Merge tag 'cpuinit-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg...
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42
43 #include <target/target_core_base.h>
44 #include <target/target_core_backend.h>
45 #include <target/target_core_fabric.h>
46 #include <target/target_core_configfs.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
64 struct kmem_cache *t10_alua_lba_map_cache;
65 struct kmem_cache *t10_alua_lba_map_mem_cache;
66
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
123 "t10_alua_tg_pt_gp_mem_cache",
124 sizeof(struct t10_alua_tg_pt_gp_member),
125 __alignof__(struct t10_alua_tg_pt_gp_member),
126 0, NULL);
127 if (!t10_alua_tg_pt_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
129 "mem_t failed\n");
130 goto out_free_tg_pt_gp_cache;
131 }
132 t10_alua_lba_map_cache = kmem_cache_create(
133 "t10_alua_lba_map_cache",
134 sizeof(struct t10_alua_lba_map),
135 __alignof__(struct t10_alua_lba_map), 0, NULL);
136 if (!t10_alua_lba_map_cache) {
137 pr_err("kmem_cache_create() for t10_alua_lba_map_"
138 "cache failed\n");
139 goto out_free_tg_pt_gp_mem_cache;
140 }
141 t10_alua_lba_map_mem_cache = kmem_cache_create(
142 "t10_alua_lba_map_mem_cache",
143 sizeof(struct t10_alua_lba_map_member),
144 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
145 if (!t10_alua_lba_map_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
147 "cache failed\n");
148 goto out_free_lba_map_cache;
149 }
150
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_lba_map_mem_cache;
155
156 return 0;
157
158 out_free_lba_map_mem_cache:
159 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
160 out_free_lba_map_cache:
161 kmem_cache_destroy(t10_alua_lba_map_cache);
162 out_free_tg_pt_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
164 out_free_tg_pt_gp_cache:
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 out_free_lu_gp_mem_cache:
167 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
168 out_free_lu_gp_cache:
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 out_free_pr_reg_cache:
171 kmem_cache_destroy(t10_pr_reg_cache);
172 out_free_ua_cache:
173 kmem_cache_destroy(se_ua_cache);
174 out_free_sess_cache:
175 kmem_cache_destroy(se_sess_cache);
176 out:
177 return -ENOMEM;
178 }
179
180 void release_se_kmem_caches(void)
181 {
182 destroy_workqueue(target_completion_wq);
183 kmem_cache_destroy(se_sess_cache);
184 kmem_cache_destroy(se_ua_cache);
185 kmem_cache_destroy(t10_pr_reg_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
190 kmem_cache_destroy(t10_alua_lba_map_cache);
191 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
192 }
193
194 /* This code ensures unique mib indexes are handed out. */
195 static DEFINE_SPINLOCK(scsi_mib_index_lock);
196 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
197
198 /*
199 * Allocate a new row index for the entry type specified
200 */
201 u32 scsi_get_new_index(scsi_index_t type)
202 {
203 u32 new_index;
204
205 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
206
207 spin_lock(&scsi_mib_index_lock);
208 new_index = ++scsi_mib_index[type];
209 spin_unlock(&scsi_mib_index_lock);
210
211 return new_index;
212 }
213
214 void transport_subsystem_check_init(void)
215 {
216 int ret;
217 static int sub_api_initialized;
218
219 if (sub_api_initialized)
220 return;
221
222 ret = request_module("target_core_iblock");
223 if (ret != 0)
224 pr_err("Unable to load target_core_iblock\n");
225
226 ret = request_module("target_core_file");
227 if (ret != 0)
228 pr_err("Unable to load target_core_file\n");
229
230 ret = request_module("target_core_pscsi");
231 if (ret != 0)
232 pr_err("Unable to load target_core_pscsi\n");
233
234 ret = request_module("target_core_user");
235 if (ret != 0)
236 pr_err("Unable to load target_core_user\n");
237
238 sub_api_initialized = 1;
239 }
240
241 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
242 {
243 struct se_session *se_sess;
244
245 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
246 if (!se_sess) {
247 pr_err("Unable to allocate struct se_session from"
248 " se_sess_cache\n");
249 return ERR_PTR(-ENOMEM);
250 }
251 INIT_LIST_HEAD(&se_sess->sess_list);
252 INIT_LIST_HEAD(&se_sess->sess_acl_list);
253 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
254 INIT_LIST_HEAD(&se_sess->sess_wait_list);
255 spin_lock_init(&se_sess->sess_cmd_lock);
256 kref_init(&se_sess->sess_kref);
257 se_sess->sup_prot_ops = sup_prot_ops;
258
259 return se_sess;
260 }
261 EXPORT_SYMBOL(transport_init_session);
262
263 int transport_alloc_session_tags(struct se_session *se_sess,
264 unsigned int tag_num, unsigned int tag_size)
265 {
266 int rc;
267
268 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
269 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
270 if (!se_sess->sess_cmd_map) {
271 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
272 if (!se_sess->sess_cmd_map) {
273 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
274 return -ENOMEM;
275 }
276 }
277
278 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
279 if (rc < 0) {
280 pr_err("Unable to init se_sess->sess_tag_pool,"
281 " tag_num: %u\n", tag_num);
282 kvfree(se_sess->sess_cmd_map);
283 se_sess->sess_cmd_map = NULL;
284 return -ENOMEM;
285 }
286
287 return 0;
288 }
289 EXPORT_SYMBOL(transport_alloc_session_tags);
290
291 struct se_session *transport_init_session_tags(unsigned int tag_num,
292 unsigned int tag_size,
293 enum target_prot_op sup_prot_ops)
294 {
295 struct se_session *se_sess;
296 int rc;
297
298 se_sess = transport_init_session(sup_prot_ops);
299 if (IS_ERR(se_sess))
300 return se_sess;
301
302 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
303 if (rc < 0) {
304 transport_free_session(se_sess);
305 return ERR_PTR(-ENOMEM);
306 }
307
308 return se_sess;
309 }
310 EXPORT_SYMBOL(transport_init_session_tags);
311
312 /*
313 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
314 */
315 void __transport_register_session(
316 struct se_portal_group *se_tpg,
317 struct se_node_acl *se_nacl,
318 struct se_session *se_sess,
319 void *fabric_sess_ptr)
320 {
321 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
322 unsigned char buf[PR_REG_ISID_LEN];
323
324 se_sess->se_tpg = se_tpg;
325 se_sess->fabric_sess_ptr = fabric_sess_ptr;
326 /*
327 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
328 *
329 * Only set for struct se_session's that will actually be moving I/O.
330 * eg: *NOT* discovery sessions.
331 */
332 if (se_nacl) {
333 /*
334 *
335 * Determine if fabric allows for T10-PI feature bits exposed to
336 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
337 *
338 * If so, then always save prot_type on a per se_node_acl node
339 * basis and re-instate the previous sess_prot_type to avoid
340 * disabling PI from below any previously initiator side
341 * registered LUNs.
342 */
343 if (se_nacl->saved_prot_type)
344 se_sess->sess_prot_type = se_nacl->saved_prot_type;
345 else if (tfo->tpg_check_prot_fabric_only)
346 se_sess->sess_prot_type = se_nacl->saved_prot_type =
347 tfo->tpg_check_prot_fabric_only(se_tpg);
348 /*
349 * If the fabric module supports an ISID based TransportID,
350 * save this value in binary from the fabric I_T Nexus now.
351 */
352 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
353 memset(&buf[0], 0, PR_REG_ISID_LEN);
354 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
355 &buf[0], PR_REG_ISID_LEN);
356 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
357 }
358 kref_get(&se_nacl->acl_kref);
359
360 spin_lock_irq(&se_nacl->nacl_sess_lock);
361 /*
362 * The se_nacl->nacl_sess pointer will be set to the
363 * last active I_T Nexus for each struct se_node_acl.
364 */
365 se_nacl->nacl_sess = se_sess;
366
367 list_add_tail(&se_sess->sess_acl_list,
368 &se_nacl->acl_sess_list);
369 spin_unlock_irq(&se_nacl->nacl_sess_lock);
370 }
371 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
372
373 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
374 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
375 }
376 EXPORT_SYMBOL(__transport_register_session);
377
378 void transport_register_session(
379 struct se_portal_group *se_tpg,
380 struct se_node_acl *se_nacl,
381 struct se_session *se_sess,
382 void *fabric_sess_ptr)
383 {
384 unsigned long flags;
385
386 spin_lock_irqsave(&se_tpg->session_lock, flags);
387 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
388 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
389 }
390 EXPORT_SYMBOL(transport_register_session);
391
392 static void target_release_session(struct kref *kref)
393 {
394 struct se_session *se_sess = container_of(kref,
395 struct se_session, sess_kref);
396 struct se_portal_group *se_tpg = se_sess->se_tpg;
397
398 se_tpg->se_tpg_tfo->close_session(se_sess);
399 }
400
401 void target_get_session(struct se_session *se_sess)
402 {
403 kref_get(&se_sess->sess_kref);
404 }
405 EXPORT_SYMBOL(target_get_session);
406
407 void target_put_session(struct se_session *se_sess)
408 {
409 struct se_portal_group *tpg = se_sess->se_tpg;
410
411 if (tpg->se_tpg_tfo->put_session != NULL) {
412 tpg->se_tpg_tfo->put_session(se_sess);
413 return;
414 }
415 kref_put(&se_sess->sess_kref, target_release_session);
416 }
417 EXPORT_SYMBOL(target_put_session);
418
419 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
420 {
421 struct se_session *se_sess;
422 ssize_t len = 0;
423
424 spin_lock_bh(&se_tpg->session_lock);
425 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
426 if (!se_sess->se_node_acl)
427 continue;
428 if (!se_sess->se_node_acl->dynamic_node_acl)
429 continue;
430 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
431 break;
432
433 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
434 se_sess->se_node_acl->initiatorname);
435 len += 1; /* Include NULL terminator */
436 }
437 spin_unlock_bh(&se_tpg->session_lock);
438
439 return len;
440 }
441 EXPORT_SYMBOL(target_show_dynamic_sessions);
442
443 static void target_complete_nacl(struct kref *kref)
444 {
445 struct se_node_acl *nacl = container_of(kref,
446 struct se_node_acl, acl_kref);
447
448 complete(&nacl->acl_free_comp);
449 }
450
451 void target_put_nacl(struct se_node_acl *nacl)
452 {
453 kref_put(&nacl->acl_kref, target_complete_nacl);
454 }
455
456 void transport_deregister_session_configfs(struct se_session *se_sess)
457 {
458 struct se_node_acl *se_nacl;
459 unsigned long flags;
460 /*
461 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
462 */
463 se_nacl = se_sess->se_node_acl;
464 if (se_nacl) {
465 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
466 if (se_nacl->acl_stop == 0)
467 list_del(&se_sess->sess_acl_list);
468 /*
469 * If the session list is empty, then clear the pointer.
470 * Otherwise, set the struct se_session pointer from the tail
471 * element of the per struct se_node_acl active session list.
472 */
473 if (list_empty(&se_nacl->acl_sess_list))
474 se_nacl->nacl_sess = NULL;
475 else {
476 se_nacl->nacl_sess = container_of(
477 se_nacl->acl_sess_list.prev,
478 struct se_session, sess_acl_list);
479 }
480 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
481 }
482 }
483 EXPORT_SYMBOL(transport_deregister_session_configfs);
484
485 void transport_free_session(struct se_session *se_sess)
486 {
487 if (se_sess->sess_cmd_map) {
488 percpu_ida_destroy(&se_sess->sess_tag_pool);
489 kvfree(se_sess->sess_cmd_map);
490 }
491 kmem_cache_free(se_sess_cache, se_sess);
492 }
493 EXPORT_SYMBOL(transport_free_session);
494
495 void transport_deregister_session(struct se_session *se_sess)
496 {
497 struct se_portal_group *se_tpg = se_sess->se_tpg;
498 const struct target_core_fabric_ops *se_tfo;
499 struct se_node_acl *se_nacl;
500 unsigned long flags;
501 bool comp_nacl = true;
502
503 if (!se_tpg) {
504 transport_free_session(se_sess);
505 return;
506 }
507 se_tfo = se_tpg->se_tpg_tfo;
508
509 spin_lock_irqsave(&se_tpg->session_lock, flags);
510 list_del(&se_sess->sess_list);
511 se_sess->se_tpg = NULL;
512 se_sess->fabric_sess_ptr = NULL;
513 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
514
515 /*
516 * Determine if we need to do extra work for this initiator node's
517 * struct se_node_acl if it had been previously dynamically generated.
518 */
519 se_nacl = se_sess->se_node_acl;
520
521 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
522 if (se_nacl && se_nacl->dynamic_node_acl) {
523 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
524 list_del(&se_nacl->acl_list);
525 se_tpg->num_node_acls--;
526 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
527 core_tpg_wait_for_nacl_pr_ref(se_nacl);
528 core_free_device_list_for_node(se_nacl, se_tpg);
529 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
530
531 comp_nacl = false;
532 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
533 }
534 }
535 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
536
537 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
538 se_tpg->se_tpg_tfo->get_fabric_name());
539 /*
540 * If last kref is dropping now for an explicit NodeACL, awake sleeping
541 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
542 * removal context.
543 */
544 if (se_nacl && comp_nacl)
545 target_put_nacl(se_nacl);
546
547 transport_free_session(se_sess);
548 }
549 EXPORT_SYMBOL(transport_deregister_session);
550
551 /*
552 * Called with cmd->t_state_lock held.
553 */
554 static void target_remove_from_state_list(struct se_cmd *cmd)
555 {
556 struct se_device *dev = cmd->se_dev;
557 unsigned long flags;
558
559 if (!dev)
560 return;
561
562 if (cmd->transport_state & CMD_T_BUSY)
563 return;
564
565 spin_lock_irqsave(&dev->execute_task_lock, flags);
566 if (cmd->state_active) {
567 list_del(&cmd->state_list);
568 cmd->state_active = false;
569 }
570 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
571 }
572
573 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
574 bool write_pending)
575 {
576 unsigned long flags;
577
578 spin_lock_irqsave(&cmd->t_state_lock, flags);
579 if (write_pending)
580 cmd->t_state = TRANSPORT_WRITE_PENDING;
581
582 if (remove_from_lists) {
583 target_remove_from_state_list(cmd);
584
585 /*
586 * Clear struct se_cmd->se_lun before the handoff to FE.
587 */
588 cmd->se_lun = NULL;
589 }
590
591 /*
592 * Determine if frontend context caller is requesting the stopping of
593 * this command for frontend exceptions.
594 */
595 if (cmd->transport_state & CMD_T_STOP) {
596 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
597 __func__, __LINE__,
598 cmd->se_tfo->get_task_tag(cmd));
599
600 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
601
602 complete_all(&cmd->t_transport_stop_comp);
603 return 1;
604 }
605
606 cmd->transport_state &= ~CMD_T_ACTIVE;
607 if (remove_from_lists) {
608 /*
609 * Some fabric modules like tcm_loop can release
610 * their internally allocated I/O reference now and
611 * struct se_cmd now.
612 *
613 * Fabric modules are expected to return '1' here if the
614 * se_cmd being passed is released at this point,
615 * or zero if not being released.
616 */
617 if (cmd->se_tfo->check_stop_free != NULL) {
618 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
619 return cmd->se_tfo->check_stop_free(cmd);
620 }
621 }
622
623 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
624 return 0;
625 }
626
627 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
628 {
629 return transport_cmd_check_stop(cmd, true, false);
630 }
631
632 static void transport_lun_remove_cmd(struct se_cmd *cmd)
633 {
634 struct se_lun *lun = cmd->se_lun;
635
636 if (!lun)
637 return;
638
639 if (cmpxchg(&cmd->lun_ref_active, true, false))
640 percpu_ref_put(&lun->lun_ref);
641 }
642
643 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
644 {
645 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
646 transport_lun_remove_cmd(cmd);
647 /*
648 * Allow the fabric driver to unmap any resources before
649 * releasing the descriptor via TFO->release_cmd()
650 */
651 if (remove)
652 cmd->se_tfo->aborted_task(cmd);
653
654 if (transport_cmd_check_stop_to_fabric(cmd))
655 return;
656 if (remove)
657 transport_put_cmd(cmd);
658 }
659
660 static void target_complete_failure_work(struct work_struct *work)
661 {
662 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
663
664 transport_generic_request_failure(cmd,
665 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
666 }
667
668 /*
669 * Used when asking transport to copy Sense Data from the underlying
670 * Linux/SCSI struct scsi_cmnd
671 */
672 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
673 {
674 struct se_device *dev = cmd->se_dev;
675
676 WARN_ON(!cmd->se_lun);
677
678 if (!dev)
679 return NULL;
680
681 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
682 return NULL;
683
684 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
685
686 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
687 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
688 return cmd->sense_buffer;
689 }
690
691 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
692 {
693 struct se_device *dev = cmd->se_dev;
694 int success = scsi_status == GOOD;
695 unsigned long flags;
696
697 cmd->scsi_status = scsi_status;
698
699
700 spin_lock_irqsave(&cmd->t_state_lock, flags);
701 cmd->transport_state &= ~CMD_T_BUSY;
702
703 if (dev && dev->transport->transport_complete) {
704 dev->transport->transport_complete(cmd,
705 cmd->t_data_sg,
706 transport_get_sense_buffer(cmd));
707 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
708 success = 1;
709 }
710
711 /*
712 * See if we are waiting to complete for an exception condition.
713 */
714 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716 complete(&cmd->task_stop_comp);
717 return;
718 }
719
720 /*
721 * Check for case where an explicit ABORT_TASK has been received
722 * and transport_wait_for_tasks() will be waiting for completion..
723 */
724 if (cmd->transport_state & CMD_T_ABORTED &&
725 cmd->transport_state & CMD_T_STOP) {
726 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
727 complete_all(&cmd->t_transport_stop_comp);
728 return;
729 } else if (!success) {
730 INIT_WORK(&cmd->work, target_complete_failure_work);
731 } else {
732 INIT_WORK(&cmd->work, target_complete_ok_work);
733 }
734
735 cmd->t_state = TRANSPORT_COMPLETE;
736 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
737 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
738
739 queue_work(target_completion_wq, &cmd->work);
740 }
741 EXPORT_SYMBOL(target_complete_cmd);
742
743 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
744 {
745 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
746 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
747 cmd->residual_count += cmd->data_length - length;
748 } else {
749 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
750 cmd->residual_count = cmd->data_length - length;
751 }
752
753 cmd->data_length = length;
754 }
755
756 target_complete_cmd(cmd, scsi_status);
757 }
758 EXPORT_SYMBOL(target_complete_cmd_with_length);
759
760 static void target_add_to_state_list(struct se_cmd *cmd)
761 {
762 struct se_device *dev = cmd->se_dev;
763 unsigned long flags;
764
765 spin_lock_irqsave(&dev->execute_task_lock, flags);
766 if (!cmd->state_active) {
767 list_add_tail(&cmd->state_list, &dev->state_list);
768 cmd->state_active = true;
769 }
770 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
771 }
772
773 /*
774 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
775 */
776 static void transport_write_pending_qf(struct se_cmd *cmd);
777 static void transport_complete_qf(struct se_cmd *cmd);
778
779 void target_qf_do_work(struct work_struct *work)
780 {
781 struct se_device *dev = container_of(work, struct se_device,
782 qf_work_queue);
783 LIST_HEAD(qf_cmd_list);
784 struct se_cmd *cmd, *cmd_tmp;
785
786 spin_lock_irq(&dev->qf_cmd_lock);
787 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
788 spin_unlock_irq(&dev->qf_cmd_lock);
789
790 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
791 list_del(&cmd->se_qf_node);
792 atomic_dec_mb(&dev->dev_qf_count);
793
794 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
795 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
796 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
797 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
798 : "UNKNOWN");
799
800 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
801 transport_write_pending_qf(cmd);
802 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
803 transport_complete_qf(cmd);
804 }
805 }
806
807 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
808 {
809 switch (cmd->data_direction) {
810 case DMA_NONE:
811 return "NONE";
812 case DMA_FROM_DEVICE:
813 return "READ";
814 case DMA_TO_DEVICE:
815 return "WRITE";
816 case DMA_BIDIRECTIONAL:
817 return "BIDI";
818 default:
819 break;
820 }
821
822 return "UNKNOWN";
823 }
824
825 void transport_dump_dev_state(
826 struct se_device *dev,
827 char *b,
828 int *bl)
829 {
830 *bl += sprintf(b + *bl, "Status: ");
831 if (dev->export_count)
832 *bl += sprintf(b + *bl, "ACTIVATED");
833 else
834 *bl += sprintf(b + *bl, "DEACTIVATED");
835
836 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
837 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
838 dev->dev_attrib.block_size,
839 dev->dev_attrib.hw_max_sectors);
840 *bl += sprintf(b + *bl, " ");
841 }
842
843 void transport_dump_vpd_proto_id(
844 struct t10_vpd *vpd,
845 unsigned char *p_buf,
846 int p_buf_len)
847 {
848 unsigned char buf[VPD_TMP_BUF_SIZE];
849 int len;
850
851 memset(buf, 0, VPD_TMP_BUF_SIZE);
852 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
853
854 switch (vpd->protocol_identifier) {
855 case 0x00:
856 sprintf(buf+len, "Fibre Channel\n");
857 break;
858 case 0x10:
859 sprintf(buf+len, "Parallel SCSI\n");
860 break;
861 case 0x20:
862 sprintf(buf+len, "SSA\n");
863 break;
864 case 0x30:
865 sprintf(buf+len, "IEEE 1394\n");
866 break;
867 case 0x40:
868 sprintf(buf+len, "SCSI Remote Direct Memory Access"
869 " Protocol\n");
870 break;
871 case 0x50:
872 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
873 break;
874 case 0x60:
875 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
876 break;
877 case 0x70:
878 sprintf(buf+len, "Automation/Drive Interface Transport"
879 " Protocol\n");
880 break;
881 case 0x80:
882 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
883 break;
884 default:
885 sprintf(buf+len, "Unknown 0x%02x\n",
886 vpd->protocol_identifier);
887 break;
888 }
889
890 if (p_buf)
891 strncpy(p_buf, buf, p_buf_len);
892 else
893 pr_debug("%s", buf);
894 }
895
896 void
897 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
898 {
899 /*
900 * Check if the Protocol Identifier Valid (PIV) bit is set..
901 *
902 * from spc3r23.pdf section 7.5.1
903 */
904 if (page_83[1] & 0x80) {
905 vpd->protocol_identifier = (page_83[0] & 0xf0);
906 vpd->protocol_identifier_set = 1;
907 transport_dump_vpd_proto_id(vpd, NULL, 0);
908 }
909 }
910 EXPORT_SYMBOL(transport_set_vpd_proto_id);
911
912 int transport_dump_vpd_assoc(
913 struct t10_vpd *vpd,
914 unsigned char *p_buf,
915 int p_buf_len)
916 {
917 unsigned char buf[VPD_TMP_BUF_SIZE];
918 int ret = 0;
919 int len;
920
921 memset(buf, 0, VPD_TMP_BUF_SIZE);
922 len = sprintf(buf, "T10 VPD Identifier Association: ");
923
924 switch (vpd->association) {
925 case 0x00:
926 sprintf(buf+len, "addressed logical unit\n");
927 break;
928 case 0x10:
929 sprintf(buf+len, "target port\n");
930 break;
931 case 0x20:
932 sprintf(buf+len, "SCSI target device\n");
933 break;
934 default:
935 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
936 ret = -EINVAL;
937 break;
938 }
939
940 if (p_buf)
941 strncpy(p_buf, buf, p_buf_len);
942 else
943 pr_debug("%s", buf);
944
945 return ret;
946 }
947
948 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
949 {
950 /*
951 * The VPD identification association..
952 *
953 * from spc3r23.pdf Section 7.6.3.1 Table 297
954 */
955 vpd->association = (page_83[1] & 0x30);
956 return transport_dump_vpd_assoc(vpd, NULL, 0);
957 }
958 EXPORT_SYMBOL(transport_set_vpd_assoc);
959
960 int transport_dump_vpd_ident_type(
961 struct t10_vpd *vpd,
962 unsigned char *p_buf,
963 int p_buf_len)
964 {
965 unsigned char buf[VPD_TMP_BUF_SIZE];
966 int ret = 0;
967 int len;
968
969 memset(buf, 0, VPD_TMP_BUF_SIZE);
970 len = sprintf(buf, "T10 VPD Identifier Type: ");
971
972 switch (vpd->device_identifier_type) {
973 case 0x00:
974 sprintf(buf+len, "Vendor specific\n");
975 break;
976 case 0x01:
977 sprintf(buf+len, "T10 Vendor ID based\n");
978 break;
979 case 0x02:
980 sprintf(buf+len, "EUI-64 based\n");
981 break;
982 case 0x03:
983 sprintf(buf+len, "NAA\n");
984 break;
985 case 0x04:
986 sprintf(buf+len, "Relative target port identifier\n");
987 break;
988 case 0x08:
989 sprintf(buf+len, "SCSI name string\n");
990 break;
991 default:
992 sprintf(buf+len, "Unsupported: 0x%02x\n",
993 vpd->device_identifier_type);
994 ret = -EINVAL;
995 break;
996 }
997
998 if (p_buf) {
999 if (p_buf_len < strlen(buf)+1)
1000 return -EINVAL;
1001 strncpy(p_buf, buf, p_buf_len);
1002 } else {
1003 pr_debug("%s", buf);
1004 }
1005
1006 return ret;
1007 }
1008
1009 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1010 {
1011 /*
1012 * The VPD identifier type..
1013 *
1014 * from spc3r23.pdf Section 7.6.3.1 Table 298
1015 */
1016 vpd->device_identifier_type = (page_83[1] & 0x0f);
1017 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1018 }
1019 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1020
1021 int transport_dump_vpd_ident(
1022 struct t10_vpd *vpd,
1023 unsigned char *p_buf,
1024 int p_buf_len)
1025 {
1026 unsigned char buf[VPD_TMP_BUF_SIZE];
1027 int ret = 0;
1028
1029 memset(buf, 0, VPD_TMP_BUF_SIZE);
1030
1031 switch (vpd->device_identifier_code_set) {
1032 case 0x01: /* Binary */
1033 snprintf(buf, sizeof(buf),
1034 "T10 VPD Binary Device Identifier: %s\n",
1035 &vpd->device_identifier[0]);
1036 break;
1037 case 0x02: /* ASCII */
1038 snprintf(buf, sizeof(buf),
1039 "T10 VPD ASCII Device Identifier: %s\n",
1040 &vpd->device_identifier[0]);
1041 break;
1042 case 0x03: /* UTF-8 */
1043 snprintf(buf, sizeof(buf),
1044 "T10 VPD UTF-8 Device Identifier: %s\n",
1045 &vpd->device_identifier[0]);
1046 break;
1047 default:
1048 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1049 " 0x%02x", vpd->device_identifier_code_set);
1050 ret = -EINVAL;
1051 break;
1052 }
1053
1054 if (p_buf)
1055 strncpy(p_buf, buf, p_buf_len);
1056 else
1057 pr_debug("%s", buf);
1058
1059 return ret;
1060 }
1061
1062 int
1063 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1064 {
1065 static const char hex_str[] = "0123456789abcdef";
1066 int j = 0, i = 4; /* offset to start of the identifier */
1067
1068 /*
1069 * The VPD Code Set (encoding)
1070 *
1071 * from spc3r23.pdf Section 7.6.3.1 Table 296
1072 */
1073 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1074 switch (vpd->device_identifier_code_set) {
1075 case 0x01: /* Binary */
1076 vpd->device_identifier[j++] =
1077 hex_str[vpd->device_identifier_type];
1078 while (i < (4 + page_83[3])) {
1079 vpd->device_identifier[j++] =
1080 hex_str[(page_83[i] & 0xf0) >> 4];
1081 vpd->device_identifier[j++] =
1082 hex_str[page_83[i] & 0x0f];
1083 i++;
1084 }
1085 break;
1086 case 0x02: /* ASCII */
1087 case 0x03: /* UTF-8 */
1088 while (i < (4 + page_83[3]))
1089 vpd->device_identifier[j++] = page_83[i++];
1090 break;
1091 default:
1092 break;
1093 }
1094
1095 return transport_dump_vpd_ident(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_ident);
1098
1099 sense_reason_t
1100 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1101 {
1102 struct se_device *dev = cmd->se_dev;
1103
1104 if (cmd->unknown_data_length) {
1105 cmd->data_length = size;
1106 } else if (size != cmd->data_length) {
1107 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1108 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1109 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1110 cmd->data_length, size, cmd->t_task_cdb[0]);
1111
1112 if (cmd->data_direction == DMA_TO_DEVICE) {
1113 pr_err("Rejecting underflow/overflow"
1114 " WRITE data\n");
1115 return TCM_INVALID_CDB_FIELD;
1116 }
1117 /*
1118 * Reject READ_* or WRITE_* with overflow/underflow for
1119 * type SCF_SCSI_DATA_CDB.
1120 */
1121 if (dev->dev_attrib.block_size != 512) {
1122 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1123 " CDB on non 512-byte sector setup subsystem"
1124 " plugin: %s\n", dev->transport->name);
1125 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1126 return TCM_INVALID_CDB_FIELD;
1127 }
1128 /*
1129 * For the overflow case keep the existing fabric provided
1130 * ->data_length. Otherwise for the underflow case, reset
1131 * ->data_length to the smaller SCSI expected data transfer
1132 * length.
1133 */
1134 if (size > cmd->data_length) {
1135 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1136 cmd->residual_count = (size - cmd->data_length);
1137 } else {
1138 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1139 cmd->residual_count = (cmd->data_length - size);
1140 cmd->data_length = size;
1141 }
1142 }
1143
1144 return 0;
1145
1146 }
1147
1148 /*
1149 * Used by fabric modules containing a local struct se_cmd within their
1150 * fabric dependent per I/O descriptor.
1151 */
1152 void transport_init_se_cmd(
1153 struct se_cmd *cmd,
1154 const struct target_core_fabric_ops *tfo,
1155 struct se_session *se_sess,
1156 u32 data_length,
1157 int data_direction,
1158 int task_attr,
1159 unsigned char *sense_buffer)
1160 {
1161 INIT_LIST_HEAD(&cmd->se_delayed_node);
1162 INIT_LIST_HEAD(&cmd->se_qf_node);
1163 INIT_LIST_HEAD(&cmd->se_cmd_list);
1164 INIT_LIST_HEAD(&cmd->state_list);
1165 init_completion(&cmd->t_transport_stop_comp);
1166 init_completion(&cmd->cmd_wait_comp);
1167 init_completion(&cmd->task_stop_comp);
1168 spin_lock_init(&cmd->t_state_lock);
1169 kref_init(&cmd->cmd_kref);
1170 cmd->transport_state = CMD_T_DEV_ACTIVE;
1171
1172 cmd->se_tfo = tfo;
1173 cmd->se_sess = se_sess;
1174 cmd->data_length = data_length;
1175 cmd->data_direction = data_direction;
1176 cmd->sam_task_attr = task_attr;
1177 cmd->sense_buffer = sense_buffer;
1178
1179 cmd->state_active = false;
1180 }
1181 EXPORT_SYMBOL(transport_init_se_cmd);
1182
1183 static sense_reason_t
1184 transport_check_alloc_task_attr(struct se_cmd *cmd)
1185 {
1186 struct se_device *dev = cmd->se_dev;
1187
1188 /*
1189 * Check if SAM Task Attribute emulation is enabled for this
1190 * struct se_device storage object
1191 */
1192 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1193 return 0;
1194
1195 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1196 pr_debug("SAM Task Attribute ACA"
1197 " emulation is not supported\n");
1198 return TCM_INVALID_CDB_FIELD;
1199 }
1200 /*
1201 * Used to determine when ORDERED commands should go from
1202 * Dormant to Active status.
1203 */
1204 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1205 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1206 cmd->se_ordered_id, cmd->sam_task_attr,
1207 dev->transport->name);
1208 return 0;
1209 }
1210
1211 sense_reason_t
1212 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1213 {
1214 struct se_device *dev = cmd->se_dev;
1215 sense_reason_t ret;
1216
1217 /*
1218 * Ensure that the received CDB is less than the max (252 + 8) bytes
1219 * for VARIABLE_LENGTH_CMD
1220 */
1221 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1222 pr_err("Received SCSI CDB with command_size: %d that"
1223 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1224 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1225 return TCM_INVALID_CDB_FIELD;
1226 }
1227 /*
1228 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1229 * allocate the additional extended CDB buffer now.. Otherwise
1230 * setup the pointer from __t_task_cdb to t_task_cdb.
1231 */
1232 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1233 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1234 GFP_KERNEL);
1235 if (!cmd->t_task_cdb) {
1236 pr_err("Unable to allocate cmd->t_task_cdb"
1237 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1238 scsi_command_size(cdb),
1239 (unsigned long)sizeof(cmd->__t_task_cdb));
1240 return TCM_OUT_OF_RESOURCES;
1241 }
1242 } else
1243 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1244 /*
1245 * Copy the original CDB into cmd->
1246 */
1247 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1248
1249 trace_target_sequencer_start(cmd);
1250
1251 /*
1252 * Check for an existing UNIT ATTENTION condition
1253 */
1254 ret = target_scsi3_ua_check(cmd);
1255 if (ret)
1256 return ret;
1257
1258 ret = target_alua_state_check(cmd);
1259 if (ret)
1260 return ret;
1261
1262 ret = target_check_reservation(cmd);
1263 if (ret) {
1264 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1265 return ret;
1266 }
1267
1268 ret = dev->transport->parse_cdb(cmd);
1269 if (ret)
1270 return ret;
1271
1272 ret = transport_check_alloc_task_attr(cmd);
1273 if (ret)
1274 return ret;
1275
1276 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1277
1278 spin_lock(&cmd->se_lun->lun_sep_lock);
1279 if (cmd->se_lun->lun_sep)
1280 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1281 spin_unlock(&cmd->se_lun->lun_sep_lock);
1282 return 0;
1283 }
1284 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1285
1286 /*
1287 * Used by fabric module frontends to queue tasks directly.
1288 * Many only be used from process context only
1289 */
1290 int transport_handle_cdb_direct(
1291 struct se_cmd *cmd)
1292 {
1293 sense_reason_t ret;
1294
1295 if (!cmd->se_lun) {
1296 dump_stack();
1297 pr_err("cmd->se_lun is NULL\n");
1298 return -EINVAL;
1299 }
1300 if (in_interrupt()) {
1301 dump_stack();
1302 pr_err("transport_generic_handle_cdb cannot be called"
1303 " from interrupt context\n");
1304 return -EINVAL;
1305 }
1306 /*
1307 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1308 * outstanding descriptors are handled correctly during shutdown via
1309 * transport_wait_for_tasks()
1310 *
1311 * Also, we don't take cmd->t_state_lock here as we only expect
1312 * this to be called for initial descriptor submission.
1313 */
1314 cmd->t_state = TRANSPORT_NEW_CMD;
1315 cmd->transport_state |= CMD_T_ACTIVE;
1316
1317 /*
1318 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1319 * so follow TRANSPORT_NEW_CMD processing thread context usage
1320 * and call transport_generic_request_failure() if necessary..
1321 */
1322 ret = transport_generic_new_cmd(cmd);
1323 if (ret)
1324 transport_generic_request_failure(cmd, ret);
1325 return 0;
1326 }
1327 EXPORT_SYMBOL(transport_handle_cdb_direct);
1328
1329 sense_reason_t
1330 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1331 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1332 {
1333 if (!sgl || !sgl_count)
1334 return 0;
1335
1336 /*
1337 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1338 * scatterlists already have been set to follow what the fabric
1339 * passes for the original expected data transfer length.
1340 */
1341 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1342 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1343 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1344 return TCM_INVALID_CDB_FIELD;
1345 }
1346
1347 cmd->t_data_sg = sgl;
1348 cmd->t_data_nents = sgl_count;
1349
1350 if (sgl_bidi && sgl_bidi_count) {
1351 cmd->t_bidi_data_sg = sgl_bidi;
1352 cmd->t_bidi_data_nents = sgl_bidi_count;
1353 }
1354 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1355 return 0;
1356 }
1357
1358 /*
1359 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1360 * se_cmd + use pre-allocated SGL memory.
1361 *
1362 * @se_cmd: command descriptor to submit
1363 * @se_sess: associated se_sess for endpoint
1364 * @cdb: pointer to SCSI CDB
1365 * @sense: pointer to SCSI sense buffer
1366 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1367 * @data_length: fabric expected data transfer length
1368 * @task_addr: SAM task attribute
1369 * @data_dir: DMA data direction
1370 * @flags: flags for command submission from target_sc_flags_tables
1371 * @sgl: struct scatterlist memory for unidirectional mapping
1372 * @sgl_count: scatterlist count for unidirectional mapping
1373 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1374 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1375 * @sgl_prot: struct scatterlist memory protection information
1376 * @sgl_prot_count: scatterlist count for protection information
1377 *
1378 * Returns non zero to signal active I/O shutdown failure. All other
1379 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1380 * but still return zero here.
1381 *
1382 * This may only be called from process context, and also currently
1383 * assumes internal allocation of fabric payload buffer by target-core.
1384 */
1385 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1386 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1387 u32 data_length, int task_attr, int data_dir, int flags,
1388 struct scatterlist *sgl, u32 sgl_count,
1389 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1390 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1391 {
1392 struct se_portal_group *se_tpg;
1393 sense_reason_t rc;
1394 int ret;
1395
1396 se_tpg = se_sess->se_tpg;
1397 BUG_ON(!se_tpg);
1398 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1399 BUG_ON(in_interrupt());
1400 /*
1401 * Initialize se_cmd for target operation. From this point
1402 * exceptions are handled by sending exception status via
1403 * target_core_fabric_ops->queue_status() callback
1404 */
1405 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1406 data_length, data_dir, task_attr, sense);
1407 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1408 se_cmd->unknown_data_length = 1;
1409 /*
1410 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1411 * se_sess->sess_cmd_list. A second kref_get here is necessary
1412 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1413 * kref_put() to happen during fabric packet acknowledgement.
1414 */
1415 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1416 if (ret)
1417 return ret;
1418 /*
1419 * Signal bidirectional data payloads to target-core
1420 */
1421 if (flags & TARGET_SCF_BIDI_OP)
1422 se_cmd->se_cmd_flags |= SCF_BIDI;
1423 /*
1424 * Locate se_lun pointer and attach it to struct se_cmd
1425 */
1426 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1427 if (rc) {
1428 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1429 target_put_sess_cmd(se_sess, se_cmd);
1430 return 0;
1431 }
1432
1433 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1434 if (rc != 0) {
1435 transport_generic_request_failure(se_cmd, rc);
1436 return 0;
1437 }
1438
1439 /*
1440 * Save pointers for SGLs containing protection information,
1441 * if present.
1442 */
1443 if (sgl_prot_count) {
1444 se_cmd->t_prot_sg = sgl_prot;
1445 se_cmd->t_prot_nents = sgl_prot_count;
1446 }
1447
1448 /*
1449 * When a non zero sgl_count has been passed perform SGL passthrough
1450 * mapping for pre-allocated fabric memory instead of having target
1451 * core perform an internal SGL allocation..
1452 */
1453 if (sgl_count != 0) {
1454 BUG_ON(!sgl);
1455
1456 /*
1457 * A work-around for tcm_loop as some userspace code via
1458 * scsi-generic do not memset their associated read buffers,
1459 * so go ahead and do that here for type non-data CDBs. Also
1460 * note that this is currently guaranteed to be a single SGL
1461 * for this case by target core in target_setup_cmd_from_cdb()
1462 * -> transport_generic_cmd_sequencer().
1463 */
1464 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1465 se_cmd->data_direction == DMA_FROM_DEVICE) {
1466 unsigned char *buf = NULL;
1467
1468 if (sgl)
1469 buf = kmap(sg_page(sgl)) + sgl->offset;
1470
1471 if (buf) {
1472 memset(buf, 0, sgl->length);
1473 kunmap(sg_page(sgl));
1474 }
1475 }
1476
1477 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1478 sgl_bidi, sgl_bidi_count);
1479 if (rc != 0) {
1480 transport_generic_request_failure(se_cmd, rc);
1481 return 0;
1482 }
1483 }
1484
1485 /*
1486 * Check if we need to delay processing because of ALUA
1487 * Active/NonOptimized primary access state..
1488 */
1489 core_alua_check_nonop_delay(se_cmd);
1490
1491 transport_handle_cdb_direct(se_cmd);
1492 return 0;
1493 }
1494 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1495
1496 /*
1497 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1498 *
1499 * @se_cmd: command descriptor to submit
1500 * @se_sess: associated se_sess for endpoint
1501 * @cdb: pointer to SCSI CDB
1502 * @sense: pointer to SCSI sense buffer
1503 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1504 * @data_length: fabric expected data transfer length
1505 * @task_addr: SAM task attribute
1506 * @data_dir: DMA data direction
1507 * @flags: flags for command submission from target_sc_flags_tables
1508 *
1509 * Returns non zero to signal active I/O shutdown failure. All other
1510 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1511 * but still return zero here.
1512 *
1513 * This may only be called from process context, and also currently
1514 * assumes internal allocation of fabric payload buffer by target-core.
1515 *
1516 * It also assumes interal target core SGL memory allocation.
1517 */
1518 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1519 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1520 u32 data_length, int task_attr, int data_dir, int flags)
1521 {
1522 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1523 unpacked_lun, data_length, task_attr, data_dir,
1524 flags, NULL, 0, NULL, 0, NULL, 0);
1525 }
1526 EXPORT_SYMBOL(target_submit_cmd);
1527
1528 static void target_complete_tmr_failure(struct work_struct *work)
1529 {
1530 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1531
1532 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1533 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1534
1535 transport_cmd_check_stop_to_fabric(se_cmd);
1536 }
1537
1538 /**
1539 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1540 * for TMR CDBs
1541 *
1542 * @se_cmd: command descriptor to submit
1543 * @se_sess: associated se_sess for endpoint
1544 * @sense: pointer to SCSI sense buffer
1545 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1546 * @fabric_context: fabric context for TMR req
1547 * @tm_type: Type of TM request
1548 * @gfp: gfp type for caller
1549 * @tag: referenced task tag for TMR_ABORT_TASK
1550 * @flags: submit cmd flags
1551 *
1552 * Callable from all contexts.
1553 **/
1554
1555 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1556 unsigned char *sense, u32 unpacked_lun,
1557 void *fabric_tmr_ptr, unsigned char tm_type,
1558 gfp_t gfp, unsigned int tag, int flags)
1559 {
1560 struct se_portal_group *se_tpg;
1561 int ret;
1562
1563 se_tpg = se_sess->se_tpg;
1564 BUG_ON(!se_tpg);
1565
1566 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1567 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1568 /*
1569 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1570 * allocation failure.
1571 */
1572 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1573 if (ret < 0)
1574 return -ENOMEM;
1575
1576 if (tm_type == TMR_ABORT_TASK)
1577 se_cmd->se_tmr_req->ref_task_tag = tag;
1578
1579 /* See target_submit_cmd for commentary */
1580 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1581 if (ret) {
1582 core_tmr_release_req(se_cmd->se_tmr_req);
1583 return ret;
1584 }
1585
1586 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1587 if (ret) {
1588 /*
1589 * For callback during failure handling, push this work off
1590 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1591 */
1592 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1593 schedule_work(&se_cmd->work);
1594 return 0;
1595 }
1596 transport_generic_handle_tmr(se_cmd);
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(target_submit_tmr);
1600
1601 /*
1602 * If the cmd is active, request it to be stopped and sleep until it
1603 * has completed.
1604 */
1605 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1606 __releases(&cmd->t_state_lock)
1607 __acquires(&cmd->t_state_lock)
1608 {
1609 bool was_active = false;
1610
1611 if (cmd->transport_state & CMD_T_BUSY) {
1612 cmd->transport_state |= CMD_T_REQUEST_STOP;
1613 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1614
1615 pr_debug("cmd %p waiting to complete\n", cmd);
1616 wait_for_completion(&cmd->task_stop_comp);
1617 pr_debug("cmd %p stopped successfully\n", cmd);
1618
1619 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1620 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1621 cmd->transport_state &= ~CMD_T_BUSY;
1622 was_active = true;
1623 }
1624
1625 return was_active;
1626 }
1627
1628 /*
1629 * Handle SAM-esque emulation for generic transport request failures.
1630 */
1631 void transport_generic_request_failure(struct se_cmd *cmd,
1632 sense_reason_t sense_reason)
1633 {
1634 int ret = 0;
1635
1636 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1637 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1638 cmd->t_task_cdb[0]);
1639 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1640 cmd->se_tfo->get_cmd_state(cmd),
1641 cmd->t_state, sense_reason);
1642 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1643 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1644 (cmd->transport_state & CMD_T_STOP) != 0,
1645 (cmd->transport_state & CMD_T_SENT) != 0);
1646
1647 /*
1648 * For SAM Task Attribute emulation for failed struct se_cmd
1649 */
1650 transport_complete_task_attr(cmd);
1651 /*
1652 * Handle special case for COMPARE_AND_WRITE failure, where the
1653 * callback is expected to drop the per device ->caw_sem.
1654 */
1655 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1656 cmd->transport_complete_callback)
1657 cmd->transport_complete_callback(cmd, false);
1658
1659 switch (sense_reason) {
1660 case TCM_NON_EXISTENT_LUN:
1661 case TCM_UNSUPPORTED_SCSI_OPCODE:
1662 case TCM_INVALID_CDB_FIELD:
1663 case TCM_INVALID_PARAMETER_LIST:
1664 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1665 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1666 case TCM_UNKNOWN_MODE_PAGE:
1667 case TCM_WRITE_PROTECTED:
1668 case TCM_ADDRESS_OUT_OF_RANGE:
1669 case TCM_CHECK_CONDITION_ABORT_CMD:
1670 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1671 case TCM_CHECK_CONDITION_NOT_READY:
1672 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1673 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1674 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1675 break;
1676 case TCM_OUT_OF_RESOURCES:
1677 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1678 break;
1679 case TCM_RESERVATION_CONFLICT:
1680 /*
1681 * No SENSE Data payload for this case, set SCSI Status
1682 * and queue the response to $FABRIC_MOD.
1683 *
1684 * Uses linux/include/scsi/scsi.h SAM status codes defs
1685 */
1686 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1687 /*
1688 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1689 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1690 * CONFLICT STATUS.
1691 *
1692 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1693 */
1694 if (cmd->se_sess &&
1695 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1696 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1697 cmd->orig_fe_lun, 0x2C,
1698 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1699
1700 trace_target_cmd_complete(cmd);
1701 ret = cmd->se_tfo-> queue_status(cmd);
1702 if (ret == -EAGAIN || ret == -ENOMEM)
1703 goto queue_full;
1704 goto check_stop;
1705 default:
1706 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1707 cmd->t_task_cdb[0], sense_reason);
1708 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1709 break;
1710 }
1711
1712 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1713 if (ret == -EAGAIN || ret == -ENOMEM)
1714 goto queue_full;
1715
1716 check_stop:
1717 transport_lun_remove_cmd(cmd);
1718 if (!transport_cmd_check_stop_to_fabric(cmd))
1719 ;
1720 return;
1721
1722 queue_full:
1723 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1724 transport_handle_queue_full(cmd, cmd->se_dev);
1725 }
1726 EXPORT_SYMBOL(transport_generic_request_failure);
1727
1728 void __target_execute_cmd(struct se_cmd *cmd)
1729 {
1730 sense_reason_t ret;
1731
1732 if (cmd->execute_cmd) {
1733 ret = cmd->execute_cmd(cmd);
1734 if (ret) {
1735 spin_lock_irq(&cmd->t_state_lock);
1736 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1737 spin_unlock_irq(&cmd->t_state_lock);
1738
1739 transport_generic_request_failure(cmd, ret);
1740 }
1741 }
1742 }
1743
1744 static int target_write_prot_action(struct se_cmd *cmd)
1745 {
1746 u32 sectors;
1747 /*
1748 * Perform WRITE_INSERT of PI using software emulation when backend
1749 * device has PI enabled, if the transport has not already generated
1750 * PI using hardware WRITE_INSERT offload.
1751 */
1752 switch (cmd->prot_op) {
1753 case TARGET_PROT_DOUT_INSERT:
1754 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1755 sbc_dif_generate(cmd);
1756 break;
1757 case TARGET_PROT_DOUT_STRIP:
1758 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1759 break;
1760
1761 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1762 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1763 sectors, 0, NULL, 0);
1764 if (unlikely(cmd->pi_err)) {
1765 spin_lock_irq(&cmd->t_state_lock);
1766 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1767 spin_unlock_irq(&cmd->t_state_lock);
1768 transport_generic_request_failure(cmd, cmd->pi_err);
1769 return -1;
1770 }
1771 break;
1772 default:
1773 break;
1774 }
1775
1776 return 0;
1777 }
1778
1779 static bool target_handle_task_attr(struct se_cmd *cmd)
1780 {
1781 struct se_device *dev = cmd->se_dev;
1782
1783 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1784 return false;
1785
1786 /*
1787 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1788 * to allow the passed struct se_cmd list of tasks to the front of the list.
1789 */
1790 switch (cmd->sam_task_attr) {
1791 case TCM_HEAD_TAG:
1792 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1793 "se_ordered_id: %u\n",
1794 cmd->t_task_cdb[0], cmd->se_ordered_id);
1795 return false;
1796 case TCM_ORDERED_TAG:
1797 atomic_inc_mb(&dev->dev_ordered_sync);
1798
1799 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1800 " se_ordered_id: %u\n",
1801 cmd->t_task_cdb[0], cmd->se_ordered_id);
1802
1803 /*
1804 * Execute an ORDERED command if no other older commands
1805 * exist that need to be completed first.
1806 */
1807 if (!atomic_read(&dev->simple_cmds))
1808 return false;
1809 break;
1810 default:
1811 /*
1812 * For SIMPLE and UNTAGGED Task Attribute commands
1813 */
1814 atomic_inc_mb(&dev->simple_cmds);
1815 break;
1816 }
1817
1818 if (atomic_read(&dev->dev_ordered_sync) == 0)
1819 return false;
1820
1821 spin_lock(&dev->delayed_cmd_lock);
1822 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1823 spin_unlock(&dev->delayed_cmd_lock);
1824
1825 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1826 " delayed CMD list, se_ordered_id: %u\n",
1827 cmd->t_task_cdb[0], cmd->sam_task_attr,
1828 cmd->se_ordered_id);
1829 return true;
1830 }
1831
1832 void target_execute_cmd(struct se_cmd *cmd)
1833 {
1834 /*
1835 * If the received CDB has aleady been aborted stop processing it here.
1836 */
1837 if (transport_check_aborted_status(cmd, 1))
1838 return;
1839
1840 /*
1841 * Determine if frontend context caller is requesting the stopping of
1842 * this command for frontend exceptions.
1843 */
1844 spin_lock_irq(&cmd->t_state_lock);
1845 if (cmd->transport_state & CMD_T_STOP) {
1846 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1847 __func__, __LINE__,
1848 cmd->se_tfo->get_task_tag(cmd));
1849
1850 spin_unlock_irq(&cmd->t_state_lock);
1851 complete_all(&cmd->t_transport_stop_comp);
1852 return;
1853 }
1854
1855 cmd->t_state = TRANSPORT_PROCESSING;
1856 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1857 spin_unlock_irq(&cmd->t_state_lock);
1858
1859 if (target_write_prot_action(cmd))
1860 return;
1861
1862 if (target_handle_task_attr(cmd)) {
1863 spin_lock_irq(&cmd->t_state_lock);
1864 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1865 spin_unlock_irq(&cmd->t_state_lock);
1866 return;
1867 }
1868
1869 __target_execute_cmd(cmd);
1870 }
1871 EXPORT_SYMBOL(target_execute_cmd);
1872
1873 /*
1874 * Process all commands up to the last received ORDERED task attribute which
1875 * requires another blocking boundary
1876 */
1877 static void target_restart_delayed_cmds(struct se_device *dev)
1878 {
1879 for (;;) {
1880 struct se_cmd *cmd;
1881
1882 spin_lock(&dev->delayed_cmd_lock);
1883 if (list_empty(&dev->delayed_cmd_list)) {
1884 spin_unlock(&dev->delayed_cmd_lock);
1885 break;
1886 }
1887
1888 cmd = list_entry(dev->delayed_cmd_list.next,
1889 struct se_cmd, se_delayed_node);
1890 list_del(&cmd->se_delayed_node);
1891 spin_unlock(&dev->delayed_cmd_lock);
1892
1893 __target_execute_cmd(cmd);
1894
1895 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1896 break;
1897 }
1898 }
1899
1900 /*
1901 * Called from I/O completion to determine which dormant/delayed
1902 * and ordered cmds need to have their tasks added to the execution queue.
1903 */
1904 static void transport_complete_task_attr(struct se_cmd *cmd)
1905 {
1906 struct se_device *dev = cmd->se_dev;
1907
1908 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1909 return;
1910
1911 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1912 atomic_dec_mb(&dev->simple_cmds);
1913 dev->dev_cur_ordered_id++;
1914 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1915 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1916 cmd->se_ordered_id);
1917 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1918 dev->dev_cur_ordered_id++;
1919 pr_debug("Incremented dev_cur_ordered_id: %u for"
1920 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1921 cmd->se_ordered_id);
1922 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1923 atomic_dec_mb(&dev->dev_ordered_sync);
1924
1925 dev->dev_cur_ordered_id++;
1926 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1927 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1928 }
1929
1930 target_restart_delayed_cmds(dev);
1931 }
1932
1933 static void transport_complete_qf(struct se_cmd *cmd)
1934 {
1935 int ret = 0;
1936
1937 transport_complete_task_attr(cmd);
1938
1939 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1940 trace_target_cmd_complete(cmd);
1941 ret = cmd->se_tfo->queue_status(cmd);
1942 goto out;
1943 }
1944
1945 switch (cmd->data_direction) {
1946 case DMA_FROM_DEVICE:
1947 trace_target_cmd_complete(cmd);
1948 ret = cmd->se_tfo->queue_data_in(cmd);
1949 break;
1950 case DMA_TO_DEVICE:
1951 if (cmd->se_cmd_flags & SCF_BIDI) {
1952 ret = cmd->se_tfo->queue_data_in(cmd);
1953 break;
1954 }
1955 /* Fall through for DMA_TO_DEVICE */
1956 case DMA_NONE:
1957 trace_target_cmd_complete(cmd);
1958 ret = cmd->se_tfo->queue_status(cmd);
1959 break;
1960 default:
1961 break;
1962 }
1963
1964 out:
1965 if (ret < 0) {
1966 transport_handle_queue_full(cmd, cmd->se_dev);
1967 return;
1968 }
1969 transport_lun_remove_cmd(cmd);
1970 transport_cmd_check_stop_to_fabric(cmd);
1971 }
1972
1973 static void transport_handle_queue_full(
1974 struct se_cmd *cmd,
1975 struct se_device *dev)
1976 {
1977 spin_lock_irq(&dev->qf_cmd_lock);
1978 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1979 atomic_inc_mb(&dev->dev_qf_count);
1980 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1981
1982 schedule_work(&cmd->se_dev->qf_work_queue);
1983 }
1984
1985 static bool target_read_prot_action(struct se_cmd *cmd)
1986 {
1987 sense_reason_t rc;
1988
1989 switch (cmd->prot_op) {
1990 case TARGET_PROT_DIN_STRIP:
1991 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1992 rc = sbc_dif_read_strip(cmd);
1993 if (rc) {
1994 cmd->pi_err = rc;
1995 return true;
1996 }
1997 }
1998 break;
1999 case TARGET_PROT_DIN_INSERT:
2000 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2001 break;
2002
2003 sbc_dif_generate(cmd);
2004 break;
2005 default:
2006 break;
2007 }
2008
2009 return false;
2010 }
2011
2012 static void target_complete_ok_work(struct work_struct *work)
2013 {
2014 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2015 int ret;
2016
2017 /*
2018 * Check if we need to move delayed/dormant tasks from cmds on the
2019 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2020 * Attribute.
2021 */
2022 transport_complete_task_attr(cmd);
2023
2024 /*
2025 * Check to schedule QUEUE_FULL work, or execute an existing
2026 * cmd->transport_qf_callback()
2027 */
2028 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2029 schedule_work(&cmd->se_dev->qf_work_queue);
2030
2031 /*
2032 * Check if we need to send a sense buffer from
2033 * the struct se_cmd in question.
2034 */
2035 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2036 WARN_ON(!cmd->scsi_status);
2037 ret = transport_send_check_condition_and_sense(
2038 cmd, 0, 1);
2039 if (ret == -EAGAIN || ret == -ENOMEM)
2040 goto queue_full;
2041
2042 transport_lun_remove_cmd(cmd);
2043 transport_cmd_check_stop_to_fabric(cmd);
2044 return;
2045 }
2046 /*
2047 * Check for a callback, used by amongst other things
2048 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2049 */
2050 if (cmd->transport_complete_callback) {
2051 sense_reason_t rc;
2052
2053 rc = cmd->transport_complete_callback(cmd, true);
2054 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2055 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2056 !cmd->data_length)
2057 goto queue_rsp;
2058
2059 return;
2060 } else if (rc) {
2061 ret = transport_send_check_condition_and_sense(cmd,
2062 rc, 0);
2063 if (ret == -EAGAIN || ret == -ENOMEM)
2064 goto queue_full;
2065
2066 transport_lun_remove_cmd(cmd);
2067 transport_cmd_check_stop_to_fabric(cmd);
2068 return;
2069 }
2070 }
2071
2072 queue_rsp:
2073 switch (cmd->data_direction) {
2074 case DMA_FROM_DEVICE:
2075 spin_lock(&cmd->se_lun->lun_sep_lock);
2076 if (cmd->se_lun->lun_sep) {
2077 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2078 cmd->data_length;
2079 }
2080 spin_unlock(&cmd->se_lun->lun_sep_lock);
2081 /*
2082 * Perform READ_STRIP of PI using software emulation when
2083 * backend had PI enabled, if the transport will not be
2084 * performing hardware READ_STRIP offload.
2085 */
2086 if (target_read_prot_action(cmd)) {
2087 ret = transport_send_check_condition_and_sense(cmd,
2088 cmd->pi_err, 0);
2089 if (ret == -EAGAIN || ret == -ENOMEM)
2090 goto queue_full;
2091
2092 transport_lun_remove_cmd(cmd);
2093 transport_cmd_check_stop_to_fabric(cmd);
2094 return;
2095 }
2096
2097 trace_target_cmd_complete(cmd);
2098 ret = cmd->se_tfo->queue_data_in(cmd);
2099 if (ret == -EAGAIN || ret == -ENOMEM)
2100 goto queue_full;
2101 break;
2102 case DMA_TO_DEVICE:
2103 spin_lock(&cmd->se_lun->lun_sep_lock);
2104 if (cmd->se_lun->lun_sep) {
2105 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2106 cmd->data_length;
2107 }
2108 spin_unlock(&cmd->se_lun->lun_sep_lock);
2109 /*
2110 * Check if we need to send READ payload for BIDI-COMMAND
2111 */
2112 if (cmd->se_cmd_flags & SCF_BIDI) {
2113 spin_lock(&cmd->se_lun->lun_sep_lock);
2114 if (cmd->se_lun->lun_sep) {
2115 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2116 cmd->data_length;
2117 }
2118 spin_unlock(&cmd->se_lun->lun_sep_lock);
2119 ret = cmd->se_tfo->queue_data_in(cmd);
2120 if (ret == -EAGAIN || ret == -ENOMEM)
2121 goto queue_full;
2122 break;
2123 }
2124 /* Fall through for DMA_TO_DEVICE */
2125 case DMA_NONE:
2126 trace_target_cmd_complete(cmd);
2127 ret = cmd->se_tfo->queue_status(cmd);
2128 if (ret == -EAGAIN || ret == -ENOMEM)
2129 goto queue_full;
2130 break;
2131 default:
2132 break;
2133 }
2134
2135 transport_lun_remove_cmd(cmd);
2136 transport_cmd_check_stop_to_fabric(cmd);
2137 return;
2138
2139 queue_full:
2140 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2141 " data_direction: %d\n", cmd, cmd->data_direction);
2142 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2143 transport_handle_queue_full(cmd, cmd->se_dev);
2144 }
2145
2146 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2147 {
2148 struct scatterlist *sg;
2149 int count;
2150
2151 for_each_sg(sgl, sg, nents, count)
2152 __free_page(sg_page(sg));
2153
2154 kfree(sgl);
2155 }
2156
2157 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2158 {
2159 /*
2160 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2161 * emulation, and free + reset pointers if necessary..
2162 */
2163 if (!cmd->t_data_sg_orig)
2164 return;
2165
2166 kfree(cmd->t_data_sg);
2167 cmd->t_data_sg = cmd->t_data_sg_orig;
2168 cmd->t_data_sg_orig = NULL;
2169 cmd->t_data_nents = cmd->t_data_nents_orig;
2170 cmd->t_data_nents_orig = 0;
2171 }
2172
2173 static inline void transport_free_pages(struct se_cmd *cmd)
2174 {
2175 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2176 /*
2177 * Release special case READ buffer payload required for
2178 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2179 */
2180 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2181 transport_free_sgl(cmd->t_bidi_data_sg,
2182 cmd->t_bidi_data_nents);
2183 cmd->t_bidi_data_sg = NULL;
2184 cmd->t_bidi_data_nents = 0;
2185 }
2186 transport_reset_sgl_orig(cmd);
2187 return;
2188 }
2189 transport_reset_sgl_orig(cmd);
2190
2191 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2192 cmd->t_data_sg = NULL;
2193 cmd->t_data_nents = 0;
2194
2195 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2196 cmd->t_bidi_data_sg = NULL;
2197 cmd->t_bidi_data_nents = 0;
2198
2199 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2200 cmd->t_prot_sg = NULL;
2201 cmd->t_prot_nents = 0;
2202 }
2203
2204 /**
2205 * transport_release_cmd - free a command
2206 * @cmd: command to free
2207 *
2208 * This routine unconditionally frees a command, and reference counting
2209 * or list removal must be done in the caller.
2210 */
2211 static int transport_release_cmd(struct se_cmd *cmd)
2212 {
2213 BUG_ON(!cmd->se_tfo);
2214
2215 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2216 core_tmr_release_req(cmd->se_tmr_req);
2217 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2218 kfree(cmd->t_task_cdb);
2219 /*
2220 * If this cmd has been setup with target_get_sess_cmd(), drop
2221 * the kref and call ->release_cmd() in kref callback.
2222 */
2223 return target_put_sess_cmd(cmd->se_sess, cmd);
2224 }
2225
2226 /**
2227 * transport_put_cmd - release a reference to a command
2228 * @cmd: command to release
2229 *
2230 * This routine releases our reference to the command and frees it if possible.
2231 */
2232 static int transport_put_cmd(struct se_cmd *cmd)
2233 {
2234 transport_free_pages(cmd);
2235 return transport_release_cmd(cmd);
2236 }
2237
2238 void *transport_kmap_data_sg(struct se_cmd *cmd)
2239 {
2240 struct scatterlist *sg = cmd->t_data_sg;
2241 struct page **pages;
2242 int i;
2243
2244 /*
2245 * We need to take into account a possible offset here for fabrics like
2246 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2247 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2248 */
2249 if (!cmd->t_data_nents)
2250 return NULL;
2251
2252 BUG_ON(!sg);
2253 if (cmd->t_data_nents == 1)
2254 return kmap(sg_page(sg)) + sg->offset;
2255
2256 /* >1 page. use vmap */
2257 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2258 if (!pages)
2259 return NULL;
2260
2261 /* convert sg[] to pages[] */
2262 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2263 pages[i] = sg_page(sg);
2264 }
2265
2266 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2267 kfree(pages);
2268 if (!cmd->t_data_vmap)
2269 return NULL;
2270
2271 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2272 }
2273 EXPORT_SYMBOL(transport_kmap_data_sg);
2274
2275 void transport_kunmap_data_sg(struct se_cmd *cmd)
2276 {
2277 if (!cmd->t_data_nents) {
2278 return;
2279 } else if (cmd->t_data_nents == 1) {
2280 kunmap(sg_page(cmd->t_data_sg));
2281 return;
2282 }
2283
2284 vunmap(cmd->t_data_vmap);
2285 cmd->t_data_vmap = NULL;
2286 }
2287 EXPORT_SYMBOL(transport_kunmap_data_sg);
2288
2289 int
2290 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2291 bool zero_page)
2292 {
2293 struct scatterlist *sg;
2294 struct page *page;
2295 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2296 unsigned int nent;
2297 int i = 0;
2298
2299 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2300 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2301 if (!sg)
2302 return -ENOMEM;
2303
2304 sg_init_table(sg, nent);
2305
2306 while (length) {
2307 u32 page_len = min_t(u32, length, PAGE_SIZE);
2308 page = alloc_page(GFP_KERNEL | zero_flag);
2309 if (!page)
2310 goto out;
2311
2312 sg_set_page(&sg[i], page, page_len, 0);
2313 length -= page_len;
2314 i++;
2315 }
2316 *sgl = sg;
2317 *nents = nent;
2318 return 0;
2319
2320 out:
2321 while (i > 0) {
2322 i--;
2323 __free_page(sg_page(&sg[i]));
2324 }
2325 kfree(sg);
2326 return -ENOMEM;
2327 }
2328
2329 /*
2330 * Allocate any required resources to execute the command. For writes we
2331 * might not have the payload yet, so notify the fabric via a call to
2332 * ->write_pending instead. Otherwise place it on the execution queue.
2333 */
2334 sense_reason_t
2335 transport_generic_new_cmd(struct se_cmd *cmd)
2336 {
2337 int ret = 0;
2338 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2339
2340 /*
2341 * Determine is the TCM fabric module has already allocated physical
2342 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2343 * beforehand.
2344 */
2345 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2346 cmd->data_length) {
2347
2348 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2349 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2350 u32 bidi_length;
2351
2352 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2353 bidi_length = cmd->t_task_nolb *
2354 cmd->se_dev->dev_attrib.block_size;
2355 else
2356 bidi_length = cmd->data_length;
2357
2358 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2359 &cmd->t_bidi_data_nents,
2360 bidi_length, zero_flag);
2361 if (ret < 0)
2362 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2363 }
2364
2365 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2366 ret = target_alloc_sgl(&cmd->t_prot_sg,
2367 &cmd->t_prot_nents,
2368 cmd->prot_length, true);
2369 if (ret < 0)
2370 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2371 }
2372
2373 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2374 cmd->data_length, zero_flag);
2375 if (ret < 0)
2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2377 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2378 cmd->data_length) {
2379 /*
2380 * Special case for COMPARE_AND_WRITE with fabrics
2381 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2382 */
2383 u32 caw_length = cmd->t_task_nolb *
2384 cmd->se_dev->dev_attrib.block_size;
2385
2386 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2387 &cmd->t_bidi_data_nents,
2388 caw_length, zero_flag);
2389 if (ret < 0)
2390 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2391 }
2392 /*
2393 * If this command is not a write we can execute it right here,
2394 * for write buffers we need to notify the fabric driver first
2395 * and let it call back once the write buffers are ready.
2396 */
2397 target_add_to_state_list(cmd);
2398 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2399 target_execute_cmd(cmd);
2400 return 0;
2401 }
2402 transport_cmd_check_stop(cmd, false, true);
2403
2404 ret = cmd->se_tfo->write_pending(cmd);
2405 if (ret == -EAGAIN || ret == -ENOMEM)
2406 goto queue_full;
2407
2408 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2409 WARN_ON(ret);
2410
2411 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2412
2413 queue_full:
2414 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2415 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2416 transport_handle_queue_full(cmd, cmd->se_dev);
2417 return 0;
2418 }
2419 EXPORT_SYMBOL(transport_generic_new_cmd);
2420
2421 static void transport_write_pending_qf(struct se_cmd *cmd)
2422 {
2423 int ret;
2424
2425 ret = cmd->se_tfo->write_pending(cmd);
2426 if (ret == -EAGAIN || ret == -ENOMEM) {
2427 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2428 cmd);
2429 transport_handle_queue_full(cmd, cmd->se_dev);
2430 }
2431 }
2432
2433 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2434 {
2435 unsigned long flags;
2436 int ret = 0;
2437
2438 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2439 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2440 transport_wait_for_tasks(cmd);
2441
2442 ret = transport_release_cmd(cmd);
2443 } else {
2444 if (wait_for_tasks)
2445 transport_wait_for_tasks(cmd);
2446 /*
2447 * Handle WRITE failure case where transport_generic_new_cmd()
2448 * has already added se_cmd to state_list, but fabric has
2449 * failed command before I/O submission.
2450 */
2451 if (cmd->state_active) {
2452 spin_lock_irqsave(&cmd->t_state_lock, flags);
2453 target_remove_from_state_list(cmd);
2454 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2455 }
2456
2457 if (cmd->se_lun)
2458 transport_lun_remove_cmd(cmd);
2459
2460 ret = transport_put_cmd(cmd);
2461 }
2462 return ret;
2463 }
2464 EXPORT_SYMBOL(transport_generic_free_cmd);
2465
2466 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2467 * @se_sess: session to reference
2468 * @se_cmd: command descriptor to add
2469 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2470 */
2471 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2472 bool ack_kref)
2473 {
2474 unsigned long flags;
2475 int ret = 0;
2476
2477 /*
2478 * Add a second kref if the fabric caller is expecting to handle
2479 * fabric acknowledgement that requires two target_put_sess_cmd()
2480 * invocations before se_cmd descriptor release.
2481 */
2482 if (ack_kref)
2483 kref_get(&se_cmd->cmd_kref);
2484
2485 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2486 if (se_sess->sess_tearing_down) {
2487 ret = -ESHUTDOWN;
2488 goto out;
2489 }
2490 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2491 out:
2492 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2493
2494 if (ret && ack_kref)
2495 target_put_sess_cmd(se_sess, se_cmd);
2496
2497 return ret;
2498 }
2499 EXPORT_SYMBOL(target_get_sess_cmd);
2500
2501 static void target_release_cmd_kref(struct kref *kref)
2502 __releases(&se_cmd->se_sess->sess_cmd_lock)
2503 {
2504 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2505 struct se_session *se_sess = se_cmd->se_sess;
2506
2507 if (list_empty(&se_cmd->se_cmd_list)) {
2508 spin_unlock(&se_sess->sess_cmd_lock);
2509 se_cmd->se_tfo->release_cmd(se_cmd);
2510 return;
2511 }
2512 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2513 spin_unlock(&se_sess->sess_cmd_lock);
2514 complete(&se_cmd->cmd_wait_comp);
2515 return;
2516 }
2517 list_del(&se_cmd->se_cmd_list);
2518 spin_unlock(&se_sess->sess_cmd_lock);
2519
2520 se_cmd->se_tfo->release_cmd(se_cmd);
2521 }
2522
2523 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2524 * @se_sess: session to reference
2525 * @se_cmd: command descriptor to drop
2526 */
2527 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2528 {
2529 if (!se_sess) {
2530 se_cmd->se_tfo->release_cmd(se_cmd);
2531 return 1;
2532 }
2533 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2534 &se_sess->sess_cmd_lock);
2535 }
2536 EXPORT_SYMBOL(target_put_sess_cmd);
2537
2538 /* target_sess_cmd_list_set_waiting - Flag all commands in
2539 * sess_cmd_list to complete cmd_wait_comp. Set
2540 * sess_tearing_down so no more commands are queued.
2541 * @se_sess: session to flag
2542 */
2543 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2544 {
2545 struct se_cmd *se_cmd;
2546 unsigned long flags;
2547
2548 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2549 if (se_sess->sess_tearing_down) {
2550 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2551 return;
2552 }
2553 se_sess->sess_tearing_down = 1;
2554 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2555
2556 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2557 se_cmd->cmd_wait_set = 1;
2558
2559 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2560 }
2561 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2562
2563 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2564 * @se_sess: session to wait for active I/O
2565 */
2566 void target_wait_for_sess_cmds(struct se_session *se_sess)
2567 {
2568 struct se_cmd *se_cmd, *tmp_cmd;
2569 unsigned long flags;
2570
2571 list_for_each_entry_safe(se_cmd, tmp_cmd,
2572 &se_sess->sess_wait_list, se_cmd_list) {
2573 list_del(&se_cmd->se_cmd_list);
2574
2575 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2576 " %d\n", se_cmd, se_cmd->t_state,
2577 se_cmd->se_tfo->get_cmd_state(se_cmd));
2578
2579 wait_for_completion(&se_cmd->cmd_wait_comp);
2580 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2581 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2582 se_cmd->se_tfo->get_cmd_state(se_cmd));
2583
2584 se_cmd->se_tfo->release_cmd(se_cmd);
2585 }
2586
2587 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2588 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2589 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2590
2591 }
2592 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2593
2594 static int transport_clear_lun_ref_thread(void *p)
2595 {
2596 struct se_lun *lun = p;
2597
2598 percpu_ref_kill(&lun->lun_ref);
2599
2600 wait_for_completion(&lun->lun_ref_comp);
2601 complete(&lun->lun_shutdown_comp);
2602
2603 return 0;
2604 }
2605
2606 int transport_clear_lun_ref(struct se_lun *lun)
2607 {
2608 struct task_struct *kt;
2609
2610 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2611 "tcm_cl_%u", lun->unpacked_lun);
2612 if (IS_ERR(kt)) {
2613 pr_err("Unable to start clear_lun thread\n");
2614 return PTR_ERR(kt);
2615 }
2616 wait_for_completion(&lun->lun_shutdown_comp);
2617
2618 return 0;
2619 }
2620
2621 /**
2622 * transport_wait_for_tasks - wait for completion to occur
2623 * @cmd: command to wait
2624 *
2625 * Called from frontend fabric context to wait for storage engine
2626 * to pause and/or release frontend generated struct se_cmd.
2627 */
2628 bool transport_wait_for_tasks(struct se_cmd *cmd)
2629 {
2630 unsigned long flags;
2631
2632 spin_lock_irqsave(&cmd->t_state_lock, flags);
2633 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2634 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2635 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2636 return false;
2637 }
2638
2639 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2640 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2641 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2642 return false;
2643 }
2644
2645 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2646 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2647 return false;
2648 }
2649
2650 cmd->transport_state |= CMD_T_STOP;
2651
2652 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2653 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2654 cmd, cmd->se_tfo->get_task_tag(cmd),
2655 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2656
2657 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2658
2659 wait_for_completion(&cmd->t_transport_stop_comp);
2660
2661 spin_lock_irqsave(&cmd->t_state_lock, flags);
2662 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2663
2664 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2665 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2666 cmd->se_tfo->get_task_tag(cmd));
2667
2668 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2669
2670 return true;
2671 }
2672 EXPORT_SYMBOL(transport_wait_for_tasks);
2673
2674 static int transport_get_sense_codes(
2675 struct se_cmd *cmd,
2676 u8 *asc,
2677 u8 *ascq)
2678 {
2679 *asc = cmd->scsi_asc;
2680 *ascq = cmd->scsi_ascq;
2681
2682 return 0;
2683 }
2684
2685 static
2686 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2687 {
2688 /* Place failed LBA in sense data information descriptor 0. */
2689 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2690 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2691 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2692 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2693
2694 /* Descriptor Information: failing sector */
2695 put_unaligned_be64(bad_sector, &buffer[12]);
2696 }
2697
2698 int
2699 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2700 sense_reason_t reason, int from_transport)
2701 {
2702 unsigned char *buffer = cmd->sense_buffer;
2703 unsigned long flags;
2704 u8 asc = 0, ascq = 0;
2705
2706 spin_lock_irqsave(&cmd->t_state_lock, flags);
2707 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2708 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2709 return 0;
2710 }
2711 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2712 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2713
2714 if (!reason && from_transport)
2715 goto after_reason;
2716
2717 if (!from_transport)
2718 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2719
2720 /*
2721 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2722 * SENSE KEY values from include/scsi/scsi.h
2723 */
2724 switch (reason) {
2725 case TCM_NO_SENSE:
2726 /* CURRENT ERROR */
2727 buffer[0] = 0x70;
2728 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2729 /* Not Ready */
2730 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2731 /* NO ADDITIONAL SENSE INFORMATION */
2732 buffer[SPC_ASC_KEY_OFFSET] = 0;
2733 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2734 break;
2735 case TCM_NON_EXISTENT_LUN:
2736 /* CURRENT ERROR */
2737 buffer[0] = 0x70;
2738 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2739 /* ILLEGAL REQUEST */
2740 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2741 /* LOGICAL UNIT NOT SUPPORTED */
2742 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2743 break;
2744 case TCM_UNSUPPORTED_SCSI_OPCODE:
2745 case TCM_SECTOR_COUNT_TOO_MANY:
2746 /* CURRENT ERROR */
2747 buffer[0] = 0x70;
2748 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2749 /* ILLEGAL REQUEST */
2750 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2751 /* INVALID COMMAND OPERATION CODE */
2752 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2753 break;
2754 case TCM_UNKNOWN_MODE_PAGE:
2755 /* CURRENT ERROR */
2756 buffer[0] = 0x70;
2757 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2758 /* ILLEGAL REQUEST */
2759 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2760 /* INVALID FIELD IN CDB */
2761 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2762 break;
2763 case TCM_CHECK_CONDITION_ABORT_CMD:
2764 /* CURRENT ERROR */
2765 buffer[0] = 0x70;
2766 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2767 /* ABORTED COMMAND */
2768 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2769 /* BUS DEVICE RESET FUNCTION OCCURRED */
2770 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2771 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2772 break;
2773 case TCM_INCORRECT_AMOUNT_OF_DATA:
2774 /* CURRENT ERROR */
2775 buffer[0] = 0x70;
2776 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2777 /* ABORTED COMMAND */
2778 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2779 /* WRITE ERROR */
2780 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2781 /* NOT ENOUGH UNSOLICITED DATA */
2782 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2783 break;
2784 case TCM_INVALID_CDB_FIELD:
2785 /* CURRENT ERROR */
2786 buffer[0] = 0x70;
2787 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2788 /* ILLEGAL REQUEST */
2789 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2790 /* INVALID FIELD IN CDB */
2791 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2792 break;
2793 case TCM_INVALID_PARAMETER_LIST:
2794 /* CURRENT ERROR */
2795 buffer[0] = 0x70;
2796 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2797 /* ILLEGAL REQUEST */
2798 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2799 /* INVALID FIELD IN PARAMETER LIST */
2800 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2801 break;
2802 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2803 /* CURRENT ERROR */
2804 buffer[0] = 0x70;
2805 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2806 /* ILLEGAL REQUEST */
2807 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2808 /* PARAMETER LIST LENGTH ERROR */
2809 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2810 break;
2811 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2812 /* CURRENT ERROR */
2813 buffer[0] = 0x70;
2814 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2815 /* ABORTED COMMAND */
2816 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2817 /* WRITE ERROR */
2818 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2819 /* UNEXPECTED_UNSOLICITED_DATA */
2820 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2821 break;
2822 case TCM_SERVICE_CRC_ERROR:
2823 /* CURRENT ERROR */
2824 buffer[0] = 0x70;
2825 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2826 /* ABORTED COMMAND */
2827 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2828 /* PROTOCOL SERVICE CRC ERROR */
2829 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2830 /* N/A */
2831 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2832 break;
2833 case TCM_SNACK_REJECTED:
2834 /* CURRENT ERROR */
2835 buffer[0] = 0x70;
2836 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2837 /* ABORTED COMMAND */
2838 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2839 /* READ ERROR */
2840 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2841 /* FAILED RETRANSMISSION REQUEST */
2842 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2843 break;
2844 case TCM_WRITE_PROTECTED:
2845 /* CURRENT ERROR */
2846 buffer[0] = 0x70;
2847 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2848 /* DATA PROTECT */
2849 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2850 /* WRITE PROTECTED */
2851 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2852 break;
2853 case TCM_ADDRESS_OUT_OF_RANGE:
2854 /* CURRENT ERROR */
2855 buffer[0] = 0x70;
2856 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2857 /* ILLEGAL REQUEST */
2858 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2859 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2860 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2861 break;
2862 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2863 /* CURRENT ERROR */
2864 buffer[0] = 0x70;
2865 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2866 /* UNIT ATTENTION */
2867 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2868 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2869 buffer[SPC_ASC_KEY_OFFSET] = asc;
2870 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2871 break;
2872 case TCM_CHECK_CONDITION_NOT_READY:
2873 /* CURRENT ERROR */
2874 buffer[0] = 0x70;
2875 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2876 /* Not Ready */
2877 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2878 transport_get_sense_codes(cmd, &asc, &ascq);
2879 buffer[SPC_ASC_KEY_OFFSET] = asc;
2880 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2881 break;
2882 case TCM_MISCOMPARE_VERIFY:
2883 /* CURRENT ERROR */
2884 buffer[0] = 0x70;
2885 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2886 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2887 /* MISCOMPARE DURING VERIFY OPERATION */
2888 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2889 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2890 break;
2891 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2892 /* CURRENT ERROR */
2893 buffer[0] = 0x70;
2894 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2895 /* ILLEGAL REQUEST */
2896 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2897 /* LOGICAL BLOCK GUARD CHECK FAILED */
2898 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2899 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2900 transport_err_sector_info(buffer, cmd->bad_sector);
2901 break;
2902 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2903 /* CURRENT ERROR */
2904 buffer[0] = 0x70;
2905 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2906 /* ILLEGAL REQUEST */
2907 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2908 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2909 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2910 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2911 transport_err_sector_info(buffer, cmd->bad_sector);
2912 break;
2913 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2914 /* CURRENT ERROR */
2915 buffer[0] = 0x70;
2916 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2917 /* ILLEGAL REQUEST */
2918 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2919 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2920 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2921 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2922 transport_err_sector_info(buffer, cmd->bad_sector);
2923 break;
2924 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2925 default:
2926 /* CURRENT ERROR */
2927 buffer[0] = 0x70;
2928 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2929 /*
2930 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2931 * Solaris initiators. Returning NOT READY instead means the
2932 * operations will be retried a finite number of times and we
2933 * can survive intermittent errors.
2934 */
2935 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2936 /* LOGICAL UNIT COMMUNICATION FAILURE */
2937 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2938 break;
2939 }
2940 /*
2941 * This code uses linux/include/scsi/scsi.h SAM status codes!
2942 */
2943 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2944 /*
2945 * Automatically padded, this value is encoded in the fabric's
2946 * data_length response PDU containing the SCSI defined sense data.
2947 */
2948 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2949
2950 after_reason:
2951 trace_target_cmd_complete(cmd);
2952 return cmd->se_tfo->queue_status(cmd);
2953 }
2954 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2955
2956 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2957 {
2958 if (!(cmd->transport_state & CMD_T_ABORTED))
2959 return 0;
2960
2961 /*
2962 * If cmd has been aborted but either no status is to be sent or it has
2963 * already been sent, just return
2964 */
2965 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2966 return 1;
2967
2968 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2969 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2970
2971 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2972 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2973 trace_target_cmd_complete(cmd);
2974 cmd->se_tfo->queue_status(cmd);
2975
2976 return 1;
2977 }
2978 EXPORT_SYMBOL(transport_check_aborted_status);
2979
2980 void transport_send_task_abort(struct se_cmd *cmd)
2981 {
2982 unsigned long flags;
2983
2984 spin_lock_irqsave(&cmd->t_state_lock, flags);
2985 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2986 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2987 return;
2988 }
2989 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2990
2991 /*
2992 * If there are still expected incoming fabric WRITEs, we wait
2993 * until until they have completed before sending a TASK_ABORTED
2994 * response. This response with TASK_ABORTED status will be
2995 * queued back to fabric module by transport_check_aborted_status().
2996 */
2997 if (cmd->data_direction == DMA_TO_DEVICE) {
2998 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2999 cmd->transport_state |= CMD_T_ABORTED;
3000 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3001 return;
3002 }
3003 }
3004 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3005
3006 transport_lun_remove_cmd(cmd);
3007
3008 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3009 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3010 cmd->se_tfo->get_task_tag(cmd));
3011
3012 trace_target_cmd_complete(cmd);
3013 cmd->se_tfo->queue_status(cmd);
3014 }
3015
3016 static void target_tmr_work(struct work_struct *work)
3017 {
3018 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3019 struct se_device *dev = cmd->se_dev;
3020 struct se_tmr_req *tmr = cmd->se_tmr_req;
3021 int ret;
3022
3023 switch (tmr->function) {
3024 case TMR_ABORT_TASK:
3025 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3026 break;
3027 case TMR_ABORT_TASK_SET:
3028 case TMR_CLEAR_ACA:
3029 case TMR_CLEAR_TASK_SET:
3030 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3031 break;
3032 case TMR_LUN_RESET:
3033 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3034 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3035 TMR_FUNCTION_REJECTED;
3036 break;
3037 case TMR_TARGET_WARM_RESET:
3038 tmr->response = TMR_FUNCTION_REJECTED;
3039 break;
3040 case TMR_TARGET_COLD_RESET:
3041 tmr->response = TMR_FUNCTION_REJECTED;
3042 break;
3043 default:
3044 pr_err("Uknown TMR function: 0x%02x.\n",
3045 tmr->function);
3046 tmr->response = TMR_FUNCTION_REJECTED;
3047 break;
3048 }
3049
3050 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3051 cmd->se_tfo->queue_tm_rsp(cmd);
3052
3053 transport_cmd_check_stop_to_fabric(cmd);
3054 }
3055
3056 int transport_generic_handle_tmr(
3057 struct se_cmd *cmd)
3058 {
3059 unsigned long flags;
3060
3061 spin_lock_irqsave(&cmd->t_state_lock, flags);
3062 cmd->transport_state |= CMD_T_ACTIVE;
3063 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3064
3065 INIT_WORK(&cmd->work, target_tmr_work);
3066 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3067 return 0;
3068 }
3069 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.092845 seconds and 6 git commands to generate.