL REQUEST */
4606 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4607 /* INVALID FIELD IN CDB */
4608 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4609 break;
4610 case TCM_CHECK_CONDITION_ABORT_CMD:
4611 /* CURRENT ERROR */
4612 buffer[offset] = 0x70;
4613 /* ABORTED COMMAND */
4614 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4615 /* BUS DEVICE RESET FUNCTION OCCURRED */
4616 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4617 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4618 break;
4619 case TCM_INCORRECT_AMOUNT_OF_DATA:
4620 /* CURRENT ERROR */
4621 buffer[offset] = 0x70;
4622 /* ABORTED COMMAND */
4623 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4624 /* WRITE ERROR */
4625 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4626 /* NOT ENOUGH UNSOLICITED DATA */
4627 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4628 break;
4629 case TCM_INVALID_CDB_FIELD:
4630 /* CURRENT ERROR */
4631 buffer[offset] = 0x70;
4632 /* ABORTED COMMAND */
4633 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4634 /* INVALID FIELD IN CDB */
4635 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4636 break;
4637 case TCM_INVALID_PARAMETER_LIST:
4638 /* CURRENT ERROR */
4639 buffer[offset] = 0x70;
4640 /* ABORTED COMMAND */
4641 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4642 /* INVALID FIELD IN PARAMETER LIST */
4643 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4644 break;
4645 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4646 /* CURRENT ERROR */
4647 buffer[offset] = 0x70;
4648 /* ABORTED COMMAND */
4649 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4650 /* WRITE ERROR */
4651 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4652 /* UNEXPECTED_UNSOLICITED_DATA */
4653 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4654 break;
4655 case TCM_SERVICE_CRC_ERROR:
4656 /* CURRENT ERROR */
4657 buffer[offset] = 0x70;
4658 /* ABORTED COMMAND */
4659 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4660 /* PROTOCOL SERVICE CRC ERROR */
4661 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4662 /* N/A */
4663 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4664 break;
4665 case TCM_SNACK_REJECTED:
4666 /* CURRENT ERROR */
4667 buffer[offset] = 0x70;
4668 /* ABORTED COMMAND */
4669 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4670 /* READ ERROR */
4671 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4672 /* FAILED RETRANSMISSION REQUEST */
4673 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4674 break;
4675 case TCM_WRITE_PROTECTED:
4676 /* CURRENT ERROR */
4677 buffer[offset] = 0x70;
4678 /* DATA PROTECT */
4679 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4680 /* WRITE PROTECTED */
4681 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4682 break;
4683 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4684 /* CURRENT ERROR */
4685 buffer[offset] = 0x70;
4686 /* UNIT ATTENTION */
4687 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4688 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4689 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4690 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4691 break;
4692 case TCM_CHECK_CONDITION_NOT_READY:
4693 /* CURRENT ERROR */
4694 buffer[offset] = 0x70;
4695 /* Not Ready */
4696 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4697 transport_get_sense_codes(cmd, &asc, &ascq);
4698 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4699 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4700 break;
4701 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4702 default:
4703 /* CURRENT ERROR */
4704 buffer[offset] = 0x70;
4705 /* ILLEGAL REQUEST */
4706 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4707 /* LOGICAL UNIT COMMUNICATION FAILURE */
4708 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4709 break;
4710 }
4711 /*
4712 * This code uses linux/include/scsi/scsi.h SAM status codes!
4713 */
4714 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4715 /*
4716 * Automatically padded, this value is encoded in the fabric's
4717 * data_length response PDU containing the SCSI defined sense data.
4718 */
4719 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4720
4721 after_reason:
4722 return cmd->se_tfo->queue_status(cmd);
4723 }
4724 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4725
4726 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4727 {
4728 int ret = 0;
4729
4730 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4731 if (!send_status ||
4732 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4733 return 1;
4734 #if 0
4735 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4736 " status for CDB: 0x%02x ITT: 0x%08x\n",
4737 cmd->t_task_cdb[0],
4738 cmd->se_tfo->get_task_tag(cmd));
4739 #endif
4740 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4741 cmd->se_tfo->queue_status(cmd);
4742 ret = 1;
4743 }
4744 return ret;
4745 }
4746 EXPORT_SYMBOL(transport_check_aborted_status);
4747
4748 void transport_send_task_abort(struct se_cmd *cmd)
4749 {
4750 unsigned long flags;
4751
4752 spin_lock_irqsave(&cmd->t_state_lock, flags);
4753 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4754 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4755 return;
4756 }
4757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4758
4759 /*
4760 * If there are still expected incoming fabric WRITEs, we wait
4761 * until until they have completed before sending a TASK_ABORTED
4762 * response. This response with TASK_ABORTED status will be
4763 * queued back to fabric module by transport_check_aborted_status().
4764 */
4765 if (cmd->data_direction == DMA_TO_DEVICE) {
4766 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4767 atomic_inc(&cmd->t_transport_aborted);
4768 smp_mb__after_atomic_inc();
4769 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4770 transport_new_cmd_failure(cmd);
4771 return;
4772 }
4773 }
4774 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4775 #if 0
4776 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4777 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4778 cmd->se_tfo->get_task_tag(cmd));
4779 #endif
4780 cmd->se_tfo->queue_status(cmd);
4781 }
4782
4783 /* transport_generic_do_tmr():
4784 *
4785 *
4786 */
4787 int transport_generic_do_tmr(struct se_cmd *cmd)
4788 {
4789 struct se_device *dev = cmd->se_dev;
4790 struct se_tmr_req *tmr = cmd->se_tmr_req;
4791 int ret;
4792
4793 switch (tmr->function) {
4794 case TMR_ABORT_TASK:
4795 tmr->response = TMR_FUNCTION_REJECTED;
4796 break;
4797 case TMR_ABORT_TASK_SET:
4798 case TMR_CLEAR_ACA:
4799 case TMR_CLEAR_TASK_SET:
4800 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4801 break;
4802 case TMR_LUN_RESET:
4803 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4804 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4805 TMR_FUNCTION_REJECTED;
4806 break;
4807 case TMR_TARGET_WARM_RESET:
4808 tmr->response = TMR_FUNCTION_REJECTED;
4809 break;
4810 case TMR_TARGET_COLD_RESET:
4811 tmr->response = TMR_FUNCTION_REJECTED;
4812 break;
4813 default:
4814 pr_err("Uknown TMR function: 0x%02x.\n",
4815 tmr->function);
4816 tmr->response = TMR_FUNCTION_REJECTED;
4817 break;
4818 }
4819
4820 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4821 cmd->se_tfo->queue_tm_rsp(cmd);
4822
4823 transport_cmd_check_stop(cmd, 2, 0);
4824 return 0;
4825 }
4826
4827 /* transport_processing_thread():
4828 *
4829 *
4830 */
4831 static int transport_processing_thread(void *param)
4832 {
4833 int ret;
4834 struct se_cmd *cmd;
4835 struct se_device *dev = (struct se_device *) param;
4836
4837 set_user_nice(current, -20);
4838
4839 while (!kthread_should_stop()) {
4840 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4841 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4842 kthread_should_stop());
4843 if (ret < 0)
4844 goto out;
4845
4846 get_cmd:
4847 __transport_execute_tasks(dev);
4848
4849 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4850 if (!cmd)
4851 continue;
4852
4853 switch (cmd->t_state) {
4854 case TRANSPORT_NEW_CMD:
4855 BUG();
4856 break;
4857 case TRANSPORT_NEW_CMD_MAP:
4858 if (!cmd->se_tfo->new_cmd_map) {
4859 pr_err("cmd->se_tfo->new_cmd_map is"
4860 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4861 BUG();
4862 }
4863 ret = cmd->se_tfo->new_cmd_map(cmd);
4864 if (ret < 0) {
4865 cmd->transport_error_status = ret;
4866 transport_generic_request_failure(cmd, NULL,
4867 0, (cmd->data_direction !=
4868 DMA_TO_DEVICE));
4869 break;
4870 }
4871 ret = transport_generic_new_cmd(cmd);
4872 if (ret == -EAGAIN)
4873 break;
4874 else if (ret < 0) {
4875 cmd->transport_error_status = ret;
4876 transport_generic_request_failure(cmd, NULL,
4877 0, (cmd->data_direction !=
4878 DMA_TO_DEVICE));
4879 }
4880 break;
4881 case TRANSPORT_PROCESS_WRITE:
4882 transport_generic_process_write(cmd);
4883 break;
4884 case TRANSPORT_COMPLETE_OK:
4885 transport_stop_all_task_timers(cmd);
4886 transport_generic_complete_ok(cmd);
4887 break;
4888 case TRANSPORT_REMOVE:
4889 transport_put_cmd(cmd);
4890 break;
4891 case TRANSPORT_FREE_CMD_INTR:
4892 transport_generic_free_cmd(cmd, 0);
4893 break;
4894 case TRANSPORT_PROCESS_TMR:
4895 transport_generic_do_tmr(cmd);
4896 break;
4897 case TRANSPORT_COMPLETE_FAILURE:
4898 transport_generic_request_failure(cmd, NULL, 1, 1);
4899 break;
4900 case TRANSPORT_COMPLETE_TIMEOUT:
4901 transport_stop_all_task_timers(cmd);
4902 transport_generic_request_timeout(cmd);
4903 break;
4904 case TRANSPORT_COMPLETE_QF_WP:
4905 transport_generic_write_pending(cmd);
4906 break;
4907 default:
4908 pr_err("Unknown t_state: %d deferred_t_state:"
4909 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4910 " %u\n", cmd->t_state, cmd->deferred_t_state,
4911 cmd->se_tfo->get_task_tag(cmd),
4912 cmd->se_tfo->get_cmd_state(cmd),
4913 cmd->se_lun->unpacked_lun);
4914 BUG();
4915 }
4916
4917 goto get_cmd;
4918 }
4919
4920 out:
4921 WARN_ON(!list_empty(&dev->state_task_list));
4922 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4923 dev->process_thread = NULL;
4924 return 0;
4925 }
This page took 0.13686 seconds and 5 git commands to generate.