Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi_proto.h>
41
42 #include <target/target_core_base.h>
43 #include <target/target_core_backend.h>
44 #include <target/target_core_fabric.h>
45 #include <target/target_core_configfs.h>
46
47 #include "target_core_internal.h"
48 #include "target_core_alua.h"
49 #include "target_core_pr.h"
50 #include "target_core_ua.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/target.h>
54
55 static struct workqueue_struct *target_completion_wq;
56 static struct kmem_cache *se_sess_cache;
57 struct kmem_cache *se_ua_cache;
58 struct kmem_cache *t10_pr_reg_cache;
59 struct kmem_cache *t10_alua_lu_gp_cache;
60 struct kmem_cache *t10_alua_lu_gp_mem_cache;
61 struct kmem_cache *t10_alua_tg_pt_gp_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
122 "t10_alua_tg_pt_gp_mem_cache",
123 sizeof(struct t10_alua_tg_pt_gp_member),
124 __alignof__(struct t10_alua_tg_pt_gp_member),
125 0, NULL);
126 if (!t10_alua_tg_pt_gp_mem_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "mem_t failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_cache = kmem_cache_create(
132 "t10_alua_lba_map_cache",
133 sizeof(struct t10_alua_lba_map),
134 __alignof__(struct t10_alua_lba_map), 0, NULL);
135 if (!t10_alua_lba_map_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_"
137 "cache failed\n");
138 goto out_free_tg_pt_gp_mem_cache;
139 }
140 t10_alua_lba_map_mem_cache = kmem_cache_create(
141 "t10_alua_lba_map_mem_cache",
142 sizeof(struct t10_alua_lba_map_member),
143 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
144 if (!t10_alua_lba_map_mem_cache) {
145 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
146 "cache failed\n");
147 goto out_free_lba_map_cache;
148 }
149
150 target_completion_wq = alloc_workqueue("target_completion",
151 WQ_MEM_RECLAIM, 0);
152 if (!target_completion_wq)
153 goto out_free_lba_map_mem_cache;
154
155 return 0;
156
157 out_free_lba_map_mem_cache:
158 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
159 out_free_lba_map_cache:
160 kmem_cache_destroy(t10_alua_lba_map_cache);
161 out_free_tg_pt_gp_mem_cache:
162 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
163 out_free_tg_pt_gp_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
165 out_free_lu_gp_mem_cache:
166 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
167 out_free_lu_gp_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_cache);
169 out_free_pr_reg_cache:
170 kmem_cache_destroy(t10_pr_reg_cache);
171 out_free_ua_cache:
172 kmem_cache_destroy(se_ua_cache);
173 out_free_sess_cache:
174 kmem_cache_destroy(se_sess_cache);
175 out:
176 return -ENOMEM;
177 }
178
179 void release_se_kmem_caches(void)
180 {
181 destroy_workqueue(target_completion_wq);
182 kmem_cache_destroy(se_sess_cache);
183 kmem_cache_destroy(se_ua_cache);
184 kmem_cache_destroy(t10_pr_reg_cache);
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_lba_map_cache);
190 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
191 }
192
193 /* This code ensures unique mib indexes are handed out. */
194 static DEFINE_SPINLOCK(scsi_mib_index_lock);
195 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
196
197 /*
198 * Allocate a new row index for the entry type specified
199 */
200 u32 scsi_get_new_index(scsi_index_t type)
201 {
202 u32 new_index;
203
204 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
205
206 spin_lock(&scsi_mib_index_lock);
207 new_index = ++scsi_mib_index[type];
208 spin_unlock(&scsi_mib_index_lock);
209
210 return new_index;
211 }
212
213 void transport_subsystem_check_init(void)
214 {
215 int ret;
216 static int sub_api_initialized;
217
218 if (sub_api_initialized)
219 return;
220
221 ret = request_module("target_core_iblock");
222 if (ret != 0)
223 pr_err("Unable to load target_core_iblock\n");
224
225 ret = request_module("target_core_file");
226 if (ret != 0)
227 pr_err("Unable to load target_core_file\n");
228
229 ret = request_module("target_core_pscsi");
230 if (ret != 0)
231 pr_err("Unable to load target_core_pscsi\n");
232
233 ret = request_module("target_core_user");
234 if (ret != 0)
235 pr_err("Unable to load target_core_user\n");
236
237 sub_api_initialized = 1;
238 }
239
240 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
241 {
242 struct se_session *se_sess;
243
244 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
245 if (!se_sess) {
246 pr_err("Unable to allocate struct se_session from"
247 " se_sess_cache\n");
248 return ERR_PTR(-ENOMEM);
249 }
250 INIT_LIST_HEAD(&se_sess->sess_list);
251 INIT_LIST_HEAD(&se_sess->sess_acl_list);
252 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
253 INIT_LIST_HEAD(&se_sess->sess_wait_list);
254 spin_lock_init(&se_sess->sess_cmd_lock);
255 kref_init(&se_sess->sess_kref);
256 se_sess->sup_prot_ops = sup_prot_ops;
257
258 return se_sess;
259 }
260 EXPORT_SYMBOL(transport_init_session);
261
262 int transport_alloc_session_tags(struct se_session *se_sess,
263 unsigned int tag_num, unsigned int tag_size)
264 {
265 int rc;
266
267 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
268 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
269 if (!se_sess->sess_cmd_map) {
270 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
271 if (!se_sess->sess_cmd_map) {
272 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
273 return -ENOMEM;
274 }
275 }
276
277 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
278 if (rc < 0) {
279 pr_err("Unable to init se_sess->sess_tag_pool,"
280 " tag_num: %u\n", tag_num);
281 if (is_vmalloc_addr(se_sess->sess_cmd_map))
282 vfree(se_sess->sess_cmd_map);
283 else
284 kfree(se_sess->sess_cmd_map);
285 se_sess->sess_cmd_map = NULL;
286 return -ENOMEM;
287 }
288
289 return 0;
290 }
291 EXPORT_SYMBOL(transport_alloc_session_tags);
292
293 struct se_session *transport_init_session_tags(unsigned int tag_num,
294 unsigned int tag_size,
295 enum target_prot_op sup_prot_ops)
296 {
297 struct se_session *se_sess;
298 int rc;
299
300 se_sess = transport_init_session(sup_prot_ops);
301 if (IS_ERR(se_sess))
302 return se_sess;
303
304 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
305 if (rc < 0) {
306 transport_free_session(se_sess);
307 return ERR_PTR(-ENOMEM);
308 }
309
310 return se_sess;
311 }
312 EXPORT_SYMBOL(transport_init_session_tags);
313
314 /*
315 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
316 */
317 void __transport_register_session(
318 struct se_portal_group *se_tpg,
319 struct se_node_acl *se_nacl,
320 struct se_session *se_sess,
321 void *fabric_sess_ptr)
322 {
323 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
324 unsigned char buf[PR_REG_ISID_LEN];
325
326 se_sess->se_tpg = se_tpg;
327 se_sess->fabric_sess_ptr = fabric_sess_ptr;
328 /*
329 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
330 *
331 * Only set for struct se_session's that will actually be moving I/O.
332 * eg: *NOT* discovery sessions.
333 */
334 if (se_nacl) {
335 /*
336 *
337 * Determine if fabric allows for T10-PI feature bits exposed to
338 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
339 *
340 * If so, then always save prot_type on a per se_node_acl node
341 * basis and re-instate the previous sess_prot_type to avoid
342 * disabling PI from below any previously initiator side
343 * registered LUNs.
344 */
345 if (se_nacl->saved_prot_type)
346 se_sess->sess_prot_type = se_nacl->saved_prot_type;
347 else if (tfo->tpg_check_prot_fabric_only)
348 se_sess->sess_prot_type = se_nacl->saved_prot_type =
349 tfo->tpg_check_prot_fabric_only(se_tpg);
350 /*
351 * If the fabric module supports an ISID based TransportID,
352 * save this value in binary from the fabric I_T Nexus now.
353 */
354 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
355 memset(&buf[0], 0, PR_REG_ISID_LEN);
356 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
357 &buf[0], PR_REG_ISID_LEN);
358 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
359 }
360 kref_get(&se_nacl->acl_kref);
361
362 spin_lock_irq(&se_nacl->nacl_sess_lock);
363 /*
364 * The se_nacl->nacl_sess pointer will be set to the
365 * last active I_T Nexus for each struct se_node_acl.
366 */
367 se_nacl->nacl_sess = se_sess;
368
369 list_add_tail(&se_sess->sess_acl_list,
370 &se_nacl->acl_sess_list);
371 spin_unlock_irq(&se_nacl->nacl_sess_lock);
372 }
373 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
374
375 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
376 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
377 }
378 EXPORT_SYMBOL(__transport_register_session);
379
380 void transport_register_session(
381 struct se_portal_group *se_tpg,
382 struct se_node_acl *se_nacl,
383 struct se_session *se_sess,
384 void *fabric_sess_ptr)
385 {
386 unsigned long flags;
387
388 spin_lock_irqsave(&se_tpg->session_lock, flags);
389 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
390 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
391 }
392 EXPORT_SYMBOL(transport_register_session);
393
394 static void target_release_session(struct kref *kref)
395 {
396 struct se_session *se_sess = container_of(kref,
397 struct se_session, sess_kref);
398 struct se_portal_group *se_tpg = se_sess->se_tpg;
399
400 se_tpg->se_tpg_tfo->close_session(se_sess);
401 }
402
403 void target_get_session(struct se_session *se_sess)
404 {
405 kref_get(&se_sess->sess_kref);
406 }
407 EXPORT_SYMBOL(target_get_session);
408
409 void target_put_session(struct se_session *se_sess)
410 {
411 struct se_portal_group *tpg = se_sess->se_tpg;
412
413 if (tpg->se_tpg_tfo->put_session != NULL) {
414 tpg->se_tpg_tfo->put_session(se_sess);
415 return;
416 }
417 kref_put(&se_sess->sess_kref, target_release_session);
418 }
419 EXPORT_SYMBOL(target_put_session);
420
421 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
422 {
423 struct se_session *se_sess;
424 ssize_t len = 0;
425
426 spin_lock_bh(&se_tpg->session_lock);
427 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
428 if (!se_sess->se_node_acl)
429 continue;
430 if (!se_sess->se_node_acl->dynamic_node_acl)
431 continue;
432 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
433 break;
434
435 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
436 se_sess->se_node_acl->initiatorname);
437 len += 1; /* Include NULL terminator */
438 }
439 spin_unlock_bh(&se_tpg->session_lock);
440
441 return len;
442 }
443 EXPORT_SYMBOL(target_show_dynamic_sessions);
444
445 static void target_complete_nacl(struct kref *kref)
446 {
447 struct se_node_acl *nacl = container_of(kref,
448 struct se_node_acl, acl_kref);
449
450 complete(&nacl->acl_free_comp);
451 }
452
453 void target_put_nacl(struct se_node_acl *nacl)
454 {
455 kref_put(&nacl->acl_kref, target_complete_nacl);
456 }
457
458 void transport_deregister_session_configfs(struct se_session *se_sess)
459 {
460 struct se_node_acl *se_nacl;
461 unsigned long flags;
462 /*
463 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
464 */
465 se_nacl = se_sess->se_node_acl;
466 if (se_nacl) {
467 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
468 if (se_nacl->acl_stop == 0)
469 list_del(&se_sess->sess_acl_list);
470 /*
471 * If the session list is empty, then clear the pointer.
472 * Otherwise, set the struct se_session pointer from the tail
473 * element of the per struct se_node_acl active session list.
474 */
475 if (list_empty(&se_nacl->acl_sess_list))
476 se_nacl->nacl_sess = NULL;
477 else {
478 se_nacl->nacl_sess = container_of(
479 se_nacl->acl_sess_list.prev,
480 struct se_session, sess_acl_list);
481 }
482 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
483 }
484 }
485 EXPORT_SYMBOL(transport_deregister_session_configfs);
486
487 void transport_free_session(struct se_session *se_sess)
488 {
489 if (se_sess->sess_cmd_map) {
490 percpu_ida_destroy(&se_sess->sess_tag_pool);
491 if (is_vmalloc_addr(se_sess->sess_cmd_map))
492 vfree(se_sess->sess_cmd_map);
493 else
494 kfree(se_sess->sess_cmd_map);
495 }
496 kmem_cache_free(se_sess_cache, se_sess);
497 }
498 EXPORT_SYMBOL(transport_free_session);
499
500 void transport_deregister_session(struct se_session *se_sess)
501 {
502 struct se_portal_group *se_tpg = se_sess->se_tpg;
503 const struct target_core_fabric_ops *se_tfo;
504 struct se_node_acl *se_nacl;
505 unsigned long flags;
506 bool comp_nacl = true;
507
508 if (!se_tpg) {
509 transport_free_session(se_sess);
510 return;
511 }
512 se_tfo = se_tpg->se_tpg_tfo;
513
514 spin_lock_irqsave(&se_tpg->session_lock, flags);
515 list_del(&se_sess->sess_list);
516 se_sess->se_tpg = NULL;
517 se_sess->fabric_sess_ptr = NULL;
518 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
519
520 /*
521 * Determine if we need to do extra work for this initiator node's
522 * struct se_node_acl if it had been previously dynamically generated.
523 */
524 se_nacl = se_sess->se_node_acl;
525
526 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
527 if (se_nacl && se_nacl->dynamic_node_acl) {
528 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
529 list_del(&se_nacl->acl_list);
530 se_tpg->num_node_acls--;
531 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
532 core_tpg_wait_for_nacl_pr_ref(se_nacl);
533 core_free_device_list_for_node(se_nacl, se_tpg);
534 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
535
536 comp_nacl = false;
537 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
538 }
539 }
540 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
541
542 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
543 se_tpg->se_tpg_tfo->get_fabric_name());
544 /*
545 * If last kref is dropping now for an explicit NodeACL, awake sleeping
546 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
547 * removal context.
548 */
549 if (se_nacl && comp_nacl)
550 target_put_nacl(se_nacl);
551
552 transport_free_session(se_sess);
553 }
554 EXPORT_SYMBOL(transport_deregister_session);
555
556 /*
557 * Called with cmd->t_state_lock held.
558 */
559 static void target_remove_from_state_list(struct se_cmd *cmd)
560 {
561 struct se_device *dev = cmd->se_dev;
562 unsigned long flags;
563
564 if (!dev)
565 return;
566
567 if (cmd->transport_state & CMD_T_BUSY)
568 return;
569
570 spin_lock_irqsave(&dev->execute_task_lock, flags);
571 if (cmd->state_active) {
572 list_del(&cmd->state_list);
573 cmd->state_active = false;
574 }
575 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
576 }
577
578 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
579 bool write_pending)
580 {
581 unsigned long flags;
582
583 spin_lock_irqsave(&cmd->t_state_lock, flags);
584 if (write_pending)
585 cmd->t_state = TRANSPORT_WRITE_PENDING;
586
587 if (remove_from_lists) {
588 target_remove_from_state_list(cmd);
589
590 /*
591 * Clear struct se_cmd->se_lun before the handoff to FE.
592 */
593 cmd->se_lun = NULL;
594 }
595
596 /*
597 * Determine if frontend context caller is requesting the stopping of
598 * this command for frontend exceptions.
599 */
600 if (cmd->transport_state & CMD_T_STOP) {
601 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
602 __func__, __LINE__,
603 cmd->se_tfo->get_task_tag(cmd));
604
605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606
607 complete_all(&cmd->t_transport_stop_comp);
608 return 1;
609 }
610
611 cmd->transport_state &= ~CMD_T_ACTIVE;
612 if (remove_from_lists) {
613 /*
614 * Some fabric modules like tcm_loop can release
615 * their internally allocated I/O reference now and
616 * struct se_cmd now.
617 *
618 * Fabric modules are expected to return '1' here if the
619 * se_cmd being passed is released at this point,
620 * or zero if not being released.
621 */
622 if (cmd->se_tfo->check_stop_free != NULL) {
623 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
624 return cmd->se_tfo->check_stop_free(cmd);
625 }
626 }
627
628 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
629 return 0;
630 }
631
632 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
633 {
634 return transport_cmd_check_stop(cmd, true, false);
635 }
636
637 static void transport_lun_remove_cmd(struct se_cmd *cmd)
638 {
639 struct se_lun *lun = cmd->se_lun;
640
641 if (!lun)
642 return;
643
644 if (cmpxchg(&cmd->lun_ref_active, true, false))
645 percpu_ref_put(&lun->lun_ref);
646 }
647
648 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
649 {
650 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
651 transport_lun_remove_cmd(cmd);
652 /*
653 * Allow the fabric driver to unmap any resources before
654 * releasing the descriptor via TFO->release_cmd()
655 */
656 if (remove)
657 cmd->se_tfo->aborted_task(cmd);
658
659 if (transport_cmd_check_stop_to_fabric(cmd))
660 return;
661 if (remove)
662 transport_put_cmd(cmd);
663 }
664
665 static void target_complete_failure_work(struct work_struct *work)
666 {
667 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
668
669 transport_generic_request_failure(cmd,
670 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
671 }
672
673 /*
674 * Used when asking transport to copy Sense Data from the underlying
675 * Linux/SCSI struct scsi_cmnd
676 */
677 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
678 {
679 struct se_device *dev = cmd->se_dev;
680
681 WARN_ON(!cmd->se_lun);
682
683 if (!dev)
684 return NULL;
685
686 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
687 return NULL;
688
689 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
690
691 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
692 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
693 return cmd->sense_buffer;
694 }
695
696 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
697 {
698 struct se_device *dev = cmd->se_dev;
699 int success = scsi_status == GOOD;
700 unsigned long flags;
701
702 cmd->scsi_status = scsi_status;
703
704
705 spin_lock_irqsave(&cmd->t_state_lock, flags);
706 cmd->transport_state &= ~CMD_T_BUSY;
707
708 if (dev && dev->transport->transport_complete) {
709 dev->transport->transport_complete(cmd,
710 cmd->t_data_sg,
711 transport_get_sense_buffer(cmd));
712 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
713 success = 1;
714 }
715
716 /*
717 * See if we are waiting to complete for an exception condition.
718 */
719 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
720 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
721 complete(&cmd->task_stop_comp);
722 return;
723 }
724
725 /*
726 * Check for case where an explicit ABORT_TASK has been received
727 * and transport_wait_for_tasks() will be waiting for completion..
728 */
729 if (cmd->transport_state & CMD_T_ABORTED &&
730 cmd->transport_state & CMD_T_STOP) {
731 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
732 complete_all(&cmd->t_transport_stop_comp);
733 return;
734 } else if (!success) {
735 INIT_WORK(&cmd->work, target_complete_failure_work);
736 } else {
737 INIT_WORK(&cmd->work, target_complete_ok_work);
738 }
739
740 cmd->t_state = TRANSPORT_COMPLETE;
741 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
742 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
743
744 queue_work(target_completion_wq, &cmd->work);
745 }
746 EXPORT_SYMBOL(target_complete_cmd);
747
748 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
749 {
750 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
751 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
752 cmd->residual_count += cmd->data_length - length;
753 } else {
754 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
755 cmd->residual_count = cmd->data_length - length;
756 }
757
758 cmd->data_length = length;
759 }
760
761 target_complete_cmd(cmd, scsi_status);
762 }
763 EXPORT_SYMBOL(target_complete_cmd_with_length);
764
765 static void target_add_to_state_list(struct se_cmd *cmd)
766 {
767 struct se_device *dev = cmd->se_dev;
768 unsigned long flags;
769
770 spin_lock_irqsave(&dev->execute_task_lock, flags);
771 if (!cmd->state_active) {
772 list_add_tail(&cmd->state_list, &dev->state_list);
773 cmd->state_active = true;
774 }
775 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
776 }
777
778 /*
779 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
780 */
781 static void transport_write_pending_qf(struct se_cmd *cmd);
782 static void transport_complete_qf(struct se_cmd *cmd);
783
784 void target_qf_do_work(struct work_struct *work)
785 {
786 struct se_device *dev = container_of(work, struct se_device,
787 qf_work_queue);
788 LIST_HEAD(qf_cmd_list);
789 struct se_cmd *cmd, *cmd_tmp;
790
791 spin_lock_irq(&dev->qf_cmd_lock);
792 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
793 spin_unlock_irq(&dev->qf_cmd_lock);
794
795 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
796 list_del(&cmd->se_qf_node);
797 atomic_dec_mb(&dev->dev_qf_count);
798
799 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
800 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
801 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
802 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
803 : "UNKNOWN");
804
805 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
806 transport_write_pending_qf(cmd);
807 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
808 transport_complete_qf(cmd);
809 }
810 }
811
812 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
813 {
814 switch (cmd->data_direction) {
815 case DMA_NONE:
816 return "NONE";
817 case DMA_FROM_DEVICE:
818 return "READ";
819 case DMA_TO_DEVICE:
820 return "WRITE";
821 case DMA_BIDIRECTIONAL:
822 return "BIDI";
823 default:
824 break;
825 }
826
827 return "UNKNOWN";
828 }
829
830 void transport_dump_dev_state(
831 struct se_device *dev,
832 char *b,
833 int *bl)
834 {
835 *bl += sprintf(b + *bl, "Status: ");
836 if (dev->export_count)
837 *bl += sprintf(b + *bl, "ACTIVATED");
838 else
839 *bl += sprintf(b + *bl, "DEACTIVATED");
840
841 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
842 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
843 dev->dev_attrib.block_size,
844 dev->dev_attrib.hw_max_sectors);
845 *bl += sprintf(b + *bl, " ");
846 }
847
848 void transport_dump_vpd_proto_id(
849 struct t10_vpd *vpd,
850 unsigned char *p_buf,
851 int p_buf_len)
852 {
853 unsigned char buf[VPD_TMP_BUF_SIZE];
854 int len;
855
856 memset(buf, 0, VPD_TMP_BUF_SIZE);
857 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
858
859 switch (vpd->protocol_identifier) {
860 case 0x00:
861 sprintf(buf+len, "Fibre Channel\n");
862 break;
863 case 0x10:
864 sprintf(buf+len, "Parallel SCSI\n");
865 break;
866 case 0x20:
867 sprintf(buf+len, "SSA\n");
868 break;
869 case 0x30:
870 sprintf(buf+len, "IEEE 1394\n");
871 break;
872 case 0x40:
873 sprintf(buf+len, "SCSI Remote Direct Memory Access"
874 " Protocol\n");
875 break;
876 case 0x50:
877 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
878 break;
879 case 0x60:
880 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
881 break;
882 case 0x70:
883 sprintf(buf+len, "Automation/Drive Interface Transport"
884 " Protocol\n");
885 break;
886 case 0x80:
887 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
888 break;
889 default:
890 sprintf(buf+len, "Unknown 0x%02x\n",
891 vpd->protocol_identifier);
892 break;
893 }
894
895 if (p_buf)
896 strncpy(p_buf, buf, p_buf_len);
897 else
898 pr_debug("%s", buf);
899 }
900
901 void
902 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
903 {
904 /*
905 * Check if the Protocol Identifier Valid (PIV) bit is set..
906 *
907 * from spc3r23.pdf section 7.5.1
908 */
909 if (page_83[1] & 0x80) {
910 vpd->protocol_identifier = (page_83[0] & 0xf0);
911 vpd->protocol_identifier_set = 1;
912 transport_dump_vpd_proto_id(vpd, NULL, 0);
913 }
914 }
915 EXPORT_SYMBOL(transport_set_vpd_proto_id);
916
917 int transport_dump_vpd_assoc(
918 struct t10_vpd *vpd,
919 unsigned char *p_buf,
920 int p_buf_len)
921 {
922 unsigned char buf[VPD_TMP_BUF_SIZE];
923 int ret = 0;
924 int len;
925
926 memset(buf, 0, VPD_TMP_BUF_SIZE);
927 len = sprintf(buf, "T10 VPD Identifier Association: ");
928
929 switch (vpd->association) {
930 case 0x00:
931 sprintf(buf+len, "addressed logical unit\n");
932 break;
933 case 0x10:
934 sprintf(buf+len, "target port\n");
935 break;
936 case 0x20:
937 sprintf(buf+len, "SCSI target device\n");
938 break;
939 default:
940 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
941 ret = -EINVAL;
942 break;
943 }
944
945 if (p_buf)
946 strncpy(p_buf, buf, p_buf_len);
947 else
948 pr_debug("%s", buf);
949
950 return ret;
951 }
952
953 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
954 {
955 /*
956 * The VPD identification association..
957 *
958 * from spc3r23.pdf Section 7.6.3.1 Table 297
959 */
960 vpd->association = (page_83[1] & 0x30);
961 return transport_dump_vpd_assoc(vpd, NULL, 0);
962 }
963 EXPORT_SYMBOL(transport_set_vpd_assoc);
964
965 int transport_dump_vpd_ident_type(
966 struct t10_vpd *vpd,
967 unsigned char *p_buf,
968 int p_buf_len)
969 {
970 unsigned char buf[VPD_TMP_BUF_SIZE];
971 int ret = 0;
972 int len;
973
974 memset(buf, 0, VPD_TMP_BUF_SIZE);
975 len = sprintf(buf, "T10 VPD Identifier Type: ");
976
977 switch (vpd->device_identifier_type) {
978 case 0x00:
979 sprintf(buf+len, "Vendor specific\n");
980 break;
981 case 0x01:
982 sprintf(buf+len, "T10 Vendor ID based\n");
983 break;
984 case 0x02:
985 sprintf(buf+len, "EUI-64 based\n");
986 break;
987 case 0x03:
988 sprintf(buf+len, "NAA\n");
989 break;
990 case 0x04:
991 sprintf(buf+len, "Relative target port identifier\n");
992 break;
993 case 0x08:
994 sprintf(buf+len, "SCSI name string\n");
995 break;
996 default:
997 sprintf(buf+len, "Unsupported: 0x%02x\n",
998 vpd->device_identifier_type);
999 ret = -EINVAL;
1000 break;
1001 }
1002
1003 if (p_buf) {
1004 if (p_buf_len < strlen(buf)+1)
1005 return -EINVAL;
1006 strncpy(p_buf, buf, p_buf_len);
1007 } else {
1008 pr_debug("%s", buf);
1009 }
1010
1011 return ret;
1012 }
1013
1014 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1015 {
1016 /*
1017 * The VPD identifier type..
1018 *
1019 * from spc3r23.pdf Section 7.6.3.1 Table 298
1020 */
1021 vpd->device_identifier_type = (page_83[1] & 0x0f);
1022 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1023 }
1024 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1025
1026 int transport_dump_vpd_ident(
1027 struct t10_vpd *vpd,
1028 unsigned char *p_buf,
1029 int p_buf_len)
1030 {
1031 unsigned char buf[VPD_TMP_BUF_SIZE];
1032 int ret = 0;
1033
1034 memset(buf, 0, VPD_TMP_BUF_SIZE);
1035
1036 switch (vpd->device_identifier_code_set) {
1037 case 0x01: /* Binary */
1038 snprintf(buf, sizeof(buf),
1039 "T10 VPD Binary Device Identifier: %s\n",
1040 &vpd->device_identifier[0]);
1041 break;
1042 case 0x02: /* ASCII */
1043 snprintf(buf, sizeof(buf),
1044 "T10 VPD ASCII Device Identifier: %s\n",
1045 &vpd->device_identifier[0]);
1046 break;
1047 case 0x03: /* UTF-8 */
1048 snprintf(buf, sizeof(buf),
1049 "T10 VPD UTF-8 Device Identifier: %s\n",
1050 &vpd->device_identifier[0]);
1051 break;
1052 default:
1053 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1054 " 0x%02x", vpd->device_identifier_code_set);
1055 ret = -EINVAL;
1056 break;
1057 }
1058
1059 if (p_buf)
1060 strncpy(p_buf, buf, p_buf_len);
1061 else
1062 pr_debug("%s", buf);
1063
1064 return ret;
1065 }
1066
1067 int
1068 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1069 {
1070 static const char hex_str[] = "0123456789abcdef";
1071 int j = 0, i = 4; /* offset to start of the identifier */
1072
1073 /*
1074 * The VPD Code Set (encoding)
1075 *
1076 * from spc3r23.pdf Section 7.6.3.1 Table 296
1077 */
1078 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1079 switch (vpd->device_identifier_code_set) {
1080 case 0x01: /* Binary */
1081 vpd->device_identifier[j++] =
1082 hex_str[vpd->device_identifier_type];
1083 while (i < (4 + page_83[3])) {
1084 vpd->device_identifier[j++] =
1085 hex_str[(page_83[i] & 0xf0) >> 4];
1086 vpd->device_identifier[j++] =
1087 hex_str[page_83[i] & 0x0f];
1088 i++;
1089 }
1090 break;
1091 case 0x02: /* ASCII */
1092 case 0x03: /* UTF-8 */
1093 while (i < (4 + page_83[3]))
1094 vpd->device_identifier[j++] = page_83[i++];
1095 break;
1096 default:
1097 break;
1098 }
1099
1100 return transport_dump_vpd_ident(vpd, NULL, 0);
1101 }
1102 EXPORT_SYMBOL(transport_set_vpd_ident);
1103
1104 sense_reason_t
1105 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1106 {
1107 struct se_device *dev = cmd->se_dev;
1108
1109 if (cmd->unknown_data_length) {
1110 cmd->data_length = size;
1111 } else if (size != cmd->data_length) {
1112 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1113 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1114 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1115 cmd->data_length, size, cmd->t_task_cdb[0]);
1116
1117 if (cmd->data_direction == DMA_TO_DEVICE) {
1118 pr_err("Rejecting underflow/overflow"
1119 " WRITE data\n");
1120 return TCM_INVALID_CDB_FIELD;
1121 }
1122 /*
1123 * Reject READ_* or WRITE_* with overflow/underflow for
1124 * type SCF_SCSI_DATA_CDB.
1125 */
1126 if (dev->dev_attrib.block_size != 512) {
1127 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1128 " CDB on non 512-byte sector setup subsystem"
1129 " plugin: %s\n", dev->transport->name);
1130 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1131 return TCM_INVALID_CDB_FIELD;
1132 }
1133 /*
1134 * For the overflow case keep the existing fabric provided
1135 * ->data_length. Otherwise for the underflow case, reset
1136 * ->data_length to the smaller SCSI expected data transfer
1137 * length.
1138 */
1139 if (size > cmd->data_length) {
1140 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1141 cmd->residual_count = (size - cmd->data_length);
1142 } else {
1143 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1144 cmd->residual_count = (cmd->data_length - size);
1145 cmd->data_length = size;
1146 }
1147 }
1148
1149 return 0;
1150
1151 }
1152
1153 /*
1154 * Used by fabric modules containing a local struct se_cmd within their
1155 * fabric dependent per I/O descriptor.
1156 */
1157 void transport_init_se_cmd(
1158 struct se_cmd *cmd,
1159 const struct target_core_fabric_ops *tfo,
1160 struct se_session *se_sess,
1161 u32 data_length,
1162 int data_direction,
1163 int task_attr,
1164 unsigned char *sense_buffer)
1165 {
1166 INIT_LIST_HEAD(&cmd->se_delayed_node);
1167 INIT_LIST_HEAD(&cmd->se_qf_node);
1168 INIT_LIST_HEAD(&cmd->se_cmd_list);
1169 INIT_LIST_HEAD(&cmd->state_list);
1170 init_completion(&cmd->t_transport_stop_comp);
1171 init_completion(&cmd->cmd_wait_comp);
1172 init_completion(&cmd->task_stop_comp);
1173 spin_lock_init(&cmd->t_state_lock);
1174 kref_init(&cmd->cmd_kref);
1175 cmd->transport_state = CMD_T_DEV_ACTIVE;
1176
1177 cmd->se_tfo = tfo;
1178 cmd->se_sess = se_sess;
1179 cmd->data_length = data_length;
1180 cmd->data_direction = data_direction;
1181 cmd->sam_task_attr = task_attr;
1182 cmd->sense_buffer = sense_buffer;
1183
1184 cmd->state_active = false;
1185 }
1186 EXPORT_SYMBOL(transport_init_se_cmd);
1187
1188 static sense_reason_t
1189 transport_check_alloc_task_attr(struct se_cmd *cmd)
1190 {
1191 struct se_device *dev = cmd->se_dev;
1192
1193 /*
1194 * Check if SAM Task Attribute emulation is enabled for this
1195 * struct se_device storage object
1196 */
1197 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1198 return 0;
1199
1200 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1201 pr_debug("SAM Task Attribute ACA"
1202 " emulation is not supported\n");
1203 return TCM_INVALID_CDB_FIELD;
1204 }
1205 /*
1206 * Used to determine when ORDERED commands should go from
1207 * Dormant to Active status.
1208 */
1209 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1210 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1211 cmd->se_ordered_id, cmd->sam_task_attr,
1212 dev->transport->name);
1213 return 0;
1214 }
1215
1216 sense_reason_t
1217 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1218 {
1219 struct se_device *dev = cmd->se_dev;
1220 sense_reason_t ret;
1221
1222 /*
1223 * Ensure that the received CDB is less than the max (252 + 8) bytes
1224 * for VARIABLE_LENGTH_CMD
1225 */
1226 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1227 pr_err("Received SCSI CDB with command_size: %d that"
1228 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1229 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1230 return TCM_INVALID_CDB_FIELD;
1231 }
1232 /*
1233 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1234 * allocate the additional extended CDB buffer now.. Otherwise
1235 * setup the pointer from __t_task_cdb to t_task_cdb.
1236 */
1237 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1238 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1239 GFP_KERNEL);
1240 if (!cmd->t_task_cdb) {
1241 pr_err("Unable to allocate cmd->t_task_cdb"
1242 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1243 scsi_command_size(cdb),
1244 (unsigned long)sizeof(cmd->__t_task_cdb));
1245 return TCM_OUT_OF_RESOURCES;
1246 }
1247 } else
1248 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1249 /*
1250 * Copy the original CDB into cmd->
1251 */
1252 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1253
1254 trace_target_sequencer_start(cmd);
1255
1256 /*
1257 * Check for an existing UNIT ATTENTION condition
1258 */
1259 ret = target_scsi3_ua_check(cmd);
1260 if (ret)
1261 return ret;
1262
1263 ret = target_alua_state_check(cmd);
1264 if (ret)
1265 return ret;
1266
1267 ret = target_check_reservation(cmd);
1268 if (ret) {
1269 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1270 return ret;
1271 }
1272
1273 ret = dev->transport->parse_cdb(cmd);
1274 if (ret)
1275 return ret;
1276
1277 ret = transport_check_alloc_task_attr(cmd);
1278 if (ret)
1279 return ret;
1280
1281 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1282
1283 spin_lock(&cmd->se_lun->lun_sep_lock);
1284 if (cmd->se_lun->lun_sep)
1285 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1286 spin_unlock(&cmd->se_lun->lun_sep_lock);
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1290
1291 /*
1292 * Used by fabric module frontends to queue tasks directly.
1293 * Many only be used from process context only
1294 */
1295 int transport_handle_cdb_direct(
1296 struct se_cmd *cmd)
1297 {
1298 sense_reason_t ret;
1299
1300 if (!cmd->se_lun) {
1301 dump_stack();
1302 pr_err("cmd->se_lun is NULL\n");
1303 return -EINVAL;
1304 }
1305 if (in_interrupt()) {
1306 dump_stack();
1307 pr_err("transport_generic_handle_cdb cannot be called"
1308 " from interrupt context\n");
1309 return -EINVAL;
1310 }
1311 /*
1312 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1313 * outstanding descriptors are handled correctly during shutdown via
1314 * transport_wait_for_tasks()
1315 *
1316 * Also, we don't take cmd->t_state_lock here as we only expect
1317 * this to be called for initial descriptor submission.
1318 */
1319 cmd->t_state = TRANSPORT_NEW_CMD;
1320 cmd->transport_state |= CMD_T_ACTIVE;
1321
1322 /*
1323 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1324 * so follow TRANSPORT_NEW_CMD processing thread context usage
1325 * and call transport_generic_request_failure() if necessary..
1326 */
1327 ret = transport_generic_new_cmd(cmd);
1328 if (ret)
1329 transport_generic_request_failure(cmd, ret);
1330 return 0;
1331 }
1332 EXPORT_SYMBOL(transport_handle_cdb_direct);
1333
1334 sense_reason_t
1335 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1336 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1337 {
1338 if (!sgl || !sgl_count)
1339 return 0;
1340
1341 /*
1342 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1343 * scatterlists already have been set to follow what the fabric
1344 * passes for the original expected data transfer length.
1345 */
1346 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1347 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1348 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1349 return TCM_INVALID_CDB_FIELD;
1350 }
1351
1352 cmd->t_data_sg = sgl;
1353 cmd->t_data_nents = sgl_count;
1354
1355 if (sgl_bidi && sgl_bidi_count) {
1356 cmd->t_bidi_data_sg = sgl_bidi;
1357 cmd->t_bidi_data_nents = sgl_bidi_count;
1358 }
1359 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1360 return 0;
1361 }
1362
1363 /*
1364 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1365 * se_cmd + use pre-allocated SGL memory.
1366 *
1367 * @se_cmd: command descriptor to submit
1368 * @se_sess: associated se_sess for endpoint
1369 * @cdb: pointer to SCSI CDB
1370 * @sense: pointer to SCSI sense buffer
1371 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1372 * @data_length: fabric expected data transfer length
1373 * @task_addr: SAM task attribute
1374 * @data_dir: DMA data direction
1375 * @flags: flags for command submission from target_sc_flags_tables
1376 * @sgl: struct scatterlist memory for unidirectional mapping
1377 * @sgl_count: scatterlist count for unidirectional mapping
1378 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1379 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1380 * @sgl_prot: struct scatterlist memory protection information
1381 * @sgl_prot_count: scatterlist count for protection information
1382 *
1383 * Returns non zero to signal active I/O shutdown failure. All other
1384 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1385 * but still return zero here.
1386 *
1387 * This may only be called from process context, and also currently
1388 * assumes internal allocation of fabric payload buffer by target-core.
1389 */
1390 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1391 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1392 u32 data_length, int task_attr, int data_dir, int flags,
1393 struct scatterlist *sgl, u32 sgl_count,
1394 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1395 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1396 {
1397 struct se_portal_group *se_tpg;
1398 sense_reason_t rc;
1399 int ret;
1400
1401 se_tpg = se_sess->se_tpg;
1402 BUG_ON(!se_tpg);
1403 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1404 BUG_ON(in_interrupt());
1405 /*
1406 * Initialize se_cmd for target operation. From this point
1407 * exceptions are handled by sending exception status via
1408 * target_core_fabric_ops->queue_status() callback
1409 */
1410 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1411 data_length, data_dir, task_attr, sense);
1412 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1413 se_cmd->unknown_data_length = 1;
1414 /*
1415 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1416 * se_sess->sess_cmd_list. A second kref_get here is necessary
1417 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1418 * kref_put() to happen during fabric packet acknowledgement.
1419 */
1420 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1421 if (ret)
1422 return ret;
1423 /*
1424 * Signal bidirectional data payloads to target-core
1425 */
1426 if (flags & TARGET_SCF_BIDI_OP)
1427 se_cmd->se_cmd_flags |= SCF_BIDI;
1428 /*
1429 * Locate se_lun pointer and attach it to struct se_cmd
1430 */
1431 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1432 if (rc) {
1433 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1434 target_put_sess_cmd(se_sess, se_cmd);
1435 return 0;
1436 }
1437
1438 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1439 if (rc != 0) {
1440 transport_generic_request_failure(se_cmd, rc);
1441 return 0;
1442 }
1443
1444 /*
1445 * Save pointers for SGLs containing protection information,
1446 * if present.
1447 */
1448 if (sgl_prot_count) {
1449 se_cmd->t_prot_sg = sgl_prot;
1450 se_cmd->t_prot_nents = sgl_prot_count;
1451 }
1452
1453 /*
1454 * When a non zero sgl_count has been passed perform SGL passthrough
1455 * mapping for pre-allocated fabric memory instead of having target
1456 * core perform an internal SGL allocation..
1457 */
1458 if (sgl_count != 0) {
1459 BUG_ON(!sgl);
1460
1461 /*
1462 * A work-around for tcm_loop as some userspace code via
1463 * scsi-generic do not memset their associated read buffers,
1464 * so go ahead and do that here for type non-data CDBs. Also
1465 * note that this is currently guaranteed to be a single SGL
1466 * for this case by target core in target_setup_cmd_from_cdb()
1467 * -> transport_generic_cmd_sequencer().
1468 */
1469 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1470 se_cmd->data_direction == DMA_FROM_DEVICE) {
1471 unsigned char *buf = NULL;
1472
1473 if (sgl)
1474 buf = kmap(sg_page(sgl)) + sgl->offset;
1475
1476 if (buf) {
1477 memset(buf, 0, sgl->length);
1478 kunmap(sg_page(sgl));
1479 }
1480 }
1481
1482 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1483 sgl_bidi, sgl_bidi_count);
1484 if (rc != 0) {
1485 transport_generic_request_failure(se_cmd, rc);
1486 return 0;
1487 }
1488 }
1489
1490 /*
1491 * Check if we need to delay processing because of ALUA
1492 * Active/NonOptimized primary access state..
1493 */
1494 core_alua_check_nonop_delay(se_cmd);
1495
1496 transport_handle_cdb_direct(se_cmd);
1497 return 0;
1498 }
1499 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1500
1501 /*
1502 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1503 *
1504 * @se_cmd: command descriptor to submit
1505 * @se_sess: associated se_sess for endpoint
1506 * @cdb: pointer to SCSI CDB
1507 * @sense: pointer to SCSI sense buffer
1508 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1509 * @data_length: fabric expected data transfer length
1510 * @task_addr: SAM task attribute
1511 * @data_dir: DMA data direction
1512 * @flags: flags for command submission from target_sc_flags_tables
1513 *
1514 * Returns non zero to signal active I/O shutdown failure. All other
1515 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1516 * but still return zero here.
1517 *
1518 * This may only be called from process context, and also currently
1519 * assumes internal allocation of fabric payload buffer by target-core.
1520 *
1521 * It also assumes interal target core SGL memory allocation.
1522 */
1523 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1524 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1525 u32 data_length, int task_attr, int data_dir, int flags)
1526 {
1527 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1528 unpacked_lun, data_length, task_attr, data_dir,
1529 flags, NULL, 0, NULL, 0, NULL, 0);
1530 }
1531 EXPORT_SYMBOL(target_submit_cmd);
1532
1533 static void target_complete_tmr_failure(struct work_struct *work)
1534 {
1535 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1536
1537 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1538 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1539
1540 transport_cmd_check_stop_to_fabric(se_cmd);
1541 }
1542
1543 /**
1544 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1545 * for TMR CDBs
1546 *
1547 * @se_cmd: command descriptor to submit
1548 * @se_sess: associated se_sess for endpoint
1549 * @sense: pointer to SCSI sense buffer
1550 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1551 * @fabric_context: fabric context for TMR req
1552 * @tm_type: Type of TM request
1553 * @gfp: gfp type for caller
1554 * @tag: referenced task tag for TMR_ABORT_TASK
1555 * @flags: submit cmd flags
1556 *
1557 * Callable from all contexts.
1558 **/
1559
1560 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1561 unsigned char *sense, u32 unpacked_lun,
1562 void *fabric_tmr_ptr, unsigned char tm_type,
1563 gfp_t gfp, unsigned int tag, int flags)
1564 {
1565 struct se_portal_group *se_tpg;
1566 int ret;
1567
1568 se_tpg = se_sess->se_tpg;
1569 BUG_ON(!se_tpg);
1570
1571 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1572 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1573 /*
1574 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1575 * allocation failure.
1576 */
1577 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1578 if (ret < 0)
1579 return -ENOMEM;
1580
1581 if (tm_type == TMR_ABORT_TASK)
1582 se_cmd->se_tmr_req->ref_task_tag = tag;
1583
1584 /* See target_submit_cmd for commentary */
1585 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1586 if (ret) {
1587 core_tmr_release_req(se_cmd->se_tmr_req);
1588 return ret;
1589 }
1590
1591 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1592 if (ret) {
1593 /*
1594 * For callback during failure handling, push this work off
1595 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1596 */
1597 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1598 schedule_work(&se_cmd->work);
1599 return 0;
1600 }
1601 transport_generic_handle_tmr(se_cmd);
1602 return 0;
1603 }
1604 EXPORT_SYMBOL(target_submit_tmr);
1605
1606 /*
1607 * If the cmd is active, request it to be stopped and sleep until it
1608 * has completed.
1609 */
1610 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1611 __releases(&cmd->t_state_lock)
1612 __acquires(&cmd->t_state_lock)
1613 {
1614 bool was_active = false;
1615
1616 if (cmd->transport_state & CMD_T_BUSY) {
1617 cmd->transport_state |= CMD_T_REQUEST_STOP;
1618 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1619
1620 pr_debug("cmd %p waiting to complete\n", cmd);
1621 wait_for_completion(&cmd->task_stop_comp);
1622 pr_debug("cmd %p stopped successfully\n", cmd);
1623
1624 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1625 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1626 cmd->transport_state &= ~CMD_T_BUSY;
1627 was_active = true;
1628 }
1629
1630 return was_active;
1631 }
1632
1633 /*
1634 * Handle SAM-esque emulation for generic transport request failures.
1635 */
1636 void transport_generic_request_failure(struct se_cmd *cmd,
1637 sense_reason_t sense_reason)
1638 {
1639 int ret = 0;
1640
1641 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1642 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1643 cmd->t_task_cdb[0]);
1644 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1645 cmd->se_tfo->get_cmd_state(cmd),
1646 cmd->t_state, sense_reason);
1647 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1648 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1649 (cmd->transport_state & CMD_T_STOP) != 0,
1650 (cmd->transport_state & CMD_T_SENT) != 0);
1651
1652 /*
1653 * For SAM Task Attribute emulation for failed struct se_cmd
1654 */
1655 transport_complete_task_attr(cmd);
1656 /*
1657 * Handle special case for COMPARE_AND_WRITE failure, where the
1658 * callback is expected to drop the per device ->caw_sem.
1659 */
1660 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1661 cmd->transport_complete_callback)
1662 cmd->transport_complete_callback(cmd, false);
1663
1664 switch (sense_reason) {
1665 case TCM_NON_EXISTENT_LUN:
1666 case TCM_UNSUPPORTED_SCSI_OPCODE:
1667 case TCM_INVALID_CDB_FIELD:
1668 case TCM_INVALID_PARAMETER_LIST:
1669 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1670 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1671 case TCM_UNKNOWN_MODE_PAGE:
1672 case TCM_WRITE_PROTECTED:
1673 case TCM_ADDRESS_OUT_OF_RANGE:
1674 case TCM_CHECK_CONDITION_ABORT_CMD:
1675 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1676 case TCM_CHECK_CONDITION_NOT_READY:
1677 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1678 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1679 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1680 break;
1681 case TCM_OUT_OF_RESOURCES:
1682 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1683 break;
1684 case TCM_RESERVATION_CONFLICT:
1685 /*
1686 * No SENSE Data payload for this case, set SCSI Status
1687 * and queue the response to $FABRIC_MOD.
1688 *
1689 * Uses linux/include/scsi/scsi.h SAM status codes defs
1690 */
1691 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1692 /*
1693 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1694 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1695 * CONFLICT STATUS.
1696 *
1697 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1698 */
1699 if (cmd->se_sess &&
1700 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1701 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1702 cmd->orig_fe_lun, 0x2C,
1703 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1704
1705 trace_target_cmd_complete(cmd);
1706 ret = cmd->se_tfo-> queue_status(cmd);
1707 if (ret == -EAGAIN || ret == -ENOMEM)
1708 goto queue_full;
1709 goto check_stop;
1710 default:
1711 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1712 cmd->t_task_cdb[0], sense_reason);
1713 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1714 break;
1715 }
1716
1717 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1718 if (ret == -EAGAIN || ret == -ENOMEM)
1719 goto queue_full;
1720
1721 check_stop:
1722 transport_lun_remove_cmd(cmd);
1723 if (!transport_cmd_check_stop_to_fabric(cmd))
1724 ;
1725 return;
1726
1727 queue_full:
1728 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1729 transport_handle_queue_full(cmd, cmd->se_dev);
1730 }
1731 EXPORT_SYMBOL(transport_generic_request_failure);
1732
1733 void __target_execute_cmd(struct se_cmd *cmd)
1734 {
1735 sense_reason_t ret;
1736
1737 if (cmd->execute_cmd) {
1738 ret = cmd->execute_cmd(cmd);
1739 if (ret) {
1740 spin_lock_irq(&cmd->t_state_lock);
1741 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1742 spin_unlock_irq(&cmd->t_state_lock);
1743
1744 transport_generic_request_failure(cmd, ret);
1745 }
1746 }
1747 }
1748
1749 static int target_write_prot_action(struct se_cmd *cmd)
1750 {
1751 u32 sectors;
1752 /*
1753 * Perform WRITE_INSERT of PI using software emulation when backend
1754 * device has PI enabled, if the transport has not already generated
1755 * PI using hardware WRITE_INSERT offload.
1756 */
1757 switch (cmd->prot_op) {
1758 case TARGET_PROT_DOUT_INSERT:
1759 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1760 sbc_dif_generate(cmd);
1761 break;
1762 case TARGET_PROT_DOUT_STRIP:
1763 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1764 break;
1765
1766 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1767 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1768 sectors, 0, NULL, 0);
1769 if (unlikely(cmd->pi_err)) {
1770 spin_lock_irq(&cmd->t_state_lock);
1771 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1772 spin_unlock_irq(&cmd->t_state_lock);
1773 transport_generic_request_failure(cmd, cmd->pi_err);
1774 return -1;
1775 }
1776 break;
1777 default:
1778 break;
1779 }
1780
1781 return 0;
1782 }
1783
1784 static bool target_handle_task_attr(struct se_cmd *cmd)
1785 {
1786 struct se_device *dev = cmd->se_dev;
1787
1788 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1789 return false;
1790
1791 /*
1792 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1793 * to allow the passed struct se_cmd list of tasks to the front of the list.
1794 */
1795 switch (cmd->sam_task_attr) {
1796 case TCM_HEAD_TAG:
1797 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1798 "se_ordered_id: %u\n",
1799 cmd->t_task_cdb[0], cmd->se_ordered_id);
1800 return false;
1801 case TCM_ORDERED_TAG:
1802 atomic_inc_mb(&dev->dev_ordered_sync);
1803
1804 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1805 " se_ordered_id: %u\n",
1806 cmd->t_task_cdb[0], cmd->se_ordered_id);
1807
1808 /*
1809 * Execute an ORDERED command if no other older commands
1810 * exist that need to be completed first.
1811 */
1812 if (!atomic_read(&dev->simple_cmds))
1813 return false;
1814 break;
1815 default:
1816 /*
1817 * For SIMPLE and UNTAGGED Task Attribute commands
1818 */
1819 atomic_inc_mb(&dev->simple_cmds);
1820 break;
1821 }
1822
1823 if (atomic_read(&dev->dev_ordered_sync) == 0)
1824 return false;
1825
1826 spin_lock(&dev->delayed_cmd_lock);
1827 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1828 spin_unlock(&dev->delayed_cmd_lock);
1829
1830 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1831 " delayed CMD list, se_ordered_id: %u\n",
1832 cmd->t_task_cdb[0], cmd->sam_task_attr,
1833 cmd->se_ordered_id);
1834 return true;
1835 }
1836
1837 void target_execute_cmd(struct se_cmd *cmd)
1838 {
1839 /*
1840 * If the received CDB has aleady been aborted stop processing it here.
1841 */
1842 if (transport_check_aborted_status(cmd, 1))
1843 return;
1844
1845 /*
1846 * Determine if frontend context caller is requesting the stopping of
1847 * this command for frontend exceptions.
1848 */
1849 spin_lock_irq(&cmd->t_state_lock);
1850 if (cmd->transport_state & CMD_T_STOP) {
1851 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1852 __func__, __LINE__,
1853 cmd->se_tfo->get_task_tag(cmd));
1854
1855 spin_unlock_irq(&cmd->t_state_lock);
1856 complete_all(&cmd->t_transport_stop_comp);
1857 return;
1858 }
1859
1860 cmd->t_state = TRANSPORT_PROCESSING;
1861 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1862 spin_unlock_irq(&cmd->t_state_lock);
1863
1864 if (target_write_prot_action(cmd))
1865 return;
1866
1867 if (target_handle_task_attr(cmd)) {
1868 spin_lock_irq(&cmd->t_state_lock);
1869 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1870 spin_unlock_irq(&cmd->t_state_lock);
1871 return;
1872 }
1873
1874 __target_execute_cmd(cmd);
1875 }
1876 EXPORT_SYMBOL(target_execute_cmd);
1877
1878 /*
1879 * Process all commands up to the last received ORDERED task attribute which
1880 * requires another blocking boundary
1881 */
1882 static void target_restart_delayed_cmds(struct se_device *dev)
1883 {
1884 for (;;) {
1885 struct se_cmd *cmd;
1886
1887 spin_lock(&dev->delayed_cmd_lock);
1888 if (list_empty(&dev->delayed_cmd_list)) {
1889 spin_unlock(&dev->delayed_cmd_lock);
1890 break;
1891 }
1892
1893 cmd = list_entry(dev->delayed_cmd_list.next,
1894 struct se_cmd, se_delayed_node);
1895 list_del(&cmd->se_delayed_node);
1896 spin_unlock(&dev->delayed_cmd_lock);
1897
1898 __target_execute_cmd(cmd);
1899
1900 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1901 break;
1902 }
1903 }
1904
1905 /*
1906 * Called from I/O completion to determine which dormant/delayed
1907 * and ordered cmds need to have their tasks added to the execution queue.
1908 */
1909 static void transport_complete_task_attr(struct se_cmd *cmd)
1910 {
1911 struct se_device *dev = cmd->se_dev;
1912
1913 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1914 return;
1915
1916 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1917 atomic_dec_mb(&dev->simple_cmds);
1918 dev->dev_cur_ordered_id++;
1919 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1920 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1921 cmd->se_ordered_id);
1922 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1923 dev->dev_cur_ordered_id++;
1924 pr_debug("Incremented dev_cur_ordered_id: %u for"
1925 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1926 cmd->se_ordered_id);
1927 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1928 atomic_dec_mb(&dev->dev_ordered_sync);
1929
1930 dev->dev_cur_ordered_id++;
1931 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1932 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1933 }
1934
1935 target_restart_delayed_cmds(dev);
1936 }
1937
1938 static void transport_complete_qf(struct se_cmd *cmd)
1939 {
1940 int ret = 0;
1941
1942 transport_complete_task_attr(cmd);
1943
1944 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1945 trace_target_cmd_complete(cmd);
1946 ret = cmd->se_tfo->queue_status(cmd);
1947 goto out;
1948 }
1949
1950 switch (cmd->data_direction) {
1951 case DMA_FROM_DEVICE:
1952 trace_target_cmd_complete(cmd);
1953 ret = cmd->se_tfo->queue_data_in(cmd);
1954 break;
1955 case DMA_TO_DEVICE:
1956 if (cmd->se_cmd_flags & SCF_BIDI) {
1957 ret = cmd->se_tfo->queue_data_in(cmd);
1958 break;
1959 }
1960 /* Fall through for DMA_TO_DEVICE */
1961 case DMA_NONE:
1962 trace_target_cmd_complete(cmd);
1963 ret = cmd->se_tfo->queue_status(cmd);
1964 break;
1965 default:
1966 break;
1967 }
1968
1969 out:
1970 if (ret < 0) {
1971 transport_handle_queue_full(cmd, cmd->se_dev);
1972 return;
1973 }
1974 transport_lun_remove_cmd(cmd);
1975 transport_cmd_check_stop_to_fabric(cmd);
1976 }
1977
1978 static void transport_handle_queue_full(
1979 struct se_cmd *cmd,
1980 struct se_device *dev)
1981 {
1982 spin_lock_irq(&dev->qf_cmd_lock);
1983 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1984 atomic_inc_mb(&dev->dev_qf_count);
1985 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1986
1987 schedule_work(&cmd->se_dev->qf_work_queue);
1988 }
1989
1990 static bool target_read_prot_action(struct se_cmd *cmd)
1991 {
1992 sense_reason_t rc;
1993
1994 switch (cmd->prot_op) {
1995 case TARGET_PROT_DIN_STRIP:
1996 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1997 rc = sbc_dif_read_strip(cmd);
1998 if (rc) {
1999 cmd->pi_err = rc;
2000 return true;
2001 }
2002 }
2003 break;
2004 case TARGET_PROT_DIN_INSERT:
2005 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2006 break;
2007
2008 sbc_dif_generate(cmd);
2009 break;
2010 default:
2011 break;
2012 }
2013
2014 return false;
2015 }
2016
2017 static void target_complete_ok_work(struct work_struct *work)
2018 {
2019 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2020 int ret;
2021
2022 /*
2023 * Check if we need to move delayed/dormant tasks from cmds on the
2024 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2025 * Attribute.
2026 */
2027 transport_complete_task_attr(cmd);
2028
2029 /*
2030 * Check to schedule QUEUE_FULL work, or execute an existing
2031 * cmd->transport_qf_callback()
2032 */
2033 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2034 schedule_work(&cmd->se_dev->qf_work_queue);
2035
2036 /*
2037 * Check if we need to send a sense buffer from
2038 * the struct se_cmd in question.
2039 */
2040 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2041 WARN_ON(!cmd->scsi_status);
2042 ret = transport_send_check_condition_and_sense(
2043 cmd, 0, 1);
2044 if (ret == -EAGAIN || ret == -ENOMEM)
2045 goto queue_full;
2046
2047 transport_lun_remove_cmd(cmd);
2048 transport_cmd_check_stop_to_fabric(cmd);
2049 return;
2050 }
2051 /*
2052 * Check for a callback, used by amongst other things
2053 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2054 */
2055 if (cmd->transport_complete_callback) {
2056 sense_reason_t rc;
2057
2058 rc = cmd->transport_complete_callback(cmd, true);
2059 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2060 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2061 !cmd->data_length)
2062 goto queue_rsp;
2063
2064 return;
2065 } else if (rc) {
2066 ret = transport_send_check_condition_and_sense(cmd,
2067 rc, 0);
2068 if (ret == -EAGAIN || ret == -ENOMEM)
2069 goto queue_full;
2070
2071 transport_lun_remove_cmd(cmd);
2072 transport_cmd_check_stop_to_fabric(cmd);
2073 return;
2074 }
2075 }
2076
2077 queue_rsp:
2078 switch (cmd->data_direction) {
2079 case DMA_FROM_DEVICE:
2080 spin_lock(&cmd->se_lun->lun_sep_lock);
2081 if (cmd->se_lun->lun_sep) {
2082 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2083 cmd->data_length;
2084 }
2085 spin_unlock(&cmd->se_lun->lun_sep_lock);
2086 /*
2087 * Perform READ_STRIP of PI using software emulation when
2088 * backend had PI enabled, if the transport will not be
2089 * performing hardware READ_STRIP offload.
2090 */
2091 if (target_read_prot_action(cmd)) {
2092 ret = transport_send_check_condition_and_sense(cmd,
2093 cmd->pi_err, 0);
2094 if (ret == -EAGAIN || ret == -ENOMEM)
2095 goto queue_full;
2096
2097 transport_lun_remove_cmd(cmd);
2098 transport_cmd_check_stop_to_fabric(cmd);
2099 return;
2100 }
2101
2102 trace_target_cmd_complete(cmd);
2103 ret = cmd->se_tfo->queue_data_in(cmd);
2104 if (ret == -EAGAIN || ret == -ENOMEM)
2105 goto queue_full;
2106 break;
2107 case DMA_TO_DEVICE:
2108 spin_lock(&cmd->se_lun->lun_sep_lock);
2109 if (cmd->se_lun->lun_sep) {
2110 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2111 cmd->data_length;
2112 }
2113 spin_unlock(&cmd->se_lun->lun_sep_lock);
2114 /*
2115 * Check if we need to send READ payload for BIDI-COMMAND
2116 */
2117 if (cmd->se_cmd_flags & SCF_BIDI) {
2118 spin_lock(&cmd->se_lun->lun_sep_lock);
2119 if (cmd->se_lun->lun_sep) {
2120 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2121 cmd->data_length;
2122 }
2123 spin_unlock(&cmd->se_lun->lun_sep_lock);
2124 ret = cmd->se_tfo->queue_data_in(cmd);
2125 if (ret == -EAGAIN || ret == -ENOMEM)
2126 goto queue_full;
2127 break;
2128 }
2129 /* Fall through for DMA_TO_DEVICE */
2130 case DMA_NONE:
2131 trace_target_cmd_complete(cmd);
2132 ret = cmd->se_tfo->queue_status(cmd);
2133 if (ret == -EAGAIN || ret == -ENOMEM)
2134 goto queue_full;
2135 break;
2136 default:
2137 break;
2138 }
2139
2140 transport_lun_remove_cmd(cmd);
2141 transport_cmd_check_stop_to_fabric(cmd);
2142 return;
2143
2144 queue_full:
2145 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2146 " data_direction: %d\n", cmd, cmd->data_direction);
2147 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2148 transport_handle_queue_full(cmd, cmd->se_dev);
2149 }
2150
2151 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2152 {
2153 struct scatterlist *sg;
2154 int count;
2155
2156 for_each_sg(sgl, sg, nents, count)
2157 __free_page(sg_page(sg));
2158
2159 kfree(sgl);
2160 }
2161
2162 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2163 {
2164 /*
2165 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2166 * emulation, and free + reset pointers if necessary..
2167 */
2168 if (!cmd->t_data_sg_orig)
2169 return;
2170
2171 kfree(cmd->t_data_sg);
2172 cmd->t_data_sg = cmd->t_data_sg_orig;
2173 cmd->t_data_sg_orig = NULL;
2174 cmd->t_data_nents = cmd->t_data_nents_orig;
2175 cmd->t_data_nents_orig = 0;
2176 }
2177
2178 static inline void transport_free_pages(struct se_cmd *cmd)
2179 {
2180 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2181 /*
2182 * Release special case READ buffer payload required for
2183 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2184 */
2185 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2186 transport_free_sgl(cmd->t_bidi_data_sg,
2187 cmd->t_bidi_data_nents);
2188 cmd->t_bidi_data_sg = NULL;
2189 cmd->t_bidi_data_nents = 0;
2190 }
2191 transport_reset_sgl_orig(cmd);
2192 return;
2193 }
2194 transport_reset_sgl_orig(cmd);
2195
2196 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2197 cmd->t_data_sg = NULL;
2198 cmd->t_data_nents = 0;
2199
2200 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2201 cmd->t_bidi_data_sg = NULL;
2202 cmd->t_bidi_data_nents = 0;
2203
2204 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2205 cmd->t_prot_sg = NULL;
2206 cmd->t_prot_nents = 0;
2207 }
2208
2209 /**
2210 * transport_release_cmd - free a command
2211 * @cmd: command to free
2212 *
2213 * This routine unconditionally frees a command, and reference counting
2214 * or list removal must be done in the caller.
2215 */
2216 static int transport_release_cmd(struct se_cmd *cmd)
2217 {
2218 BUG_ON(!cmd->se_tfo);
2219
2220 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2221 core_tmr_release_req(cmd->se_tmr_req);
2222 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2223 kfree(cmd->t_task_cdb);
2224 /*
2225 * If this cmd has been setup with target_get_sess_cmd(), drop
2226 * the kref and call ->release_cmd() in kref callback.
2227 */
2228 return target_put_sess_cmd(cmd->se_sess, cmd);
2229 }
2230
2231 /**
2232 * transport_put_cmd - release a reference to a command
2233 * @cmd: command to release
2234 *
2235 * This routine releases our reference to the command and frees it if possible.
2236 */
2237 static int transport_put_cmd(struct se_cmd *cmd)
2238 {
2239 transport_free_pages(cmd);
2240 return transport_release_cmd(cmd);
2241 }
2242
2243 void *transport_kmap_data_sg(struct se_cmd *cmd)
2244 {
2245 struct scatterlist *sg = cmd->t_data_sg;
2246 struct page **pages;
2247 int i;
2248
2249 /*
2250 * We need to take into account a possible offset here for fabrics like
2251 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2252 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2253 */
2254 if (!cmd->t_data_nents)
2255 return NULL;
2256
2257 BUG_ON(!sg);
2258 if (cmd->t_data_nents == 1)
2259 return kmap(sg_page(sg)) + sg->offset;
2260
2261 /* >1 page. use vmap */
2262 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2263 if (!pages)
2264 return NULL;
2265
2266 /* convert sg[] to pages[] */
2267 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2268 pages[i] = sg_page(sg);
2269 }
2270
2271 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2272 kfree(pages);
2273 if (!cmd->t_data_vmap)
2274 return NULL;
2275
2276 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2277 }
2278 EXPORT_SYMBOL(transport_kmap_data_sg);
2279
2280 void transport_kunmap_data_sg(struct se_cmd *cmd)
2281 {
2282 if (!cmd->t_data_nents) {
2283 return;
2284 } else if (cmd->t_data_nents == 1) {
2285 kunmap(sg_page(cmd->t_data_sg));
2286 return;
2287 }
2288
2289 vunmap(cmd->t_data_vmap);
2290 cmd->t_data_vmap = NULL;
2291 }
2292 EXPORT_SYMBOL(transport_kunmap_data_sg);
2293
2294 int
2295 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2296 bool zero_page)
2297 {
2298 struct scatterlist *sg;
2299 struct page *page;
2300 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2301 unsigned int nent;
2302 int i = 0;
2303
2304 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2305 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2306 if (!sg)
2307 return -ENOMEM;
2308
2309 sg_init_table(sg, nent);
2310
2311 while (length) {
2312 u32 page_len = min_t(u32, length, PAGE_SIZE);
2313 page = alloc_page(GFP_KERNEL | zero_flag);
2314 if (!page)
2315 goto out;
2316
2317 sg_set_page(&sg[i], page, page_len, 0);
2318 length -= page_len;
2319 i++;
2320 }
2321 *sgl = sg;
2322 *nents = nent;
2323 return 0;
2324
2325 out:
2326 while (i > 0) {
2327 i--;
2328 __free_page(sg_page(&sg[i]));
2329 }
2330 kfree(sg);
2331 return -ENOMEM;
2332 }
2333
2334 /*
2335 * Allocate any required resources to execute the command. For writes we
2336 * might not have the payload yet, so notify the fabric via a call to
2337 * ->write_pending instead. Otherwise place it on the execution queue.
2338 */
2339 sense_reason_t
2340 transport_generic_new_cmd(struct se_cmd *cmd)
2341 {
2342 int ret = 0;
2343 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2344
2345 /*
2346 * Determine is the TCM fabric module has already allocated physical
2347 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2348 * beforehand.
2349 */
2350 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2351 cmd->data_length) {
2352
2353 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2354 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2355 u32 bidi_length;
2356
2357 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2358 bidi_length = cmd->t_task_nolb *
2359 cmd->se_dev->dev_attrib.block_size;
2360 else
2361 bidi_length = cmd->data_length;
2362
2363 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2364 &cmd->t_bidi_data_nents,
2365 bidi_length, zero_flag);
2366 if (ret < 0)
2367 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2368 }
2369
2370 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2371 ret = target_alloc_sgl(&cmd->t_prot_sg,
2372 &cmd->t_prot_nents,
2373 cmd->prot_length, true);
2374 if (ret < 0)
2375 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2376 }
2377
2378 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2379 cmd->data_length, zero_flag);
2380 if (ret < 0)
2381 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2382 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2383 cmd->data_length) {
2384 /*
2385 * Special case for COMPARE_AND_WRITE with fabrics
2386 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2387 */
2388 u32 caw_length = cmd->t_task_nolb *
2389 cmd->se_dev->dev_attrib.block_size;
2390
2391 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2392 &cmd->t_bidi_data_nents,
2393 caw_length, zero_flag);
2394 if (ret < 0)
2395 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2396 }
2397 /*
2398 * If this command is not a write we can execute it right here,
2399 * for write buffers we need to notify the fabric driver first
2400 * and let it call back once the write buffers are ready.
2401 */
2402 target_add_to_state_list(cmd);
2403 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2404 target_execute_cmd(cmd);
2405 return 0;
2406 }
2407 transport_cmd_check_stop(cmd, false, true);
2408
2409 ret = cmd->se_tfo->write_pending(cmd);
2410 if (ret == -EAGAIN || ret == -ENOMEM)
2411 goto queue_full;
2412
2413 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2414 WARN_ON(ret);
2415
2416 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2417
2418 queue_full:
2419 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2420 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2421 transport_handle_queue_full(cmd, cmd->se_dev);
2422 return 0;
2423 }
2424 EXPORT_SYMBOL(transport_generic_new_cmd);
2425
2426 static void transport_write_pending_qf(struct se_cmd *cmd)
2427 {
2428 int ret;
2429
2430 ret = cmd->se_tfo->write_pending(cmd);
2431 if (ret == -EAGAIN || ret == -ENOMEM) {
2432 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2433 cmd);
2434 transport_handle_queue_full(cmd, cmd->se_dev);
2435 }
2436 }
2437
2438 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2439 {
2440 unsigned long flags;
2441 int ret = 0;
2442
2443 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2444 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2445 transport_wait_for_tasks(cmd);
2446
2447 ret = transport_release_cmd(cmd);
2448 } else {
2449 if (wait_for_tasks)
2450 transport_wait_for_tasks(cmd);
2451 /*
2452 * Handle WRITE failure case where transport_generic_new_cmd()
2453 * has already added se_cmd to state_list, but fabric has
2454 * failed command before I/O submission.
2455 */
2456 if (cmd->state_active) {
2457 spin_lock_irqsave(&cmd->t_state_lock, flags);
2458 target_remove_from_state_list(cmd);
2459 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2460 }
2461
2462 if (cmd->se_lun)
2463 transport_lun_remove_cmd(cmd);
2464
2465 ret = transport_put_cmd(cmd);
2466 }
2467 return ret;
2468 }
2469 EXPORT_SYMBOL(transport_generic_free_cmd);
2470
2471 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2472 * @se_sess: session to reference
2473 * @se_cmd: command descriptor to add
2474 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2475 */
2476 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2477 bool ack_kref)
2478 {
2479 unsigned long flags;
2480 int ret = 0;
2481
2482 /*
2483 * Add a second kref if the fabric caller is expecting to handle
2484 * fabric acknowledgement that requires two target_put_sess_cmd()
2485 * invocations before se_cmd descriptor release.
2486 */
2487 if (ack_kref)
2488 kref_get(&se_cmd->cmd_kref);
2489
2490 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2491 if (se_sess->sess_tearing_down) {
2492 ret = -ESHUTDOWN;
2493 goto out;
2494 }
2495 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2496 out:
2497 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2498
2499 if (ret && ack_kref)
2500 target_put_sess_cmd(se_sess, se_cmd);
2501
2502 return ret;
2503 }
2504 EXPORT_SYMBOL(target_get_sess_cmd);
2505
2506 static void target_release_cmd_kref(struct kref *kref)
2507 __releases(&se_cmd->se_sess->sess_cmd_lock)
2508 {
2509 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2510 struct se_session *se_sess = se_cmd->se_sess;
2511
2512 if (list_empty(&se_cmd->se_cmd_list)) {
2513 spin_unlock(&se_sess->sess_cmd_lock);
2514 se_cmd->se_tfo->release_cmd(se_cmd);
2515 return;
2516 }
2517 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2518 spin_unlock(&se_sess->sess_cmd_lock);
2519 complete(&se_cmd->cmd_wait_comp);
2520 return;
2521 }
2522 list_del(&se_cmd->se_cmd_list);
2523 spin_unlock(&se_sess->sess_cmd_lock);
2524
2525 se_cmd->se_tfo->release_cmd(se_cmd);
2526 }
2527
2528 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2529 * @se_sess: session to reference
2530 * @se_cmd: command descriptor to drop
2531 */
2532 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2533 {
2534 if (!se_sess) {
2535 se_cmd->se_tfo->release_cmd(se_cmd);
2536 return 1;
2537 }
2538 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2539 &se_sess->sess_cmd_lock);
2540 }
2541 EXPORT_SYMBOL(target_put_sess_cmd);
2542
2543 /* target_sess_cmd_list_set_waiting - Flag all commands in
2544 * sess_cmd_list to complete cmd_wait_comp. Set
2545 * sess_tearing_down so no more commands are queued.
2546 * @se_sess: session to flag
2547 */
2548 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2549 {
2550 struct se_cmd *se_cmd;
2551 unsigned long flags;
2552
2553 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2554 if (se_sess->sess_tearing_down) {
2555 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2556 return;
2557 }
2558 se_sess->sess_tearing_down = 1;
2559 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2560
2561 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2562 se_cmd->cmd_wait_set = 1;
2563
2564 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2565 }
2566 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2567
2568 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2569 * @se_sess: session to wait for active I/O
2570 */
2571 void target_wait_for_sess_cmds(struct se_session *se_sess)
2572 {
2573 struct se_cmd *se_cmd, *tmp_cmd;
2574 unsigned long flags;
2575
2576 list_for_each_entry_safe(se_cmd, tmp_cmd,
2577 &se_sess->sess_wait_list, se_cmd_list) {
2578 list_del(&se_cmd->se_cmd_list);
2579
2580 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2581 " %d\n", se_cmd, se_cmd->t_state,
2582 se_cmd->se_tfo->get_cmd_state(se_cmd));
2583
2584 wait_for_completion(&se_cmd->cmd_wait_comp);
2585 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2586 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2587 se_cmd->se_tfo->get_cmd_state(se_cmd));
2588
2589 se_cmd->se_tfo->release_cmd(se_cmd);
2590 }
2591
2592 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2593 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2594 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2595
2596 }
2597 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2598
2599 static int transport_clear_lun_ref_thread(void *p)
2600 {
2601 struct se_lun *lun = p;
2602
2603 percpu_ref_kill(&lun->lun_ref);
2604
2605 wait_for_completion(&lun->lun_ref_comp);
2606 complete(&lun->lun_shutdown_comp);
2607
2608 return 0;
2609 }
2610
2611 int transport_clear_lun_ref(struct se_lun *lun)
2612 {
2613 struct task_struct *kt;
2614
2615 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2616 "tcm_cl_%u", lun->unpacked_lun);
2617 if (IS_ERR(kt)) {
2618 pr_err("Unable to start clear_lun thread\n");
2619 return PTR_ERR(kt);
2620 }
2621 wait_for_completion(&lun->lun_shutdown_comp);
2622
2623 return 0;
2624 }
2625
2626 /**
2627 * transport_wait_for_tasks - wait for completion to occur
2628 * @cmd: command to wait
2629 *
2630 * Called from frontend fabric context to wait for storage engine
2631 * to pause and/or release frontend generated struct se_cmd.
2632 */
2633 bool transport_wait_for_tasks(struct se_cmd *cmd)
2634 {
2635 unsigned long flags;
2636
2637 spin_lock_irqsave(&cmd->t_state_lock, flags);
2638 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2639 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2640 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2641 return false;
2642 }
2643
2644 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2645 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2646 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2647 return false;
2648 }
2649
2650 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2651 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2652 return false;
2653 }
2654
2655 cmd->transport_state |= CMD_T_STOP;
2656
2657 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2658 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2659 cmd, cmd->se_tfo->get_task_tag(cmd),
2660 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2661
2662 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2663
2664 wait_for_completion(&cmd->t_transport_stop_comp);
2665
2666 spin_lock_irqsave(&cmd->t_state_lock, flags);
2667 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2668
2669 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2670 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2671 cmd->se_tfo->get_task_tag(cmd));
2672
2673 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2674
2675 return true;
2676 }
2677 EXPORT_SYMBOL(transport_wait_for_tasks);
2678
2679 static int transport_get_sense_codes(
2680 struct se_cmd *cmd,
2681 u8 *asc,
2682 u8 *ascq)
2683 {
2684 *asc = cmd->scsi_asc;
2685 *ascq = cmd->scsi_ascq;
2686
2687 return 0;
2688 }
2689
2690 static
2691 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2692 {
2693 /* Place failed LBA in sense data information descriptor 0. */
2694 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2695 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2696 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2697 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2698
2699 /* Descriptor Information: failing sector */
2700 put_unaligned_be64(bad_sector, &buffer[12]);
2701 }
2702
2703 int
2704 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2705 sense_reason_t reason, int from_transport)
2706 {
2707 unsigned char *buffer = cmd->sense_buffer;
2708 unsigned long flags;
2709 u8 asc = 0, ascq = 0;
2710
2711 spin_lock_irqsave(&cmd->t_state_lock, flags);
2712 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2713 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2714 return 0;
2715 }
2716 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2717 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2718
2719 if (!reason && from_transport)
2720 goto after_reason;
2721
2722 if (!from_transport)
2723 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2724
2725 /*
2726 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2727 * SENSE KEY values from include/scsi/scsi.h
2728 */
2729 switch (reason) {
2730 case TCM_NO_SENSE:
2731 /* CURRENT ERROR */
2732 buffer[0] = 0x70;
2733 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2734 /* Not Ready */
2735 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2736 /* NO ADDITIONAL SENSE INFORMATION */
2737 buffer[SPC_ASC_KEY_OFFSET] = 0;
2738 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2739 break;
2740 case TCM_NON_EXISTENT_LUN:
2741 /* CURRENT ERROR */
2742 buffer[0] = 0x70;
2743 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2744 /* ILLEGAL REQUEST */
2745 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2746 /* LOGICAL UNIT NOT SUPPORTED */
2747 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2748 break;
2749 case TCM_UNSUPPORTED_SCSI_OPCODE:
2750 case TCM_SECTOR_COUNT_TOO_MANY:
2751 /* CURRENT ERROR */
2752 buffer[0] = 0x70;
2753 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2754 /* ILLEGAL REQUEST */
2755 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2756 /* INVALID COMMAND OPERATION CODE */
2757 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2758 break;
2759 case TCM_UNKNOWN_MODE_PAGE:
2760 /* CURRENT ERROR */
2761 buffer[0] = 0x70;
2762 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2763 /* ILLEGAL REQUEST */
2764 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2765 /* INVALID FIELD IN CDB */
2766 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2767 break;
2768 case TCM_CHECK_CONDITION_ABORT_CMD:
2769 /* CURRENT ERROR */
2770 buffer[0] = 0x70;
2771 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2772 /* ABORTED COMMAND */
2773 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2774 /* BUS DEVICE RESET FUNCTION OCCURRED */
2775 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2776 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2777 break;
2778 case TCM_INCORRECT_AMOUNT_OF_DATA:
2779 /* CURRENT ERROR */
2780 buffer[0] = 0x70;
2781 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2782 /* ABORTED COMMAND */
2783 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2784 /* WRITE ERROR */
2785 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2786 /* NOT ENOUGH UNSOLICITED DATA */
2787 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2788 break;
2789 case TCM_INVALID_CDB_FIELD:
2790 /* CURRENT ERROR */
2791 buffer[0] = 0x70;
2792 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2793 /* ILLEGAL REQUEST */
2794 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2795 /* INVALID FIELD IN CDB */
2796 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2797 break;
2798 case TCM_INVALID_PARAMETER_LIST:
2799 /* CURRENT ERROR */
2800 buffer[0] = 0x70;
2801 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2802 /* ILLEGAL REQUEST */
2803 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2804 /* INVALID FIELD IN PARAMETER LIST */
2805 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2806 break;
2807 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2808 /* CURRENT ERROR */
2809 buffer[0] = 0x70;
2810 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2811 /* ILLEGAL REQUEST */
2812 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2813 /* PARAMETER LIST LENGTH ERROR */
2814 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2815 break;
2816 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2817 /* CURRENT ERROR */
2818 buffer[0] = 0x70;
2819 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2820 /* ABORTED COMMAND */
2821 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2822 /* WRITE ERROR */
2823 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2824 /* UNEXPECTED_UNSOLICITED_DATA */
2825 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2826 break;
2827 case TCM_SERVICE_CRC_ERROR:
2828 /* CURRENT ERROR */
2829 buffer[0] = 0x70;
2830 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2831 /* ABORTED COMMAND */
2832 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2833 /* PROTOCOL SERVICE CRC ERROR */
2834 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2835 /* N/A */
2836 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2837 break;
2838 case TCM_SNACK_REJECTED:
2839 /* CURRENT ERROR */
2840 buffer[0] = 0x70;
2841 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2842 /* ABORTED COMMAND */
2843 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2844 /* READ ERROR */
2845 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2846 /* FAILED RETRANSMISSION REQUEST */
2847 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2848 break;
2849 case TCM_WRITE_PROTECTED:
2850 /* CURRENT ERROR */
2851 buffer[0] = 0x70;
2852 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2853 /* DATA PROTECT */
2854 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2855 /* WRITE PROTECTED */
2856 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2857 break;
2858 case TCM_ADDRESS_OUT_OF_RANGE:
2859 /* CURRENT ERROR */
2860 buffer[0] = 0x70;
2861 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2862 /* ILLEGAL REQUEST */
2863 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2864 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2865 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2866 break;
2867 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2868 /* CURRENT ERROR */
2869 buffer[0] = 0x70;
2870 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2871 /* UNIT ATTENTION */
2872 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2873 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2874 buffer[SPC_ASC_KEY_OFFSET] = asc;
2875 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2876 break;
2877 case TCM_CHECK_CONDITION_NOT_READY:
2878 /* CURRENT ERROR */
2879 buffer[0] = 0x70;
2880 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2881 /* Not Ready */
2882 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2883 transport_get_sense_codes(cmd, &asc, &ascq);
2884 buffer[SPC_ASC_KEY_OFFSET] = asc;
2885 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2886 break;
2887 case TCM_MISCOMPARE_VERIFY:
2888 /* CURRENT ERROR */
2889 buffer[0] = 0x70;
2890 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2891 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2892 /* MISCOMPARE DURING VERIFY OPERATION */
2893 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2894 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2895 break;
2896 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2897 /* CURRENT ERROR */
2898 buffer[0] = 0x70;
2899 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2900 /* ILLEGAL REQUEST */
2901 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2902 /* LOGICAL BLOCK GUARD CHECK FAILED */
2903 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2904 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2905 transport_err_sector_info(buffer, cmd->bad_sector);
2906 break;
2907 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2908 /* CURRENT ERROR */
2909 buffer[0] = 0x70;
2910 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2911 /* ILLEGAL REQUEST */
2912 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2913 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2914 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2915 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2916 transport_err_sector_info(buffer, cmd->bad_sector);
2917 break;
2918 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2919 /* CURRENT ERROR */
2920 buffer[0] = 0x70;
2921 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2922 /* ILLEGAL REQUEST */
2923 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2924 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2925 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2926 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2927 transport_err_sector_info(buffer, cmd->bad_sector);
2928 break;
2929 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2930 default:
2931 /* CURRENT ERROR */
2932 buffer[0] = 0x70;
2933 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2934 /*
2935 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2936 * Solaris initiators. Returning NOT READY instead means the
2937 * operations will be retried a finite number of times and we
2938 * can survive intermittent errors.
2939 */
2940 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2941 /* LOGICAL UNIT COMMUNICATION FAILURE */
2942 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2943 break;
2944 }
2945 /*
2946 * This code uses linux/include/scsi/scsi.h SAM status codes!
2947 */
2948 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2949 /*
2950 * Automatically padded, this value is encoded in the fabric's
2951 * data_length response PDU containing the SCSI defined sense data.
2952 */
2953 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2954
2955 after_reason:
2956 trace_target_cmd_complete(cmd);
2957 return cmd->se_tfo->queue_status(cmd);
2958 }
2959 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2960
2961 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2962 {
2963 if (!(cmd->transport_state & CMD_T_ABORTED))
2964 return 0;
2965
2966 /*
2967 * If cmd has been aborted but either no status is to be sent or it has
2968 * already been sent, just return
2969 */
2970 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2971 return 1;
2972
2973 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2974 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2975
2976 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2977 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2978 trace_target_cmd_complete(cmd);
2979 cmd->se_tfo->queue_status(cmd);
2980
2981 return 1;
2982 }
2983 EXPORT_SYMBOL(transport_check_aborted_status);
2984
2985 void transport_send_task_abort(struct se_cmd *cmd)
2986 {
2987 unsigned long flags;
2988
2989 spin_lock_irqsave(&cmd->t_state_lock, flags);
2990 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2991 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2992 return;
2993 }
2994 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2995
2996 /*
2997 * If there are still expected incoming fabric WRITEs, we wait
2998 * until until they have completed before sending a TASK_ABORTED
2999 * response. This response with TASK_ABORTED status will be
3000 * queued back to fabric module by transport_check_aborted_status().
3001 */
3002 if (cmd->data_direction == DMA_TO_DEVICE) {
3003 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3004 cmd->transport_state |= CMD_T_ABORTED;
3005 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3006 return;
3007 }
3008 }
3009 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3010
3011 transport_lun_remove_cmd(cmd);
3012
3013 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3014 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3015 cmd->se_tfo->get_task_tag(cmd));
3016
3017 trace_target_cmd_complete(cmd);
3018 cmd->se_tfo->queue_status(cmd);
3019 }
3020
3021 static void target_tmr_work(struct work_struct *work)
3022 {
3023 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3024 struct se_device *dev = cmd->se_dev;
3025 struct se_tmr_req *tmr = cmd->se_tmr_req;
3026 int ret;
3027
3028 switch (tmr->function) {
3029 case TMR_ABORT_TASK:
3030 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3031 break;
3032 case TMR_ABORT_TASK_SET:
3033 case TMR_CLEAR_ACA:
3034 case TMR_CLEAR_TASK_SET:
3035 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3036 break;
3037 case TMR_LUN_RESET:
3038 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3039 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3040 TMR_FUNCTION_REJECTED;
3041 break;
3042 case TMR_TARGET_WARM_RESET:
3043 tmr->response = TMR_FUNCTION_REJECTED;
3044 break;
3045 case TMR_TARGET_COLD_RESET:
3046 tmr->response = TMR_FUNCTION_REJECTED;
3047 break;
3048 default:
3049 pr_err("Uknown TMR function: 0x%02x.\n",
3050 tmr->function);
3051 tmr->response = TMR_FUNCTION_REJECTED;
3052 break;
3053 }
3054
3055 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3056 cmd->se_tfo->queue_tm_rsp(cmd);
3057
3058 transport_cmd_check_stop_to_fabric(cmd);
3059 }
3060
3061 int transport_generic_handle_tmr(
3062 struct se_cmd *cmd)
3063 {
3064 unsigned long flags;
3065
3066 spin_lock_irqsave(&cmd->t_state_lock, flags);
3067 cmd->transport_state |= CMD_T_ACTIVE;
3068 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3069
3070 INIT_WORK(&cmd->work, target_tmr_work);
3071 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3072 return 0;
3073 }
3074 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.14046 seconds and 6 git commands to generate.