target: move transport_generic_prepare_cdb into pscsi
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static int transport_generic_get_mem(struct se_cmd *cmd);
76 static void transport_put_cmd(struct se_cmd *cmd);
77 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
78 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
79 static void target_complete_ok_work(struct work_struct *work);
80
81 int init_se_kmem_caches(void)
82 {
83 se_sess_cache = kmem_cache_create("se_sess_cache",
84 sizeof(struct se_session), __alignof__(struct se_session),
85 0, NULL);
86 if (!se_sess_cache) {
87 pr_err("kmem_cache_create() for struct se_session"
88 " failed\n");
89 goto out;
90 }
91 se_ua_cache = kmem_cache_create("se_ua_cache",
92 sizeof(struct se_ua), __alignof__(struct se_ua),
93 0, NULL);
94 if (!se_ua_cache) {
95 pr_err("kmem_cache_create() for struct se_ua failed\n");
96 goto out_free_sess_cache;
97 }
98 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
99 sizeof(struct t10_pr_registration),
100 __alignof__(struct t10_pr_registration), 0, NULL);
101 if (!t10_pr_reg_cache) {
102 pr_err("kmem_cache_create() for struct t10_pr_registration"
103 " failed\n");
104 goto out_free_ua_cache;
105 }
106 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
107 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
108 0, NULL);
109 if (!t10_alua_lu_gp_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
111 " failed\n");
112 goto out_free_pr_reg_cache;
113 }
114 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
115 sizeof(struct t10_alua_lu_gp_member),
116 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
117 if (!t10_alua_lu_gp_mem_cache) {
118 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
119 "cache failed\n");
120 goto out_free_lu_gp_cache;
121 }
122 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
123 sizeof(struct t10_alua_tg_pt_gp),
124 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
125 if (!t10_alua_tg_pt_gp_cache) {
126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
127 "cache failed\n");
128 goto out_free_lu_gp_mem_cache;
129 }
130 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
131 "t10_alua_tg_pt_gp_mem_cache",
132 sizeof(struct t10_alua_tg_pt_gp_member),
133 __alignof__(struct t10_alua_tg_pt_gp_member),
134 0, NULL);
135 if (!t10_alua_tg_pt_gp_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "mem_t failed\n");
138 goto out_free_tg_pt_gp_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_tg_pt_gp_mem_cache;
145
146 return 0;
147
148 out_free_tg_pt_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
150 out_free_tg_pt_gp_cache:
151 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
152 out_free_lu_gp_mem_cache:
153 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
154 out_free_lu_gp_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_cache);
156 out_free_pr_reg_cache:
157 kmem_cache_destroy(t10_pr_reg_cache);
158 out_free_ua_cache:
159 kmem_cache_destroy(se_ua_cache);
160 out_free_sess_cache:
161 kmem_cache_destroy(se_sess_cache);
162 out:
163 return -ENOMEM;
164 }
165
166 void release_se_kmem_caches(void)
167 {
168 destroy_workqueue(target_completion_wq);
169 kmem_cache_destroy(se_sess_cache);
170 kmem_cache_destroy(se_ua_cache);
171 kmem_cache_destroy(t10_pr_reg_cache);
172 kmem_cache_destroy(t10_alua_lu_gp_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
176 }
177
178 /* This code ensures unique mib indexes are handed out. */
179 static DEFINE_SPINLOCK(scsi_mib_index_lock);
180 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
181
182 /*
183 * Allocate a new row index for the entry type specified
184 */
185 u32 scsi_get_new_index(scsi_index_t type)
186 {
187 u32 new_index;
188
189 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
190
191 spin_lock(&scsi_mib_index_lock);
192 new_index = ++scsi_mib_index[type];
193 spin_unlock(&scsi_mib_index_lock);
194
195 return new_index;
196 }
197
198 static void transport_init_queue_obj(struct se_queue_obj *qobj)
199 {
200 atomic_set(&qobj->queue_cnt, 0);
201 INIT_LIST_HEAD(&qobj->qobj_list);
202 init_waitqueue_head(&qobj->thread_wq);
203 spin_lock_init(&qobj->cmd_queue_lock);
204 }
205
206 void transport_subsystem_check_init(void)
207 {
208 int ret;
209
210 if (sub_api_initialized)
211 return;
212
213 ret = request_module("target_core_iblock");
214 if (ret != 0)
215 pr_err("Unable to load target_core_iblock\n");
216
217 ret = request_module("target_core_file");
218 if (ret != 0)
219 pr_err("Unable to load target_core_file\n");
220
221 ret = request_module("target_core_pscsi");
222 if (ret != 0)
223 pr_err("Unable to load target_core_pscsi\n");
224
225 ret = request_module("target_core_stgt");
226 if (ret != 0)
227 pr_err("Unable to load target_core_stgt\n");
228
229 sub_api_initialized = 1;
230 return;
231 }
232
233 struct se_session *transport_init_session(void)
234 {
235 struct se_session *se_sess;
236
237 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
238 if (!se_sess) {
239 pr_err("Unable to allocate struct se_session from"
240 " se_sess_cache\n");
241 return ERR_PTR(-ENOMEM);
242 }
243 INIT_LIST_HEAD(&se_sess->sess_list);
244 INIT_LIST_HEAD(&se_sess->sess_acl_list);
245 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
246 INIT_LIST_HEAD(&se_sess->sess_wait_list);
247 spin_lock_init(&se_sess->sess_cmd_lock);
248 kref_init(&se_sess->sess_kref);
249
250 return se_sess;
251 }
252 EXPORT_SYMBOL(transport_init_session);
253
254 /*
255 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
256 */
257 void __transport_register_session(
258 struct se_portal_group *se_tpg,
259 struct se_node_acl *se_nacl,
260 struct se_session *se_sess,
261 void *fabric_sess_ptr)
262 {
263 unsigned char buf[PR_REG_ISID_LEN];
264
265 se_sess->se_tpg = se_tpg;
266 se_sess->fabric_sess_ptr = fabric_sess_ptr;
267 /*
268 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269 *
270 * Only set for struct se_session's that will actually be moving I/O.
271 * eg: *NOT* discovery sessions.
272 */
273 if (se_nacl) {
274 /*
275 * If the fabric module supports an ISID based TransportID,
276 * save this value in binary from the fabric I_T Nexus now.
277 */
278 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279 memset(&buf[0], 0, PR_REG_ISID_LEN);
280 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281 &buf[0], PR_REG_ISID_LEN);
282 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283 }
284 kref_get(&se_nacl->acl_kref);
285
286 spin_lock_irq(&se_nacl->nacl_sess_lock);
287 /*
288 * The se_nacl->nacl_sess pointer will be set to the
289 * last active I_T Nexus for each struct se_node_acl.
290 */
291 se_nacl->nacl_sess = se_sess;
292
293 list_add_tail(&se_sess->sess_acl_list,
294 &se_nacl->acl_sess_list);
295 spin_unlock_irq(&se_nacl->nacl_sess_lock);
296 }
297 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
298
299 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
300 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
301 }
302 EXPORT_SYMBOL(__transport_register_session);
303
304 void transport_register_session(
305 struct se_portal_group *se_tpg,
306 struct se_node_acl *se_nacl,
307 struct se_session *se_sess,
308 void *fabric_sess_ptr)
309 {
310 unsigned long flags;
311
312 spin_lock_irqsave(&se_tpg->session_lock, flags);
313 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
314 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
315 }
316 EXPORT_SYMBOL(transport_register_session);
317
318 void target_release_session(struct kref *kref)
319 {
320 struct se_session *se_sess = container_of(kref,
321 struct se_session, sess_kref);
322 struct se_portal_group *se_tpg = se_sess->se_tpg;
323
324 se_tpg->se_tpg_tfo->close_session(se_sess);
325 }
326
327 void target_get_session(struct se_session *se_sess)
328 {
329 kref_get(&se_sess->sess_kref);
330 }
331 EXPORT_SYMBOL(target_get_session);
332
333 void target_put_session(struct se_session *se_sess)
334 {
335 struct se_portal_group *tpg = se_sess->se_tpg;
336
337 if (tpg->se_tpg_tfo->put_session != NULL) {
338 tpg->se_tpg_tfo->put_session(se_sess);
339 return;
340 }
341 kref_put(&se_sess->sess_kref, target_release_session);
342 }
343 EXPORT_SYMBOL(target_put_session);
344
345 static void target_complete_nacl(struct kref *kref)
346 {
347 struct se_node_acl *nacl = container_of(kref,
348 struct se_node_acl, acl_kref);
349
350 complete(&nacl->acl_free_comp);
351 }
352
353 void target_put_nacl(struct se_node_acl *nacl)
354 {
355 kref_put(&nacl->acl_kref, target_complete_nacl);
356 }
357
358 void transport_deregister_session_configfs(struct se_session *se_sess)
359 {
360 struct se_node_acl *se_nacl;
361 unsigned long flags;
362 /*
363 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
364 */
365 se_nacl = se_sess->se_node_acl;
366 if (se_nacl) {
367 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
368 if (se_nacl->acl_stop == 0)
369 list_del(&se_sess->sess_acl_list);
370 /*
371 * If the session list is empty, then clear the pointer.
372 * Otherwise, set the struct se_session pointer from the tail
373 * element of the per struct se_node_acl active session list.
374 */
375 if (list_empty(&se_nacl->acl_sess_list))
376 se_nacl->nacl_sess = NULL;
377 else {
378 se_nacl->nacl_sess = container_of(
379 se_nacl->acl_sess_list.prev,
380 struct se_session, sess_acl_list);
381 }
382 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
383 }
384 }
385 EXPORT_SYMBOL(transport_deregister_session_configfs);
386
387 void transport_free_session(struct se_session *se_sess)
388 {
389 kmem_cache_free(se_sess_cache, se_sess);
390 }
391 EXPORT_SYMBOL(transport_free_session);
392
393 void transport_deregister_session(struct se_session *se_sess)
394 {
395 struct se_portal_group *se_tpg = se_sess->se_tpg;
396 struct target_core_fabric_ops *se_tfo;
397 struct se_node_acl *se_nacl;
398 unsigned long flags;
399 bool comp_nacl = true;
400
401 if (!se_tpg) {
402 transport_free_session(se_sess);
403 return;
404 }
405 se_tfo = se_tpg->se_tpg_tfo;
406
407 spin_lock_irqsave(&se_tpg->session_lock, flags);
408 list_del(&se_sess->sess_list);
409 se_sess->se_tpg = NULL;
410 se_sess->fabric_sess_ptr = NULL;
411 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
412
413 /*
414 * Determine if we need to do extra work for this initiator node's
415 * struct se_node_acl if it had been previously dynamically generated.
416 */
417 se_nacl = se_sess->se_node_acl;
418
419 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
420 if (se_nacl && se_nacl->dynamic_node_acl) {
421 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
422 list_del(&se_nacl->acl_list);
423 se_tpg->num_node_acls--;
424 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
425 core_tpg_wait_for_nacl_pr_ref(se_nacl);
426 core_free_device_list_for_node(se_nacl, se_tpg);
427 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
428
429 comp_nacl = false;
430 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
431 }
432 }
433 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
434
435 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
436 se_tpg->se_tpg_tfo->get_fabric_name());
437 /*
438 * If last kref is dropping now for an explict NodeACL, awake sleeping
439 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
440 * removal context.
441 */
442 if (se_nacl && comp_nacl == true)
443 target_put_nacl(se_nacl);
444
445 transport_free_session(se_sess);
446 }
447 EXPORT_SYMBOL(transport_deregister_session);
448
449 /*
450 * Called with cmd->t_state_lock held.
451 */
452 static void target_remove_from_state_list(struct se_cmd *cmd)
453 {
454 struct se_device *dev = cmd->se_dev;
455 unsigned long flags;
456
457 if (!dev)
458 return;
459
460 if (cmd->transport_state & CMD_T_BUSY)
461 return;
462
463 spin_lock_irqsave(&dev->execute_task_lock, flags);
464 if (cmd->state_active) {
465 list_del(&cmd->state_list);
466 cmd->state_active = false;
467 }
468 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
469 }
470
471 /* transport_cmd_check_stop():
472 *
473 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
474 * 'transport_off = 2' determines if task_dev_state should be removed.
475 *
476 * A non-zero u8 t_state sets cmd->t_state.
477 * Returns 1 when command is stopped, else 0.
478 */
479 static int transport_cmd_check_stop(
480 struct se_cmd *cmd,
481 int transport_off,
482 u8 t_state)
483 {
484 unsigned long flags;
485
486 spin_lock_irqsave(&cmd->t_state_lock, flags);
487 /*
488 * Determine if IOCTL context caller in requesting the stopping of this
489 * command for LUN shutdown purposes.
490 */
491 if (cmd->transport_state & CMD_T_LUN_STOP) {
492 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
493 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
494
495 cmd->transport_state &= ~CMD_T_ACTIVE;
496 if (transport_off == 2)
497 target_remove_from_state_list(cmd);
498 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
499
500 complete(&cmd->transport_lun_stop_comp);
501 return 1;
502 }
503 /*
504 * Determine if frontend context caller is requesting the stopping of
505 * this command for frontend exceptions.
506 */
507 if (cmd->transport_state & CMD_T_STOP) {
508 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
509 __func__, __LINE__,
510 cmd->se_tfo->get_task_tag(cmd));
511
512 if (transport_off == 2)
513 target_remove_from_state_list(cmd);
514
515 /*
516 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
517 * to FE.
518 */
519 if (transport_off == 2)
520 cmd->se_lun = NULL;
521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
522
523 complete(&cmd->t_transport_stop_comp);
524 return 1;
525 }
526 if (transport_off) {
527 cmd->transport_state &= ~CMD_T_ACTIVE;
528 if (transport_off == 2) {
529 target_remove_from_state_list(cmd);
530 /*
531 * Clear struct se_cmd->se_lun before the transport_off == 2
532 * handoff to fabric module.
533 */
534 cmd->se_lun = NULL;
535 /*
536 * Some fabric modules like tcm_loop can release
537 * their internally allocated I/O reference now and
538 * struct se_cmd now.
539 *
540 * Fabric modules are expected to return '1' here if the
541 * se_cmd being passed is released at this point,
542 * or zero if not being released.
543 */
544 if (cmd->se_tfo->check_stop_free != NULL) {
545 spin_unlock_irqrestore(
546 &cmd->t_state_lock, flags);
547
548 return cmd->se_tfo->check_stop_free(cmd);
549 }
550 }
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552
553 return 0;
554 } else if (t_state)
555 cmd->t_state = t_state;
556 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
557
558 return 0;
559 }
560
561 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
562 {
563 return transport_cmd_check_stop(cmd, 2, 0);
564 }
565
566 static void transport_lun_remove_cmd(struct se_cmd *cmd)
567 {
568 struct se_lun *lun = cmd->se_lun;
569 unsigned long flags;
570
571 if (!lun)
572 return;
573
574 spin_lock_irqsave(&cmd->t_state_lock, flags);
575 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
576 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
577 target_remove_from_state_list(cmd);
578 }
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580
581 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
582 if (!list_empty(&cmd->se_lun_node))
583 list_del_init(&cmd->se_lun_node);
584 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
585 }
586
587 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
588 {
589 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
590 transport_lun_remove_cmd(cmd);
591
592 if (transport_cmd_check_stop_to_fabric(cmd))
593 return;
594 if (remove) {
595 transport_remove_cmd_from_queue(cmd);
596 transport_put_cmd(cmd);
597 }
598 }
599
600 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
601 bool at_head)
602 {
603 struct se_device *dev = cmd->se_dev;
604 struct se_queue_obj *qobj = &dev->dev_queue_obj;
605 unsigned long flags;
606
607 if (t_state) {
608 spin_lock_irqsave(&cmd->t_state_lock, flags);
609 cmd->t_state = t_state;
610 cmd->transport_state |= CMD_T_ACTIVE;
611 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
612 }
613
614 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
615
616 /* If the cmd is already on the list, remove it before we add it */
617 if (!list_empty(&cmd->se_queue_node))
618 list_del(&cmd->se_queue_node);
619 else
620 atomic_inc(&qobj->queue_cnt);
621
622 if (at_head)
623 list_add(&cmd->se_queue_node, &qobj->qobj_list);
624 else
625 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
626 cmd->transport_state |= CMD_T_QUEUED;
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629 wake_up_interruptible(&qobj->thread_wq);
630 }
631
632 static struct se_cmd *
633 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
634 {
635 struct se_cmd *cmd;
636 unsigned long flags;
637
638 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
639 if (list_empty(&qobj->qobj_list)) {
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641 return NULL;
642 }
643 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
644
645 cmd->transport_state &= ~CMD_T_QUEUED;
646 list_del_init(&cmd->se_queue_node);
647 atomic_dec(&qobj->queue_cnt);
648 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
649
650 return cmd;
651 }
652
653 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
654 {
655 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
656 unsigned long flags;
657
658 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
659 if (!(cmd->transport_state & CMD_T_QUEUED)) {
660 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
661 return;
662 }
663 cmd->transport_state &= ~CMD_T_QUEUED;
664 atomic_dec(&qobj->queue_cnt);
665 list_del_init(&cmd->se_queue_node);
666 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
667 }
668
669 static void target_complete_failure_work(struct work_struct *work)
670 {
671 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
672
673 transport_generic_request_failure(cmd);
674 }
675
676 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
677 {
678 struct se_device *dev = cmd->se_dev;
679 int success = scsi_status == GOOD;
680 unsigned long flags;
681
682 cmd->scsi_status = scsi_status;
683
684
685 spin_lock_irqsave(&cmd->t_state_lock, flags);
686 cmd->transport_state &= ~CMD_T_BUSY;
687
688 if (dev && dev->transport->transport_complete) {
689 if (dev->transport->transport_complete(cmd,
690 cmd->t_data_sg) != 0) {
691 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
692 success = 1;
693 }
694 }
695
696 /*
697 * See if we are waiting to complete for an exception condition.
698 */
699 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701 complete(&cmd->task_stop_comp);
702 return;
703 }
704
705 if (!success)
706 cmd->transport_state |= CMD_T_FAILED;
707
708 /*
709 * Check for case where an explict ABORT_TASK has been received
710 * and transport_wait_for_tasks() will be waiting for completion..
711 */
712 if (cmd->transport_state & CMD_T_ABORTED &&
713 cmd->transport_state & CMD_T_STOP) {
714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715 complete(&cmd->t_transport_stop_comp);
716 return;
717 } else if (cmd->transport_state & CMD_T_FAILED) {
718 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
719 INIT_WORK(&cmd->work, target_complete_failure_work);
720 } else {
721 INIT_WORK(&cmd->work, target_complete_ok_work);
722 }
723
724 cmd->t_state = TRANSPORT_COMPLETE;
725 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
726 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
727
728 queue_work(target_completion_wq, &cmd->work);
729 }
730 EXPORT_SYMBOL(target_complete_cmd);
731
732 static void target_add_to_state_list(struct se_cmd *cmd)
733 {
734 struct se_device *dev = cmd->se_dev;
735 unsigned long flags;
736
737 spin_lock_irqsave(&dev->execute_task_lock, flags);
738 if (!cmd->state_active) {
739 list_add_tail(&cmd->state_list, &dev->state_list);
740 cmd->state_active = true;
741 }
742 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
743 }
744
745 static void __target_add_to_execute_list(struct se_cmd *cmd)
746 {
747 struct se_device *dev = cmd->se_dev;
748 bool head_of_queue = false;
749
750 if (!list_empty(&cmd->execute_list))
751 return;
752
753 if (dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED &&
754 cmd->sam_task_attr == MSG_HEAD_TAG)
755 head_of_queue = true;
756
757 if (head_of_queue)
758 list_add(&cmd->execute_list, &dev->execute_list);
759 else
760 list_add_tail(&cmd->execute_list, &dev->execute_list);
761
762 atomic_inc(&dev->execute_tasks);
763
764 if (cmd->state_active)
765 return;
766
767 if (head_of_queue)
768 list_add(&cmd->state_list, &dev->state_list);
769 else
770 list_add_tail(&cmd->state_list, &dev->state_list);
771
772 cmd->state_active = true;
773 }
774
775 static void target_add_to_execute_list(struct se_cmd *cmd)
776 {
777 unsigned long flags;
778 struct se_device *dev = cmd->se_dev;
779
780 spin_lock_irqsave(&dev->execute_task_lock, flags);
781 __target_add_to_execute_list(cmd);
782 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
783 }
784
785 void __target_remove_from_execute_list(struct se_cmd *cmd)
786 {
787 list_del_init(&cmd->execute_list);
788 atomic_dec(&cmd->se_dev->execute_tasks);
789 }
790
791 static void target_remove_from_execute_list(struct se_cmd *cmd)
792 {
793 struct se_device *dev = cmd->se_dev;
794 unsigned long flags;
795
796 if (WARN_ON(list_empty(&cmd->execute_list)))
797 return;
798
799 spin_lock_irqsave(&dev->execute_task_lock, flags);
800 __target_remove_from_execute_list(cmd);
801 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
802 }
803
804 /*
805 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
806 */
807
808 static void target_qf_do_work(struct work_struct *work)
809 {
810 struct se_device *dev = container_of(work, struct se_device,
811 qf_work_queue);
812 LIST_HEAD(qf_cmd_list);
813 struct se_cmd *cmd, *cmd_tmp;
814
815 spin_lock_irq(&dev->qf_cmd_lock);
816 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
817 spin_unlock_irq(&dev->qf_cmd_lock);
818
819 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
820 list_del(&cmd->se_qf_node);
821 atomic_dec(&dev->dev_qf_count);
822 smp_mb__after_atomic_dec();
823
824 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
825 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
826 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
827 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
828 : "UNKNOWN");
829
830 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
831 }
832 }
833
834 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
835 {
836 switch (cmd->data_direction) {
837 case DMA_NONE:
838 return "NONE";
839 case DMA_FROM_DEVICE:
840 return "READ";
841 case DMA_TO_DEVICE:
842 return "WRITE";
843 case DMA_BIDIRECTIONAL:
844 return "BIDI";
845 default:
846 break;
847 }
848
849 return "UNKNOWN";
850 }
851
852 void transport_dump_dev_state(
853 struct se_device *dev,
854 char *b,
855 int *bl)
856 {
857 *bl += sprintf(b + *bl, "Status: ");
858 switch (dev->dev_status) {
859 case TRANSPORT_DEVICE_ACTIVATED:
860 *bl += sprintf(b + *bl, "ACTIVATED");
861 break;
862 case TRANSPORT_DEVICE_DEACTIVATED:
863 *bl += sprintf(b + *bl, "DEACTIVATED");
864 break;
865 case TRANSPORT_DEVICE_SHUTDOWN:
866 *bl += sprintf(b + *bl, "SHUTDOWN");
867 break;
868 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
869 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
870 *bl += sprintf(b + *bl, "OFFLINE");
871 break;
872 default:
873 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
874 break;
875 }
876
877 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
878 atomic_read(&dev->execute_tasks), dev->queue_depth);
879 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
880 dev->se_sub_dev->se_dev_attrib.block_size,
881 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
882 *bl += sprintf(b + *bl, " ");
883 }
884
885 void transport_dump_vpd_proto_id(
886 struct t10_vpd *vpd,
887 unsigned char *p_buf,
888 int p_buf_len)
889 {
890 unsigned char buf[VPD_TMP_BUF_SIZE];
891 int len;
892
893 memset(buf, 0, VPD_TMP_BUF_SIZE);
894 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
895
896 switch (vpd->protocol_identifier) {
897 case 0x00:
898 sprintf(buf+len, "Fibre Channel\n");
899 break;
900 case 0x10:
901 sprintf(buf+len, "Parallel SCSI\n");
902 break;
903 case 0x20:
904 sprintf(buf+len, "SSA\n");
905 break;
906 case 0x30:
907 sprintf(buf+len, "IEEE 1394\n");
908 break;
909 case 0x40:
910 sprintf(buf+len, "SCSI Remote Direct Memory Access"
911 " Protocol\n");
912 break;
913 case 0x50:
914 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
915 break;
916 case 0x60:
917 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
918 break;
919 case 0x70:
920 sprintf(buf+len, "Automation/Drive Interface Transport"
921 " Protocol\n");
922 break;
923 case 0x80:
924 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
925 break;
926 default:
927 sprintf(buf+len, "Unknown 0x%02x\n",
928 vpd->protocol_identifier);
929 break;
930 }
931
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
936 }
937
938 void
939 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
940 {
941 /*
942 * Check if the Protocol Identifier Valid (PIV) bit is set..
943 *
944 * from spc3r23.pdf section 7.5.1
945 */
946 if (page_83[1] & 0x80) {
947 vpd->protocol_identifier = (page_83[0] & 0xf0);
948 vpd->protocol_identifier_set = 1;
949 transport_dump_vpd_proto_id(vpd, NULL, 0);
950 }
951 }
952 EXPORT_SYMBOL(transport_set_vpd_proto_id);
953
954 int transport_dump_vpd_assoc(
955 struct t10_vpd *vpd,
956 unsigned char *p_buf,
957 int p_buf_len)
958 {
959 unsigned char buf[VPD_TMP_BUF_SIZE];
960 int ret = 0;
961 int len;
962
963 memset(buf, 0, VPD_TMP_BUF_SIZE);
964 len = sprintf(buf, "T10 VPD Identifier Association: ");
965
966 switch (vpd->association) {
967 case 0x00:
968 sprintf(buf+len, "addressed logical unit\n");
969 break;
970 case 0x10:
971 sprintf(buf+len, "target port\n");
972 break;
973 case 0x20:
974 sprintf(buf+len, "SCSI target device\n");
975 break;
976 default:
977 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
978 ret = -EINVAL;
979 break;
980 }
981
982 if (p_buf)
983 strncpy(p_buf, buf, p_buf_len);
984 else
985 pr_debug("%s", buf);
986
987 return ret;
988 }
989
990 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
991 {
992 /*
993 * The VPD identification association..
994 *
995 * from spc3r23.pdf Section 7.6.3.1 Table 297
996 */
997 vpd->association = (page_83[1] & 0x30);
998 return transport_dump_vpd_assoc(vpd, NULL, 0);
999 }
1000 EXPORT_SYMBOL(transport_set_vpd_assoc);
1001
1002 int transport_dump_vpd_ident_type(
1003 struct t10_vpd *vpd,
1004 unsigned char *p_buf,
1005 int p_buf_len)
1006 {
1007 unsigned char buf[VPD_TMP_BUF_SIZE];
1008 int ret = 0;
1009 int len;
1010
1011 memset(buf, 0, VPD_TMP_BUF_SIZE);
1012 len = sprintf(buf, "T10 VPD Identifier Type: ");
1013
1014 switch (vpd->device_identifier_type) {
1015 case 0x00:
1016 sprintf(buf+len, "Vendor specific\n");
1017 break;
1018 case 0x01:
1019 sprintf(buf+len, "T10 Vendor ID based\n");
1020 break;
1021 case 0x02:
1022 sprintf(buf+len, "EUI-64 based\n");
1023 break;
1024 case 0x03:
1025 sprintf(buf+len, "NAA\n");
1026 break;
1027 case 0x04:
1028 sprintf(buf+len, "Relative target port identifier\n");
1029 break;
1030 case 0x08:
1031 sprintf(buf+len, "SCSI name string\n");
1032 break;
1033 default:
1034 sprintf(buf+len, "Unsupported: 0x%02x\n",
1035 vpd->device_identifier_type);
1036 ret = -EINVAL;
1037 break;
1038 }
1039
1040 if (p_buf) {
1041 if (p_buf_len < strlen(buf)+1)
1042 return -EINVAL;
1043 strncpy(p_buf, buf, p_buf_len);
1044 } else {
1045 pr_debug("%s", buf);
1046 }
1047
1048 return ret;
1049 }
1050
1051 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1052 {
1053 /*
1054 * The VPD identifier type..
1055 *
1056 * from spc3r23.pdf Section 7.6.3.1 Table 298
1057 */
1058 vpd->device_identifier_type = (page_83[1] & 0x0f);
1059 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1060 }
1061 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1062
1063 int transport_dump_vpd_ident(
1064 struct t10_vpd *vpd,
1065 unsigned char *p_buf,
1066 int p_buf_len)
1067 {
1068 unsigned char buf[VPD_TMP_BUF_SIZE];
1069 int ret = 0;
1070
1071 memset(buf, 0, VPD_TMP_BUF_SIZE);
1072
1073 switch (vpd->device_identifier_code_set) {
1074 case 0x01: /* Binary */
1075 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1076 &vpd->device_identifier[0]);
1077 break;
1078 case 0x02: /* ASCII */
1079 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1080 &vpd->device_identifier[0]);
1081 break;
1082 case 0x03: /* UTF-8 */
1083 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1084 &vpd->device_identifier[0]);
1085 break;
1086 default:
1087 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1088 " 0x%02x", vpd->device_identifier_code_set);
1089 ret = -EINVAL;
1090 break;
1091 }
1092
1093 if (p_buf)
1094 strncpy(p_buf, buf, p_buf_len);
1095 else
1096 pr_debug("%s", buf);
1097
1098 return ret;
1099 }
1100
1101 int
1102 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1103 {
1104 static const char hex_str[] = "0123456789abcdef";
1105 int j = 0, i = 4; /* offset to start of the identifer */
1106
1107 /*
1108 * The VPD Code Set (encoding)
1109 *
1110 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111 */
1112 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1113 switch (vpd->device_identifier_code_set) {
1114 case 0x01: /* Binary */
1115 vpd->device_identifier[j++] =
1116 hex_str[vpd->device_identifier_type];
1117 while (i < (4 + page_83[3])) {
1118 vpd->device_identifier[j++] =
1119 hex_str[(page_83[i] & 0xf0) >> 4];
1120 vpd->device_identifier[j++] =
1121 hex_str[page_83[i] & 0x0f];
1122 i++;
1123 }
1124 break;
1125 case 0x02: /* ASCII */
1126 case 0x03: /* UTF-8 */
1127 while (i < (4 + page_83[3]))
1128 vpd->device_identifier[j++] = page_83[i++];
1129 break;
1130 default:
1131 break;
1132 }
1133
1134 return transport_dump_vpd_ident(vpd, NULL, 0);
1135 }
1136 EXPORT_SYMBOL(transport_set_vpd_ident);
1137
1138 static void core_setup_task_attr_emulation(struct se_device *dev)
1139 {
1140 /*
1141 * If this device is from Target_Core_Mod/pSCSI, disable the
1142 * SAM Task Attribute emulation.
1143 *
1144 * This is currently not available in upsream Linux/SCSI Target
1145 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1146 */
1147 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1148 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1149 return;
1150 }
1151
1152 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1153 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1154 " device\n", dev->transport->name,
1155 dev->transport->get_device_rev(dev));
1156 }
1157
1158 static void scsi_dump_inquiry(struct se_device *dev)
1159 {
1160 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1161 char buf[17];
1162 int i, device_type;
1163 /*
1164 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1165 */
1166 for (i = 0; i < 8; i++)
1167 if (wwn->vendor[i] >= 0x20)
1168 buf[i] = wwn->vendor[i];
1169 else
1170 buf[i] = ' ';
1171 buf[i] = '\0';
1172 pr_debug(" Vendor: %s\n", buf);
1173
1174 for (i = 0; i < 16; i++)
1175 if (wwn->model[i] >= 0x20)
1176 buf[i] = wwn->model[i];
1177 else
1178 buf[i] = ' ';
1179 buf[i] = '\0';
1180 pr_debug(" Model: %s\n", buf);
1181
1182 for (i = 0; i < 4; i++)
1183 if (wwn->revision[i] >= 0x20)
1184 buf[i] = wwn->revision[i];
1185 else
1186 buf[i] = ' ';
1187 buf[i] = '\0';
1188 pr_debug(" Revision: %s\n", buf);
1189
1190 device_type = dev->transport->get_device_type(dev);
1191 pr_debug(" Type: %s ", scsi_device_type(device_type));
1192 pr_debug(" ANSI SCSI revision: %02x\n",
1193 dev->transport->get_device_rev(dev));
1194 }
1195
1196 struct se_device *transport_add_device_to_core_hba(
1197 struct se_hba *hba,
1198 struct se_subsystem_api *transport,
1199 struct se_subsystem_dev *se_dev,
1200 u32 device_flags,
1201 void *transport_dev,
1202 struct se_dev_limits *dev_limits,
1203 const char *inquiry_prod,
1204 const char *inquiry_rev)
1205 {
1206 int force_pt;
1207 struct se_device *dev;
1208
1209 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1210 if (!dev) {
1211 pr_err("Unable to allocate memory for se_dev_t\n");
1212 return NULL;
1213 }
1214
1215 transport_init_queue_obj(&dev->dev_queue_obj);
1216 dev->dev_flags = device_flags;
1217 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1218 dev->dev_ptr = transport_dev;
1219 dev->se_hba = hba;
1220 dev->se_sub_dev = se_dev;
1221 dev->transport = transport;
1222 INIT_LIST_HEAD(&dev->dev_list);
1223 INIT_LIST_HEAD(&dev->dev_sep_list);
1224 INIT_LIST_HEAD(&dev->dev_tmr_list);
1225 INIT_LIST_HEAD(&dev->execute_list);
1226 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1227 INIT_LIST_HEAD(&dev->state_list);
1228 INIT_LIST_HEAD(&dev->qf_cmd_list);
1229 spin_lock_init(&dev->execute_task_lock);
1230 spin_lock_init(&dev->delayed_cmd_lock);
1231 spin_lock_init(&dev->dev_reservation_lock);
1232 spin_lock_init(&dev->dev_status_lock);
1233 spin_lock_init(&dev->se_port_lock);
1234 spin_lock_init(&dev->se_tmr_lock);
1235 spin_lock_init(&dev->qf_cmd_lock);
1236 atomic_set(&dev->dev_ordered_id, 0);
1237
1238 se_dev_set_default_attribs(dev, dev_limits);
1239
1240 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1241 dev->creation_time = get_jiffies_64();
1242 spin_lock_init(&dev->stats_lock);
1243
1244 spin_lock(&hba->device_lock);
1245 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1246 hba->dev_count++;
1247 spin_unlock(&hba->device_lock);
1248 /*
1249 * Setup the SAM Task Attribute emulation for struct se_device
1250 */
1251 core_setup_task_attr_emulation(dev);
1252 /*
1253 * Force PR and ALUA passthrough emulation with internal object use.
1254 */
1255 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1256 /*
1257 * Setup the Reservations infrastructure for struct se_device
1258 */
1259 core_setup_reservations(dev, force_pt);
1260 /*
1261 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1262 */
1263 if (core_setup_alua(dev, force_pt) < 0)
1264 goto out;
1265
1266 /*
1267 * Startup the struct se_device processing thread
1268 */
1269 dev->process_thread = kthread_run(transport_processing_thread, dev,
1270 "LIO_%s", dev->transport->name);
1271 if (IS_ERR(dev->process_thread)) {
1272 pr_err("Unable to create kthread: LIO_%s\n",
1273 dev->transport->name);
1274 goto out;
1275 }
1276 /*
1277 * Setup work_queue for QUEUE_FULL
1278 */
1279 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1280 /*
1281 * Preload the initial INQUIRY const values if we are doing
1282 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1283 * passthrough because this is being provided by the backend LLD.
1284 * This is required so that transport_get_inquiry() copies these
1285 * originals once back into DEV_T10_WWN(dev) for the virtual device
1286 * setup.
1287 */
1288 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1289 if (!inquiry_prod || !inquiry_rev) {
1290 pr_err("All non TCM/pSCSI plugins require"
1291 " INQUIRY consts\n");
1292 goto out;
1293 }
1294
1295 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1296 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1297 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1298 }
1299 scsi_dump_inquiry(dev);
1300
1301 return dev;
1302 out:
1303 kthread_stop(dev->process_thread);
1304
1305 spin_lock(&hba->device_lock);
1306 list_del(&dev->dev_list);
1307 hba->dev_count--;
1308 spin_unlock(&hba->device_lock);
1309
1310 se_release_vpd_for_dev(dev);
1311
1312 kfree(dev);
1313
1314 return NULL;
1315 }
1316 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1317
1318 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1319 {
1320 struct se_device *dev = cmd->se_dev;
1321
1322 if (cmd->unknown_data_length) {
1323 cmd->data_length = size;
1324 } else if (size != cmd->data_length) {
1325 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1326 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1327 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1328 cmd->data_length, size, cmd->t_task_cdb[0]);
1329
1330 cmd->cmd_spdtl = size;
1331
1332 if (cmd->data_direction == DMA_TO_DEVICE) {
1333 pr_err("Rejecting underflow/overflow"
1334 " WRITE data\n");
1335 goto out_invalid_cdb_field;
1336 }
1337 /*
1338 * Reject READ_* or WRITE_* with overflow/underflow for
1339 * type SCF_SCSI_DATA_CDB.
1340 */
1341 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) {
1342 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1343 " CDB on non 512-byte sector setup subsystem"
1344 " plugin: %s\n", dev->transport->name);
1345 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1346 goto out_invalid_cdb_field;
1347 }
1348
1349 if (size > cmd->data_length) {
1350 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1351 cmd->residual_count = (size - cmd->data_length);
1352 } else {
1353 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1354 cmd->residual_count = (cmd->data_length - size);
1355 }
1356 cmd->data_length = size;
1357 }
1358
1359 return 0;
1360
1361 out_invalid_cdb_field:
1362 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1363 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1364 return -EINVAL;
1365 }
1366
1367 /*
1368 * Used by fabric modules containing a local struct se_cmd within their
1369 * fabric dependent per I/O descriptor.
1370 */
1371 void transport_init_se_cmd(
1372 struct se_cmd *cmd,
1373 struct target_core_fabric_ops *tfo,
1374 struct se_session *se_sess,
1375 u32 data_length,
1376 int data_direction,
1377 int task_attr,
1378 unsigned char *sense_buffer)
1379 {
1380 INIT_LIST_HEAD(&cmd->se_lun_node);
1381 INIT_LIST_HEAD(&cmd->se_delayed_node);
1382 INIT_LIST_HEAD(&cmd->se_qf_node);
1383 INIT_LIST_HEAD(&cmd->se_queue_node);
1384 INIT_LIST_HEAD(&cmd->se_cmd_list);
1385 INIT_LIST_HEAD(&cmd->execute_list);
1386 INIT_LIST_HEAD(&cmd->state_list);
1387 init_completion(&cmd->transport_lun_fe_stop_comp);
1388 init_completion(&cmd->transport_lun_stop_comp);
1389 init_completion(&cmd->t_transport_stop_comp);
1390 init_completion(&cmd->cmd_wait_comp);
1391 init_completion(&cmd->task_stop_comp);
1392 spin_lock_init(&cmd->t_state_lock);
1393 cmd->transport_state = CMD_T_DEV_ACTIVE;
1394
1395 cmd->se_tfo = tfo;
1396 cmd->se_sess = se_sess;
1397 cmd->data_length = data_length;
1398 cmd->data_direction = data_direction;
1399 cmd->sam_task_attr = task_attr;
1400 cmd->sense_buffer = sense_buffer;
1401
1402 cmd->state_active = false;
1403 }
1404 EXPORT_SYMBOL(transport_init_se_cmd);
1405
1406 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1407 {
1408 /*
1409 * Check if SAM Task Attribute emulation is enabled for this
1410 * struct se_device storage object
1411 */
1412 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1413 return 0;
1414
1415 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1416 pr_debug("SAM Task Attribute ACA"
1417 " emulation is not supported\n");
1418 return -EINVAL;
1419 }
1420 /*
1421 * Used to determine when ORDERED commands should go from
1422 * Dormant to Active status.
1423 */
1424 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1425 smp_mb__after_atomic_inc();
1426 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1427 cmd->se_ordered_id, cmd->sam_task_attr,
1428 cmd->se_dev->transport->name);
1429 return 0;
1430 }
1431
1432 /* target_setup_cmd_from_cdb():
1433 *
1434 * Called from fabric RX Thread.
1435 */
1436 int target_setup_cmd_from_cdb(
1437 struct se_cmd *cmd,
1438 unsigned char *cdb)
1439 {
1440 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev;
1441 u32 pr_reg_type = 0;
1442 u8 alua_ascq = 0;
1443 unsigned long flags;
1444 int ret;
1445
1446 /*
1447 * Ensure that the received CDB is less than the max (252 + 8) bytes
1448 * for VARIABLE_LENGTH_CMD
1449 */
1450 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1451 pr_err("Received SCSI CDB with command_size: %d that"
1452 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1453 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1454 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1455 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1456 return -EINVAL;
1457 }
1458 /*
1459 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1460 * allocate the additional extended CDB buffer now.. Otherwise
1461 * setup the pointer from __t_task_cdb to t_task_cdb.
1462 */
1463 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1464 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1465 GFP_KERNEL);
1466 if (!cmd->t_task_cdb) {
1467 pr_err("Unable to allocate cmd->t_task_cdb"
1468 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1469 scsi_command_size(cdb),
1470 (unsigned long)sizeof(cmd->__t_task_cdb));
1471 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1472 cmd->scsi_sense_reason =
1473 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1474 return -ENOMEM;
1475 }
1476 } else
1477 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1478 /*
1479 * Copy the original CDB into cmd->
1480 */
1481 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1482
1483 /*
1484 * Check for an existing UNIT ATTENTION condition
1485 */
1486 if (core_scsi3_ua_check(cmd, cdb) < 0) {
1487 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1488 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
1489 return -EINVAL;
1490 }
1491
1492 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
1493 if (ret != 0) {
1494 /*
1495 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
1496 * The ALUA additional sense code qualifier (ASCQ) is determined
1497 * by the ALUA primary or secondary access state..
1498 */
1499 if (ret > 0) {
1500 pr_debug("[%s]: ALUA TG Port not available, "
1501 "SenseKey: NOT_READY, ASC/ASCQ: "
1502 "0x04/0x%02x\n",
1503 cmd->se_tfo->get_fabric_name(), alua_ascq);
1504
1505 transport_set_sense_codes(cmd, 0x04, alua_ascq);
1506 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1507 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
1508 return -EINVAL;
1509 }
1510 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1511 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1512 return -EINVAL;
1513 }
1514
1515 /*
1516 * Check status for SPC-3 Persistent Reservations
1517 */
1518 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) {
1519 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
1520 cmd, cdb, pr_reg_type) != 0) {
1521 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1522 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
1523 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1524 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
1525 return -EBUSY;
1526 }
1527 /*
1528 * This means the CDB is allowed for the SCSI Initiator port
1529 * when said port is *NOT* holding the legacy SPC-2 or
1530 * SPC-3 Persistent Reservation.
1531 */
1532 }
1533
1534 ret = cmd->se_dev->transport->parse_cdb(cmd);
1535 if (ret < 0)
1536 return ret;
1537
1538 spin_lock_irqsave(&cmd->t_state_lock, flags);
1539 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1540 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1541
1542 /*
1543 * Check for SAM Task Attribute Emulation
1544 */
1545 if (transport_check_alloc_task_attr(cmd) < 0) {
1546 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1547 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1548 return -EINVAL;
1549 }
1550 spin_lock(&cmd->se_lun->lun_sep_lock);
1551 if (cmd->se_lun->lun_sep)
1552 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1553 spin_unlock(&cmd->se_lun->lun_sep_lock);
1554 return 0;
1555 }
1556 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1557
1558 /*
1559 * Used by fabric module frontends to queue tasks directly.
1560 * Many only be used from process context only
1561 */
1562 int transport_handle_cdb_direct(
1563 struct se_cmd *cmd)
1564 {
1565 int ret;
1566
1567 if (!cmd->se_lun) {
1568 dump_stack();
1569 pr_err("cmd->se_lun is NULL\n");
1570 return -EINVAL;
1571 }
1572 if (in_interrupt()) {
1573 dump_stack();
1574 pr_err("transport_generic_handle_cdb cannot be called"
1575 " from interrupt context\n");
1576 return -EINVAL;
1577 }
1578 /*
1579 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1580 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1581 * in existing usage to ensure that outstanding descriptors are handled
1582 * correctly during shutdown via transport_wait_for_tasks()
1583 *
1584 * Also, we don't take cmd->t_state_lock here as we only expect
1585 * this to be called for initial descriptor submission.
1586 */
1587 cmd->t_state = TRANSPORT_NEW_CMD;
1588 cmd->transport_state |= CMD_T_ACTIVE;
1589
1590 /*
1591 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1592 * so follow TRANSPORT_NEW_CMD processing thread context usage
1593 * and call transport_generic_request_failure() if necessary..
1594 */
1595 ret = transport_generic_new_cmd(cmd);
1596 if (ret < 0)
1597 transport_generic_request_failure(cmd);
1598
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(transport_handle_cdb_direct);
1602
1603 /**
1604 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1605 *
1606 * @se_cmd: command descriptor to submit
1607 * @se_sess: associated se_sess for endpoint
1608 * @cdb: pointer to SCSI CDB
1609 * @sense: pointer to SCSI sense buffer
1610 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1611 * @data_length: fabric expected data transfer length
1612 * @task_addr: SAM task attribute
1613 * @data_dir: DMA data direction
1614 * @flags: flags for command submission from target_sc_flags_tables
1615 *
1616 * This may only be called from process context, and also currently
1617 * assumes internal allocation of fabric payload buffer by target-core.
1618 **/
1619 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1620 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1621 u32 data_length, int task_attr, int data_dir, int flags)
1622 {
1623 struct se_portal_group *se_tpg;
1624 int rc;
1625
1626 se_tpg = se_sess->se_tpg;
1627 BUG_ON(!se_tpg);
1628 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1629 BUG_ON(in_interrupt());
1630 /*
1631 * Initialize se_cmd for target operation. From this point
1632 * exceptions are handled by sending exception status via
1633 * target_core_fabric_ops->queue_status() callback
1634 */
1635 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1636 data_length, data_dir, task_attr, sense);
1637 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1638 se_cmd->unknown_data_length = 1;
1639 /*
1640 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1641 * se_sess->sess_cmd_list. A second kref_get here is necessary
1642 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1643 * kref_put() to happen during fabric packet acknowledgement.
1644 */
1645 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1646 /*
1647 * Signal bidirectional data payloads to target-core
1648 */
1649 if (flags & TARGET_SCF_BIDI_OP)
1650 se_cmd->se_cmd_flags |= SCF_BIDI;
1651 /*
1652 * Locate se_lun pointer and attach it to struct se_cmd
1653 */
1654 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1655 transport_send_check_condition_and_sense(se_cmd,
1656 se_cmd->scsi_sense_reason, 0);
1657 target_put_sess_cmd(se_sess, se_cmd);
1658 return;
1659 }
1660
1661 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1662 if (rc != 0) {
1663 transport_generic_request_failure(se_cmd);
1664 return;
1665 }
1666
1667 /*
1668 * Check if we need to delay processing because of ALUA
1669 * Active/NonOptimized primary access state..
1670 */
1671 core_alua_check_nonop_delay(se_cmd);
1672
1673 /*
1674 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1675 * for immediate execution of READs, otherwise wait for
1676 * transport_generic_handle_data() to be called for WRITEs
1677 * when fabric has filled the incoming buffer.
1678 */
1679 transport_handle_cdb_direct(se_cmd);
1680 return;
1681 }
1682 EXPORT_SYMBOL(target_submit_cmd);
1683
1684 static void target_complete_tmr_failure(struct work_struct *work)
1685 {
1686 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1687
1688 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1689 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1690 transport_generic_free_cmd(se_cmd, 0);
1691 }
1692
1693 /**
1694 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1695 * for TMR CDBs
1696 *
1697 * @se_cmd: command descriptor to submit
1698 * @se_sess: associated se_sess for endpoint
1699 * @sense: pointer to SCSI sense buffer
1700 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1701 * @fabric_context: fabric context for TMR req
1702 * @tm_type: Type of TM request
1703 * @gfp: gfp type for caller
1704 * @tag: referenced task tag for TMR_ABORT_TASK
1705 * @flags: submit cmd flags
1706 *
1707 * Callable from all contexts.
1708 **/
1709
1710 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1711 unsigned char *sense, u32 unpacked_lun,
1712 void *fabric_tmr_ptr, unsigned char tm_type,
1713 gfp_t gfp, unsigned int tag, int flags)
1714 {
1715 struct se_portal_group *se_tpg;
1716 int ret;
1717
1718 se_tpg = se_sess->se_tpg;
1719 BUG_ON(!se_tpg);
1720
1721 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1722 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1723 /*
1724 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1725 * allocation failure.
1726 */
1727 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1728 if (ret < 0)
1729 return -ENOMEM;
1730
1731 if (tm_type == TMR_ABORT_TASK)
1732 se_cmd->se_tmr_req->ref_task_tag = tag;
1733
1734 /* See target_submit_cmd for commentary */
1735 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1736
1737 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1738 if (ret) {
1739 /*
1740 * For callback during failure handling, push this work off
1741 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1742 */
1743 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1744 schedule_work(&se_cmd->work);
1745 return 0;
1746 }
1747 transport_generic_handle_tmr(se_cmd);
1748 return 0;
1749 }
1750 EXPORT_SYMBOL(target_submit_tmr);
1751
1752 /*
1753 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1754 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1755 * complete setup in TCM process context w/ TFO->new_cmd_map().
1756 */
1757 int transport_generic_handle_cdb_map(
1758 struct se_cmd *cmd)
1759 {
1760 if (!cmd->se_lun) {
1761 dump_stack();
1762 pr_err("cmd->se_lun is NULL\n");
1763 return -EINVAL;
1764 }
1765
1766 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1767 return 0;
1768 }
1769 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1770
1771 /* transport_generic_handle_data():
1772 *
1773 *
1774 */
1775 int transport_generic_handle_data(
1776 struct se_cmd *cmd)
1777 {
1778 /*
1779 * For the software fabric case, then we assume the nexus is being
1780 * failed/shutdown when signals are pending from the kthread context
1781 * caller, so we return a failure. For the HW target mode case running
1782 * in interrupt code, the signal_pending() check is skipped.
1783 */
1784 if (!in_interrupt() && signal_pending(current))
1785 return -EPERM;
1786 /*
1787 * If the received CDB has aleady been ABORTED by the generic
1788 * target engine, we now call transport_check_aborted_status()
1789 * to queue any delated TASK_ABORTED status for the received CDB to the
1790 * fabric module as we are expecting no further incoming DATA OUT
1791 * sequences at this point.
1792 */
1793 if (transport_check_aborted_status(cmd, 1) != 0)
1794 return 0;
1795
1796 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1797 return 0;
1798 }
1799 EXPORT_SYMBOL(transport_generic_handle_data);
1800
1801 /* transport_generic_handle_tmr():
1802 *
1803 *
1804 */
1805 int transport_generic_handle_tmr(
1806 struct se_cmd *cmd)
1807 {
1808 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1809 return 0;
1810 }
1811 EXPORT_SYMBOL(transport_generic_handle_tmr);
1812
1813 /*
1814 * If the cmd is active, request it to be stopped and sleep until it
1815 * has completed.
1816 */
1817 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1818 {
1819 bool was_active = false;
1820
1821 if (cmd->transport_state & CMD_T_BUSY) {
1822 cmd->transport_state |= CMD_T_REQUEST_STOP;
1823 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1824
1825 pr_debug("cmd %p waiting to complete\n", cmd);
1826 wait_for_completion(&cmd->task_stop_comp);
1827 pr_debug("cmd %p stopped successfully\n", cmd);
1828
1829 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1830 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1831 cmd->transport_state &= ~CMD_T_BUSY;
1832 was_active = true;
1833 }
1834
1835 return was_active;
1836 }
1837
1838 /*
1839 * Handle SAM-esque emulation for generic transport request failures.
1840 */
1841 void transport_generic_request_failure(struct se_cmd *cmd)
1842 {
1843 int ret = 0;
1844
1845 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1846 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1847 cmd->t_task_cdb[0]);
1848 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1849 cmd->se_tfo->get_cmd_state(cmd),
1850 cmd->t_state, cmd->scsi_sense_reason);
1851 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1852 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1853 (cmd->transport_state & CMD_T_STOP) != 0,
1854 (cmd->transport_state & CMD_T_SENT) != 0);
1855
1856 /*
1857 * For SAM Task Attribute emulation for failed struct se_cmd
1858 */
1859 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1860 transport_complete_task_attr(cmd);
1861
1862 switch (cmd->scsi_sense_reason) {
1863 case TCM_NON_EXISTENT_LUN:
1864 case TCM_UNSUPPORTED_SCSI_OPCODE:
1865 case TCM_INVALID_CDB_FIELD:
1866 case TCM_INVALID_PARAMETER_LIST:
1867 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1868 case TCM_UNKNOWN_MODE_PAGE:
1869 case TCM_WRITE_PROTECTED:
1870 case TCM_CHECK_CONDITION_ABORT_CMD:
1871 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1872 case TCM_CHECK_CONDITION_NOT_READY:
1873 break;
1874 case TCM_RESERVATION_CONFLICT:
1875 /*
1876 * No SENSE Data payload for this case, set SCSI Status
1877 * and queue the response to $FABRIC_MOD.
1878 *
1879 * Uses linux/include/scsi/scsi.h SAM status codes defs
1880 */
1881 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1882 /*
1883 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1884 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1885 * CONFLICT STATUS.
1886 *
1887 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1888 */
1889 if (cmd->se_sess &&
1890 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1891 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1892 cmd->orig_fe_lun, 0x2C,
1893 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1894
1895 ret = cmd->se_tfo->queue_status(cmd);
1896 if (ret == -EAGAIN || ret == -ENOMEM)
1897 goto queue_full;
1898 goto check_stop;
1899 default:
1900 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1901 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1902 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1903 break;
1904 }
1905 /*
1906 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1907 * make the call to transport_send_check_condition_and_sense()
1908 * directly. Otherwise expect the fabric to make the call to
1909 * transport_send_check_condition_and_sense() after handling
1910 * possible unsoliticied write data payloads.
1911 */
1912 ret = transport_send_check_condition_and_sense(cmd,
1913 cmd->scsi_sense_reason, 0);
1914 if (ret == -EAGAIN || ret == -ENOMEM)
1915 goto queue_full;
1916
1917 check_stop:
1918 transport_lun_remove_cmd(cmd);
1919 if (!transport_cmd_check_stop_to_fabric(cmd))
1920 ;
1921 return;
1922
1923 queue_full:
1924 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1925 transport_handle_queue_full(cmd, cmd->se_dev);
1926 }
1927 EXPORT_SYMBOL(transport_generic_request_failure);
1928
1929 /*
1930 * Called from Fabric Module context from transport_execute_tasks()
1931 *
1932 * The return of this function determins if the tasks from struct se_cmd
1933 * get added to the execution queue in transport_execute_tasks(),
1934 * or are added to the delayed or ordered lists here.
1935 */
1936 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1937 {
1938 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1939 return 1;
1940 /*
1941 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1942 * to allow the passed struct se_cmd list of tasks to the front of the list.
1943 */
1944 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1945 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1946 " 0x%02x, se_ordered_id: %u\n",
1947 cmd->t_task_cdb[0],
1948 cmd->se_ordered_id);
1949 return 1;
1950 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1951 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1952 smp_mb__after_atomic_inc();
1953
1954 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1955 " list, se_ordered_id: %u\n",
1956 cmd->t_task_cdb[0],
1957 cmd->se_ordered_id);
1958 /*
1959 * Add ORDERED command to tail of execution queue if
1960 * no other older commands exist that need to be
1961 * completed first.
1962 */
1963 if (!atomic_read(&cmd->se_dev->simple_cmds))
1964 return 1;
1965 } else {
1966 /*
1967 * For SIMPLE and UNTAGGED Task Attribute commands
1968 */
1969 atomic_inc(&cmd->se_dev->simple_cmds);
1970 smp_mb__after_atomic_inc();
1971 }
1972 /*
1973 * Otherwise if one or more outstanding ORDERED task attribute exist,
1974 * add the dormant task(s) built for the passed struct se_cmd to the
1975 * execution queue and become in Active state for this struct se_device.
1976 */
1977 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1978 /*
1979 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1980 * will be drained upon completion of HEAD_OF_QUEUE task.
1981 */
1982 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1983 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1984 list_add_tail(&cmd->se_delayed_node,
1985 &cmd->se_dev->delayed_cmd_list);
1986 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1987
1988 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1989 " delayed CMD list, se_ordered_id: %u\n",
1990 cmd->t_task_cdb[0], cmd->sam_task_attr,
1991 cmd->se_ordered_id);
1992 /*
1993 * Return zero to let transport_execute_tasks() know
1994 * not to add the delayed tasks to the execution list.
1995 */
1996 return 0;
1997 }
1998 /*
1999 * Otherwise, no ORDERED task attributes exist..
2000 */
2001 return 1;
2002 }
2003
2004 /*
2005 * Called from fabric module context in transport_generic_new_cmd() and
2006 * transport_generic_process_write()
2007 */
2008 static void transport_execute_tasks(struct se_cmd *cmd)
2009 {
2010 int add_tasks;
2011 struct se_device *se_dev = cmd->se_dev;
2012 /*
2013 * Call transport_cmd_check_stop() to see if a fabric exception
2014 * has occurred that prevents execution.
2015 */
2016 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2017 /*
2018 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2019 * attribute for the tasks of the received struct se_cmd CDB
2020 */
2021 add_tasks = transport_execute_task_attr(cmd);
2022 if (add_tasks) {
2023 __transport_execute_tasks(se_dev, cmd);
2024 return;
2025 }
2026 }
2027 __transport_execute_tasks(se_dev, NULL);
2028 }
2029
2030 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2031 {
2032 int error;
2033 struct se_cmd *cmd = NULL;
2034 unsigned long flags;
2035
2036 check_depth:
2037 spin_lock_irq(&dev->execute_task_lock);
2038 if (new_cmd != NULL)
2039 __target_add_to_execute_list(new_cmd);
2040
2041 if (list_empty(&dev->execute_list)) {
2042 spin_unlock_irq(&dev->execute_task_lock);
2043 return 0;
2044 }
2045 cmd = list_first_entry(&dev->execute_list, struct se_cmd, execute_list);
2046 __target_remove_from_execute_list(cmd);
2047 spin_unlock_irq(&dev->execute_task_lock);
2048
2049 spin_lock_irqsave(&cmd->t_state_lock, flags);
2050 cmd->transport_state |= CMD_T_BUSY;
2051 cmd->transport_state |= CMD_T_SENT;
2052
2053 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2054
2055 if (cmd->execute_cmd)
2056 error = cmd->execute_cmd(cmd);
2057 else {
2058 error = dev->transport->execute_cmd(cmd, cmd->t_data_sg,
2059 cmd->t_data_nents, cmd->data_direction);
2060 }
2061
2062 if (error != 0) {
2063 spin_lock_irqsave(&cmd->t_state_lock, flags);
2064 cmd->transport_state &= ~CMD_T_BUSY;
2065 cmd->transport_state &= ~CMD_T_SENT;
2066 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2067
2068 transport_generic_request_failure(cmd);
2069 }
2070
2071 new_cmd = NULL;
2072 goto check_depth;
2073
2074 return 0;
2075 }
2076
2077 /*
2078 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2079 */
2080 static int transport_get_sense_data(struct se_cmd *cmd)
2081 {
2082 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2083 struct se_device *dev = cmd->se_dev;
2084 unsigned long flags;
2085 u32 offset = 0;
2086
2087 WARN_ON(!cmd->se_lun);
2088
2089 if (!dev)
2090 return 0;
2091
2092 spin_lock_irqsave(&cmd->t_state_lock, flags);
2093 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2094 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2095 return 0;
2096 }
2097
2098 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
2099 goto out;
2100
2101 if (!dev->transport->get_sense_buffer) {
2102 pr_err("dev->transport->get_sense_buffer is NULL\n");
2103 goto out;
2104 }
2105
2106 sense_buffer = dev->transport->get_sense_buffer(cmd);
2107 if (!sense_buffer) {
2108 pr_err("ITT 0x%08x cmd %p: Unable to locate"
2109 " sense buffer for task with sense\n",
2110 cmd->se_tfo->get_task_tag(cmd), cmd);
2111 goto out;
2112 }
2113
2114 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2115
2116 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
2117
2118 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
2119
2120 /* Automatically padded */
2121 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
2122
2123 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
2124 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
2125 return 0;
2126
2127 out:
2128 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2129 return -1;
2130 }
2131
2132 /*
2133 * Called from I/O completion to determine which dormant/delayed
2134 * and ordered cmds need to have their tasks added to the execution queue.
2135 */
2136 static void transport_complete_task_attr(struct se_cmd *cmd)
2137 {
2138 struct se_device *dev = cmd->se_dev;
2139 struct se_cmd *cmd_p, *cmd_tmp;
2140 int new_active_tasks = 0;
2141
2142 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
2143 atomic_dec(&dev->simple_cmds);
2144 smp_mb__after_atomic_dec();
2145 dev->dev_cur_ordered_id++;
2146 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
2147 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
2148 cmd->se_ordered_id);
2149 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2150 dev->dev_cur_ordered_id++;
2151 pr_debug("Incremented dev_cur_ordered_id: %u for"
2152 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
2153 cmd->se_ordered_id);
2154 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2155 atomic_dec(&dev->dev_ordered_sync);
2156 smp_mb__after_atomic_dec();
2157
2158 dev->dev_cur_ordered_id++;
2159 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
2160 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
2161 }
2162 /*
2163 * Process all commands up to the last received
2164 * ORDERED task attribute which requires another blocking
2165 * boundary
2166 */
2167 spin_lock(&dev->delayed_cmd_lock);
2168 list_for_each_entry_safe(cmd_p, cmd_tmp,
2169 &dev->delayed_cmd_list, se_delayed_node) {
2170
2171 list_del(&cmd_p->se_delayed_node);
2172 spin_unlock(&dev->delayed_cmd_lock);
2173
2174 pr_debug("Calling add_tasks() for"
2175 " cmd_p: 0x%02x Task Attr: 0x%02x"
2176 " Dormant -> Active, se_ordered_id: %u\n",
2177 cmd_p->t_task_cdb[0],
2178 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
2179
2180 target_add_to_execute_list(cmd_p);
2181 new_active_tasks++;
2182
2183 spin_lock(&dev->delayed_cmd_lock);
2184 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
2185 break;
2186 }
2187 spin_unlock(&dev->delayed_cmd_lock);
2188 /*
2189 * If new tasks have become active, wake up the transport thread
2190 * to do the processing of the Active tasks.
2191 */
2192 if (new_active_tasks != 0)
2193 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2194 }
2195
2196 static void transport_complete_qf(struct se_cmd *cmd)
2197 {
2198 int ret = 0;
2199
2200 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2201 transport_complete_task_attr(cmd);
2202
2203 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2204 ret = cmd->se_tfo->queue_status(cmd);
2205 if (ret)
2206 goto out;
2207 }
2208
2209 switch (cmd->data_direction) {
2210 case DMA_FROM_DEVICE:
2211 ret = cmd->se_tfo->queue_data_in(cmd);
2212 break;
2213 case DMA_TO_DEVICE:
2214 if (cmd->t_bidi_data_sg) {
2215 ret = cmd->se_tfo->queue_data_in(cmd);
2216 if (ret < 0)
2217 break;
2218 }
2219 /* Fall through for DMA_TO_DEVICE */
2220 case DMA_NONE:
2221 ret = cmd->se_tfo->queue_status(cmd);
2222 break;
2223 default:
2224 break;
2225 }
2226
2227 out:
2228 if (ret < 0) {
2229 transport_handle_queue_full(cmd, cmd->se_dev);
2230 return;
2231 }
2232 transport_lun_remove_cmd(cmd);
2233 transport_cmd_check_stop_to_fabric(cmd);
2234 }
2235
2236 static void transport_handle_queue_full(
2237 struct se_cmd *cmd,
2238 struct se_device *dev)
2239 {
2240 spin_lock_irq(&dev->qf_cmd_lock);
2241 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2242 atomic_inc(&dev->dev_qf_count);
2243 smp_mb__after_atomic_inc();
2244 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2245
2246 schedule_work(&cmd->se_dev->qf_work_queue);
2247 }
2248
2249 static void target_complete_ok_work(struct work_struct *work)
2250 {
2251 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2252 int reason = 0, ret;
2253
2254 /*
2255 * Check if we need to move delayed/dormant tasks from cmds on the
2256 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2257 * Attribute.
2258 */
2259 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2260 transport_complete_task_attr(cmd);
2261 /*
2262 * Check to schedule QUEUE_FULL work, or execute an existing
2263 * cmd->transport_qf_callback()
2264 */
2265 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2266 schedule_work(&cmd->se_dev->qf_work_queue);
2267
2268 /*
2269 * Check if we need to retrieve a sense buffer from
2270 * the struct se_cmd in question.
2271 */
2272 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2273 if (transport_get_sense_data(cmd) < 0)
2274 reason = TCM_NON_EXISTENT_LUN;
2275
2276 if (cmd->scsi_status) {
2277 ret = transport_send_check_condition_and_sense(
2278 cmd, reason, 1);
2279 if (ret == -EAGAIN || ret == -ENOMEM)
2280 goto queue_full;
2281
2282 transport_lun_remove_cmd(cmd);
2283 transport_cmd_check_stop_to_fabric(cmd);
2284 return;
2285 }
2286 }
2287 /*
2288 * Check for a callback, used by amongst other things
2289 * XDWRITE_READ_10 emulation.
2290 */
2291 if (cmd->transport_complete_callback)
2292 cmd->transport_complete_callback(cmd);
2293
2294 switch (cmd->data_direction) {
2295 case DMA_FROM_DEVICE:
2296 spin_lock(&cmd->se_lun->lun_sep_lock);
2297 if (cmd->se_lun->lun_sep) {
2298 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2299 cmd->data_length;
2300 }
2301 spin_unlock(&cmd->se_lun->lun_sep_lock);
2302
2303 ret = cmd->se_tfo->queue_data_in(cmd);
2304 if (ret == -EAGAIN || ret == -ENOMEM)
2305 goto queue_full;
2306 break;
2307 case DMA_TO_DEVICE:
2308 spin_lock(&cmd->se_lun->lun_sep_lock);
2309 if (cmd->se_lun->lun_sep) {
2310 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2311 cmd->data_length;
2312 }
2313 spin_unlock(&cmd->se_lun->lun_sep_lock);
2314 /*
2315 * Check if we need to send READ payload for BIDI-COMMAND
2316 */
2317 if (cmd->t_bidi_data_sg) {
2318 spin_lock(&cmd->se_lun->lun_sep_lock);
2319 if (cmd->se_lun->lun_sep) {
2320 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2321 cmd->data_length;
2322 }
2323 spin_unlock(&cmd->se_lun->lun_sep_lock);
2324 ret = cmd->se_tfo->queue_data_in(cmd);
2325 if (ret == -EAGAIN || ret == -ENOMEM)
2326 goto queue_full;
2327 break;
2328 }
2329 /* Fall through for DMA_TO_DEVICE */
2330 case DMA_NONE:
2331 ret = cmd->se_tfo->queue_status(cmd);
2332 if (ret == -EAGAIN || ret == -ENOMEM)
2333 goto queue_full;
2334 break;
2335 default:
2336 break;
2337 }
2338
2339 transport_lun_remove_cmd(cmd);
2340 transport_cmd_check_stop_to_fabric(cmd);
2341 return;
2342
2343 queue_full:
2344 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2345 " data_direction: %d\n", cmd, cmd->data_direction);
2346 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2347 transport_handle_queue_full(cmd, cmd->se_dev);
2348 }
2349
2350 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2351 {
2352 struct scatterlist *sg;
2353 int count;
2354
2355 for_each_sg(sgl, sg, nents, count)
2356 __free_page(sg_page(sg));
2357
2358 kfree(sgl);
2359 }
2360
2361 static inline void transport_free_pages(struct se_cmd *cmd)
2362 {
2363 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
2364 return;
2365
2366 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2367 cmd->t_data_sg = NULL;
2368 cmd->t_data_nents = 0;
2369
2370 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2371 cmd->t_bidi_data_sg = NULL;
2372 cmd->t_bidi_data_nents = 0;
2373 }
2374
2375 /**
2376 * transport_release_cmd - free a command
2377 * @cmd: command to free
2378 *
2379 * This routine unconditionally frees a command, and reference counting
2380 * or list removal must be done in the caller.
2381 */
2382 static void transport_release_cmd(struct se_cmd *cmd)
2383 {
2384 BUG_ON(!cmd->se_tfo);
2385
2386 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2387 core_tmr_release_req(cmd->se_tmr_req);
2388 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2389 kfree(cmd->t_task_cdb);
2390 /*
2391 * If this cmd has been setup with target_get_sess_cmd(), drop
2392 * the kref and call ->release_cmd() in kref callback.
2393 */
2394 if (cmd->check_release != 0) {
2395 target_put_sess_cmd(cmd->se_sess, cmd);
2396 return;
2397 }
2398 cmd->se_tfo->release_cmd(cmd);
2399 }
2400
2401 /**
2402 * transport_put_cmd - release a reference to a command
2403 * @cmd: command to release
2404 *
2405 * This routine releases our reference to the command and frees it if possible.
2406 */
2407 static void transport_put_cmd(struct se_cmd *cmd)
2408 {
2409 unsigned long flags;
2410
2411 spin_lock_irqsave(&cmd->t_state_lock, flags);
2412 if (atomic_read(&cmd->t_fe_count)) {
2413 if (!atomic_dec_and_test(&cmd->t_fe_count))
2414 goto out_busy;
2415 }
2416
2417 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
2418 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2419 target_remove_from_state_list(cmd);
2420 }
2421 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2422
2423 transport_free_pages(cmd);
2424 transport_release_cmd(cmd);
2425 return;
2426 out_busy:
2427 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2428 }
2429
2430 /*
2431 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
2432 * allocating in the core.
2433 * @cmd: Associated se_cmd descriptor
2434 * @mem: SGL style memory for TCM WRITE / READ
2435 * @sg_mem_num: Number of SGL elements
2436 * @mem_bidi_in: SGL style memory for TCM BIDI READ
2437 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
2438 *
2439 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
2440 * of parameters.
2441 */
2442 int transport_generic_map_mem_to_cmd(
2443 struct se_cmd *cmd,
2444 struct scatterlist *sgl,
2445 u32 sgl_count,
2446 struct scatterlist *sgl_bidi,
2447 u32 sgl_bidi_count)
2448 {
2449 if (!sgl || !sgl_count)
2450 return 0;
2451
2452 /*
2453 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
2454 * scatterlists already have been set to follow what the fabric
2455 * passes for the original expected data transfer length.
2456 */
2457 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
2458 pr_warn("Rejecting SCSI DATA overflow for fabric using"
2459 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
2460 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2461 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2462 return -EINVAL;
2463 }
2464
2465 cmd->t_data_sg = sgl;
2466 cmd->t_data_nents = sgl_count;
2467
2468 if (sgl_bidi && sgl_bidi_count) {
2469 cmd->t_bidi_data_sg = sgl_bidi;
2470 cmd->t_bidi_data_nents = sgl_bidi_count;
2471 }
2472 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
2473 return 0;
2474 }
2475 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
2476
2477 void *transport_kmap_data_sg(struct se_cmd *cmd)
2478 {
2479 struct scatterlist *sg = cmd->t_data_sg;
2480 struct page **pages;
2481 int i;
2482
2483 BUG_ON(!sg);
2484 /*
2485 * We need to take into account a possible offset here for fabrics like
2486 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2487 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2488 */
2489 if (!cmd->t_data_nents)
2490 return NULL;
2491 else if (cmd->t_data_nents == 1)
2492 return kmap(sg_page(sg)) + sg->offset;
2493
2494 /* >1 page. use vmap */
2495 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2496 if (!pages)
2497 return NULL;
2498
2499 /* convert sg[] to pages[] */
2500 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2501 pages[i] = sg_page(sg);
2502 }
2503
2504 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2505 kfree(pages);
2506 if (!cmd->t_data_vmap)
2507 return NULL;
2508
2509 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2510 }
2511 EXPORT_SYMBOL(transport_kmap_data_sg);
2512
2513 void transport_kunmap_data_sg(struct se_cmd *cmd)
2514 {
2515 if (!cmd->t_data_nents) {
2516 return;
2517 } else if (cmd->t_data_nents == 1) {
2518 kunmap(sg_page(cmd->t_data_sg));
2519 return;
2520 }
2521
2522 vunmap(cmd->t_data_vmap);
2523 cmd->t_data_vmap = NULL;
2524 }
2525 EXPORT_SYMBOL(transport_kunmap_data_sg);
2526
2527 static int
2528 transport_generic_get_mem(struct se_cmd *cmd)
2529 {
2530 u32 length = cmd->data_length;
2531 unsigned int nents;
2532 struct page *page;
2533 gfp_t zero_flag;
2534 int i = 0;
2535
2536 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2537 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2538 if (!cmd->t_data_sg)
2539 return -ENOMEM;
2540
2541 cmd->t_data_nents = nents;
2542 sg_init_table(cmd->t_data_sg, nents);
2543
2544 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2545
2546 while (length) {
2547 u32 page_len = min_t(u32, length, PAGE_SIZE);
2548 page = alloc_page(GFP_KERNEL | zero_flag);
2549 if (!page)
2550 goto out;
2551
2552 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2553 length -= page_len;
2554 i++;
2555 }
2556 return 0;
2557
2558 out:
2559 while (i >= 0) {
2560 __free_page(sg_page(&cmd->t_data_sg[i]));
2561 i--;
2562 }
2563 kfree(cmd->t_data_sg);
2564 cmd->t_data_sg = NULL;
2565 return -ENOMEM;
2566 }
2567
2568 /*
2569 * Allocate any required resources to execute the command. For writes we
2570 * might not have the payload yet, so notify the fabric via a call to
2571 * ->write_pending instead. Otherwise place it on the execution queue.
2572 */
2573 int transport_generic_new_cmd(struct se_cmd *cmd)
2574 {
2575 int ret = 0;
2576
2577 /*
2578 * Determine is the TCM fabric module has already allocated physical
2579 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2580 * beforehand.
2581 */
2582 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2583 cmd->data_length) {
2584 ret = transport_generic_get_mem(cmd);
2585 if (ret < 0)
2586 goto out_fail;
2587 }
2588
2589 /* Workaround for handling zero-length control CDBs */
2590 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && !cmd->data_length) {
2591 spin_lock_irq(&cmd->t_state_lock);
2592 cmd->t_state = TRANSPORT_COMPLETE;
2593 cmd->transport_state |= CMD_T_ACTIVE;
2594 spin_unlock_irq(&cmd->t_state_lock);
2595
2596 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
2597 u8 ua_asc = 0, ua_ascq = 0;
2598
2599 core_scsi3_ua_clear_for_request_sense(cmd,
2600 &ua_asc, &ua_ascq);
2601 }
2602
2603 INIT_WORK(&cmd->work, target_complete_ok_work);
2604 queue_work(target_completion_wq, &cmd->work);
2605 return 0;
2606 }
2607
2608 atomic_inc(&cmd->t_fe_count);
2609
2610 /*
2611 * For WRITEs, let the fabric know its buffer is ready.
2612 *
2613 * The command will be added to the execution queue after its write
2614 * data has arrived.
2615 */
2616 if (cmd->data_direction == DMA_TO_DEVICE) {
2617 target_add_to_state_list(cmd);
2618 return transport_generic_write_pending(cmd);
2619 }
2620 /*
2621 * Everything else but a WRITE, add the command to the execution queue.
2622 */
2623 transport_execute_tasks(cmd);
2624 return 0;
2625
2626 out_fail:
2627 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2628 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2629 return -EINVAL;
2630 }
2631 EXPORT_SYMBOL(transport_generic_new_cmd);
2632
2633 /* transport_generic_process_write():
2634 *
2635 *
2636 */
2637 void transport_generic_process_write(struct se_cmd *cmd)
2638 {
2639 transport_execute_tasks(cmd);
2640 }
2641 EXPORT_SYMBOL(transport_generic_process_write);
2642
2643 static void transport_write_pending_qf(struct se_cmd *cmd)
2644 {
2645 int ret;
2646
2647 ret = cmd->se_tfo->write_pending(cmd);
2648 if (ret == -EAGAIN || ret == -ENOMEM) {
2649 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2650 cmd);
2651 transport_handle_queue_full(cmd, cmd->se_dev);
2652 }
2653 }
2654
2655 static int transport_generic_write_pending(struct se_cmd *cmd)
2656 {
2657 unsigned long flags;
2658 int ret;
2659
2660 spin_lock_irqsave(&cmd->t_state_lock, flags);
2661 cmd->t_state = TRANSPORT_WRITE_PENDING;
2662 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2663
2664 /*
2665 * Clear the se_cmd for WRITE_PENDING status in order to set
2666 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
2667 * from HW target mode interrupt code. This is safe to be called
2668 * with transport_off=1 before the cmd->se_tfo->write_pending
2669 * because the se_cmd->se_lun pointer is not being cleared.
2670 */
2671 transport_cmd_check_stop(cmd, 1, 0);
2672
2673 /*
2674 * Call the fabric write_pending function here to let the
2675 * frontend know that WRITE buffers are ready.
2676 */
2677 ret = cmd->se_tfo->write_pending(cmd);
2678 if (ret == -EAGAIN || ret == -ENOMEM)
2679 goto queue_full;
2680 else if (ret < 0)
2681 return ret;
2682
2683 return 1;
2684
2685 queue_full:
2686 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2687 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2688 transport_handle_queue_full(cmd, cmd->se_dev);
2689 return 0;
2690 }
2691
2692 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2693 {
2694 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2695 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2696 transport_wait_for_tasks(cmd);
2697
2698 transport_release_cmd(cmd);
2699 } else {
2700 if (wait_for_tasks)
2701 transport_wait_for_tasks(cmd);
2702
2703 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2704
2705 if (cmd->se_lun)
2706 transport_lun_remove_cmd(cmd);
2707
2708 transport_put_cmd(cmd);
2709 }
2710 }
2711 EXPORT_SYMBOL(transport_generic_free_cmd);
2712
2713 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2714 * @se_sess: session to reference
2715 * @se_cmd: command descriptor to add
2716 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2717 */
2718 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2719 bool ack_kref)
2720 {
2721 unsigned long flags;
2722
2723 kref_init(&se_cmd->cmd_kref);
2724 /*
2725 * Add a second kref if the fabric caller is expecting to handle
2726 * fabric acknowledgement that requires two target_put_sess_cmd()
2727 * invocations before se_cmd descriptor release.
2728 */
2729 if (ack_kref == true) {
2730 kref_get(&se_cmd->cmd_kref);
2731 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2732 }
2733
2734 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2735 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2736 se_cmd->check_release = 1;
2737 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2738 }
2739 EXPORT_SYMBOL(target_get_sess_cmd);
2740
2741 static void target_release_cmd_kref(struct kref *kref)
2742 {
2743 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2744 struct se_session *se_sess = se_cmd->se_sess;
2745 unsigned long flags;
2746
2747 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2748 if (list_empty(&se_cmd->se_cmd_list)) {
2749 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2750 se_cmd->se_tfo->release_cmd(se_cmd);
2751 return;
2752 }
2753 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2754 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2755 complete(&se_cmd->cmd_wait_comp);
2756 return;
2757 }
2758 list_del(&se_cmd->se_cmd_list);
2759 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2760
2761 se_cmd->se_tfo->release_cmd(se_cmd);
2762 }
2763
2764 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2765 * @se_sess: session to reference
2766 * @se_cmd: command descriptor to drop
2767 */
2768 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2769 {
2770 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2771 }
2772 EXPORT_SYMBOL(target_put_sess_cmd);
2773
2774 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
2775 * @se_sess: session to split
2776 */
2777 void target_splice_sess_cmd_list(struct se_session *se_sess)
2778 {
2779 struct se_cmd *se_cmd;
2780 unsigned long flags;
2781
2782 WARN_ON(!list_empty(&se_sess->sess_wait_list));
2783 INIT_LIST_HEAD(&se_sess->sess_wait_list);
2784
2785 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2786 se_sess->sess_tearing_down = 1;
2787
2788 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2789
2790 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2791 se_cmd->cmd_wait_set = 1;
2792
2793 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2794 }
2795 EXPORT_SYMBOL(target_splice_sess_cmd_list);
2796
2797 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2798 * @se_sess: session to wait for active I/O
2799 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2800 */
2801 void target_wait_for_sess_cmds(
2802 struct se_session *se_sess,
2803 int wait_for_tasks)
2804 {
2805 struct se_cmd *se_cmd, *tmp_cmd;
2806 bool rc = false;
2807
2808 list_for_each_entry_safe(se_cmd, tmp_cmd,
2809 &se_sess->sess_wait_list, se_cmd_list) {
2810 list_del(&se_cmd->se_cmd_list);
2811
2812 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2813 " %d\n", se_cmd, se_cmd->t_state,
2814 se_cmd->se_tfo->get_cmd_state(se_cmd));
2815
2816 if (wait_for_tasks) {
2817 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2818 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2819 se_cmd->se_tfo->get_cmd_state(se_cmd));
2820
2821 rc = transport_wait_for_tasks(se_cmd);
2822
2823 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2824 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2825 se_cmd->se_tfo->get_cmd_state(se_cmd));
2826 }
2827
2828 if (!rc) {
2829 wait_for_completion(&se_cmd->cmd_wait_comp);
2830 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2831 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2832 se_cmd->se_tfo->get_cmd_state(se_cmd));
2833 }
2834
2835 se_cmd->se_tfo->release_cmd(se_cmd);
2836 }
2837 }
2838 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2839
2840 /* transport_lun_wait_for_tasks():
2841 *
2842 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2843 * an struct se_lun to be successfully shutdown.
2844 */
2845 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2846 {
2847 unsigned long flags;
2848 int ret = 0;
2849
2850 /*
2851 * If the frontend has already requested this struct se_cmd to
2852 * be stopped, we can safely ignore this struct se_cmd.
2853 */
2854 spin_lock_irqsave(&cmd->t_state_lock, flags);
2855 if (cmd->transport_state & CMD_T_STOP) {
2856 cmd->transport_state &= ~CMD_T_LUN_STOP;
2857
2858 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2859 cmd->se_tfo->get_task_tag(cmd));
2860 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2861 transport_cmd_check_stop(cmd, 1, 0);
2862 return -EPERM;
2863 }
2864 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2865 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2866
2867 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
2868
2869 // XXX: audit task_flags checks.
2870 spin_lock_irqsave(&cmd->t_state_lock, flags);
2871 if ((cmd->transport_state & CMD_T_BUSY) &&
2872 (cmd->transport_state & CMD_T_SENT)) {
2873 if (!target_stop_cmd(cmd, &flags))
2874 ret++;
2875 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2876 } else {
2877 spin_unlock_irqrestore(&cmd->t_state_lock,
2878 flags);
2879 target_remove_from_execute_list(cmd);
2880 }
2881
2882 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2883 " %d\n", cmd, ret);
2884 if (!ret) {
2885 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2886 cmd->se_tfo->get_task_tag(cmd));
2887 wait_for_completion(&cmd->transport_lun_stop_comp);
2888 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2889 cmd->se_tfo->get_task_tag(cmd));
2890 }
2891 transport_remove_cmd_from_queue(cmd);
2892
2893 return 0;
2894 }
2895
2896 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2897 {
2898 struct se_cmd *cmd = NULL;
2899 unsigned long lun_flags, cmd_flags;
2900 /*
2901 * Do exception processing and return CHECK_CONDITION status to the
2902 * Initiator Port.
2903 */
2904 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2905 while (!list_empty(&lun->lun_cmd_list)) {
2906 cmd = list_first_entry(&lun->lun_cmd_list,
2907 struct se_cmd, se_lun_node);
2908 list_del_init(&cmd->se_lun_node);
2909
2910 /*
2911 * This will notify iscsi_target_transport.c:
2912 * transport_cmd_check_stop() that a LUN shutdown is in
2913 * progress for the iscsi_cmd_t.
2914 */
2915 spin_lock(&cmd->t_state_lock);
2916 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2917 "_lun_stop for ITT: 0x%08x\n",
2918 cmd->se_lun->unpacked_lun,
2919 cmd->se_tfo->get_task_tag(cmd));
2920 cmd->transport_state |= CMD_T_LUN_STOP;
2921 spin_unlock(&cmd->t_state_lock);
2922
2923 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2924
2925 if (!cmd->se_lun) {
2926 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2927 cmd->se_tfo->get_task_tag(cmd),
2928 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2929 BUG();
2930 }
2931 /*
2932 * If the Storage engine still owns the iscsi_cmd_t, determine
2933 * and/or stop its context.
2934 */
2935 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2936 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2937 cmd->se_tfo->get_task_tag(cmd));
2938
2939 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2940 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2941 continue;
2942 }
2943
2944 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2945 "_wait_for_tasks(): SUCCESS\n",
2946 cmd->se_lun->unpacked_lun,
2947 cmd->se_tfo->get_task_tag(cmd));
2948
2949 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2950 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2951 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2952 goto check_cond;
2953 }
2954 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2955 target_remove_from_state_list(cmd);
2956 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2957
2958 /*
2959 * The Storage engine stopped this struct se_cmd before it was
2960 * send to the fabric frontend for delivery back to the
2961 * Initiator Node. Return this SCSI CDB back with an
2962 * CHECK_CONDITION status.
2963 */
2964 check_cond:
2965 transport_send_check_condition_and_sense(cmd,
2966 TCM_NON_EXISTENT_LUN, 0);
2967 /*
2968 * If the fabric frontend is waiting for this iscsi_cmd_t to
2969 * be released, notify the waiting thread now that LU has
2970 * finished accessing it.
2971 */
2972 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2973 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2974 pr_debug("SE_LUN[%d] - Detected FE stop for"
2975 " struct se_cmd: %p ITT: 0x%08x\n",
2976 lun->unpacked_lun,
2977 cmd, cmd->se_tfo->get_task_tag(cmd));
2978
2979 spin_unlock_irqrestore(&cmd->t_state_lock,
2980 cmd_flags);
2981 transport_cmd_check_stop(cmd, 1, 0);
2982 complete(&cmd->transport_lun_fe_stop_comp);
2983 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2984 continue;
2985 }
2986 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2987 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2988
2989 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2990 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2991 }
2992 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2993 }
2994
2995 static int transport_clear_lun_thread(void *p)
2996 {
2997 struct se_lun *lun = p;
2998
2999 __transport_clear_lun_from_sessions(lun);
3000 complete(&lun->lun_shutdown_comp);
3001
3002 return 0;
3003 }
3004
3005 int transport_clear_lun_from_sessions(struct se_lun *lun)
3006 {
3007 struct task_struct *kt;
3008
3009 kt = kthread_run(transport_clear_lun_thread, lun,
3010 "tcm_cl_%u", lun->unpacked_lun);
3011 if (IS_ERR(kt)) {
3012 pr_err("Unable to start clear_lun thread\n");
3013 return PTR_ERR(kt);
3014 }
3015 wait_for_completion(&lun->lun_shutdown_comp);
3016
3017 return 0;
3018 }
3019
3020 /**
3021 * transport_wait_for_tasks - wait for completion to occur
3022 * @cmd: command to wait
3023 *
3024 * Called from frontend fabric context to wait for storage engine
3025 * to pause and/or release frontend generated struct se_cmd.
3026 */
3027 bool transport_wait_for_tasks(struct se_cmd *cmd)
3028 {
3029 unsigned long flags;
3030
3031 spin_lock_irqsave(&cmd->t_state_lock, flags);
3032 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3033 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3034 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3035 return false;
3036 }
3037
3038 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3039 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3040 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3041 return false;
3042 }
3043 /*
3044 * If we are already stopped due to an external event (ie: LUN shutdown)
3045 * sleep until the connection can have the passed struct se_cmd back.
3046 * The cmd->transport_lun_stopped_sem will be upped by
3047 * transport_clear_lun_from_sessions() once the ConfigFS context caller
3048 * has completed its operation on the struct se_cmd.
3049 */
3050 if (cmd->transport_state & CMD_T_LUN_STOP) {
3051 pr_debug("wait_for_tasks: Stopping"
3052 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
3053 "_stop_comp); for ITT: 0x%08x\n",
3054 cmd->se_tfo->get_task_tag(cmd));
3055 /*
3056 * There is a special case for WRITES where a FE exception +
3057 * LUN shutdown means ConfigFS context is still sleeping on
3058 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
3059 * We go ahead and up transport_lun_stop_comp just to be sure
3060 * here.
3061 */
3062 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3063 complete(&cmd->transport_lun_stop_comp);
3064 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
3065 spin_lock_irqsave(&cmd->t_state_lock, flags);
3066
3067 target_remove_from_state_list(cmd);
3068 /*
3069 * At this point, the frontend who was the originator of this
3070 * struct se_cmd, now owns the structure and can be released through
3071 * normal means below.
3072 */
3073 pr_debug("wait_for_tasks: Stopped"
3074 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
3075 "stop_comp); for ITT: 0x%08x\n",
3076 cmd->se_tfo->get_task_tag(cmd));
3077
3078 cmd->transport_state &= ~CMD_T_LUN_STOP;
3079 }
3080
3081 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
3082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3083 return false;
3084 }
3085
3086 cmd->transport_state |= CMD_T_STOP;
3087
3088 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
3089 " i_state: %d, t_state: %d, CMD_T_STOP\n",
3090 cmd, cmd->se_tfo->get_task_tag(cmd),
3091 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
3092
3093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3094
3095 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
3096
3097 wait_for_completion(&cmd->t_transport_stop_comp);
3098
3099 spin_lock_irqsave(&cmd->t_state_lock, flags);
3100 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3101
3102 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
3103 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
3104 cmd->se_tfo->get_task_tag(cmd));
3105
3106 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3107
3108 return true;
3109 }
3110 EXPORT_SYMBOL(transport_wait_for_tasks);
3111
3112 static int transport_get_sense_codes(
3113 struct se_cmd *cmd,
3114 u8 *asc,
3115 u8 *ascq)
3116 {
3117 *asc = cmd->scsi_asc;
3118 *ascq = cmd->scsi_ascq;
3119
3120 return 0;
3121 }
3122
3123 static int transport_set_sense_codes(
3124 struct se_cmd *cmd,
3125 u8 asc,
3126 u8 ascq)
3127 {
3128 cmd->scsi_asc = asc;
3129 cmd->scsi_ascq = ascq;
3130
3131 return 0;
3132 }
3133
3134 int transport_send_check_condition_and_sense(
3135 struct se_cmd *cmd,
3136 u8 reason,
3137 int from_transport)
3138 {
3139 unsigned char *buffer = cmd->sense_buffer;
3140 unsigned long flags;
3141 int offset;
3142 u8 asc = 0, ascq = 0;
3143
3144 spin_lock_irqsave(&cmd->t_state_lock, flags);
3145 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3146 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3147 return 0;
3148 }
3149 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3150 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3151
3152 if (!reason && from_transport)
3153 goto after_reason;
3154
3155 if (!from_transport)
3156 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3157 /*
3158 * Data Segment and SenseLength of the fabric response PDU.
3159 *
3160 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
3161 * from include/scsi/scsi_cmnd.h
3162 */
3163 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
3164 TRANSPORT_SENSE_BUFFER);
3165 /*
3166 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
3167 * SENSE KEY values from include/scsi/scsi.h
3168 */
3169 switch (reason) {
3170 case TCM_NON_EXISTENT_LUN:
3171 /* CURRENT ERROR */
3172 buffer[offset] = 0x70;
3173 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3174 /* ILLEGAL REQUEST */
3175 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3176 /* LOGICAL UNIT NOT SUPPORTED */
3177 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
3178 break;
3179 case TCM_UNSUPPORTED_SCSI_OPCODE:
3180 case TCM_SECTOR_COUNT_TOO_MANY:
3181 /* CURRENT ERROR */
3182 buffer[offset] = 0x70;
3183 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3184 /* ILLEGAL REQUEST */
3185 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3186 /* INVALID COMMAND OPERATION CODE */
3187 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
3188 break;
3189 case TCM_UNKNOWN_MODE_PAGE:
3190 /* CURRENT ERROR */
3191 buffer[offset] = 0x70;
3192 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3193 /* ILLEGAL REQUEST */
3194 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3195 /* INVALID FIELD IN CDB */
3196 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
3197 break;
3198 case TCM_CHECK_CONDITION_ABORT_CMD:
3199 /* CURRENT ERROR */
3200 buffer[offset] = 0x70;
3201 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3202 /* ABORTED COMMAND */
3203 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
3204 /* BUS DEVICE RESET FUNCTION OCCURRED */
3205 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
3206 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
3207 break;
3208 case TCM_INCORRECT_AMOUNT_OF_DATA:
3209 /* CURRENT ERROR */
3210 buffer[offset] = 0x70;
3211 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3212 /* ABORTED COMMAND */
3213 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
3214 /* WRITE ERROR */
3215 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
3216 /* NOT ENOUGH UNSOLICITED DATA */
3217 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
3218 break;
3219 case TCM_INVALID_CDB_FIELD:
3220 /* CURRENT ERROR */
3221 buffer[offset] = 0x70;
3222 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3223 /* ILLEGAL REQUEST */
3224 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3225 /* INVALID FIELD IN CDB */
3226 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
3227 break;
3228 case TCM_INVALID_PARAMETER_LIST:
3229 /* CURRENT ERROR */
3230 buffer[offset] = 0x70;
3231 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3232 /* ILLEGAL REQUEST */
3233 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3234 /* INVALID FIELD IN PARAMETER LIST */
3235 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
3236 break;
3237 case TCM_UNEXPECTED_UNSOLICITED_DATA:
3238 /* CURRENT ERROR */
3239 buffer[offset] = 0x70;
3240 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3241 /* ABORTED COMMAND */
3242 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
3243 /* WRITE ERROR */
3244 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
3245 /* UNEXPECTED_UNSOLICITED_DATA */
3246 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
3247 break;
3248 case TCM_SERVICE_CRC_ERROR:
3249 /* CURRENT ERROR */
3250 buffer[offset] = 0x70;
3251 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3252 /* ABORTED COMMAND */
3253 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
3254 /* PROTOCOL SERVICE CRC ERROR */
3255 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
3256 /* N/A */
3257 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
3258 break;
3259 case TCM_SNACK_REJECTED:
3260 /* CURRENT ERROR */
3261 buffer[offset] = 0x70;
3262 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3263 /* ABORTED COMMAND */
3264 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
3265 /* READ ERROR */
3266 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
3267 /* FAILED RETRANSMISSION REQUEST */
3268 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
3269 break;
3270 case TCM_WRITE_PROTECTED:
3271 /* CURRENT ERROR */
3272 buffer[offset] = 0x70;
3273 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3274 /* DATA PROTECT */
3275 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
3276 /* WRITE PROTECTED */
3277 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
3278 break;
3279 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
3280 /* CURRENT ERROR */
3281 buffer[offset] = 0x70;
3282 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3283 /* UNIT ATTENTION */
3284 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
3285 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3286 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
3287 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
3288 break;
3289 case TCM_CHECK_CONDITION_NOT_READY:
3290 /* CURRENT ERROR */
3291 buffer[offset] = 0x70;
3292 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3293 /* Not Ready */
3294 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
3295 transport_get_sense_codes(cmd, &asc, &ascq);
3296 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
3297 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
3298 break;
3299 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
3300 default:
3301 /* CURRENT ERROR */
3302 buffer[offset] = 0x70;
3303 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3304 /* ILLEGAL REQUEST */
3305 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3306 /* LOGICAL UNIT COMMUNICATION FAILURE */
3307 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
3308 break;
3309 }
3310 /*
3311 * This code uses linux/include/scsi/scsi.h SAM status codes!
3312 */
3313 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3314 /*
3315 * Automatically padded, this value is encoded in the fabric's
3316 * data_length response PDU containing the SCSI defined sense data.
3317 */
3318 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
3319
3320 after_reason:
3321 return cmd->se_tfo->queue_status(cmd);
3322 }
3323 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3324
3325 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3326 {
3327 int ret = 0;
3328
3329 if (cmd->transport_state & CMD_T_ABORTED) {
3330 if (!send_status ||
3331 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
3332 return 1;
3333
3334 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
3335 " status for CDB: 0x%02x ITT: 0x%08x\n",
3336 cmd->t_task_cdb[0],
3337 cmd->se_tfo->get_task_tag(cmd));
3338
3339 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
3340 cmd->se_tfo->queue_status(cmd);
3341 ret = 1;
3342 }
3343 return ret;
3344 }
3345 EXPORT_SYMBOL(transport_check_aborted_status);
3346
3347 void transport_send_task_abort(struct se_cmd *cmd)
3348 {
3349 unsigned long flags;
3350
3351 spin_lock_irqsave(&cmd->t_state_lock, flags);
3352 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3353 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3354 return;
3355 }
3356 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3357
3358 /*
3359 * If there are still expected incoming fabric WRITEs, we wait
3360 * until until they have completed before sending a TASK_ABORTED
3361 * response. This response with TASK_ABORTED status will be
3362 * queued back to fabric module by transport_check_aborted_status().
3363 */
3364 if (cmd->data_direction == DMA_TO_DEVICE) {
3365 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3366 cmd->transport_state |= CMD_T_ABORTED;
3367 smp_mb__after_atomic_inc();
3368 }
3369 }
3370 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3371
3372 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3373 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3374 cmd->se_tfo->get_task_tag(cmd));
3375
3376 cmd->se_tfo->queue_status(cmd);
3377 }
3378
3379 static int transport_generic_do_tmr(struct se_cmd *cmd)
3380 {
3381 struct se_device *dev = cmd->se_dev;
3382 struct se_tmr_req *tmr = cmd->se_tmr_req;
3383 int ret;
3384
3385 switch (tmr->function) {
3386 case TMR_ABORT_TASK:
3387 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3388 break;
3389 case TMR_ABORT_TASK_SET:
3390 case TMR_CLEAR_ACA:
3391 case TMR_CLEAR_TASK_SET:
3392 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3393 break;
3394 case TMR_LUN_RESET:
3395 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3396 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3397 TMR_FUNCTION_REJECTED;
3398 break;
3399 case TMR_TARGET_WARM_RESET:
3400 tmr->response = TMR_FUNCTION_REJECTED;
3401 break;
3402 case TMR_TARGET_COLD_RESET:
3403 tmr->response = TMR_FUNCTION_REJECTED;
3404 break;
3405 default:
3406 pr_err("Uknown TMR function: 0x%02x.\n",
3407 tmr->function);
3408 tmr->response = TMR_FUNCTION_REJECTED;
3409 break;
3410 }
3411
3412 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3413 cmd->se_tfo->queue_tm_rsp(cmd);
3414
3415 transport_cmd_check_stop_to_fabric(cmd);
3416 return 0;
3417 }
3418
3419 /* transport_processing_thread():
3420 *
3421 *
3422 */
3423 static int transport_processing_thread(void *param)
3424 {
3425 int ret;
3426 struct se_cmd *cmd;
3427 struct se_device *dev = param;
3428
3429 while (!kthread_should_stop()) {
3430 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
3431 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
3432 kthread_should_stop());
3433 if (ret < 0)
3434 goto out;
3435
3436 get_cmd:
3437 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
3438 if (!cmd)
3439 continue;
3440
3441 switch (cmd->t_state) {
3442 case TRANSPORT_NEW_CMD:
3443 BUG();
3444 break;
3445 case TRANSPORT_NEW_CMD_MAP:
3446 if (!cmd->se_tfo->new_cmd_map) {
3447 pr_err("cmd->se_tfo->new_cmd_map is"
3448 " NULL for TRANSPORT_NEW_CMD_MAP\n");
3449 BUG();
3450 }
3451 ret = cmd->se_tfo->new_cmd_map(cmd);
3452 if (ret < 0) {
3453 transport_generic_request_failure(cmd);
3454 break;
3455 }
3456 ret = transport_generic_new_cmd(cmd);
3457 if (ret < 0) {
3458 transport_generic_request_failure(cmd);
3459 break;
3460 }
3461 break;
3462 case TRANSPORT_PROCESS_WRITE:
3463 transport_generic_process_write(cmd);
3464 break;
3465 case TRANSPORT_PROCESS_TMR:
3466 transport_generic_do_tmr(cmd);
3467 break;
3468 case TRANSPORT_COMPLETE_QF_WP:
3469 transport_write_pending_qf(cmd);
3470 break;
3471 case TRANSPORT_COMPLETE_QF_OK:
3472 transport_complete_qf(cmd);
3473 break;
3474 default:
3475 pr_err("Unknown t_state: %d for ITT: 0x%08x "
3476 "i_state: %d on SE LUN: %u\n",
3477 cmd->t_state,
3478 cmd->se_tfo->get_task_tag(cmd),
3479 cmd->se_tfo->get_cmd_state(cmd),
3480 cmd->se_lun->unpacked_lun);
3481 BUG();
3482 }
3483
3484 goto get_cmd;
3485 }
3486
3487 out:
3488 WARN_ON(!list_empty(&dev->state_list));
3489 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
3490 dev->process_thread = NULL;
3491 return 0;
3492 }
This page took 0.098252 seconds and 6 git commands to generate.