target: replace the processing thread with a TMR work queue
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static void transport_complete_task_attr(struct se_cmd *cmd);
70 static void transport_handle_queue_full(struct se_cmd *cmd,
71 struct se_device *dev);
72 static int transport_generic_get_mem(struct se_cmd *cmd);
73 static void transport_put_cmd(struct se_cmd *cmd);
74 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
75 static void target_complete_ok_work(struct work_struct *work);
76
77 int init_se_kmem_caches(void)
78 {
79 se_sess_cache = kmem_cache_create("se_sess_cache",
80 sizeof(struct se_session), __alignof__(struct se_session),
81 0, NULL);
82 if (!se_sess_cache) {
83 pr_err("kmem_cache_create() for struct se_session"
84 " failed\n");
85 goto out;
86 }
87 se_ua_cache = kmem_cache_create("se_ua_cache",
88 sizeof(struct se_ua), __alignof__(struct se_ua),
89 0, NULL);
90 if (!se_ua_cache) {
91 pr_err("kmem_cache_create() for struct se_ua failed\n");
92 goto out_free_sess_cache;
93 }
94 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
95 sizeof(struct t10_pr_registration),
96 __alignof__(struct t10_pr_registration), 0, NULL);
97 if (!t10_pr_reg_cache) {
98 pr_err("kmem_cache_create() for struct t10_pr_registration"
99 " failed\n");
100 goto out_free_ua_cache;
101 }
102 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
103 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
104 0, NULL);
105 if (!t10_alua_lu_gp_cache) {
106 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
107 " failed\n");
108 goto out_free_pr_reg_cache;
109 }
110 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
111 sizeof(struct t10_alua_lu_gp_member),
112 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
113 if (!t10_alua_lu_gp_mem_cache) {
114 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
115 "cache failed\n");
116 goto out_free_lu_gp_cache;
117 }
118 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
119 sizeof(struct t10_alua_tg_pt_gp),
120 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
121 if (!t10_alua_tg_pt_gp_cache) {
122 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
123 "cache failed\n");
124 goto out_free_lu_gp_mem_cache;
125 }
126 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
127 "t10_alua_tg_pt_gp_mem_cache",
128 sizeof(struct t10_alua_tg_pt_gp_member),
129 __alignof__(struct t10_alua_tg_pt_gp_member),
130 0, NULL);
131 if (!t10_alua_tg_pt_gp_mem_cache) {
132 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
133 "mem_t failed\n");
134 goto out_free_tg_pt_gp_cache;
135 }
136
137 target_completion_wq = alloc_workqueue("target_completion",
138 WQ_MEM_RECLAIM, 0);
139 if (!target_completion_wq)
140 goto out_free_tg_pt_gp_mem_cache;
141
142 return 0;
143
144 out_free_tg_pt_gp_mem_cache:
145 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
146 out_free_tg_pt_gp_cache:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 kmem_cache_destroy(se_sess_cache);
158 out:
159 return -ENOMEM;
160 }
161
162 void release_se_kmem_caches(void)
163 {
164 destroy_workqueue(target_completion_wq);
165 kmem_cache_destroy(se_sess_cache);
166 kmem_cache_destroy(se_ua_cache);
167 kmem_cache_destroy(t10_pr_reg_cache);
168 kmem_cache_destroy(t10_alua_lu_gp_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
170 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
172 }
173
174 /* This code ensures unique mib indexes are handed out. */
175 static DEFINE_SPINLOCK(scsi_mib_index_lock);
176 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
177
178 /*
179 * Allocate a new row index for the entry type specified
180 */
181 u32 scsi_get_new_index(scsi_index_t type)
182 {
183 u32 new_index;
184
185 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
186
187 spin_lock(&scsi_mib_index_lock);
188 new_index = ++scsi_mib_index[type];
189 spin_unlock(&scsi_mib_index_lock);
190
191 return new_index;
192 }
193
194 void transport_subsystem_check_init(void)
195 {
196 int ret;
197
198 if (sub_api_initialized)
199 return;
200
201 ret = request_module("target_core_iblock");
202 if (ret != 0)
203 pr_err("Unable to load target_core_iblock\n");
204
205 ret = request_module("target_core_file");
206 if (ret != 0)
207 pr_err("Unable to load target_core_file\n");
208
209 ret = request_module("target_core_pscsi");
210 if (ret != 0)
211 pr_err("Unable to load target_core_pscsi\n");
212
213 ret = request_module("target_core_stgt");
214 if (ret != 0)
215 pr_err("Unable to load target_core_stgt\n");
216
217 sub_api_initialized = 1;
218 return;
219 }
220
221 struct se_session *transport_init_session(void)
222 {
223 struct se_session *se_sess;
224
225 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
226 if (!se_sess) {
227 pr_err("Unable to allocate struct se_session from"
228 " se_sess_cache\n");
229 return ERR_PTR(-ENOMEM);
230 }
231 INIT_LIST_HEAD(&se_sess->sess_list);
232 INIT_LIST_HEAD(&se_sess->sess_acl_list);
233 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
234 INIT_LIST_HEAD(&se_sess->sess_wait_list);
235 spin_lock_init(&se_sess->sess_cmd_lock);
236 kref_init(&se_sess->sess_kref);
237
238 return se_sess;
239 }
240 EXPORT_SYMBOL(transport_init_session);
241
242 /*
243 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
244 */
245 void __transport_register_session(
246 struct se_portal_group *se_tpg,
247 struct se_node_acl *se_nacl,
248 struct se_session *se_sess,
249 void *fabric_sess_ptr)
250 {
251 unsigned char buf[PR_REG_ISID_LEN];
252
253 se_sess->se_tpg = se_tpg;
254 se_sess->fabric_sess_ptr = fabric_sess_ptr;
255 /*
256 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
257 *
258 * Only set for struct se_session's that will actually be moving I/O.
259 * eg: *NOT* discovery sessions.
260 */
261 if (se_nacl) {
262 /*
263 * If the fabric module supports an ISID based TransportID,
264 * save this value in binary from the fabric I_T Nexus now.
265 */
266 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
267 memset(&buf[0], 0, PR_REG_ISID_LEN);
268 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
269 &buf[0], PR_REG_ISID_LEN);
270 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
271 }
272 kref_get(&se_nacl->acl_kref);
273
274 spin_lock_irq(&se_nacl->nacl_sess_lock);
275 /*
276 * The se_nacl->nacl_sess pointer will be set to the
277 * last active I_T Nexus for each struct se_node_acl.
278 */
279 se_nacl->nacl_sess = se_sess;
280
281 list_add_tail(&se_sess->sess_acl_list,
282 &se_nacl->acl_sess_list);
283 spin_unlock_irq(&se_nacl->nacl_sess_lock);
284 }
285 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
286
287 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
288 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
289 }
290 EXPORT_SYMBOL(__transport_register_session);
291
292 void transport_register_session(
293 struct se_portal_group *se_tpg,
294 struct se_node_acl *se_nacl,
295 struct se_session *se_sess,
296 void *fabric_sess_ptr)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&se_tpg->session_lock, flags);
301 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
302 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
303 }
304 EXPORT_SYMBOL(transport_register_session);
305
306 void target_release_session(struct kref *kref)
307 {
308 struct se_session *se_sess = container_of(kref,
309 struct se_session, sess_kref);
310 struct se_portal_group *se_tpg = se_sess->se_tpg;
311
312 se_tpg->se_tpg_tfo->close_session(se_sess);
313 }
314
315 void target_get_session(struct se_session *se_sess)
316 {
317 kref_get(&se_sess->sess_kref);
318 }
319 EXPORT_SYMBOL(target_get_session);
320
321 void target_put_session(struct se_session *se_sess)
322 {
323 struct se_portal_group *tpg = se_sess->se_tpg;
324
325 if (tpg->se_tpg_tfo->put_session != NULL) {
326 tpg->se_tpg_tfo->put_session(se_sess);
327 return;
328 }
329 kref_put(&se_sess->sess_kref, target_release_session);
330 }
331 EXPORT_SYMBOL(target_put_session);
332
333 static void target_complete_nacl(struct kref *kref)
334 {
335 struct se_node_acl *nacl = container_of(kref,
336 struct se_node_acl, acl_kref);
337
338 complete(&nacl->acl_free_comp);
339 }
340
341 void target_put_nacl(struct se_node_acl *nacl)
342 {
343 kref_put(&nacl->acl_kref, target_complete_nacl);
344 }
345
346 void transport_deregister_session_configfs(struct se_session *se_sess)
347 {
348 struct se_node_acl *se_nacl;
349 unsigned long flags;
350 /*
351 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
352 */
353 se_nacl = se_sess->se_node_acl;
354 if (se_nacl) {
355 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
356 if (se_nacl->acl_stop == 0)
357 list_del(&se_sess->sess_acl_list);
358 /*
359 * If the session list is empty, then clear the pointer.
360 * Otherwise, set the struct se_session pointer from the tail
361 * element of the per struct se_node_acl active session list.
362 */
363 if (list_empty(&se_nacl->acl_sess_list))
364 se_nacl->nacl_sess = NULL;
365 else {
366 se_nacl->nacl_sess = container_of(
367 se_nacl->acl_sess_list.prev,
368 struct se_session, sess_acl_list);
369 }
370 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
371 }
372 }
373 EXPORT_SYMBOL(transport_deregister_session_configfs);
374
375 void transport_free_session(struct se_session *se_sess)
376 {
377 kmem_cache_free(se_sess_cache, se_sess);
378 }
379 EXPORT_SYMBOL(transport_free_session);
380
381 void transport_deregister_session(struct se_session *se_sess)
382 {
383 struct se_portal_group *se_tpg = se_sess->se_tpg;
384 struct target_core_fabric_ops *se_tfo;
385 struct se_node_acl *se_nacl;
386 unsigned long flags;
387 bool comp_nacl = true;
388
389 if (!se_tpg) {
390 transport_free_session(se_sess);
391 return;
392 }
393 se_tfo = se_tpg->se_tpg_tfo;
394
395 spin_lock_irqsave(&se_tpg->session_lock, flags);
396 list_del(&se_sess->sess_list);
397 se_sess->se_tpg = NULL;
398 se_sess->fabric_sess_ptr = NULL;
399 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
400
401 /*
402 * Determine if we need to do extra work for this initiator node's
403 * struct se_node_acl if it had been previously dynamically generated.
404 */
405 se_nacl = se_sess->se_node_acl;
406
407 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
408 if (se_nacl && se_nacl->dynamic_node_acl) {
409 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
410 list_del(&se_nacl->acl_list);
411 se_tpg->num_node_acls--;
412 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
413 core_tpg_wait_for_nacl_pr_ref(se_nacl);
414 core_free_device_list_for_node(se_nacl, se_tpg);
415 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
416
417 comp_nacl = false;
418 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
419 }
420 }
421 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
422
423 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
424 se_tpg->se_tpg_tfo->get_fabric_name());
425 /*
426 * If last kref is dropping now for an explict NodeACL, awake sleeping
427 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
428 * removal context.
429 */
430 if (se_nacl && comp_nacl == true)
431 target_put_nacl(se_nacl);
432
433 transport_free_session(se_sess);
434 }
435 EXPORT_SYMBOL(transport_deregister_session);
436
437 /*
438 * Called with cmd->t_state_lock held.
439 */
440 static void target_remove_from_state_list(struct se_cmd *cmd)
441 {
442 struct se_device *dev = cmd->se_dev;
443 unsigned long flags;
444
445 if (!dev)
446 return;
447
448 if (cmd->transport_state & CMD_T_BUSY)
449 return;
450
451 spin_lock_irqsave(&dev->execute_task_lock, flags);
452 if (cmd->state_active) {
453 list_del(&cmd->state_list);
454 cmd->state_active = false;
455 }
456 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
457 }
458
459 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
460 {
461 unsigned long flags;
462
463 spin_lock_irqsave(&cmd->t_state_lock, flags);
464 /*
465 * Determine if IOCTL context caller in requesting the stopping of this
466 * command for LUN shutdown purposes.
467 */
468 if (cmd->transport_state & CMD_T_LUN_STOP) {
469 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
470 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
471
472 cmd->transport_state &= ~CMD_T_ACTIVE;
473 if (remove_from_lists)
474 target_remove_from_state_list(cmd);
475 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
476
477 complete(&cmd->transport_lun_stop_comp);
478 return 1;
479 }
480
481 if (remove_from_lists) {
482 target_remove_from_state_list(cmd);
483
484 /*
485 * Clear struct se_cmd->se_lun before the handoff to FE.
486 */
487 cmd->se_lun = NULL;
488 }
489
490 /*
491 * Determine if frontend context caller is requesting the stopping of
492 * this command for frontend exceptions.
493 */
494 if (cmd->transport_state & CMD_T_STOP) {
495 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
496 __func__, __LINE__,
497 cmd->se_tfo->get_task_tag(cmd));
498
499 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
500
501 complete(&cmd->t_transport_stop_comp);
502 return 1;
503 }
504
505 cmd->transport_state &= ~CMD_T_ACTIVE;
506 if (remove_from_lists) {
507 /*
508 * Some fabric modules like tcm_loop can release
509 * their internally allocated I/O reference now and
510 * struct se_cmd now.
511 *
512 * Fabric modules are expected to return '1' here if the
513 * se_cmd being passed is released at this point,
514 * or zero if not being released.
515 */
516 if (cmd->se_tfo->check_stop_free != NULL) {
517 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
518 return cmd->se_tfo->check_stop_free(cmd);
519 }
520 }
521
522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
523 return 0;
524 }
525
526 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
527 {
528 return transport_cmd_check_stop(cmd, true);
529 }
530
531 static void transport_lun_remove_cmd(struct se_cmd *cmd)
532 {
533 struct se_lun *lun = cmd->se_lun;
534 unsigned long flags;
535
536 if (!lun)
537 return;
538
539 spin_lock_irqsave(&cmd->t_state_lock, flags);
540 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
541 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
542 target_remove_from_state_list(cmd);
543 }
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
547 if (!list_empty(&cmd->se_lun_node))
548 list_del_init(&cmd->se_lun_node);
549 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
550 }
551
552 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
553 {
554 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
555 transport_lun_remove_cmd(cmd);
556
557 if (transport_cmd_check_stop_to_fabric(cmd))
558 return;
559 if (remove)
560 transport_put_cmd(cmd);
561 }
562
563 static void target_complete_failure_work(struct work_struct *work)
564 {
565 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
566
567 transport_generic_request_failure(cmd);
568 }
569
570 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
571 {
572 struct se_device *dev = cmd->se_dev;
573 int success = scsi_status == GOOD;
574 unsigned long flags;
575
576 cmd->scsi_status = scsi_status;
577
578
579 spin_lock_irqsave(&cmd->t_state_lock, flags);
580 cmd->transport_state &= ~CMD_T_BUSY;
581
582 if (dev && dev->transport->transport_complete) {
583 if (dev->transport->transport_complete(cmd,
584 cmd->t_data_sg) != 0) {
585 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
586 success = 1;
587 }
588 }
589
590 /*
591 * See if we are waiting to complete for an exception condition.
592 */
593 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
594 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595 complete(&cmd->task_stop_comp);
596 return;
597 }
598
599 if (!success)
600 cmd->transport_state |= CMD_T_FAILED;
601
602 /*
603 * Check for case where an explict ABORT_TASK has been received
604 * and transport_wait_for_tasks() will be waiting for completion..
605 */
606 if (cmd->transport_state & CMD_T_ABORTED &&
607 cmd->transport_state & CMD_T_STOP) {
608 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
609 complete(&cmd->t_transport_stop_comp);
610 return;
611 } else if (cmd->transport_state & CMD_T_FAILED) {
612 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
613 INIT_WORK(&cmd->work, target_complete_failure_work);
614 } else {
615 INIT_WORK(&cmd->work, target_complete_ok_work);
616 }
617
618 cmd->t_state = TRANSPORT_COMPLETE;
619 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
620 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
621
622 queue_work(target_completion_wq, &cmd->work);
623 }
624 EXPORT_SYMBOL(target_complete_cmd);
625
626 static void target_add_to_state_list(struct se_cmd *cmd)
627 {
628 struct se_device *dev = cmd->se_dev;
629 unsigned long flags;
630
631 spin_lock_irqsave(&dev->execute_task_lock, flags);
632 if (!cmd->state_active) {
633 list_add_tail(&cmd->state_list, &dev->state_list);
634 cmd->state_active = true;
635 }
636 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
637 }
638
639 /*
640 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
641 */
642 static void transport_write_pending_qf(struct se_cmd *cmd);
643 static void transport_complete_qf(struct se_cmd *cmd);
644
645 static void target_qf_do_work(struct work_struct *work)
646 {
647 struct se_device *dev = container_of(work, struct se_device,
648 qf_work_queue);
649 LIST_HEAD(qf_cmd_list);
650 struct se_cmd *cmd, *cmd_tmp;
651
652 spin_lock_irq(&dev->qf_cmd_lock);
653 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
654 spin_unlock_irq(&dev->qf_cmd_lock);
655
656 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
657 list_del(&cmd->se_qf_node);
658 atomic_dec(&dev->dev_qf_count);
659 smp_mb__after_atomic_dec();
660
661 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
662 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
663 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
664 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
665 : "UNKNOWN");
666
667 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
668 transport_write_pending_qf(cmd);
669 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
670 transport_complete_qf(cmd);
671 }
672 }
673
674 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
675 {
676 switch (cmd->data_direction) {
677 case DMA_NONE:
678 return "NONE";
679 case DMA_FROM_DEVICE:
680 return "READ";
681 case DMA_TO_DEVICE:
682 return "WRITE";
683 case DMA_BIDIRECTIONAL:
684 return "BIDI";
685 default:
686 break;
687 }
688
689 return "UNKNOWN";
690 }
691
692 void transport_dump_dev_state(
693 struct se_device *dev,
694 char *b,
695 int *bl)
696 {
697 *bl += sprintf(b + *bl, "Status: ");
698 switch (dev->dev_status) {
699 case TRANSPORT_DEVICE_ACTIVATED:
700 *bl += sprintf(b + *bl, "ACTIVATED");
701 break;
702 case TRANSPORT_DEVICE_DEACTIVATED:
703 *bl += sprintf(b + *bl, "DEACTIVATED");
704 break;
705 case TRANSPORT_DEVICE_SHUTDOWN:
706 *bl += sprintf(b + *bl, "SHUTDOWN");
707 break;
708 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
709 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
710 *bl += sprintf(b + *bl, "OFFLINE");
711 break;
712 default:
713 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
714 break;
715 }
716
717 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
718 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
719 dev->se_sub_dev->se_dev_attrib.block_size,
720 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
721 *bl += sprintf(b + *bl, " ");
722 }
723
724 void transport_dump_vpd_proto_id(
725 struct t10_vpd *vpd,
726 unsigned char *p_buf,
727 int p_buf_len)
728 {
729 unsigned char buf[VPD_TMP_BUF_SIZE];
730 int len;
731
732 memset(buf, 0, VPD_TMP_BUF_SIZE);
733 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
734
735 switch (vpd->protocol_identifier) {
736 case 0x00:
737 sprintf(buf+len, "Fibre Channel\n");
738 break;
739 case 0x10:
740 sprintf(buf+len, "Parallel SCSI\n");
741 break;
742 case 0x20:
743 sprintf(buf+len, "SSA\n");
744 break;
745 case 0x30:
746 sprintf(buf+len, "IEEE 1394\n");
747 break;
748 case 0x40:
749 sprintf(buf+len, "SCSI Remote Direct Memory Access"
750 " Protocol\n");
751 break;
752 case 0x50:
753 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
754 break;
755 case 0x60:
756 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
757 break;
758 case 0x70:
759 sprintf(buf+len, "Automation/Drive Interface Transport"
760 " Protocol\n");
761 break;
762 case 0x80:
763 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
764 break;
765 default:
766 sprintf(buf+len, "Unknown 0x%02x\n",
767 vpd->protocol_identifier);
768 break;
769 }
770
771 if (p_buf)
772 strncpy(p_buf, buf, p_buf_len);
773 else
774 pr_debug("%s", buf);
775 }
776
777 void
778 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
779 {
780 /*
781 * Check if the Protocol Identifier Valid (PIV) bit is set..
782 *
783 * from spc3r23.pdf section 7.5.1
784 */
785 if (page_83[1] & 0x80) {
786 vpd->protocol_identifier = (page_83[0] & 0xf0);
787 vpd->protocol_identifier_set = 1;
788 transport_dump_vpd_proto_id(vpd, NULL, 0);
789 }
790 }
791 EXPORT_SYMBOL(transport_set_vpd_proto_id);
792
793 int transport_dump_vpd_assoc(
794 struct t10_vpd *vpd,
795 unsigned char *p_buf,
796 int p_buf_len)
797 {
798 unsigned char buf[VPD_TMP_BUF_SIZE];
799 int ret = 0;
800 int len;
801
802 memset(buf, 0, VPD_TMP_BUF_SIZE);
803 len = sprintf(buf, "T10 VPD Identifier Association: ");
804
805 switch (vpd->association) {
806 case 0x00:
807 sprintf(buf+len, "addressed logical unit\n");
808 break;
809 case 0x10:
810 sprintf(buf+len, "target port\n");
811 break;
812 case 0x20:
813 sprintf(buf+len, "SCSI target device\n");
814 break;
815 default:
816 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
817 ret = -EINVAL;
818 break;
819 }
820
821 if (p_buf)
822 strncpy(p_buf, buf, p_buf_len);
823 else
824 pr_debug("%s", buf);
825
826 return ret;
827 }
828
829 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
830 {
831 /*
832 * The VPD identification association..
833 *
834 * from spc3r23.pdf Section 7.6.3.1 Table 297
835 */
836 vpd->association = (page_83[1] & 0x30);
837 return transport_dump_vpd_assoc(vpd, NULL, 0);
838 }
839 EXPORT_SYMBOL(transport_set_vpd_assoc);
840
841 int transport_dump_vpd_ident_type(
842 struct t10_vpd *vpd,
843 unsigned char *p_buf,
844 int p_buf_len)
845 {
846 unsigned char buf[VPD_TMP_BUF_SIZE];
847 int ret = 0;
848 int len;
849
850 memset(buf, 0, VPD_TMP_BUF_SIZE);
851 len = sprintf(buf, "T10 VPD Identifier Type: ");
852
853 switch (vpd->device_identifier_type) {
854 case 0x00:
855 sprintf(buf+len, "Vendor specific\n");
856 break;
857 case 0x01:
858 sprintf(buf+len, "T10 Vendor ID based\n");
859 break;
860 case 0x02:
861 sprintf(buf+len, "EUI-64 based\n");
862 break;
863 case 0x03:
864 sprintf(buf+len, "NAA\n");
865 break;
866 case 0x04:
867 sprintf(buf+len, "Relative target port identifier\n");
868 break;
869 case 0x08:
870 sprintf(buf+len, "SCSI name string\n");
871 break;
872 default:
873 sprintf(buf+len, "Unsupported: 0x%02x\n",
874 vpd->device_identifier_type);
875 ret = -EINVAL;
876 break;
877 }
878
879 if (p_buf) {
880 if (p_buf_len < strlen(buf)+1)
881 return -EINVAL;
882 strncpy(p_buf, buf, p_buf_len);
883 } else {
884 pr_debug("%s", buf);
885 }
886
887 return ret;
888 }
889
890 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
891 {
892 /*
893 * The VPD identifier type..
894 *
895 * from spc3r23.pdf Section 7.6.3.1 Table 298
896 */
897 vpd->device_identifier_type = (page_83[1] & 0x0f);
898 return transport_dump_vpd_ident_type(vpd, NULL, 0);
899 }
900 EXPORT_SYMBOL(transport_set_vpd_ident_type);
901
902 int transport_dump_vpd_ident(
903 struct t10_vpd *vpd,
904 unsigned char *p_buf,
905 int p_buf_len)
906 {
907 unsigned char buf[VPD_TMP_BUF_SIZE];
908 int ret = 0;
909
910 memset(buf, 0, VPD_TMP_BUF_SIZE);
911
912 switch (vpd->device_identifier_code_set) {
913 case 0x01: /* Binary */
914 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
915 &vpd->device_identifier[0]);
916 break;
917 case 0x02: /* ASCII */
918 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
919 &vpd->device_identifier[0]);
920 break;
921 case 0x03: /* UTF-8 */
922 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
923 &vpd->device_identifier[0]);
924 break;
925 default:
926 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
927 " 0x%02x", vpd->device_identifier_code_set);
928 ret = -EINVAL;
929 break;
930 }
931
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
936
937 return ret;
938 }
939
940 int
941 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
942 {
943 static const char hex_str[] = "0123456789abcdef";
944 int j = 0, i = 4; /* offset to start of the identifer */
945
946 /*
947 * The VPD Code Set (encoding)
948 *
949 * from spc3r23.pdf Section 7.6.3.1 Table 296
950 */
951 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
952 switch (vpd->device_identifier_code_set) {
953 case 0x01: /* Binary */
954 vpd->device_identifier[j++] =
955 hex_str[vpd->device_identifier_type];
956 while (i < (4 + page_83[3])) {
957 vpd->device_identifier[j++] =
958 hex_str[(page_83[i] & 0xf0) >> 4];
959 vpd->device_identifier[j++] =
960 hex_str[page_83[i] & 0x0f];
961 i++;
962 }
963 break;
964 case 0x02: /* ASCII */
965 case 0x03: /* UTF-8 */
966 while (i < (4 + page_83[3]))
967 vpd->device_identifier[j++] = page_83[i++];
968 break;
969 default:
970 break;
971 }
972
973 return transport_dump_vpd_ident(vpd, NULL, 0);
974 }
975 EXPORT_SYMBOL(transport_set_vpd_ident);
976
977 static void core_setup_task_attr_emulation(struct se_device *dev)
978 {
979 /*
980 * If this device is from Target_Core_Mod/pSCSI, disable the
981 * SAM Task Attribute emulation.
982 *
983 * This is currently not available in upsream Linux/SCSI Target
984 * mode code, and is assumed to be disabled while using TCM/pSCSI.
985 */
986 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
987 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
988 return;
989 }
990
991 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
992 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
993 " device\n", dev->transport->name,
994 dev->transport->get_device_rev(dev));
995 }
996
997 static void scsi_dump_inquiry(struct se_device *dev)
998 {
999 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1000 char buf[17];
1001 int i, device_type;
1002 /*
1003 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1004 */
1005 for (i = 0; i < 8; i++)
1006 if (wwn->vendor[i] >= 0x20)
1007 buf[i] = wwn->vendor[i];
1008 else
1009 buf[i] = ' ';
1010 buf[i] = '\0';
1011 pr_debug(" Vendor: %s\n", buf);
1012
1013 for (i = 0; i < 16; i++)
1014 if (wwn->model[i] >= 0x20)
1015 buf[i] = wwn->model[i];
1016 else
1017 buf[i] = ' ';
1018 buf[i] = '\0';
1019 pr_debug(" Model: %s\n", buf);
1020
1021 for (i = 0; i < 4; i++)
1022 if (wwn->revision[i] >= 0x20)
1023 buf[i] = wwn->revision[i];
1024 else
1025 buf[i] = ' ';
1026 buf[i] = '\0';
1027 pr_debug(" Revision: %s\n", buf);
1028
1029 device_type = dev->transport->get_device_type(dev);
1030 pr_debug(" Type: %s ", scsi_device_type(device_type));
1031 pr_debug(" ANSI SCSI revision: %02x\n",
1032 dev->transport->get_device_rev(dev));
1033 }
1034
1035 struct se_device *transport_add_device_to_core_hba(
1036 struct se_hba *hba,
1037 struct se_subsystem_api *transport,
1038 struct se_subsystem_dev *se_dev,
1039 u32 device_flags,
1040 void *transport_dev,
1041 struct se_dev_limits *dev_limits,
1042 const char *inquiry_prod,
1043 const char *inquiry_rev)
1044 {
1045 int force_pt;
1046 struct se_device *dev;
1047
1048 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1049 if (!dev) {
1050 pr_err("Unable to allocate memory for se_dev_t\n");
1051 return NULL;
1052 }
1053
1054 dev->dev_flags = device_flags;
1055 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1056 dev->dev_ptr = transport_dev;
1057 dev->se_hba = hba;
1058 dev->se_sub_dev = se_dev;
1059 dev->transport = transport;
1060 INIT_LIST_HEAD(&dev->dev_list);
1061 INIT_LIST_HEAD(&dev->dev_sep_list);
1062 INIT_LIST_HEAD(&dev->dev_tmr_list);
1063 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1064 INIT_LIST_HEAD(&dev->state_list);
1065 INIT_LIST_HEAD(&dev->qf_cmd_list);
1066 spin_lock_init(&dev->execute_task_lock);
1067 spin_lock_init(&dev->delayed_cmd_lock);
1068 spin_lock_init(&dev->dev_reservation_lock);
1069 spin_lock_init(&dev->dev_status_lock);
1070 spin_lock_init(&dev->se_port_lock);
1071 spin_lock_init(&dev->se_tmr_lock);
1072 spin_lock_init(&dev->qf_cmd_lock);
1073 atomic_set(&dev->dev_ordered_id, 0);
1074
1075 se_dev_set_default_attribs(dev, dev_limits);
1076
1077 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1078 dev->creation_time = get_jiffies_64();
1079 spin_lock_init(&dev->stats_lock);
1080
1081 spin_lock(&hba->device_lock);
1082 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1083 hba->dev_count++;
1084 spin_unlock(&hba->device_lock);
1085 /*
1086 * Setup the SAM Task Attribute emulation for struct se_device
1087 */
1088 core_setup_task_attr_emulation(dev);
1089 /*
1090 * Force PR and ALUA passthrough emulation with internal object use.
1091 */
1092 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1093 /*
1094 * Setup the Reservations infrastructure for struct se_device
1095 */
1096 core_setup_reservations(dev, force_pt);
1097 /*
1098 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1099 */
1100 if (core_setup_alua(dev, force_pt) < 0)
1101 goto out;
1102
1103 /*
1104 * Startup the struct se_device processing thread
1105 */
1106 dev->tmr_wq = alloc_workqueue("tmr-%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 1,
1107 dev->transport->name);
1108 if (!dev->tmr_wq) {
1109 pr_err("Unable to create tmr workqueue for %s\n",
1110 dev->transport->name);
1111 goto out;
1112 }
1113 /*
1114 * Setup work_queue for QUEUE_FULL
1115 */
1116 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1117 /*
1118 * Preload the initial INQUIRY const values if we are doing
1119 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1120 * passthrough because this is being provided by the backend LLD.
1121 * This is required so that transport_get_inquiry() copies these
1122 * originals once back into DEV_T10_WWN(dev) for the virtual device
1123 * setup.
1124 */
1125 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1126 if (!inquiry_prod || !inquiry_rev) {
1127 pr_err("All non TCM/pSCSI plugins require"
1128 " INQUIRY consts\n");
1129 goto out;
1130 }
1131
1132 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1133 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1134 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1135 }
1136 scsi_dump_inquiry(dev);
1137
1138 return dev;
1139 out:
1140 destroy_workqueue(dev->tmr_wq);
1141
1142 spin_lock(&hba->device_lock);
1143 list_del(&dev->dev_list);
1144 hba->dev_count--;
1145 spin_unlock(&hba->device_lock);
1146
1147 se_release_vpd_for_dev(dev);
1148
1149 kfree(dev);
1150
1151 return NULL;
1152 }
1153 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1154
1155 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1156 {
1157 struct se_device *dev = cmd->se_dev;
1158
1159 if (cmd->unknown_data_length) {
1160 cmd->data_length = size;
1161 } else if (size != cmd->data_length) {
1162 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1163 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1164 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1165 cmd->data_length, size, cmd->t_task_cdb[0]);
1166
1167 cmd->cmd_spdtl = size;
1168
1169 if (cmd->data_direction == DMA_TO_DEVICE) {
1170 pr_err("Rejecting underflow/overflow"
1171 " WRITE data\n");
1172 goto out_invalid_cdb_field;
1173 }
1174 /*
1175 * Reject READ_* or WRITE_* with overflow/underflow for
1176 * type SCF_SCSI_DATA_CDB.
1177 */
1178 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) {
1179 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1180 " CDB on non 512-byte sector setup subsystem"
1181 " plugin: %s\n", dev->transport->name);
1182 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1183 goto out_invalid_cdb_field;
1184 }
1185
1186 if (size > cmd->data_length) {
1187 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1188 cmd->residual_count = (size - cmd->data_length);
1189 } else {
1190 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1191 cmd->residual_count = (cmd->data_length - size);
1192 }
1193 cmd->data_length = size;
1194 }
1195
1196 return 0;
1197
1198 out_invalid_cdb_field:
1199 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1200 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1201 return -EINVAL;
1202 }
1203
1204 /*
1205 * Used by fabric modules containing a local struct se_cmd within their
1206 * fabric dependent per I/O descriptor.
1207 */
1208 void transport_init_se_cmd(
1209 struct se_cmd *cmd,
1210 struct target_core_fabric_ops *tfo,
1211 struct se_session *se_sess,
1212 u32 data_length,
1213 int data_direction,
1214 int task_attr,
1215 unsigned char *sense_buffer)
1216 {
1217 INIT_LIST_HEAD(&cmd->se_lun_node);
1218 INIT_LIST_HEAD(&cmd->se_delayed_node);
1219 INIT_LIST_HEAD(&cmd->se_qf_node);
1220 INIT_LIST_HEAD(&cmd->se_cmd_list);
1221 INIT_LIST_HEAD(&cmd->state_list);
1222 init_completion(&cmd->transport_lun_fe_stop_comp);
1223 init_completion(&cmd->transport_lun_stop_comp);
1224 init_completion(&cmd->t_transport_stop_comp);
1225 init_completion(&cmd->cmd_wait_comp);
1226 init_completion(&cmd->task_stop_comp);
1227 spin_lock_init(&cmd->t_state_lock);
1228 cmd->transport_state = CMD_T_DEV_ACTIVE;
1229
1230 cmd->se_tfo = tfo;
1231 cmd->se_sess = se_sess;
1232 cmd->data_length = data_length;
1233 cmd->data_direction = data_direction;
1234 cmd->sam_task_attr = task_attr;
1235 cmd->sense_buffer = sense_buffer;
1236
1237 cmd->state_active = false;
1238 }
1239 EXPORT_SYMBOL(transport_init_se_cmd);
1240
1241 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1242 {
1243 /*
1244 * Check if SAM Task Attribute emulation is enabled for this
1245 * struct se_device storage object
1246 */
1247 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1248 return 0;
1249
1250 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1251 pr_debug("SAM Task Attribute ACA"
1252 " emulation is not supported\n");
1253 return -EINVAL;
1254 }
1255 /*
1256 * Used to determine when ORDERED commands should go from
1257 * Dormant to Active status.
1258 */
1259 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1260 smp_mb__after_atomic_inc();
1261 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1262 cmd->se_ordered_id, cmd->sam_task_attr,
1263 cmd->se_dev->transport->name);
1264 return 0;
1265 }
1266
1267 /* target_setup_cmd_from_cdb():
1268 *
1269 * Called from fabric RX Thread.
1270 */
1271 int target_setup_cmd_from_cdb(
1272 struct se_cmd *cmd,
1273 unsigned char *cdb)
1274 {
1275 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev;
1276 u32 pr_reg_type = 0;
1277 u8 alua_ascq = 0;
1278 unsigned long flags;
1279 int ret;
1280
1281 /*
1282 * Ensure that the received CDB is less than the max (252 + 8) bytes
1283 * for VARIABLE_LENGTH_CMD
1284 */
1285 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1286 pr_err("Received SCSI CDB with command_size: %d that"
1287 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1288 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1289 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1290 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1291 return -EINVAL;
1292 }
1293 /*
1294 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1295 * allocate the additional extended CDB buffer now.. Otherwise
1296 * setup the pointer from __t_task_cdb to t_task_cdb.
1297 */
1298 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1299 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1300 GFP_KERNEL);
1301 if (!cmd->t_task_cdb) {
1302 pr_err("Unable to allocate cmd->t_task_cdb"
1303 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1304 scsi_command_size(cdb),
1305 (unsigned long)sizeof(cmd->__t_task_cdb));
1306 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1307 cmd->scsi_sense_reason =
1308 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1309 return -ENOMEM;
1310 }
1311 } else
1312 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1313 /*
1314 * Copy the original CDB into cmd->
1315 */
1316 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1317
1318 /*
1319 * Check for an existing UNIT ATTENTION condition
1320 */
1321 if (core_scsi3_ua_check(cmd, cdb) < 0) {
1322 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1323 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
1324 return -EINVAL;
1325 }
1326
1327 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
1328 if (ret != 0) {
1329 /*
1330 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
1331 * The ALUA additional sense code qualifier (ASCQ) is determined
1332 * by the ALUA primary or secondary access state..
1333 */
1334 if (ret > 0) {
1335 pr_debug("[%s]: ALUA TG Port not available, "
1336 "SenseKey: NOT_READY, ASC/ASCQ: "
1337 "0x04/0x%02x\n",
1338 cmd->se_tfo->get_fabric_name(), alua_ascq);
1339
1340 transport_set_sense_codes(cmd, 0x04, alua_ascq);
1341 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1342 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
1343 return -EINVAL;
1344 }
1345 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1346 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1347 return -EINVAL;
1348 }
1349
1350 /*
1351 * Check status for SPC-3 Persistent Reservations
1352 */
1353 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) {
1354 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
1355 cmd, cdb, pr_reg_type) != 0) {
1356 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1357 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
1358 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1359 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
1360 return -EBUSY;
1361 }
1362 /*
1363 * This means the CDB is allowed for the SCSI Initiator port
1364 * when said port is *NOT* holding the legacy SPC-2 or
1365 * SPC-3 Persistent Reservation.
1366 */
1367 }
1368
1369 ret = cmd->se_dev->transport->parse_cdb(cmd);
1370 if (ret < 0)
1371 return ret;
1372
1373 spin_lock_irqsave(&cmd->t_state_lock, flags);
1374 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1375 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1376
1377 /*
1378 * Check for SAM Task Attribute Emulation
1379 */
1380 if (transport_check_alloc_task_attr(cmd) < 0) {
1381 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1382 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1383 return -EINVAL;
1384 }
1385 spin_lock(&cmd->se_lun->lun_sep_lock);
1386 if (cmd->se_lun->lun_sep)
1387 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1388 spin_unlock(&cmd->se_lun->lun_sep_lock);
1389 return 0;
1390 }
1391 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1392
1393 /*
1394 * Used by fabric module frontends to queue tasks directly.
1395 * Many only be used from process context only
1396 */
1397 int transport_handle_cdb_direct(
1398 struct se_cmd *cmd)
1399 {
1400 int ret;
1401
1402 if (!cmd->se_lun) {
1403 dump_stack();
1404 pr_err("cmd->se_lun is NULL\n");
1405 return -EINVAL;
1406 }
1407 if (in_interrupt()) {
1408 dump_stack();
1409 pr_err("transport_generic_handle_cdb cannot be called"
1410 " from interrupt context\n");
1411 return -EINVAL;
1412 }
1413 /*
1414 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1415 * outstanding descriptors are handled correctly during shutdown via
1416 * transport_wait_for_tasks()
1417 *
1418 * Also, we don't take cmd->t_state_lock here as we only expect
1419 * this to be called for initial descriptor submission.
1420 */
1421 cmd->t_state = TRANSPORT_NEW_CMD;
1422 cmd->transport_state |= CMD_T_ACTIVE;
1423
1424 /*
1425 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1426 * so follow TRANSPORT_NEW_CMD processing thread context usage
1427 * and call transport_generic_request_failure() if necessary..
1428 */
1429 ret = transport_generic_new_cmd(cmd);
1430 if (ret < 0)
1431 transport_generic_request_failure(cmd);
1432
1433 return 0;
1434 }
1435 EXPORT_SYMBOL(transport_handle_cdb_direct);
1436
1437 /**
1438 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1439 *
1440 * @se_cmd: command descriptor to submit
1441 * @se_sess: associated se_sess for endpoint
1442 * @cdb: pointer to SCSI CDB
1443 * @sense: pointer to SCSI sense buffer
1444 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445 * @data_length: fabric expected data transfer length
1446 * @task_addr: SAM task attribute
1447 * @data_dir: DMA data direction
1448 * @flags: flags for command submission from target_sc_flags_tables
1449 *
1450 * This may only be called from process context, and also currently
1451 * assumes internal allocation of fabric payload buffer by target-core.
1452 **/
1453 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1454 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1455 u32 data_length, int task_attr, int data_dir, int flags)
1456 {
1457 struct se_portal_group *se_tpg;
1458 int rc;
1459
1460 se_tpg = se_sess->se_tpg;
1461 BUG_ON(!se_tpg);
1462 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1463 BUG_ON(in_interrupt());
1464 /*
1465 * Initialize se_cmd for target operation. From this point
1466 * exceptions are handled by sending exception status via
1467 * target_core_fabric_ops->queue_status() callback
1468 */
1469 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1470 data_length, data_dir, task_attr, sense);
1471 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1472 se_cmd->unknown_data_length = 1;
1473 /*
1474 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1475 * se_sess->sess_cmd_list. A second kref_get here is necessary
1476 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1477 * kref_put() to happen during fabric packet acknowledgement.
1478 */
1479 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1480 /*
1481 * Signal bidirectional data payloads to target-core
1482 */
1483 if (flags & TARGET_SCF_BIDI_OP)
1484 se_cmd->se_cmd_flags |= SCF_BIDI;
1485 /*
1486 * Locate se_lun pointer and attach it to struct se_cmd
1487 */
1488 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1489 transport_send_check_condition_and_sense(se_cmd,
1490 se_cmd->scsi_sense_reason, 0);
1491 target_put_sess_cmd(se_sess, se_cmd);
1492 return;
1493 }
1494
1495 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1496 if (rc != 0) {
1497 transport_generic_request_failure(se_cmd);
1498 return;
1499 }
1500
1501 /*
1502 * Check if we need to delay processing because of ALUA
1503 * Active/NonOptimized primary access state..
1504 */
1505 core_alua_check_nonop_delay(se_cmd);
1506
1507 transport_handle_cdb_direct(se_cmd);
1508 return;
1509 }
1510 EXPORT_SYMBOL(target_submit_cmd);
1511
1512 static void target_complete_tmr_failure(struct work_struct *work)
1513 {
1514 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1515
1516 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1517 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1518 transport_generic_free_cmd(se_cmd, 0);
1519 }
1520
1521 /**
1522 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1523 * for TMR CDBs
1524 *
1525 * @se_cmd: command descriptor to submit
1526 * @se_sess: associated se_sess for endpoint
1527 * @sense: pointer to SCSI sense buffer
1528 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1529 * @fabric_context: fabric context for TMR req
1530 * @tm_type: Type of TM request
1531 * @gfp: gfp type for caller
1532 * @tag: referenced task tag for TMR_ABORT_TASK
1533 * @flags: submit cmd flags
1534 *
1535 * Callable from all contexts.
1536 **/
1537
1538 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1539 unsigned char *sense, u32 unpacked_lun,
1540 void *fabric_tmr_ptr, unsigned char tm_type,
1541 gfp_t gfp, unsigned int tag, int flags)
1542 {
1543 struct se_portal_group *se_tpg;
1544 int ret;
1545
1546 se_tpg = se_sess->se_tpg;
1547 BUG_ON(!se_tpg);
1548
1549 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1550 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1551 /*
1552 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1553 * allocation failure.
1554 */
1555 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1556 if (ret < 0)
1557 return -ENOMEM;
1558
1559 if (tm_type == TMR_ABORT_TASK)
1560 se_cmd->se_tmr_req->ref_task_tag = tag;
1561
1562 /* See target_submit_cmd for commentary */
1563 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1564
1565 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1566 if (ret) {
1567 /*
1568 * For callback during failure handling, push this work off
1569 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1570 */
1571 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1572 schedule_work(&se_cmd->work);
1573 return 0;
1574 }
1575 transport_generic_handle_tmr(se_cmd);
1576 return 0;
1577 }
1578 EXPORT_SYMBOL(target_submit_tmr);
1579
1580 /*
1581 * If the cmd is active, request it to be stopped and sleep until it
1582 * has completed.
1583 */
1584 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1585 {
1586 bool was_active = false;
1587
1588 if (cmd->transport_state & CMD_T_BUSY) {
1589 cmd->transport_state |= CMD_T_REQUEST_STOP;
1590 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1591
1592 pr_debug("cmd %p waiting to complete\n", cmd);
1593 wait_for_completion(&cmd->task_stop_comp);
1594 pr_debug("cmd %p stopped successfully\n", cmd);
1595
1596 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1597 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1598 cmd->transport_state &= ~CMD_T_BUSY;
1599 was_active = true;
1600 }
1601
1602 return was_active;
1603 }
1604
1605 /*
1606 * Handle SAM-esque emulation for generic transport request failures.
1607 */
1608 void transport_generic_request_failure(struct se_cmd *cmd)
1609 {
1610 int ret = 0;
1611
1612 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1613 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1614 cmd->t_task_cdb[0]);
1615 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1616 cmd->se_tfo->get_cmd_state(cmd),
1617 cmd->t_state, cmd->scsi_sense_reason);
1618 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1619 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1620 (cmd->transport_state & CMD_T_STOP) != 0,
1621 (cmd->transport_state & CMD_T_SENT) != 0);
1622
1623 /*
1624 * For SAM Task Attribute emulation for failed struct se_cmd
1625 */
1626 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1627 transport_complete_task_attr(cmd);
1628
1629 switch (cmd->scsi_sense_reason) {
1630 case TCM_NON_EXISTENT_LUN:
1631 case TCM_UNSUPPORTED_SCSI_OPCODE:
1632 case TCM_INVALID_CDB_FIELD:
1633 case TCM_INVALID_PARAMETER_LIST:
1634 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1635 case TCM_UNKNOWN_MODE_PAGE:
1636 case TCM_WRITE_PROTECTED:
1637 case TCM_CHECK_CONDITION_ABORT_CMD:
1638 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1639 case TCM_CHECK_CONDITION_NOT_READY:
1640 break;
1641 case TCM_RESERVATION_CONFLICT:
1642 /*
1643 * No SENSE Data payload for this case, set SCSI Status
1644 * and queue the response to $FABRIC_MOD.
1645 *
1646 * Uses linux/include/scsi/scsi.h SAM status codes defs
1647 */
1648 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1649 /*
1650 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1651 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1652 * CONFLICT STATUS.
1653 *
1654 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1655 */
1656 if (cmd->se_sess &&
1657 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1658 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1659 cmd->orig_fe_lun, 0x2C,
1660 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1661
1662 ret = cmd->se_tfo->queue_status(cmd);
1663 if (ret == -EAGAIN || ret == -ENOMEM)
1664 goto queue_full;
1665 goto check_stop;
1666 default:
1667 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1668 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1669 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1670 break;
1671 }
1672
1673 ret = transport_send_check_condition_and_sense(cmd,
1674 cmd->scsi_sense_reason, 0);
1675 if (ret == -EAGAIN || ret == -ENOMEM)
1676 goto queue_full;
1677
1678 check_stop:
1679 transport_lun_remove_cmd(cmd);
1680 if (!transport_cmd_check_stop_to_fabric(cmd))
1681 ;
1682 return;
1683
1684 queue_full:
1685 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1686 transport_handle_queue_full(cmd, cmd->se_dev);
1687 }
1688 EXPORT_SYMBOL(transport_generic_request_failure);
1689
1690 static void __target_execute_cmd(struct se_cmd *cmd)
1691 {
1692 int error = 0;
1693
1694 spin_lock_irq(&cmd->t_state_lock);
1695 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1696 spin_unlock_irq(&cmd->t_state_lock);
1697
1698 if (cmd->execute_cmd)
1699 error = cmd->execute_cmd(cmd);
1700
1701 if (error) {
1702 spin_lock_irq(&cmd->t_state_lock);
1703 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1704 spin_unlock_irq(&cmd->t_state_lock);
1705
1706 transport_generic_request_failure(cmd);
1707 }
1708 }
1709
1710 void target_execute_cmd(struct se_cmd *cmd)
1711 {
1712 struct se_device *dev = cmd->se_dev;
1713
1714 /*
1715 * If the received CDB has aleady been aborted stop processing it here.
1716 */
1717 if (transport_check_aborted_status(cmd, 1))
1718 return;
1719
1720 /*
1721 * Determine if IOCTL context caller in requesting the stopping of this
1722 * command for LUN shutdown purposes.
1723 */
1724 spin_lock_irq(&cmd->t_state_lock);
1725 if (cmd->transport_state & CMD_T_LUN_STOP) {
1726 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1727 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1728
1729 cmd->transport_state &= ~CMD_T_ACTIVE;
1730 spin_unlock_irq(&cmd->t_state_lock);
1731 complete(&cmd->transport_lun_stop_comp);
1732 return;
1733 }
1734 /*
1735 * Determine if frontend context caller is requesting the stopping of
1736 * this command for frontend exceptions.
1737 */
1738 if (cmd->transport_state & CMD_T_STOP) {
1739 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1740 __func__, __LINE__,
1741 cmd->se_tfo->get_task_tag(cmd));
1742
1743 spin_unlock_irq(&cmd->t_state_lock);
1744 complete(&cmd->t_transport_stop_comp);
1745 return;
1746 }
1747
1748 cmd->t_state = TRANSPORT_PROCESSING;
1749 spin_unlock_irq(&cmd->t_state_lock);
1750
1751 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1752 goto execute;
1753
1754 /*
1755 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1756 * to allow the passed struct se_cmd list of tasks to the front of the list.
1757 */
1758 switch (cmd->sam_task_attr) {
1759 case MSG_HEAD_TAG:
1760 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1761 "se_ordered_id: %u\n",
1762 cmd->t_task_cdb[0], cmd->se_ordered_id);
1763 goto execute;
1764 case MSG_ORDERED_TAG:
1765 atomic_inc(&dev->dev_ordered_sync);
1766 smp_mb__after_atomic_inc();
1767
1768 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1769 " se_ordered_id: %u\n",
1770 cmd->t_task_cdb[0], cmd->se_ordered_id);
1771
1772 /*
1773 * Execute an ORDERED command if no other older commands
1774 * exist that need to be completed first.
1775 */
1776 if (!atomic_read(&dev->simple_cmds))
1777 goto execute;
1778 break;
1779 default:
1780 /*
1781 * For SIMPLE and UNTAGGED Task Attribute commands
1782 */
1783 atomic_inc(&dev->simple_cmds);
1784 smp_mb__after_atomic_inc();
1785 break;
1786 }
1787
1788 if (atomic_read(&dev->dev_ordered_sync) != 0) {
1789 spin_lock(&dev->delayed_cmd_lock);
1790 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1791 spin_unlock(&dev->delayed_cmd_lock);
1792
1793 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1794 " delayed CMD list, se_ordered_id: %u\n",
1795 cmd->t_task_cdb[0], cmd->sam_task_attr,
1796 cmd->se_ordered_id);
1797 return;
1798 }
1799
1800 execute:
1801 /*
1802 * Otherwise, no ORDERED task attributes exist..
1803 */
1804 __target_execute_cmd(cmd);
1805 }
1806 EXPORT_SYMBOL(target_execute_cmd);
1807
1808 /*
1809 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
1810 */
1811 static int transport_get_sense_data(struct se_cmd *cmd)
1812 {
1813 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
1814 struct se_device *dev = cmd->se_dev;
1815 unsigned long flags;
1816 u32 offset = 0;
1817
1818 WARN_ON(!cmd->se_lun);
1819
1820 if (!dev)
1821 return 0;
1822
1823 spin_lock_irqsave(&cmd->t_state_lock, flags);
1824 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
1825 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1826 return 0;
1827 }
1828
1829 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
1830 goto out;
1831
1832 if (!dev->transport->get_sense_buffer) {
1833 pr_err("dev->transport->get_sense_buffer is NULL\n");
1834 goto out;
1835 }
1836
1837 sense_buffer = dev->transport->get_sense_buffer(cmd);
1838 if (!sense_buffer) {
1839 pr_err("ITT 0x%08x cmd %p: Unable to locate"
1840 " sense buffer for task with sense\n",
1841 cmd->se_tfo->get_task_tag(cmd), cmd);
1842 goto out;
1843 }
1844
1845 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1846
1847 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
1848
1849 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
1850
1851 /* Automatically padded */
1852 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
1853
1854 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
1855 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
1856 return 0;
1857
1858 out:
1859 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1860 return -1;
1861 }
1862
1863 /*
1864 * Process all commands up to the last received ORDERED task attribute which
1865 * requires another blocking boundary
1866 */
1867 static void target_restart_delayed_cmds(struct se_device *dev)
1868 {
1869 for (;;) {
1870 struct se_cmd *cmd;
1871
1872 spin_lock(&dev->delayed_cmd_lock);
1873 if (list_empty(&dev->delayed_cmd_list)) {
1874 spin_unlock(&dev->delayed_cmd_lock);
1875 break;
1876 }
1877
1878 cmd = list_entry(dev->delayed_cmd_list.next,
1879 struct se_cmd, se_delayed_node);
1880 list_del(&cmd->se_delayed_node);
1881 spin_unlock(&dev->delayed_cmd_lock);
1882
1883 __target_execute_cmd(cmd);
1884
1885 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1886 break;
1887 }
1888 }
1889
1890 /*
1891 * Called from I/O completion to determine which dormant/delayed
1892 * and ordered cmds need to have their tasks added to the execution queue.
1893 */
1894 static void transport_complete_task_attr(struct se_cmd *cmd)
1895 {
1896 struct se_device *dev = cmd->se_dev;
1897
1898 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1899 atomic_dec(&dev->simple_cmds);
1900 smp_mb__after_atomic_dec();
1901 dev->dev_cur_ordered_id++;
1902 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1903 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1904 cmd->se_ordered_id);
1905 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1906 dev->dev_cur_ordered_id++;
1907 pr_debug("Incremented dev_cur_ordered_id: %u for"
1908 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1909 cmd->se_ordered_id);
1910 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1911 atomic_dec(&dev->dev_ordered_sync);
1912 smp_mb__after_atomic_dec();
1913
1914 dev->dev_cur_ordered_id++;
1915 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1916 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1917 }
1918
1919 target_restart_delayed_cmds(dev);
1920 }
1921
1922 static void transport_complete_qf(struct se_cmd *cmd)
1923 {
1924 int ret = 0;
1925
1926 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1927 transport_complete_task_attr(cmd);
1928
1929 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1930 ret = cmd->se_tfo->queue_status(cmd);
1931 if (ret)
1932 goto out;
1933 }
1934
1935 switch (cmd->data_direction) {
1936 case DMA_FROM_DEVICE:
1937 ret = cmd->se_tfo->queue_data_in(cmd);
1938 break;
1939 case DMA_TO_DEVICE:
1940 if (cmd->t_bidi_data_sg) {
1941 ret = cmd->se_tfo->queue_data_in(cmd);
1942 if (ret < 0)
1943 break;
1944 }
1945 /* Fall through for DMA_TO_DEVICE */
1946 case DMA_NONE:
1947 ret = cmd->se_tfo->queue_status(cmd);
1948 break;
1949 default:
1950 break;
1951 }
1952
1953 out:
1954 if (ret < 0) {
1955 transport_handle_queue_full(cmd, cmd->se_dev);
1956 return;
1957 }
1958 transport_lun_remove_cmd(cmd);
1959 transport_cmd_check_stop_to_fabric(cmd);
1960 }
1961
1962 static void transport_handle_queue_full(
1963 struct se_cmd *cmd,
1964 struct se_device *dev)
1965 {
1966 spin_lock_irq(&dev->qf_cmd_lock);
1967 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1968 atomic_inc(&dev->dev_qf_count);
1969 smp_mb__after_atomic_inc();
1970 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1971
1972 schedule_work(&cmd->se_dev->qf_work_queue);
1973 }
1974
1975 static void target_complete_ok_work(struct work_struct *work)
1976 {
1977 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1978 int reason = 0, ret;
1979
1980 /*
1981 * Check if we need to move delayed/dormant tasks from cmds on the
1982 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1983 * Attribute.
1984 */
1985 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1986 transport_complete_task_attr(cmd);
1987 /*
1988 * Check to schedule QUEUE_FULL work, or execute an existing
1989 * cmd->transport_qf_callback()
1990 */
1991 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1992 schedule_work(&cmd->se_dev->qf_work_queue);
1993
1994 /*
1995 * Check if we need to retrieve a sense buffer from
1996 * the struct se_cmd in question.
1997 */
1998 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1999 if (transport_get_sense_data(cmd) < 0)
2000 reason = TCM_NON_EXISTENT_LUN;
2001
2002 if (cmd->scsi_status) {
2003 ret = transport_send_check_condition_and_sense(
2004 cmd, reason, 1);
2005 if (ret == -EAGAIN || ret == -ENOMEM)
2006 goto queue_full;
2007
2008 transport_lun_remove_cmd(cmd);
2009 transport_cmd_check_stop_to_fabric(cmd);
2010 return;
2011 }
2012 }
2013 /*
2014 * Check for a callback, used by amongst other things
2015 * XDWRITE_READ_10 emulation.
2016 */
2017 if (cmd->transport_complete_callback)
2018 cmd->transport_complete_callback(cmd);
2019
2020 switch (cmd->data_direction) {
2021 case DMA_FROM_DEVICE:
2022 spin_lock(&cmd->se_lun->lun_sep_lock);
2023 if (cmd->se_lun->lun_sep) {
2024 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2025 cmd->data_length;
2026 }
2027 spin_unlock(&cmd->se_lun->lun_sep_lock);
2028
2029 ret = cmd->se_tfo->queue_data_in(cmd);
2030 if (ret == -EAGAIN || ret == -ENOMEM)
2031 goto queue_full;
2032 break;
2033 case DMA_TO_DEVICE:
2034 spin_lock(&cmd->se_lun->lun_sep_lock);
2035 if (cmd->se_lun->lun_sep) {
2036 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2037 cmd->data_length;
2038 }
2039 spin_unlock(&cmd->se_lun->lun_sep_lock);
2040 /*
2041 * Check if we need to send READ payload for BIDI-COMMAND
2042 */
2043 if (cmd->t_bidi_data_sg) {
2044 spin_lock(&cmd->se_lun->lun_sep_lock);
2045 if (cmd->se_lun->lun_sep) {
2046 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2047 cmd->data_length;
2048 }
2049 spin_unlock(&cmd->se_lun->lun_sep_lock);
2050 ret = cmd->se_tfo->queue_data_in(cmd);
2051 if (ret == -EAGAIN || ret == -ENOMEM)
2052 goto queue_full;
2053 break;
2054 }
2055 /* Fall through for DMA_TO_DEVICE */
2056 case DMA_NONE:
2057 ret = cmd->se_tfo->queue_status(cmd);
2058 if (ret == -EAGAIN || ret == -ENOMEM)
2059 goto queue_full;
2060 break;
2061 default:
2062 break;
2063 }
2064
2065 transport_lun_remove_cmd(cmd);
2066 transport_cmd_check_stop_to_fabric(cmd);
2067 return;
2068
2069 queue_full:
2070 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2071 " data_direction: %d\n", cmd, cmd->data_direction);
2072 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2073 transport_handle_queue_full(cmd, cmd->se_dev);
2074 }
2075
2076 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2077 {
2078 struct scatterlist *sg;
2079 int count;
2080
2081 for_each_sg(sgl, sg, nents, count)
2082 __free_page(sg_page(sg));
2083
2084 kfree(sgl);
2085 }
2086
2087 static inline void transport_free_pages(struct se_cmd *cmd)
2088 {
2089 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
2090 return;
2091
2092 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2093 cmd->t_data_sg = NULL;
2094 cmd->t_data_nents = 0;
2095
2096 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2097 cmd->t_bidi_data_sg = NULL;
2098 cmd->t_bidi_data_nents = 0;
2099 }
2100
2101 /**
2102 * transport_release_cmd - free a command
2103 * @cmd: command to free
2104 *
2105 * This routine unconditionally frees a command, and reference counting
2106 * or list removal must be done in the caller.
2107 */
2108 static void transport_release_cmd(struct se_cmd *cmd)
2109 {
2110 BUG_ON(!cmd->se_tfo);
2111
2112 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2113 core_tmr_release_req(cmd->se_tmr_req);
2114 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2115 kfree(cmd->t_task_cdb);
2116 /*
2117 * If this cmd has been setup with target_get_sess_cmd(), drop
2118 * the kref and call ->release_cmd() in kref callback.
2119 */
2120 if (cmd->check_release != 0) {
2121 target_put_sess_cmd(cmd->se_sess, cmd);
2122 return;
2123 }
2124 cmd->se_tfo->release_cmd(cmd);
2125 }
2126
2127 /**
2128 * transport_put_cmd - release a reference to a command
2129 * @cmd: command to release
2130 *
2131 * This routine releases our reference to the command and frees it if possible.
2132 */
2133 static void transport_put_cmd(struct se_cmd *cmd)
2134 {
2135 unsigned long flags;
2136
2137 spin_lock_irqsave(&cmd->t_state_lock, flags);
2138 if (atomic_read(&cmd->t_fe_count)) {
2139 if (!atomic_dec_and_test(&cmd->t_fe_count))
2140 goto out_busy;
2141 }
2142
2143 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
2144 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2145 target_remove_from_state_list(cmd);
2146 }
2147 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2148
2149 transport_free_pages(cmd);
2150 transport_release_cmd(cmd);
2151 return;
2152 out_busy:
2153 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2154 }
2155
2156 /*
2157 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
2158 * allocating in the core.
2159 * @cmd: Associated se_cmd descriptor
2160 * @mem: SGL style memory for TCM WRITE / READ
2161 * @sg_mem_num: Number of SGL elements
2162 * @mem_bidi_in: SGL style memory for TCM BIDI READ
2163 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
2164 *
2165 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
2166 * of parameters.
2167 */
2168 int transport_generic_map_mem_to_cmd(
2169 struct se_cmd *cmd,
2170 struct scatterlist *sgl,
2171 u32 sgl_count,
2172 struct scatterlist *sgl_bidi,
2173 u32 sgl_bidi_count)
2174 {
2175 if (!sgl || !sgl_count)
2176 return 0;
2177
2178 /*
2179 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
2180 * scatterlists already have been set to follow what the fabric
2181 * passes for the original expected data transfer length.
2182 */
2183 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
2184 pr_warn("Rejecting SCSI DATA overflow for fabric using"
2185 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
2186 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2187 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2188 return -EINVAL;
2189 }
2190
2191 cmd->t_data_sg = sgl;
2192 cmd->t_data_nents = sgl_count;
2193
2194 if (sgl_bidi && sgl_bidi_count) {
2195 cmd->t_bidi_data_sg = sgl_bidi;
2196 cmd->t_bidi_data_nents = sgl_bidi_count;
2197 }
2198 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
2199 return 0;
2200 }
2201 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
2202
2203 void *transport_kmap_data_sg(struct se_cmd *cmd)
2204 {
2205 struct scatterlist *sg = cmd->t_data_sg;
2206 struct page **pages;
2207 int i;
2208
2209 BUG_ON(!sg);
2210 /*
2211 * We need to take into account a possible offset here for fabrics like
2212 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2213 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2214 */
2215 if (!cmd->t_data_nents)
2216 return NULL;
2217 else if (cmd->t_data_nents == 1)
2218 return kmap(sg_page(sg)) + sg->offset;
2219
2220 /* >1 page. use vmap */
2221 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2222 if (!pages)
2223 return NULL;
2224
2225 /* convert sg[] to pages[] */
2226 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2227 pages[i] = sg_page(sg);
2228 }
2229
2230 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2231 kfree(pages);
2232 if (!cmd->t_data_vmap)
2233 return NULL;
2234
2235 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2236 }
2237 EXPORT_SYMBOL(transport_kmap_data_sg);
2238
2239 void transport_kunmap_data_sg(struct se_cmd *cmd)
2240 {
2241 if (!cmd->t_data_nents) {
2242 return;
2243 } else if (cmd->t_data_nents == 1) {
2244 kunmap(sg_page(cmd->t_data_sg));
2245 return;
2246 }
2247
2248 vunmap(cmd->t_data_vmap);
2249 cmd->t_data_vmap = NULL;
2250 }
2251 EXPORT_SYMBOL(transport_kunmap_data_sg);
2252
2253 static int
2254 transport_generic_get_mem(struct se_cmd *cmd)
2255 {
2256 u32 length = cmd->data_length;
2257 unsigned int nents;
2258 struct page *page;
2259 gfp_t zero_flag;
2260 int i = 0;
2261
2262 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2263 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2264 if (!cmd->t_data_sg)
2265 return -ENOMEM;
2266
2267 cmd->t_data_nents = nents;
2268 sg_init_table(cmd->t_data_sg, nents);
2269
2270 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2271
2272 while (length) {
2273 u32 page_len = min_t(u32, length, PAGE_SIZE);
2274 page = alloc_page(GFP_KERNEL | zero_flag);
2275 if (!page)
2276 goto out;
2277
2278 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2279 length -= page_len;
2280 i++;
2281 }
2282 return 0;
2283
2284 out:
2285 while (i >= 0) {
2286 __free_page(sg_page(&cmd->t_data_sg[i]));
2287 i--;
2288 }
2289 kfree(cmd->t_data_sg);
2290 cmd->t_data_sg = NULL;
2291 return -ENOMEM;
2292 }
2293
2294 /*
2295 * Allocate any required resources to execute the command. For writes we
2296 * might not have the payload yet, so notify the fabric via a call to
2297 * ->write_pending instead. Otherwise place it on the execution queue.
2298 */
2299 int transport_generic_new_cmd(struct se_cmd *cmd)
2300 {
2301 int ret = 0;
2302
2303 /*
2304 * Determine is the TCM fabric module has already allocated physical
2305 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2306 * beforehand.
2307 */
2308 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2309 cmd->data_length) {
2310 ret = transport_generic_get_mem(cmd);
2311 if (ret < 0)
2312 goto out_fail;
2313 }
2314
2315 /* Workaround for handling zero-length control CDBs */
2316 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && !cmd->data_length) {
2317 spin_lock_irq(&cmd->t_state_lock);
2318 cmd->t_state = TRANSPORT_COMPLETE;
2319 cmd->transport_state |= CMD_T_ACTIVE;
2320 spin_unlock_irq(&cmd->t_state_lock);
2321
2322 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
2323 u8 ua_asc = 0, ua_ascq = 0;
2324
2325 core_scsi3_ua_clear_for_request_sense(cmd,
2326 &ua_asc, &ua_ascq);
2327 }
2328
2329 INIT_WORK(&cmd->work, target_complete_ok_work);
2330 queue_work(target_completion_wq, &cmd->work);
2331 return 0;
2332 }
2333
2334 atomic_inc(&cmd->t_fe_count);
2335
2336 /*
2337 * If this command is not a write we can execute it right here,
2338 * for write buffers we need to notify the fabric driver first
2339 * and let it call back once the write buffers are ready.
2340 */
2341 target_add_to_state_list(cmd);
2342 if (cmd->data_direction != DMA_TO_DEVICE) {
2343 target_execute_cmd(cmd);
2344 return 0;
2345 }
2346
2347 spin_lock_irq(&cmd->t_state_lock);
2348 cmd->t_state = TRANSPORT_WRITE_PENDING;
2349 spin_unlock_irq(&cmd->t_state_lock);
2350
2351 transport_cmd_check_stop(cmd, false);
2352
2353 ret = cmd->se_tfo->write_pending(cmd);
2354 if (ret == -EAGAIN || ret == -ENOMEM)
2355 goto queue_full;
2356
2357 if (ret < 0)
2358 return ret;
2359 return 1;
2360
2361 out_fail:
2362 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2363 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2364 return -EINVAL;
2365 queue_full:
2366 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2367 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2368 transport_handle_queue_full(cmd, cmd->se_dev);
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(transport_generic_new_cmd);
2372
2373 static void transport_write_pending_qf(struct se_cmd *cmd)
2374 {
2375 int ret;
2376
2377 ret = cmd->se_tfo->write_pending(cmd);
2378 if (ret == -EAGAIN || ret == -ENOMEM) {
2379 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2380 cmd);
2381 transport_handle_queue_full(cmd, cmd->se_dev);
2382 }
2383 }
2384
2385 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2386 {
2387 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2388 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2389 transport_wait_for_tasks(cmd);
2390
2391 transport_release_cmd(cmd);
2392 } else {
2393 if (wait_for_tasks)
2394 transport_wait_for_tasks(cmd);
2395
2396 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2397
2398 if (cmd->se_lun)
2399 transport_lun_remove_cmd(cmd);
2400
2401 transport_put_cmd(cmd);
2402 }
2403 }
2404 EXPORT_SYMBOL(transport_generic_free_cmd);
2405
2406 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2407 * @se_sess: session to reference
2408 * @se_cmd: command descriptor to add
2409 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2410 */
2411 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2412 bool ack_kref)
2413 {
2414 unsigned long flags;
2415
2416 kref_init(&se_cmd->cmd_kref);
2417 /*
2418 * Add a second kref if the fabric caller is expecting to handle
2419 * fabric acknowledgement that requires two target_put_sess_cmd()
2420 * invocations before se_cmd descriptor release.
2421 */
2422 if (ack_kref == true) {
2423 kref_get(&se_cmd->cmd_kref);
2424 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2425 }
2426
2427 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2428 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2429 se_cmd->check_release = 1;
2430 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2431 }
2432 EXPORT_SYMBOL(target_get_sess_cmd);
2433
2434 static void target_release_cmd_kref(struct kref *kref)
2435 {
2436 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2437 struct se_session *se_sess = se_cmd->se_sess;
2438 unsigned long flags;
2439
2440 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2441 if (list_empty(&se_cmd->se_cmd_list)) {
2442 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2443 se_cmd->se_tfo->release_cmd(se_cmd);
2444 return;
2445 }
2446 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2447 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2448 complete(&se_cmd->cmd_wait_comp);
2449 return;
2450 }
2451 list_del(&se_cmd->se_cmd_list);
2452 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2453
2454 se_cmd->se_tfo->release_cmd(se_cmd);
2455 }
2456
2457 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2458 * @se_sess: session to reference
2459 * @se_cmd: command descriptor to drop
2460 */
2461 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2462 {
2463 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2464 }
2465 EXPORT_SYMBOL(target_put_sess_cmd);
2466
2467 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
2468 * @se_sess: session to split
2469 */
2470 void target_splice_sess_cmd_list(struct se_session *se_sess)
2471 {
2472 struct se_cmd *se_cmd;
2473 unsigned long flags;
2474
2475 WARN_ON(!list_empty(&se_sess->sess_wait_list));
2476 INIT_LIST_HEAD(&se_sess->sess_wait_list);
2477
2478 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2479 se_sess->sess_tearing_down = 1;
2480
2481 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2482
2483 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2484 se_cmd->cmd_wait_set = 1;
2485
2486 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2487 }
2488 EXPORT_SYMBOL(target_splice_sess_cmd_list);
2489
2490 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2491 * @se_sess: session to wait for active I/O
2492 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2493 */
2494 void target_wait_for_sess_cmds(
2495 struct se_session *se_sess,
2496 int wait_for_tasks)
2497 {
2498 struct se_cmd *se_cmd, *tmp_cmd;
2499 bool rc = false;
2500
2501 list_for_each_entry_safe(se_cmd, tmp_cmd,
2502 &se_sess->sess_wait_list, se_cmd_list) {
2503 list_del(&se_cmd->se_cmd_list);
2504
2505 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2506 " %d\n", se_cmd, se_cmd->t_state,
2507 se_cmd->se_tfo->get_cmd_state(se_cmd));
2508
2509 if (wait_for_tasks) {
2510 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2511 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2512 se_cmd->se_tfo->get_cmd_state(se_cmd));
2513
2514 rc = transport_wait_for_tasks(se_cmd);
2515
2516 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2517 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2518 se_cmd->se_tfo->get_cmd_state(se_cmd));
2519 }
2520
2521 if (!rc) {
2522 wait_for_completion(&se_cmd->cmd_wait_comp);
2523 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2524 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2525 se_cmd->se_tfo->get_cmd_state(se_cmd));
2526 }
2527
2528 se_cmd->se_tfo->release_cmd(se_cmd);
2529 }
2530 }
2531 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2532
2533 /* transport_lun_wait_for_tasks():
2534 *
2535 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2536 * an struct se_lun to be successfully shutdown.
2537 */
2538 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2539 {
2540 unsigned long flags;
2541 int ret = 0;
2542
2543 /*
2544 * If the frontend has already requested this struct se_cmd to
2545 * be stopped, we can safely ignore this struct se_cmd.
2546 */
2547 spin_lock_irqsave(&cmd->t_state_lock, flags);
2548 if (cmd->transport_state & CMD_T_STOP) {
2549 cmd->transport_state &= ~CMD_T_LUN_STOP;
2550
2551 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2552 cmd->se_tfo->get_task_tag(cmd));
2553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2554 transport_cmd_check_stop(cmd, false);
2555 return -EPERM;
2556 }
2557 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2558 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2559
2560 // XXX: audit task_flags checks.
2561 spin_lock_irqsave(&cmd->t_state_lock, flags);
2562 if ((cmd->transport_state & CMD_T_BUSY) &&
2563 (cmd->transport_state & CMD_T_SENT)) {
2564 if (!target_stop_cmd(cmd, &flags))
2565 ret++;
2566 }
2567 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2568
2569 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2570 " %d\n", cmd, ret);
2571 if (!ret) {
2572 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2573 cmd->se_tfo->get_task_tag(cmd));
2574 wait_for_completion(&cmd->transport_lun_stop_comp);
2575 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2576 cmd->se_tfo->get_task_tag(cmd));
2577 }
2578
2579 return 0;
2580 }
2581
2582 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2583 {
2584 struct se_cmd *cmd = NULL;
2585 unsigned long lun_flags, cmd_flags;
2586 /*
2587 * Do exception processing and return CHECK_CONDITION status to the
2588 * Initiator Port.
2589 */
2590 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2591 while (!list_empty(&lun->lun_cmd_list)) {
2592 cmd = list_first_entry(&lun->lun_cmd_list,
2593 struct se_cmd, se_lun_node);
2594 list_del_init(&cmd->se_lun_node);
2595
2596 spin_lock(&cmd->t_state_lock);
2597 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2598 "_lun_stop for ITT: 0x%08x\n",
2599 cmd->se_lun->unpacked_lun,
2600 cmd->se_tfo->get_task_tag(cmd));
2601 cmd->transport_state |= CMD_T_LUN_STOP;
2602 spin_unlock(&cmd->t_state_lock);
2603
2604 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2605
2606 if (!cmd->se_lun) {
2607 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2608 cmd->se_tfo->get_task_tag(cmd),
2609 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2610 BUG();
2611 }
2612 /*
2613 * If the Storage engine still owns the iscsi_cmd_t, determine
2614 * and/or stop its context.
2615 */
2616 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2617 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2618 cmd->se_tfo->get_task_tag(cmd));
2619
2620 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2621 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2622 continue;
2623 }
2624
2625 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2626 "_wait_for_tasks(): SUCCESS\n",
2627 cmd->se_lun->unpacked_lun,
2628 cmd->se_tfo->get_task_tag(cmd));
2629
2630 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2631 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2632 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2633 goto check_cond;
2634 }
2635 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2636 target_remove_from_state_list(cmd);
2637 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2638
2639 /*
2640 * The Storage engine stopped this struct se_cmd before it was
2641 * send to the fabric frontend for delivery back to the
2642 * Initiator Node. Return this SCSI CDB back with an
2643 * CHECK_CONDITION status.
2644 */
2645 check_cond:
2646 transport_send_check_condition_and_sense(cmd,
2647 TCM_NON_EXISTENT_LUN, 0);
2648 /*
2649 * If the fabric frontend is waiting for this iscsi_cmd_t to
2650 * be released, notify the waiting thread now that LU has
2651 * finished accessing it.
2652 */
2653 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2654 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2655 pr_debug("SE_LUN[%d] - Detected FE stop for"
2656 " struct se_cmd: %p ITT: 0x%08x\n",
2657 lun->unpacked_lun,
2658 cmd, cmd->se_tfo->get_task_tag(cmd));
2659
2660 spin_unlock_irqrestore(&cmd->t_state_lock,
2661 cmd_flags);
2662 transport_cmd_check_stop(cmd, false);
2663 complete(&cmd->transport_lun_fe_stop_comp);
2664 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2665 continue;
2666 }
2667 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2668 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2669
2670 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2671 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2672 }
2673 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2674 }
2675
2676 static int transport_clear_lun_thread(void *p)
2677 {
2678 struct se_lun *lun = p;
2679
2680 __transport_clear_lun_from_sessions(lun);
2681 complete(&lun->lun_shutdown_comp);
2682
2683 return 0;
2684 }
2685
2686 int transport_clear_lun_from_sessions(struct se_lun *lun)
2687 {
2688 struct task_struct *kt;
2689
2690 kt = kthread_run(transport_clear_lun_thread, lun,
2691 "tcm_cl_%u", lun->unpacked_lun);
2692 if (IS_ERR(kt)) {
2693 pr_err("Unable to start clear_lun thread\n");
2694 return PTR_ERR(kt);
2695 }
2696 wait_for_completion(&lun->lun_shutdown_comp);
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * transport_wait_for_tasks - wait for completion to occur
2703 * @cmd: command to wait
2704 *
2705 * Called from frontend fabric context to wait for storage engine
2706 * to pause and/or release frontend generated struct se_cmd.
2707 */
2708 bool transport_wait_for_tasks(struct se_cmd *cmd)
2709 {
2710 unsigned long flags;
2711
2712 spin_lock_irqsave(&cmd->t_state_lock, flags);
2713 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2714 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2716 return false;
2717 }
2718
2719 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2720 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2722 return false;
2723 }
2724 /*
2725 * If we are already stopped due to an external event (ie: LUN shutdown)
2726 * sleep until the connection can have the passed struct se_cmd back.
2727 * The cmd->transport_lun_stopped_sem will be upped by
2728 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2729 * has completed its operation on the struct se_cmd.
2730 */
2731 if (cmd->transport_state & CMD_T_LUN_STOP) {
2732 pr_debug("wait_for_tasks: Stopping"
2733 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2734 "_stop_comp); for ITT: 0x%08x\n",
2735 cmd->se_tfo->get_task_tag(cmd));
2736 /*
2737 * There is a special case for WRITES where a FE exception +
2738 * LUN shutdown means ConfigFS context is still sleeping on
2739 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2740 * We go ahead and up transport_lun_stop_comp just to be sure
2741 * here.
2742 */
2743 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2744 complete(&cmd->transport_lun_stop_comp);
2745 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2746 spin_lock_irqsave(&cmd->t_state_lock, flags);
2747
2748 target_remove_from_state_list(cmd);
2749 /*
2750 * At this point, the frontend who was the originator of this
2751 * struct se_cmd, now owns the structure and can be released through
2752 * normal means below.
2753 */
2754 pr_debug("wait_for_tasks: Stopped"
2755 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2756 "stop_comp); for ITT: 0x%08x\n",
2757 cmd->se_tfo->get_task_tag(cmd));
2758
2759 cmd->transport_state &= ~CMD_T_LUN_STOP;
2760 }
2761
2762 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2763 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2764 return false;
2765 }
2766
2767 cmd->transport_state |= CMD_T_STOP;
2768
2769 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2770 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2771 cmd, cmd->se_tfo->get_task_tag(cmd),
2772 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2773
2774 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2775
2776 wait_for_completion(&cmd->t_transport_stop_comp);
2777
2778 spin_lock_irqsave(&cmd->t_state_lock, flags);
2779 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2780
2781 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
2782 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2783 cmd->se_tfo->get_task_tag(cmd));
2784
2785 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2786
2787 return true;
2788 }
2789 EXPORT_SYMBOL(transport_wait_for_tasks);
2790
2791 static int transport_get_sense_codes(
2792 struct se_cmd *cmd,
2793 u8 *asc,
2794 u8 *ascq)
2795 {
2796 *asc = cmd->scsi_asc;
2797 *ascq = cmd->scsi_ascq;
2798
2799 return 0;
2800 }
2801
2802 static int transport_set_sense_codes(
2803 struct se_cmd *cmd,
2804 u8 asc,
2805 u8 ascq)
2806 {
2807 cmd->scsi_asc = asc;
2808 cmd->scsi_ascq = ascq;
2809
2810 return 0;
2811 }
2812
2813 int transport_send_check_condition_and_sense(
2814 struct se_cmd *cmd,
2815 u8 reason,
2816 int from_transport)
2817 {
2818 unsigned char *buffer = cmd->sense_buffer;
2819 unsigned long flags;
2820 int offset;
2821 u8 asc = 0, ascq = 0;
2822
2823 spin_lock_irqsave(&cmd->t_state_lock, flags);
2824 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2825 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2826 return 0;
2827 }
2828 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2829 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2830
2831 if (!reason && from_transport)
2832 goto after_reason;
2833
2834 if (!from_transport)
2835 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2836 /*
2837 * Data Segment and SenseLength of the fabric response PDU.
2838 *
2839 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
2840 * from include/scsi/scsi_cmnd.h
2841 */
2842 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2843 TRANSPORT_SENSE_BUFFER);
2844 /*
2845 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2846 * SENSE KEY values from include/scsi/scsi.h
2847 */
2848 switch (reason) {
2849 case TCM_NON_EXISTENT_LUN:
2850 /* CURRENT ERROR */
2851 buffer[offset] = 0x70;
2852 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2853 /* ILLEGAL REQUEST */
2854 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2855 /* LOGICAL UNIT NOT SUPPORTED */
2856 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
2857 break;
2858 case TCM_UNSUPPORTED_SCSI_OPCODE:
2859 case TCM_SECTOR_COUNT_TOO_MANY:
2860 /* CURRENT ERROR */
2861 buffer[offset] = 0x70;
2862 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2863 /* ILLEGAL REQUEST */
2864 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2865 /* INVALID COMMAND OPERATION CODE */
2866 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
2867 break;
2868 case TCM_UNKNOWN_MODE_PAGE:
2869 /* CURRENT ERROR */
2870 buffer[offset] = 0x70;
2871 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2872 /* ILLEGAL REQUEST */
2873 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2874 /* INVALID FIELD IN CDB */
2875 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2876 break;
2877 case TCM_CHECK_CONDITION_ABORT_CMD:
2878 /* CURRENT ERROR */
2879 buffer[offset] = 0x70;
2880 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2881 /* ABORTED COMMAND */
2882 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2883 /* BUS DEVICE RESET FUNCTION OCCURRED */
2884 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
2885 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
2886 break;
2887 case TCM_INCORRECT_AMOUNT_OF_DATA:
2888 /* CURRENT ERROR */
2889 buffer[offset] = 0x70;
2890 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2891 /* ABORTED COMMAND */
2892 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2893 /* WRITE ERROR */
2894 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2895 /* NOT ENOUGH UNSOLICITED DATA */
2896 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
2897 break;
2898 case TCM_INVALID_CDB_FIELD:
2899 /* CURRENT ERROR */
2900 buffer[offset] = 0x70;
2901 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2902 /* ILLEGAL REQUEST */
2903 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2904 /* INVALID FIELD IN CDB */
2905 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2906 break;
2907 case TCM_INVALID_PARAMETER_LIST:
2908 /* CURRENT ERROR */
2909 buffer[offset] = 0x70;
2910 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2911 /* ILLEGAL REQUEST */
2912 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2913 /* INVALID FIELD IN PARAMETER LIST */
2914 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
2915 break;
2916 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2917 /* CURRENT ERROR */
2918 buffer[offset] = 0x70;
2919 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2920 /* ABORTED COMMAND */
2921 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2922 /* WRITE ERROR */
2923 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2924 /* UNEXPECTED_UNSOLICITED_DATA */
2925 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
2926 break;
2927 case TCM_SERVICE_CRC_ERROR:
2928 /* CURRENT ERROR */
2929 buffer[offset] = 0x70;
2930 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2931 /* ABORTED COMMAND */
2932 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2933 /* PROTOCOL SERVICE CRC ERROR */
2934 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
2935 /* N/A */
2936 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
2937 break;
2938 case TCM_SNACK_REJECTED:
2939 /* CURRENT ERROR */
2940 buffer[offset] = 0x70;
2941 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2942 /* ABORTED COMMAND */
2943 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2944 /* READ ERROR */
2945 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
2946 /* FAILED RETRANSMISSION REQUEST */
2947 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
2948 break;
2949 case TCM_WRITE_PROTECTED:
2950 /* CURRENT ERROR */
2951 buffer[offset] = 0x70;
2952 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2953 /* DATA PROTECT */
2954 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2955 /* WRITE PROTECTED */
2956 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
2957 break;
2958 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2959 /* CURRENT ERROR */
2960 buffer[offset] = 0x70;
2961 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2962 /* UNIT ATTENTION */
2963 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2964 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2965 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2966 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
2967 break;
2968 case TCM_CHECK_CONDITION_NOT_READY:
2969 /* CURRENT ERROR */
2970 buffer[offset] = 0x70;
2971 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2972 /* Not Ready */
2973 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
2974 transport_get_sense_codes(cmd, &asc, &ascq);
2975 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2976 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
2977 break;
2978 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2979 default:
2980 /* CURRENT ERROR */
2981 buffer[offset] = 0x70;
2982 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2983 /* ILLEGAL REQUEST */
2984 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2985 /* LOGICAL UNIT COMMUNICATION FAILURE */
2986 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
2987 break;
2988 }
2989 /*
2990 * This code uses linux/include/scsi/scsi.h SAM status codes!
2991 */
2992 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2993 /*
2994 * Automatically padded, this value is encoded in the fabric's
2995 * data_length response PDU containing the SCSI defined sense data.
2996 */
2997 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
2998
2999 after_reason:
3000 return cmd->se_tfo->queue_status(cmd);
3001 }
3002 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3003
3004 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3005 {
3006 int ret = 0;
3007
3008 if (cmd->transport_state & CMD_T_ABORTED) {
3009 if (!send_status ||
3010 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
3011 return 1;
3012
3013 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
3014 " status for CDB: 0x%02x ITT: 0x%08x\n",
3015 cmd->t_task_cdb[0],
3016 cmd->se_tfo->get_task_tag(cmd));
3017
3018 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
3019 cmd->se_tfo->queue_status(cmd);
3020 ret = 1;
3021 }
3022 return ret;
3023 }
3024 EXPORT_SYMBOL(transport_check_aborted_status);
3025
3026 void transport_send_task_abort(struct se_cmd *cmd)
3027 {
3028 unsigned long flags;
3029
3030 spin_lock_irqsave(&cmd->t_state_lock, flags);
3031 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3032 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3033 return;
3034 }
3035 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3036
3037 /*
3038 * If there are still expected incoming fabric WRITEs, we wait
3039 * until until they have completed before sending a TASK_ABORTED
3040 * response. This response with TASK_ABORTED status will be
3041 * queued back to fabric module by transport_check_aborted_status().
3042 */
3043 if (cmd->data_direction == DMA_TO_DEVICE) {
3044 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3045 cmd->transport_state |= CMD_T_ABORTED;
3046 smp_mb__after_atomic_inc();
3047 }
3048 }
3049 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3050
3051 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3052 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3053 cmd->se_tfo->get_task_tag(cmd));
3054
3055 cmd->se_tfo->queue_status(cmd);
3056 }
3057
3058 static void target_tmr_work(struct work_struct *work)
3059 {
3060 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3061 struct se_device *dev = cmd->se_dev;
3062 struct se_tmr_req *tmr = cmd->se_tmr_req;
3063 int ret;
3064
3065 switch (tmr->function) {
3066 case TMR_ABORT_TASK:
3067 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3068 break;
3069 case TMR_ABORT_TASK_SET:
3070 case TMR_CLEAR_ACA:
3071 case TMR_CLEAR_TASK_SET:
3072 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3073 break;
3074 case TMR_LUN_RESET:
3075 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3076 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3077 TMR_FUNCTION_REJECTED;
3078 break;
3079 case TMR_TARGET_WARM_RESET:
3080 tmr->response = TMR_FUNCTION_REJECTED;
3081 break;
3082 case TMR_TARGET_COLD_RESET:
3083 tmr->response = TMR_FUNCTION_REJECTED;
3084 break;
3085 default:
3086 pr_err("Uknown TMR function: 0x%02x.\n",
3087 tmr->function);
3088 tmr->response = TMR_FUNCTION_REJECTED;
3089 break;
3090 }
3091
3092 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3093 cmd->se_tfo->queue_tm_rsp(cmd);
3094
3095 transport_cmd_check_stop_to_fabric(cmd);
3096 }
3097
3098 int transport_generic_handle_tmr(
3099 struct se_cmd *cmd)
3100 {
3101 INIT_WORK(&cmd->work, target_tmr_work);
3102 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3103 return 0;
3104 }
3105 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.136918 seconds and 6 git commands to generate.