target: split core_scsi3_emulate_pr
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77 struct se_device *dev);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static int transport_generic_get_mem(struct se_cmd *cmd);
80 static void transport_put_cmd(struct se_cmd *cmd);
81 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
82 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
83 static void transport_generic_request_failure(struct se_cmd *, int, int);
84 static void target_complete_ok_work(struct work_struct *work);
85
86 int init_se_kmem_caches(void)
87 {
88 se_cmd_cache = kmem_cache_create("se_cmd_cache",
89 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
90 if (!se_cmd_cache) {
91 pr_err("kmem_cache_create for struct se_cmd failed\n");
92 goto out;
93 }
94 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
95 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
96 0, NULL);
97 if (!se_tmr_req_cache) {
98 pr_err("kmem_cache_create() for struct se_tmr_req"
99 " failed\n");
100 goto out_free_cmd_cache;
101 }
102 se_sess_cache = kmem_cache_create("se_sess_cache",
103 sizeof(struct se_session), __alignof__(struct se_session),
104 0, NULL);
105 if (!se_sess_cache) {
106 pr_err("kmem_cache_create() for struct se_session"
107 " failed\n");
108 goto out_free_tmr_req_cache;
109 }
110 se_ua_cache = kmem_cache_create("se_ua_cache",
111 sizeof(struct se_ua), __alignof__(struct se_ua),
112 0, NULL);
113 if (!se_ua_cache) {
114 pr_err("kmem_cache_create() for struct se_ua failed\n");
115 goto out_free_sess_cache;
116 }
117 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
118 sizeof(struct t10_pr_registration),
119 __alignof__(struct t10_pr_registration), 0, NULL);
120 if (!t10_pr_reg_cache) {
121 pr_err("kmem_cache_create() for struct t10_pr_registration"
122 " failed\n");
123 goto out_free_ua_cache;
124 }
125 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
126 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
127 0, NULL);
128 if (!t10_alua_lu_gp_cache) {
129 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
130 " failed\n");
131 goto out_free_pr_reg_cache;
132 }
133 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
134 sizeof(struct t10_alua_lu_gp_member),
135 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
136 if (!t10_alua_lu_gp_mem_cache) {
137 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
138 "cache failed\n");
139 goto out_free_lu_gp_cache;
140 }
141 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
142 sizeof(struct t10_alua_tg_pt_gp),
143 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
144 if (!t10_alua_tg_pt_gp_cache) {
145 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
146 "cache failed\n");
147 goto out_free_lu_gp_mem_cache;
148 }
149 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
150 "t10_alua_tg_pt_gp_mem_cache",
151 sizeof(struct t10_alua_tg_pt_gp_member),
152 __alignof__(struct t10_alua_tg_pt_gp_member),
153 0, NULL);
154 if (!t10_alua_tg_pt_gp_mem_cache) {
155 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
156 "mem_t failed\n");
157 goto out_free_tg_pt_gp_cache;
158 }
159
160 target_completion_wq = alloc_workqueue("target_completion",
161 WQ_MEM_RECLAIM, 0);
162 if (!target_completion_wq)
163 goto out_free_tg_pt_gp_mem_cache;
164
165 return 0;
166
167 out_free_tg_pt_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
169 out_free_tg_pt_gp_cache:
170 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
171 out_free_lu_gp_mem_cache:
172 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
173 out_free_lu_gp_cache:
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 out_free_pr_reg_cache:
176 kmem_cache_destroy(t10_pr_reg_cache);
177 out_free_ua_cache:
178 kmem_cache_destroy(se_ua_cache);
179 out_free_sess_cache:
180 kmem_cache_destroy(se_sess_cache);
181 out_free_tmr_req_cache:
182 kmem_cache_destroy(se_tmr_req_cache);
183 out_free_cmd_cache:
184 kmem_cache_destroy(se_cmd_cache);
185 out:
186 return -ENOMEM;
187 }
188
189 void release_se_kmem_caches(void)
190 {
191 destroy_workqueue(target_completion_wq);
192 kmem_cache_destroy(se_cmd_cache);
193 kmem_cache_destroy(se_tmr_req_cache);
194 kmem_cache_destroy(se_sess_cache);
195 kmem_cache_destroy(se_ua_cache);
196 kmem_cache_destroy(t10_pr_reg_cache);
197 kmem_cache_destroy(t10_alua_lu_gp_cache);
198 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
199 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
200 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
201 }
202
203 /* This code ensures unique mib indexes are handed out. */
204 static DEFINE_SPINLOCK(scsi_mib_index_lock);
205 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
206
207 /*
208 * Allocate a new row index for the entry type specified
209 */
210 u32 scsi_get_new_index(scsi_index_t type)
211 {
212 u32 new_index;
213
214 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
215
216 spin_lock(&scsi_mib_index_lock);
217 new_index = ++scsi_mib_index[type];
218 spin_unlock(&scsi_mib_index_lock);
219
220 return new_index;
221 }
222
223 void transport_init_queue_obj(struct se_queue_obj *qobj)
224 {
225 atomic_set(&qobj->queue_cnt, 0);
226 INIT_LIST_HEAD(&qobj->qobj_list);
227 init_waitqueue_head(&qobj->thread_wq);
228 spin_lock_init(&qobj->cmd_queue_lock);
229 }
230 EXPORT_SYMBOL(transport_init_queue_obj);
231
232 void transport_subsystem_check_init(void)
233 {
234 int ret;
235
236 if (sub_api_initialized)
237 return;
238
239 ret = request_module("target_core_iblock");
240 if (ret != 0)
241 pr_err("Unable to load target_core_iblock\n");
242
243 ret = request_module("target_core_file");
244 if (ret != 0)
245 pr_err("Unable to load target_core_file\n");
246
247 ret = request_module("target_core_pscsi");
248 if (ret != 0)
249 pr_err("Unable to load target_core_pscsi\n");
250
251 ret = request_module("target_core_stgt");
252 if (ret != 0)
253 pr_err("Unable to load target_core_stgt\n");
254
255 sub_api_initialized = 1;
256 return;
257 }
258
259 struct se_session *transport_init_session(void)
260 {
261 struct se_session *se_sess;
262
263 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
264 if (!se_sess) {
265 pr_err("Unable to allocate struct se_session from"
266 " se_sess_cache\n");
267 return ERR_PTR(-ENOMEM);
268 }
269 INIT_LIST_HEAD(&se_sess->sess_list);
270 INIT_LIST_HEAD(&se_sess->sess_acl_list);
271 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
272 INIT_LIST_HEAD(&se_sess->sess_wait_list);
273 spin_lock_init(&se_sess->sess_cmd_lock);
274
275 return se_sess;
276 }
277 EXPORT_SYMBOL(transport_init_session);
278
279 /*
280 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
281 */
282 void __transport_register_session(
283 struct se_portal_group *se_tpg,
284 struct se_node_acl *se_nacl,
285 struct se_session *se_sess,
286 void *fabric_sess_ptr)
287 {
288 unsigned char buf[PR_REG_ISID_LEN];
289
290 se_sess->se_tpg = se_tpg;
291 se_sess->fabric_sess_ptr = fabric_sess_ptr;
292 /*
293 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
294 *
295 * Only set for struct se_session's that will actually be moving I/O.
296 * eg: *NOT* discovery sessions.
297 */
298 if (se_nacl) {
299 /*
300 * If the fabric module supports an ISID based TransportID,
301 * save this value in binary from the fabric I_T Nexus now.
302 */
303 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
304 memset(&buf[0], 0, PR_REG_ISID_LEN);
305 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
306 &buf[0], PR_REG_ISID_LEN);
307 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
308 }
309 spin_lock_irq(&se_nacl->nacl_sess_lock);
310 /*
311 * The se_nacl->nacl_sess pointer will be set to the
312 * last active I_T Nexus for each struct se_node_acl.
313 */
314 se_nacl->nacl_sess = se_sess;
315
316 list_add_tail(&se_sess->sess_acl_list,
317 &se_nacl->acl_sess_list);
318 spin_unlock_irq(&se_nacl->nacl_sess_lock);
319 }
320 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
321
322 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
324 }
325 EXPORT_SYMBOL(__transport_register_session);
326
327 void transport_register_session(
328 struct se_portal_group *se_tpg,
329 struct se_node_acl *se_nacl,
330 struct se_session *se_sess,
331 void *fabric_sess_ptr)
332 {
333 spin_lock_bh(&se_tpg->session_lock);
334 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
335 spin_unlock_bh(&se_tpg->session_lock);
336 }
337 EXPORT_SYMBOL(transport_register_session);
338
339 void transport_deregister_session_configfs(struct se_session *se_sess)
340 {
341 struct se_node_acl *se_nacl;
342 unsigned long flags;
343 /*
344 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
345 */
346 se_nacl = se_sess->se_node_acl;
347 if (se_nacl) {
348 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
349 list_del(&se_sess->sess_acl_list);
350 /*
351 * If the session list is empty, then clear the pointer.
352 * Otherwise, set the struct se_session pointer from the tail
353 * element of the per struct se_node_acl active session list.
354 */
355 if (list_empty(&se_nacl->acl_sess_list))
356 se_nacl->nacl_sess = NULL;
357 else {
358 se_nacl->nacl_sess = container_of(
359 se_nacl->acl_sess_list.prev,
360 struct se_session, sess_acl_list);
361 }
362 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
363 }
364 }
365 EXPORT_SYMBOL(transport_deregister_session_configfs);
366
367 void transport_free_session(struct se_session *se_sess)
368 {
369 kmem_cache_free(se_sess_cache, se_sess);
370 }
371 EXPORT_SYMBOL(transport_free_session);
372
373 void transport_deregister_session(struct se_session *se_sess)
374 {
375 struct se_portal_group *se_tpg = se_sess->se_tpg;
376 struct se_node_acl *se_nacl;
377 unsigned long flags;
378
379 if (!se_tpg) {
380 transport_free_session(se_sess);
381 return;
382 }
383
384 spin_lock_irqsave(&se_tpg->session_lock, flags);
385 list_del(&se_sess->sess_list);
386 se_sess->se_tpg = NULL;
387 se_sess->fabric_sess_ptr = NULL;
388 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
389
390 /*
391 * Determine if we need to do extra work for this initiator node's
392 * struct se_node_acl if it had been previously dynamically generated.
393 */
394 se_nacl = se_sess->se_node_acl;
395 if (se_nacl) {
396 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
397 if (se_nacl->dynamic_node_acl) {
398 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
399 se_tpg)) {
400 list_del(&se_nacl->acl_list);
401 se_tpg->num_node_acls--;
402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
403
404 core_tpg_wait_for_nacl_pr_ref(se_nacl);
405 core_free_device_list_for_node(se_nacl, se_tpg);
406 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
407 se_nacl);
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 }
410 }
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412 }
413
414 transport_free_session(se_sess);
415
416 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417 se_tpg->se_tpg_tfo->get_fabric_name());
418 }
419 EXPORT_SYMBOL(transport_deregister_session);
420
421 /*
422 * Called with cmd->t_state_lock held.
423 */
424 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
425 {
426 struct se_device *dev = cmd->se_dev;
427 struct se_task *task;
428 unsigned long flags;
429
430 if (!dev)
431 return;
432
433 list_for_each_entry(task, &cmd->t_task_list, t_list) {
434 if (task->task_flags & TF_ACTIVE)
435 continue;
436
437 if (!atomic_read(&task->task_state_active))
438 continue;
439
440 spin_lock_irqsave(&dev->execute_task_lock, flags);
441 list_del(&task->t_state_list);
442 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
443 cmd->se_tfo->get_task_tag(cmd), dev, task);
444 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
445
446 atomic_set(&task->task_state_active, 0);
447 atomic_dec(&cmd->t_task_cdbs_ex_left);
448 }
449 }
450
451 /* transport_cmd_check_stop():
452 *
453 * 'transport_off = 1' determines if t_transport_active should be cleared.
454 * 'transport_off = 2' determines if task_dev_state should be removed.
455 *
456 * A non-zero u8 t_state sets cmd->t_state.
457 * Returns 1 when command is stopped, else 0.
458 */
459 static int transport_cmd_check_stop(
460 struct se_cmd *cmd,
461 int transport_off,
462 u8 t_state)
463 {
464 unsigned long flags;
465
466 spin_lock_irqsave(&cmd->t_state_lock, flags);
467 /*
468 * Determine if IOCTL context caller in requesting the stopping of this
469 * command for LUN shutdown purposes.
470 */
471 if (atomic_read(&cmd->transport_lun_stop)) {
472 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
473 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
474 cmd->se_tfo->get_task_tag(cmd));
475
476 atomic_set(&cmd->t_transport_active, 0);
477 if (transport_off == 2)
478 transport_all_task_dev_remove_state(cmd);
479 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
480
481 complete(&cmd->transport_lun_stop_comp);
482 return 1;
483 }
484 /*
485 * Determine if frontend context caller is requesting the stopping of
486 * this command for frontend exceptions.
487 */
488 if (atomic_read(&cmd->t_transport_stop)) {
489 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
490 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
491 cmd->se_tfo->get_task_tag(cmd));
492
493 if (transport_off == 2)
494 transport_all_task_dev_remove_state(cmd);
495
496 /*
497 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
498 * to FE.
499 */
500 if (transport_off == 2)
501 cmd->se_lun = NULL;
502 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
503
504 complete(&cmd->t_transport_stop_comp);
505 return 1;
506 }
507 if (transport_off) {
508 atomic_set(&cmd->t_transport_active, 0);
509 if (transport_off == 2) {
510 transport_all_task_dev_remove_state(cmd);
511 /*
512 * Clear struct se_cmd->se_lun before the transport_off == 2
513 * handoff to fabric module.
514 */
515 cmd->se_lun = NULL;
516 /*
517 * Some fabric modules like tcm_loop can release
518 * their internally allocated I/O reference now and
519 * struct se_cmd now.
520 *
521 * Fabric modules are expected to return '1' here if the
522 * se_cmd being passed is released at this point,
523 * or zero if not being released.
524 */
525 if (cmd->se_tfo->check_stop_free != NULL) {
526 spin_unlock_irqrestore(
527 &cmd->t_state_lock, flags);
528
529 return cmd->se_tfo->check_stop_free(cmd);
530 }
531 }
532 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
533
534 return 0;
535 } else if (t_state)
536 cmd->t_state = t_state;
537 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
538
539 return 0;
540 }
541
542 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
543 {
544 return transport_cmd_check_stop(cmd, 2, 0);
545 }
546
547 static void transport_lun_remove_cmd(struct se_cmd *cmd)
548 {
549 struct se_lun *lun = cmd->se_lun;
550 unsigned long flags;
551
552 if (!lun)
553 return;
554
555 spin_lock_irqsave(&cmd->t_state_lock, flags);
556 if (!atomic_read(&cmd->transport_dev_active)) {
557 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
558 goto check_lun;
559 }
560 atomic_set(&cmd->transport_dev_active, 0);
561 transport_all_task_dev_remove_state(cmd);
562 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
563
564
565 check_lun:
566 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
567 if (atomic_read(&cmd->transport_lun_active)) {
568 list_del(&cmd->se_lun_node);
569 atomic_set(&cmd->transport_lun_active, 0);
570 #if 0
571 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
572 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
573 #endif
574 }
575 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
576 }
577
578 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
579 {
580 if (!cmd->se_tmr_req)
581 transport_lun_remove_cmd(cmd);
582
583 if (transport_cmd_check_stop_to_fabric(cmd))
584 return;
585 if (remove) {
586 transport_remove_cmd_from_queue(cmd);
587 transport_put_cmd(cmd);
588 }
589 }
590
591 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
592 bool at_head)
593 {
594 struct se_device *dev = cmd->se_dev;
595 struct se_queue_obj *qobj = &dev->dev_queue_obj;
596 unsigned long flags;
597
598 if (t_state) {
599 spin_lock_irqsave(&cmd->t_state_lock, flags);
600 cmd->t_state = t_state;
601 atomic_set(&cmd->t_transport_active, 1);
602 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
603 }
604
605 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
606
607 /* If the cmd is already on the list, remove it before we add it */
608 if (!list_empty(&cmd->se_queue_node))
609 list_del(&cmd->se_queue_node);
610 else
611 atomic_inc(&qobj->queue_cnt);
612
613 if (at_head)
614 list_add(&cmd->se_queue_node, &qobj->qobj_list);
615 else
616 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
617 atomic_set(&cmd->t_transport_queue_active, 1);
618 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619
620 wake_up_interruptible(&qobj->thread_wq);
621 }
622
623 static struct se_cmd *
624 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
625 {
626 struct se_cmd *cmd;
627 unsigned long flags;
628
629 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
630 if (list_empty(&qobj->qobj_list)) {
631 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
632 return NULL;
633 }
634 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
635
636 atomic_set(&cmd->t_transport_queue_active, 0);
637
638 list_del_init(&cmd->se_queue_node);
639 atomic_dec(&qobj->queue_cnt);
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641
642 return cmd;
643 }
644
645 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
646 {
647 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
648 unsigned long flags;
649
650 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
651 if (!atomic_read(&cmd->t_transport_queue_active)) {
652 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
653 return;
654 }
655 atomic_set(&cmd->t_transport_queue_active, 0);
656 atomic_dec(&qobj->queue_cnt);
657 list_del_init(&cmd->se_queue_node);
658 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
659
660 if (atomic_read(&cmd->t_transport_queue_active)) {
661 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
662 cmd->se_tfo->get_task_tag(cmd),
663 atomic_read(&cmd->t_transport_queue_active));
664 }
665 }
666
667 /*
668 * Completion function used by TCM subsystem plugins (such as FILEIO)
669 * for queueing up response from struct se_subsystem_api->do_task()
670 */
671 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
672 {
673 struct se_task *task = list_entry(cmd->t_task_list.next,
674 struct se_task, t_list);
675
676 if (good) {
677 cmd->scsi_status = SAM_STAT_GOOD;
678 task->task_scsi_status = GOOD;
679 } else {
680 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
681 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
682 task->task_se_cmd->transport_error_status =
683 PYX_TRANSPORT_ILLEGAL_REQUEST;
684 }
685
686 transport_complete_task(task, good);
687 }
688 EXPORT_SYMBOL(transport_complete_sync_cache);
689
690 static void target_complete_failure_work(struct work_struct *work)
691 {
692 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
693
694 transport_generic_request_failure(cmd, 1, 1);
695 }
696
697 /* transport_complete_task():
698 *
699 * Called from interrupt and non interrupt context depending
700 * on the transport plugin.
701 */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704 struct se_cmd *cmd = task->task_se_cmd;
705 struct se_device *dev = cmd->se_dev;
706 unsigned long flags;
707 #if 0
708 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
709 cmd->t_task_cdb[0], dev);
710 #endif
711 if (dev)
712 atomic_inc(&dev->depth_left);
713
714 spin_lock_irqsave(&cmd->t_state_lock, flags);
715 task->task_flags &= ~TF_ACTIVE;
716
717 /*
718 * See if any sense data exists, if so set the TASK_SENSE flag.
719 * Also check for any other post completion work that needs to be
720 * done by the plugins.
721 */
722 if (dev && dev->transport->transport_complete) {
723 if (dev->transport->transport_complete(task) != 0) {
724 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
725 task->task_sense = 1;
726 success = 1;
727 }
728 }
729
730 /*
731 * See if we are waiting for outstanding struct se_task
732 * to complete for an exception condition
733 */
734 if (task->task_flags & TF_REQUEST_STOP) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 complete(&task->task_stop_comp);
737 return;
738 }
739
740 if (!success)
741 cmd->t_tasks_failed = 1;
742
743 /*
744 * Decrement the outstanding t_task_cdbs_left count. The last
745 * struct se_task from struct se_cmd will complete itself into the
746 * device queue depending upon int success.
747 */
748 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
749 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
750 return;
751 }
752
753 if (cmd->t_tasks_failed) {
754 if (!task->task_error_status) {
755 task->task_error_status =
756 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
757 cmd->transport_error_status =
758 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
759 }
760 INIT_WORK(&cmd->work, target_complete_failure_work);
761 } else {
762 atomic_set(&cmd->t_transport_complete, 1);
763 INIT_WORK(&cmd->work, target_complete_ok_work);
764 }
765
766 cmd->t_state = TRANSPORT_COMPLETE;
767 atomic_set(&cmd->t_transport_active, 1);
768 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
769
770 queue_work(target_completion_wq, &cmd->work);
771 }
772 EXPORT_SYMBOL(transport_complete_task);
773
774 /*
775 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
776 * struct se_task list are ready to be added to the active execution list
777 * struct se_device
778
779 * Called with se_dev_t->execute_task_lock called.
780 */
781 static inline int transport_add_task_check_sam_attr(
782 struct se_task *task,
783 struct se_task *task_prev,
784 struct se_device *dev)
785 {
786 /*
787 * No SAM Task attribute emulation enabled, add to tail of
788 * execution queue
789 */
790 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
791 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
792 return 0;
793 }
794 /*
795 * HEAD_OF_QUEUE attribute for received CDB, which means
796 * the first task that is associated with a struct se_cmd goes to
797 * head of the struct se_device->execute_task_list, and task_prev
798 * after that for each subsequent task
799 */
800 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
801 list_add(&task->t_execute_list,
802 (task_prev != NULL) ?
803 &task_prev->t_execute_list :
804 &dev->execute_task_list);
805
806 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
807 " in execution queue\n",
808 task->task_se_cmd->t_task_cdb[0]);
809 return 1;
810 }
811 /*
812 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
813 * transitioned from Dermant -> Active state, and are added to the end
814 * of the struct se_device->execute_task_list
815 */
816 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
817 return 0;
818 }
819
820 /* __transport_add_task_to_execute_queue():
821 *
822 * Called with se_dev_t->execute_task_lock called.
823 */
824 static void __transport_add_task_to_execute_queue(
825 struct se_task *task,
826 struct se_task *task_prev,
827 struct se_device *dev)
828 {
829 int head_of_queue;
830
831 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
832 atomic_inc(&dev->execute_tasks);
833
834 if (atomic_read(&task->task_state_active))
835 return;
836 /*
837 * Determine if this task needs to go to HEAD_OF_QUEUE for the
838 * state list as well. Running with SAM Task Attribute emulation
839 * will always return head_of_queue == 0 here
840 */
841 if (head_of_queue)
842 list_add(&task->t_state_list, (task_prev) ?
843 &task_prev->t_state_list :
844 &dev->state_task_list);
845 else
846 list_add_tail(&task->t_state_list, &dev->state_task_list);
847
848 atomic_set(&task->task_state_active, 1);
849
850 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
851 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
852 task, dev);
853 }
854
855 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
856 {
857 struct se_device *dev = cmd->se_dev;
858 struct se_task *task;
859 unsigned long flags;
860
861 spin_lock_irqsave(&cmd->t_state_lock, flags);
862 list_for_each_entry(task, &cmd->t_task_list, t_list) {
863 if (atomic_read(&task->task_state_active))
864 continue;
865
866 spin_lock(&dev->execute_task_lock);
867 list_add_tail(&task->t_state_list, &dev->state_task_list);
868 atomic_set(&task->task_state_active, 1);
869
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task->task_se_cmd->se_tfo->get_task_tag(
872 task->task_se_cmd), task, dev);
873
874 spin_unlock(&dev->execute_task_lock);
875 }
876 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
879 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 struct se_device *dev = cmd->se_dev;
882 struct se_task *task, *task_prev = NULL;
883 unsigned long flags;
884
885 spin_lock_irqsave(&dev->execute_task_lock, flags);
886 list_for_each_entry(task, &cmd->t_task_list, t_list) {
887 if (!list_empty(&task->t_execute_list))
888 continue;
889 /*
890 * __transport_add_task_to_execute_queue() handles the
891 * SAM Task Attribute emulation if enabled
892 */
893 __transport_add_task_to_execute_queue(task, task_prev, dev);
894 task_prev = task;
895 }
896 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
897 }
898
899 void __transport_remove_task_from_execute_queue(struct se_task *task,
900 struct se_device *dev)
901 {
902 list_del_init(&task->t_execute_list);
903 atomic_dec(&dev->execute_tasks);
904 }
905
906 void transport_remove_task_from_execute_queue(
907 struct se_task *task,
908 struct se_device *dev)
909 {
910 unsigned long flags;
911
912 if (WARN_ON(list_empty(&task->t_execute_list)))
913 return;
914
915 spin_lock_irqsave(&dev->execute_task_lock, flags);
916 __transport_remove_task_from_execute_queue(task, dev);
917 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
918 }
919
920 /*
921 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
922 */
923
924 static void target_qf_do_work(struct work_struct *work)
925 {
926 struct se_device *dev = container_of(work, struct se_device,
927 qf_work_queue);
928 LIST_HEAD(qf_cmd_list);
929 struct se_cmd *cmd, *cmd_tmp;
930
931 spin_lock_irq(&dev->qf_cmd_lock);
932 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
933 spin_unlock_irq(&dev->qf_cmd_lock);
934
935 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
936 list_del(&cmd->se_qf_node);
937 atomic_dec(&dev->dev_qf_count);
938 smp_mb__after_atomic_dec();
939
940 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
941 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
942 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
943 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
944 : "UNKNOWN");
945
946 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
947 }
948 }
949
950 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
951 {
952 switch (cmd->data_direction) {
953 case DMA_NONE:
954 return "NONE";
955 case DMA_FROM_DEVICE:
956 return "READ";
957 case DMA_TO_DEVICE:
958 return "WRITE";
959 case DMA_BIDIRECTIONAL:
960 return "BIDI";
961 default:
962 break;
963 }
964
965 return "UNKNOWN";
966 }
967
968 void transport_dump_dev_state(
969 struct se_device *dev,
970 char *b,
971 int *bl)
972 {
973 *bl += sprintf(b + *bl, "Status: ");
974 switch (dev->dev_status) {
975 case TRANSPORT_DEVICE_ACTIVATED:
976 *bl += sprintf(b + *bl, "ACTIVATED");
977 break;
978 case TRANSPORT_DEVICE_DEACTIVATED:
979 *bl += sprintf(b + *bl, "DEACTIVATED");
980 break;
981 case TRANSPORT_DEVICE_SHUTDOWN:
982 *bl += sprintf(b + *bl, "SHUTDOWN");
983 break;
984 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
985 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
986 *bl += sprintf(b + *bl, "OFFLINE");
987 break;
988 default:
989 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
990 break;
991 }
992
993 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
994 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
995 dev->queue_depth);
996 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
997 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
998 *bl += sprintf(b + *bl, " ");
999 }
1000
1001 void transport_dump_vpd_proto_id(
1002 struct t10_vpd *vpd,
1003 unsigned char *p_buf,
1004 int p_buf_len)
1005 {
1006 unsigned char buf[VPD_TMP_BUF_SIZE];
1007 int len;
1008
1009 memset(buf, 0, VPD_TMP_BUF_SIZE);
1010 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1011
1012 switch (vpd->protocol_identifier) {
1013 case 0x00:
1014 sprintf(buf+len, "Fibre Channel\n");
1015 break;
1016 case 0x10:
1017 sprintf(buf+len, "Parallel SCSI\n");
1018 break;
1019 case 0x20:
1020 sprintf(buf+len, "SSA\n");
1021 break;
1022 case 0x30:
1023 sprintf(buf+len, "IEEE 1394\n");
1024 break;
1025 case 0x40:
1026 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1027 " Protocol\n");
1028 break;
1029 case 0x50:
1030 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1031 break;
1032 case 0x60:
1033 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1034 break;
1035 case 0x70:
1036 sprintf(buf+len, "Automation/Drive Interface Transport"
1037 " Protocol\n");
1038 break;
1039 case 0x80:
1040 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1041 break;
1042 default:
1043 sprintf(buf+len, "Unknown 0x%02x\n",
1044 vpd->protocol_identifier);
1045 break;
1046 }
1047
1048 if (p_buf)
1049 strncpy(p_buf, buf, p_buf_len);
1050 else
1051 pr_debug("%s", buf);
1052 }
1053
1054 void
1055 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1056 {
1057 /*
1058 * Check if the Protocol Identifier Valid (PIV) bit is set..
1059 *
1060 * from spc3r23.pdf section 7.5.1
1061 */
1062 if (page_83[1] & 0x80) {
1063 vpd->protocol_identifier = (page_83[0] & 0xf0);
1064 vpd->protocol_identifier_set = 1;
1065 transport_dump_vpd_proto_id(vpd, NULL, 0);
1066 }
1067 }
1068 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1069
1070 int transport_dump_vpd_assoc(
1071 struct t10_vpd *vpd,
1072 unsigned char *p_buf,
1073 int p_buf_len)
1074 {
1075 unsigned char buf[VPD_TMP_BUF_SIZE];
1076 int ret = 0;
1077 int len;
1078
1079 memset(buf, 0, VPD_TMP_BUF_SIZE);
1080 len = sprintf(buf, "T10 VPD Identifier Association: ");
1081
1082 switch (vpd->association) {
1083 case 0x00:
1084 sprintf(buf+len, "addressed logical unit\n");
1085 break;
1086 case 0x10:
1087 sprintf(buf+len, "target port\n");
1088 break;
1089 case 0x20:
1090 sprintf(buf+len, "SCSI target device\n");
1091 break;
1092 default:
1093 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1094 ret = -EINVAL;
1095 break;
1096 }
1097
1098 if (p_buf)
1099 strncpy(p_buf, buf, p_buf_len);
1100 else
1101 pr_debug("%s", buf);
1102
1103 return ret;
1104 }
1105
1106 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1107 {
1108 /*
1109 * The VPD identification association..
1110 *
1111 * from spc3r23.pdf Section 7.6.3.1 Table 297
1112 */
1113 vpd->association = (page_83[1] & 0x30);
1114 return transport_dump_vpd_assoc(vpd, NULL, 0);
1115 }
1116 EXPORT_SYMBOL(transport_set_vpd_assoc);
1117
1118 int transport_dump_vpd_ident_type(
1119 struct t10_vpd *vpd,
1120 unsigned char *p_buf,
1121 int p_buf_len)
1122 {
1123 unsigned char buf[VPD_TMP_BUF_SIZE];
1124 int ret = 0;
1125 int len;
1126
1127 memset(buf, 0, VPD_TMP_BUF_SIZE);
1128 len = sprintf(buf, "T10 VPD Identifier Type: ");
1129
1130 switch (vpd->device_identifier_type) {
1131 case 0x00:
1132 sprintf(buf+len, "Vendor specific\n");
1133 break;
1134 case 0x01:
1135 sprintf(buf+len, "T10 Vendor ID based\n");
1136 break;
1137 case 0x02:
1138 sprintf(buf+len, "EUI-64 based\n");
1139 break;
1140 case 0x03:
1141 sprintf(buf+len, "NAA\n");
1142 break;
1143 case 0x04:
1144 sprintf(buf+len, "Relative target port identifier\n");
1145 break;
1146 case 0x08:
1147 sprintf(buf+len, "SCSI name string\n");
1148 break;
1149 default:
1150 sprintf(buf+len, "Unsupported: 0x%02x\n",
1151 vpd->device_identifier_type);
1152 ret = -EINVAL;
1153 break;
1154 }
1155
1156 if (p_buf) {
1157 if (p_buf_len < strlen(buf)+1)
1158 return -EINVAL;
1159 strncpy(p_buf, buf, p_buf_len);
1160 } else {
1161 pr_debug("%s", buf);
1162 }
1163
1164 return ret;
1165 }
1166
1167 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1168 {
1169 /*
1170 * The VPD identifier type..
1171 *
1172 * from spc3r23.pdf Section 7.6.3.1 Table 298
1173 */
1174 vpd->device_identifier_type = (page_83[1] & 0x0f);
1175 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1176 }
1177 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1178
1179 int transport_dump_vpd_ident(
1180 struct t10_vpd *vpd,
1181 unsigned char *p_buf,
1182 int p_buf_len)
1183 {
1184 unsigned char buf[VPD_TMP_BUF_SIZE];
1185 int ret = 0;
1186
1187 memset(buf, 0, VPD_TMP_BUF_SIZE);
1188
1189 switch (vpd->device_identifier_code_set) {
1190 case 0x01: /* Binary */
1191 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1192 &vpd->device_identifier[0]);
1193 break;
1194 case 0x02: /* ASCII */
1195 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1196 &vpd->device_identifier[0]);
1197 break;
1198 case 0x03: /* UTF-8 */
1199 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1200 &vpd->device_identifier[0]);
1201 break;
1202 default:
1203 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1204 " 0x%02x", vpd->device_identifier_code_set);
1205 ret = -EINVAL;
1206 break;
1207 }
1208
1209 if (p_buf)
1210 strncpy(p_buf, buf, p_buf_len);
1211 else
1212 pr_debug("%s", buf);
1213
1214 return ret;
1215 }
1216
1217 int
1218 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1219 {
1220 static const char hex_str[] = "0123456789abcdef";
1221 int j = 0, i = 4; /* offset to start of the identifer */
1222
1223 /*
1224 * The VPD Code Set (encoding)
1225 *
1226 * from spc3r23.pdf Section 7.6.3.1 Table 296
1227 */
1228 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1229 switch (vpd->device_identifier_code_set) {
1230 case 0x01: /* Binary */
1231 vpd->device_identifier[j++] =
1232 hex_str[vpd->device_identifier_type];
1233 while (i < (4 + page_83[3])) {
1234 vpd->device_identifier[j++] =
1235 hex_str[(page_83[i] & 0xf0) >> 4];
1236 vpd->device_identifier[j++] =
1237 hex_str[page_83[i] & 0x0f];
1238 i++;
1239 }
1240 break;
1241 case 0x02: /* ASCII */
1242 case 0x03: /* UTF-8 */
1243 while (i < (4 + page_83[3]))
1244 vpd->device_identifier[j++] = page_83[i++];
1245 break;
1246 default:
1247 break;
1248 }
1249
1250 return transport_dump_vpd_ident(vpd, NULL, 0);
1251 }
1252 EXPORT_SYMBOL(transport_set_vpd_ident);
1253
1254 static void core_setup_task_attr_emulation(struct se_device *dev)
1255 {
1256 /*
1257 * If this device is from Target_Core_Mod/pSCSI, disable the
1258 * SAM Task Attribute emulation.
1259 *
1260 * This is currently not available in upsream Linux/SCSI Target
1261 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1262 */
1263 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1264 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1265 return;
1266 }
1267
1268 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1269 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1270 " device\n", dev->transport->name,
1271 dev->transport->get_device_rev(dev));
1272 }
1273
1274 static void scsi_dump_inquiry(struct se_device *dev)
1275 {
1276 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1277 int i, device_type;
1278 /*
1279 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1280 */
1281 pr_debug(" Vendor: ");
1282 for (i = 0; i < 8; i++)
1283 if (wwn->vendor[i] >= 0x20)
1284 pr_debug("%c", wwn->vendor[i]);
1285 else
1286 pr_debug(" ");
1287
1288 pr_debug(" Model: ");
1289 for (i = 0; i < 16; i++)
1290 if (wwn->model[i] >= 0x20)
1291 pr_debug("%c", wwn->model[i]);
1292 else
1293 pr_debug(" ");
1294
1295 pr_debug(" Revision: ");
1296 for (i = 0; i < 4; i++)
1297 if (wwn->revision[i] >= 0x20)
1298 pr_debug("%c", wwn->revision[i]);
1299 else
1300 pr_debug(" ");
1301
1302 pr_debug("\n");
1303
1304 device_type = dev->transport->get_device_type(dev);
1305 pr_debug(" Type: %s ", scsi_device_type(device_type));
1306 pr_debug(" ANSI SCSI revision: %02x\n",
1307 dev->transport->get_device_rev(dev));
1308 }
1309
1310 struct se_device *transport_add_device_to_core_hba(
1311 struct se_hba *hba,
1312 struct se_subsystem_api *transport,
1313 struct se_subsystem_dev *se_dev,
1314 u32 device_flags,
1315 void *transport_dev,
1316 struct se_dev_limits *dev_limits,
1317 const char *inquiry_prod,
1318 const char *inquiry_rev)
1319 {
1320 int force_pt;
1321 struct se_device *dev;
1322
1323 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1324 if (!dev) {
1325 pr_err("Unable to allocate memory for se_dev_t\n");
1326 return NULL;
1327 }
1328
1329 transport_init_queue_obj(&dev->dev_queue_obj);
1330 dev->dev_flags = device_flags;
1331 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1332 dev->dev_ptr = transport_dev;
1333 dev->se_hba = hba;
1334 dev->se_sub_dev = se_dev;
1335 dev->transport = transport;
1336 atomic_set(&dev->active_cmds, 0);
1337 INIT_LIST_HEAD(&dev->dev_list);
1338 INIT_LIST_HEAD(&dev->dev_sep_list);
1339 INIT_LIST_HEAD(&dev->dev_tmr_list);
1340 INIT_LIST_HEAD(&dev->execute_task_list);
1341 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1342 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1343 INIT_LIST_HEAD(&dev->state_task_list);
1344 INIT_LIST_HEAD(&dev->qf_cmd_list);
1345 spin_lock_init(&dev->execute_task_lock);
1346 spin_lock_init(&dev->delayed_cmd_lock);
1347 spin_lock_init(&dev->ordered_cmd_lock);
1348 spin_lock_init(&dev->state_task_lock);
1349 spin_lock_init(&dev->dev_alua_lock);
1350 spin_lock_init(&dev->dev_reservation_lock);
1351 spin_lock_init(&dev->dev_status_lock);
1352 spin_lock_init(&dev->dev_status_thr_lock);
1353 spin_lock_init(&dev->se_port_lock);
1354 spin_lock_init(&dev->se_tmr_lock);
1355 spin_lock_init(&dev->qf_cmd_lock);
1356
1357 dev->queue_depth = dev_limits->queue_depth;
1358 atomic_set(&dev->depth_left, dev->queue_depth);
1359 atomic_set(&dev->dev_ordered_id, 0);
1360
1361 se_dev_set_default_attribs(dev, dev_limits);
1362
1363 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364 dev->creation_time = get_jiffies_64();
1365 spin_lock_init(&dev->stats_lock);
1366
1367 spin_lock(&hba->device_lock);
1368 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369 hba->dev_count++;
1370 spin_unlock(&hba->device_lock);
1371 /*
1372 * Setup the SAM Task Attribute emulation for struct se_device
1373 */
1374 core_setup_task_attr_emulation(dev);
1375 /*
1376 * Force PR and ALUA passthrough emulation with internal object use.
1377 */
1378 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379 /*
1380 * Setup the Reservations infrastructure for struct se_device
1381 */
1382 core_setup_reservations(dev, force_pt);
1383 /*
1384 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385 */
1386 if (core_setup_alua(dev, force_pt) < 0)
1387 goto out;
1388
1389 /*
1390 * Startup the struct se_device processing thread
1391 */
1392 dev->process_thread = kthread_run(transport_processing_thread, dev,
1393 "LIO_%s", dev->transport->name);
1394 if (IS_ERR(dev->process_thread)) {
1395 pr_err("Unable to create kthread: LIO_%s\n",
1396 dev->transport->name);
1397 goto out;
1398 }
1399 /*
1400 * Setup work_queue for QUEUE_FULL
1401 */
1402 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403 /*
1404 * Preload the initial INQUIRY const values if we are doing
1405 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 * passthrough because this is being provided by the backend LLD.
1407 * This is required so that transport_get_inquiry() copies these
1408 * originals once back into DEV_T10_WWN(dev) for the virtual device
1409 * setup.
1410 */
1411 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412 if (!inquiry_prod || !inquiry_rev) {
1413 pr_err("All non TCM/pSCSI plugins require"
1414 " INQUIRY consts\n");
1415 goto out;
1416 }
1417
1418 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421 }
1422 scsi_dump_inquiry(dev);
1423
1424 return dev;
1425 out:
1426 kthread_stop(dev->process_thread);
1427
1428 spin_lock(&hba->device_lock);
1429 list_del(&dev->dev_list);
1430 hba->dev_count--;
1431 spin_unlock(&hba->device_lock);
1432
1433 se_release_vpd_for_dev(dev);
1434
1435 kfree(dev);
1436
1437 return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440
1441 /* transport_generic_prepare_cdb():
1442 *
1443 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1444 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445 * The point of this is since we are mapping iSCSI LUNs to
1446 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447 * devices and HBAs for a loop.
1448 */
1449 static inline void transport_generic_prepare_cdb(
1450 unsigned char *cdb)
1451 {
1452 switch (cdb[0]) {
1453 case READ_10: /* SBC - RDProtect */
1454 case READ_12: /* SBC - RDProtect */
1455 case READ_16: /* SBC - RDProtect */
1456 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457 case VERIFY: /* SBC - VRProtect */
1458 case VERIFY_16: /* SBC - VRProtect */
1459 case WRITE_VERIFY: /* SBC - VRProtect */
1460 case WRITE_VERIFY_12: /* SBC - VRProtect */
1461 break;
1462 default:
1463 cdb[1] &= 0x1f; /* clear logical unit number */
1464 break;
1465 }
1466 }
1467
1468 static struct se_task *
1469 transport_generic_get_task(struct se_cmd *cmd,
1470 enum dma_data_direction data_direction)
1471 {
1472 struct se_task *task;
1473 struct se_device *dev = cmd->se_dev;
1474
1475 task = dev->transport->alloc_task(cmd->t_task_cdb);
1476 if (!task) {
1477 pr_err("Unable to allocate struct se_task\n");
1478 return NULL;
1479 }
1480
1481 INIT_LIST_HEAD(&task->t_list);
1482 INIT_LIST_HEAD(&task->t_execute_list);
1483 INIT_LIST_HEAD(&task->t_state_list);
1484 init_completion(&task->task_stop_comp);
1485 task->task_se_cmd = cmd;
1486 task->task_data_direction = data_direction;
1487
1488 return task;
1489 }
1490
1491 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1492
1493 /*
1494 * Used by fabric modules containing a local struct se_cmd within their
1495 * fabric dependent per I/O descriptor.
1496 */
1497 void transport_init_se_cmd(
1498 struct se_cmd *cmd,
1499 struct target_core_fabric_ops *tfo,
1500 struct se_session *se_sess,
1501 u32 data_length,
1502 int data_direction,
1503 int task_attr,
1504 unsigned char *sense_buffer)
1505 {
1506 INIT_LIST_HEAD(&cmd->se_lun_node);
1507 INIT_LIST_HEAD(&cmd->se_delayed_node);
1508 INIT_LIST_HEAD(&cmd->se_ordered_node);
1509 INIT_LIST_HEAD(&cmd->se_qf_node);
1510 INIT_LIST_HEAD(&cmd->se_queue_node);
1511 INIT_LIST_HEAD(&cmd->se_cmd_list);
1512 INIT_LIST_HEAD(&cmd->t_task_list);
1513 init_completion(&cmd->transport_lun_fe_stop_comp);
1514 init_completion(&cmd->transport_lun_stop_comp);
1515 init_completion(&cmd->t_transport_stop_comp);
1516 init_completion(&cmd->cmd_wait_comp);
1517 spin_lock_init(&cmd->t_state_lock);
1518 atomic_set(&cmd->transport_dev_active, 1);
1519
1520 cmd->se_tfo = tfo;
1521 cmd->se_sess = se_sess;
1522 cmd->data_length = data_length;
1523 cmd->data_direction = data_direction;
1524 cmd->sam_task_attr = task_attr;
1525 cmd->sense_buffer = sense_buffer;
1526 }
1527 EXPORT_SYMBOL(transport_init_se_cmd);
1528
1529 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1530 {
1531 /*
1532 * Check if SAM Task Attribute emulation is enabled for this
1533 * struct se_device storage object
1534 */
1535 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1536 return 0;
1537
1538 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1539 pr_debug("SAM Task Attribute ACA"
1540 " emulation is not supported\n");
1541 return -EINVAL;
1542 }
1543 /*
1544 * Used to determine when ORDERED commands should go from
1545 * Dormant to Active status.
1546 */
1547 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1548 smp_mb__after_atomic_inc();
1549 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550 cmd->se_ordered_id, cmd->sam_task_attr,
1551 cmd->se_dev->transport->name);
1552 return 0;
1553 }
1554
1555 /* transport_generic_allocate_tasks():
1556 *
1557 * Called from fabric RX Thread.
1558 */
1559 int transport_generic_allocate_tasks(
1560 struct se_cmd *cmd,
1561 unsigned char *cdb)
1562 {
1563 int ret;
1564
1565 transport_generic_prepare_cdb(cdb);
1566 /*
1567 * Ensure that the received CDB is less than the max (252 + 8) bytes
1568 * for VARIABLE_LENGTH_CMD
1569 */
1570 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1571 pr_err("Received SCSI CDB with command_size: %d that"
1572 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1574 return -EINVAL;
1575 }
1576 /*
1577 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578 * allocate the additional extended CDB buffer now.. Otherwise
1579 * setup the pointer from __t_task_cdb to t_task_cdb.
1580 */
1581 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1582 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1583 GFP_KERNEL);
1584 if (!cmd->t_task_cdb) {
1585 pr_err("Unable to allocate cmd->t_task_cdb"
1586 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587 scsi_command_size(cdb),
1588 (unsigned long)sizeof(cmd->__t_task_cdb));
1589 return -ENOMEM;
1590 }
1591 } else
1592 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1593 /*
1594 * Copy the original CDB into cmd->
1595 */
1596 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1597 /*
1598 * Setup the received CDB based on SCSI defined opcodes and
1599 * perform unit attention, persistent reservations and ALUA
1600 * checks for virtual device backends. The cmd->t_task_cdb
1601 * pointer is expected to be setup before we reach this point.
1602 */
1603 ret = transport_generic_cmd_sequencer(cmd, cdb);
1604 if (ret < 0)
1605 return ret;
1606 /*
1607 * Check for SAM Task Attribute Emulation
1608 */
1609 if (transport_check_alloc_task_attr(cmd) < 0) {
1610 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1611 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1612 return -EINVAL;
1613 }
1614 spin_lock(&cmd->se_lun->lun_sep_lock);
1615 if (cmd->se_lun->lun_sep)
1616 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1617 spin_unlock(&cmd->se_lun->lun_sep_lock);
1618 return 0;
1619 }
1620 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1621
1622 /*
1623 * Used by fabric module frontends to queue tasks directly.
1624 * Many only be used from process context only
1625 */
1626 int transport_handle_cdb_direct(
1627 struct se_cmd *cmd)
1628 {
1629 int ret;
1630
1631 if (!cmd->se_lun) {
1632 dump_stack();
1633 pr_err("cmd->se_lun is NULL\n");
1634 return -EINVAL;
1635 }
1636 if (in_interrupt()) {
1637 dump_stack();
1638 pr_err("transport_generic_handle_cdb cannot be called"
1639 " from interrupt context\n");
1640 return -EINVAL;
1641 }
1642 /*
1643 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1644 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1645 * in existing usage to ensure that outstanding descriptors are handled
1646 * correctly during shutdown via transport_wait_for_tasks()
1647 *
1648 * Also, we don't take cmd->t_state_lock here as we only expect
1649 * this to be called for initial descriptor submission.
1650 */
1651 cmd->t_state = TRANSPORT_NEW_CMD;
1652 atomic_set(&cmd->t_transport_active, 1);
1653 /*
1654 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1655 * so follow TRANSPORT_NEW_CMD processing thread context usage
1656 * and call transport_generic_request_failure() if necessary..
1657 */
1658 ret = transport_generic_new_cmd(cmd);
1659 if (ret < 0) {
1660 cmd->transport_error_status = ret;
1661 transport_generic_request_failure(cmd, 0,
1662 (cmd->data_direction != DMA_TO_DEVICE));
1663 }
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(transport_handle_cdb_direct);
1667
1668 /*
1669 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1670 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1671 * complete setup in TCM process context w/ TFO->new_cmd_map().
1672 */
1673 int transport_generic_handle_cdb_map(
1674 struct se_cmd *cmd)
1675 {
1676 if (!cmd->se_lun) {
1677 dump_stack();
1678 pr_err("cmd->se_lun is NULL\n");
1679 return -EINVAL;
1680 }
1681
1682 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1683 return 0;
1684 }
1685 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1686
1687 /* transport_generic_handle_data():
1688 *
1689 *
1690 */
1691 int transport_generic_handle_data(
1692 struct se_cmd *cmd)
1693 {
1694 /*
1695 * For the software fabric case, then we assume the nexus is being
1696 * failed/shutdown when signals are pending from the kthread context
1697 * caller, so we return a failure. For the HW target mode case running
1698 * in interrupt code, the signal_pending() check is skipped.
1699 */
1700 if (!in_interrupt() && signal_pending(current))
1701 return -EPERM;
1702 /*
1703 * If the received CDB has aleady been ABORTED by the generic
1704 * target engine, we now call transport_check_aborted_status()
1705 * to queue any delated TASK_ABORTED status for the received CDB to the
1706 * fabric module as we are expecting no further incoming DATA OUT
1707 * sequences at this point.
1708 */
1709 if (transport_check_aborted_status(cmd, 1) != 0)
1710 return 0;
1711
1712 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1713 return 0;
1714 }
1715 EXPORT_SYMBOL(transport_generic_handle_data);
1716
1717 /* transport_generic_handle_tmr():
1718 *
1719 *
1720 */
1721 int transport_generic_handle_tmr(
1722 struct se_cmd *cmd)
1723 {
1724 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(transport_generic_handle_tmr);
1728
1729 /*
1730 * If the task is active, request it to be stopped and sleep until it
1731 * has completed.
1732 */
1733 bool target_stop_task(struct se_task *task, unsigned long *flags)
1734 {
1735 struct se_cmd *cmd = task->task_se_cmd;
1736 bool was_active = false;
1737
1738 if (task->task_flags & TF_ACTIVE) {
1739 task->task_flags |= TF_REQUEST_STOP;
1740 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1741
1742 pr_debug("Task %p waiting to complete\n", task);
1743 wait_for_completion(&task->task_stop_comp);
1744 pr_debug("Task %p stopped successfully\n", task);
1745
1746 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1747 atomic_dec(&cmd->t_task_cdbs_left);
1748 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1749 was_active = true;
1750 }
1751
1752 return was_active;
1753 }
1754
1755 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1756 {
1757 struct se_task *task, *task_tmp;
1758 unsigned long flags;
1759 int ret = 0;
1760
1761 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1762 cmd->se_tfo->get_task_tag(cmd));
1763
1764 /*
1765 * No tasks remain in the execution queue
1766 */
1767 spin_lock_irqsave(&cmd->t_state_lock, flags);
1768 list_for_each_entry_safe(task, task_tmp,
1769 &cmd->t_task_list, t_list) {
1770 pr_debug("Processing task %p\n", task);
1771 /*
1772 * If the struct se_task has not been sent and is not active,
1773 * remove the struct se_task from the execution queue.
1774 */
1775 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1776 spin_unlock_irqrestore(&cmd->t_state_lock,
1777 flags);
1778 transport_remove_task_from_execute_queue(task,
1779 cmd->se_dev);
1780
1781 pr_debug("Task %p removed from execute queue\n", task);
1782 spin_lock_irqsave(&cmd->t_state_lock, flags);
1783 continue;
1784 }
1785
1786 if (!target_stop_task(task, &flags)) {
1787 pr_debug("Task %p - did nothing\n", task);
1788 ret++;
1789 }
1790 }
1791 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1792
1793 return ret;
1794 }
1795
1796 /*
1797 * Handle SAM-esque emulation for generic transport request failures.
1798 */
1799 static void transport_generic_request_failure(
1800 struct se_cmd *cmd,
1801 int complete,
1802 int sc)
1803 {
1804 int ret = 0;
1805
1806 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1807 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1808 cmd->t_task_cdb[0]);
1809 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1810 cmd->se_tfo->get_cmd_state(cmd),
1811 cmd->t_state,
1812 cmd->transport_error_status);
1813 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1814 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1815 " t_transport_active: %d t_transport_stop: %d"
1816 " t_transport_sent: %d\n", cmd->t_task_list_num,
1817 atomic_read(&cmd->t_task_cdbs_left),
1818 atomic_read(&cmd->t_task_cdbs_sent),
1819 atomic_read(&cmd->t_task_cdbs_ex_left),
1820 atomic_read(&cmd->t_transport_active),
1821 atomic_read(&cmd->t_transport_stop),
1822 atomic_read(&cmd->t_transport_sent));
1823
1824 /*
1825 * For SAM Task Attribute emulation for failed struct se_cmd
1826 */
1827 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1828 transport_complete_task_attr(cmd);
1829
1830 if (complete) {
1831 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1832 }
1833
1834 switch (cmd->transport_error_status) {
1835 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1836 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1837 break;
1838 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1839 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1840 break;
1841 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1842 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1843 break;
1844 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1845 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1846 break;
1847 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1848 if (!sc)
1849 transport_new_cmd_failure(cmd);
1850 /*
1851 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1852 * we force this session to fall back to session
1853 * recovery.
1854 */
1855 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1856 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1857
1858 goto check_stop;
1859 case PYX_TRANSPORT_LU_COMM_FAILURE:
1860 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1861 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1862 break;
1863 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1864 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1865 break;
1866 case PYX_TRANSPORT_WRITE_PROTECTED:
1867 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1868 break;
1869 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1870 /*
1871 * No SENSE Data payload for this case, set SCSI Status
1872 * and queue the response to $FABRIC_MOD.
1873 *
1874 * Uses linux/include/scsi/scsi.h SAM status codes defs
1875 */
1876 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1877 /*
1878 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1879 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1880 * CONFLICT STATUS.
1881 *
1882 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1883 */
1884 if (cmd->se_sess &&
1885 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1886 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1887 cmd->orig_fe_lun, 0x2C,
1888 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1889
1890 ret = cmd->se_tfo->queue_status(cmd);
1891 if (ret == -EAGAIN || ret == -ENOMEM)
1892 goto queue_full;
1893 goto check_stop;
1894 case PYX_TRANSPORT_USE_SENSE_REASON:
1895 /*
1896 * struct se_cmd->scsi_sense_reason already set
1897 */
1898 break;
1899 default:
1900 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1901 cmd->t_task_cdb[0],
1902 cmd->transport_error_status);
1903 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1904 break;
1905 }
1906 /*
1907 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1908 * make the call to transport_send_check_condition_and_sense()
1909 * directly. Otherwise expect the fabric to make the call to
1910 * transport_send_check_condition_and_sense() after handling
1911 * possible unsoliticied write data payloads.
1912 */
1913 if (!sc && !cmd->se_tfo->new_cmd_map)
1914 transport_new_cmd_failure(cmd);
1915 else {
1916 ret = transport_send_check_condition_and_sense(cmd,
1917 cmd->scsi_sense_reason, 0);
1918 if (ret == -EAGAIN || ret == -ENOMEM)
1919 goto queue_full;
1920 }
1921
1922 check_stop:
1923 transport_lun_remove_cmd(cmd);
1924 if (!transport_cmd_check_stop_to_fabric(cmd))
1925 ;
1926 return;
1927
1928 queue_full:
1929 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1930 transport_handle_queue_full(cmd, cmd->se_dev);
1931 }
1932
1933 static inline u32 transport_lba_21(unsigned char *cdb)
1934 {
1935 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1936 }
1937
1938 static inline u32 transport_lba_32(unsigned char *cdb)
1939 {
1940 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1941 }
1942
1943 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1944 {
1945 unsigned int __v1, __v2;
1946
1947 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1948 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1949
1950 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1951 }
1952
1953 /*
1954 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1955 */
1956 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1957 {
1958 unsigned int __v1, __v2;
1959
1960 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1961 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1962
1963 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1964 }
1965
1966 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1967 {
1968 unsigned long flags;
1969
1970 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1971 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1972 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1973 }
1974
1975 static inline int transport_tcq_window_closed(struct se_device *dev)
1976 {
1977 if (dev->dev_tcq_window_closed++ <
1978 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1979 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1980 } else
1981 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1982
1983 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1984 return 0;
1985 }
1986
1987 /*
1988 * Called from Fabric Module context from transport_execute_tasks()
1989 *
1990 * The return of this function determins if the tasks from struct se_cmd
1991 * get added to the execution queue in transport_execute_tasks(),
1992 * or are added to the delayed or ordered lists here.
1993 */
1994 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1995 {
1996 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1997 return 1;
1998 /*
1999 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2000 * to allow the passed struct se_cmd list of tasks to the front of the list.
2001 */
2002 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2003 atomic_inc(&cmd->se_dev->dev_hoq_count);
2004 smp_mb__after_atomic_inc();
2005 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2006 " 0x%02x, se_ordered_id: %u\n",
2007 cmd->t_task_cdb[0],
2008 cmd->se_ordered_id);
2009 return 1;
2010 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2011 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2012 list_add_tail(&cmd->se_ordered_node,
2013 &cmd->se_dev->ordered_cmd_list);
2014 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2015
2016 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2017 smp_mb__after_atomic_inc();
2018
2019 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2020 " list, se_ordered_id: %u\n",
2021 cmd->t_task_cdb[0],
2022 cmd->se_ordered_id);
2023 /*
2024 * Add ORDERED command to tail of execution queue if
2025 * no other older commands exist that need to be
2026 * completed first.
2027 */
2028 if (!atomic_read(&cmd->se_dev->simple_cmds))
2029 return 1;
2030 } else {
2031 /*
2032 * For SIMPLE and UNTAGGED Task Attribute commands
2033 */
2034 atomic_inc(&cmd->se_dev->simple_cmds);
2035 smp_mb__after_atomic_inc();
2036 }
2037 /*
2038 * Otherwise if one or more outstanding ORDERED task attribute exist,
2039 * add the dormant task(s) built for the passed struct se_cmd to the
2040 * execution queue and become in Active state for this struct se_device.
2041 */
2042 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2043 /*
2044 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2045 * will be drained upon completion of HEAD_OF_QUEUE task.
2046 */
2047 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2048 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2049 list_add_tail(&cmd->se_delayed_node,
2050 &cmd->se_dev->delayed_cmd_list);
2051 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2052
2053 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2054 " delayed CMD list, se_ordered_id: %u\n",
2055 cmd->t_task_cdb[0], cmd->sam_task_attr,
2056 cmd->se_ordered_id);
2057 /*
2058 * Return zero to let transport_execute_tasks() know
2059 * not to add the delayed tasks to the execution list.
2060 */
2061 return 0;
2062 }
2063 /*
2064 * Otherwise, no ORDERED task attributes exist..
2065 */
2066 return 1;
2067 }
2068
2069 /*
2070 * Called from fabric module context in transport_generic_new_cmd() and
2071 * transport_generic_process_write()
2072 */
2073 static int transport_execute_tasks(struct se_cmd *cmd)
2074 {
2075 int add_tasks;
2076
2077 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2078 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2079 transport_generic_request_failure(cmd, 0, 1);
2080 return 0;
2081 }
2082
2083 /*
2084 * Call transport_cmd_check_stop() to see if a fabric exception
2085 * has occurred that prevents execution.
2086 */
2087 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2088 /*
2089 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2090 * attribute for the tasks of the received struct se_cmd CDB
2091 */
2092 add_tasks = transport_execute_task_attr(cmd);
2093 if (!add_tasks)
2094 goto execute_tasks;
2095 /*
2096 * This calls transport_add_tasks_from_cmd() to handle
2097 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2098 * (if enabled) in __transport_add_task_to_execute_queue() and
2099 * transport_add_task_check_sam_attr().
2100 */
2101 transport_add_tasks_from_cmd(cmd);
2102 }
2103 /*
2104 * Kick the execution queue for the cmd associated struct se_device
2105 * storage object.
2106 */
2107 execute_tasks:
2108 __transport_execute_tasks(cmd->se_dev);
2109 return 0;
2110 }
2111
2112 /*
2113 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2114 * from struct se_device->execute_task_list and
2115 *
2116 * Called from transport_processing_thread()
2117 */
2118 static int __transport_execute_tasks(struct se_device *dev)
2119 {
2120 int error;
2121 struct se_cmd *cmd = NULL;
2122 struct se_task *task = NULL;
2123 unsigned long flags;
2124
2125 /*
2126 * Check if there is enough room in the device and HBA queue to send
2127 * struct se_tasks to the selected transport.
2128 */
2129 check_depth:
2130 if (!atomic_read(&dev->depth_left))
2131 return transport_tcq_window_closed(dev);
2132
2133 dev->dev_tcq_window_closed = 0;
2134
2135 spin_lock_irq(&dev->execute_task_lock);
2136 if (list_empty(&dev->execute_task_list)) {
2137 spin_unlock_irq(&dev->execute_task_lock);
2138 return 0;
2139 }
2140 task = list_first_entry(&dev->execute_task_list,
2141 struct se_task, t_execute_list);
2142 __transport_remove_task_from_execute_queue(task, dev);
2143 spin_unlock_irq(&dev->execute_task_lock);
2144
2145 atomic_dec(&dev->depth_left);
2146
2147 cmd = task->task_se_cmd;
2148
2149 spin_lock_irqsave(&cmd->t_state_lock, flags);
2150 task->task_flags |= (TF_ACTIVE | TF_SENT);
2151 atomic_inc(&cmd->t_task_cdbs_sent);
2152
2153 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2154 cmd->t_task_list_num)
2155 atomic_set(&cmd->t_transport_sent, 1);
2156
2157 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2158 /*
2159 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2160 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2161 * struct se_subsystem_api->do_task() caller below.
2162 */
2163 if (cmd->transport_emulate_cdb) {
2164 error = cmd->transport_emulate_cdb(cmd);
2165 if (error != 0) {
2166 cmd->transport_error_status = error;
2167 spin_lock_irqsave(&cmd->t_state_lock, flags);
2168 task->task_flags &= ~TF_ACTIVE;
2169 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2170 atomic_set(&cmd->t_transport_sent, 0);
2171 transport_stop_tasks_for_cmd(cmd);
2172 atomic_inc(&dev->depth_left);
2173 transport_generic_request_failure(cmd, 0, 1);
2174 goto check_depth;
2175 }
2176 /*
2177 * Handle the successful completion for transport_emulate_cdb()
2178 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2179 * Otherwise the caller is expected to complete the task with
2180 * proper status.
2181 */
2182 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2183 cmd->scsi_status = SAM_STAT_GOOD;
2184 task->task_scsi_status = GOOD;
2185 transport_complete_task(task, 1);
2186 }
2187 } else {
2188 /*
2189 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2190 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2191 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2192 * LUN emulation code.
2193 *
2194 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2195 * call ->do_task() directly and let the underlying TCM subsystem plugin
2196 * code handle the CDB emulation.
2197 */
2198 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2199 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2200 error = transport_emulate_control_cdb(task);
2201 else
2202 error = dev->transport->do_task(task);
2203
2204 if (error != 0) {
2205 cmd->transport_error_status = error;
2206 spin_lock_irqsave(&cmd->t_state_lock, flags);
2207 task->task_flags &= ~TF_ACTIVE;
2208 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2209 atomic_set(&cmd->t_transport_sent, 0);
2210 transport_stop_tasks_for_cmd(cmd);
2211 atomic_inc(&dev->depth_left);
2212 transport_generic_request_failure(cmd, 0, 1);
2213 }
2214 }
2215
2216 goto check_depth;
2217
2218 return 0;
2219 }
2220
2221 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2222 {
2223 unsigned long flags;
2224 /*
2225 * Any unsolicited data will get dumped for failed command inside of
2226 * the fabric plugin
2227 */
2228 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2229 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2230 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2231 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2232 }
2233
2234 static inline u32 transport_get_sectors_6(
2235 unsigned char *cdb,
2236 struct se_cmd *cmd,
2237 int *ret)
2238 {
2239 struct se_device *dev = cmd->se_dev;
2240
2241 /*
2242 * Assume TYPE_DISK for non struct se_device objects.
2243 * Use 8-bit sector value.
2244 */
2245 if (!dev)
2246 goto type_disk;
2247
2248 /*
2249 * Use 24-bit allocation length for TYPE_TAPE.
2250 */
2251 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2252 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2253
2254 /*
2255 * Everything else assume TYPE_DISK Sector CDB location.
2256 * Use 8-bit sector value.
2257 */
2258 type_disk:
2259 return (u32)cdb[4];
2260 }
2261
2262 static inline u32 transport_get_sectors_10(
2263 unsigned char *cdb,
2264 struct se_cmd *cmd,
2265 int *ret)
2266 {
2267 struct se_device *dev = cmd->se_dev;
2268
2269 /*
2270 * Assume TYPE_DISK for non struct se_device objects.
2271 * Use 16-bit sector value.
2272 */
2273 if (!dev)
2274 goto type_disk;
2275
2276 /*
2277 * XXX_10 is not defined in SSC, throw an exception
2278 */
2279 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2280 *ret = -EINVAL;
2281 return 0;
2282 }
2283
2284 /*
2285 * Everything else assume TYPE_DISK Sector CDB location.
2286 * Use 16-bit sector value.
2287 */
2288 type_disk:
2289 return (u32)(cdb[7] << 8) + cdb[8];
2290 }
2291
2292 static inline u32 transport_get_sectors_12(
2293 unsigned char *cdb,
2294 struct se_cmd *cmd,
2295 int *ret)
2296 {
2297 struct se_device *dev = cmd->se_dev;
2298
2299 /*
2300 * Assume TYPE_DISK for non struct se_device objects.
2301 * Use 32-bit sector value.
2302 */
2303 if (!dev)
2304 goto type_disk;
2305
2306 /*
2307 * XXX_12 is not defined in SSC, throw an exception
2308 */
2309 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2310 *ret = -EINVAL;
2311 return 0;
2312 }
2313
2314 /*
2315 * Everything else assume TYPE_DISK Sector CDB location.
2316 * Use 32-bit sector value.
2317 */
2318 type_disk:
2319 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2320 }
2321
2322 static inline u32 transport_get_sectors_16(
2323 unsigned char *cdb,
2324 struct se_cmd *cmd,
2325 int *ret)
2326 {
2327 struct se_device *dev = cmd->se_dev;
2328
2329 /*
2330 * Assume TYPE_DISK for non struct se_device objects.
2331 * Use 32-bit sector value.
2332 */
2333 if (!dev)
2334 goto type_disk;
2335
2336 /*
2337 * Use 24-bit allocation length for TYPE_TAPE.
2338 */
2339 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2340 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2341
2342 type_disk:
2343 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2344 (cdb[12] << 8) + cdb[13];
2345 }
2346
2347 /*
2348 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2349 */
2350 static inline u32 transport_get_sectors_32(
2351 unsigned char *cdb,
2352 struct se_cmd *cmd,
2353 int *ret)
2354 {
2355 /*
2356 * Assume TYPE_DISK for non struct se_device objects.
2357 * Use 32-bit sector value.
2358 */
2359 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2360 (cdb[30] << 8) + cdb[31];
2361
2362 }
2363
2364 static inline u32 transport_get_size(
2365 u32 sectors,
2366 unsigned char *cdb,
2367 struct se_cmd *cmd)
2368 {
2369 struct se_device *dev = cmd->se_dev;
2370
2371 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2372 if (cdb[1] & 1) { /* sectors */
2373 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2374 } else /* bytes */
2375 return sectors;
2376 }
2377 #if 0
2378 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2379 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2380 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2381 dev->transport->name);
2382 #endif
2383 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2384 }
2385
2386 static void transport_xor_callback(struct se_cmd *cmd)
2387 {
2388 unsigned char *buf, *addr;
2389 struct scatterlist *sg;
2390 unsigned int offset;
2391 int i;
2392 int count;
2393 /*
2394 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2395 *
2396 * 1) read the specified logical block(s);
2397 * 2) transfer logical blocks from the data-out buffer;
2398 * 3) XOR the logical blocks transferred from the data-out buffer with
2399 * the logical blocks read, storing the resulting XOR data in a buffer;
2400 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2401 * blocks transferred from the data-out buffer; and
2402 * 5) transfer the resulting XOR data to the data-in buffer.
2403 */
2404 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2405 if (!buf) {
2406 pr_err("Unable to allocate xor_callback buf\n");
2407 return;
2408 }
2409 /*
2410 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2411 * into the locally allocated *buf
2412 */
2413 sg_copy_to_buffer(cmd->t_data_sg,
2414 cmd->t_data_nents,
2415 buf,
2416 cmd->data_length);
2417
2418 /*
2419 * Now perform the XOR against the BIDI read memory located at
2420 * cmd->t_mem_bidi_list
2421 */
2422
2423 offset = 0;
2424 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2425 addr = kmap_atomic(sg_page(sg), KM_USER0);
2426 if (!addr)
2427 goto out;
2428
2429 for (i = 0; i < sg->length; i++)
2430 *(addr + sg->offset + i) ^= *(buf + offset + i);
2431
2432 offset += sg->length;
2433 kunmap_atomic(addr, KM_USER0);
2434 }
2435
2436 out:
2437 kfree(buf);
2438 }
2439
2440 /*
2441 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2442 */
2443 static int transport_get_sense_data(struct se_cmd *cmd)
2444 {
2445 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2446 struct se_device *dev = cmd->se_dev;
2447 struct se_task *task = NULL, *task_tmp;
2448 unsigned long flags;
2449 u32 offset = 0;
2450
2451 WARN_ON(!cmd->se_lun);
2452
2453 if (!dev)
2454 return 0;
2455
2456 spin_lock_irqsave(&cmd->t_state_lock, flags);
2457 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2458 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459 return 0;
2460 }
2461
2462 list_for_each_entry_safe(task, task_tmp,
2463 &cmd->t_task_list, t_list) {
2464 if (!task->task_sense)
2465 continue;
2466
2467 if (!dev->transport->get_sense_buffer) {
2468 pr_err("dev->transport->get_sense_buffer"
2469 " is NULL\n");
2470 continue;
2471 }
2472
2473 sense_buffer = dev->transport->get_sense_buffer(task);
2474 if (!sense_buffer) {
2475 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2476 " sense buffer for task with sense\n",
2477 cmd->se_tfo->get_task_tag(cmd), task);
2478 continue;
2479 }
2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2481
2482 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2483 TRANSPORT_SENSE_BUFFER);
2484
2485 memcpy(&buffer[offset], sense_buffer,
2486 TRANSPORT_SENSE_BUFFER);
2487 cmd->scsi_status = task->task_scsi_status;
2488 /* Automatically padded */
2489 cmd->scsi_sense_length =
2490 (TRANSPORT_SENSE_BUFFER + offset);
2491
2492 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2493 " and sense\n",
2494 dev->se_hba->hba_id, dev->transport->name,
2495 cmd->scsi_status);
2496 return 0;
2497 }
2498 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2499
2500 return -1;
2501 }
2502
2503 static int
2504 transport_handle_reservation_conflict(struct se_cmd *cmd)
2505 {
2506 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2507 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2508 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2509 /*
2510 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2511 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2512 * CONFLICT STATUS.
2513 *
2514 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2515 */
2516 if (cmd->se_sess &&
2517 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2518 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2519 cmd->orig_fe_lun, 0x2C,
2520 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2521 return -EINVAL;
2522 }
2523
2524 static inline long long transport_dev_end_lba(struct se_device *dev)
2525 {
2526 return dev->transport->get_blocks(dev) + 1;
2527 }
2528
2529 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2530 {
2531 struct se_device *dev = cmd->se_dev;
2532 u32 sectors;
2533
2534 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2535 return 0;
2536
2537 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2538
2539 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2540 pr_err("LBA: %llu Sectors: %u exceeds"
2541 " transport_dev_end_lba(): %llu\n",
2542 cmd->t_task_lba, sectors,
2543 transport_dev_end_lba(dev));
2544 return -EINVAL;
2545 }
2546
2547 return 0;
2548 }
2549
2550 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2551 {
2552 /*
2553 * Determine if the received WRITE_SAME is used to for direct
2554 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2555 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2556 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2557 */
2558 int passthrough = (dev->transport->transport_type ==
2559 TRANSPORT_PLUGIN_PHBA_PDEV);
2560
2561 if (!passthrough) {
2562 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2563 pr_err("WRITE_SAME PBDATA and LBDATA"
2564 " bits not supported for Block Discard"
2565 " Emulation\n");
2566 return -ENOSYS;
2567 }
2568 /*
2569 * Currently for the emulated case we only accept
2570 * tpws with the UNMAP=1 bit set.
2571 */
2572 if (!(flags[0] & 0x08)) {
2573 pr_err("WRITE_SAME w/o UNMAP bit not"
2574 " supported for Block Discard Emulation\n");
2575 return -ENOSYS;
2576 }
2577 }
2578
2579 return 0;
2580 }
2581
2582 /* transport_generic_cmd_sequencer():
2583 *
2584 * Generic Command Sequencer that should work for most DAS transport
2585 * drivers.
2586 *
2587 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2588 * RX Thread.
2589 *
2590 * FIXME: Need to support other SCSI OPCODES where as well.
2591 */
2592 static int transport_generic_cmd_sequencer(
2593 struct se_cmd *cmd,
2594 unsigned char *cdb)
2595 {
2596 struct se_device *dev = cmd->se_dev;
2597 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2598 int ret = 0, sector_ret = 0, passthrough;
2599 u32 sectors = 0, size = 0, pr_reg_type = 0;
2600 u16 service_action;
2601 u8 alua_ascq = 0;
2602 /*
2603 * Check for an existing UNIT ATTENTION condition
2604 */
2605 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2606 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2607 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2608 return -EINVAL;
2609 }
2610 /*
2611 * Check status of Asymmetric Logical Unit Assignment port
2612 */
2613 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2614 if (ret != 0) {
2615 /*
2616 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2617 * The ALUA additional sense code qualifier (ASCQ) is determined
2618 * by the ALUA primary or secondary access state..
2619 */
2620 if (ret > 0) {
2621 #if 0
2622 pr_debug("[%s]: ALUA TG Port not available,"
2623 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2624 cmd->se_tfo->get_fabric_name(), alua_ascq);
2625 #endif
2626 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2627 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2628 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2629 return -EINVAL;
2630 }
2631 goto out_invalid_cdb_field;
2632 }
2633 /*
2634 * Check status for SPC-3 Persistent Reservations
2635 */
2636 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2637 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2638 cmd, cdb, pr_reg_type) != 0)
2639 return transport_handle_reservation_conflict(cmd);
2640 /*
2641 * This means the CDB is allowed for the SCSI Initiator port
2642 * when said port is *NOT* holding the legacy SPC-2 or
2643 * SPC-3 Persistent Reservation.
2644 */
2645 }
2646
2647 switch (cdb[0]) {
2648 case READ_6:
2649 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2650 if (sector_ret)
2651 goto out_unsupported_cdb;
2652 size = transport_get_size(sectors, cdb, cmd);
2653 cmd->t_task_lba = transport_lba_21(cdb);
2654 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2655 break;
2656 case READ_10:
2657 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2658 if (sector_ret)
2659 goto out_unsupported_cdb;
2660 size = transport_get_size(sectors, cdb, cmd);
2661 cmd->t_task_lba = transport_lba_32(cdb);
2662 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2663 break;
2664 case READ_12:
2665 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2666 if (sector_ret)
2667 goto out_unsupported_cdb;
2668 size = transport_get_size(sectors, cdb, cmd);
2669 cmd->t_task_lba = transport_lba_32(cdb);
2670 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2671 break;
2672 case READ_16:
2673 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2674 if (sector_ret)
2675 goto out_unsupported_cdb;
2676 size = transport_get_size(sectors, cdb, cmd);
2677 cmd->t_task_lba = transport_lba_64(cdb);
2678 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2679 break;
2680 case WRITE_6:
2681 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2682 if (sector_ret)
2683 goto out_unsupported_cdb;
2684 size = transport_get_size(sectors, cdb, cmd);
2685 cmd->t_task_lba = transport_lba_21(cdb);
2686 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2687 break;
2688 case WRITE_10:
2689 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2690 if (sector_ret)
2691 goto out_unsupported_cdb;
2692 size = transport_get_size(sectors, cdb, cmd);
2693 cmd->t_task_lba = transport_lba_32(cdb);
2694 cmd->t_tasks_fua = (cdb[1] & 0x8);
2695 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2696 break;
2697 case WRITE_12:
2698 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2699 if (sector_ret)
2700 goto out_unsupported_cdb;
2701 size = transport_get_size(sectors, cdb, cmd);
2702 cmd->t_task_lba = transport_lba_32(cdb);
2703 cmd->t_tasks_fua = (cdb[1] & 0x8);
2704 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2705 break;
2706 case WRITE_16:
2707 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2708 if (sector_ret)
2709 goto out_unsupported_cdb;
2710 size = transport_get_size(sectors, cdb, cmd);
2711 cmd->t_task_lba = transport_lba_64(cdb);
2712 cmd->t_tasks_fua = (cdb[1] & 0x8);
2713 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2714 break;
2715 case XDWRITEREAD_10:
2716 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2717 !(cmd->t_tasks_bidi))
2718 goto out_invalid_cdb_field;
2719 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2720 if (sector_ret)
2721 goto out_unsupported_cdb;
2722 size = transport_get_size(sectors, cdb, cmd);
2723 cmd->t_task_lba = transport_lba_32(cdb);
2724 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2725
2726 if (dev->transport->transport_type ==
2727 TRANSPORT_PLUGIN_PHBA_PDEV)
2728 goto out_unsupported_cdb;
2729 /*
2730 * Setup BIDI XOR callback to be run after I/O completion.
2731 */
2732 cmd->transport_complete_callback = &transport_xor_callback;
2733 cmd->t_tasks_fua = (cdb[1] & 0x8);
2734 break;
2735 case VARIABLE_LENGTH_CMD:
2736 service_action = get_unaligned_be16(&cdb[8]);
2737 /*
2738 * Determine if this is TCM/PSCSI device and we should disable
2739 * internal emulation for this CDB.
2740 */
2741 passthrough = (dev->transport->transport_type ==
2742 TRANSPORT_PLUGIN_PHBA_PDEV);
2743
2744 switch (service_action) {
2745 case XDWRITEREAD_32:
2746 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2747 if (sector_ret)
2748 goto out_unsupported_cdb;
2749 size = transport_get_size(sectors, cdb, cmd);
2750 /*
2751 * Use WRITE_32 and READ_32 opcodes for the emulated
2752 * XDWRITE_READ_32 logic.
2753 */
2754 cmd->t_task_lba = transport_lba_64_ext(cdb);
2755 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2756
2757 if (passthrough)
2758 goto out_unsupported_cdb;
2759 /*
2760 * Setup BIDI XOR callback to be run during after I/O
2761 * completion.
2762 */
2763 cmd->transport_complete_callback = &transport_xor_callback;
2764 cmd->t_tasks_fua = (cdb[10] & 0x8);
2765 break;
2766 case WRITE_SAME_32:
2767 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2768 if (sector_ret)
2769 goto out_unsupported_cdb;
2770
2771 if (sectors)
2772 size = transport_get_size(1, cdb, cmd);
2773 else {
2774 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2775 " supported\n");
2776 goto out_invalid_cdb_field;
2777 }
2778
2779 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2780 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2781
2782 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2783 goto out_invalid_cdb_field;
2784
2785 break;
2786 default:
2787 pr_err("VARIABLE_LENGTH_CMD service action"
2788 " 0x%04x not supported\n", service_action);
2789 goto out_unsupported_cdb;
2790 }
2791 break;
2792 case MAINTENANCE_IN:
2793 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2794 /* MAINTENANCE_IN from SCC-2 */
2795 /*
2796 * Check for emulated MI_REPORT_TARGET_PGS.
2797 */
2798 if (cdb[1] == MI_REPORT_TARGET_PGS) {
2799 cmd->transport_emulate_cdb =
2800 (su_dev->t10_alua.alua_type ==
2801 SPC3_ALUA_EMULATED) ?
2802 core_emulate_report_target_port_groups :
2803 NULL;
2804 }
2805 size = (cdb[6] << 24) | (cdb[7] << 16) |
2806 (cdb[8] << 8) | cdb[9];
2807 } else {
2808 /* GPCMD_SEND_KEY from multi media commands */
2809 size = (cdb[8] << 8) + cdb[9];
2810 }
2811 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2812 break;
2813 case MODE_SELECT:
2814 size = cdb[4];
2815 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2816 break;
2817 case MODE_SELECT_10:
2818 size = (cdb[7] << 8) + cdb[8];
2819 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2820 break;
2821 case MODE_SENSE:
2822 size = cdb[4];
2823 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 break;
2825 case MODE_SENSE_10:
2826 case GPCMD_READ_BUFFER_CAPACITY:
2827 case GPCMD_SEND_OPC:
2828 case LOG_SELECT:
2829 case LOG_SENSE:
2830 size = (cdb[7] << 8) + cdb[8];
2831 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832 break;
2833 case READ_BLOCK_LIMITS:
2834 size = READ_BLOCK_LEN;
2835 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 break;
2837 case GPCMD_GET_CONFIGURATION:
2838 case GPCMD_READ_FORMAT_CAPACITIES:
2839 case GPCMD_READ_DISC_INFO:
2840 case GPCMD_READ_TRACK_RZONE_INFO:
2841 size = (cdb[7] << 8) + cdb[8];
2842 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2843 break;
2844 case PERSISTENT_RESERVE_IN:
2845 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2846 cmd->transport_emulate_cdb = target_scsi3_emulate_pr_in;
2847 size = (cdb[7] << 8) + cdb[8];
2848 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2849 break;
2850 case PERSISTENT_RESERVE_OUT:
2851 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2852 cmd->transport_emulate_cdb = target_scsi3_emulate_pr_out;
2853 size = (cdb[7] << 8) + cdb[8];
2854 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 break;
2856 case GPCMD_MECHANISM_STATUS:
2857 case GPCMD_READ_DVD_STRUCTURE:
2858 size = (cdb[8] << 8) + cdb[9];
2859 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860 break;
2861 case READ_POSITION:
2862 size = READ_POSITION_LEN;
2863 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2864 break;
2865 case MAINTENANCE_OUT:
2866 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2867 /* MAINTENANCE_OUT from SCC-2
2868 *
2869 * Check for emulated MO_SET_TARGET_PGS.
2870 */
2871 if (cdb[1] == MO_SET_TARGET_PGS) {
2872 cmd->transport_emulate_cdb =
2873 (su_dev->t10_alua.alua_type ==
2874 SPC3_ALUA_EMULATED) ?
2875 core_emulate_set_target_port_groups :
2876 NULL;
2877 }
2878
2879 size = (cdb[6] << 24) | (cdb[7] << 16) |
2880 (cdb[8] << 8) | cdb[9];
2881 } else {
2882 /* GPCMD_REPORT_KEY from multi media commands */
2883 size = (cdb[8] << 8) + cdb[9];
2884 }
2885 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2886 break;
2887 case INQUIRY:
2888 size = (cdb[3] << 8) + cdb[4];
2889 /*
2890 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2891 * See spc4r17 section 5.3
2892 */
2893 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2894 cmd->sam_task_attr = MSG_HEAD_TAG;
2895 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2896 break;
2897 case READ_BUFFER:
2898 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2899 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2900 break;
2901 case READ_CAPACITY:
2902 size = READ_CAP_LEN;
2903 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2904 break;
2905 case READ_MEDIA_SERIAL_NUMBER:
2906 case SECURITY_PROTOCOL_IN:
2907 case SECURITY_PROTOCOL_OUT:
2908 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2909 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2910 break;
2911 case SERVICE_ACTION_IN:
2912 case ACCESS_CONTROL_IN:
2913 case ACCESS_CONTROL_OUT:
2914 case EXTENDED_COPY:
2915 case READ_ATTRIBUTE:
2916 case RECEIVE_COPY_RESULTS:
2917 case WRITE_ATTRIBUTE:
2918 size = (cdb[10] << 24) | (cdb[11] << 16) |
2919 (cdb[12] << 8) | cdb[13];
2920 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2921 break;
2922 case RECEIVE_DIAGNOSTIC:
2923 case SEND_DIAGNOSTIC:
2924 size = (cdb[3] << 8) | cdb[4];
2925 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2926 break;
2927 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2928 #if 0
2929 case GPCMD_READ_CD:
2930 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2931 size = (2336 * sectors);
2932 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2933 break;
2934 #endif
2935 case READ_TOC:
2936 size = cdb[8];
2937 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2938 break;
2939 case REQUEST_SENSE:
2940 size = cdb[4];
2941 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2942 break;
2943 case READ_ELEMENT_STATUS:
2944 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2945 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2946 break;
2947 case WRITE_BUFFER:
2948 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2949 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2950 break;
2951 case RESERVE:
2952 case RESERVE_10:
2953 /*
2954 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2955 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2956 */
2957 if (cdb[0] == RESERVE_10)
2958 size = (cdb[7] << 8) | cdb[8];
2959 else
2960 size = cmd->data_length;
2961
2962 /*
2963 * Setup the legacy emulated handler for SPC-2 and
2964 * >= SPC-3 compatible reservation handling (CRH=1)
2965 * Otherwise, we assume the underlying SCSI logic is
2966 * is running in SPC_PASSTHROUGH, and wants reservations
2967 * emulation disabled.
2968 */
2969 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH) {
2970 cmd->transport_emulate_cdb =
2971 target_scsi2_reservation_reserve;
2972 }
2973 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2974 break;
2975 case RELEASE:
2976 case RELEASE_10:
2977 /*
2978 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2979 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2980 */
2981 if (cdb[0] == RELEASE_10)
2982 size = (cdb[7] << 8) | cdb[8];
2983 else
2984 size = cmd->data_length;
2985
2986 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH) {
2987 cmd->transport_emulate_cdb =
2988 target_scsi2_reservation_release;
2989 }
2990 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2991 break;
2992 case SYNCHRONIZE_CACHE:
2993 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2994 /*
2995 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2996 */
2997 if (cdb[0] == SYNCHRONIZE_CACHE) {
2998 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2999 cmd->t_task_lba = transport_lba_32(cdb);
3000 } else {
3001 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3002 cmd->t_task_lba = transport_lba_64(cdb);
3003 }
3004 if (sector_ret)
3005 goto out_unsupported_cdb;
3006
3007 size = transport_get_size(sectors, cdb, cmd);
3008 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3009
3010 /*
3011 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3012 */
3013 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3014 break;
3015 /*
3016 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3017 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3018 */
3019 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3020 /*
3021 * Check to ensure that LBA + Range does not exceed past end of
3022 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3023 */
3024 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3025 if (transport_cmd_get_valid_sectors(cmd) < 0)
3026 goto out_invalid_cdb_field;
3027 }
3028 break;
3029 case UNMAP:
3030 size = get_unaligned_be16(&cdb[7]);
3031 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3032 break;
3033 case WRITE_SAME_16:
3034 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3035 if (sector_ret)
3036 goto out_unsupported_cdb;
3037
3038 if (sectors)
3039 size = transport_get_size(1, cdb, cmd);
3040 else {
3041 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3042 goto out_invalid_cdb_field;
3043 }
3044
3045 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3046 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3047
3048 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3049 goto out_invalid_cdb_field;
3050 break;
3051 case WRITE_SAME:
3052 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3053 if (sector_ret)
3054 goto out_unsupported_cdb;
3055
3056 if (sectors)
3057 size = transport_get_size(1, cdb, cmd);
3058 else {
3059 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3060 goto out_invalid_cdb_field;
3061 }
3062
3063 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3064 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3065 /*
3066 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3067 * of byte 1 bit 3 UNMAP instead of original reserved field
3068 */
3069 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3070 goto out_invalid_cdb_field;
3071 break;
3072 case ALLOW_MEDIUM_REMOVAL:
3073 case GPCMD_CLOSE_TRACK:
3074 case ERASE:
3075 case INITIALIZE_ELEMENT_STATUS:
3076 case GPCMD_LOAD_UNLOAD:
3077 case REZERO_UNIT:
3078 case SEEK_10:
3079 case GPCMD_SET_SPEED:
3080 case SPACE:
3081 case START_STOP:
3082 case TEST_UNIT_READY:
3083 case VERIFY:
3084 case WRITE_FILEMARKS:
3085 case MOVE_MEDIUM:
3086 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3087 break;
3088 case REPORT_LUNS:
3089 cmd->transport_emulate_cdb =
3090 transport_core_report_lun_response;
3091 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3092 /*
3093 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3094 * See spc4r17 section 5.3
3095 */
3096 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3097 cmd->sam_task_attr = MSG_HEAD_TAG;
3098 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3099 break;
3100 default:
3101 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3102 " 0x%02x, sending CHECK_CONDITION.\n",
3103 cmd->se_tfo->get_fabric_name(), cdb[0]);
3104 goto out_unsupported_cdb;
3105 }
3106
3107 if (size != cmd->data_length) {
3108 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3109 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3110 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3111 cmd->data_length, size, cdb[0]);
3112
3113 cmd->cmd_spdtl = size;
3114
3115 if (cmd->data_direction == DMA_TO_DEVICE) {
3116 pr_err("Rejecting underflow/overflow"
3117 " WRITE data\n");
3118 goto out_invalid_cdb_field;
3119 }
3120 /*
3121 * Reject READ_* or WRITE_* with overflow/underflow for
3122 * type SCF_SCSI_DATA_SG_IO_CDB.
3123 */
3124 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3125 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3126 " CDB on non 512-byte sector setup subsystem"
3127 " plugin: %s\n", dev->transport->name);
3128 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3129 goto out_invalid_cdb_field;
3130 }
3131
3132 if (size > cmd->data_length) {
3133 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3134 cmd->residual_count = (size - cmd->data_length);
3135 } else {
3136 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3137 cmd->residual_count = (cmd->data_length - size);
3138 }
3139 cmd->data_length = size;
3140 }
3141
3142 /* Let's limit control cdbs to a page, for simplicity's sake. */
3143 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3144 size > PAGE_SIZE)
3145 goto out_invalid_cdb_field;
3146
3147 transport_set_supported_SAM_opcode(cmd);
3148 return ret;
3149
3150 out_unsupported_cdb:
3151 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3152 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3153 return -EINVAL;
3154 out_invalid_cdb_field:
3155 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3156 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3157 return -EINVAL;
3158 }
3159
3160 /*
3161 * Called from I/O completion to determine which dormant/delayed
3162 * and ordered cmds need to have their tasks added to the execution queue.
3163 */
3164 static void transport_complete_task_attr(struct se_cmd *cmd)
3165 {
3166 struct se_device *dev = cmd->se_dev;
3167 struct se_cmd *cmd_p, *cmd_tmp;
3168 int new_active_tasks = 0;
3169
3170 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3171 atomic_dec(&dev->simple_cmds);
3172 smp_mb__after_atomic_dec();
3173 dev->dev_cur_ordered_id++;
3174 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3175 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3176 cmd->se_ordered_id);
3177 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3178 atomic_dec(&dev->dev_hoq_count);
3179 smp_mb__after_atomic_dec();
3180 dev->dev_cur_ordered_id++;
3181 pr_debug("Incremented dev_cur_ordered_id: %u for"
3182 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3183 cmd->se_ordered_id);
3184 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3185 spin_lock(&dev->ordered_cmd_lock);
3186 list_del(&cmd->se_ordered_node);
3187 atomic_dec(&dev->dev_ordered_sync);
3188 smp_mb__after_atomic_dec();
3189 spin_unlock(&dev->ordered_cmd_lock);
3190
3191 dev->dev_cur_ordered_id++;
3192 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3193 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3194 }
3195 /*
3196 * Process all commands up to the last received
3197 * ORDERED task attribute which requires another blocking
3198 * boundary
3199 */
3200 spin_lock(&dev->delayed_cmd_lock);
3201 list_for_each_entry_safe(cmd_p, cmd_tmp,
3202 &dev->delayed_cmd_list, se_delayed_node) {
3203
3204 list_del(&cmd_p->se_delayed_node);
3205 spin_unlock(&dev->delayed_cmd_lock);
3206
3207 pr_debug("Calling add_tasks() for"
3208 " cmd_p: 0x%02x Task Attr: 0x%02x"
3209 " Dormant -> Active, se_ordered_id: %u\n",
3210 cmd_p->t_task_cdb[0],
3211 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3212
3213 transport_add_tasks_from_cmd(cmd_p);
3214 new_active_tasks++;
3215
3216 spin_lock(&dev->delayed_cmd_lock);
3217 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3218 break;
3219 }
3220 spin_unlock(&dev->delayed_cmd_lock);
3221 /*
3222 * If new tasks have become active, wake up the transport thread
3223 * to do the processing of the Active tasks.
3224 */
3225 if (new_active_tasks != 0)
3226 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3227 }
3228
3229 static void transport_complete_qf(struct se_cmd *cmd)
3230 {
3231 int ret = 0;
3232
3233 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3234 transport_complete_task_attr(cmd);
3235
3236 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3237 ret = cmd->se_tfo->queue_status(cmd);
3238 if (ret)
3239 goto out;
3240 }
3241
3242 switch (cmd->data_direction) {
3243 case DMA_FROM_DEVICE:
3244 ret = cmd->se_tfo->queue_data_in(cmd);
3245 break;
3246 case DMA_TO_DEVICE:
3247 if (cmd->t_bidi_data_sg) {
3248 ret = cmd->se_tfo->queue_data_in(cmd);
3249 if (ret < 0)
3250 break;
3251 }
3252 /* Fall through for DMA_TO_DEVICE */
3253 case DMA_NONE:
3254 ret = cmd->se_tfo->queue_status(cmd);
3255 break;
3256 default:
3257 break;
3258 }
3259
3260 out:
3261 if (ret < 0) {
3262 transport_handle_queue_full(cmd, cmd->se_dev);
3263 return;
3264 }
3265 transport_lun_remove_cmd(cmd);
3266 transport_cmd_check_stop_to_fabric(cmd);
3267 }
3268
3269 static void transport_handle_queue_full(
3270 struct se_cmd *cmd,
3271 struct se_device *dev)
3272 {
3273 spin_lock_irq(&dev->qf_cmd_lock);
3274 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3275 atomic_inc(&dev->dev_qf_count);
3276 smp_mb__after_atomic_inc();
3277 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3278
3279 schedule_work(&cmd->se_dev->qf_work_queue);
3280 }
3281
3282 static void target_complete_ok_work(struct work_struct *work)
3283 {
3284 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3285 int reason = 0, ret;
3286
3287 /*
3288 * Check if we need to move delayed/dormant tasks from cmds on the
3289 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3290 * Attribute.
3291 */
3292 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3293 transport_complete_task_attr(cmd);
3294 /*
3295 * Check to schedule QUEUE_FULL work, or execute an existing
3296 * cmd->transport_qf_callback()
3297 */
3298 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3299 schedule_work(&cmd->se_dev->qf_work_queue);
3300
3301 /*
3302 * Check if we need to retrieve a sense buffer from
3303 * the struct se_cmd in question.
3304 */
3305 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3306 if (transport_get_sense_data(cmd) < 0)
3307 reason = TCM_NON_EXISTENT_LUN;
3308
3309 /*
3310 * Only set when an struct se_task->task_scsi_status returned
3311 * a non GOOD status.
3312 */
3313 if (cmd->scsi_status) {
3314 ret = transport_send_check_condition_and_sense(
3315 cmd, reason, 1);
3316 if (ret == -EAGAIN || ret == -ENOMEM)
3317 goto queue_full;
3318
3319 transport_lun_remove_cmd(cmd);
3320 transport_cmd_check_stop_to_fabric(cmd);
3321 return;
3322 }
3323 }
3324 /*
3325 * Check for a callback, used by amongst other things
3326 * XDWRITE_READ_10 emulation.
3327 */
3328 if (cmd->transport_complete_callback)
3329 cmd->transport_complete_callback(cmd);
3330
3331 switch (cmd->data_direction) {
3332 case DMA_FROM_DEVICE:
3333 spin_lock(&cmd->se_lun->lun_sep_lock);
3334 if (cmd->se_lun->lun_sep) {
3335 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3336 cmd->data_length;
3337 }
3338 spin_unlock(&cmd->se_lun->lun_sep_lock);
3339
3340 ret = cmd->se_tfo->queue_data_in(cmd);
3341 if (ret == -EAGAIN || ret == -ENOMEM)
3342 goto queue_full;
3343 break;
3344 case DMA_TO_DEVICE:
3345 spin_lock(&cmd->se_lun->lun_sep_lock);
3346 if (cmd->se_lun->lun_sep) {
3347 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3348 cmd->data_length;
3349 }
3350 spin_unlock(&cmd->se_lun->lun_sep_lock);
3351 /*
3352 * Check if we need to send READ payload for BIDI-COMMAND
3353 */
3354 if (cmd->t_bidi_data_sg) {
3355 spin_lock(&cmd->se_lun->lun_sep_lock);
3356 if (cmd->se_lun->lun_sep) {
3357 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3358 cmd->data_length;
3359 }
3360 spin_unlock(&cmd->se_lun->lun_sep_lock);
3361 ret = cmd->se_tfo->queue_data_in(cmd);
3362 if (ret == -EAGAIN || ret == -ENOMEM)
3363 goto queue_full;
3364 break;
3365 }
3366 /* Fall through for DMA_TO_DEVICE */
3367 case DMA_NONE:
3368 ret = cmd->se_tfo->queue_status(cmd);
3369 if (ret == -EAGAIN || ret == -ENOMEM)
3370 goto queue_full;
3371 break;
3372 default:
3373 break;
3374 }
3375
3376 transport_lun_remove_cmd(cmd);
3377 transport_cmd_check_stop_to_fabric(cmd);
3378 return;
3379
3380 queue_full:
3381 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3382 " data_direction: %d\n", cmd, cmd->data_direction);
3383 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3384 transport_handle_queue_full(cmd, cmd->se_dev);
3385 }
3386
3387 static void transport_free_dev_tasks(struct se_cmd *cmd)
3388 {
3389 struct se_task *task, *task_tmp;
3390 unsigned long flags;
3391 LIST_HEAD(dispose_list);
3392
3393 spin_lock_irqsave(&cmd->t_state_lock, flags);
3394 list_for_each_entry_safe(task, task_tmp,
3395 &cmd->t_task_list, t_list) {
3396 if (!(task->task_flags & TF_ACTIVE))
3397 list_move_tail(&task->t_list, &dispose_list);
3398 }
3399 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3400
3401 while (!list_empty(&dispose_list)) {
3402 task = list_first_entry(&dispose_list, struct se_task, t_list);
3403
3404 if (task->task_sg != cmd->t_data_sg &&
3405 task->task_sg != cmd->t_bidi_data_sg)
3406 kfree(task->task_sg);
3407
3408 list_del(&task->t_list);
3409
3410 cmd->se_dev->transport->free_task(task);
3411 }
3412 }
3413
3414 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3415 {
3416 struct scatterlist *sg;
3417 int count;
3418
3419 for_each_sg(sgl, sg, nents, count)
3420 __free_page(sg_page(sg));
3421
3422 kfree(sgl);
3423 }
3424
3425 static inline void transport_free_pages(struct se_cmd *cmd)
3426 {
3427 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3428 return;
3429
3430 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3431 cmd->t_data_sg = NULL;
3432 cmd->t_data_nents = 0;
3433
3434 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3435 cmd->t_bidi_data_sg = NULL;
3436 cmd->t_bidi_data_nents = 0;
3437 }
3438
3439 /**
3440 * transport_put_cmd - release a reference to a command
3441 * @cmd: command to release
3442 *
3443 * This routine releases our reference to the command and frees it if possible.
3444 */
3445 static void transport_put_cmd(struct se_cmd *cmd)
3446 {
3447 unsigned long flags;
3448 int free_tasks = 0;
3449
3450 spin_lock_irqsave(&cmd->t_state_lock, flags);
3451 if (atomic_read(&cmd->t_fe_count)) {
3452 if (!atomic_dec_and_test(&cmd->t_fe_count))
3453 goto out_busy;
3454 }
3455
3456 if (atomic_read(&cmd->t_se_count)) {
3457 if (!atomic_dec_and_test(&cmd->t_se_count))
3458 goto out_busy;
3459 }
3460
3461 if (atomic_read(&cmd->transport_dev_active)) {
3462 atomic_set(&cmd->transport_dev_active, 0);
3463 transport_all_task_dev_remove_state(cmd);
3464 free_tasks = 1;
3465 }
3466 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3467
3468 if (free_tasks != 0)
3469 transport_free_dev_tasks(cmd);
3470
3471 transport_free_pages(cmd);
3472 transport_release_cmd(cmd);
3473 return;
3474 out_busy:
3475 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3476 }
3477
3478 /*
3479 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3480 * allocating in the core.
3481 * @cmd: Associated se_cmd descriptor
3482 * @mem: SGL style memory for TCM WRITE / READ
3483 * @sg_mem_num: Number of SGL elements
3484 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3485 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3486 *
3487 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3488 * of parameters.
3489 */
3490 int transport_generic_map_mem_to_cmd(
3491 struct se_cmd *cmd,
3492 struct scatterlist *sgl,
3493 u32 sgl_count,
3494 struct scatterlist *sgl_bidi,
3495 u32 sgl_bidi_count)
3496 {
3497 if (!sgl || !sgl_count)
3498 return 0;
3499
3500 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3501 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3502
3503 cmd->t_data_sg = sgl;
3504 cmd->t_data_nents = sgl_count;
3505
3506 if (sgl_bidi && sgl_bidi_count) {
3507 cmd->t_bidi_data_sg = sgl_bidi;
3508 cmd->t_bidi_data_nents = sgl_bidi_count;
3509 }
3510 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3511 }
3512
3513 return 0;
3514 }
3515 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3516
3517 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3518 {
3519 struct scatterlist *sg = cmd->t_data_sg;
3520
3521 BUG_ON(!sg);
3522 /*
3523 * We need to take into account a possible offset here for fabrics like
3524 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3525 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3526 */
3527 return kmap(sg_page(sg)) + sg->offset;
3528 }
3529 EXPORT_SYMBOL(transport_kmap_first_data_page);
3530
3531 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3532 {
3533 kunmap(sg_page(cmd->t_data_sg));
3534 }
3535 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3536
3537 static int
3538 transport_generic_get_mem(struct se_cmd *cmd)
3539 {
3540 u32 length = cmd->data_length;
3541 unsigned int nents;
3542 struct page *page;
3543 int i = 0;
3544
3545 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3546 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3547 if (!cmd->t_data_sg)
3548 return -ENOMEM;
3549
3550 cmd->t_data_nents = nents;
3551 sg_init_table(cmd->t_data_sg, nents);
3552
3553 while (length) {
3554 u32 page_len = min_t(u32, length, PAGE_SIZE);
3555 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3556 if (!page)
3557 goto out;
3558
3559 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3560 length -= page_len;
3561 i++;
3562 }
3563 return 0;
3564
3565 out:
3566 while (i >= 0) {
3567 __free_page(sg_page(&cmd->t_data_sg[i]));
3568 i--;
3569 }
3570 kfree(cmd->t_data_sg);
3571 cmd->t_data_sg = NULL;
3572 return -ENOMEM;
3573 }
3574
3575 /* Reduce sectors if they are too long for the device */
3576 static inline sector_t transport_limit_task_sectors(
3577 struct se_device *dev,
3578 unsigned long long lba,
3579 sector_t sectors)
3580 {
3581 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3582
3583 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3584 if ((lba + sectors) > transport_dev_end_lba(dev))
3585 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3586
3587 return sectors;
3588 }
3589
3590
3591 /*
3592 * This function can be used by HW target mode drivers to create a linked
3593 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3594 * This is intended to be called during the completion path by TCM Core
3595 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3596 */
3597 void transport_do_task_sg_chain(struct se_cmd *cmd)
3598 {
3599 struct scatterlist *sg_first = NULL;
3600 struct scatterlist *sg_prev = NULL;
3601 int sg_prev_nents = 0;
3602 struct scatterlist *sg;
3603 struct se_task *task;
3604 u32 chained_nents = 0;
3605 int i;
3606
3607 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3608
3609 /*
3610 * Walk the struct se_task list and setup scatterlist chains
3611 * for each contiguously allocated struct se_task->task_sg[].
3612 */
3613 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3614 if (!task->task_sg)
3615 continue;
3616
3617 if (!sg_first) {
3618 sg_first = task->task_sg;
3619 chained_nents = task->task_sg_nents;
3620 } else {
3621 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3622 chained_nents += task->task_sg_nents;
3623 }
3624 /*
3625 * For the padded tasks, use the extra SGL vector allocated
3626 * in transport_allocate_data_tasks() for the sg_prev_nents
3627 * offset into sg_chain() above.
3628 *
3629 * We do not need the padding for the last task (or a single
3630 * task), but in that case we will never use the sg_prev_nents
3631 * value below which would be incorrect.
3632 */
3633 sg_prev_nents = (task->task_sg_nents + 1);
3634 sg_prev = task->task_sg;
3635 }
3636 /*
3637 * Setup the starting pointer and total t_tasks_sg_linked_no including
3638 * padding SGs for linking and to mark the end.
3639 */
3640 cmd->t_tasks_sg_chained = sg_first;
3641 cmd->t_tasks_sg_chained_no = chained_nents;
3642
3643 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3644 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3645 cmd->t_tasks_sg_chained_no);
3646
3647 for_each_sg(cmd->t_tasks_sg_chained, sg,
3648 cmd->t_tasks_sg_chained_no, i) {
3649
3650 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3651 i, sg, sg_page(sg), sg->length, sg->offset);
3652 if (sg_is_chain(sg))
3653 pr_debug("SG: %p sg_is_chain=1\n", sg);
3654 if (sg_is_last(sg))
3655 pr_debug("SG: %p sg_is_last=1\n", sg);
3656 }
3657 }
3658 EXPORT_SYMBOL(transport_do_task_sg_chain);
3659
3660 /*
3661 * Break up cmd into chunks transport can handle
3662 */
3663 static int
3664 transport_allocate_data_tasks(struct se_cmd *cmd,
3665 enum dma_data_direction data_direction,
3666 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3667 {
3668 struct se_device *dev = cmd->se_dev;
3669 int task_count, i;
3670 unsigned long long lba;
3671 sector_t sectors, dev_max_sectors;
3672 u32 sector_size;
3673
3674 if (transport_cmd_get_valid_sectors(cmd) < 0)
3675 return -EINVAL;
3676
3677 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3678 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3679
3680 WARN_ON(cmd->data_length % sector_size);
3681
3682 lba = cmd->t_task_lba;
3683 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3684 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3685
3686 /*
3687 * If we need just a single task reuse the SG list in the command
3688 * and avoid a lot of work.
3689 */
3690 if (task_count == 1) {
3691 struct se_task *task;
3692 unsigned long flags;
3693
3694 task = transport_generic_get_task(cmd, data_direction);
3695 if (!task)
3696 return -ENOMEM;
3697
3698 task->task_sg = cmd_sg;
3699 task->task_sg_nents = sgl_nents;
3700
3701 task->task_lba = lba;
3702 task->task_sectors = sectors;
3703 task->task_size = task->task_sectors * sector_size;
3704
3705 spin_lock_irqsave(&cmd->t_state_lock, flags);
3706 list_add_tail(&task->t_list, &cmd->t_task_list);
3707 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3708
3709 return task_count;
3710 }
3711
3712 for (i = 0; i < task_count; i++) {
3713 struct se_task *task;
3714 unsigned int task_size, task_sg_nents_padded;
3715 struct scatterlist *sg;
3716 unsigned long flags;
3717 int count;
3718
3719 task = transport_generic_get_task(cmd, data_direction);
3720 if (!task)
3721 return -ENOMEM;
3722
3723 task->task_lba = lba;
3724 task->task_sectors = min(sectors, dev_max_sectors);
3725 task->task_size = task->task_sectors * sector_size;
3726
3727 /*
3728 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3729 * in order to calculate the number per task SGL entries
3730 */
3731 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3732 /*
3733 * Check if the fabric module driver is requesting that all
3734 * struct se_task->task_sg[] be chained together.. If so,
3735 * then allocate an extra padding SG entry for linking and
3736 * marking the end of the chained SGL for every task except
3737 * the last one for (task_count > 1) operation, or skipping
3738 * the extra padding for the (task_count == 1) case.
3739 */
3740 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3741 task_sg_nents_padded = (task->task_sg_nents + 1);
3742 } else
3743 task_sg_nents_padded = task->task_sg_nents;
3744
3745 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3746 task_sg_nents_padded, GFP_KERNEL);
3747 if (!task->task_sg) {
3748 cmd->se_dev->transport->free_task(task);
3749 return -ENOMEM;
3750 }
3751
3752 sg_init_table(task->task_sg, task_sg_nents_padded);
3753
3754 task_size = task->task_size;
3755
3756 /* Build new sgl, only up to task_size */
3757 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3758 if (cmd_sg->length > task_size)
3759 break;
3760
3761 *sg = *cmd_sg;
3762 task_size -= cmd_sg->length;
3763 cmd_sg = sg_next(cmd_sg);
3764 }
3765
3766 lba += task->task_sectors;
3767 sectors -= task->task_sectors;
3768
3769 spin_lock_irqsave(&cmd->t_state_lock, flags);
3770 list_add_tail(&task->t_list, &cmd->t_task_list);
3771 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3772 }
3773
3774 return task_count;
3775 }
3776
3777 static int
3778 transport_allocate_control_task(struct se_cmd *cmd)
3779 {
3780 struct se_task *task;
3781 unsigned long flags;
3782
3783 task = transport_generic_get_task(cmd, cmd->data_direction);
3784 if (!task)
3785 return -ENOMEM;
3786
3787 task->task_sg = cmd->t_data_sg;
3788 task->task_size = cmd->data_length;
3789 task->task_sg_nents = cmd->t_data_nents;
3790
3791 spin_lock_irqsave(&cmd->t_state_lock, flags);
3792 list_add_tail(&task->t_list, &cmd->t_task_list);
3793 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3794
3795 /* Success! Return number of tasks allocated */
3796 return 1;
3797 }
3798
3799 /*
3800 * Allocate any required ressources to execute the command, and either place
3801 * it on the execution queue if possible. For writes we might not have the
3802 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3803 */
3804 int transport_generic_new_cmd(struct se_cmd *cmd)
3805 {
3806 struct se_device *dev = cmd->se_dev;
3807 int task_cdbs, task_cdbs_bidi = 0;
3808 int set_counts = 1;
3809 int ret = 0;
3810
3811 /*
3812 * Determine is the TCM fabric module has already allocated physical
3813 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3814 * beforehand.
3815 */
3816 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3817 cmd->data_length) {
3818 ret = transport_generic_get_mem(cmd);
3819 if (ret < 0)
3820 return ret;
3821 }
3822
3823 /*
3824 * For BIDI command set up the read tasks first.
3825 */
3826 if (cmd->t_bidi_data_sg &&
3827 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3828 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3829
3830 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3831 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3832 cmd->t_bidi_data_nents);
3833 if (task_cdbs_bidi <= 0)
3834 goto out_fail;
3835
3836 atomic_inc(&cmd->t_fe_count);
3837 atomic_inc(&cmd->t_se_count);
3838 set_counts = 0;
3839 }
3840
3841 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3842 task_cdbs = transport_allocate_data_tasks(cmd,
3843 cmd->data_direction, cmd->t_data_sg,
3844 cmd->t_data_nents);
3845 } else {
3846 task_cdbs = transport_allocate_control_task(cmd);
3847 }
3848
3849 if (task_cdbs <= 0)
3850 goto out_fail;
3851
3852 if (set_counts) {
3853 atomic_inc(&cmd->t_fe_count);
3854 atomic_inc(&cmd->t_se_count);
3855 }
3856
3857 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3858 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3859 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3860
3861 /*
3862 * For WRITEs, let the fabric know its buffer is ready..
3863 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3864 * will be added to the struct se_device execution queue after its WRITE
3865 * data has arrived. (ie: It gets handled by the transport processing
3866 * thread a second time)
3867 */
3868 if (cmd->data_direction == DMA_TO_DEVICE) {
3869 transport_add_tasks_to_state_queue(cmd);
3870 return transport_generic_write_pending(cmd);
3871 }
3872 /*
3873 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3874 * to the execution queue.
3875 */
3876 transport_execute_tasks(cmd);
3877 return 0;
3878
3879 out_fail:
3880 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3881 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3882 return -EINVAL;
3883 }
3884 EXPORT_SYMBOL(transport_generic_new_cmd);
3885
3886 /* transport_generic_process_write():
3887 *
3888 *
3889 */
3890 void transport_generic_process_write(struct se_cmd *cmd)
3891 {
3892 transport_execute_tasks(cmd);
3893 }
3894 EXPORT_SYMBOL(transport_generic_process_write);
3895
3896 static void transport_write_pending_qf(struct se_cmd *cmd)
3897 {
3898 int ret;
3899
3900 ret = cmd->se_tfo->write_pending(cmd);
3901 if (ret == -EAGAIN || ret == -ENOMEM) {
3902 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3903 cmd);
3904 transport_handle_queue_full(cmd, cmd->se_dev);
3905 }
3906 }
3907
3908 static int transport_generic_write_pending(struct se_cmd *cmd)
3909 {
3910 unsigned long flags;
3911 int ret;
3912
3913 spin_lock_irqsave(&cmd->t_state_lock, flags);
3914 cmd->t_state = TRANSPORT_WRITE_PENDING;
3915 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3916
3917 /*
3918 * Clear the se_cmd for WRITE_PENDING status in order to set
3919 * cmd->t_transport_active=0 so that transport_generic_handle_data
3920 * can be called from HW target mode interrupt code. This is safe
3921 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3922 * because the se_cmd->se_lun pointer is not being cleared.
3923 */
3924 transport_cmd_check_stop(cmd, 1, 0);
3925
3926 /*
3927 * Call the fabric write_pending function here to let the
3928 * frontend know that WRITE buffers are ready.
3929 */
3930 ret = cmd->se_tfo->write_pending(cmd);
3931 if (ret == -EAGAIN || ret == -ENOMEM)
3932 goto queue_full;
3933 else if (ret < 0)
3934 return ret;
3935
3936 return PYX_TRANSPORT_WRITE_PENDING;
3937
3938 queue_full:
3939 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3940 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3941 transport_handle_queue_full(cmd, cmd->se_dev);
3942 return 0;
3943 }
3944
3945 /**
3946 * transport_release_cmd - free a command
3947 * @cmd: command to free
3948 *
3949 * This routine unconditionally frees a command, and reference counting
3950 * or list removal must be done in the caller.
3951 */
3952 void transport_release_cmd(struct se_cmd *cmd)
3953 {
3954 BUG_ON(!cmd->se_tfo);
3955
3956 if (cmd->se_tmr_req)
3957 core_tmr_release_req(cmd->se_tmr_req);
3958 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3959 kfree(cmd->t_task_cdb);
3960 /*
3961 * Check if target_wait_for_sess_cmds() is expecting to
3962 * release se_cmd directly here..
3963 */
3964 if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3965 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3966 return;
3967
3968 cmd->se_tfo->release_cmd(cmd);
3969 }
3970 EXPORT_SYMBOL(transport_release_cmd);
3971
3972 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3973 {
3974 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3975 if (wait_for_tasks && cmd->se_tmr_req)
3976 transport_wait_for_tasks(cmd);
3977
3978 transport_release_cmd(cmd);
3979 } else {
3980 if (wait_for_tasks)
3981 transport_wait_for_tasks(cmd);
3982
3983 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3984
3985 if (cmd->se_lun)
3986 transport_lun_remove_cmd(cmd);
3987
3988 transport_free_dev_tasks(cmd);
3989
3990 transport_put_cmd(cmd);
3991 }
3992 }
3993 EXPORT_SYMBOL(transport_generic_free_cmd);
3994
3995 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3996 * @se_sess: session to reference
3997 * @se_cmd: command descriptor to add
3998 */
3999 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4000 {
4001 unsigned long flags;
4002
4003 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4004 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4005 se_cmd->check_release = 1;
4006 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4007 }
4008 EXPORT_SYMBOL(target_get_sess_cmd);
4009
4010 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
4011 * @se_sess: session to reference
4012 * @se_cmd: command descriptor to drop
4013 */
4014 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4015 {
4016 unsigned long flags;
4017
4018 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4019 if (list_empty(&se_cmd->se_cmd_list)) {
4020 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4021 WARN_ON(1);
4022 return 0;
4023 }
4024
4025 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4026 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4027 complete(&se_cmd->cmd_wait_comp);
4028 return 1;
4029 }
4030 list_del(&se_cmd->se_cmd_list);
4031 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4032
4033 return 0;
4034 }
4035 EXPORT_SYMBOL(target_put_sess_cmd);
4036
4037 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4038 * @se_sess: session to split
4039 */
4040 void target_splice_sess_cmd_list(struct se_session *se_sess)
4041 {
4042 struct se_cmd *se_cmd;
4043 unsigned long flags;
4044
4045 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4046 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4047
4048 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4049 se_sess->sess_tearing_down = 1;
4050
4051 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4052
4053 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4054 se_cmd->cmd_wait_set = 1;
4055
4056 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4057 }
4058 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4059
4060 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4061 * @se_sess: session to wait for active I/O
4062 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4063 */
4064 void target_wait_for_sess_cmds(
4065 struct se_session *se_sess,
4066 int wait_for_tasks)
4067 {
4068 struct se_cmd *se_cmd, *tmp_cmd;
4069 bool rc = false;
4070
4071 list_for_each_entry_safe(se_cmd, tmp_cmd,
4072 &se_sess->sess_wait_list, se_cmd_list) {
4073 list_del(&se_cmd->se_cmd_list);
4074
4075 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4076 " %d\n", se_cmd, se_cmd->t_state,
4077 se_cmd->se_tfo->get_cmd_state(se_cmd));
4078
4079 if (wait_for_tasks) {
4080 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4081 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4082 se_cmd->se_tfo->get_cmd_state(se_cmd));
4083
4084 rc = transport_wait_for_tasks(se_cmd);
4085
4086 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4087 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4088 se_cmd->se_tfo->get_cmd_state(se_cmd));
4089 }
4090
4091 if (!rc) {
4092 wait_for_completion(&se_cmd->cmd_wait_comp);
4093 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4094 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4095 se_cmd->se_tfo->get_cmd_state(se_cmd));
4096 }
4097
4098 se_cmd->se_tfo->release_cmd(se_cmd);
4099 }
4100 }
4101 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4102
4103 /* transport_lun_wait_for_tasks():
4104 *
4105 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4106 * an struct se_lun to be successfully shutdown.
4107 */
4108 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4109 {
4110 unsigned long flags;
4111 int ret;
4112 /*
4113 * If the frontend has already requested this struct se_cmd to
4114 * be stopped, we can safely ignore this struct se_cmd.
4115 */
4116 spin_lock_irqsave(&cmd->t_state_lock, flags);
4117 if (atomic_read(&cmd->t_transport_stop)) {
4118 atomic_set(&cmd->transport_lun_stop, 0);
4119 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4120 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4121 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4122 transport_cmd_check_stop(cmd, 1, 0);
4123 return -EPERM;
4124 }
4125 atomic_set(&cmd->transport_lun_fe_stop, 1);
4126 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4127
4128 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4129
4130 ret = transport_stop_tasks_for_cmd(cmd);
4131
4132 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4133 " %d\n", cmd, cmd->t_task_list_num, ret);
4134 if (!ret) {
4135 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4136 cmd->se_tfo->get_task_tag(cmd));
4137 wait_for_completion(&cmd->transport_lun_stop_comp);
4138 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4139 cmd->se_tfo->get_task_tag(cmd));
4140 }
4141 transport_remove_cmd_from_queue(cmd);
4142
4143 return 0;
4144 }
4145
4146 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4147 {
4148 struct se_cmd *cmd = NULL;
4149 unsigned long lun_flags, cmd_flags;
4150 /*
4151 * Do exception processing and return CHECK_CONDITION status to the
4152 * Initiator Port.
4153 */
4154 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4155 while (!list_empty(&lun->lun_cmd_list)) {
4156 cmd = list_first_entry(&lun->lun_cmd_list,
4157 struct se_cmd, se_lun_node);
4158 list_del(&cmd->se_lun_node);
4159
4160 atomic_set(&cmd->transport_lun_active, 0);
4161 /*
4162 * This will notify iscsi_target_transport.c:
4163 * transport_cmd_check_stop() that a LUN shutdown is in
4164 * progress for the iscsi_cmd_t.
4165 */
4166 spin_lock(&cmd->t_state_lock);
4167 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4168 "_lun_stop for ITT: 0x%08x\n",
4169 cmd->se_lun->unpacked_lun,
4170 cmd->se_tfo->get_task_tag(cmd));
4171 atomic_set(&cmd->transport_lun_stop, 1);
4172 spin_unlock(&cmd->t_state_lock);
4173
4174 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4175
4176 if (!cmd->se_lun) {
4177 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4178 cmd->se_tfo->get_task_tag(cmd),
4179 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4180 BUG();
4181 }
4182 /*
4183 * If the Storage engine still owns the iscsi_cmd_t, determine
4184 * and/or stop its context.
4185 */
4186 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4187 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4188 cmd->se_tfo->get_task_tag(cmd));
4189
4190 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4191 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4192 continue;
4193 }
4194
4195 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4196 "_wait_for_tasks(): SUCCESS\n",
4197 cmd->se_lun->unpacked_lun,
4198 cmd->se_tfo->get_task_tag(cmd));
4199
4200 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4201 if (!atomic_read(&cmd->transport_dev_active)) {
4202 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4203 goto check_cond;
4204 }
4205 atomic_set(&cmd->transport_dev_active, 0);
4206 transport_all_task_dev_remove_state(cmd);
4207 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4208
4209 transport_free_dev_tasks(cmd);
4210 /*
4211 * The Storage engine stopped this struct se_cmd before it was
4212 * send to the fabric frontend for delivery back to the
4213 * Initiator Node. Return this SCSI CDB back with an
4214 * CHECK_CONDITION status.
4215 */
4216 check_cond:
4217 transport_send_check_condition_and_sense(cmd,
4218 TCM_NON_EXISTENT_LUN, 0);
4219 /*
4220 * If the fabric frontend is waiting for this iscsi_cmd_t to
4221 * be released, notify the waiting thread now that LU has
4222 * finished accessing it.
4223 */
4224 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4225 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4226 pr_debug("SE_LUN[%d] - Detected FE stop for"
4227 " struct se_cmd: %p ITT: 0x%08x\n",
4228 lun->unpacked_lun,
4229 cmd, cmd->se_tfo->get_task_tag(cmd));
4230
4231 spin_unlock_irqrestore(&cmd->t_state_lock,
4232 cmd_flags);
4233 transport_cmd_check_stop(cmd, 1, 0);
4234 complete(&cmd->transport_lun_fe_stop_comp);
4235 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4236 continue;
4237 }
4238 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4239 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4240
4241 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4242 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4243 }
4244 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4245 }
4246
4247 static int transport_clear_lun_thread(void *p)
4248 {
4249 struct se_lun *lun = (struct se_lun *)p;
4250
4251 __transport_clear_lun_from_sessions(lun);
4252 complete(&lun->lun_shutdown_comp);
4253
4254 return 0;
4255 }
4256
4257 int transport_clear_lun_from_sessions(struct se_lun *lun)
4258 {
4259 struct task_struct *kt;
4260
4261 kt = kthread_run(transport_clear_lun_thread, lun,
4262 "tcm_cl_%u", lun->unpacked_lun);
4263 if (IS_ERR(kt)) {
4264 pr_err("Unable to start clear_lun thread\n");
4265 return PTR_ERR(kt);
4266 }
4267 wait_for_completion(&lun->lun_shutdown_comp);
4268
4269 return 0;
4270 }
4271
4272 /**
4273 * transport_wait_for_tasks - wait for completion to occur
4274 * @cmd: command to wait
4275 *
4276 * Called from frontend fabric context to wait for storage engine
4277 * to pause and/or release frontend generated struct se_cmd.
4278 */
4279 bool transport_wait_for_tasks(struct se_cmd *cmd)
4280 {
4281 unsigned long flags;
4282
4283 spin_lock_irqsave(&cmd->t_state_lock, flags);
4284 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4285 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4286 return false;
4287 }
4288 /*
4289 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4290 * has been set in transport_set_supported_SAM_opcode().
4291 */
4292 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4293 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4294 return false;
4295 }
4296 /*
4297 * If we are already stopped due to an external event (ie: LUN shutdown)
4298 * sleep until the connection can have the passed struct se_cmd back.
4299 * The cmd->transport_lun_stopped_sem will be upped by
4300 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4301 * has completed its operation on the struct se_cmd.
4302 */
4303 if (atomic_read(&cmd->transport_lun_stop)) {
4304
4305 pr_debug("wait_for_tasks: Stopping"
4306 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4307 "_stop_comp); for ITT: 0x%08x\n",
4308 cmd->se_tfo->get_task_tag(cmd));
4309 /*
4310 * There is a special case for WRITES where a FE exception +
4311 * LUN shutdown means ConfigFS context is still sleeping on
4312 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4313 * We go ahead and up transport_lun_stop_comp just to be sure
4314 * here.
4315 */
4316 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4317 complete(&cmd->transport_lun_stop_comp);
4318 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4319 spin_lock_irqsave(&cmd->t_state_lock, flags);
4320
4321 transport_all_task_dev_remove_state(cmd);
4322 /*
4323 * At this point, the frontend who was the originator of this
4324 * struct se_cmd, now owns the structure and can be released through
4325 * normal means below.
4326 */
4327 pr_debug("wait_for_tasks: Stopped"
4328 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4329 "stop_comp); for ITT: 0x%08x\n",
4330 cmd->se_tfo->get_task_tag(cmd));
4331
4332 atomic_set(&cmd->transport_lun_stop, 0);
4333 }
4334 if (!atomic_read(&cmd->t_transport_active) ||
4335 atomic_read(&cmd->t_transport_aborted)) {
4336 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4337 return false;
4338 }
4339
4340 atomic_set(&cmd->t_transport_stop, 1);
4341
4342 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4343 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4344 cmd, cmd->se_tfo->get_task_tag(cmd),
4345 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4346
4347 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4348
4349 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4350
4351 wait_for_completion(&cmd->t_transport_stop_comp);
4352
4353 spin_lock_irqsave(&cmd->t_state_lock, flags);
4354 atomic_set(&cmd->t_transport_active, 0);
4355 atomic_set(&cmd->t_transport_stop, 0);
4356
4357 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4358 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4359 cmd->se_tfo->get_task_tag(cmd));
4360
4361 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4362
4363 return true;
4364 }
4365 EXPORT_SYMBOL(transport_wait_for_tasks);
4366
4367 static int transport_get_sense_codes(
4368 struct se_cmd *cmd,
4369 u8 *asc,
4370 u8 *ascq)
4371 {
4372 *asc = cmd->scsi_asc;
4373 *ascq = cmd->scsi_ascq;
4374
4375 return 0;
4376 }
4377
4378 static int transport_set_sense_codes(
4379 struct se_cmd *cmd,
4380 u8 asc,
4381 u8 ascq)
4382 {
4383 cmd->scsi_asc = asc;
4384 cmd->scsi_ascq = ascq;
4385
4386 return 0;
4387 }
4388
4389 int transport_send_check_condition_and_sense(
4390 struct se_cmd *cmd,
4391 u8 reason,
4392 int from_transport)
4393 {
4394 unsigned char *buffer = cmd->sense_buffer;
4395 unsigned long flags;
4396 int offset;
4397 u8 asc = 0, ascq = 0;
4398
4399 spin_lock_irqsave(&cmd->t_state_lock, flags);
4400 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4401 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4402 return 0;
4403 }
4404 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4405 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4406
4407 if (!reason && from_transport)
4408 goto after_reason;
4409
4410 if (!from_transport)
4411 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4412 /*
4413 * Data Segment and SenseLength of the fabric response PDU.
4414 *
4415 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4416 * from include/scsi/scsi_cmnd.h
4417 */
4418 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4419 TRANSPORT_SENSE_BUFFER);
4420 /*
4421 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4422 * SENSE KEY values from include/scsi/scsi.h
4423 */
4424 switch (reason) {
4425 case TCM_NON_EXISTENT_LUN:
4426 /* CURRENT ERROR */
4427 buffer[offset] = 0x70;
4428 /* ILLEGAL REQUEST */
4429 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4430 /* LOGICAL UNIT NOT SUPPORTED */
4431 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4432 break;
4433 case TCM_UNSUPPORTED_SCSI_OPCODE:
4434 case TCM_SECTOR_COUNT_TOO_MANY:
4435 /* CURRENT ERROR */
4436 buffer[offset] = 0x70;
4437 /* ILLEGAL REQUEST */
4438 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4439 /* INVALID COMMAND OPERATION CODE */
4440 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4441 break;
4442 case TCM_UNKNOWN_MODE_PAGE:
4443 /* CURRENT ERROR */
4444 buffer[offset] = 0x70;
4445 /* ILLEGAL REQUEST */
4446 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4447 /* INVALID FIELD IN CDB */
4448 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4449 break;
4450 case TCM_CHECK_CONDITION_ABORT_CMD:
4451 /* CURRENT ERROR */
4452 buffer[offset] = 0x70;
4453 /* ABORTED COMMAND */
4454 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4455 /* BUS DEVICE RESET FUNCTION OCCURRED */
4456 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4457 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4458 break;
4459 case TCM_INCORRECT_AMOUNT_OF_DATA:
4460 /* CURRENT ERROR */
4461 buffer[offset] = 0x70;
4462 /* ABORTED COMMAND */
4463 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4464 /* WRITE ERROR */
4465 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4466 /* NOT ENOUGH UNSOLICITED DATA */
4467 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4468 break;
4469 case TCM_INVALID_CDB_FIELD:
4470 /* CURRENT ERROR */
4471 buffer[offset] = 0x70;
4472 /* ABORTED COMMAND */
4473 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4474 /* INVALID FIELD IN CDB */
4475 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4476 break;
4477 case TCM_INVALID_PARAMETER_LIST:
4478 /* CURRENT ERROR */
4479 buffer[offset] = 0x70;
4480 /* ABORTED COMMAND */
4481 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4482 /* INVALID FIELD IN PARAMETER LIST */
4483 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4484 break;
4485 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4486 /* CURRENT ERROR */
4487 buffer[offset] = 0x70;
4488 /* ABORTED COMMAND */
4489 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4490 /* WRITE ERROR */
4491 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4492 /* UNEXPECTED_UNSOLICITED_DATA */
4493 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4494 break;
4495 case TCM_SERVICE_CRC_ERROR:
4496 /* CURRENT ERROR */
4497 buffer[offset] = 0x70;
4498 /* ABORTED COMMAND */
4499 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4500 /* PROTOCOL SERVICE CRC ERROR */
4501 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4502 /* N/A */
4503 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4504 break;
4505 case TCM_SNACK_REJECTED:
4506 /* CURRENT ERROR */
4507 buffer[offset] = 0x70;
4508 /* ABORTED COMMAND */
4509 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4510 /* READ ERROR */
4511 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4512 /* FAILED RETRANSMISSION REQUEST */
4513 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4514 break;
4515 case TCM_WRITE_PROTECTED:
4516 /* CURRENT ERROR */
4517 buffer[offset] = 0x70;
4518 /* DATA PROTECT */
4519 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4520 /* WRITE PROTECTED */
4521 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4522 break;
4523 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4524 /* CURRENT ERROR */
4525 buffer[offset] = 0x70;
4526 /* UNIT ATTENTION */
4527 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4528 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4529 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4530 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4531 break;
4532 case TCM_CHECK_CONDITION_NOT_READY:
4533 /* CURRENT ERROR */
4534 buffer[offset] = 0x70;
4535 /* Not Ready */
4536 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4537 transport_get_sense_codes(cmd, &asc, &ascq);
4538 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4539 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4540 break;
4541 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4542 default:
4543 /* CURRENT ERROR */
4544 buffer[offset] = 0x70;
4545 /* ILLEGAL REQUEST */
4546 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4547 /* LOGICAL UNIT COMMUNICATION FAILURE */
4548 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4549 break;
4550 }
4551 /*
4552 * This code uses linux/include/scsi/scsi.h SAM status codes!
4553 */
4554 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4555 /*
4556 * Automatically padded, this value is encoded in the fabric's
4557 * data_length response PDU containing the SCSI defined sense data.
4558 */
4559 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4560
4561 after_reason:
4562 return cmd->se_tfo->queue_status(cmd);
4563 }
4564 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4565
4566 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4567 {
4568 int ret = 0;
4569
4570 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4571 if (!send_status ||
4572 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4573 return 1;
4574 #if 0
4575 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4576 " status for CDB: 0x%02x ITT: 0x%08x\n",
4577 cmd->t_task_cdb[0],
4578 cmd->se_tfo->get_task_tag(cmd));
4579 #endif
4580 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4581 cmd->se_tfo->queue_status(cmd);
4582 ret = 1;
4583 }
4584 return ret;
4585 }
4586 EXPORT_SYMBOL(transport_check_aborted_status);
4587
4588 void transport_send_task_abort(struct se_cmd *cmd)
4589 {
4590 unsigned long flags;
4591
4592 spin_lock_irqsave(&cmd->t_state_lock, flags);
4593 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4594 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4595 return;
4596 }
4597 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4598
4599 /*
4600 * If there are still expected incoming fabric WRITEs, we wait
4601 * until until they have completed before sending a TASK_ABORTED
4602 * response. This response with TASK_ABORTED status will be
4603 * queued back to fabric module by transport_check_aborted_status().
4604 */
4605 if (cmd->data_direction == DMA_TO_DEVICE) {
4606 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4607 atomic_inc(&cmd->t_transport_aborted);
4608 smp_mb__after_atomic_inc();
4609 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4610 transport_new_cmd_failure(cmd);
4611 return;
4612 }
4613 }
4614 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4615 #if 0
4616 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4617 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4618 cmd->se_tfo->get_task_tag(cmd));
4619 #endif
4620 cmd->se_tfo->queue_status(cmd);
4621 }
4622
4623 /* transport_generic_do_tmr():
4624 *
4625 *
4626 */
4627 int transport_generic_do_tmr(struct se_cmd *cmd)
4628 {
4629 struct se_device *dev = cmd->se_dev;
4630 struct se_tmr_req *tmr = cmd->se_tmr_req;
4631 int ret;
4632
4633 switch (tmr->function) {
4634 case TMR_ABORT_TASK:
4635 tmr->response = TMR_FUNCTION_REJECTED;
4636 break;
4637 case TMR_ABORT_TASK_SET:
4638 case TMR_CLEAR_ACA:
4639 case TMR_CLEAR_TASK_SET:
4640 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4641 break;
4642 case TMR_LUN_RESET:
4643 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4644 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4645 TMR_FUNCTION_REJECTED;
4646 break;
4647 case TMR_TARGET_WARM_RESET:
4648 tmr->response = TMR_FUNCTION_REJECTED;
4649 break;
4650 case TMR_TARGET_COLD_RESET:
4651 tmr->response = TMR_FUNCTION_REJECTED;
4652 break;
4653 default:
4654 pr_err("Uknown TMR function: 0x%02x.\n",
4655 tmr->function);
4656 tmr->response = TMR_FUNCTION_REJECTED;
4657 break;
4658 }
4659
4660 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4661 cmd->se_tfo->queue_tm_rsp(cmd);
4662
4663 transport_cmd_check_stop_to_fabric(cmd);
4664 return 0;
4665 }
4666
4667 /* transport_processing_thread():
4668 *
4669 *
4670 */
4671 static int transport_processing_thread(void *param)
4672 {
4673 int ret;
4674 struct se_cmd *cmd;
4675 struct se_device *dev = (struct se_device *) param;
4676
4677 set_user_nice(current, -20);
4678
4679 while (!kthread_should_stop()) {
4680 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4681 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4682 kthread_should_stop());
4683 if (ret < 0)
4684 goto out;
4685
4686 get_cmd:
4687 __transport_execute_tasks(dev);
4688
4689 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4690 if (!cmd)
4691 continue;
4692
4693 switch (cmd->t_state) {
4694 case TRANSPORT_NEW_CMD:
4695 BUG();
4696 break;
4697 case TRANSPORT_NEW_CMD_MAP:
4698 if (!cmd->se_tfo->new_cmd_map) {
4699 pr_err("cmd->se_tfo->new_cmd_map is"
4700 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4701 BUG();
4702 }
4703 ret = cmd->se_tfo->new_cmd_map(cmd);
4704 if (ret < 0) {
4705 cmd->transport_error_status = ret;
4706 transport_generic_request_failure(cmd,
4707 0, (cmd->data_direction !=
4708 DMA_TO_DEVICE));
4709 break;
4710 }
4711 ret = transport_generic_new_cmd(cmd);
4712 if (ret < 0) {
4713 cmd->transport_error_status = ret;
4714 transport_generic_request_failure(cmd,
4715 0, (cmd->data_direction !=
4716 DMA_TO_DEVICE));
4717 }
4718 break;
4719 case TRANSPORT_PROCESS_WRITE:
4720 transport_generic_process_write(cmd);
4721 break;
4722 case TRANSPORT_PROCESS_TMR:
4723 transport_generic_do_tmr(cmd);
4724 break;
4725 case TRANSPORT_COMPLETE_QF_WP:
4726 transport_write_pending_qf(cmd);
4727 break;
4728 case TRANSPORT_COMPLETE_QF_OK:
4729 transport_complete_qf(cmd);
4730 break;
4731 default:
4732 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4733 "i_state: %d on SE LUN: %u\n",
4734 cmd->t_state,
4735 cmd->se_tfo->get_task_tag(cmd),
4736 cmd->se_tfo->get_cmd_state(cmd),
4737 cmd->se_lun->unpacked_lun);
4738 BUG();
4739 }
4740
4741 goto get_cmd;
4742 }
4743
4744 out:
4745 WARN_ON(!list_empty(&dev->state_task_list));
4746 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4747 dev->process_thread = NULL;
4748 return 0;
4749 }
This page took 0.14767 seconds and 6 git commands to generate.