target: replace ->get_cdb with a target_get_task_cdb helper
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_scdb.h"
58 #include "target_core_ua.h"
59
60 static int sub_api_initialized;
61
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static int transport_complete_qf(struct se_cmd *cmd);
77 static void transport_handle_queue_full(struct se_cmd *cmd,
78 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
79 static void transport_direct_request_timeout(struct se_cmd *cmd);
80 static void transport_free_dev_tasks(struct se_cmd *cmd);
81 static u32 transport_allocate_tasks(struct se_cmd *cmd,
82 unsigned long long starting_lba,
83 enum dma_data_direction data_direction,
84 struct scatterlist *sgl, unsigned int nents);
85 static int transport_generic_get_mem(struct se_cmd *cmd);
86 static void transport_put_cmd(struct se_cmd *cmd);
87 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
88 struct se_queue_obj *qobj);
89 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
90 static void transport_stop_all_task_timers(struct se_cmd *cmd);
91
92 int init_se_kmem_caches(void)
93 {
94 se_cmd_cache = kmem_cache_create("se_cmd_cache",
95 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
96 if (!se_cmd_cache) {
97 pr_err("kmem_cache_create for struct se_cmd failed\n");
98 goto out;
99 }
100 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
101 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
102 0, NULL);
103 if (!se_tmr_req_cache) {
104 pr_err("kmem_cache_create() for struct se_tmr_req"
105 " failed\n");
106 goto out;
107 }
108 se_sess_cache = kmem_cache_create("se_sess_cache",
109 sizeof(struct se_session), __alignof__(struct se_session),
110 0, NULL);
111 if (!se_sess_cache) {
112 pr_err("kmem_cache_create() for struct se_session"
113 " failed\n");
114 goto out;
115 }
116 se_ua_cache = kmem_cache_create("se_ua_cache",
117 sizeof(struct se_ua), __alignof__(struct se_ua),
118 0, NULL);
119 if (!se_ua_cache) {
120 pr_err("kmem_cache_create() for struct se_ua failed\n");
121 goto out;
122 }
123 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
124 sizeof(struct t10_pr_registration),
125 __alignof__(struct t10_pr_registration), 0, NULL);
126 if (!t10_pr_reg_cache) {
127 pr_err("kmem_cache_create() for struct t10_pr_registration"
128 " failed\n");
129 goto out;
130 }
131 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
132 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
133 0, NULL);
134 if (!t10_alua_lu_gp_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
136 " failed\n");
137 goto out;
138 }
139 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
140 sizeof(struct t10_alua_lu_gp_member),
141 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
142 if (!t10_alua_lu_gp_mem_cache) {
143 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
144 "cache failed\n");
145 goto out;
146 }
147 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
148 sizeof(struct t10_alua_tg_pt_gp),
149 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
150 if (!t10_alua_tg_pt_gp_cache) {
151 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
152 "cache failed\n");
153 goto out;
154 }
155 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
156 "t10_alua_tg_pt_gp_mem_cache",
157 sizeof(struct t10_alua_tg_pt_gp_member),
158 __alignof__(struct t10_alua_tg_pt_gp_member),
159 0, NULL);
160 if (!t10_alua_tg_pt_gp_mem_cache) {
161 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
162 "mem_t failed\n");
163 goto out;
164 }
165
166 return 0;
167 out:
168 if (se_cmd_cache)
169 kmem_cache_destroy(se_cmd_cache);
170 if (se_tmr_req_cache)
171 kmem_cache_destroy(se_tmr_req_cache);
172 if (se_sess_cache)
173 kmem_cache_destroy(se_sess_cache);
174 if (se_ua_cache)
175 kmem_cache_destroy(se_ua_cache);
176 if (t10_pr_reg_cache)
177 kmem_cache_destroy(t10_pr_reg_cache);
178 if (t10_alua_lu_gp_cache)
179 kmem_cache_destroy(t10_alua_lu_gp_cache);
180 if (t10_alua_lu_gp_mem_cache)
181 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
182 if (t10_alua_tg_pt_gp_cache)
183 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
184 if (t10_alua_tg_pt_gp_mem_cache)
185 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
186 return -ENOMEM;
187 }
188
189 void release_se_kmem_caches(void)
190 {
191 kmem_cache_destroy(se_cmd_cache);
192 kmem_cache_destroy(se_tmr_req_cache);
193 kmem_cache_destroy(se_sess_cache);
194 kmem_cache_destroy(se_ua_cache);
195 kmem_cache_destroy(t10_pr_reg_cache);
196 kmem_cache_destroy(t10_alua_lu_gp_cache);
197 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
198 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
199 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
200 }
201
202 /* This code ensures unique mib indexes are handed out. */
203 static DEFINE_SPINLOCK(scsi_mib_index_lock);
204 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
205
206 /*
207 * Allocate a new row index for the entry type specified
208 */
209 u32 scsi_get_new_index(scsi_index_t type)
210 {
211 u32 new_index;
212
213 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
214
215 spin_lock(&scsi_mib_index_lock);
216 new_index = ++scsi_mib_index[type];
217 spin_unlock(&scsi_mib_index_lock);
218
219 return new_index;
220 }
221
222 void transport_init_queue_obj(struct se_queue_obj *qobj)
223 {
224 atomic_set(&qobj->queue_cnt, 0);
225 INIT_LIST_HEAD(&qobj->qobj_list);
226 init_waitqueue_head(&qobj->thread_wq);
227 spin_lock_init(&qobj->cmd_queue_lock);
228 }
229 EXPORT_SYMBOL(transport_init_queue_obj);
230
231 static int transport_subsystem_reqmods(void)
232 {
233 int ret;
234
235 ret = request_module("target_core_iblock");
236 if (ret != 0)
237 pr_err("Unable to load target_core_iblock\n");
238
239 ret = request_module("target_core_file");
240 if (ret != 0)
241 pr_err("Unable to load target_core_file\n");
242
243 ret = request_module("target_core_pscsi");
244 if (ret != 0)
245 pr_err("Unable to load target_core_pscsi\n");
246
247 ret = request_module("target_core_stgt");
248 if (ret != 0)
249 pr_err("Unable to load target_core_stgt\n");
250
251 return 0;
252 }
253
254 int transport_subsystem_check_init(void)
255 {
256 int ret;
257
258 if (sub_api_initialized)
259 return 0;
260 /*
261 * Request the loading of known TCM subsystem plugins..
262 */
263 ret = transport_subsystem_reqmods();
264 if (ret < 0)
265 return ret;
266
267 sub_api_initialized = 1;
268 return 0;
269 }
270
271 struct se_session *transport_init_session(void)
272 {
273 struct se_session *se_sess;
274
275 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
276 if (!se_sess) {
277 pr_err("Unable to allocate struct se_session from"
278 " se_sess_cache\n");
279 return ERR_PTR(-ENOMEM);
280 }
281 INIT_LIST_HEAD(&se_sess->sess_list);
282 INIT_LIST_HEAD(&se_sess->sess_acl_list);
283
284 return se_sess;
285 }
286 EXPORT_SYMBOL(transport_init_session);
287
288 /*
289 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
290 */
291 void __transport_register_session(
292 struct se_portal_group *se_tpg,
293 struct se_node_acl *se_nacl,
294 struct se_session *se_sess,
295 void *fabric_sess_ptr)
296 {
297 unsigned char buf[PR_REG_ISID_LEN];
298
299 se_sess->se_tpg = se_tpg;
300 se_sess->fabric_sess_ptr = fabric_sess_ptr;
301 /*
302 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
303 *
304 * Only set for struct se_session's that will actually be moving I/O.
305 * eg: *NOT* discovery sessions.
306 */
307 if (se_nacl) {
308 /*
309 * If the fabric module supports an ISID based TransportID,
310 * save this value in binary from the fabric I_T Nexus now.
311 */
312 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
313 memset(&buf[0], 0, PR_REG_ISID_LEN);
314 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
315 &buf[0], PR_REG_ISID_LEN);
316 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
317 }
318 spin_lock_irq(&se_nacl->nacl_sess_lock);
319 /*
320 * The se_nacl->nacl_sess pointer will be set to the
321 * last active I_T Nexus for each struct se_node_acl.
322 */
323 se_nacl->nacl_sess = se_sess;
324
325 list_add_tail(&se_sess->sess_acl_list,
326 &se_nacl->acl_sess_list);
327 spin_unlock_irq(&se_nacl->nacl_sess_lock);
328 }
329 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
330
331 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
332 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
333 }
334 EXPORT_SYMBOL(__transport_register_session);
335
336 void transport_register_session(
337 struct se_portal_group *se_tpg,
338 struct se_node_acl *se_nacl,
339 struct se_session *se_sess,
340 void *fabric_sess_ptr)
341 {
342 spin_lock_bh(&se_tpg->session_lock);
343 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
344 spin_unlock_bh(&se_tpg->session_lock);
345 }
346 EXPORT_SYMBOL(transport_register_session);
347
348 void transport_deregister_session_configfs(struct se_session *se_sess)
349 {
350 struct se_node_acl *se_nacl;
351 unsigned long flags;
352 /*
353 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
354 */
355 se_nacl = se_sess->se_node_acl;
356 if (se_nacl) {
357 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
358 list_del(&se_sess->sess_acl_list);
359 /*
360 * If the session list is empty, then clear the pointer.
361 * Otherwise, set the struct se_session pointer from the tail
362 * element of the per struct se_node_acl active session list.
363 */
364 if (list_empty(&se_nacl->acl_sess_list))
365 se_nacl->nacl_sess = NULL;
366 else {
367 se_nacl->nacl_sess = container_of(
368 se_nacl->acl_sess_list.prev,
369 struct se_session, sess_acl_list);
370 }
371 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
372 }
373 }
374 EXPORT_SYMBOL(transport_deregister_session_configfs);
375
376 void transport_free_session(struct se_session *se_sess)
377 {
378 kmem_cache_free(se_sess_cache, se_sess);
379 }
380 EXPORT_SYMBOL(transport_free_session);
381
382 void transport_deregister_session(struct se_session *se_sess)
383 {
384 struct se_portal_group *se_tpg = se_sess->se_tpg;
385 struct se_node_acl *se_nacl;
386 unsigned long flags;
387
388 if (!se_tpg) {
389 transport_free_session(se_sess);
390 return;
391 }
392
393 spin_lock_irqsave(&se_tpg->session_lock, flags);
394 list_del(&se_sess->sess_list);
395 se_sess->se_tpg = NULL;
396 se_sess->fabric_sess_ptr = NULL;
397 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
398
399 /*
400 * Determine if we need to do extra work for this initiator node's
401 * struct se_node_acl if it had been previously dynamically generated.
402 */
403 se_nacl = se_sess->se_node_acl;
404 if (se_nacl) {
405 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
406 if (se_nacl->dynamic_node_acl) {
407 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
408 se_tpg)) {
409 list_del(&se_nacl->acl_list);
410 se_tpg->num_node_acls--;
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412
413 core_tpg_wait_for_nacl_pr_ref(se_nacl);
414 core_free_device_list_for_node(se_nacl, se_tpg);
415 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
416 se_nacl);
417 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
418 }
419 }
420 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
421 }
422
423 transport_free_session(se_sess);
424
425 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
426 se_tpg->se_tpg_tfo->get_fabric_name());
427 }
428 EXPORT_SYMBOL(transport_deregister_session);
429
430 /*
431 * Called with cmd->t_state_lock held.
432 */
433 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
434 {
435 struct se_device *dev = cmd->se_dev;
436 struct se_task *task;
437 unsigned long flags;
438
439 if (!dev)
440 return;
441
442 list_for_each_entry(task, &cmd->t_task_list, t_list) {
443 if (task->task_flags & TF_ACTIVE)
444 continue;
445
446 if (!atomic_read(&task->task_state_active))
447 continue;
448
449 spin_lock_irqsave(&dev->execute_task_lock, flags);
450 list_del(&task->t_state_list);
451 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
452 cmd->se_tfo->get_task_tag(cmd), dev, task);
453 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
454
455 atomic_set(&task->task_state_active, 0);
456 atomic_dec(&cmd->t_task_cdbs_ex_left);
457 }
458 }
459
460 /* transport_cmd_check_stop():
461 *
462 * 'transport_off = 1' determines if t_transport_active should be cleared.
463 * 'transport_off = 2' determines if task_dev_state should be removed.
464 *
465 * A non-zero u8 t_state sets cmd->t_state.
466 * Returns 1 when command is stopped, else 0.
467 */
468 static int transport_cmd_check_stop(
469 struct se_cmd *cmd,
470 int transport_off,
471 u8 t_state)
472 {
473 unsigned long flags;
474
475 spin_lock_irqsave(&cmd->t_state_lock, flags);
476 /*
477 * Determine if IOCTL context caller in requesting the stopping of this
478 * command for LUN shutdown purposes.
479 */
480 if (atomic_read(&cmd->transport_lun_stop)) {
481 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
482 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
483 cmd->se_tfo->get_task_tag(cmd));
484
485 cmd->deferred_t_state = cmd->t_state;
486 cmd->t_state = TRANSPORT_DEFERRED_CMD;
487 atomic_set(&cmd->t_transport_active, 0);
488 if (transport_off == 2)
489 transport_all_task_dev_remove_state(cmd);
490 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
491
492 complete(&cmd->transport_lun_stop_comp);
493 return 1;
494 }
495 /*
496 * Determine if frontend context caller is requesting the stopping of
497 * this command for frontend exceptions.
498 */
499 if (atomic_read(&cmd->t_transport_stop)) {
500 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
501 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
502 cmd->se_tfo->get_task_tag(cmd));
503
504 cmd->deferred_t_state = cmd->t_state;
505 cmd->t_state = TRANSPORT_DEFERRED_CMD;
506 if (transport_off == 2)
507 transport_all_task_dev_remove_state(cmd);
508
509 /*
510 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
511 * to FE.
512 */
513 if (transport_off == 2)
514 cmd->se_lun = NULL;
515 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
516
517 complete(&cmd->t_transport_stop_comp);
518 return 1;
519 }
520 if (transport_off) {
521 atomic_set(&cmd->t_transport_active, 0);
522 if (transport_off == 2) {
523 transport_all_task_dev_remove_state(cmd);
524 /*
525 * Clear struct se_cmd->se_lun before the transport_off == 2
526 * handoff to fabric module.
527 */
528 cmd->se_lun = NULL;
529 /*
530 * Some fabric modules like tcm_loop can release
531 * their internally allocated I/O reference now and
532 * struct se_cmd now.
533 */
534 if (cmd->se_tfo->check_stop_free != NULL) {
535 spin_unlock_irqrestore(
536 &cmd->t_state_lock, flags);
537
538 cmd->se_tfo->check_stop_free(cmd);
539 return 1;
540 }
541 }
542 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
543
544 return 0;
545 } else if (t_state)
546 cmd->t_state = t_state;
547 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
548
549 return 0;
550 }
551
552 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
553 {
554 return transport_cmd_check_stop(cmd, 2, 0);
555 }
556
557 static void transport_lun_remove_cmd(struct se_cmd *cmd)
558 {
559 struct se_lun *lun = cmd->se_lun;
560 unsigned long flags;
561
562 if (!lun)
563 return;
564
565 spin_lock_irqsave(&cmd->t_state_lock, flags);
566 if (!atomic_read(&cmd->transport_dev_active)) {
567 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
568 goto check_lun;
569 }
570 atomic_set(&cmd->transport_dev_active, 0);
571 transport_all_task_dev_remove_state(cmd);
572 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
573
574
575 check_lun:
576 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
577 if (atomic_read(&cmd->transport_lun_active)) {
578 list_del(&cmd->se_lun_node);
579 atomic_set(&cmd->transport_lun_active, 0);
580 #if 0
581 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
582 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
583 #endif
584 }
585 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
586 }
587
588 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
589 {
590 if (!cmd->se_tmr_req)
591 transport_lun_remove_cmd(cmd);
592
593 if (transport_cmd_check_stop_to_fabric(cmd))
594 return;
595 if (remove) {
596 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
597 transport_put_cmd(cmd);
598 }
599 }
600
601 static void transport_add_cmd_to_queue(
602 struct se_cmd *cmd,
603 int t_state)
604 {
605 struct se_device *dev = cmd->se_dev;
606 struct se_queue_obj *qobj = &dev->dev_queue_obj;
607 unsigned long flags;
608
609 if (t_state) {
610 spin_lock_irqsave(&cmd->t_state_lock, flags);
611 cmd->t_state = t_state;
612 atomic_set(&cmd->t_transport_active, 1);
613 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
614 }
615
616 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617
618 /* If the cmd is already on the list, remove it before we add it */
619 if (!list_empty(&cmd->se_queue_node))
620 list_del(&cmd->se_queue_node);
621 else
622 atomic_inc(&qobj->queue_cnt);
623
624 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
625 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
626 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 } else
628 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 atomic_set(&cmd->t_transport_queue_active, 1);
630 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632 wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 struct se_cmd *cmd;
639 unsigned long flags;
640
641 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 if (list_empty(&qobj->qobj_list)) {
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 return NULL;
645 }
646 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648 atomic_set(&cmd->t_transport_queue_active, 0);
649
650 list_del_init(&cmd->se_queue_node);
651 atomic_dec(&qobj->queue_cnt);
652 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
653
654 return cmd;
655 }
656
657 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
658 struct se_queue_obj *qobj)
659 {
660 unsigned long flags;
661
662 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
663 if (!atomic_read(&cmd->t_transport_queue_active)) {
664 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
665 return;
666 }
667 atomic_set(&cmd->t_transport_queue_active, 0);
668 atomic_dec(&qobj->queue_cnt);
669 list_del_init(&cmd->se_queue_node);
670 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
671
672 if (atomic_read(&cmd->t_transport_queue_active)) {
673 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
674 cmd->se_tfo->get_task_tag(cmd),
675 atomic_read(&cmd->t_transport_queue_active));
676 }
677 }
678
679 /*
680 * Completion function used by TCM subsystem plugins (such as FILEIO)
681 * for queueing up response from struct se_subsystem_api->do_task()
682 */
683 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
684 {
685 struct se_task *task = list_entry(cmd->t_task_list.next,
686 struct se_task, t_list);
687
688 if (good) {
689 cmd->scsi_status = SAM_STAT_GOOD;
690 task->task_scsi_status = GOOD;
691 } else {
692 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
693 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
694 task->task_se_cmd->transport_error_status =
695 PYX_TRANSPORT_ILLEGAL_REQUEST;
696 }
697
698 transport_complete_task(task, good);
699 }
700 EXPORT_SYMBOL(transport_complete_sync_cache);
701
702 /* transport_complete_task():
703 *
704 * Called from interrupt and non interrupt context depending
705 * on the transport plugin.
706 */
707 void transport_complete_task(struct se_task *task, int success)
708 {
709 struct se_cmd *cmd = task->task_se_cmd;
710 struct se_device *dev = cmd->se_dev;
711 int t_state;
712 unsigned long flags;
713 #if 0
714 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
715 cmd->t_task_cdb[0], dev);
716 #endif
717 if (dev)
718 atomic_inc(&dev->depth_left);
719
720 spin_lock_irqsave(&cmd->t_state_lock, flags);
721 task->task_flags &= ~TF_ACTIVE;
722
723 /*
724 * See if any sense data exists, if so set the TASK_SENSE flag.
725 * Also check for any other post completion work that needs to be
726 * done by the plugins.
727 */
728 if (dev && dev->transport->transport_complete) {
729 if (dev->transport->transport_complete(task) != 0) {
730 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
731 task->task_sense = 1;
732 success = 1;
733 }
734 }
735
736 /*
737 * See if we are waiting for outstanding struct se_task
738 * to complete for an exception condition
739 */
740 if (task->task_flags & TF_REQUEST_STOP) {
741 /*
742 * Decrement cmd->t_se_count if this task had
743 * previously thrown its timeout exception handler.
744 */
745 if (task->task_flags & TF_TIMEOUT) {
746 atomic_dec(&cmd->t_se_count);
747 task->task_flags &= ~TF_TIMEOUT;
748 }
749 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
750
751 complete(&task->task_stop_comp);
752 return;
753 }
754 /*
755 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
756 * left counter to determine when the struct se_cmd is ready to be queued to
757 * the processing thread.
758 */
759 if (task->task_flags & TF_TIMEOUT) {
760 if (!atomic_dec_and_test(
761 &cmd->t_task_cdbs_timeout_left)) {
762 spin_unlock_irqrestore(&cmd->t_state_lock,
763 flags);
764 return;
765 }
766 t_state = TRANSPORT_COMPLETE_TIMEOUT;
767 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
768
769 transport_add_cmd_to_queue(cmd, t_state);
770 return;
771 }
772 atomic_dec(&cmd->t_task_cdbs_timeout_left);
773
774 /*
775 * Decrement the outstanding t_task_cdbs_left count. The last
776 * struct se_task from struct se_cmd will complete itself into the
777 * device queue depending upon int success.
778 */
779 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
780 if (!success)
781 cmd->t_tasks_failed = 1;
782
783 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
784 return;
785 }
786
787 if (!success || cmd->t_tasks_failed) {
788 t_state = TRANSPORT_COMPLETE_FAILURE;
789 if (!task->task_error_status) {
790 task->task_error_status =
791 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
792 cmd->transport_error_status =
793 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
794 }
795 } else {
796 atomic_set(&cmd->t_transport_complete, 1);
797 t_state = TRANSPORT_COMPLETE_OK;
798 }
799 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
800
801 transport_add_cmd_to_queue(cmd, t_state);
802 }
803 EXPORT_SYMBOL(transport_complete_task);
804
805 /*
806 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
807 * struct se_task list are ready to be added to the active execution list
808 * struct se_device
809
810 * Called with se_dev_t->execute_task_lock called.
811 */
812 static inline int transport_add_task_check_sam_attr(
813 struct se_task *task,
814 struct se_task *task_prev,
815 struct se_device *dev)
816 {
817 /*
818 * No SAM Task attribute emulation enabled, add to tail of
819 * execution queue
820 */
821 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
822 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
823 return 0;
824 }
825 /*
826 * HEAD_OF_QUEUE attribute for received CDB, which means
827 * the first task that is associated with a struct se_cmd goes to
828 * head of the struct se_device->execute_task_list, and task_prev
829 * after that for each subsequent task
830 */
831 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
832 list_add(&task->t_execute_list,
833 (task_prev != NULL) ?
834 &task_prev->t_execute_list :
835 &dev->execute_task_list);
836
837 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
838 " in execution queue\n",
839 task->task_se_cmd->t_task_cdb[0]);
840 return 1;
841 }
842 /*
843 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
844 * transitioned from Dermant -> Active state, and are added to the end
845 * of the struct se_device->execute_task_list
846 */
847 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
848 return 0;
849 }
850
851 /* __transport_add_task_to_execute_queue():
852 *
853 * Called with se_dev_t->execute_task_lock called.
854 */
855 static void __transport_add_task_to_execute_queue(
856 struct se_task *task,
857 struct se_task *task_prev,
858 struct se_device *dev)
859 {
860 int head_of_queue;
861
862 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
863 atomic_inc(&dev->execute_tasks);
864
865 if (atomic_read(&task->task_state_active))
866 return;
867 /*
868 * Determine if this task needs to go to HEAD_OF_QUEUE for the
869 * state list as well. Running with SAM Task Attribute emulation
870 * will always return head_of_queue == 0 here
871 */
872 if (head_of_queue)
873 list_add(&task->t_state_list, (task_prev) ?
874 &task_prev->t_state_list :
875 &dev->state_task_list);
876 else
877 list_add_tail(&task->t_state_list, &dev->state_task_list);
878
879 atomic_set(&task->task_state_active, 1);
880
881 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
882 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
883 task, dev);
884 }
885
886 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
887 {
888 struct se_device *dev = cmd->se_dev;
889 struct se_task *task;
890 unsigned long flags;
891
892 spin_lock_irqsave(&cmd->t_state_lock, flags);
893 list_for_each_entry(task, &cmd->t_task_list, t_list) {
894 if (atomic_read(&task->task_state_active))
895 continue;
896
897 spin_lock(&dev->execute_task_lock);
898 list_add_tail(&task->t_state_list, &dev->state_task_list);
899 atomic_set(&task->task_state_active, 1);
900
901 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
902 task->task_se_cmd->se_tfo->get_task_tag(
903 task->task_se_cmd), task, dev);
904
905 spin_unlock(&dev->execute_task_lock);
906 }
907 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
908 }
909
910 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
911 {
912 struct se_device *dev = cmd->se_dev;
913 struct se_task *task, *task_prev = NULL;
914 unsigned long flags;
915
916 spin_lock_irqsave(&dev->execute_task_lock, flags);
917 list_for_each_entry(task, &cmd->t_task_list, t_list) {
918 if (!list_empty(&task->t_execute_list))
919 continue;
920 /*
921 * __transport_add_task_to_execute_queue() handles the
922 * SAM Task Attribute emulation if enabled
923 */
924 __transport_add_task_to_execute_queue(task, task_prev, dev);
925 task_prev = task;
926 }
927 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
928 }
929
930 void __transport_remove_task_from_execute_queue(struct se_task *task,
931 struct se_device *dev)
932 {
933 list_del_init(&task->t_execute_list);
934 atomic_dec(&dev->execute_tasks);
935 }
936
937 void transport_remove_task_from_execute_queue(
938 struct se_task *task,
939 struct se_device *dev)
940 {
941 unsigned long flags;
942
943 if (WARN_ON(list_empty(&task->t_execute_list)))
944 return;
945
946 spin_lock_irqsave(&dev->execute_task_lock, flags);
947 __transport_remove_task_from_execute_queue(task, dev);
948 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
949 }
950
951 /*
952 * Handle QUEUE_FULL / -EAGAIN status
953 */
954
955 static void target_qf_do_work(struct work_struct *work)
956 {
957 struct se_device *dev = container_of(work, struct se_device,
958 qf_work_queue);
959 LIST_HEAD(qf_cmd_list);
960 struct se_cmd *cmd, *cmd_tmp;
961
962 spin_lock_irq(&dev->qf_cmd_lock);
963 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
964 spin_unlock_irq(&dev->qf_cmd_lock);
965
966 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
967 list_del(&cmd->se_qf_node);
968 atomic_dec(&dev->dev_qf_count);
969 smp_mb__after_atomic_dec();
970
971 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
972 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
973 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
974 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
975 : "UNKNOWN");
976 /*
977 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
978 * has been added to head of queue
979 */
980 transport_add_cmd_to_queue(cmd, cmd->t_state);
981 }
982 }
983
984 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
985 {
986 switch (cmd->data_direction) {
987 case DMA_NONE:
988 return "NONE";
989 case DMA_FROM_DEVICE:
990 return "READ";
991 case DMA_TO_DEVICE:
992 return "WRITE";
993 case DMA_BIDIRECTIONAL:
994 return "BIDI";
995 default:
996 break;
997 }
998
999 return "UNKNOWN";
1000 }
1001
1002 void transport_dump_dev_state(
1003 struct se_device *dev,
1004 char *b,
1005 int *bl)
1006 {
1007 *bl += sprintf(b + *bl, "Status: ");
1008 switch (dev->dev_status) {
1009 case TRANSPORT_DEVICE_ACTIVATED:
1010 *bl += sprintf(b + *bl, "ACTIVATED");
1011 break;
1012 case TRANSPORT_DEVICE_DEACTIVATED:
1013 *bl += sprintf(b + *bl, "DEACTIVATED");
1014 break;
1015 case TRANSPORT_DEVICE_SHUTDOWN:
1016 *bl += sprintf(b + *bl, "SHUTDOWN");
1017 break;
1018 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1019 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1020 *bl += sprintf(b + *bl, "OFFLINE");
1021 break;
1022 default:
1023 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1024 break;
1025 }
1026
1027 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1028 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1029 dev->queue_depth);
1030 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1031 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1032 *bl += sprintf(b + *bl, " ");
1033 }
1034
1035 void transport_dump_vpd_proto_id(
1036 struct t10_vpd *vpd,
1037 unsigned char *p_buf,
1038 int p_buf_len)
1039 {
1040 unsigned char buf[VPD_TMP_BUF_SIZE];
1041 int len;
1042
1043 memset(buf, 0, VPD_TMP_BUF_SIZE);
1044 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1045
1046 switch (vpd->protocol_identifier) {
1047 case 0x00:
1048 sprintf(buf+len, "Fibre Channel\n");
1049 break;
1050 case 0x10:
1051 sprintf(buf+len, "Parallel SCSI\n");
1052 break;
1053 case 0x20:
1054 sprintf(buf+len, "SSA\n");
1055 break;
1056 case 0x30:
1057 sprintf(buf+len, "IEEE 1394\n");
1058 break;
1059 case 0x40:
1060 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1061 " Protocol\n");
1062 break;
1063 case 0x50:
1064 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1065 break;
1066 case 0x60:
1067 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1068 break;
1069 case 0x70:
1070 sprintf(buf+len, "Automation/Drive Interface Transport"
1071 " Protocol\n");
1072 break;
1073 case 0x80:
1074 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1075 break;
1076 default:
1077 sprintf(buf+len, "Unknown 0x%02x\n",
1078 vpd->protocol_identifier);
1079 break;
1080 }
1081
1082 if (p_buf)
1083 strncpy(p_buf, buf, p_buf_len);
1084 else
1085 pr_debug("%s", buf);
1086 }
1087
1088 void
1089 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1090 {
1091 /*
1092 * Check if the Protocol Identifier Valid (PIV) bit is set..
1093 *
1094 * from spc3r23.pdf section 7.5.1
1095 */
1096 if (page_83[1] & 0x80) {
1097 vpd->protocol_identifier = (page_83[0] & 0xf0);
1098 vpd->protocol_identifier_set = 1;
1099 transport_dump_vpd_proto_id(vpd, NULL, 0);
1100 }
1101 }
1102 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1103
1104 int transport_dump_vpd_assoc(
1105 struct t10_vpd *vpd,
1106 unsigned char *p_buf,
1107 int p_buf_len)
1108 {
1109 unsigned char buf[VPD_TMP_BUF_SIZE];
1110 int ret = 0;
1111 int len;
1112
1113 memset(buf, 0, VPD_TMP_BUF_SIZE);
1114 len = sprintf(buf, "T10 VPD Identifier Association: ");
1115
1116 switch (vpd->association) {
1117 case 0x00:
1118 sprintf(buf+len, "addressed logical unit\n");
1119 break;
1120 case 0x10:
1121 sprintf(buf+len, "target port\n");
1122 break;
1123 case 0x20:
1124 sprintf(buf+len, "SCSI target device\n");
1125 break;
1126 default:
1127 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1128 ret = -EINVAL;
1129 break;
1130 }
1131
1132 if (p_buf)
1133 strncpy(p_buf, buf, p_buf_len);
1134 else
1135 pr_debug("%s", buf);
1136
1137 return ret;
1138 }
1139
1140 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1141 {
1142 /*
1143 * The VPD identification association..
1144 *
1145 * from spc3r23.pdf Section 7.6.3.1 Table 297
1146 */
1147 vpd->association = (page_83[1] & 0x30);
1148 return transport_dump_vpd_assoc(vpd, NULL, 0);
1149 }
1150 EXPORT_SYMBOL(transport_set_vpd_assoc);
1151
1152 int transport_dump_vpd_ident_type(
1153 struct t10_vpd *vpd,
1154 unsigned char *p_buf,
1155 int p_buf_len)
1156 {
1157 unsigned char buf[VPD_TMP_BUF_SIZE];
1158 int ret = 0;
1159 int len;
1160
1161 memset(buf, 0, VPD_TMP_BUF_SIZE);
1162 len = sprintf(buf, "T10 VPD Identifier Type: ");
1163
1164 switch (vpd->device_identifier_type) {
1165 case 0x00:
1166 sprintf(buf+len, "Vendor specific\n");
1167 break;
1168 case 0x01:
1169 sprintf(buf+len, "T10 Vendor ID based\n");
1170 break;
1171 case 0x02:
1172 sprintf(buf+len, "EUI-64 based\n");
1173 break;
1174 case 0x03:
1175 sprintf(buf+len, "NAA\n");
1176 break;
1177 case 0x04:
1178 sprintf(buf+len, "Relative target port identifier\n");
1179 break;
1180 case 0x08:
1181 sprintf(buf+len, "SCSI name string\n");
1182 break;
1183 default:
1184 sprintf(buf+len, "Unsupported: 0x%02x\n",
1185 vpd->device_identifier_type);
1186 ret = -EINVAL;
1187 break;
1188 }
1189
1190 if (p_buf) {
1191 if (p_buf_len < strlen(buf)+1)
1192 return -EINVAL;
1193 strncpy(p_buf, buf, p_buf_len);
1194 } else {
1195 pr_debug("%s", buf);
1196 }
1197
1198 return ret;
1199 }
1200
1201 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1202 {
1203 /*
1204 * The VPD identifier type..
1205 *
1206 * from spc3r23.pdf Section 7.6.3.1 Table 298
1207 */
1208 vpd->device_identifier_type = (page_83[1] & 0x0f);
1209 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1210 }
1211 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1212
1213 int transport_dump_vpd_ident(
1214 struct t10_vpd *vpd,
1215 unsigned char *p_buf,
1216 int p_buf_len)
1217 {
1218 unsigned char buf[VPD_TMP_BUF_SIZE];
1219 int ret = 0;
1220
1221 memset(buf, 0, VPD_TMP_BUF_SIZE);
1222
1223 switch (vpd->device_identifier_code_set) {
1224 case 0x01: /* Binary */
1225 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1226 &vpd->device_identifier[0]);
1227 break;
1228 case 0x02: /* ASCII */
1229 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1230 &vpd->device_identifier[0]);
1231 break;
1232 case 0x03: /* UTF-8 */
1233 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1234 &vpd->device_identifier[0]);
1235 break;
1236 default:
1237 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1238 " 0x%02x", vpd->device_identifier_code_set);
1239 ret = -EINVAL;
1240 break;
1241 }
1242
1243 if (p_buf)
1244 strncpy(p_buf, buf, p_buf_len);
1245 else
1246 pr_debug("%s", buf);
1247
1248 return ret;
1249 }
1250
1251 int
1252 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1253 {
1254 static const char hex_str[] = "0123456789abcdef";
1255 int j = 0, i = 4; /* offset to start of the identifer */
1256
1257 /*
1258 * The VPD Code Set (encoding)
1259 *
1260 * from spc3r23.pdf Section 7.6.3.1 Table 296
1261 */
1262 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1263 switch (vpd->device_identifier_code_set) {
1264 case 0x01: /* Binary */
1265 vpd->device_identifier[j++] =
1266 hex_str[vpd->device_identifier_type];
1267 while (i < (4 + page_83[3])) {
1268 vpd->device_identifier[j++] =
1269 hex_str[(page_83[i] & 0xf0) >> 4];
1270 vpd->device_identifier[j++] =
1271 hex_str[page_83[i] & 0x0f];
1272 i++;
1273 }
1274 break;
1275 case 0x02: /* ASCII */
1276 case 0x03: /* UTF-8 */
1277 while (i < (4 + page_83[3]))
1278 vpd->device_identifier[j++] = page_83[i++];
1279 break;
1280 default:
1281 break;
1282 }
1283
1284 return transport_dump_vpd_ident(vpd, NULL, 0);
1285 }
1286 EXPORT_SYMBOL(transport_set_vpd_ident);
1287
1288 static void core_setup_task_attr_emulation(struct se_device *dev)
1289 {
1290 /*
1291 * If this device is from Target_Core_Mod/pSCSI, disable the
1292 * SAM Task Attribute emulation.
1293 *
1294 * This is currently not available in upsream Linux/SCSI Target
1295 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1296 */
1297 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1298 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1299 return;
1300 }
1301
1302 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1303 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1304 " device\n", dev->transport->name,
1305 dev->transport->get_device_rev(dev));
1306 }
1307
1308 static void scsi_dump_inquiry(struct se_device *dev)
1309 {
1310 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1311 int i, device_type;
1312 /*
1313 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1314 */
1315 pr_debug(" Vendor: ");
1316 for (i = 0; i < 8; i++)
1317 if (wwn->vendor[i] >= 0x20)
1318 pr_debug("%c", wwn->vendor[i]);
1319 else
1320 pr_debug(" ");
1321
1322 pr_debug(" Model: ");
1323 for (i = 0; i < 16; i++)
1324 if (wwn->model[i] >= 0x20)
1325 pr_debug("%c", wwn->model[i]);
1326 else
1327 pr_debug(" ");
1328
1329 pr_debug(" Revision: ");
1330 for (i = 0; i < 4; i++)
1331 if (wwn->revision[i] >= 0x20)
1332 pr_debug("%c", wwn->revision[i]);
1333 else
1334 pr_debug(" ");
1335
1336 pr_debug("\n");
1337
1338 device_type = dev->transport->get_device_type(dev);
1339 pr_debug(" Type: %s ", scsi_device_type(device_type));
1340 pr_debug(" ANSI SCSI revision: %02x\n",
1341 dev->transport->get_device_rev(dev));
1342 }
1343
1344 struct se_device *transport_add_device_to_core_hba(
1345 struct se_hba *hba,
1346 struct se_subsystem_api *transport,
1347 struct se_subsystem_dev *se_dev,
1348 u32 device_flags,
1349 void *transport_dev,
1350 struct se_dev_limits *dev_limits,
1351 const char *inquiry_prod,
1352 const char *inquiry_rev)
1353 {
1354 int force_pt;
1355 struct se_device *dev;
1356
1357 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1358 if (!dev) {
1359 pr_err("Unable to allocate memory for se_dev_t\n");
1360 return NULL;
1361 }
1362
1363 transport_init_queue_obj(&dev->dev_queue_obj);
1364 dev->dev_flags = device_flags;
1365 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1366 dev->dev_ptr = transport_dev;
1367 dev->se_hba = hba;
1368 dev->se_sub_dev = se_dev;
1369 dev->transport = transport;
1370 atomic_set(&dev->active_cmds, 0);
1371 INIT_LIST_HEAD(&dev->dev_list);
1372 INIT_LIST_HEAD(&dev->dev_sep_list);
1373 INIT_LIST_HEAD(&dev->dev_tmr_list);
1374 INIT_LIST_HEAD(&dev->execute_task_list);
1375 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1376 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1377 INIT_LIST_HEAD(&dev->state_task_list);
1378 INIT_LIST_HEAD(&dev->qf_cmd_list);
1379 spin_lock_init(&dev->execute_task_lock);
1380 spin_lock_init(&dev->delayed_cmd_lock);
1381 spin_lock_init(&dev->ordered_cmd_lock);
1382 spin_lock_init(&dev->state_task_lock);
1383 spin_lock_init(&dev->dev_alua_lock);
1384 spin_lock_init(&dev->dev_reservation_lock);
1385 spin_lock_init(&dev->dev_status_lock);
1386 spin_lock_init(&dev->dev_status_thr_lock);
1387 spin_lock_init(&dev->se_port_lock);
1388 spin_lock_init(&dev->se_tmr_lock);
1389 spin_lock_init(&dev->qf_cmd_lock);
1390
1391 dev->queue_depth = dev_limits->queue_depth;
1392 atomic_set(&dev->depth_left, dev->queue_depth);
1393 atomic_set(&dev->dev_ordered_id, 0);
1394
1395 se_dev_set_default_attribs(dev, dev_limits);
1396
1397 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1398 dev->creation_time = get_jiffies_64();
1399 spin_lock_init(&dev->stats_lock);
1400
1401 spin_lock(&hba->device_lock);
1402 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1403 hba->dev_count++;
1404 spin_unlock(&hba->device_lock);
1405 /*
1406 * Setup the SAM Task Attribute emulation for struct se_device
1407 */
1408 core_setup_task_attr_emulation(dev);
1409 /*
1410 * Force PR and ALUA passthrough emulation with internal object use.
1411 */
1412 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1413 /*
1414 * Setup the Reservations infrastructure for struct se_device
1415 */
1416 core_setup_reservations(dev, force_pt);
1417 /*
1418 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1419 */
1420 if (core_setup_alua(dev, force_pt) < 0)
1421 goto out;
1422
1423 /*
1424 * Startup the struct se_device processing thread
1425 */
1426 dev->process_thread = kthread_run(transport_processing_thread, dev,
1427 "LIO_%s", dev->transport->name);
1428 if (IS_ERR(dev->process_thread)) {
1429 pr_err("Unable to create kthread: LIO_%s\n",
1430 dev->transport->name);
1431 goto out;
1432 }
1433 /*
1434 * Setup work_queue for QUEUE_FULL
1435 */
1436 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1437 /*
1438 * Preload the initial INQUIRY const values if we are doing
1439 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1440 * passthrough because this is being provided by the backend LLD.
1441 * This is required so that transport_get_inquiry() copies these
1442 * originals once back into DEV_T10_WWN(dev) for the virtual device
1443 * setup.
1444 */
1445 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1446 if (!inquiry_prod || !inquiry_rev) {
1447 pr_err("All non TCM/pSCSI plugins require"
1448 " INQUIRY consts\n");
1449 goto out;
1450 }
1451
1452 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1453 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1454 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1455 }
1456 scsi_dump_inquiry(dev);
1457
1458 return dev;
1459 out:
1460 kthread_stop(dev->process_thread);
1461
1462 spin_lock(&hba->device_lock);
1463 list_del(&dev->dev_list);
1464 hba->dev_count--;
1465 spin_unlock(&hba->device_lock);
1466
1467 se_release_vpd_for_dev(dev);
1468
1469 kfree(dev);
1470
1471 return NULL;
1472 }
1473 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1474
1475 /* transport_generic_prepare_cdb():
1476 *
1477 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1478 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1479 * The point of this is since we are mapping iSCSI LUNs to
1480 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1481 * devices and HBAs for a loop.
1482 */
1483 static inline void transport_generic_prepare_cdb(
1484 unsigned char *cdb)
1485 {
1486 switch (cdb[0]) {
1487 case READ_10: /* SBC - RDProtect */
1488 case READ_12: /* SBC - RDProtect */
1489 case READ_16: /* SBC - RDProtect */
1490 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1491 case VERIFY: /* SBC - VRProtect */
1492 case VERIFY_16: /* SBC - VRProtect */
1493 case WRITE_VERIFY: /* SBC - VRProtect */
1494 case WRITE_VERIFY_12: /* SBC - VRProtect */
1495 break;
1496 default:
1497 cdb[1] &= 0x1f; /* clear logical unit number */
1498 break;
1499 }
1500 }
1501
1502 static struct se_task *
1503 transport_generic_get_task(struct se_cmd *cmd,
1504 enum dma_data_direction data_direction)
1505 {
1506 struct se_task *task;
1507 struct se_device *dev = cmd->se_dev;
1508
1509 task = dev->transport->alloc_task(cmd->t_task_cdb);
1510 if (!task) {
1511 pr_err("Unable to allocate struct se_task\n");
1512 return NULL;
1513 }
1514
1515 INIT_LIST_HEAD(&task->t_list);
1516 INIT_LIST_HEAD(&task->t_execute_list);
1517 INIT_LIST_HEAD(&task->t_state_list);
1518 init_completion(&task->task_stop_comp);
1519 task->task_se_cmd = cmd;
1520 task->task_data_direction = data_direction;
1521
1522 return task;
1523 }
1524
1525 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1526
1527 /*
1528 * Used by fabric modules containing a local struct se_cmd within their
1529 * fabric dependent per I/O descriptor.
1530 */
1531 void transport_init_se_cmd(
1532 struct se_cmd *cmd,
1533 struct target_core_fabric_ops *tfo,
1534 struct se_session *se_sess,
1535 u32 data_length,
1536 int data_direction,
1537 int task_attr,
1538 unsigned char *sense_buffer)
1539 {
1540 INIT_LIST_HEAD(&cmd->se_lun_node);
1541 INIT_LIST_HEAD(&cmd->se_delayed_node);
1542 INIT_LIST_HEAD(&cmd->se_ordered_node);
1543 INIT_LIST_HEAD(&cmd->se_qf_node);
1544 INIT_LIST_HEAD(&cmd->se_queue_node);
1545
1546 INIT_LIST_HEAD(&cmd->t_task_list);
1547 init_completion(&cmd->transport_lun_fe_stop_comp);
1548 init_completion(&cmd->transport_lun_stop_comp);
1549 init_completion(&cmd->t_transport_stop_comp);
1550 spin_lock_init(&cmd->t_state_lock);
1551 atomic_set(&cmd->transport_dev_active, 1);
1552
1553 cmd->se_tfo = tfo;
1554 cmd->se_sess = se_sess;
1555 cmd->data_length = data_length;
1556 cmd->data_direction = data_direction;
1557 cmd->sam_task_attr = task_attr;
1558 cmd->sense_buffer = sense_buffer;
1559 }
1560 EXPORT_SYMBOL(transport_init_se_cmd);
1561
1562 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1563 {
1564 /*
1565 * Check if SAM Task Attribute emulation is enabled for this
1566 * struct se_device storage object
1567 */
1568 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1569 return 0;
1570
1571 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1572 pr_debug("SAM Task Attribute ACA"
1573 " emulation is not supported\n");
1574 return -EINVAL;
1575 }
1576 /*
1577 * Used to determine when ORDERED commands should go from
1578 * Dormant to Active status.
1579 */
1580 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1581 smp_mb__after_atomic_inc();
1582 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1583 cmd->se_ordered_id, cmd->sam_task_attr,
1584 cmd->se_dev->transport->name);
1585 return 0;
1586 }
1587
1588 /* transport_generic_allocate_tasks():
1589 *
1590 * Called from fabric RX Thread.
1591 */
1592 int transport_generic_allocate_tasks(
1593 struct se_cmd *cmd,
1594 unsigned char *cdb)
1595 {
1596 int ret;
1597
1598 transport_generic_prepare_cdb(cdb);
1599 /*
1600 * Ensure that the received CDB is less than the max (252 + 8) bytes
1601 * for VARIABLE_LENGTH_CMD
1602 */
1603 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1604 pr_err("Received SCSI CDB with command_size: %d that"
1605 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1606 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1607 return -EINVAL;
1608 }
1609 /*
1610 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1611 * allocate the additional extended CDB buffer now.. Otherwise
1612 * setup the pointer from __t_task_cdb to t_task_cdb.
1613 */
1614 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1615 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1616 GFP_KERNEL);
1617 if (!cmd->t_task_cdb) {
1618 pr_err("Unable to allocate cmd->t_task_cdb"
1619 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1620 scsi_command_size(cdb),
1621 (unsigned long)sizeof(cmd->__t_task_cdb));
1622 return -ENOMEM;
1623 }
1624 } else
1625 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1626 /*
1627 * Copy the original CDB into cmd->
1628 */
1629 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1630 /*
1631 * Setup the received CDB based on SCSI defined opcodes and
1632 * perform unit attention, persistent reservations and ALUA
1633 * checks for virtual device backends. The cmd->t_task_cdb
1634 * pointer is expected to be setup before we reach this point.
1635 */
1636 ret = transport_generic_cmd_sequencer(cmd, cdb);
1637 if (ret < 0)
1638 return ret;
1639 /*
1640 * Check for SAM Task Attribute Emulation
1641 */
1642 if (transport_check_alloc_task_attr(cmd) < 0) {
1643 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1644 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1645 return -EINVAL;
1646 }
1647 spin_lock(&cmd->se_lun->lun_sep_lock);
1648 if (cmd->se_lun->lun_sep)
1649 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1650 spin_unlock(&cmd->se_lun->lun_sep_lock);
1651 return 0;
1652 }
1653 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1654
1655 static void transport_generic_request_failure(struct se_cmd *,
1656 struct se_device *, int, int);
1657 /*
1658 * Used by fabric module frontends to queue tasks directly.
1659 * Many only be used from process context only
1660 */
1661 int transport_handle_cdb_direct(
1662 struct se_cmd *cmd)
1663 {
1664 int ret;
1665
1666 if (!cmd->se_lun) {
1667 dump_stack();
1668 pr_err("cmd->se_lun is NULL\n");
1669 return -EINVAL;
1670 }
1671 if (in_interrupt()) {
1672 dump_stack();
1673 pr_err("transport_generic_handle_cdb cannot be called"
1674 " from interrupt context\n");
1675 return -EINVAL;
1676 }
1677 /*
1678 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1679 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1680 * in existing usage to ensure that outstanding descriptors are handled
1681 * correctly during shutdown via transport_wait_for_tasks()
1682 *
1683 * Also, we don't take cmd->t_state_lock here as we only expect
1684 * this to be called for initial descriptor submission.
1685 */
1686 cmd->t_state = TRANSPORT_NEW_CMD;
1687 atomic_set(&cmd->t_transport_active, 1);
1688 /*
1689 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1690 * so follow TRANSPORT_NEW_CMD processing thread context usage
1691 * and call transport_generic_request_failure() if necessary..
1692 */
1693 ret = transport_generic_new_cmd(cmd);
1694 if (ret == -EAGAIN)
1695 return 0;
1696 else if (ret < 0) {
1697 cmd->transport_error_status = ret;
1698 transport_generic_request_failure(cmd, NULL, 0,
1699 (cmd->data_direction != DMA_TO_DEVICE));
1700 }
1701 return 0;
1702 }
1703 EXPORT_SYMBOL(transport_handle_cdb_direct);
1704
1705 /*
1706 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1707 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1708 * complete setup in TCM process context w/ TFO->new_cmd_map().
1709 */
1710 int transport_generic_handle_cdb_map(
1711 struct se_cmd *cmd)
1712 {
1713 if (!cmd->se_lun) {
1714 dump_stack();
1715 pr_err("cmd->se_lun is NULL\n");
1716 return -EINVAL;
1717 }
1718
1719 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1720 return 0;
1721 }
1722 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1723
1724 /* transport_generic_handle_data():
1725 *
1726 *
1727 */
1728 int transport_generic_handle_data(
1729 struct se_cmd *cmd)
1730 {
1731 /*
1732 * For the software fabric case, then we assume the nexus is being
1733 * failed/shutdown when signals are pending from the kthread context
1734 * caller, so we return a failure. For the HW target mode case running
1735 * in interrupt code, the signal_pending() check is skipped.
1736 */
1737 if (!in_interrupt() && signal_pending(current))
1738 return -EPERM;
1739 /*
1740 * If the received CDB has aleady been ABORTED by the generic
1741 * target engine, we now call transport_check_aborted_status()
1742 * to queue any delated TASK_ABORTED status for the received CDB to the
1743 * fabric module as we are expecting no further incoming DATA OUT
1744 * sequences at this point.
1745 */
1746 if (transport_check_aborted_status(cmd, 1) != 0)
1747 return 0;
1748
1749 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1750 return 0;
1751 }
1752 EXPORT_SYMBOL(transport_generic_handle_data);
1753
1754 /* transport_generic_handle_tmr():
1755 *
1756 *
1757 */
1758 int transport_generic_handle_tmr(
1759 struct se_cmd *cmd)
1760 {
1761 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1762 return 0;
1763 }
1764 EXPORT_SYMBOL(transport_generic_handle_tmr);
1765
1766 void transport_generic_free_cmd_intr(
1767 struct se_cmd *cmd)
1768 {
1769 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1770 }
1771 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1772
1773 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1774 {
1775 struct se_task *task, *task_tmp;
1776 unsigned long flags;
1777 int ret = 0;
1778
1779 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1780 cmd->se_tfo->get_task_tag(cmd));
1781
1782 /*
1783 * No tasks remain in the execution queue
1784 */
1785 spin_lock_irqsave(&cmd->t_state_lock, flags);
1786 list_for_each_entry_safe(task, task_tmp,
1787 &cmd->t_task_list, t_list) {
1788 pr_debug("Processing task %p\n", task);
1789 /*
1790 * If the struct se_task has not been sent and is not active,
1791 * remove the struct se_task from the execution queue.
1792 */
1793 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1794 spin_unlock_irqrestore(&cmd->t_state_lock,
1795 flags);
1796 transport_remove_task_from_execute_queue(task,
1797 cmd->se_dev);
1798
1799 pr_debug("Task %p removed from execute queue\n", task);
1800 spin_lock_irqsave(&cmd->t_state_lock, flags);
1801 continue;
1802 }
1803
1804 /*
1805 * If the struct se_task is active, sleep until it is returned
1806 * from the plugin.
1807 */
1808 if (task->task_flags & TF_ACTIVE) {
1809 task->task_flags |= TF_REQUEST_STOP;
1810 spin_unlock_irqrestore(&cmd->t_state_lock,
1811 flags);
1812
1813 pr_debug("Task %p waiting to complete\n", task);
1814 wait_for_completion(&task->task_stop_comp);
1815 pr_debug("Task %p stopped successfully\n", task);
1816
1817 spin_lock_irqsave(&cmd->t_state_lock, flags);
1818 atomic_dec(&cmd->t_task_cdbs_left);
1819 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1820 } else {
1821 pr_debug("Task %p - did nothing\n", task);
1822 ret++;
1823 }
1824
1825 __transport_stop_task_timer(task, &flags);
1826 }
1827 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1828
1829 return ret;
1830 }
1831
1832 /*
1833 * Handle SAM-esque emulation for generic transport request failures.
1834 */
1835 static void transport_generic_request_failure(
1836 struct se_cmd *cmd,
1837 struct se_device *dev,
1838 int complete,
1839 int sc)
1840 {
1841 int ret = 0;
1842
1843 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1844 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1845 cmd->t_task_cdb[0]);
1846 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1847 " %d/%d transport_error_status: %d\n",
1848 cmd->se_tfo->get_cmd_state(cmd),
1849 cmd->t_state, cmd->deferred_t_state,
1850 cmd->transport_error_status);
1851 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1852 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1853 " t_transport_active: %d t_transport_stop: %d"
1854 " t_transport_sent: %d\n", cmd->t_task_list_num,
1855 atomic_read(&cmd->t_task_cdbs_left),
1856 atomic_read(&cmd->t_task_cdbs_sent),
1857 atomic_read(&cmd->t_task_cdbs_ex_left),
1858 atomic_read(&cmd->t_transport_active),
1859 atomic_read(&cmd->t_transport_stop),
1860 atomic_read(&cmd->t_transport_sent));
1861
1862 transport_stop_all_task_timers(cmd);
1863
1864 if (dev)
1865 atomic_inc(&dev->depth_left);
1866 /*
1867 * For SAM Task Attribute emulation for failed struct se_cmd
1868 */
1869 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1870 transport_complete_task_attr(cmd);
1871
1872 if (complete) {
1873 transport_direct_request_timeout(cmd);
1874 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1875 }
1876
1877 switch (cmd->transport_error_status) {
1878 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1879 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1880 break;
1881 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1882 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1883 break;
1884 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1885 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1886 break;
1887 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1888 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1889 break;
1890 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1891 if (!sc)
1892 transport_new_cmd_failure(cmd);
1893 /*
1894 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1895 * we force this session to fall back to session
1896 * recovery.
1897 */
1898 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1899 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1900
1901 goto check_stop;
1902 case PYX_TRANSPORT_LU_COMM_FAILURE:
1903 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1904 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1905 break;
1906 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1907 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1908 break;
1909 case PYX_TRANSPORT_WRITE_PROTECTED:
1910 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1911 break;
1912 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1913 /*
1914 * No SENSE Data payload for this case, set SCSI Status
1915 * and queue the response to $FABRIC_MOD.
1916 *
1917 * Uses linux/include/scsi/scsi.h SAM status codes defs
1918 */
1919 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1920 /*
1921 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1922 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1923 * CONFLICT STATUS.
1924 *
1925 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1926 */
1927 if (cmd->se_sess &&
1928 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1929 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1930 cmd->orig_fe_lun, 0x2C,
1931 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1932
1933 ret = cmd->se_tfo->queue_status(cmd);
1934 if (ret == -EAGAIN)
1935 goto queue_full;
1936 goto check_stop;
1937 case PYX_TRANSPORT_USE_SENSE_REASON:
1938 /*
1939 * struct se_cmd->scsi_sense_reason already set
1940 */
1941 break;
1942 default:
1943 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1944 cmd->t_task_cdb[0],
1945 cmd->transport_error_status);
1946 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1947 break;
1948 }
1949 /*
1950 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1951 * make the call to transport_send_check_condition_and_sense()
1952 * directly. Otherwise expect the fabric to make the call to
1953 * transport_send_check_condition_and_sense() after handling
1954 * possible unsoliticied write data payloads.
1955 */
1956 if (!sc && !cmd->se_tfo->new_cmd_map)
1957 transport_new_cmd_failure(cmd);
1958 else {
1959 ret = transport_send_check_condition_and_sense(cmd,
1960 cmd->scsi_sense_reason, 0);
1961 if (ret == -EAGAIN)
1962 goto queue_full;
1963 }
1964
1965 check_stop:
1966 transport_lun_remove_cmd(cmd);
1967 if (!transport_cmd_check_stop_to_fabric(cmd))
1968 ;
1969 return;
1970
1971 queue_full:
1972 cmd->t_state = TRANSPORT_COMPLETE_OK;
1973 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
1974 }
1975
1976 static void transport_direct_request_timeout(struct se_cmd *cmd)
1977 {
1978 unsigned long flags;
1979
1980 spin_lock_irqsave(&cmd->t_state_lock, flags);
1981 if (!atomic_read(&cmd->t_transport_timeout)) {
1982 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1983 return;
1984 }
1985 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1986 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1987 return;
1988 }
1989
1990 atomic_sub(atomic_read(&cmd->t_transport_timeout),
1991 &cmd->t_se_count);
1992 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1993 }
1994
1995 static void transport_generic_request_timeout(struct se_cmd *cmd)
1996 {
1997 unsigned long flags;
1998
1999 /*
2000 * Reset cmd->t_se_count to allow transport_put_cmd()
2001 * to allow last call to free memory resources.
2002 */
2003 spin_lock_irqsave(&cmd->t_state_lock, flags);
2004 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2005 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2006
2007 atomic_sub(tmp, &cmd->t_se_count);
2008 }
2009 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2010
2011 transport_put_cmd(cmd);
2012 }
2013
2014 static inline u32 transport_lba_21(unsigned char *cdb)
2015 {
2016 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2017 }
2018
2019 static inline u32 transport_lba_32(unsigned char *cdb)
2020 {
2021 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2022 }
2023
2024 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2025 {
2026 unsigned int __v1, __v2;
2027
2028 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2029 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2030
2031 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2032 }
2033
2034 /*
2035 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2036 */
2037 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2038 {
2039 unsigned int __v1, __v2;
2040
2041 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2042 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2043
2044 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2045 }
2046
2047 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2048 {
2049 unsigned long flags;
2050
2051 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2052 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2053 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2054 }
2055
2056 /*
2057 * Called from interrupt context.
2058 */
2059 static void transport_task_timeout_handler(unsigned long data)
2060 {
2061 struct se_task *task = (struct se_task *)data;
2062 struct se_cmd *cmd = task->task_se_cmd;
2063 unsigned long flags;
2064
2065 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2066
2067 spin_lock_irqsave(&cmd->t_state_lock, flags);
2068 if (task->task_flags & TF_TIMER_STOP) {
2069 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2070 return;
2071 }
2072 task->task_flags &= ~TF_TIMER_RUNNING;
2073
2074 /*
2075 * Determine if transport_complete_task() has already been called.
2076 */
2077 if (!(task->task_flags & TF_ACTIVE)) {
2078 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2079 task, cmd);
2080 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2081 return;
2082 }
2083
2084 atomic_inc(&cmd->t_se_count);
2085 atomic_inc(&cmd->t_transport_timeout);
2086 cmd->t_tasks_failed = 1;
2087
2088 task->task_flags |= TF_TIMEOUT;
2089 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2090 task->task_scsi_status = 1;
2091
2092 if (task->task_flags & TF_REQUEST_STOP) {
2093 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2094 " == 1\n", task, cmd);
2095 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2096 complete(&task->task_stop_comp);
2097 return;
2098 }
2099
2100 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2101 pr_debug("transport task: %p cmd: %p timeout non zero"
2102 " t_task_cdbs_left\n", task, cmd);
2103 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2104 return;
2105 }
2106 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2107 task, cmd);
2108
2109 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2110 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2111
2112 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2113 }
2114
2115 /*
2116 * Called with cmd->t_state_lock held.
2117 */
2118 static void transport_start_task_timer(struct se_task *task)
2119 {
2120 struct se_device *dev = task->task_se_cmd->se_dev;
2121 int timeout;
2122
2123 if (task->task_flags & TF_TIMER_RUNNING)
2124 return;
2125 /*
2126 * If the task_timeout is disabled, exit now.
2127 */
2128 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2129 if (!timeout)
2130 return;
2131
2132 init_timer(&task->task_timer);
2133 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2134 task->task_timer.data = (unsigned long) task;
2135 task->task_timer.function = transport_task_timeout_handler;
2136
2137 task->task_flags |= TF_TIMER_RUNNING;
2138 add_timer(&task->task_timer);
2139 #if 0
2140 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2141 " %d\n", task->task_se_cmd, task, timeout);
2142 #endif
2143 }
2144
2145 /*
2146 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2147 */
2148 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2149 {
2150 struct se_cmd *cmd = task->task_se_cmd;
2151
2152 if (!(task->task_flags & TF_TIMER_RUNNING))
2153 return;
2154
2155 task->task_flags |= TF_TIMER_STOP;
2156 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2157
2158 del_timer_sync(&task->task_timer);
2159
2160 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2161 task->task_flags &= ~TF_TIMER_RUNNING;
2162 task->task_flags &= ~TF_TIMER_STOP;
2163 }
2164
2165 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2166 {
2167 struct se_task *task = NULL, *task_tmp;
2168 unsigned long flags;
2169
2170 spin_lock_irqsave(&cmd->t_state_lock, flags);
2171 list_for_each_entry_safe(task, task_tmp,
2172 &cmd->t_task_list, t_list)
2173 __transport_stop_task_timer(task, &flags);
2174 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2175 }
2176
2177 static inline int transport_tcq_window_closed(struct se_device *dev)
2178 {
2179 if (dev->dev_tcq_window_closed++ <
2180 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2181 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2182 } else
2183 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2184
2185 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2186 return 0;
2187 }
2188
2189 /*
2190 * Called from Fabric Module context from transport_execute_tasks()
2191 *
2192 * The return of this function determins if the tasks from struct se_cmd
2193 * get added to the execution queue in transport_execute_tasks(),
2194 * or are added to the delayed or ordered lists here.
2195 */
2196 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2197 {
2198 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2199 return 1;
2200 /*
2201 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2202 * to allow the passed struct se_cmd list of tasks to the front of the list.
2203 */
2204 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2205 atomic_inc(&cmd->se_dev->dev_hoq_count);
2206 smp_mb__after_atomic_inc();
2207 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2208 " 0x%02x, se_ordered_id: %u\n",
2209 cmd->t_task_cdb[0],
2210 cmd->se_ordered_id);
2211 return 1;
2212 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2213 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2214 list_add_tail(&cmd->se_ordered_node,
2215 &cmd->se_dev->ordered_cmd_list);
2216 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2217
2218 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2219 smp_mb__after_atomic_inc();
2220
2221 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2222 " list, se_ordered_id: %u\n",
2223 cmd->t_task_cdb[0],
2224 cmd->se_ordered_id);
2225 /*
2226 * Add ORDERED command to tail of execution queue if
2227 * no other older commands exist that need to be
2228 * completed first.
2229 */
2230 if (!atomic_read(&cmd->se_dev->simple_cmds))
2231 return 1;
2232 } else {
2233 /*
2234 * For SIMPLE and UNTAGGED Task Attribute commands
2235 */
2236 atomic_inc(&cmd->se_dev->simple_cmds);
2237 smp_mb__after_atomic_inc();
2238 }
2239 /*
2240 * Otherwise if one or more outstanding ORDERED task attribute exist,
2241 * add the dormant task(s) built for the passed struct se_cmd to the
2242 * execution queue and become in Active state for this struct se_device.
2243 */
2244 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2245 /*
2246 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2247 * will be drained upon completion of HEAD_OF_QUEUE task.
2248 */
2249 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2250 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2251 list_add_tail(&cmd->se_delayed_node,
2252 &cmd->se_dev->delayed_cmd_list);
2253 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2254
2255 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2256 " delayed CMD list, se_ordered_id: %u\n",
2257 cmd->t_task_cdb[0], cmd->sam_task_attr,
2258 cmd->se_ordered_id);
2259 /*
2260 * Return zero to let transport_execute_tasks() know
2261 * not to add the delayed tasks to the execution list.
2262 */
2263 return 0;
2264 }
2265 /*
2266 * Otherwise, no ORDERED task attributes exist..
2267 */
2268 return 1;
2269 }
2270
2271 /*
2272 * Called from fabric module context in transport_generic_new_cmd() and
2273 * transport_generic_process_write()
2274 */
2275 static int transport_execute_tasks(struct se_cmd *cmd)
2276 {
2277 int add_tasks;
2278
2279 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2280 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2281 transport_generic_request_failure(cmd, NULL, 0, 1);
2282 return 0;
2283 }
2284
2285 /*
2286 * Call transport_cmd_check_stop() to see if a fabric exception
2287 * has occurred that prevents execution.
2288 */
2289 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2290 /*
2291 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2292 * attribute for the tasks of the received struct se_cmd CDB
2293 */
2294 add_tasks = transport_execute_task_attr(cmd);
2295 if (!add_tasks)
2296 goto execute_tasks;
2297 /*
2298 * This calls transport_add_tasks_from_cmd() to handle
2299 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2300 * (if enabled) in __transport_add_task_to_execute_queue() and
2301 * transport_add_task_check_sam_attr().
2302 */
2303 transport_add_tasks_from_cmd(cmd);
2304 }
2305 /*
2306 * Kick the execution queue for the cmd associated struct se_device
2307 * storage object.
2308 */
2309 execute_tasks:
2310 __transport_execute_tasks(cmd->se_dev);
2311 return 0;
2312 }
2313
2314 /*
2315 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2316 * from struct se_device->execute_task_list and
2317 *
2318 * Called from transport_processing_thread()
2319 */
2320 static int __transport_execute_tasks(struct se_device *dev)
2321 {
2322 int error;
2323 struct se_cmd *cmd = NULL;
2324 struct se_task *task = NULL;
2325 unsigned long flags;
2326
2327 /*
2328 * Check if there is enough room in the device and HBA queue to send
2329 * struct se_tasks to the selected transport.
2330 */
2331 check_depth:
2332 if (!atomic_read(&dev->depth_left))
2333 return transport_tcq_window_closed(dev);
2334
2335 dev->dev_tcq_window_closed = 0;
2336
2337 spin_lock_irq(&dev->execute_task_lock);
2338 if (list_empty(&dev->execute_task_list)) {
2339 spin_unlock_irq(&dev->execute_task_lock);
2340 return 0;
2341 }
2342 task = list_first_entry(&dev->execute_task_list,
2343 struct se_task, t_execute_list);
2344 __transport_remove_task_from_execute_queue(task, dev);
2345 spin_unlock_irq(&dev->execute_task_lock);
2346
2347 atomic_dec(&dev->depth_left);
2348
2349 cmd = task->task_se_cmd;
2350
2351 spin_lock_irqsave(&cmd->t_state_lock, flags);
2352 task->task_flags |= (TF_ACTIVE | TF_SENT);
2353 atomic_inc(&cmd->t_task_cdbs_sent);
2354
2355 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2356 cmd->t_task_list_num)
2357 atomic_set(&cmd->transport_sent, 1);
2358
2359 transport_start_task_timer(task);
2360 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2361 /*
2362 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2363 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2364 * struct se_subsystem_api->do_task() caller below.
2365 */
2366 if (cmd->transport_emulate_cdb) {
2367 error = cmd->transport_emulate_cdb(cmd);
2368 if (error != 0) {
2369 cmd->transport_error_status = error;
2370 spin_lock_irqsave(&cmd->t_state_lock, flags);
2371 task->task_flags &= ~TF_ACTIVE;
2372 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2373 atomic_set(&cmd->transport_sent, 0);
2374 transport_stop_tasks_for_cmd(cmd);
2375 transport_generic_request_failure(cmd, dev, 0, 1);
2376 goto check_depth;
2377 }
2378 /*
2379 * Handle the successful completion for transport_emulate_cdb()
2380 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2381 * Otherwise the caller is expected to complete the task with
2382 * proper status.
2383 */
2384 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2385 cmd->scsi_status = SAM_STAT_GOOD;
2386 task->task_scsi_status = GOOD;
2387 transport_complete_task(task, 1);
2388 }
2389 } else {
2390 /*
2391 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2392 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2393 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2394 * LUN emulation code.
2395 *
2396 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2397 * call ->do_task() directly and let the underlying TCM subsystem plugin
2398 * code handle the CDB emulation.
2399 */
2400 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2401 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2402 error = transport_emulate_control_cdb(task);
2403 else
2404 error = dev->transport->do_task(task);
2405
2406 if (error != 0) {
2407 cmd->transport_error_status = error;
2408 spin_lock_irqsave(&cmd->t_state_lock, flags);
2409 task->task_flags &= ~TF_ACTIVE;
2410 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2411 atomic_set(&cmd->transport_sent, 0);
2412 transport_stop_tasks_for_cmd(cmd);
2413 transport_generic_request_failure(cmd, dev, 0, 1);
2414 }
2415 }
2416
2417 goto check_depth;
2418
2419 return 0;
2420 }
2421
2422 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2423 {
2424 unsigned long flags;
2425 /*
2426 * Any unsolicited data will get dumped for failed command inside of
2427 * the fabric plugin
2428 */
2429 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2430 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2431 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2432 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2433 }
2434
2435 static inline u32 transport_get_sectors_6(
2436 unsigned char *cdb,
2437 struct se_cmd *cmd,
2438 int *ret)
2439 {
2440 struct se_device *dev = cmd->se_dev;
2441
2442 /*
2443 * Assume TYPE_DISK for non struct se_device objects.
2444 * Use 8-bit sector value.
2445 */
2446 if (!dev)
2447 goto type_disk;
2448
2449 /*
2450 * Use 24-bit allocation length for TYPE_TAPE.
2451 */
2452 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2453 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2454
2455 /*
2456 * Everything else assume TYPE_DISK Sector CDB location.
2457 * Use 8-bit sector value.
2458 */
2459 type_disk:
2460 return (u32)cdb[4];
2461 }
2462
2463 static inline u32 transport_get_sectors_10(
2464 unsigned char *cdb,
2465 struct se_cmd *cmd,
2466 int *ret)
2467 {
2468 struct se_device *dev = cmd->se_dev;
2469
2470 /*
2471 * Assume TYPE_DISK for non struct se_device objects.
2472 * Use 16-bit sector value.
2473 */
2474 if (!dev)
2475 goto type_disk;
2476
2477 /*
2478 * XXX_10 is not defined in SSC, throw an exception
2479 */
2480 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2481 *ret = -EINVAL;
2482 return 0;
2483 }
2484
2485 /*
2486 * Everything else assume TYPE_DISK Sector CDB location.
2487 * Use 16-bit sector value.
2488 */
2489 type_disk:
2490 return (u32)(cdb[7] << 8) + cdb[8];
2491 }
2492
2493 static inline u32 transport_get_sectors_12(
2494 unsigned char *cdb,
2495 struct se_cmd *cmd,
2496 int *ret)
2497 {
2498 struct se_device *dev = cmd->se_dev;
2499
2500 /*
2501 * Assume TYPE_DISK for non struct se_device objects.
2502 * Use 32-bit sector value.
2503 */
2504 if (!dev)
2505 goto type_disk;
2506
2507 /*
2508 * XXX_12 is not defined in SSC, throw an exception
2509 */
2510 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2511 *ret = -EINVAL;
2512 return 0;
2513 }
2514
2515 /*
2516 * Everything else assume TYPE_DISK Sector CDB location.
2517 * Use 32-bit sector value.
2518 */
2519 type_disk:
2520 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2521 }
2522
2523 static inline u32 transport_get_sectors_16(
2524 unsigned char *cdb,
2525 struct se_cmd *cmd,
2526 int *ret)
2527 {
2528 struct se_device *dev = cmd->se_dev;
2529
2530 /*
2531 * Assume TYPE_DISK for non struct se_device objects.
2532 * Use 32-bit sector value.
2533 */
2534 if (!dev)
2535 goto type_disk;
2536
2537 /*
2538 * Use 24-bit allocation length for TYPE_TAPE.
2539 */
2540 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2541 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2542
2543 type_disk:
2544 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2545 (cdb[12] << 8) + cdb[13];
2546 }
2547
2548 /*
2549 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2550 */
2551 static inline u32 transport_get_sectors_32(
2552 unsigned char *cdb,
2553 struct se_cmd *cmd,
2554 int *ret)
2555 {
2556 /*
2557 * Assume TYPE_DISK for non struct se_device objects.
2558 * Use 32-bit sector value.
2559 */
2560 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2561 (cdb[30] << 8) + cdb[31];
2562
2563 }
2564
2565 static inline u32 transport_get_size(
2566 u32 sectors,
2567 unsigned char *cdb,
2568 struct se_cmd *cmd)
2569 {
2570 struct se_device *dev = cmd->se_dev;
2571
2572 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2573 if (cdb[1] & 1) { /* sectors */
2574 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2575 } else /* bytes */
2576 return sectors;
2577 }
2578 #if 0
2579 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2580 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2581 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2582 dev->transport->name);
2583 #endif
2584 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2585 }
2586
2587 static void transport_xor_callback(struct se_cmd *cmd)
2588 {
2589 unsigned char *buf, *addr;
2590 struct scatterlist *sg;
2591 unsigned int offset;
2592 int i;
2593 int count;
2594 /*
2595 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2596 *
2597 * 1) read the specified logical block(s);
2598 * 2) transfer logical blocks from the data-out buffer;
2599 * 3) XOR the logical blocks transferred from the data-out buffer with
2600 * the logical blocks read, storing the resulting XOR data in a buffer;
2601 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2602 * blocks transferred from the data-out buffer; and
2603 * 5) transfer the resulting XOR data to the data-in buffer.
2604 */
2605 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2606 if (!buf) {
2607 pr_err("Unable to allocate xor_callback buf\n");
2608 return;
2609 }
2610 /*
2611 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2612 * into the locally allocated *buf
2613 */
2614 sg_copy_to_buffer(cmd->t_data_sg,
2615 cmd->t_data_nents,
2616 buf,
2617 cmd->data_length);
2618
2619 /*
2620 * Now perform the XOR against the BIDI read memory located at
2621 * cmd->t_mem_bidi_list
2622 */
2623
2624 offset = 0;
2625 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2626 addr = kmap_atomic(sg_page(sg), KM_USER0);
2627 if (!addr)
2628 goto out;
2629
2630 for (i = 0; i < sg->length; i++)
2631 *(addr + sg->offset + i) ^= *(buf + offset + i);
2632
2633 offset += sg->length;
2634 kunmap_atomic(addr, KM_USER0);
2635 }
2636
2637 out:
2638 kfree(buf);
2639 }
2640
2641 /*
2642 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2643 */
2644 static int transport_get_sense_data(struct se_cmd *cmd)
2645 {
2646 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2647 struct se_device *dev = cmd->se_dev;
2648 struct se_task *task = NULL, *task_tmp;
2649 unsigned long flags;
2650 u32 offset = 0;
2651
2652 WARN_ON(!cmd->se_lun);
2653
2654 if (!dev)
2655 return 0;
2656
2657 spin_lock_irqsave(&cmd->t_state_lock, flags);
2658 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2659 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2660 return 0;
2661 }
2662
2663 list_for_each_entry_safe(task, task_tmp,
2664 &cmd->t_task_list, t_list) {
2665 if (!task->task_sense)
2666 continue;
2667
2668 if (!dev->transport->get_sense_buffer) {
2669 pr_err("dev->transport->get_sense_buffer"
2670 " is NULL\n");
2671 continue;
2672 }
2673
2674 sense_buffer = dev->transport->get_sense_buffer(task);
2675 if (!sense_buffer) {
2676 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2677 " sense buffer for task with sense\n",
2678 cmd->se_tfo->get_task_tag(cmd), task);
2679 continue;
2680 }
2681 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2682
2683 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2684 TRANSPORT_SENSE_BUFFER);
2685
2686 memcpy(&buffer[offset], sense_buffer,
2687 TRANSPORT_SENSE_BUFFER);
2688 cmd->scsi_status = task->task_scsi_status;
2689 /* Automatically padded */
2690 cmd->scsi_sense_length =
2691 (TRANSPORT_SENSE_BUFFER + offset);
2692
2693 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2694 " and sense\n",
2695 dev->se_hba->hba_id, dev->transport->name,
2696 cmd->scsi_status);
2697 return 0;
2698 }
2699 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2700
2701 return -1;
2702 }
2703
2704 static int
2705 transport_handle_reservation_conflict(struct se_cmd *cmd)
2706 {
2707 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2708 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2709 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2710 /*
2711 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2712 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2713 * CONFLICT STATUS.
2714 *
2715 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2716 */
2717 if (cmd->se_sess &&
2718 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2719 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2720 cmd->orig_fe_lun, 0x2C,
2721 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2722 return -EINVAL;
2723 }
2724
2725 static inline long long transport_dev_end_lba(struct se_device *dev)
2726 {
2727 return dev->transport->get_blocks(dev) + 1;
2728 }
2729
2730 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2731 {
2732 struct se_device *dev = cmd->se_dev;
2733 u32 sectors;
2734
2735 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2736 return 0;
2737
2738 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2739
2740 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2741 pr_err("LBA: %llu Sectors: %u exceeds"
2742 " transport_dev_end_lba(): %llu\n",
2743 cmd->t_task_lba, sectors,
2744 transport_dev_end_lba(dev));
2745 return -EINVAL;
2746 }
2747
2748 return 0;
2749 }
2750
2751 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2752 {
2753 /*
2754 * Determine if the received WRITE_SAME is used to for direct
2755 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2756 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2757 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2758 */
2759 int passthrough = (dev->transport->transport_type ==
2760 TRANSPORT_PLUGIN_PHBA_PDEV);
2761
2762 if (!passthrough) {
2763 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2764 pr_err("WRITE_SAME PBDATA and LBDATA"
2765 " bits not supported for Block Discard"
2766 " Emulation\n");
2767 return -ENOSYS;
2768 }
2769 /*
2770 * Currently for the emulated case we only accept
2771 * tpws with the UNMAP=1 bit set.
2772 */
2773 if (!(flags[0] & 0x08)) {
2774 pr_err("WRITE_SAME w/o UNMAP bit not"
2775 " supported for Block Discard Emulation\n");
2776 return -ENOSYS;
2777 }
2778 }
2779
2780 return 0;
2781 }
2782
2783 /* transport_generic_cmd_sequencer():
2784 *
2785 * Generic Command Sequencer that should work for most DAS transport
2786 * drivers.
2787 *
2788 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2789 * RX Thread.
2790 *
2791 * FIXME: Need to support other SCSI OPCODES where as well.
2792 */
2793 static int transport_generic_cmd_sequencer(
2794 struct se_cmd *cmd,
2795 unsigned char *cdb)
2796 {
2797 struct se_device *dev = cmd->se_dev;
2798 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2799 int ret = 0, sector_ret = 0, passthrough;
2800 u32 sectors = 0, size = 0, pr_reg_type = 0;
2801 u16 service_action;
2802 u8 alua_ascq = 0;
2803 /*
2804 * Check for an existing UNIT ATTENTION condition
2805 */
2806 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2807 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2808 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2809 return -EINVAL;
2810 }
2811 /*
2812 * Check status of Asymmetric Logical Unit Assignment port
2813 */
2814 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2815 if (ret != 0) {
2816 /*
2817 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2818 * The ALUA additional sense code qualifier (ASCQ) is determined
2819 * by the ALUA primary or secondary access state..
2820 */
2821 if (ret > 0) {
2822 #if 0
2823 pr_debug("[%s]: ALUA TG Port not available,"
2824 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2825 cmd->se_tfo->get_fabric_name(), alua_ascq);
2826 #endif
2827 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2828 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2829 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2830 return -EINVAL;
2831 }
2832 goto out_invalid_cdb_field;
2833 }
2834 /*
2835 * Check status for SPC-3 Persistent Reservations
2836 */
2837 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2838 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2839 cmd, cdb, pr_reg_type) != 0)
2840 return transport_handle_reservation_conflict(cmd);
2841 /*
2842 * This means the CDB is allowed for the SCSI Initiator port
2843 * when said port is *NOT* holding the legacy SPC-2 or
2844 * SPC-3 Persistent Reservation.
2845 */
2846 }
2847
2848 switch (cdb[0]) {
2849 case READ_6:
2850 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2851 if (sector_ret)
2852 goto out_unsupported_cdb;
2853 size = transport_get_size(sectors, cdb, cmd);
2854 cmd->transport_split_cdb = &split_cdb_XX_6;
2855 cmd->t_task_lba = transport_lba_21(cdb);
2856 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2857 break;
2858 case READ_10:
2859 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2860 if (sector_ret)
2861 goto out_unsupported_cdb;
2862 size = transport_get_size(sectors, cdb, cmd);
2863 cmd->transport_split_cdb = &split_cdb_XX_10;
2864 cmd->t_task_lba = transport_lba_32(cdb);
2865 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2866 break;
2867 case READ_12:
2868 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2869 if (sector_ret)
2870 goto out_unsupported_cdb;
2871 size = transport_get_size(sectors, cdb, cmd);
2872 cmd->transport_split_cdb = &split_cdb_XX_12;
2873 cmd->t_task_lba = transport_lba_32(cdb);
2874 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2875 break;
2876 case READ_16:
2877 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2878 if (sector_ret)
2879 goto out_unsupported_cdb;
2880 size = transport_get_size(sectors, cdb, cmd);
2881 cmd->transport_split_cdb = &split_cdb_XX_16;
2882 cmd->t_task_lba = transport_lba_64(cdb);
2883 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2884 break;
2885 case WRITE_6:
2886 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2887 if (sector_ret)
2888 goto out_unsupported_cdb;
2889 size = transport_get_size(sectors, cdb, cmd);
2890 cmd->transport_split_cdb = &split_cdb_XX_6;
2891 cmd->t_task_lba = transport_lba_21(cdb);
2892 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2893 break;
2894 case WRITE_10:
2895 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2896 if (sector_ret)
2897 goto out_unsupported_cdb;
2898 size = transport_get_size(sectors, cdb, cmd);
2899 cmd->transport_split_cdb = &split_cdb_XX_10;
2900 cmd->t_task_lba = transport_lba_32(cdb);
2901 cmd->t_tasks_fua = (cdb[1] & 0x8);
2902 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2903 break;
2904 case WRITE_12:
2905 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2906 if (sector_ret)
2907 goto out_unsupported_cdb;
2908 size = transport_get_size(sectors, cdb, cmd);
2909 cmd->transport_split_cdb = &split_cdb_XX_12;
2910 cmd->t_task_lba = transport_lba_32(cdb);
2911 cmd->t_tasks_fua = (cdb[1] & 0x8);
2912 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2913 break;
2914 case WRITE_16:
2915 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2916 if (sector_ret)
2917 goto out_unsupported_cdb;
2918 size = transport_get_size(sectors, cdb, cmd);
2919 cmd->transport_split_cdb = &split_cdb_XX_16;
2920 cmd->t_task_lba = transport_lba_64(cdb);
2921 cmd->t_tasks_fua = (cdb[1] & 0x8);
2922 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2923 break;
2924 case XDWRITEREAD_10:
2925 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2926 !(cmd->t_tasks_bidi))
2927 goto out_invalid_cdb_field;
2928 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2929 if (sector_ret)
2930 goto out_unsupported_cdb;
2931 size = transport_get_size(sectors, cdb, cmd);
2932 cmd->transport_split_cdb = &split_cdb_XX_10;
2933 cmd->t_task_lba = transport_lba_32(cdb);
2934 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2935 passthrough = (dev->transport->transport_type ==
2936 TRANSPORT_PLUGIN_PHBA_PDEV);
2937 /*
2938 * Skip the remaining assignments for TCM/PSCSI passthrough
2939 */
2940 if (passthrough)
2941 break;
2942 /*
2943 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2944 */
2945 cmd->transport_complete_callback = &transport_xor_callback;
2946 cmd->t_tasks_fua = (cdb[1] & 0x8);
2947 break;
2948 case VARIABLE_LENGTH_CMD:
2949 service_action = get_unaligned_be16(&cdb[8]);
2950 /*
2951 * Determine if this is TCM/PSCSI device and we should disable
2952 * internal emulation for this CDB.
2953 */
2954 passthrough = (dev->transport->transport_type ==
2955 TRANSPORT_PLUGIN_PHBA_PDEV);
2956
2957 switch (service_action) {
2958 case XDWRITEREAD_32:
2959 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2960 if (sector_ret)
2961 goto out_unsupported_cdb;
2962 size = transport_get_size(sectors, cdb, cmd);
2963 /*
2964 * Use WRITE_32 and READ_32 opcodes for the emulated
2965 * XDWRITE_READ_32 logic.
2966 */
2967 cmd->transport_split_cdb = &split_cdb_XX_32;
2968 cmd->t_task_lba = transport_lba_64_ext(cdb);
2969 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2970
2971 /*
2972 * Skip the remaining assignments for TCM/PSCSI passthrough
2973 */
2974 if (passthrough)
2975 break;
2976
2977 /*
2978 * Setup BIDI XOR callback to be run during
2979 * transport_generic_complete_ok()
2980 */
2981 cmd->transport_complete_callback = &transport_xor_callback;
2982 cmd->t_tasks_fua = (cdb[10] & 0x8);
2983 break;
2984 case WRITE_SAME_32:
2985 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2986 if (sector_ret)
2987 goto out_unsupported_cdb;
2988
2989 if (sectors)
2990 size = transport_get_size(1, cdb, cmd);
2991 else {
2992 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2993 " supported\n");
2994 goto out_invalid_cdb_field;
2995 }
2996
2997 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2998 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2999
3000 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3001 goto out_invalid_cdb_field;
3002
3003 break;
3004 default:
3005 pr_err("VARIABLE_LENGTH_CMD service action"
3006 " 0x%04x not supported\n", service_action);
3007 goto out_unsupported_cdb;
3008 }
3009 break;
3010 case MAINTENANCE_IN:
3011 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3012 /* MAINTENANCE_IN from SCC-2 */
3013 /*
3014 * Check for emulated MI_REPORT_TARGET_PGS.
3015 */
3016 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3017 cmd->transport_emulate_cdb =
3018 (su_dev->t10_alua.alua_type ==
3019 SPC3_ALUA_EMULATED) ?
3020 core_emulate_report_target_port_groups :
3021 NULL;
3022 }
3023 size = (cdb[6] << 24) | (cdb[7] << 16) |
3024 (cdb[8] << 8) | cdb[9];
3025 } else {
3026 /* GPCMD_SEND_KEY from multi media commands */
3027 size = (cdb[8] << 8) + cdb[9];
3028 }
3029 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3030 break;
3031 case MODE_SELECT:
3032 size = cdb[4];
3033 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3034 break;
3035 case MODE_SELECT_10:
3036 size = (cdb[7] << 8) + cdb[8];
3037 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3038 break;
3039 case MODE_SENSE:
3040 size = cdb[4];
3041 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3042 break;
3043 case MODE_SENSE_10:
3044 case GPCMD_READ_BUFFER_CAPACITY:
3045 case GPCMD_SEND_OPC:
3046 case LOG_SELECT:
3047 case LOG_SENSE:
3048 size = (cdb[7] << 8) + cdb[8];
3049 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3050 break;
3051 case READ_BLOCK_LIMITS:
3052 size = READ_BLOCK_LEN;
3053 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3054 break;
3055 case GPCMD_GET_CONFIGURATION:
3056 case GPCMD_READ_FORMAT_CAPACITIES:
3057 case GPCMD_READ_DISC_INFO:
3058 case GPCMD_READ_TRACK_RZONE_INFO:
3059 size = (cdb[7] << 8) + cdb[8];
3060 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061 break;
3062 case PERSISTENT_RESERVE_IN:
3063 case PERSISTENT_RESERVE_OUT:
3064 cmd->transport_emulate_cdb =
3065 (su_dev->t10_pr.res_type ==
3066 SPC3_PERSISTENT_RESERVATIONS) ?
3067 core_scsi3_emulate_pr : NULL;
3068 size = (cdb[7] << 8) + cdb[8];
3069 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3070 break;
3071 case GPCMD_MECHANISM_STATUS:
3072 case GPCMD_READ_DVD_STRUCTURE:
3073 size = (cdb[8] << 8) + cdb[9];
3074 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3075 break;
3076 case READ_POSITION:
3077 size = READ_POSITION_LEN;
3078 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3079 break;
3080 case MAINTENANCE_OUT:
3081 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3082 /* MAINTENANCE_OUT from SCC-2
3083 *
3084 * Check for emulated MO_SET_TARGET_PGS.
3085 */
3086 if (cdb[1] == MO_SET_TARGET_PGS) {
3087 cmd->transport_emulate_cdb =
3088 (su_dev->t10_alua.alua_type ==
3089 SPC3_ALUA_EMULATED) ?
3090 core_emulate_set_target_port_groups :
3091 NULL;
3092 }
3093
3094 size = (cdb[6] << 24) | (cdb[7] << 16) |
3095 (cdb[8] << 8) | cdb[9];
3096 } else {
3097 /* GPCMD_REPORT_KEY from multi media commands */
3098 size = (cdb[8] << 8) + cdb[9];
3099 }
3100 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3101 break;
3102 case INQUIRY:
3103 size = (cdb[3] << 8) + cdb[4];
3104 /*
3105 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3106 * See spc4r17 section 5.3
3107 */
3108 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3109 cmd->sam_task_attr = MSG_HEAD_TAG;
3110 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3111 break;
3112 case READ_BUFFER:
3113 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3114 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3115 break;
3116 case READ_CAPACITY:
3117 size = READ_CAP_LEN;
3118 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3119 break;
3120 case READ_MEDIA_SERIAL_NUMBER:
3121 case SECURITY_PROTOCOL_IN:
3122 case SECURITY_PROTOCOL_OUT:
3123 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3124 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3125 break;
3126 case SERVICE_ACTION_IN:
3127 case ACCESS_CONTROL_IN:
3128 case ACCESS_CONTROL_OUT:
3129 case EXTENDED_COPY:
3130 case READ_ATTRIBUTE:
3131 case RECEIVE_COPY_RESULTS:
3132 case WRITE_ATTRIBUTE:
3133 size = (cdb[10] << 24) | (cdb[11] << 16) |
3134 (cdb[12] << 8) | cdb[13];
3135 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3136 break;
3137 case RECEIVE_DIAGNOSTIC:
3138 case SEND_DIAGNOSTIC:
3139 size = (cdb[3] << 8) | cdb[4];
3140 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3141 break;
3142 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3143 #if 0
3144 case GPCMD_READ_CD:
3145 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3146 size = (2336 * sectors);
3147 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148 break;
3149 #endif
3150 case READ_TOC:
3151 size = cdb[8];
3152 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3153 break;
3154 case REQUEST_SENSE:
3155 size = cdb[4];
3156 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3157 break;
3158 case READ_ELEMENT_STATUS:
3159 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3160 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3161 break;
3162 case WRITE_BUFFER:
3163 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3164 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3165 break;
3166 case RESERVE:
3167 case RESERVE_10:
3168 /*
3169 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3170 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3171 */
3172 if (cdb[0] == RESERVE_10)
3173 size = (cdb[7] << 8) | cdb[8];
3174 else
3175 size = cmd->data_length;
3176
3177 /*
3178 * Setup the legacy emulated handler for SPC-2 and
3179 * >= SPC-3 compatible reservation handling (CRH=1)
3180 * Otherwise, we assume the underlying SCSI logic is
3181 * is running in SPC_PASSTHROUGH, and wants reservations
3182 * emulation disabled.
3183 */
3184 cmd->transport_emulate_cdb =
3185 (su_dev->t10_pr.res_type !=
3186 SPC_PASSTHROUGH) ?
3187 core_scsi2_emulate_crh : NULL;
3188 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3189 break;
3190 case RELEASE:
3191 case RELEASE_10:
3192 /*
3193 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3194 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3195 */
3196 if (cdb[0] == RELEASE_10)
3197 size = (cdb[7] << 8) | cdb[8];
3198 else
3199 size = cmd->data_length;
3200
3201 cmd->transport_emulate_cdb =
3202 (su_dev->t10_pr.res_type !=
3203 SPC_PASSTHROUGH) ?
3204 core_scsi2_emulate_crh : NULL;
3205 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3206 break;
3207 case SYNCHRONIZE_CACHE:
3208 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3209 /*
3210 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3211 */
3212 if (cdb[0] == SYNCHRONIZE_CACHE) {
3213 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3214 cmd->t_task_lba = transport_lba_32(cdb);
3215 } else {
3216 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3217 cmd->t_task_lba = transport_lba_64(cdb);
3218 }
3219 if (sector_ret)
3220 goto out_unsupported_cdb;
3221
3222 size = transport_get_size(sectors, cdb, cmd);
3223 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3224
3225 /*
3226 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3227 */
3228 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3229 break;
3230 /*
3231 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3232 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3233 */
3234 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3235 /*
3236 * Check to ensure that LBA + Range does not exceed past end of
3237 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3238 */
3239 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3240 if (transport_cmd_get_valid_sectors(cmd) < 0)
3241 goto out_invalid_cdb_field;
3242 }
3243 break;
3244 case UNMAP:
3245 size = get_unaligned_be16(&cdb[7]);
3246 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3247 break;
3248 case WRITE_SAME_16:
3249 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3250 if (sector_ret)
3251 goto out_unsupported_cdb;
3252
3253 if (sectors)
3254 size = transport_get_size(1, cdb, cmd);
3255 else {
3256 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3257 goto out_invalid_cdb_field;
3258 }
3259
3260 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3261 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3262
3263 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3264 goto out_invalid_cdb_field;
3265 break;
3266 case WRITE_SAME:
3267 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3268 if (sector_ret)
3269 goto out_unsupported_cdb;
3270
3271 if (sectors)
3272 size = transport_get_size(1, cdb, cmd);
3273 else {
3274 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3275 goto out_invalid_cdb_field;
3276 }
3277
3278 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3279 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3280 /*
3281 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3282 * of byte 1 bit 3 UNMAP instead of original reserved field
3283 */
3284 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3285 goto out_invalid_cdb_field;
3286 break;
3287 case ALLOW_MEDIUM_REMOVAL:
3288 case GPCMD_CLOSE_TRACK:
3289 case ERASE:
3290 case INITIALIZE_ELEMENT_STATUS:
3291 case GPCMD_LOAD_UNLOAD:
3292 case REZERO_UNIT:
3293 case SEEK_10:
3294 case GPCMD_SET_SPEED:
3295 case SPACE:
3296 case START_STOP:
3297 case TEST_UNIT_READY:
3298 case VERIFY:
3299 case WRITE_FILEMARKS:
3300 case MOVE_MEDIUM:
3301 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3302 break;
3303 case REPORT_LUNS:
3304 cmd->transport_emulate_cdb =
3305 transport_core_report_lun_response;
3306 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3307 /*
3308 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3309 * See spc4r17 section 5.3
3310 */
3311 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3312 cmd->sam_task_attr = MSG_HEAD_TAG;
3313 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3314 break;
3315 default:
3316 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3317 " 0x%02x, sending CHECK_CONDITION.\n",
3318 cmd->se_tfo->get_fabric_name(), cdb[0]);
3319 goto out_unsupported_cdb;
3320 }
3321
3322 if (size != cmd->data_length) {
3323 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3324 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3325 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3326 cmd->data_length, size, cdb[0]);
3327
3328 cmd->cmd_spdtl = size;
3329
3330 if (cmd->data_direction == DMA_TO_DEVICE) {
3331 pr_err("Rejecting underflow/overflow"
3332 " WRITE data\n");
3333 goto out_invalid_cdb_field;
3334 }
3335 /*
3336 * Reject READ_* or WRITE_* with overflow/underflow for
3337 * type SCF_SCSI_DATA_SG_IO_CDB.
3338 */
3339 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3340 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3341 " CDB on non 512-byte sector setup subsystem"
3342 " plugin: %s\n", dev->transport->name);
3343 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3344 goto out_invalid_cdb_field;
3345 }
3346
3347 if (size > cmd->data_length) {
3348 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3349 cmd->residual_count = (size - cmd->data_length);
3350 } else {
3351 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3352 cmd->residual_count = (cmd->data_length - size);
3353 }
3354 cmd->data_length = size;
3355 }
3356
3357 /* Let's limit control cdbs to a page, for simplicity's sake. */
3358 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3359 size > PAGE_SIZE)
3360 goto out_invalid_cdb_field;
3361
3362 transport_set_supported_SAM_opcode(cmd);
3363 return ret;
3364
3365 out_unsupported_cdb:
3366 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3367 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3368 return -EINVAL;
3369 out_invalid_cdb_field:
3370 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3371 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3372 return -EINVAL;
3373 }
3374
3375 /*
3376 * Called from transport_generic_complete_ok() and
3377 * transport_generic_request_failure() to determine which dormant/delayed
3378 * and ordered cmds need to have their tasks added to the execution queue.
3379 */
3380 static void transport_complete_task_attr(struct se_cmd *cmd)
3381 {
3382 struct se_device *dev = cmd->se_dev;
3383 struct se_cmd *cmd_p, *cmd_tmp;
3384 int new_active_tasks = 0;
3385
3386 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3387 atomic_dec(&dev->simple_cmds);
3388 smp_mb__after_atomic_dec();
3389 dev->dev_cur_ordered_id++;
3390 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3391 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3392 cmd->se_ordered_id);
3393 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3394 atomic_dec(&dev->dev_hoq_count);
3395 smp_mb__after_atomic_dec();
3396 dev->dev_cur_ordered_id++;
3397 pr_debug("Incremented dev_cur_ordered_id: %u for"
3398 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3399 cmd->se_ordered_id);
3400 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3401 spin_lock(&dev->ordered_cmd_lock);
3402 list_del(&cmd->se_ordered_node);
3403 atomic_dec(&dev->dev_ordered_sync);
3404 smp_mb__after_atomic_dec();
3405 spin_unlock(&dev->ordered_cmd_lock);
3406
3407 dev->dev_cur_ordered_id++;
3408 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3409 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3410 }
3411 /*
3412 * Process all commands up to the last received
3413 * ORDERED task attribute which requires another blocking
3414 * boundary
3415 */
3416 spin_lock(&dev->delayed_cmd_lock);
3417 list_for_each_entry_safe(cmd_p, cmd_tmp,
3418 &dev->delayed_cmd_list, se_delayed_node) {
3419
3420 list_del(&cmd_p->se_delayed_node);
3421 spin_unlock(&dev->delayed_cmd_lock);
3422
3423 pr_debug("Calling add_tasks() for"
3424 " cmd_p: 0x%02x Task Attr: 0x%02x"
3425 " Dormant -> Active, se_ordered_id: %u\n",
3426 cmd_p->t_task_cdb[0],
3427 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3428
3429 transport_add_tasks_from_cmd(cmd_p);
3430 new_active_tasks++;
3431
3432 spin_lock(&dev->delayed_cmd_lock);
3433 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3434 break;
3435 }
3436 spin_unlock(&dev->delayed_cmd_lock);
3437 /*
3438 * If new tasks have become active, wake up the transport thread
3439 * to do the processing of the Active tasks.
3440 */
3441 if (new_active_tasks != 0)
3442 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3443 }
3444
3445 static int transport_complete_qf(struct se_cmd *cmd)
3446 {
3447 int ret = 0;
3448
3449 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3450 return cmd->se_tfo->queue_status(cmd);
3451
3452 switch (cmd->data_direction) {
3453 case DMA_FROM_DEVICE:
3454 ret = cmd->se_tfo->queue_data_in(cmd);
3455 break;
3456 case DMA_TO_DEVICE:
3457 if (cmd->t_bidi_data_sg) {
3458 ret = cmd->se_tfo->queue_data_in(cmd);
3459 if (ret < 0)
3460 return ret;
3461 }
3462 /* Fall through for DMA_TO_DEVICE */
3463 case DMA_NONE:
3464 ret = cmd->se_tfo->queue_status(cmd);
3465 break;
3466 default:
3467 break;
3468 }
3469
3470 return ret;
3471 }
3472
3473 static void transport_handle_queue_full(
3474 struct se_cmd *cmd,
3475 struct se_device *dev,
3476 int (*qf_callback)(struct se_cmd *))
3477 {
3478 spin_lock_irq(&dev->qf_cmd_lock);
3479 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3480 cmd->transport_qf_callback = qf_callback;
3481 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3482 atomic_inc(&dev->dev_qf_count);
3483 smp_mb__after_atomic_inc();
3484 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3485
3486 schedule_work(&cmd->se_dev->qf_work_queue);
3487 }
3488
3489 static void transport_generic_complete_ok(struct se_cmd *cmd)
3490 {
3491 int reason = 0, ret;
3492 /*
3493 * Check if we need to move delayed/dormant tasks from cmds on the
3494 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3495 * Attribute.
3496 */
3497 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3498 transport_complete_task_attr(cmd);
3499 /*
3500 * Check to schedule QUEUE_FULL work, or execute an existing
3501 * cmd->transport_qf_callback()
3502 */
3503 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3504 schedule_work(&cmd->se_dev->qf_work_queue);
3505
3506 if (cmd->transport_qf_callback) {
3507 ret = cmd->transport_qf_callback(cmd);
3508 if (ret < 0)
3509 goto queue_full;
3510
3511 cmd->transport_qf_callback = NULL;
3512 goto done;
3513 }
3514 /*
3515 * Check if we need to retrieve a sense buffer from
3516 * the struct se_cmd in question.
3517 */
3518 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3519 if (transport_get_sense_data(cmd) < 0)
3520 reason = TCM_NON_EXISTENT_LUN;
3521
3522 /*
3523 * Only set when an struct se_task->task_scsi_status returned
3524 * a non GOOD status.
3525 */
3526 if (cmd->scsi_status) {
3527 ret = transport_send_check_condition_and_sense(
3528 cmd, reason, 1);
3529 if (ret == -EAGAIN)
3530 goto queue_full;
3531
3532 transport_lun_remove_cmd(cmd);
3533 transport_cmd_check_stop_to_fabric(cmd);
3534 return;
3535 }
3536 }
3537 /*
3538 * Check for a callback, used by amongst other things
3539 * XDWRITE_READ_10 emulation.
3540 */
3541 if (cmd->transport_complete_callback)
3542 cmd->transport_complete_callback(cmd);
3543
3544 switch (cmd->data_direction) {
3545 case DMA_FROM_DEVICE:
3546 spin_lock(&cmd->se_lun->lun_sep_lock);
3547 if (cmd->se_lun->lun_sep) {
3548 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3549 cmd->data_length;
3550 }
3551 spin_unlock(&cmd->se_lun->lun_sep_lock);
3552
3553 ret = cmd->se_tfo->queue_data_in(cmd);
3554 if (ret == -EAGAIN)
3555 goto queue_full;
3556 break;
3557 case DMA_TO_DEVICE:
3558 spin_lock(&cmd->se_lun->lun_sep_lock);
3559 if (cmd->se_lun->lun_sep) {
3560 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3561 cmd->data_length;
3562 }
3563 spin_unlock(&cmd->se_lun->lun_sep_lock);
3564 /*
3565 * Check if we need to send READ payload for BIDI-COMMAND
3566 */
3567 if (cmd->t_bidi_data_sg) {
3568 spin_lock(&cmd->se_lun->lun_sep_lock);
3569 if (cmd->se_lun->lun_sep) {
3570 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3571 cmd->data_length;
3572 }
3573 spin_unlock(&cmd->se_lun->lun_sep_lock);
3574 ret = cmd->se_tfo->queue_data_in(cmd);
3575 if (ret == -EAGAIN)
3576 goto queue_full;
3577 break;
3578 }
3579 /* Fall through for DMA_TO_DEVICE */
3580 case DMA_NONE:
3581 ret = cmd->se_tfo->queue_status(cmd);
3582 if (ret == -EAGAIN)
3583 goto queue_full;
3584 break;
3585 default:
3586 break;
3587 }
3588
3589 done:
3590 transport_lun_remove_cmd(cmd);
3591 transport_cmd_check_stop_to_fabric(cmd);
3592 return;
3593
3594 queue_full:
3595 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3596 " data_direction: %d\n", cmd, cmd->data_direction);
3597 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3598 }
3599
3600 static void transport_free_dev_tasks(struct se_cmd *cmd)
3601 {
3602 struct se_task *task, *task_tmp;
3603 unsigned long flags;
3604
3605 spin_lock_irqsave(&cmd->t_state_lock, flags);
3606 list_for_each_entry_safe(task, task_tmp,
3607 &cmd->t_task_list, t_list) {
3608 if (task->task_flags & TF_ACTIVE)
3609 continue;
3610
3611 kfree(task->task_sg_bidi);
3612 kfree(task->task_sg);
3613
3614 list_del(&task->t_list);
3615
3616 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3617 cmd->se_dev->transport->free_task(task);
3618 spin_lock_irqsave(&cmd->t_state_lock, flags);
3619 }
3620 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3621 }
3622
3623 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3624 {
3625 struct scatterlist *sg;
3626 int count;
3627
3628 for_each_sg(sgl, sg, nents, count)
3629 __free_page(sg_page(sg));
3630
3631 kfree(sgl);
3632 }
3633
3634 static inline void transport_free_pages(struct se_cmd *cmd)
3635 {
3636 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3637 return;
3638
3639 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3640 cmd->t_data_sg = NULL;
3641 cmd->t_data_nents = 0;
3642
3643 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3644 cmd->t_bidi_data_sg = NULL;
3645 cmd->t_bidi_data_nents = 0;
3646 }
3647
3648 /**
3649 * transport_put_cmd - release a reference to a command
3650 * @cmd: command to release
3651 *
3652 * This routine releases our reference to the command and frees it if possible.
3653 */
3654 static void transport_put_cmd(struct se_cmd *cmd)
3655 {
3656 unsigned long flags;
3657 int free_tasks = 0;
3658
3659 spin_lock_irqsave(&cmd->t_state_lock, flags);
3660 if (atomic_read(&cmd->t_fe_count)) {
3661 if (!atomic_dec_and_test(&cmd->t_fe_count))
3662 goto out_busy;
3663 }
3664
3665 if (atomic_read(&cmd->t_se_count)) {
3666 if (!atomic_dec_and_test(&cmd->t_se_count))
3667 goto out_busy;
3668 }
3669
3670 if (atomic_read(&cmd->transport_dev_active)) {
3671 atomic_set(&cmd->transport_dev_active, 0);
3672 transport_all_task_dev_remove_state(cmd);
3673 free_tasks = 1;
3674 }
3675 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3676
3677 if (free_tasks != 0)
3678 transport_free_dev_tasks(cmd);
3679
3680 transport_free_pages(cmd);
3681 transport_release_cmd(cmd);
3682 return;
3683 out_busy:
3684 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3685 }
3686
3687 /*
3688 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3689 * allocating in the core.
3690 * @cmd: Associated se_cmd descriptor
3691 * @mem: SGL style memory for TCM WRITE / READ
3692 * @sg_mem_num: Number of SGL elements
3693 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3694 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3695 *
3696 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3697 * of parameters.
3698 */
3699 int transport_generic_map_mem_to_cmd(
3700 struct se_cmd *cmd,
3701 struct scatterlist *sgl,
3702 u32 sgl_count,
3703 struct scatterlist *sgl_bidi,
3704 u32 sgl_bidi_count)
3705 {
3706 if (!sgl || !sgl_count)
3707 return 0;
3708
3709 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3710 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3711
3712 cmd->t_data_sg = sgl;
3713 cmd->t_data_nents = sgl_count;
3714
3715 if (sgl_bidi && sgl_bidi_count) {
3716 cmd->t_bidi_data_sg = sgl_bidi;
3717 cmd->t_bidi_data_nents = sgl_bidi_count;
3718 }
3719 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3720 }
3721
3722 return 0;
3723 }
3724 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3725
3726 static int transport_new_cmd_obj(struct se_cmd *cmd)
3727 {
3728 struct se_device *dev = cmd->se_dev;
3729 int set_counts = 1, rc, task_cdbs;
3730
3731 /*
3732 * Setup any BIDI READ tasks and memory from
3733 * cmd->t_mem_bidi_list so the READ struct se_tasks
3734 * are queued first for the non pSCSI passthrough case.
3735 */
3736 if (cmd->t_bidi_data_sg &&
3737 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3738 rc = transport_allocate_tasks(cmd,
3739 cmd->t_task_lba,
3740 DMA_FROM_DEVICE,
3741 cmd->t_bidi_data_sg,
3742 cmd->t_bidi_data_nents);
3743 if (rc <= 0) {
3744 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3745 cmd->scsi_sense_reason =
3746 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3747 return -EINVAL;
3748 }
3749 atomic_inc(&cmd->t_fe_count);
3750 atomic_inc(&cmd->t_se_count);
3751 set_counts = 0;
3752 }
3753 /*
3754 * Setup the tasks and memory from cmd->t_mem_list
3755 * Note for BIDI transfers this will contain the WRITE payload
3756 */
3757 task_cdbs = transport_allocate_tasks(cmd,
3758 cmd->t_task_lba,
3759 cmd->data_direction,
3760 cmd->t_data_sg,
3761 cmd->t_data_nents);
3762 if (task_cdbs <= 0) {
3763 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3764 cmd->scsi_sense_reason =
3765 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3766 return -EINVAL;
3767 }
3768
3769 if (set_counts) {
3770 atomic_inc(&cmd->t_fe_count);
3771 atomic_inc(&cmd->t_se_count);
3772 }
3773
3774 cmd->t_task_list_num = task_cdbs;
3775
3776 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3777 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3778 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3779 return 0;
3780 }
3781
3782 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3783 {
3784 struct scatterlist *sg = cmd->t_data_sg;
3785
3786 BUG_ON(!sg);
3787 /*
3788 * We need to take into account a possible offset here for fabrics like
3789 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3790 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3791 */
3792 return kmap(sg_page(sg)) + sg->offset;
3793 }
3794 EXPORT_SYMBOL(transport_kmap_first_data_page);
3795
3796 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3797 {
3798 kunmap(sg_page(cmd->t_data_sg));
3799 }
3800 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3801
3802 static int
3803 transport_generic_get_mem(struct se_cmd *cmd)
3804 {
3805 u32 length = cmd->data_length;
3806 unsigned int nents;
3807 struct page *page;
3808 int i = 0;
3809
3810 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3811 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3812 if (!cmd->t_data_sg)
3813 return -ENOMEM;
3814
3815 cmd->t_data_nents = nents;
3816 sg_init_table(cmd->t_data_sg, nents);
3817
3818 while (length) {
3819 u32 page_len = min_t(u32, length, PAGE_SIZE);
3820 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3821 if (!page)
3822 goto out;
3823
3824 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3825 length -= page_len;
3826 i++;
3827 }
3828 return 0;
3829
3830 out:
3831 while (i >= 0) {
3832 __free_page(sg_page(&cmd->t_data_sg[i]));
3833 i--;
3834 }
3835 kfree(cmd->t_data_sg);
3836 cmd->t_data_sg = NULL;
3837 return -ENOMEM;
3838 }
3839
3840 /* Reduce sectors if they are too long for the device */
3841 static inline sector_t transport_limit_task_sectors(
3842 struct se_device *dev,
3843 unsigned long long lba,
3844 sector_t sectors)
3845 {
3846 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3847
3848 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3849 if ((lba + sectors) > transport_dev_end_lba(dev))
3850 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3851
3852 return sectors;
3853 }
3854
3855
3856 /*
3857 * This function can be used by HW target mode drivers to create a linked
3858 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3859 * This is intended to be called during the completion path by TCM Core
3860 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3861 */
3862 void transport_do_task_sg_chain(struct se_cmd *cmd)
3863 {
3864 struct scatterlist *sg_first = NULL;
3865 struct scatterlist *sg_prev = NULL;
3866 int sg_prev_nents = 0;
3867 struct scatterlist *sg;
3868 struct se_task *task;
3869 u32 chained_nents = 0;
3870 int i;
3871
3872 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3873
3874 /*
3875 * Walk the struct se_task list and setup scatterlist chains
3876 * for each contiguously allocated struct se_task->task_sg[].
3877 */
3878 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3879 if (!task->task_sg)
3880 continue;
3881
3882 if (!sg_first) {
3883 sg_first = task->task_sg;
3884 chained_nents = task->task_sg_nents;
3885 } else {
3886 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3887 chained_nents += task->task_sg_nents;
3888 }
3889 /*
3890 * For the padded tasks, use the extra SGL vector allocated
3891 * in transport_allocate_data_tasks() for the sg_prev_nents
3892 * offset into sg_chain() above.
3893 *
3894 * We do not need the padding for the last task (or a single
3895 * task), but in that case we will never use the sg_prev_nents
3896 * value below which would be incorrect.
3897 */
3898 sg_prev_nents = (task->task_sg_nents + 1);
3899 sg_prev = task->task_sg;
3900 }
3901 /*
3902 * Setup the starting pointer and total t_tasks_sg_linked_no including
3903 * padding SGs for linking and to mark the end.
3904 */
3905 cmd->t_tasks_sg_chained = sg_first;
3906 cmd->t_tasks_sg_chained_no = chained_nents;
3907
3908 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3909 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3910 cmd->t_tasks_sg_chained_no);
3911
3912 for_each_sg(cmd->t_tasks_sg_chained, sg,
3913 cmd->t_tasks_sg_chained_no, i) {
3914
3915 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3916 i, sg, sg_page(sg), sg->length, sg->offset);
3917 if (sg_is_chain(sg))
3918 pr_debug("SG: %p sg_is_chain=1\n", sg);
3919 if (sg_is_last(sg))
3920 pr_debug("SG: %p sg_is_last=1\n", sg);
3921 }
3922 }
3923 EXPORT_SYMBOL(transport_do_task_sg_chain);
3924
3925 /*
3926 * Break up cmd into chunks transport can handle
3927 */
3928 static int transport_allocate_data_tasks(
3929 struct se_cmd *cmd,
3930 unsigned long long lba,
3931 enum dma_data_direction data_direction,
3932 struct scatterlist *sgl,
3933 unsigned int sgl_nents)
3934 {
3935 struct se_task *task;
3936 struct se_device *dev = cmd->se_dev;
3937 unsigned long flags;
3938 int task_count, i;
3939 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3940 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3941 struct scatterlist *sg;
3942 struct scatterlist *cmd_sg;
3943
3944 WARN_ON(cmd->data_length % sector_size);
3945 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3946 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3947
3948 cmd_sg = sgl;
3949 for (i = 0; i < task_count; i++) {
3950 unsigned int task_size, task_sg_nents_padded;
3951 int count;
3952
3953 task = transport_generic_get_task(cmd, data_direction);
3954 if (!task)
3955 return -ENOMEM;
3956
3957 task->task_lba = lba;
3958 task->task_sectors = min(sectors, dev_max_sectors);
3959 task->task_size = task->task_sectors * sector_size;
3960
3961 /*
3962 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3963 * in order to calculate the number per task SGL entries
3964 */
3965 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3966 /*
3967 * Check if the fabric module driver is requesting that all
3968 * struct se_task->task_sg[] be chained together.. If so,
3969 * then allocate an extra padding SG entry for linking and
3970 * marking the end of the chained SGL for every task except
3971 * the last one for (task_count > 1) operation, or skipping
3972 * the extra padding for the (task_count == 1) case.
3973 */
3974 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3975 task_sg_nents_padded = (task->task_sg_nents + 1);
3976 } else
3977 task_sg_nents_padded = task->task_sg_nents;
3978
3979 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3980 task_sg_nents_padded, GFP_KERNEL);
3981 if (!task->task_sg) {
3982 cmd->se_dev->transport->free_task(task);
3983 return -ENOMEM;
3984 }
3985
3986 sg_init_table(task->task_sg, task_sg_nents_padded);
3987
3988 task_size = task->task_size;
3989
3990 /* Build new sgl, only up to task_size */
3991 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3992 if (cmd_sg->length > task_size)
3993 break;
3994
3995 *sg = *cmd_sg;
3996 task_size -= cmd_sg->length;
3997 cmd_sg = sg_next(cmd_sg);
3998 }
3999
4000 lba += task->task_sectors;
4001 sectors -= task->task_sectors;
4002
4003 spin_lock_irqsave(&cmd->t_state_lock, flags);
4004 list_add_tail(&task->t_list, &cmd->t_task_list);
4005 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4006 }
4007
4008 return task_count;
4009 }
4010
4011 static int
4012 transport_allocate_control_task(struct se_cmd *cmd)
4013 {
4014 struct se_task *task;
4015 unsigned long flags;
4016
4017 task = transport_generic_get_task(cmd, cmd->data_direction);
4018 if (!task)
4019 return -ENOMEM;
4020
4021 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4022 GFP_KERNEL);
4023 if (!task->task_sg) {
4024 cmd->se_dev->transport->free_task(task);
4025 return -ENOMEM;
4026 }
4027
4028 memcpy(task->task_sg, cmd->t_data_sg,
4029 sizeof(struct scatterlist) * cmd->t_data_nents);
4030 task->task_size = cmd->data_length;
4031 task->task_sg_nents = cmd->t_data_nents;
4032
4033 spin_lock_irqsave(&cmd->t_state_lock, flags);
4034 list_add_tail(&task->t_list, &cmd->t_task_list);
4035 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4036
4037 /* Success! Return number of tasks allocated */
4038 return 1;
4039 }
4040
4041 static u32 transport_allocate_tasks(
4042 struct se_cmd *cmd,
4043 unsigned long long lba,
4044 enum dma_data_direction data_direction,
4045 struct scatterlist *sgl,
4046 unsigned int sgl_nents)
4047 {
4048 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4049 if (transport_cmd_get_valid_sectors(cmd) < 0)
4050 return -EINVAL;
4051
4052 return transport_allocate_data_tasks(cmd, lba, data_direction,
4053 sgl, sgl_nents);
4054 } else
4055 return transport_allocate_control_task(cmd);
4056
4057 }
4058
4059
4060 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4061 *
4062 * Allocate storage transport resources from a set of values predefined
4063 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4064 * Any non zero return here is treated as an "out of resource' op here.
4065 */
4066 /*
4067 * Generate struct se_task(s) and/or their payloads for this CDB.
4068 */
4069 int transport_generic_new_cmd(struct se_cmd *cmd)
4070 {
4071 int ret = 0;
4072
4073 /*
4074 * Determine is the TCM fabric module has already allocated physical
4075 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4076 * beforehand.
4077 */
4078 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4079 cmd->data_length) {
4080 ret = transport_generic_get_mem(cmd);
4081 if (ret < 0)
4082 return ret;
4083 }
4084 /*
4085 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4086 * control or data CDB types, and perform the map to backend subsystem
4087 * code from SGL memory allocated here by transport_generic_get_mem(), or
4088 * via pre-existing SGL memory setup explictly by fabric module code with
4089 * transport_generic_map_mem_to_cmd().
4090 */
4091 ret = transport_new_cmd_obj(cmd);
4092 if (ret < 0)
4093 return ret;
4094 /*
4095 * For WRITEs, let the fabric know its buffer is ready..
4096 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4097 * will be added to the struct se_device execution queue after its WRITE
4098 * data has arrived. (ie: It gets handled by the transport processing
4099 * thread a second time)
4100 */
4101 if (cmd->data_direction == DMA_TO_DEVICE) {
4102 transport_add_tasks_to_state_queue(cmd);
4103 return transport_generic_write_pending(cmd);
4104 }
4105 /*
4106 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4107 * to the execution queue.
4108 */
4109 transport_execute_tasks(cmd);
4110 return 0;
4111 }
4112 EXPORT_SYMBOL(transport_generic_new_cmd);
4113
4114 /* transport_generic_process_write():
4115 *
4116 *
4117 */
4118 void transport_generic_process_write(struct se_cmd *cmd)
4119 {
4120 transport_execute_tasks(cmd);
4121 }
4122 EXPORT_SYMBOL(transport_generic_process_write);
4123
4124 static int transport_write_pending_qf(struct se_cmd *cmd)
4125 {
4126 return cmd->se_tfo->write_pending(cmd);
4127 }
4128
4129 /* transport_generic_write_pending():
4130 *
4131 *
4132 */
4133 static int transport_generic_write_pending(struct se_cmd *cmd)
4134 {
4135 unsigned long flags;
4136 int ret;
4137
4138 spin_lock_irqsave(&cmd->t_state_lock, flags);
4139 cmd->t_state = TRANSPORT_WRITE_PENDING;
4140 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4141
4142 if (cmd->transport_qf_callback) {
4143 ret = cmd->transport_qf_callback(cmd);
4144 if (ret == -EAGAIN)
4145 goto queue_full;
4146 else if (ret < 0)
4147 return ret;
4148
4149 cmd->transport_qf_callback = NULL;
4150 return 0;
4151 }
4152
4153 /*
4154 * Clear the se_cmd for WRITE_PENDING status in order to set
4155 * cmd->t_transport_active=0 so that transport_generic_handle_data
4156 * can be called from HW target mode interrupt code. This is safe
4157 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4158 * because the se_cmd->se_lun pointer is not being cleared.
4159 */
4160 transport_cmd_check_stop(cmd, 1, 0);
4161
4162 /*
4163 * Call the fabric write_pending function here to let the
4164 * frontend know that WRITE buffers are ready.
4165 */
4166 ret = cmd->se_tfo->write_pending(cmd);
4167 if (ret == -EAGAIN)
4168 goto queue_full;
4169 else if (ret < 0)
4170 return ret;
4171
4172 return PYX_TRANSPORT_WRITE_PENDING;
4173
4174 queue_full:
4175 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4176 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4177 transport_handle_queue_full(cmd, cmd->se_dev,
4178 transport_write_pending_qf);
4179 return ret;
4180 }
4181
4182 /**
4183 * transport_release_cmd - free a command
4184 * @cmd: command to free
4185 *
4186 * This routine unconditionally frees a command, and reference counting
4187 * or list removal must be done in the caller.
4188 */
4189 void transport_release_cmd(struct se_cmd *cmd)
4190 {
4191 BUG_ON(!cmd->se_tfo);
4192
4193 if (cmd->se_tmr_req)
4194 core_tmr_release_req(cmd->se_tmr_req);
4195 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4196 kfree(cmd->t_task_cdb);
4197 cmd->se_tfo->release_cmd(cmd);
4198 }
4199 EXPORT_SYMBOL(transport_release_cmd);
4200
4201 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4202 {
4203 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4204 if (wait_for_tasks && cmd->se_tmr_req)
4205 transport_wait_for_tasks(cmd);
4206
4207 transport_release_cmd(cmd);
4208 } else {
4209 if (wait_for_tasks)
4210 transport_wait_for_tasks(cmd);
4211
4212 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4213
4214 if (cmd->se_lun)
4215 transport_lun_remove_cmd(cmd);
4216
4217 transport_free_dev_tasks(cmd);
4218
4219 transport_put_cmd(cmd);
4220 }
4221 }
4222 EXPORT_SYMBOL(transport_generic_free_cmd);
4223
4224 /* transport_lun_wait_for_tasks():
4225 *
4226 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4227 * an struct se_lun to be successfully shutdown.
4228 */
4229 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4230 {
4231 unsigned long flags;
4232 int ret;
4233 /*
4234 * If the frontend has already requested this struct se_cmd to
4235 * be stopped, we can safely ignore this struct se_cmd.
4236 */
4237 spin_lock_irqsave(&cmd->t_state_lock, flags);
4238 if (atomic_read(&cmd->t_transport_stop)) {
4239 atomic_set(&cmd->transport_lun_stop, 0);
4240 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4241 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4242 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4243 transport_cmd_check_stop(cmd, 1, 0);
4244 return -EPERM;
4245 }
4246 atomic_set(&cmd->transport_lun_fe_stop, 1);
4247 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4248
4249 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4250
4251 ret = transport_stop_tasks_for_cmd(cmd);
4252
4253 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4254 " %d\n", cmd, cmd->t_task_list_num, ret);
4255 if (!ret) {
4256 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4257 cmd->se_tfo->get_task_tag(cmd));
4258 wait_for_completion(&cmd->transport_lun_stop_comp);
4259 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4260 cmd->se_tfo->get_task_tag(cmd));
4261 }
4262 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4263
4264 return 0;
4265 }
4266
4267 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4268 {
4269 struct se_cmd *cmd = NULL;
4270 unsigned long lun_flags, cmd_flags;
4271 /*
4272 * Do exception processing and return CHECK_CONDITION status to the
4273 * Initiator Port.
4274 */
4275 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4276 while (!list_empty(&lun->lun_cmd_list)) {
4277 cmd = list_first_entry(&lun->lun_cmd_list,
4278 struct se_cmd, se_lun_node);
4279 list_del(&cmd->se_lun_node);
4280
4281 atomic_set(&cmd->transport_lun_active, 0);
4282 /*
4283 * This will notify iscsi_target_transport.c:
4284 * transport_cmd_check_stop() that a LUN shutdown is in
4285 * progress for the iscsi_cmd_t.
4286 */
4287 spin_lock(&cmd->t_state_lock);
4288 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4289 "_lun_stop for ITT: 0x%08x\n",
4290 cmd->se_lun->unpacked_lun,
4291 cmd->se_tfo->get_task_tag(cmd));
4292 atomic_set(&cmd->transport_lun_stop, 1);
4293 spin_unlock(&cmd->t_state_lock);
4294
4295 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4296
4297 if (!cmd->se_lun) {
4298 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4299 cmd->se_tfo->get_task_tag(cmd),
4300 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4301 BUG();
4302 }
4303 /*
4304 * If the Storage engine still owns the iscsi_cmd_t, determine
4305 * and/or stop its context.
4306 */
4307 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4308 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4309 cmd->se_tfo->get_task_tag(cmd));
4310
4311 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4312 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4313 continue;
4314 }
4315
4316 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4317 "_wait_for_tasks(): SUCCESS\n",
4318 cmd->se_lun->unpacked_lun,
4319 cmd->se_tfo->get_task_tag(cmd));
4320
4321 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4322 if (!atomic_read(&cmd->transport_dev_active)) {
4323 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4324 goto check_cond;
4325 }
4326 atomic_set(&cmd->transport_dev_active, 0);
4327 transport_all_task_dev_remove_state(cmd);
4328 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4329
4330 transport_free_dev_tasks(cmd);
4331 /*
4332 * The Storage engine stopped this struct se_cmd before it was
4333 * send to the fabric frontend for delivery back to the
4334 * Initiator Node. Return this SCSI CDB back with an
4335 * CHECK_CONDITION status.
4336 */
4337 check_cond:
4338 transport_send_check_condition_and_sense(cmd,
4339 TCM_NON_EXISTENT_LUN, 0);
4340 /*
4341 * If the fabric frontend is waiting for this iscsi_cmd_t to
4342 * be released, notify the waiting thread now that LU has
4343 * finished accessing it.
4344 */
4345 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4346 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4347 pr_debug("SE_LUN[%d] - Detected FE stop for"
4348 " struct se_cmd: %p ITT: 0x%08x\n",
4349 lun->unpacked_lun,
4350 cmd, cmd->se_tfo->get_task_tag(cmd));
4351
4352 spin_unlock_irqrestore(&cmd->t_state_lock,
4353 cmd_flags);
4354 transport_cmd_check_stop(cmd, 1, 0);
4355 complete(&cmd->transport_lun_fe_stop_comp);
4356 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4357 continue;
4358 }
4359 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4360 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4361
4362 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4363 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4364 }
4365 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4366 }
4367
4368 static int transport_clear_lun_thread(void *p)
4369 {
4370 struct se_lun *lun = (struct se_lun *)p;
4371
4372 __transport_clear_lun_from_sessions(lun);
4373 complete(&lun->lun_shutdown_comp);
4374
4375 return 0;
4376 }
4377
4378 int transport_clear_lun_from_sessions(struct se_lun *lun)
4379 {
4380 struct task_struct *kt;
4381
4382 kt = kthread_run(transport_clear_lun_thread, lun,
4383 "tcm_cl_%u", lun->unpacked_lun);
4384 if (IS_ERR(kt)) {
4385 pr_err("Unable to start clear_lun thread\n");
4386 return PTR_ERR(kt);
4387 }
4388 wait_for_completion(&lun->lun_shutdown_comp);
4389
4390 return 0;
4391 }
4392
4393 /**
4394 * transport_wait_for_tasks - wait for completion to occur
4395 * @cmd: command to wait
4396 *
4397 * Called from frontend fabric context to wait for storage engine
4398 * to pause and/or release frontend generated struct se_cmd.
4399 */
4400 void transport_wait_for_tasks(struct se_cmd *cmd)
4401 {
4402 unsigned long flags;
4403
4404 spin_lock_irqsave(&cmd->t_state_lock, flags);
4405 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4406 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4407 return;
4408 }
4409 /*
4410 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4411 * has been set in transport_set_supported_SAM_opcode().
4412 */
4413 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4414 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4415 return;
4416 }
4417 /*
4418 * If we are already stopped due to an external event (ie: LUN shutdown)
4419 * sleep until the connection can have the passed struct se_cmd back.
4420 * The cmd->transport_lun_stopped_sem will be upped by
4421 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4422 * has completed its operation on the struct se_cmd.
4423 */
4424 if (atomic_read(&cmd->transport_lun_stop)) {
4425
4426 pr_debug("wait_for_tasks: Stopping"
4427 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4428 "_stop_comp); for ITT: 0x%08x\n",
4429 cmd->se_tfo->get_task_tag(cmd));
4430 /*
4431 * There is a special case for WRITES where a FE exception +
4432 * LUN shutdown means ConfigFS context is still sleeping on
4433 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4434 * We go ahead and up transport_lun_stop_comp just to be sure
4435 * here.
4436 */
4437 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4438 complete(&cmd->transport_lun_stop_comp);
4439 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4440 spin_lock_irqsave(&cmd->t_state_lock, flags);
4441
4442 transport_all_task_dev_remove_state(cmd);
4443 /*
4444 * At this point, the frontend who was the originator of this
4445 * struct se_cmd, now owns the structure and can be released through
4446 * normal means below.
4447 */
4448 pr_debug("wait_for_tasks: Stopped"
4449 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4450 "stop_comp); for ITT: 0x%08x\n",
4451 cmd->se_tfo->get_task_tag(cmd));
4452
4453 atomic_set(&cmd->transport_lun_stop, 0);
4454 }
4455 if (!atomic_read(&cmd->t_transport_active) ||
4456 atomic_read(&cmd->t_transport_aborted)) {
4457 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4458 return;
4459 }
4460
4461 atomic_set(&cmd->t_transport_stop, 1);
4462
4463 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4464 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4465 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4466 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4467 cmd->deferred_t_state);
4468
4469 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4470
4471 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4472
4473 wait_for_completion(&cmd->t_transport_stop_comp);
4474
4475 spin_lock_irqsave(&cmd->t_state_lock, flags);
4476 atomic_set(&cmd->t_transport_active, 0);
4477 atomic_set(&cmd->t_transport_stop, 0);
4478
4479 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4480 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4481 cmd->se_tfo->get_task_tag(cmd));
4482
4483 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4484 }
4485 EXPORT_SYMBOL(transport_wait_for_tasks);
4486
4487 static int transport_get_sense_codes(
4488 struct se_cmd *cmd,
4489 u8 *asc,
4490 u8 *ascq)
4491 {
4492 *asc = cmd->scsi_asc;
4493 *ascq = cmd->scsi_ascq;
4494
4495 return 0;
4496 }
4497
4498 static int transport_set_sense_codes(
4499 struct se_cmd *cmd,
4500 u8 asc,
4501 u8 ascq)
4502 {
4503 cmd->scsi_asc = asc;
4504 cmd->scsi_ascq = ascq;
4505
4506 return 0;
4507 }
4508
4509 int transport_send_check_condition_and_sense(
4510 struct se_cmd *cmd,
4511 u8 reason,
4512 int from_transport)
4513 {
4514 unsigned char *buffer = cmd->sense_buffer;
4515 unsigned long flags;
4516 int offset;
4517 u8 asc = 0, ascq = 0;
4518
4519 spin_lock_irqsave(&cmd->t_state_lock, flags);
4520 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4522 return 0;
4523 }
4524 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4525 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4526
4527 if (!reason && from_transport)
4528 goto after_reason;
4529
4530 if (!from_transport)
4531 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4532 /*
4533 * Data Segment and SenseLength of the fabric response PDU.
4534 *
4535 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4536 * from include/scsi/scsi_cmnd.h
4537 */
4538 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4539 TRANSPORT_SENSE_BUFFER);
4540 /*
4541 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4542 * SENSE KEY values from include/scsi/scsi.h
4543 */
4544 switch (reason) {
4545 case TCM_NON_EXISTENT_LUN:
4546 /* CURRENT ERROR */
4547 buffer[offset] = 0x70;
4548 /* ILLEGAL REQUEST */
4549 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4550 /* LOGICAL UNIT NOT SUPPORTED */
4551 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4552 break;
4553 case TCM_UNSUPPORTED_SCSI_OPCODE:
4554 case TCM_SECTOR_COUNT_TOO_MANY:
4555 /* CURRENT ERROR */
4556 buffer[offset] = 0x70;
4557 /* ILLEGAL REQUEST */
4558 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4559 /* INVALID COMMAND OPERATION CODE */
4560 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4561 break;
4562 case TCM_UNKNOWN_MODE_PAGE:
4563 /* CURRENT ERROR */
4564 buffer[offset] = 0x70;
4565 /* ILLEGAL REQUEST */
4566 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4567 /* INVALID FIELD IN CDB */
4568 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4569 break;
4570 case TCM_CHECK_CONDITION_ABORT_CMD:
4571 /* CURRENT ERROR */
4572 buffer[offset] = 0x70;
4573 /* ABORTED COMMAND */
4574 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4575 /* BUS DEVICE RESET FUNCTION OCCURRED */
4576 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4577 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4578 break;
4579 case TCM_INCORRECT_AMOUNT_OF_DATA:
4580 /* CURRENT ERROR */
4581 buffer[offset] = 0x70;
4582 /* ABORTED COMMAND */
4583 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4584 /* WRITE ERROR */
4585 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4586 /* NOT ENOUGH UNSOLICITED DATA */
4587 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4588 break;
4589 case TCM_INVALID_CDB_FIELD:
4590 /* CURRENT ERROR */
4591 buffer[offset] = 0x70;
4592 /* ABORTED COMMAND */
4593 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4594 /* INVALID FIELD IN CDB */
4595 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4596 break;
4597 case TCM_INVALID_PARAMETER_LIST:
4598 /* CURRENT ERROR */
4599 buffer[offset] = 0x70;
4600 /* ABORTED COMMAND */
4601 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4602 /* INVALID FIELD IN PARAMETER LIST */
4603 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4604 break;
4605 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4606 /* CURRENT ERROR */
4607 buffer[offset] = 0x70;
4608 /* ABORTED COMMAND */
4609 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4610 /* WRITE ERROR */
4611 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4612 /* UNEXPECTED_UNSOLICITED_DATA */
4613 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4614 break;
4615 case TCM_SERVICE_CRC_ERROR:
4616 /* CURRENT ERROR */
4617 buffer[offset] = 0x70;
4618 /* ABORTED COMMAND */
4619 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4620 /* PROTOCOL SERVICE CRC ERROR */
4621 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4622 /* N/A */
4623 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4624 break;
4625 case TCM_SNACK_REJECTED:
4626 /* CURRENT ERROR */
4627 buffer[offset] = 0x70;
4628 /* ABORTED COMMAND */
4629 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4630 /* READ ERROR */
4631 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4632 /* FAILED RETRANSMISSION REQUEST */
4633 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4634 break;
4635 case TCM_WRITE_PROTECTED:
4636 /* CURRENT ERROR */
4637 buffer[offset] = 0x70;
4638 /* DATA PROTECT */
4639 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4640 /* WRITE PROTECTED */
4641 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4642 break;
4643 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4644 /* CURRENT ERROR */
4645 buffer[offset] = 0x70;
4646 /* UNIT ATTENTION */
4647 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4648 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4649 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4650 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4651 break;
4652 case TCM_CHECK_CONDITION_NOT_READY:
4653 /* CURRENT ERROR */
4654 buffer[offset] = 0x70;
4655 /* Not Ready */
4656 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4657 transport_get_sense_codes(cmd, &asc, &ascq);
4658 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4659 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4660 break;
4661 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4662 default:
4663 /* CURRENT ERROR */
4664 buffer[offset] = 0x70;
4665 /* ILLEGAL REQUEST */
4666 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4667 /* LOGICAL UNIT COMMUNICATION FAILURE */
4668 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4669 break;
4670 }
4671 /*
4672 * This code uses linux/include/scsi/scsi.h SAM status codes!
4673 */
4674 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4675 /*
4676 * Automatically padded, this value is encoded in the fabric's
4677 * data_length response PDU containing the SCSI defined sense data.
4678 */
4679 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4680
4681 after_reason:
4682 return cmd->se_tfo->queue_status(cmd);
4683 }
4684 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4685
4686 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4687 {
4688 int ret = 0;
4689
4690 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4691 if (!send_status ||
4692 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4693 return 1;
4694 #if 0
4695 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4696 " status for CDB: 0x%02x ITT: 0x%08x\n",
4697 cmd->t_task_cdb[0],
4698 cmd->se_tfo->get_task_tag(cmd));
4699 #endif
4700 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4701 cmd->se_tfo->queue_status(cmd);
4702 ret = 1;
4703 }
4704 return ret;
4705 }
4706 EXPORT_SYMBOL(transport_check_aborted_status);
4707
4708 void transport_send_task_abort(struct se_cmd *cmd)
4709 {
4710 unsigned long flags;
4711
4712 spin_lock_irqsave(&cmd->t_state_lock, flags);
4713 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4715 return;
4716 }
4717 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4718
4719 /*
4720 * If there are still expected incoming fabric WRITEs, we wait
4721 * until until they have completed before sending a TASK_ABORTED
4722 * response. This response with TASK_ABORTED status will be
4723 * queued back to fabric module by transport_check_aborted_status().
4724 */
4725 if (cmd->data_direction == DMA_TO_DEVICE) {
4726 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4727 atomic_inc(&cmd->t_transport_aborted);
4728 smp_mb__after_atomic_inc();
4729 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4730 transport_new_cmd_failure(cmd);
4731 return;
4732 }
4733 }
4734 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4735 #if 0
4736 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4737 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4738 cmd->se_tfo->get_task_tag(cmd));
4739 #endif
4740 cmd->se_tfo->queue_status(cmd);
4741 }
4742
4743 /* transport_generic_do_tmr():
4744 *
4745 *
4746 */
4747 int transport_generic_do_tmr(struct se_cmd *cmd)
4748 {
4749 struct se_device *dev = cmd->se_dev;
4750 struct se_tmr_req *tmr = cmd->se_tmr_req;
4751 int ret;
4752
4753 switch (tmr->function) {
4754 case TMR_ABORT_TASK:
4755 tmr->response = TMR_FUNCTION_REJECTED;
4756 break;
4757 case TMR_ABORT_TASK_SET:
4758 case TMR_CLEAR_ACA:
4759 case TMR_CLEAR_TASK_SET:
4760 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4761 break;
4762 case TMR_LUN_RESET:
4763 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4764 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4765 TMR_FUNCTION_REJECTED;
4766 break;
4767 case TMR_TARGET_WARM_RESET:
4768 tmr->response = TMR_FUNCTION_REJECTED;
4769 break;
4770 case TMR_TARGET_COLD_RESET:
4771 tmr->response = TMR_FUNCTION_REJECTED;
4772 break;
4773 default:
4774 pr_err("Uknown TMR function: 0x%02x.\n",
4775 tmr->function);
4776 tmr->response = TMR_FUNCTION_REJECTED;
4777 break;
4778 }
4779
4780 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4781 cmd->se_tfo->queue_tm_rsp(cmd);
4782
4783 transport_cmd_check_stop(cmd, 2, 0);
4784 return 0;
4785 }
4786
4787 /* transport_processing_thread():
4788 *
4789 *
4790 */
4791 static int transport_processing_thread(void *param)
4792 {
4793 int ret;
4794 struct se_cmd *cmd;
4795 struct se_device *dev = (struct se_device *) param;
4796
4797 set_user_nice(current, -20);
4798
4799 while (!kthread_should_stop()) {
4800 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4801 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4802 kthread_should_stop());
4803 if (ret < 0)
4804 goto out;
4805
4806 get_cmd:
4807 __transport_execute_tasks(dev);
4808
4809 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4810 if (!cmd)
4811 continue;
4812
4813 switch (cmd->t_state) {
4814 case TRANSPORT_NEW_CMD:
4815 BUG();
4816 break;
4817 case TRANSPORT_NEW_CMD_MAP:
4818 if (!cmd->se_tfo->new_cmd_map) {
4819 pr_err("cmd->se_tfo->new_cmd_map is"
4820 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4821 BUG();
4822 }
4823 ret = cmd->se_tfo->new_cmd_map(cmd);
4824 if (ret < 0) {
4825 cmd->transport_error_status = ret;
4826 transport_generic_request_failure(cmd, NULL,
4827 0, (cmd->data_direction !=
4828 DMA_TO_DEVICE));
4829 break;
4830 }
4831 ret = transport_generic_new_cmd(cmd);
4832 if (ret == -EAGAIN)
4833 break;
4834 else if (ret < 0) {
4835 cmd->transport_error_status = ret;
4836 transport_generic_request_failure(cmd, NULL,
4837 0, (cmd->data_direction !=
4838 DMA_TO_DEVICE));
4839 }
4840 break;
4841 case TRANSPORT_PROCESS_WRITE:
4842 transport_generic_process_write(cmd);
4843 break;
4844 case TRANSPORT_COMPLETE_OK:
4845 transport_stop_all_task_timers(cmd);
4846 transport_generic_complete_ok(cmd);
4847 break;
4848 case TRANSPORT_REMOVE:
4849 transport_put_cmd(cmd);
4850 break;
4851 case TRANSPORT_FREE_CMD_INTR:
4852 transport_generic_free_cmd(cmd, 0);
4853 break;
4854 case TRANSPORT_PROCESS_TMR:
4855 transport_generic_do_tmr(cmd);
4856 break;
4857 case TRANSPORT_COMPLETE_FAILURE:
4858 transport_generic_request_failure(cmd, NULL, 1, 1);
4859 break;
4860 case TRANSPORT_COMPLETE_TIMEOUT:
4861 transport_stop_all_task_timers(cmd);
4862 transport_generic_request_timeout(cmd);
4863 break;
4864 case TRANSPORT_COMPLETE_QF_WP:
4865 transport_generic_write_pending(cmd);
4866 break;
4867 default:
4868 pr_err("Unknown t_state: %d deferred_t_state:"
4869 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4870 " %u\n", cmd->t_state, cmd->deferred_t_state,
4871 cmd->se_tfo->get_task_tag(cmd),
4872 cmd->se_tfo->get_cmd_state(cmd),
4873 cmd->se_lun->unpacked_lun);
4874 BUG();
4875 }
4876
4877 goto get_cmd;
4878 }
4879
4880 out:
4881 WARN_ON(!list_empty(&dev->state_task_list));
4882 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4883 dev->process_thread = NULL;
4884 return 0;
4885 }
This page took 0.136186 seconds and 6 git commands to generate.