target: Fix ->data_length re-assignment bug with SCSI overflow
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static void transport_complete_task_attr(struct se_cmd *cmd);
70 static void transport_handle_queue_full(struct se_cmd *cmd,
71 struct se_device *dev);
72 static int transport_generic_get_mem(struct se_cmd *cmd);
73 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool);
74 static void transport_put_cmd(struct se_cmd *cmd);
75 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
76 static void target_complete_ok_work(struct work_struct *work);
77
78 int init_se_kmem_caches(void)
79 {
80 se_sess_cache = kmem_cache_create("se_sess_cache",
81 sizeof(struct se_session), __alignof__(struct se_session),
82 0, NULL);
83 if (!se_sess_cache) {
84 pr_err("kmem_cache_create() for struct se_session"
85 " failed\n");
86 goto out;
87 }
88 se_ua_cache = kmem_cache_create("se_ua_cache",
89 sizeof(struct se_ua), __alignof__(struct se_ua),
90 0, NULL);
91 if (!se_ua_cache) {
92 pr_err("kmem_cache_create() for struct se_ua failed\n");
93 goto out_free_sess_cache;
94 }
95 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
96 sizeof(struct t10_pr_registration),
97 __alignof__(struct t10_pr_registration), 0, NULL);
98 if (!t10_pr_reg_cache) {
99 pr_err("kmem_cache_create() for struct t10_pr_registration"
100 " failed\n");
101 goto out_free_ua_cache;
102 }
103 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
104 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
105 0, NULL);
106 if (!t10_alua_lu_gp_cache) {
107 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
108 " failed\n");
109 goto out_free_pr_reg_cache;
110 }
111 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
112 sizeof(struct t10_alua_lu_gp_member),
113 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
114 if (!t10_alua_lu_gp_mem_cache) {
115 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
116 "cache failed\n");
117 goto out_free_lu_gp_cache;
118 }
119 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
120 sizeof(struct t10_alua_tg_pt_gp),
121 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
122 if (!t10_alua_tg_pt_gp_cache) {
123 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
124 "cache failed\n");
125 goto out_free_lu_gp_mem_cache;
126 }
127 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
128 "t10_alua_tg_pt_gp_mem_cache",
129 sizeof(struct t10_alua_tg_pt_gp_member),
130 __alignof__(struct t10_alua_tg_pt_gp_member),
131 0, NULL);
132 if (!t10_alua_tg_pt_gp_mem_cache) {
133 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
134 "mem_t failed\n");
135 goto out_free_tg_pt_gp_cache;
136 }
137
138 target_completion_wq = alloc_workqueue("target_completion",
139 WQ_MEM_RECLAIM, 0);
140 if (!target_completion_wq)
141 goto out_free_tg_pt_gp_mem_cache;
142
143 return 0;
144
145 out_free_tg_pt_gp_mem_cache:
146 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
147 out_free_tg_pt_gp_cache:
148 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
149 out_free_lu_gp_mem_cache:
150 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
151 out_free_lu_gp_cache:
152 kmem_cache_destroy(t10_alua_lu_gp_cache);
153 out_free_pr_reg_cache:
154 kmem_cache_destroy(t10_pr_reg_cache);
155 out_free_ua_cache:
156 kmem_cache_destroy(se_ua_cache);
157 out_free_sess_cache:
158 kmem_cache_destroy(se_sess_cache);
159 out:
160 return -ENOMEM;
161 }
162
163 void release_se_kmem_caches(void)
164 {
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
173 }
174
175 /* This code ensures unique mib indexes are handed out. */
176 static DEFINE_SPINLOCK(scsi_mib_index_lock);
177 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
178
179 /*
180 * Allocate a new row index for the entry type specified
181 */
182 u32 scsi_get_new_index(scsi_index_t type)
183 {
184 u32 new_index;
185
186 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
187
188 spin_lock(&scsi_mib_index_lock);
189 new_index = ++scsi_mib_index[type];
190 spin_unlock(&scsi_mib_index_lock);
191
192 return new_index;
193 }
194
195 void transport_subsystem_check_init(void)
196 {
197 int ret;
198
199 if (sub_api_initialized)
200 return;
201
202 ret = request_module("target_core_iblock");
203 if (ret != 0)
204 pr_err("Unable to load target_core_iblock\n");
205
206 ret = request_module("target_core_file");
207 if (ret != 0)
208 pr_err("Unable to load target_core_file\n");
209
210 ret = request_module("target_core_pscsi");
211 if (ret != 0)
212 pr_err("Unable to load target_core_pscsi\n");
213
214 ret = request_module("target_core_stgt");
215 if (ret != 0)
216 pr_err("Unable to load target_core_stgt\n");
217
218 sub_api_initialized = 1;
219 return;
220 }
221
222 struct se_session *transport_init_session(void)
223 {
224 struct se_session *se_sess;
225
226 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
227 if (!se_sess) {
228 pr_err("Unable to allocate struct se_session from"
229 " se_sess_cache\n");
230 return ERR_PTR(-ENOMEM);
231 }
232 INIT_LIST_HEAD(&se_sess->sess_list);
233 INIT_LIST_HEAD(&se_sess->sess_acl_list);
234 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
235 spin_lock_init(&se_sess->sess_cmd_lock);
236 kref_init(&se_sess->sess_kref);
237
238 return se_sess;
239 }
240 EXPORT_SYMBOL(transport_init_session);
241
242 /*
243 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
244 */
245 void __transport_register_session(
246 struct se_portal_group *se_tpg,
247 struct se_node_acl *se_nacl,
248 struct se_session *se_sess,
249 void *fabric_sess_ptr)
250 {
251 unsigned char buf[PR_REG_ISID_LEN];
252
253 se_sess->se_tpg = se_tpg;
254 se_sess->fabric_sess_ptr = fabric_sess_ptr;
255 /*
256 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
257 *
258 * Only set for struct se_session's that will actually be moving I/O.
259 * eg: *NOT* discovery sessions.
260 */
261 if (se_nacl) {
262 /*
263 * If the fabric module supports an ISID based TransportID,
264 * save this value in binary from the fabric I_T Nexus now.
265 */
266 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
267 memset(&buf[0], 0, PR_REG_ISID_LEN);
268 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
269 &buf[0], PR_REG_ISID_LEN);
270 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
271 }
272 kref_get(&se_nacl->acl_kref);
273
274 spin_lock_irq(&se_nacl->nacl_sess_lock);
275 /*
276 * The se_nacl->nacl_sess pointer will be set to the
277 * last active I_T Nexus for each struct se_node_acl.
278 */
279 se_nacl->nacl_sess = se_sess;
280
281 list_add_tail(&se_sess->sess_acl_list,
282 &se_nacl->acl_sess_list);
283 spin_unlock_irq(&se_nacl->nacl_sess_lock);
284 }
285 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
286
287 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
288 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
289 }
290 EXPORT_SYMBOL(__transport_register_session);
291
292 void transport_register_session(
293 struct se_portal_group *se_tpg,
294 struct se_node_acl *se_nacl,
295 struct se_session *se_sess,
296 void *fabric_sess_ptr)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&se_tpg->session_lock, flags);
301 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
302 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
303 }
304 EXPORT_SYMBOL(transport_register_session);
305
306 void target_release_session(struct kref *kref)
307 {
308 struct se_session *se_sess = container_of(kref,
309 struct se_session, sess_kref);
310 struct se_portal_group *se_tpg = se_sess->se_tpg;
311
312 se_tpg->se_tpg_tfo->close_session(se_sess);
313 }
314
315 void target_get_session(struct se_session *se_sess)
316 {
317 kref_get(&se_sess->sess_kref);
318 }
319 EXPORT_SYMBOL(target_get_session);
320
321 void target_put_session(struct se_session *se_sess)
322 {
323 struct se_portal_group *tpg = se_sess->se_tpg;
324
325 if (tpg->se_tpg_tfo->put_session != NULL) {
326 tpg->se_tpg_tfo->put_session(se_sess);
327 return;
328 }
329 kref_put(&se_sess->sess_kref, target_release_session);
330 }
331 EXPORT_SYMBOL(target_put_session);
332
333 static void target_complete_nacl(struct kref *kref)
334 {
335 struct se_node_acl *nacl = container_of(kref,
336 struct se_node_acl, acl_kref);
337
338 complete(&nacl->acl_free_comp);
339 }
340
341 void target_put_nacl(struct se_node_acl *nacl)
342 {
343 kref_put(&nacl->acl_kref, target_complete_nacl);
344 }
345
346 void transport_deregister_session_configfs(struct se_session *se_sess)
347 {
348 struct se_node_acl *se_nacl;
349 unsigned long flags;
350 /*
351 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
352 */
353 se_nacl = se_sess->se_node_acl;
354 if (se_nacl) {
355 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
356 if (se_nacl->acl_stop == 0)
357 list_del(&se_sess->sess_acl_list);
358 /*
359 * If the session list is empty, then clear the pointer.
360 * Otherwise, set the struct se_session pointer from the tail
361 * element of the per struct se_node_acl active session list.
362 */
363 if (list_empty(&se_nacl->acl_sess_list))
364 se_nacl->nacl_sess = NULL;
365 else {
366 se_nacl->nacl_sess = container_of(
367 se_nacl->acl_sess_list.prev,
368 struct se_session, sess_acl_list);
369 }
370 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
371 }
372 }
373 EXPORT_SYMBOL(transport_deregister_session_configfs);
374
375 void transport_free_session(struct se_session *se_sess)
376 {
377 kmem_cache_free(se_sess_cache, se_sess);
378 }
379 EXPORT_SYMBOL(transport_free_session);
380
381 void transport_deregister_session(struct se_session *se_sess)
382 {
383 struct se_portal_group *se_tpg = se_sess->se_tpg;
384 struct target_core_fabric_ops *se_tfo;
385 struct se_node_acl *se_nacl;
386 unsigned long flags;
387 bool comp_nacl = true;
388
389 if (!se_tpg) {
390 transport_free_session(se_sess);
391 return;
392 }
393 se_tfo = se_tpg->se_tpg_tfo;
394
395 spin_lock_irqsave(&se_tpg->session_lock, flags);
396 list_del(&se_sess->sess_list);
397 se_sess->se_tpg = NULL;
398 se_sess->fabric_sess_ptr = NULL;
399 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
400
401 /*
402 * Determine if we need to do extra work for this initiator node's
403 * struct se_node_acl if it had been previously dynamically generated.
404 */
405 se_nacl = se_sess->se_node_acl;
406
407 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
408 if (se_nacl && se_nacl->dynamic_node_acl) {
409 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
410 list_del(&se_nacl->acl_list);
411 se_tpg->num_node_acls--;
412 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
413 core_tpg_wait_for_nacl_pr_ref(se_nacl);
414 core_free_device_list_for_node(se_nacl, se_tpg);
415 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
416
417 comp_nacl = false;
418 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
419 }
420 }
421 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
422
423 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
424 se_tpg->se_tpg_tfo->get_fabric_name());
425 /*
426 * If last kref is dropping now for an explict NodeACL, awake sleeping
427 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
428 * removal context.
429 */
430 if (se_nacl && comp_nacl == true)
431 target_put_nacl(se_nacl);
432
433 transport_free_session(se_sess);
434 }
435 EXPORT_SYMBOL(transport_deregister_session);
436
437 /*
438 * Called with cmd->t_state_lock held.
439 */
440 static void target_remove_from_state_list(struct se_cmd *cmd)
441 {
442 struct se_device *dev = cmd->se_dev;
443 unsigned long flags;
444
445 if (!dev)
446 return;
447
448 if (cmd->transport_state & CMD_T_BUSY)
449 return;
450
451 spin_lock_irqsave(&dev->execute_task_lock, flags);
452 if (cmd->state_active) {
453 list_del(&cmd->state_list);
454 cmd->state_active = false;
455 }
456 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
457 }
458
459 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
460 {
461 unsigned long flags;
462
463 spin_lock_irqsave(&cmd->t_state_lock, flags);
464 /*
465 * Determine if IOCTL context caller in requesting the stopping of this
466 * command for LUN shutdown purposes.
467 */
468 if (cmd->transport_state & CMD_T_LUN_STOP) {
469 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
470 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
471
472 cmd->transport_state &= ~CMD_T_ACTIVE;
473 if (remove_from_lists)
474 target_remove_from_state_list(cmd);
475 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
476
477 complete(&cmd->transport_lun_stop_comp);
478 return 1;
479 }
480
481 if (remove_from_lists) {
482 target_remove_from_state_list(cmd);
483
484 /*
485 * Clear struct se_cmd->se_lun before the handoff to FE.
486 */
487 cmd->se_lun = NULL;
488 }
489
490 /*
491 * Determine if frontend context caller is requesting the stopping of
492 * this command for frontend exceptions.
493 */
494 if (cmd->transport_state & CMD_T_STOP) {
495 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
496 __func__, __LINE__,
497 cmd->se_tfo->get_task_tag(cmd));
498
499 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
500
501 complete(&cmd->t_transport_stop_comp);
502 return 1;
503 }
504
505 cmd->transport_state &= ~CMD_T_ACTIVE;
506 if (remove_from_lists) {
507 /*
508 * Some fabric modules like tcm_loop can release
509 * their internally allocated I/O reference now and
510 * struct se_cmd now.
511 *
512 * Fabric modules are expected to return '1' here if the
513 * se_cmd being passed is released at this point,
514 * or zero if not being released.
515 */
516 if (cmd->se_tfo->check_stop_free != NULL) {
517 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
518 return cmd->se_tfo->check_stop_free(cmd);
519 }
520 }
521
522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
523 return 0;
524 }
525
526 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
527 {
528 return transport_cmd_check_stop(cmd, true);
529 }
530
531 static void transport_lun_remove_cmd(struct se_cmd *cmd)
532 {
533 struct se_lun *lun = cmd->se_lun;
534 unsigned long flags;
535
536 if (!lun)
537 return;
538
539 spin_lock_irqsave(&cmd->t_state_lock, flags);
540 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
541 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
542 target_remove_from_state_list(cmd);
543 }
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
547 if (!list_empty(&cmd->se_lun_node))
548 list_del_init(&cmd->se_lun_node);
549 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
550 }
551
552 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
553 {
554 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
555 transport_lun_remove_cmd(cmd);
556
557 if (transport_cmd_check_stop_to_fabric(cmd))
558 return;
559 if (remove)
560 transport_put_cmd(cmd);
561 }
562
563 static void target_complete_failure_work(struct work_struct *work)
564 {
565 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
566
567 transport_generic_request_failure(cmd);
568 }
569
570 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
571 {
572 struct se_device *dev = cmd->se_dev;
573 int success = scsi_status == GOOD;
574 unsigned long flags;
575
576 cmd->scsi_status = scsi_status;
577
578
579 spin_lock_irqsave(&cmd->t_state_lock, flags);
580 cmd->transport_state &= ~CMD_T_BUSY;
581
582 if (dev && dev->transport->transport_complete) {
583 if (dev->transport->transport_complete(cmd,
584 cmd->t_data_sg) != 0) {
585 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
586 success = 1;
587 }
588 }
589
590 /*
591 * See if we are waiting to complete for an exception condition.
592 */
593 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
594 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595 complete(&cmd->task_stop_comp);
596 return;
597 }
598
599 if (!success)
600 cmd->transport_state |= CMD_T_FAILED;
601
602 /*
603 * Check for case where an explict ABORT_TASK has been received
604 * and transport_wait_for_tasks() will be waiting for completion..
605 */
606 if (cmd->transport_state & CMD_T_ABORTED &&
607 cmd->transport_state & CMD_T_STOP) {
608 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
609 complete(&cmd->t_transport_stop_comp);
610 return;
611 } else if (cmd->transport_state & CMD_T_FAILED) {
612 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
613 INIT_WORK(&cmd->work, target_complete_failure_work);
614 } else {
615 INIT_WORK(&cmd->work, target_complete_ok_work);
616 }
617
618 cmd->t_state = TRANSPORT_COMPLETE;
619 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
620 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
621
622 queue_work(target_completion_wq, &cmd->work);
623 }
624 EXPORT_SYMBOL(target_complete_cmd);
625
626 static void target_add_to_state_list(struct se_cmd *cmd)
627 {
628 struct se_device *dev = cmd->se_dev;
629 unsigned long flags;
630
631 spin_lock_irqsave(&dev->execute_task_lock, flags);
632 if (!cmd->state_active) {
633 list_add_tail(&cmd->state_list, &dev->state_list);
634 cmd->state_active = true;
635 }
636 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
637 }
638
639 /*
640 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
641 */
642 static void transport_write_pending_qf(struct se_cmd *cmd);
643 static void transport_complete_qf(struct se_cmd *cmd);
644
645 static void target_qf_do_work(struct work_struct *work)
646 {
647 struct se_device *dev = container_of(work, struct se_device,
648 qf_work_queue);
649 LIST_HEAD(qf_cmd_list);
650 struct se_cmd *cmd, *cmd_tmp;
651
652 spin_lock_irq(&dev->qf_cmd_lock);
653 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
654 spin_unlock_irq(&dev->qf_cmd_lock);
655
656 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
657 list_del(&cmd->se_qf_node);
658 atomic_dec(&dev->dev_qf_count);
659 smp_mb__after_atomic_dec();
660
661 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
662 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
663 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
664 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
665 : "UNKNOWN");
666
667 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
668 transport_write_pending_qf(cmd);
669 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
670 transport_complete_qf(cmd);
671 }
672 }
673
674 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
675 {
676 switch (cmd->data_direction) {
677 case DMA_NONE:
678 return "NONE";
679 case DMA_FROM_DEVICE:
680 return "READ";
681 case DMA_TO_DEVICE:
682 return "WRITE";
683 case DMA_BIDIRECTIONAL:
684 return "BIDI";
685 default:
686 break;
687 }
688
689 return "UNKNOWN";
690 }
691
692 void transport_dump_dev_state(
693 struct se_device *dev,
694 char *b,
695 int *bl)
696 {
697 *bl += sprintf(b + *bl, "Status: ");
698 switch (dev->dev_status) {
699 case TRANSPORT_DEVICE_ACTIVATED:
700 *bl += sprintf(b + *bl, "ACTIVATED");
701 break;
702 case TRANSPORT_DEVICE_DEACTIVATED:
703 *bl += sprintf(b + *bl, "DEACTIVATED");
704 break;
705 case TRANSPORT_DEVICE_SHUTDOWN:
706 *bl += sprintf(b + *bl, "SHUTDOWN");
707 break;
708 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
709 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
710 *bl += sprintf(b + *bl, "OFFLINE");
711 break;
712 default:
713 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
714 break;
715 }
716
717 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
718 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
719 dev->se_sub_dev->se_dev_attrib.block_size,
720 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
721 *bl += sprintf(b + *bl, " ");
722 }
723
724 void transport_dump_vpd_proto_id(
725 struct t10_vpd *vpd,
726 unsigned char *p_buf,
727 int p_buf_len)
728 {
729 unsigned char buf[VPD_TMP_BUF_SIZE];
730 int len;
731
732 memset(buf, 0, VPD_TMP_BUF_SIZE);
733 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
734
735 switch (vpd->protocol_identifier) {
736 case 0x00:
737 sprintf(buf+len, "Fibre Channel\n");
738 break;
739 case 0x10:
740 sprintf(buf+len, "Parallel SCSI\n");
741 break;
742 case 0x20:
743 sprintf(buf+len, "SSA\n");
744 break;
745 case 0x30:
746 sprintf(buf+len, "IEEE 1394\n");
747 break;
748 case 0x40:
749 sprintf(buf+len, "SCSI Remote Direct Memory Access"
750 " Protocol\n");
751 break;
752 case 0x50:
753 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
754 break;
755 case 0x60:
756 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
757 break;
758 case 0x70:
759 sprintf(buf+len, "Automation/Drive Interface Transport"
760 " Protocol\n");
761 break;
762 case 0x80:
763 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
764 break;
765 default:
766 sprintf(buf+len, "Unknown 0x%02x\n",
767 vpd->protocol_identifier);
768 break;
769 }
770
771 if (p_buf)
772 strncpy(p_buf, buf, p_buf_len);
773 else
774 pr_debug("%s", buf);
775 }
776
777 void
778 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
779 {
780 /*
781 * Check if the Protocol Identifier Valid (PIV) bit is set..
782 *
783 * from spc3r23.pdf section 7.5.1
784 */
785 if (page_83[1] & 0x80) {
786 vpd->protocol_identifier = (page_83[0] & 0xf0);
787 vpd->protocol_identifier_set = 1;
788 transport_dump_vpd_proto_id(vpd, NULL, 0);
789 }
790 }
791 EXPORT_SYMBOL(transport_set_vpd_proto_id);
792
793 int transport_dump_vpd_assoc(
794 struct t10_vpd *vpd,
795 unsigned char *p_buf,
796 int p_buf_len)
797 {
798 unsigned char buf[VPD_TMP_BUF_SIZE];
799 int ret = 0;
800 int len;
801
802 memset(buf, 0, VPD_TMP_BUF_SIZE);
803 len = sprintf(buf, "T10 VPD Identifier Association: ");
804
805 switch (vpd->association) {
806 case 0x00:
807 sprintf(buf+len, "addressed logical unit\n");
808 break;
809 case 0x10:
810 sprintf(buf+len, "target port\n");
811 break;
812 case 0x20:
813 sprintf(buf+len, "SCSI target device\n");
814 break;
815 default:
816 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
817 ret = -EINVAL;
818 break;
819 }
820
821 if (p_buf)
822 strncpy(p_buf, buf, p_buf_len);
823 else
824 pr_debug("%s", buf);
825
826 return ret;
827 }
828
829 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
830 {
831 /*
832 * The VPD identification association..
833 *
834 * from spc3r23.pdf Section 7.6.3.1 Table 297
835 */
836 vpd->association = (page_83[1] & 0x30);
837 return transport_dump_vpd_assoc(vpd, NULL, 0);
838 }
839 EXPORT_SYMBOL(transport_set_vpd_assoc);
840
841 int transport_dump_vpd_ident_type(
842 struct t10_vpd *vpd,
843 unsigned char *p_buf,
844 int p_buf_len)
845 {
846 unsigned char buf[VPD_TMP_BUF_SIZE];
847 int ret = 0;
848 int len;
849
850 memset(buf, 0, VPD_TMP_BUF_SIZE);
851 len = sprintf(buf, "T10 VPD Identifier Type: ");
852
853 switch (vpd->device_identifier_type) {
854 case 0x00:
855 sprintf(buf+len, "Vendor specific\n");
856 break;
857 case 0x01:
858 sprintf(buf+len, "T10 Vendor ID based\n");
859 break;
860 case 0x02:
861 sprintf(buf+len, "EUI-64 based\n");
862 break;
863 case 0x03:
864 sprintf(buf+len, "NAA\n");
865 break;
866 case 0x04:
867 sprintf(buf+len, "Relative target port identifier\n");
868 break;
869 case 0x08:
870 sprintf(buf+len, "SCSI name string\n");
871 break;
872 default:
873 sprintf(buf+len, "Unsupported: 0x%02x\n",
874 vpd->device_identifier_type);
875 ret = -EINVAL;
876 break;
877 }
878
879 if (p_buf) {
880 if (p_buf_len < strlen(buf)+1)
881 return -EINVAL;
882 strncpy(p_buf, buf, p_buf_len);
883 } else {
884 pr_debug("%s", buf);
885 }
886
887 return ret;
888 }
889
890 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
891 {
892 /*
893 * The VPD identifier type..
894 *
895 * from spc3r23.pdf Section 7.6.3.1 Table 298
896 */
897 vpd->device_identifier_type = (page_83[1] & 0x0f);
898 return transport_dump_vpd_ident_type(vpd, NULL, 0);
899 }
900 EXPORT_SYMBOL(transport_set_vpd_ident_type);
901
902 int transport_dump_vpd_ident(
903 struct t10_vpd *vpd,
904 unsigned char *p_buf,
905 int p_buf_len)
906 {
907 unsigned char buf[VPD_TMP_BUF_SIZE];
908 int ret = 0;
909
910 memset(buf, 0, VPD_TMP_BUF_SIZE);
911
912 switch (vpd->device_identifier_code_set) {
913 case 0x01: /* Binary */
914 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
915 &vpd->device_identifier[0]);
916 break;
917 case 0x02: /* ASCII */
918 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
919 &vpd->device_identifier[0]);
920 break;
921 case 0x03: /* UTF-8 */
922 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
923 &vpd->device_identifier[0]);
924 break;
925 default:
926 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
927 " 0x%02x", vpd->device_identifier_code_set);
928 ret = -EINVAL;
929 break;
930 }
931
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
936
937 return ret;
938 }
939
940 int
941 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
942 {
943 static const char hex_str[] = "0123456789abcdef";
944 int j = 0, i = 4; /* offset to start of the identifer */
945
946 /*
947 * The VPD Code Set (encoding)
948 *
949 * from spc3r23.pdf Section 7.6.3.1 Table 296
950 */
951 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
952 switch (vpd->device_identifier_code_set) {
953 case 0x01: /* Binary */
954 vpd->device_identifier[j++] =
955 hex_str[vpd->device_identifier_type];
956 while (i < (4 + page_83[3])) {
957 vpd->device_identifier[j++] =
958 hex_str[(page_83[i] & 0xf0) >> 4];
959 vpd->device_identifier[j++] =
960 hex_str[page_83[i] & 0x0f];
961 i++;
962 }
963 break;
964 case 0x02: /* ASCII */
965 case 0x03: /* UTF-8 */
966 while (i < (4 + page_83[3]))
967 vpd->device_identifier[j++] = page_83[i++];
968 break;
969 default:
970 break;
971 }
972
973 return transport_dump_vpd_ident(vpd, NULL, 0);
974 }
975 EXPORT_SYMBOL(transport_set_vpd_ident);
976
977 static void core_setup_task_attr_emulation(struct se_device *dev)
978 {
979 /*
980 * If this device is from Target_Core_Mod/pSCSI, disable the
981 * SAM Task Attribute emulation.
982 *
983 * This is currently not available in upsream Linux/SCSI Target
984 * mode code, and is assumed to be disabled while using TCM/pSCSI.
985 */
986 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
987 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
988 return;
989 }
990
991 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
992 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
993 " device\n", dev->transport->name,
994 dev->transport->get_device_rev(dev));
995 }
996
997 static void scsi_dump_inquiry(struct se_device *dev)
998 {
999 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1000 char buf[17];
1001 int i, device_type;
1002 /*
1003 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1004 */
1005 for (i = 0; i < 8; i++)
1006 if (wwn->vendor[i] >= 0x20)
1007 buf[i] = wwn->vendor[i];
1008 else
1009 buf[i] = ' ';
1010 buf[i] = '\0';
1011 pr_debug(" Vendor: %s\n", buf);
1012
1013 for (i = 0; i < 16; i++)
1014 if (wwn->model[i] >= 0x20)
1015 buf[i] = wwn->model[i];
1016 else
1017 buf[i] = ' ';
1018 buf[i] = '\0';
1019 pr_debug(" Model: %s\n", buf);
1020
1021 for (i = 0; i < 4; i++)
1022 if (wwn->revision[i] >= 0x20)
1023 buf[i] = wwn->revision[i];
1024 else
1025 buf[i] = ' ';
1026 buf[i] = '\0';
1027 pr_debug(" Revision: %s\n", buf);
1028
1029 device_type = dev->transport->get_device_type(dev);
1030 pr_debug(" Type: %s ", scsi_device_type(device_type));
1031 pr_debug(" ANSI SCSI revision: %02x\n",
1032 dev->transport->get_device_rev(dev));
1033 }
1034
1035 struct se_device *transport_add_device_to_core_hba(
1036 struct se_hba *hba,
1037 struct se_subsystem_api *transport,
1038 struct se_subsystem_dev *se_dev,
1039 u32 device_flags,
1040 void *transport_dev,
1041 struct se_dev_limits *dev_limits,
1042 const char *inquiry_prod,
1043 const char *inquiry_rev)
1044 {
1045 int force_pt;
1046 struct se_device *dev;
1047
1048 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1049 if (!dev) {
1050 pr_err("Unable to allocate memory for se_dev_t\n");
1051 return NULL;
1052 }
1053
1054 dev->dev_flags = device_flags;
1055 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1056 dev->dev_ptr = transport_dev;
1057 dev->se_hba = hba;
1058 dev->se_sub_dev = se_dev;
1059 dev->transport = transport;
1060 INIT_LIST_HEAD(&dev->dev_list);
1061 INIT_LIST_HEAD(&dev->dev_sep_list);
1062 INIT_LIST_HEAD(&dev->dev_tmr_list);
1063 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1064 INIT_LIST_HEAD(&dev->state_list);
1065 INIT_LIST_HEAD(&dev->qf_cmd_list);
1066 spin_lock_init(&dev->execute_task_lock);
1067 spin_lock_init(&dev->delayed_cmd_lock);
1068 spin_lock_init(&dev->dev_reservation_lock);
1069 spin_lock_init(&dev->dev_status_lock);
1070 spin_lock_init(&dev->se_port_lock);
1071 spin_lock_init(&dev->se_tmr_lock);
1072 spin_lock_init(&dev->qf_cmd_lock);
1073 atomic_set(&dev->dev_ordered_id, 0);
1074
1075 se_dev_set_default_attribs(dev, dev_limits);
1076
1077 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1078 dev->creation_time = get_jiffies_64();
1079 spin_lock_init(&dev->stats_lock);
1080
1081 spin_lock(&hba->device_lock);
1082 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1083 hba->dev_count++;
1084 spin_unlock(&hba->device_lock);
1085 /*
1086 * Setup the SAM Task Attribute emulation for struct se_device
1087 */
1088 core_setup_task_attr_emulation(dev);
1089 /*
1090 * Force PR and ALUA passthrough emulation with internal object use.
1091 */
1092 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1093 /*
1094 * Setup the Reservations infrastructure for struct se_device
1095 */
1096 core_setup_reservations(dev, force_pt);
1097 /*
1098 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1099 */
1100 if (core_setup_alua(dev, force_pt) < 0)
1101 goto err_dev_list;
1102
1103 /*
1104 * Startup the struct se_device processing thread
1105 */
1106 dev->tmr_wq = alloc_workqueue("tmr-%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 1,
1107 dev->transport->name);
1108 if (!dev->tmr_wq) {
1109 pr_err("Unable to create tmr workqueue for %s\n",
1110 dev->transport->name);
1111 goto err_dev_list;
1112 }
1113 /*
1114 * Setup work_queue for QUEUE_FULL
1115 */
1116 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1117 /*
1118 * Preload the initial INQUIRY const values if we are doing
1119 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1120 * passthrough because this is being provided by the backend LLD.
1121 * This is required so that transport_get_inquiry() copies these
1122 * originals once back into DEV_T10_WWN(dev) for the virtual device
1123 * setup.
1124 */
1125 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1126 if (!inquiry_prod || !inquiry_rev) {
1127 pr_err("All non TCM/pSCSI plugins require"
1128 " INQUIRY consts\n");
1129 goto err_wq;
1130 }
1131
1132 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1133 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1134 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1135 }
1136 scsi_dump_inquiry(dev);
1137
1138 return dev;
1139
1140 err_wq:
1141 destroy_workqueue(dev->tmr_wq);
1142 err_dev_list:
1143 spin_lock(&hba->device_lock);
1144 list_del(&dev->dev_list);
1145 hba->dev_count--;
1146 spin_unlock(&hba->device_lock);
1147
1148 se_release_vpd_for_dev(dev);
1149
1150 kfree(dev);
1151
1152 return NULL;
1153 }
1154 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1155
1156 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1157 {
1158 struct se_device *dev = cmd->se_dev;
1159
1160 if (cmd->unknown_data_length) {
1161 cmd->data_length = size;
1162 } else if (size != cmd->data_length) {
1163 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1164 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1165 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1166 cmd->data_length, size, cmd->t_task_cdb[0]);
1167
1168 if (cmd->data_direction == DMA_TO_DEVICE) {
1169 pr_err("Rejecting underflow/overflow"
1170 " WRITE data\n");
1171 goto out_invalid_cdb_field;
1172 }
1173 /*
1174 * Reject READ_* or WRITE_* with overflow/underflow for
1175 * type SCF_SCSI_DATA_CDB.
1176 */
1177 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) {
1178 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1179 " CDB on non 512-byte sector setup subsystem"
1180 " plugin: %s\n", dev->transport->name);
1181 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1182 goto out_invalid_cdb_field;
1183 }
1184 /*
1185 * For the overflow case keep the existing fabric provided
1186 * ->data_length. Otherwise for the underflow case, reset
1187 * ->data_length to the smaller SCSI expected data transfer
1188 * length.
1189 */
1190 if (size > cmd->data_length) {
1191 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1192 cmd->residual_count = (size - cmd->data_length);
1193 } else {
1194 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1195 cmd->residual_count = (cmd->data_length - size);
1196 cmd->data_length = size;
1197 }
1198 }
1199
1200 return 0;
1201
1202 out_invalid_cdb_field:
1203 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1204 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1205 return -EINVAL;
1206 }
1207
1208 /*
1209 * Used by fabric modules containing a local struct se_cmd within their
1210 * fabric dependent per I/O descriptor.
1211 */
1212 void transport_init_se_cmd(
1213 struct se_cmd *cmd,
1214 struct target_core_fabric_ops *tfo,
1215 struct se_session *se_sess,
1216 u32 data_length,
1217 int data_direction,
1218 int task_attr,
1219 unsigned char *sense_buffer)
1220 {
1221 INIT_LIST_HEAD(&cmd->se_lun_node);
1222 INIT_LIST_HEAD(&cmd->se_delayed_node);
1223 INIT_LIST_HEAD(&cmd->se_qf_node);
1224 INIT_LIST_HEAD(&cmd->se_cmd_list);
1225 INIT_LIST_HEAD(&cmd->state_list);
1226 init_completion(&cmd->transport_lun_fe_stop_comp);
1227 init_completion(&cmd->transport_lun_stop_comp);
1228 init_completion(&cmd->t_transport_stop_comp);
1229 init_completion(&cmd->cmd_wait_comp);
1230 init_completion(&cmd->task_stop_comp);
1231 spin_lock_init(&cmd->t_state_lock);
1232 cmd->transport_state = CMD_T_DEV_ACTIVE;
1233
1234 cmd->se_tfo = tfo;
1235 cmd->se_sess = se_sess;
1236 cmd->data_length = data_length;
1237 cmd->data_direction = data_direction;
1238 cmd->sam_task_attr = task_attr;
1239 cmd->sense_buffer = sense_buffer;
1240
1241 cmd->state_active = false;
1242 }
1243 EXPORT_SYMBOL(transport_init_se_cmd);
1244
1245 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1246 {
1247 /*
1248 * Check if SAM Task Attribute emulation is enabled for this
1249 * struct se_device storage object
1250 */
1251 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1252 return 0;
1253
1254 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1255 pr_debug("SAM Task Attribute ACA"
1256 " emulation is not supported\n");
1257 return -EINVAL;
1258 }
1259 /*
1260 * Used to determine when ORDERED commands should go from
1261 * Dormant to Active status.
1262 */
1263 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1264 smp_mb__after_atomic_inc();
1265 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1266 cmd->se_ordered_id, cmd->sam_task_attr,
1267 cmd->se_dev->transport->name);
1268 return 0;
1269 }
1270
1271 /* target_setup_cmd_from_cdb():
1272 *
1273 * Called from fabric RX Thread.
1274 */
1275 int target_setup_cmd_from_cdb(
1276 struct se_cmd *cmd,
1277 unsigned char *cdb)
1278 {
1279 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev;
1280 u32 pr_reg_type = 0;
1281 u8 alua_ascq = 0;
1282 unsigned long flags;
1283 int ret;
1284
1285 /*
1286 * Ensure that the received CDB is less than the max (252 + 8) bytes
1287 * for VARIABLE_LENGTH_CMD
1288 */
1289 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1290 pr_err("Received SCSI CDB with command_size: %d that"
1291 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1292 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1293 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1294 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1295 return -EINVAL;
1296 }
1297 /*
1298 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1299 * allocate the additional extended CDB buffer now.. Otherwise
1300 * setup the pointer from __t_task_cdb to t_task_cdb.
1301 */
1302 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1303 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1304 GFP_KERNEL);
1305 if (!cmd->t_task_cdb) {
1306 pr_err("Unable to allocate cmd->t_task_cdb"
1307 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1308 scsi_command_size(cdb),
1309 (unsigned long)sizeof(cmd->__t_task_cdb));
1310 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1311 cmd->scsi_sense_reason =
1312 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1313 return -ENOMEM;
1314 }
1315 } else
1316 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1317 /*
1318 * Copy the original CDB into cmd->
1319 */
1320 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1321
1322 /*
1323 * Check for an existing UNIT ATTENTION condition
1324 */
1325 if (core_scsi3_ua_check(cmd, cdb) < 0) {
1326 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1327 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
1328 return -EINVAL;
1329 }
1330
1331 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
1332 if (ret != 0) {
1333 /*
1334 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
1335 * The ALUA additional sense code qualifier (ASCQ) is determined
1336 * by the ALUA primary or secondary access state..
1337 */
1338 if (ret > 0) {
1339 pr_debug("[%s]: ALUA TG Port not available, "
1340 "SenseKey: NOT_READY, ASC/ASCQ: "
1341 "0x04/0x%02x\n",
1342 cmd->se_tfo->get_fabric_name(), alua_ascq);
1343
1344 transport_set_sense_codes(cmd, 0x04, alua_ascq);
1345 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1346 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
1347 return -EINVAL;
1348 }
1349 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1350 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1351 return -EINVAL;
1352 }
1353
1354 /*
1355 * Check status for SPC-3 Persistent Reservations
1356 */
1357 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) {
1358 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
1359 cmd, cdb, pr_reg_type) != 0) {
1360 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1361 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
1362 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1363 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
1364 return -EBUSY;
1365 }
1366 /*
1367 * This means the CDB is allowed for the SCSI Initiator port
1368 * when said port is *NOT* holding the legacy SPC-2 or
1369 * SPC-3 Persistent Reservation.
1370 */
1371 }
1372
1373 ret = cmd->se_dev->transport->parse_cdb(cmd);
1374 if (ret < 0)
1375 return ret;
1376
1377 spin_lock_irqsave(&cmd->t_state_lock, flags);
1378 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1379 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1380
1381 /*
1382 * Check for SAM Task Attribute Emulation
1383 */
1384 if (transport_check_alloc_task_attr(cmd) < 0) {
1385 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1386 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1387 return -EINVAL;
1388 }
1389 spin_lock(&cmd->se_lun->lun_sep_lock);
1390 if (cmd->se_lun->lun_sep)
1391 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1392 spin_unlock(&cmd->se_lun->lun_sep_lock);
1393 return 0;
1394 }
1395 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1396
1397 /*
1398 * Used by fabric module frontends to queue tasks directly.
1399 * Many only be used from process context only
1400 */
1401 int transport_handle_cdb_direct(
1402 struct se_cmd *cmd)
1403 {
1404 int ret;
1405
1406 if (!cmd->se_lun) {
1407 dump_stack();
1408 pr_err("cmd->se_lun is NULL\n");
1409 return -EINVAL;
1410 }
1411 if (in_interrupt()) {
1412 dump_stack();
1413 pr_err("transport_generic_handle_cdb cannot be called"
1414 " from interrupt context\n");
1415 return -EINVAL;
1416 }
1417 /*
1418 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1419 * outstanding descriptors are handled correctly during shutdown via
1420 * transport_wait_for_tasks()
1421 *
1422 * Also, we don't take cmd->t_state_lock here as we only expect
1423 * this to be called for initial descriptor submission.
1424 */
1425 cmd->t_state = TRANSPORT_NEW_CMD;
1426 cmd->transport_state |= CMD_T_ACTIVE;
1427
1428 /*
1429 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1430 * so follow TRANSPORT_NEW_CMD processing thread context usage
1431 * and call transport_generic_request_failure() if necessary..
1432 */
1433 ret = transport_generic_new_cmd(cmd);
1434 if (ret < 0)
1435 transport_generic_request_failure(cmd);
1436
1437 return 0;
1438 }
1439 EXPORT_SYMBOL(transport_handle_cdb_direct);
1440
1441 /**
1442 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1443 *
1444 * @se_cmd: command descriptor to submit
1445 * @se_sess: associated se_sess for endpoint
1446 * @cdb: pointer to SCSI CDB
1447 * @sense: pointer to SCSI sense buffer
1448 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1449 * @data_length: fabric expected data transfer length
1450 * @task_addr: SAM task attribute
1451 * @data_dir: DMA data direction
1452 * @flags: flags for command submission from target_sc_flags_tables
1453 *
1454 * Returns non zero to signal active I/O shutdown failure. All other
1455 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1456 * but still return zero here.
1457 *
1458 * This may only be called from process context, and also currently
1459 * assumes internal allocation of fabric payload buffer by target-core.
1460 **/
1461 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1462 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1463 u32 data_length, int task_attr, int data_dir, int flags)
1464 {
1465 struct se_portal_group *se_tpg;
1466 int rc;
1467
1468 se_tpg = se_sess->se_tpg;
1469 BUG_ON(!se_tpg);
1470 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1471 BUG_ON(in_interrupt());
1472 /*
1473 * Initialize se_cmd for target operation. From this point
1474 * exceptions are handled by sending exception status via
1475 * target_core_fabric_ops->queue_status() callback
1476 */
1477 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1478 data_length, data_dir, task_attr, sense);
1479 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1480 se_cmd->unknown_data_length = 1;
1481 /*
1482 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1483 * se_sess->sess_cmd_list. A second kref_get here is necessary
1484 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1485 * kref_put() to happen during fabric packet acknowledgement.
1486 */
1487 rc = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1488 if (rc)
1489 return rc;
1490 /*
1491 * Signal bidirectional data payloads to target-core
1492 */
1493 if (flags & TARGET_SCF_BIDI_OP)
1494 se_cmd->se_cmd_flags |= SCF_BIDI;
1495 /*
1496 * Locate se_lun pointer and attach it to struct se_cmd
1497 */
1498 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1499 transport_send_check_condition_and_sense(se_cmd,
1500 se_cmd->scsi_sense_reason, 0);
1501 target_put_sess_cmd(se_sess, se_cmd);
1502 return 0;
1503 }
1504
1505 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1506 if (rc != 0) {
1507 transport_generic_request_failure(se_cmd);
1508 return 0;
1509 }
1510
1511 /*
1512 * Check if we need to delay processing because of ALUA
1513 * Active/NonOptimized primary access state..
1514 */
1515 core_alua_check_nonop_delay(se_cmd);
1516
1517 transport_handle_cdb_direct(se_cmd);
1518 return 0;
1519 }
1520 EXPORT_SYMBOL(target_submit_cmd);
1521
1522 static void target_complete_tmr_failure(struct work_struct *work)
1523 {
1524 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1525
1526 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1527 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1528 transport_generic_free_cmd(se_cmd, 0);
1529 }
1530
1531 /**
1532 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1533 * for TMR CDBs
1534 *
1535 * @se_cmd: command descriptor to submit
1536 * @se_sess: associated se_sess for endpoint
1537 * @sense: pointer to SCSI sense buffer
1538 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1539 * @fabric_context: fabric context for TMR req
1540 * @tm_type: Type of TM request
1541 * @gfp: gfp type for caller
1542 * @tag: referenced task tag for TMR_ABORT_TASK
1543 * @flags: submit cmd flags
1544 *
1545 * Callable from all contexts.
1546 **/
1547
1548 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1549 unsigned char *sense, u32 unpacked_lun,
1550 void *fabric_tmr_ptr, unsigned char tm_type,
1551 gfp_t gfp, unsigned int tag, int flags)
1552 {
1553 struct se_portal_group *se_tpg;
1554 int ret;
1555
1556 se_tpg = se_sess->se_tpg;
1557 BUG_ON(!se_tpg);
1558
1559 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1560 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1561 /*
1562 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1563 * allocation failure.
1564 */
1565 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1566 if (ret < 0)
1567 return -ENOMEM;
1568
1569 if (tm_type == TMR_ABORT_TASK)
1570 se_cmd->se_tmr_req->ref_task_tag = tag;
1571
1572 /* See target_submit_cmd for commentary */
1573 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1574 if (ret) {
1575 core_tmr_release_req(se_cmd->se_tmr_req);
1576 return ret;
1577 }
1578
1579 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1580 if (ret) {
1581 /*
1582 * For callback during failure handling, push this work off
1583 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1584 */
1585 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1586 schedule_work(&se_cmd->work);
1587 return 0;
1588 }
1589 transport_generic_handle_tmr(se_cmd);
1590 return 0;
1591 }
1592 EXPORT_SYMBOL(target_submit_tmr);
1593
1594 /*
1595 * If the cmd is active, request it to be stopped and sleep until it
1596 * has completed.
1597 */
1598 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1599 {
1600 bool was_active = false;
1601
1602 if (cmd->transport_state & CMD_T_BUSY) {
1603 cmd->transport_state |= CMD_T_REQUEST_STOP;
1604 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1605
1606 pr_debug("cmd %p waiting to complete\n", cmd);
1607 wait_for_completion(&cmd->task_stop_comp);
1608 pr_debug("cmd %p stopped successfully\n", cmd);
1609
1610 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1611 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1612 cmd->transport_state &= ~CMD_T_BUSY;
1613 was_active = true;
1614 }
1615
1616 return was_active;
1617 }
1618
1619 /*
1620 * Handle SAM-esque emulation for generic transport request failures.
1621 */
1622 void transport_generic_request_failure(struct se_cmd *cmd)
1623 {
1624 int ret = 0;
1625
1626 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1627 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1628 cmd->t_task_cdb[0]);
1629 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1630 cmd->se_tfo->get_cmd_state(cmd),
1631 cmd->t_state, cmd->scsi_sense_reason);
1632 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1633 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1634 (cmd->transport_state & CMD_T_STOP) != 0,
1635 (cmd->transport_state & CMD_T_SENT) != 0);
1636
1637 /*
1638 * For SAM Task Attribute emulation for failed struct se_cmd
1639 */
1640 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1641 transport_complete_task_attr(cmd);
1642
1643 switch (cmd->scsi_sense_reason) {
1644 case TCM_NON_EXISTENT_LUN:
1645 case TCM_UNSUPPORTED_SCSI_OPCODE:
1646 case TCM_INVALID_CDB_FIELD:
1647 case TCM_INVALID_PARAMETER_LIST:
1648 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1649 case TCM_UNKNOWN_MODE_PAGE:
1650 case TCM_WRITE_PROTECTED:
1651 case TCM_ADDRESS_OUT_OF_RANGE:
1652 case TCM_CHECK_CONDITION_ABORT_CMD:
1653 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1654 case TCM_CHECK_CONDITION_NOT_READY:
1655 break;
1656 case TCM_RESERVATION_CONFLICT:
1657 /*
1658 * No SENSE Data payload for this case, set SCSI Status
1659 * and queue the response to $FABRIC_MOD.
1660 *
1661 * Uses linux/include/scsi/scsi.h SAM status codes defs
1662 */
1663 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1664 /*
1665 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1666 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1667 * CONFLICT STATUS.
1668 *
1669 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1670 */
1671 if (cmd->se_sess &&
1672 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1673 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1674 cmd->orig_fe_lun, 0x2C,
1675 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1676
1677 ret = cmd->se_tfo->queue_status(cmd);
1678 if (ret == -EAGAIN || ret == -ENOMEM)
1679 goto queue_full;
1680 goto check_stop;
1681 default:
1682 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1683 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1684 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1685 break;
1686 }
1687
1688 ret = transport_send_check_condition_and_sense(cmd,
1689 cmd->scsi_sense_reason, 0);
1690 if (ret == -EAGAIN || ret == -ENOMEM)
1691 goto queue_full;
1692
1693 check_stop:
1694 transport_lun_remove_cmd(cmd);
1695 if (!transport_cmd_check_stop_to_fabric(cmd))
1696 ;
1697 return;
1698
1699 queue_full:
1700 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1701 transport_handle_queue_full(cmd, cmd->se_dev);
1702 }
1703 EXPORT_SYMBOL(transport_generic_request_failure);
1704
1705 static void __target_execute_cmd(struct se_cmd *cmd)
1706 {
1707 int error = 0;
1708
1709 spin_lock_irq(&cmd->t_state_lock);
1710 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1711 spin_unlock_irq(&cmd->t_state_lock);
1712
1713 if (cmd->execute_cmd)
1714 error = cmd->execute_cmd(cmd);
1715
1716 if (error) {
1717 spin_lock_irq(&cmd->t_state_lock);
1718 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1719 spin_unlock_irq(&cmd->t_state_lock);
1720
1721 transport_generic_request_failure(cmd);
1722 }
1723 }
1724
1725 void target_execute_cmd(struct se_cmd *cmd)
1726 {
1727 struct se_device *dev = cmd->se_dev;
1728
1729 /*
1730 * If the received CDB has aleady been aborted stop processing it here.
1731 */
1732 if (transport_check_aborted_status(cmd, 1))
1733 return;
1734
1735 /*
1736 * Determine if IOCTL context caller in requesting the stopping of this
1737 * command for LUN shutdown purposes.
1738 */
1739 spin_lock_irq(&cmd->t_state_lock);
1740 if (cmd->transport_state & CMD_T_LUN_STOP) {
1741 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1742 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1743
1744 cmd->transport_state &= ~CMD_T_ACTIVE;
1745 spin_unlock_irq(&cmd->t_state_lock);
1746 complete(&cmd->transport_lun_stop_comp);
1747 return;
1748 }
1749 /*
1750 * Determine if frontend context caller is requesting the stopping of
1751 * this command for frontend exceptions.
1752 */
1753 if (cmd->transport_state & CMD_T_STOP) {
1754 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1755 __func__, __LINE__,
1756 cmd->se_tfo->get_task_tag(cmd));
1757
1758 spin_unlock_irq(&cmd->t_state_lock);
1759 complete(&cmd->t_transport_stop_comp);
1760 return;
1761 }
1762
1763 cmd->t_state = TRANSPORT_PROCESSING;
1764 spin_unlock_irq(&cmd->t_state_lock);
1765
1766 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1767 goto execute;
1768
1769 /*
1770 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1771 * to allow the passed struct se_cmd list of tasks to the front of the list.
1772 */
1773 switch (cmd->sam_task_attr) {
1774 case MSG_HEAD_TAG:
1775 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1776 "se_ordered_id: %u\n",
1777 cmd->t_task_cdb[0], cmd->se_ordered_id);
1778 goto execute;
1779 case MSG_ORDERED_TAG:
1780 atomic_inc(&dev->dev_ordered_sync);
1781 smp_mb__after_atomic_inc();
1782
1783 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1784 " se_ordered_id: %u\n",
1785 cmd->t_task_cdb[0], cmd->se_ordered_id);
1786
1787 /*
1788 * Execute an ORDERED command if no other older commands
1789 * exist that need to be completed first.
1790 */
1791 if (!atomic_read(&dev->simple_cmds))
1792 goto execute;
1793 break;
1794 default:
1795 /*
1796 * For SIMPLE and UNTAGGED Task Attribute commands
1797 */
1798 atomic_inc(&dev->simple_cmds);
1799 smp_mb__after_atomic_inc();
1800 break;
1801 }
1802
1803 if (atomic_read(&dev->dev_ordered_sync) != 0) {
1804 spin_lock(&dev->delayed_cmd_lock);
1805 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1806 spin_unlock(&dev->delayed_cmd_lock);
1807
1808 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1809 " delayed CMD list, se_ordered_id: %u\n",
1810 cmd->t_task_cdb[0], cmd->sam_task_attr,
1811 cmd->se_ordered_id);
1812 return;
1813 }
1814
1815 execute:
1816 /*
1817 * Otherwise, no ORDERED task attributes exist..
1818 */
1819 __target_execute_cmd(cmd);
1820 }
1821 EXPORT_SYMBOL(target_execute_cmd);
1822
1823 /*
1824 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
1825 */
1826 static int transport_get_sense_data(struct se_cmd *cmd)
1827 {
1828 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
1829 struct se_device *dev = cmd->se_dev;
1830 unsigned long flags;
1831 u32 offset = 0;
1832
1833 WARN_ON(!cmd->se_lun);
1834
1835 if (!dev)
1836 return 0;
1837
1838 spin_lock_irqsave(&cmd->t_state_lock, flags);
1839 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
1840 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1841 return 0;
1842 }
1843
1844 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
1845 goto out;
1846
1847 if (!dev->transport->get_sense_buffer) {
1848 pr_err("dev->transport->get_sense_buffer is NULL\n");
1849 goto out;
1850 }
1851
1852 sense_buffer = dev->transport->get_sense_buffer(cmd);
1853 if (!sense_buffer) {
1854 pr_err("ITT 0x%08x cmd %p: Unable to locate"
1855 " sense buffer for task with sense\n",
1856 cmd->se_tfo->get_task_tag(cmd), cmd);
1857 goto out;
1858 }
1859
1860 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1861
1862 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
1863
1864 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
1865
1866 /* Automatically padded */
1867 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
1868
1869 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
1870 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
1871 return 0;
1872
1873 out:
1874 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1875 return -1;
1876 }
1877
1878 /*
1879 * Process all commands up to the last received ORDERED task attribute which
1880 * requires another blocking boundary
1881 */
1882 static void target_restart_delayed_cmds(struct se_device *dev)
1883 {
1884 for (;;) {
1885 struct se_cmd *cmd;
1886
1887 spin_lock(&dev->delayed_cmd_lock);
1888 if (list_empty(&dev->delayed_cmd_list)) {
1889 spin_unlock(&dev->delayed_cmd_lock);
1890 break;
1891 }
1892
1893 cmd = list_entry(dev->delayed_cmd_list.next,
1894 struct se_cmd, se_delayed_node);
1895 list_del(&cmd->se_delayed_node);
1896 spin_unlock(&dev->delayed_cmd_lock);
1897
1898 __target_execute_cmd(cmd);
1899
1900 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1901 break;
1902 }
1903 }
1904
1905 /*
1906 * Called from I/O completion to determine which dormant/delayed
1907 * and ordered cmds need to have their tasks added to the execution queue.
1908 */
1909 static void transport_complete_task_attr(struct se_cmd *cmd)
1910 {
1911 struct se_device *dev = cmd->se_dev;
1912
1913 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1914 atomic_dec(&dev->simple_cmds);
1915 smp_mb__after_atomic_dec();
1916 dev->dev_cur_ordered_id++;
1917 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1918 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1919 cmd->se_ordered_id);
1920 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1921 dev->dev_cur_ordered_id++;
1922 pr_debug("Incremented dev_cur_ordered_id: %u for"
1923 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1924 cmd->se_ordered_id);
1925 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1926 atomic_dec(&dev->dev_ordered_sync);
1927 smp_mb__after_atomic_dec();
1928
1929 dev->dev_cur_ordered_id++;
1930 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1931 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1932 }
1933
1934 target_restart_delayed_cmds(dev);
1935 }
1936
1937 static void transport_complete_qf(struct se_cmd *cmd)
1938 {
1939 int ret = 0;
1940
1941 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1942 transport_complete_task_attr(cmd);
1943
1944 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1945 ret = cmd->se_tfo->queue_status(cmd);
1946 if (ret)
1947 goto out;
1948 }
1949
1950 switch (cmd->data_direction) {
1951 case DMA_FROM_DEVICE:
1952 ret = cmd->se_tfo->queue_data_in(cmd);
1953 break;
1954 case DMA_TO_DEVICE:
1955 if (cmd->t_bidi_data_sg) {
1956 ret = cmd->se_tfo->queue_data_in(cmd);
1957 if (ret < 0)
1958 break;
1959 }
1960 /* Fall through for DMA_TO_DEVICE */
1961 case DMA_NONE:
1962 ret = cmd->se_tfo->queue_status(cmd);
1963 break;
1964 default:
1965 break;
1966 }
1967
1968 out:
1969 if (ret < 0) {
1970 transport_handle_queue_full(cmd, cmd->se_dev);
1971 return;
1972 }
1973 transport_lun_remove_cmd(cmd);
1974 transport_cmd_check_stop_to_fabric(cmd);
1975 }
1976
1977 static void transport_handle_queue_full(
1978 struct se_cmd *cmd,
1979 struct se_device *dev)
1980 {
1981 spin_lock_irq(&dev->qf_cmd_lock);
1982 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1983 atomic_inc(&dev->dev_qf_count);
1984 smp_mb__after_atomic_inc();
1985 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1986
1987 schedule_work(&cmd->se_dev->qf_work_queue);
1988 }
1989
1990 static void target_complete_ok_work(struct work_struct *work)
1991 {
1992 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1993 int reason = 0, ret;
1994
1995 /*
1996 * Check if we need to move delayed/dormant tasks from cmds on the
1997 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1998 * Attribute.
1999 */
2000 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2001 transport_complete_task_attr(cmd);
2002 /*
2003 * Check to schedule QUEUE_FULL work, or execute an existing
2004 * cmd->transport_qf_callback()
2005 */
2006 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2007 schedule_work(&cmd->se_dev->qf_work_queue);
2008
2009 /*
2010 * Check if we need to retrieve a sense buffer from
2011 * the struct se_cmd in question.
2012 */
2013 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2014 if (transport_get_sense_data(cmd) < 0)
2015 reason = TCM_NON_EXISTENT_LUN;
2016
2017 if (cmd->scsi_status) {
2018 ret = transport_send_check_condition_and_sense(
2019 cmd, reason, 1);
2020 if (ret == -EAGAIN || ret == -ENOMEM)
2021 goto queue_full;
2022
2023 transport_lun_remove_cmd(cmd);
2024 transport_cmd_check_stop_to_fabric(cmd);
2025 return;
2026 }
2027 }
2028 /*
2029 * Check for a callback, used by amongst other things
2030 * XDWRITE_READ_10 emulation.
2031 */
2032 if (cmd->transport_complete_callback)
2033 cmd->transport_complete_callback(cmd);
2034
2035 switch (cmd->data_direction) {
2036 case DMA_FROM_DEVICE:
2037 spin_lock(&cmd->se_lun->lun_sep_lock);
2038 if (cmd->se_lun->lun_sep) {
2039 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2040 cmd->data_length;
2041 }
2042 spin_unlock(&cmd->se_lun->lun_sep_lock);
2043
2044 ret = cmd->se_tfo->queue_data_in(cmd);
2045 if (ret == -EAGAIN || ret == -ENOMEM)
2046 goto queue_full;
2047 break;
2048 case DMA_TO_DEVICE:
2049 spin_lock(&cmd->se_lun->lun_sep_lock);
2050 if (cmd->se_lun->lun_sep) {
2051 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2052 cmd->data_length;
2053 }
2054 spin_unlock(&cmd->se_lun->lun_sep_lock);
2055 /*
2056 * Check if we need to send READ payload for BIDI-COMMAND
2057 */
2058 if (cmd->t_bidi_data_sg) {
2059 spin_lock(&cmd->se_lun->lun_sep_lock);
2060 if (cmd->se_lun->lun_sep) {
2061 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2062 cmd->data_length;
2063 }
2064 spin_unlock(&cmd->se_lun->lun_sep_lock);
2065 ret = cmd->se_tfo->queue_data_in(cmd);
2066 if (ret == -EAGAIN || ret == -ENOMEM)
2067 goto queue_full;
2068 break;
2069 }
2070 /* Fall through for DMA_TO_DEVICE */
2071 case DMA_NONE:
2072 ret = cmd->se_tfo->queue_status(cmd);
2073 if (ret == -EAGAIN || ret == -ENOMEM)
2074 goto queue_full;
2075 break;
2076 default:
2077 break;
2078 }
2079
2080 transport_lun_remove_cmd(cmd);
2081 transport_cmd_check_stop_to_fabric(cmd);
2082 return;
2083
2084 queue_full:
2085 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2086 " data_direction: %d\n", cmd, cmd->data_direction);
2087 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2088 transport_handle_queue_full(cmd, cmd->se_dev);
2089 }
2090
2091 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2092 {
2093 struct scatterlist *sg;
2094 int count;
2095
2096 for_each_sg(sgl, sg, nents, count)
2097 __free_page(sg_page(sg));
2098
2099 kfree(sgl);
2100 }
2101
2102 static inline void transport_free_pages(struct se_cmd *cmd)
2103 {
2104 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
2105 return;
2106
2107 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2108 cmd->t_data_sg = NULL;
2109 cmd->t_data_nents = 0;
2110
2111 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2112 cmd->t_bidi_data_sg = NULL;
2113 cmd->t_bidi_data_nents = 0;
2114 }
2115
2116 /**
2117 * transport_release_cmd - free a command
2118 * @cmd: command to free
2119 *
2120 * This routine unconditionally frees a command, and reference counting
2121 * or list removal must be done in the caller.
2122 */
2123 static void transport_release_cmd(struct se_cmd *cmd)
2124 {
2125 BUG_ON(!cmd->se_tfo);
2126
2127 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2128 core_tmr_release_req(cmd->se_tmr_req);
2129 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2130 kfree(cmd->t_task_cdb);
2131 /*
2132 * If this cmd has been setup with target_get_sess_cmd(), drop
2133 * the kref and call ->release_cmd() in kref callback.
2134 */
2135 if (cmd->check_release != 0) {
2136 target_put_sess_cmd(cmd->se_sess, cmd);
2137 return;
2138 }
2139 cmd->se_tfo->release_cmd(cmd);
2140 }
2141
2142 /**
2143 * transport_put_cmd - release a reference to a command
2144 * @cmd: command to release
2145 *
2146 * This routine releases our reference to the command and frees it if possible.
2147 */
2148 static void transport_put_cmd(struct se_cmd *cmd)
2149 {
2150 unsigned long flags;
2151
2152 spin_lock_irqsave(&cmd->t_state_lock, flags);
2153 if (atomic_read(&cmd->t_fe_count)) {
2154 if (!atomic_dec_and_test(&cmd->t_fe_count))
2155 goto out_busy;
2156 }
2157
2158 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
2159 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2160 target_remove_from_state_list(cmd);
2161 }
2162 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2163
2164 transport_free_pages(cmd);
2165 transport_release_cmd(cmd);
2166 return;
2167 out_busy:
2168 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2169 }
2170
2171 /*
2172 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
2173 * allocating in the core.
2174 * @cmd: Associated se_cmd descriptor
2175 * @mem: SGL style memory for TCM WRITE / READ
2176 * @sg_mem_num: Number of SGL elements
2177 * @mem_bidi_in: SGL style memory for TCM BIDI READ
2178 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
2179 *
2180 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
2181 * of parameters.
2182 */
2183 int transport_generic_map_mem_to_cmd(
2184 struct se_cmd *cmd,
2185 struct scatterlist *sgl,
2186 u32 sgl_count,
2187 struct scatterlist *sgl_bidi,
2188 u32 sgl_bidi_count)
2189 {
2190 if (!sgl || !sgl_count)
2191 return 0;
2192
2193 /*
2194 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
2195 * scatterlists already have been set to follow what the fabric
2196 * passes for the original expected data transfer length.
2197 */
2198 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
2199 pr_warn("Rejecting SCSI DATA overflow for fabric using"
2200 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
2201 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2202 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2203 return -EINVAL;
2204 }
2205
2206 cmd->t_data_sg = sgl;
2207 cmd->t_data_nents = sgl_count;
2208
2209 if (sgl_bidi && sgl_bidi_count) {
2210 cmd->t_bidi_data_sg = sgl_bidi;
2211 cmd->t_bidi_data_nents = sgl_bidi_count;
2212 }
2213 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
2214 return 0;
2215 }
2216 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
2217
2218 void *transport_kmap_data_sg(struct se_cmd *cmd)
2219 {
2220 struct scatterlist *sg = cmd->t_data_sg;
2221 struct page **pages;
2222 int i;
2223
2224 BUG_ON(!sg);
2225 /*
2226 * We need to take into account a possible offset here for fabrics like
2227 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2228 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2229 */
2230 if (!cmd->t_data_nents)
2231 return NULL;
2232 else if (cmd->t_data_nents == 1)
2233 return kmap(sg_page(sg)) + sg->offset;
2234
2235 /* >1 page. use vmap */
2236 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2237 if (!pages)
2238 return NULL;
2239
2240 /* convert sg[] to pages[] */
2241 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2242 pages[i] = sg_page(sg);
2243 }
2244
2245 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2246 kfree(pages);
2247 if (!cmd->t_data_vmap)
2248 return NULL;
2249
2250 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2251 }
2252 EXPORT_SYMBOL(transport_kmap_data_sg);
2253
2254 void transport_kunmap_data_sg(struct se_cmd *cmd)
2255 {
2256 if (!cmd->t_data_nents) {
2257 return;
2258 } else if (cmd->t_data_nents == 1) {
2259 kunmap(sg_page(cmd->t_data_sg));
2260 return;
2261 }
2262
2263 vunmap(cmd->t_data_vmap);
2264 cmd->t_data_vmap = NULL;
2265 }
2266 EXPORT_SYMBOL(transport_kunmap_data_sg);
2267
2268 static int
2269 transport_generic_get_mem(struct se_cmd *cmd)
2270 {
2271 u32 length = cmd->data_length;
2272 unsigned int nents;
2273 struct page *page;
2274 gfp_t zero_flag;
2275 int i = 0;
2276
2277 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2278 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2279 if (!cmd->t_data_sg)
2280 return -ENOMEM;
2281
2282 cmd->t_data_nents = nents;
2283 sg_init_table(cmd->t_data_sg, nents);
2284
2285 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2286
2287 while (length) {
2288 u32 page_len = min_t(u32, length, PAGE_SIZE);
2289 page = alloc_page(GFP_KERNEL | zero_flag);
2290 if (!page)
2291 goto out;
2292
2293 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2294 length -= page_len;
2295 i++;
2296 }
2297 return 0;
2298
2299 out:
2300 while (i > 0) {
2301 i--;
2302 __free_page(sg_page(&cmd->t_data_sg[i]));
2303 }
2304 kfree(cmd->t_data_sg);
2305 cmd->t_data_sg = NULL;
2306 return -ENOMEM;
2307 }
2308
2309 /*
2310 * Allocate any required resources to execute the command. For writes we
2311 * might not have the payload yet, so notify the fabric via a call to
2312 * ->write_pending instead. Otherwise place it on the execution queue.
2313 */
2314 int transport_generic_new_cmd(struct se_cmd *cmd)
2315 {
2316 int ret = 0;
2317
2318 /*
2319 * Determine is the TCM fabric module has already allocated physical
2320 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2321 * beforehand.
2322 */
2323 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2324 cmd->data_length) {
2325 ret = transport_generic_get_mem(cmd);
2326 if (ret < 0)
2327 goto out_fail;
2328 }
2329 /*
2330 * If this command doesn't have any payload and we don't have to call
2331 * into the fabric for data transfers, go ahead and complete it right
2332 * away.
2333 */
2334 if (!cmd->data_length) {
2335 spin_lock_irq(&cmd->t_state_lock);
2336 cmd->t_state = TRANSPORT_COMPLETE;
2337 cmd->transport_state |= CMD_T_ACTIVE;
2338 spin_unlock_irq(&cmd->t_state_lock);
2339
2340 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
2341 u8 ua_asc = 0, ua_ascq = 0;
2342
2343 core_scsi3_ua_clear_for_request_sense(cmd,
2344 &ua_asc, &ua_ascq);
2345 }
2346
2347 INIT_WORK(&cmd->work, target_complete_ok_work);
2348 queue_work(target_completion_wq, &cmd->work);
2349 return 0;
2350 }
2351
2352 atomic_inc(&cmd->t_fe_count);
2353
2354 /*
2355 * If this command is not a write we can execute it right here,
2356 * for write buffers we need to notify the fabric driver first
2357 * and let it call back once the write buffers are ready.
2358 */
2359 target_add_to_state_list(cmd);
2360 if (cmd->data_direction != DMA_TO_DEVICE) {
2361 target_execute_cmd(cmd);
2362 return 0;
2363 }
2364
2365 spin_lock_irq(&cmd->t_state_lock);
2366 cmd->t_state = TRANSPORT_WRITE_PENDING;
2367 spin_unlock_irq(&cmd->t_state_lock);
2368
2369 transport_cmd_check_stop(cmd, false);
2370
2371 ret = cmd->se_tfo->write_pending(cmd);
2372 if (ret == -EAGAIN || ret == -ENOMEM)
2373 goto queue_full;
2374
2375 if (ret < 0)
2376 return ret;
2377 return 1;
2378
2379 out_fail:
2380 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2381 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2382 return -EINVAL;
2383 queue_full:
2384 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2385 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2386 transport_handle_queue_full(cmd, cmd->se_dev);
2387 return 0;
2388 }
2389 EXPORT_SYMBOL(transport_generic_new_cmd);
2390
2391 static void transport_write_pending_qf(struct se_cmd *cmd)
2392 {
2393 int ret;
2394
2395 ret = cmd->se_tfo->write_pending(cmd);
2396 if (ret == -EAGAIN || ret == -ENOMEM) {
2397 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2398 cmd);
2399 transport_handle_queue_full(cmd, cmd->se_dev);
2400 }
2401 }
2402
2403 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2404 {
2405 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2406 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2407 transport_wait_for_tasks(cmd);
2408
2409 transport_release_cmd(cmd);
2410 } else {
2411 if (wait_for_tasks)
2412 transport_wait_for_tasks(cmd);
2413
2414 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2415
2416 if (cmd->se_lun)
2417 transport_lun_remove_cmd(cmd);
2418
2419 transport_put_cmd(cmd);
2420 }
2421 }
2422 EXPORT_SYMBOL(transport_generic_free_cmd);
2423
2424 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2425 * @se_sess: session to reference
2426 * @se_cmd: command descriptor to add
2427 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2428 */
2429 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2430 bool ack_kref)
2431 {
2432 unsigned long flags;
2433 int ret = 0;
2434
2435 kref_init(&se_cmd->cmd_kref);
2436 /*
2437 * Add a second kref if the fabric caller is expecting to handle
2438 * fabric acknowledgement that requires two target_put_sess_cmd()
2439 * invocations before se_cmd descriptor release.
2440 */
2441 if (ack_kref == true) {
2442 kref_get(&se_cmd->cmd_kref);
2443 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2444 }
2445
2446 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2447 if (se_sess->sess_tearing_down) {
2448 ret = -ESHUTDOWN;
2449 goto out;
2450 }
2451 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2452 se_cmd->check_release = 1;
2453
2454 out:
2455 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2456 return ret;
2457 }
2458
2459 static void target_release_cmd_kref(struct kref *kref)
2460 {
2461 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2462 struct se_session *se_sess = se_cmd->se_sess;
2463 unsigned long flags;
2464
2465 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2466 if (list_empty(&se_cmd->se_cmd_list)) {
2467 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2468 se_cmd->se_tfo->release_cmd(se_cmd);
2469 return;
2470 }
2471 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2472 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2473 complete(&se_cmd->cmd_wait_comp);
2474 return;
2475 }
2476 list_del(&se_cmd->se_cmd_list);
2477 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2478
2479 se_cmd->se_tfo->release_cmd(se_cmd);
2480 }
2481
2482 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2483 * @se_sess: session to reference
2484 * @se_cmd: command descriptor to drop
2485 */
2486 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2487 {
2488 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2489 }
2490 EXPORT_SYMBOL(target_put_sess_cmd);
2491
2492 /* target_sess_cmd_list_set_waiting - Flag all commands in
2493 * sess_cmd_list to complete cmd_wait_comp. Set
2494 * sess_tearing_down so no more commands are queued.
2495 * @se_sess: session to flag
2496 */
2497 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2498 {
2499 struct se_cmd *se_cmd;
2500 unsigned long flags;
2501
2502 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2503
2504 WARN_ON(se_sess->sess_tearing_down);
2505 se_sess->sess_tearing_down = 1;
2506
2507 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list)
2508 se_cmd->cmd_wait_set = 1;
2509
2510 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2511 }
2512 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2513
2514 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2515 * @se_sess: session to wait for active I/O
2516 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2517 */
2518 void target_wait_for_sess_cmds(
2519 struct se_session *se_sess,
2520 int wait_for_tasks)
2521 {
2522 struct se_cmd *se_cmd, *tmp_cmd;
2523 bool rc = false;
2524
2525 list_for_each_entry_safe(se_cmd, tmp_cmd,
2526 &se_sess->sess_cmd_list, se_cmd_list) {
2527 list_del(&se_cmd->se_cmd_list);
2528
2529 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2530 " %d\n", se_cmd, se_cmd->t_state,
2531 se_cmd->se_tfo->get_cmd_state(se_cmd));
2532
2533 if (wait_for_tasks) {
2534 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2535 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2536 se_cmd->se_tfo->get_cmd_state(se_cmd));
2537
2538 rc = transport_wait_for_tasks(se_cmd);
2539
2540 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2541 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2542 se_cmd->se_tfo->get_cmd_state(se_cmd));
2543 }
2544
2545 if (!rc) {
2546 wait_for_completion(&se_cmd->cmd_wait_comp);
2547 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2548 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2549 se_cmd->se_tfo->get_cmd_state(se_cmd));
2550 }
2551
2552 se_cmd->se_tfo->release_cmd(se_cmd);
2553 }
2554 }
2555 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2556
2557 /* transport_lun_wait_for_tasks():
2558 *
2559 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2560 * an struct se_lun to be successfully shutdown.
2561 */
2562 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2563 {
2564 unsigned long flags;
2565 int ret = 0;
2566
2567 /*
2568 * If the frontend has already requested this struct se_cmd to
2569 * be stopped, we can safely ignore this struct se_cmd.
2570 */
2571 spin_lock_irqsave(&cmd->t_state_lock, flags);
2572 if (cmd->transport_state & CMD_T_STOP) {
2573 cmd->transport_state &= ~CMD_T_LUN_STOP;
2574
2575 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2576 cmd->se_tfo->get_task_tag(cmd));
2577 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2578 transport_cmd_check_stop(cmd, false);
2579 return -EPERM;
2580 }
2581 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2583
2584 // XXX: audit task_flags checks.
2585 spin_lock_irqsave(&cmd->t_state_lock, flags);
2586 if ((cmd->transport_state & CMD_T_BUSY) &&
2587 (cmd->transport_state & CMD_T_SENT)) {
2588 if (!target_stop_cmd(cmd, &flags))
2589 ret++;
2590 }
2591 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2592
2593 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2594 " %d\n", cmd, ret);
2595 if (!ret) {
2596 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2597 cmd->se_tfo->get_task_tag(cmd));
2598 wait_for_completion(&cmd->transport_lun_stop_comp);
2599 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2600 cmd->se_tfo->get_task_tag(cmd));
2601 }
2602
2603 return 0;
2604 }
2605
2606 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2607 {
2608 struct se_cmd *cmd = NULL;
2609 unsigned long lun_flags, cmd_flags;
2610 /*
2611 * Do exception processing and return CHECK_CONDITION status to the
2612 * Initiator Port.
2613 */
2614 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2615 while (!list_empty(&lun->lun_cmd_list)) {
2616 cmd = list_first_entry(&lun->lun_cmd_list,
2617 struct se_cmd, se_lun_node);
2618 list_del_init(&cmd->se_lun_node);
2619
2620 spin_lock(&cmd->t_state_lock);
2621 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2622 "_lun_stop for ITT: 0x%08x\n",
2623 cmd->se_lun->unpacked_lun,
2624 cmd->se_tfo->get_task_tag(cmd));
2625 cmd->transport_state |= CMD_T_LUN_STOP;
2626 spin_unlock(&cmd->t_state_lock);
2627
2628 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2629
2630 if (!cmd->se_lun) {
2631 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2632 cmd->se_tfo->get_task_tag(cmd),
2633 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2634 BUG();
2635 }
2636 /*
2637 * If the Storage engine still owns the iscsi_cmd_t, determine
2638 * and/or stop its context.
2639 */
2640 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2641 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2642 cmd->se_tfo->get_task_tag(cmd));
2643
2644 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2645 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2646 continue;
2647 }
2648
2649 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2650 "_wait_for_tasks(): SUCCESS\n",
2651 cmd->se_lun->unpacked_lun,
2652 cmd->se_tfo->get_task_tag(cmd));
2653
2654 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2655 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2656 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2657 goto check_cond;
2658 }
2659 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2660 target_remove_from_state_list(cmd);
2661 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2662
2663 /*
2664 * The Storage engine stopped this struct se_cmd before it was
2665 * send to the fabric frontend for delivery back to the
2666 * Initiator Node. Return this SCSI CDB back with an
2667 * CHECK_CONDITION status.
2668 */
2669 check_cond:
2670 transport_send_check_condition_and_sense(cmd,
2671 TCM_NON_EXISTENT_LUN, 0);
2672 /*
2673 * If the fabric frontend is waiting for this iscsi_cmd_t to
2674 * be released, notify the waiting thread now that LU has
2675 * finished accessing it.
2676 */
2677 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2678 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2679 pr_debug("SE_LUN[%d] - Detected FE stop for"
2680 " struct se_cmd: %p ITT: 0x%08x\n",
2681 lun->unpacked_lun,
2682 cmd, cmd->se_tfo->get_task_tag(cmd));
2683
2684 spin_unlock_irqrestore(&cmd->t_state_lock,
2685 cmd_flags);
2686 transport_cmd_check_stop(cmd, false);
2687 complete(&cmd->transport_lun_fe_stop_comp);
2688 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2689 continue;
2690 }
2691 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2692 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2693
2694 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2695 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2696 }
2697 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2698 }
2699
2700 static int transport_clear_lun_thread(void *p)
2701 {
2702 struct se_lun *lun = p;
2703
2704 __transport_clear_lun_from_sessions(lun);
2705 complete(&lun->lun_shutdown_comp);
2706
2707 return 0;
2708 }
2709
2710 int transport_clear_lun_from_sessions(struct se_lun *lun)
2711 {
2712 struct task_struct *kt;
2713
2714 kt = kthread_run(transport_clear_lun_thread, lun,
2715 "tcm_cl_%u", lun->unpacked_lun);
2716 if (IS_ERR(kt)) {
2717 pr_err("Unable to start clear_lun thread\n");
2718 return PTR_ERR(kt);
2719 }
2720 wait_for_completion(&lun->lun_shutdown_comp);
2721
2722 return 0;
2723 }
2724
2725 /**
2726 * transport_wait_for_tasks - wait for completion to occur
2727 * @cmd: command to wait
2728 *
2729 * Called from frontend fabric context to wait for storage engine
2730 * to pause and/or release frontend generated struct se_cmd.
2731 */
2732 bool transport_wait_for_tasks(struct se_cmd *cmd)
2733 {
2734 unsigned long flags;
2735
2736 spin_lock_irqsave(&cmd->t_state_lock, flags);
2737 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2738 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2739 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2740 return false;
2741 }
2742
2743 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2744 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2745 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2746 return false;
2747 }
2748 /*
2749 * If we are already stopped due to an external event (ie: LUN shutdown)
2750 * sleep until the connection can have the passed struct se_cmd back.
2751 * The cmd->transport_lun_stopped_sem will be upped by
2752 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2753 * has completed its operation on the struct se_cmd.
2754 */
2755 if (cmd->transport_state & CMD_T_LUN_STOP) {
2756 pr_debug("wait_for_tasks: Stopping"
2757 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2758 "_stop_comp); for ITT: 0x%08x\n",
2759 cmd->se_tfo->get_task_tag(cmd));
2760 /*
2761 * There is a special case for WRITES where a FE exception +
2762 * LUN shutdown means ConfigFS context is still sleeping on
2763 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2764 * We go ahead and up transport_lun_stop_comp just to be sure
2765 * here.
2766 */
2767 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2768 complete(&cmd->transport_lun_stop_comp);
2769 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2770 spin_lock_irqsave(&cmd->t_state_lock, flags);
2771
2772 target_remove_from_state_list(cmd);
2773 /*
2774 * At this point, the frontend who was the originator of this
2775 * struct se_cmd, now owns the structure and can be released through
2776 * normal means below.
2777 */
2778 pr_debug("wait_for_tasks: Stopped"
2779 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2780 "stop_comp); for ITT: 0x%08x\n",
2781 cmd->se_tfo->get_task_tag(cmd));
2782
2783 cmd->transport_state &= ~CMD_T_LUN_STOP;
2784 }
2785
2786 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2787 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2788 return false;
2789 }
2790
2791 cmd->transport_state |= CMD_T_STOP;
2792
2793 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2794 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2795 cmd, cmd->se_tfo->get_task_tag(cmd),
2796 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2797
2798 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2799
2800 wait_for_completion(&cmd->t_transport_stop_comp);
2801
2802 spin_lock_irqsave(&cmd->t_state_lock, flags);
2803 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2804
2805 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
2806 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2807 cmd->se_tfo->get_task_tag(cmd));
2808
2809 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2810
2811 return true;
2812 }
2813 EXPORT_SYMBOL(transport_wait_for_tasks);
2814
2815 static int transport_get_sense_codes(
2816 struct se_cmd *cmd,
2817 u8 *asc,
2818 u8 *ascq)
2819 {
2820 *asc = cmd->scsi_asc;
2821 *ascq = cmd->scsi_ascq;
2822
2823 return 0;
2824 }
2825
2826 static int transport_set_sense_codes(
2827 struct se_cmd *cmd,
2828 u8 asc,
2829 u8 ascq)
2830 {
2831 cmd->scsi_asc = asc;
2832 cmd->scsi_ascq = ascq;
2833
2834 return 0;
2835 }
2836
2837 int transport_send_check_condition_and_sense(
2838 struct se_cmd *cmd,
2839 u8 reason,
2840 int from_transport)
2841 {
2842 unsigned char *buffer = cmd->sense_buffer;
2843 unsigned long flags;
2844 int offset;
2845 u8 asc = 0, ascq = 0;
2846
2847 spin_lock_irqsave(&cmd->t_state_lock, flags);
2848 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2849 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2850 return 0;
2851 }
2852 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2853 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2854
2855 if (!reason && from_transport)
2856 goto after_reason;
2857
2858 if (!from_transport)
2859 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2860 /*
2861 * Data Segment and SenseLength of the fabric response PDU.
2862 *
2863 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
2864 * from include/scsi/scsi_cmnd.h
2865 */
2866 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2867 TRANSPORT_SENSE_BUFFER);
2868 /*
2869 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2870 * SENSE KEY values from include/scsi/scsi.h
2871 */
2872 switch (reason) {
2873 case TCM_NON_EXISTENT_LUN:
2874 /* CURRENT ERROR */
2875 buffer[offset] = 0x70;
2876 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2877 /* ILLEGAL REQUEST */
2878 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2879 /* LOGICAL UNIT NOT SUPPORTED */
2880 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
2881 break;
2882 case TCM_UNSUPPORTED_SCSI_OPCODE:
2883 case TCM_SECTOR_COUNT_TOO_MANY:
2884 /* CURRENT ERROR */
2885 buffer[offset] = 0x70;
2886 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2887 /* ILLEGAL REQUEST */
2888 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2889 /* INVALID COMMAND OPERATION CODE */
2890 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
2891 break;
2892 case TCM_UNKNOWN_MODE_PAGE:
2893 /* CURRENT ERROR */
2894 buffer[offset] = 0x70;
2895 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2896 /* ILLEGAL REQUEST */
2897 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2898 /* INVALID FIELD IN CDB */
2899 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2900 break;
2901 case TCM_CHECK_CONDITION_ABORT_CMD:
2902 /* CURRENT ERROR */
2903 buffer[offset] = 0x70;
2904 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2905 /* ABORTED COMMAND */
2906 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2907 /* BUS DEVICE RESET FUNCTION OCCURRED */
2908 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
2909 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
2910 break;
2911 case TCM_INCORRECT_AMOUNT_OF_DATA:
2912 /* CURRENT ERROR */
2913 buffer[offset] = 0x70;
2914 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2915 /* ABORTED COMMAND */
2916 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2917 /* WRITE ERROR */
2918 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2919 /* NOT ENOUGH UNSOLICITED DATA */
2920 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
2921 break;
2922 case TCM_INVALID_CDB_FIELD:
2923 /* CURRENT ERROR */
2924 buffer[offset] = 0x70;
2925 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2926 /* ILLEGAL REQUEST */
2927 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2928 /* INVALID FIELD IN CDB */
2929 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2930 break;
2931 case TCM_INVALID_PARAMETER_LIST:
2932 /* CURRENT ERROR */
2933 buffer[offset] = 0x70;
2934 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2935 /* ILLEGAL REQUEST */
2936 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2937 /* INVALID FIELD IN PARAMETER LIST */
2938 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
2939 break;
2940 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2941 /* CURRENT ERROR */
2942 buffer[offset] = 0x70;
2943 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2944 /* ABORTED COMMAND */
2945 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2946 /* WRITE ERROR */
2947 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2948 /* UNEXPECTED_UNSOLICITED_DATA */
2949 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
2950 break;
2951 case TCM_SERVICE_CRC_ERROR:
2952 /* CURRENT ERROR */
2953 buffer[offset] = 0x70;
2954 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2955 /* ABORTED COMMAND */
2956 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2957 /* PROTOCOL SERVICE CRC ERROR */
2958 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
2959 /* N/A */
2960 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
2961 break;
2962 case TCM_SNACK_REJECTED:
2963 /* CURRENT ERROR */
2964 buffer[offset] = 0x70;
2965 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2966 /* ABORTED COMMAND */
2967 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2968 /* READ ERROR */
2969 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
2970 /* FAILED RETRANSMISSION REQUEST */
2971 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
2972 break;
2973 case TCM_WRITE_PROTECTED:
2974 /* CURRENT ERROR */
2975 buffer[offset] = 0x70;
2976 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2977 /* DATA PROTECT */
2978 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2979 /* WRITE PROTECTED */
2980 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
2981 break;
2982 case TCM_ADDRESS_OUT_OF_RANGE:
2983 /* CURRENT ERROR */
2984 buffer[offset] = 0x70;
2985 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2986 /* ILLEGAL REQUEST */
2987 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2988 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2989 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
2990 break;
2991 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2992 /* CURRENT ERROR */
2993 buffer[offset] = 0x70;
2994 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2995 /* UNIT ATTENTION */
2996 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2997 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2998 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2999 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
3000 break;
3001 case TCM_CHECK_CONDITION_NOT_READY:
3002 /* CURRENT ERROR */
3003 buffer[offset] = 0x70;
3004 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3005 /* Not Ready */
3006 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
3007 transport_get_sense_codes(cmd, &asc, &ascq);
3008 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
3009 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
3010 break;
3011 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
3012 default:
3013 /* CURRENT ERROR */
3014 buffer[offset] = 0x70;
3015 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
3016 /* ILLEGAL REQUEST */
3017 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
3018 /* LOGICAL UNIT COMMUNICATION FAILURE */
3019 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
3020 break;
3021 }
3022 /*
3023 * This code uses linux/include/scsi/scsi.h SAM status codes!
3024 */
3025 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3026 /*
3027 * Automatically padded, this value is encoded in the fabric's
3028 * data_length response PDU containing the SCSI defined sense data.
3029 */
3030 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
3031
3032 after_reason:
3033 return cmd->se_tfo->queue_status(cmd);
3034 }
3035 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3036
3037 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3038 {
3039 int ret = 0;
3040
3041 if (cmd->transport_state & CMD_T_ABORTED) {
3042 if (!send_status ||
3043 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
3044 return 1;
3045
3046 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
3047 " status for CDB: 0x%02x ITT: 0x%08x\n",
3048 cmd->t_task_cdb[0],
3049 cmd->se_tfo->get_task_tag(cmd));
3050
3051 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
3052 cmd->se_tfo->queue_status(cmd);
3053 ret = 1;
3054 }
3055 return ret;
3056 }
3057 EXPORT_SYMBOL(transport_check_aborted_status);
3058
3059 void transport_send_task_abort(struct se_cmd *cmd)
3060 {
3061 unsigned long flags;
3062
3063 spin_lock_irqsave(&cmd->t_state_lock, flags);
3064 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3065 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3066 return;
3067 }
3068 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3069
3070 /*
3071 * If there are still expected incoming fabric WRITEs, we wait
3072 * until until they have completed before sending a TASK_ABORTED
3073 * response. This response with TASK_ABORTED status will be
3074 * queued back to fabric module by transport_check_aborted_status().
3075 */
3076 if (cmd->data_direction == DMA_TO_DEVICE) {
3077 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3078 cmd->transport_state |= CMD_T_ABORTED;
3079 smp_mb__after_atomic_inc();
3080 }
3081 }
3082 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3083
3084 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3085 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3086 cmd->se_tfo->get_task_tag(cmd));
3087
3088 cmd->se_tfo->queue_status(cmd);
3089 }
3090
3091 static void target_tmr_work(struct work_struct *work)
3092 {
3093 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3094 struct se_device *dev = cmd->se_dev;
3095 struct se_tmr_req *tmr = cmd->se_tmr_req;
3096 int ret;
3097
3098 switch (tmr->function) {
3099 case TMR_ABORT_TASK:
3100 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3101 break;
3102 case TMR_ABORT_TASK_SET:
3103 case TMR_CLEAR_ACA:
3104 case TMR_CLEAR_TASK_SET:
3105 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3106 break;
3107 case TMR_LUN_RESET:
3108 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3109 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3110 TMR_FUNCTION_REJECTED;
3111 break;
3112 case TMR_TARGET_WARM_RESET:
3113 tmr->response = TMR_FUNCTION_REJECTED;
3114 break;
3115 case TMR_TARGET_COLD_RESET:
3116 tmr->response = TMR_FUNCTION_REJECTED;
3117 break;
3118 default:
3119 pr_err("Uknown TMR function: 0x%02x.\n",
3120 tmr->function);
3121 tmr->response = TMR_FUNCTION_REJECTED;
3122 break;
3123 }
3124
3125 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3126 cmd->se_tfo->queue_tm_rsp(cmd);
3127
3128 transport_cmd_check_stop_to_fabric(cmd);
3129 }
3130
3131 int transport_generic_handle_tmr(
3132 struct se_cmd *cmd)
3133 {
3134 INIT_WORK(&cmd->work, target_tmr_work);
3135 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3136 return 0;
3137 }
3138 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.092806 seconds and 6 git commands to generate.