target: Check sess_tearing_down in target_get_sess_cmd()
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static void transport_complete_task_attr(struct se_cmd *cmd);
70 static void transport_handle_queue_full(struct se_cmd *cmd,
71 struct se_device *dev);
72 static int transport_generic_get_mem(struct se_cmd *cmd);
73 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool);
74 static void transport_put_cmd(struct se_cmd *cmd);
75 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
76 static void target_complete_ok_work(struct work_struct *work);
77
78 int init_se_kmem_caches(void)
79 {
80 se_sess_cache = kmem_cache_create("se_sess_cache",
81 sizeof(struct se_session), __alignof__(struct se_session),
82 0, NULL);
83 if (!se_sess_cache) {
84 pr_err("kmem_cache_create() for struct se_session"
85 " failed\n");
86 goto out;
87 }
88 se_ua_cache = kmem_cache_create("se_ua_cache",
89 sizeof(struct se_ua), __alignof__(struct se_ua),
90 0, NULL);
91 if (!se_ua_cache) {
92 pr_err("kmem_cache_create() for struct se_ua failed\n");
93 goto out_free_sess_cache;
94 }
95 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
96 sizeof(struct t10_pr_registration),
97 __alignof__(struct t10_pr_registration), 0, NULL);
98 if (!t10_pr_reg_cache) {
99 pr_err("kmem_cache_create() for struct t10_pr_registration"
100 " failed\n");
101 goto out_free_ua_cache;
102 }
103 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
104 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
105 0, NULL);
106 if (!t10_alua_lu_gp_cache) {
107 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
108 " failed\n");
109 goto out_free_pr_reg_cache;
110 }
111 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
112 sizeof(struct t10_alua_lu_gp_member),
113 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
114 if (!t10_alua_lu_gp_mem_cache) {
115 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
116 "cache failed\n");
117 goto out_free_lu_gp_cache;
118 }
119 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
120 sizeof(struct t10_alua_tg_pt_gp),
121 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
122 if (!t10_alua_tg_pt_gp_cache) {
123 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
124 "cache failed\n");
125 goto out_free_lu_gp_mem_cache;
126 }
127 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
128 "t10_alua_tg_pt_gp_mem_cache",
129 sizeof(struct t10_alua_tg_pt_gp_member),
130 __alignof__(struct t10_alua_tg_pt_gp_member),
131 0, NULL);
132 if (!t10_alua_tg_pt_gp_mem_cache) {
133 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
134 "mem_t failed\n");
135 goto out_free_tg_pt_gp_cache;
136 }
137
138 target_completion_wq = alloc_workqueue("target_completion",
139 WQ_MEM_RECLAIM, 0);
140 if (!target_completion_wq)
141 goto out_free_tg_pt_gp_mem_cache;
142
143 return 0;
144
145 out_free_tg_pt_gp_mem_cache:
146 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
147 out_free_tg_pt_gp_cache:
148 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
149 out_free_lu_gp_mem_cache:
150 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
151 out_free_lu_gp_cache:
152 kmem_cache_destroy(t10_alua_lu_gp_cache);
153 out_free_pr_reg_cache:
154 kmem_cache_destroy(t10_pr_reg_cache);
155 out_free_ua_cache:
156 kmem_cache_destroy(se_ua_cache);
157 out_free_sess_cache:
158 kmem_cache_destroy(se_sess_cache);
159 out:
160 return -ENOMEM;
161 }
162
163 void release_se_kmem_caches(void)
164 {
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
173 }
174
175 /* This code ensures unique mib indexes are handed out. */
176 static DEFINE_SPINLOCK(scsi_mib_index_lock);
177 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
178
179 /*
180 * Allocate a new row index for the entry type specified
181 */
182 u32 scsi_get_new_index(scsi_index_t type)
183 {
184 u32 new_index;
185
186 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
187
188 spin_lock(&scsi_mib_index_lock);
189 new_index = ++scsi_mib_index[type];
190 spin_unlock(&scsi_mib_index_lock);
191
192 return new_index;
193 }
194
195 void transport_subsystem_check_init(void)
196 {
197 int ret;
198
199 if (sub_api_initialized)
200 return;
201
202 ret = request_module("target_core_iblock");
203 if (ret != 0)
204 pr_err("Unable to load target_core_iblock\n");
205
206 ret = request_module("target_core_file");
207 if (ret != 0)
208 pr_err("Unable to load target_core_file\n");
209
210 ret = request_module("target_core_pscsi");
211 if (ret != 0)
212 pr_err("Unable to load target_core_pscsi\n");
213
214 ret = request_module("target_core_stgt");
215 if (ret != 0)
216 pr_err("Unable to load target_core_stgt\n");
217
218 sub_api_initialized = 1;
219 return;
220 }
221
222 struct se_session *transport_init_session(void)
223 {
224 struct se_session *se_sess;
225
226 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
227 if (!se_sess) {
228 pr_err("Unable to allocate struct se_session from"
229 " se_sess_cache\n");
230 return ERR_PTR(-ENOMEM);
231 }
232 INIT_LIST_HEAD(&se_sess->sess_list);
233 INIT_LIST_HEAD(&se_sess->sess_acl_list);
234 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
235 INIT_LIST_HEAD(&se_sess->sess_wait_list);
236 spin_lock_init(&se_sess->sess_cmd_lock);
237 kref_init(&se_sess->sess_kref);
238
239 return se_sess;
240 }
241 EXPORT_SYMBOL(transport_init_session);
242
243 /*
244 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
245 */
246 void __transport_register_session(
247 struct se_portal_group *se_tpg,
248 struct se_node_acl *se_nacl,
249 struct se_session *se_sess,
250 void *fabric_sess_ptr)
251 {
252 unsigned char buf[PR_REG_ISID_LEN];
253
254 se_sess->se_tpg = se_tpg;
255 se_sess->fabric_sess_ptr = fabric_sess_ptr;
256 /*
257 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
258 *
259 * Only set for struct se_session's that will actually be moving I/O.
260 * eg: *NOT* discovery sessions.
261 */
262 if (se_nacl) {
263 /*
264 * If the fabric module supports an ISID based TransportID,
265 * save this value in binary from the fabric I_T Nexus now.
266 */
267 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
268 memset(&buf[0], 0, PR_REG_ISID_LEN);
269 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
270 &buf[0], PR_REG_ISID_LEN);
271 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
272 }
273 kref_get(&se_nacl->acl_kref);
274
275 spin_lock_irq(&se_nacl->nacl_sess_lock);
276 /*
277 * The se_nacl->nacl_sess pointer will be set to the
278 * last active I_T Nexus for each struct se_node_acl.
279 */
280 se_nacl->nacl_sess = se_sess;
281
282 list_add_tail(&se_sess->sess_acl_list,
283 &se_nacl->acl_sess_list);
284 spin_unlock_irq(&se_nacl->nacl_sess_lock);
285 }
286 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
287
288 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
289 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
290 }
291 EXPORT_SYMBOL(__transport_register_session);
292
293 void transport_register_session(
294 struct se_portal_group *se_tpg,
295 struct se_node_acl *se_nacl,
296 struct se_session *se_sess,
297 void *fabric_sess_ptr)
298 {
299 unsigned long flags;
300
301 spin_lock_irqsave(&se_tpg->session_lock, flags);
302 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
303 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
304 }
305 EXPORT_SYMBOL(transport_register_session);
306
307 void target_release_session(struct kref *kref)
308 {
309 struct se_session *se_sess = container_of(kref,
310 struct se_session, sess_kref);
311 struct se_portal_group *se_tpg = se_sess->se_tpg;
312
313 se_tpg->se_tpg_tfo->close_session(se_sess);
314 }
315
316 void target_get_session(struct se_session *se_sess)
317 {
318 kref_get(&se_sess->sess_kref);
319 }
320 EXPORT_SYMBOL(target_get_session);
321
322 void target_put_session(struct se_session *se_sess)
323 {
324 struct se_portal_group *tpg = se_sess->se_tpg;
325
326 if (tpg->se_tpg_tfo->put_session != NULL) {
327 tpg->se_tpg_tfo->put_session(se_sess);
328 return;
329 }
330 kref_put(&se_sess->sess_kref, target_release_session);
331 }
332 EXPORT_SYMBOL(target_put_session);
333
334 static void target_complete_nacl(struct kref *kref)
335 {
336 struct se_node_acl *nacl = container_of(kref,
337 struct se_node_acl, acl_kref);
338
339 complete(&nacl->acl_free_comp);
340 }
341
342 void target_put_nacl(struct se_node_acl *nacl)
343 {
344 kref_put(&nacl->acl_kref, target_complete_nacl);
345 }
346
347 void transport_deregister_session_configfs(struct se_session *se_sess)
348 {
349 struct se_node_acl *se_nacl;
350 unsigned long flags;
351 /*
352 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
353 */
354 se_nacl = se_sess->se_node_acl;
355 if (se_nacl) {
356 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
357 if (se_nacl->acl_stop == 0)
358 list_del(&se_sess->sess_acl_list);
359 /*
360 * If the session list is empty, then clear the pointer.
361 * Otherwise, set the struct se_session pointer from the tail
362 * element of the per struct se_node_acl active session list.
363 */
364 if (list_empty(&se_nacl->acl_sess_list))
365 se_nacl->nacl_sess = NULL;
366 else {
367 se_nacl->nacl_sess = container_of(
368 se_nacl->acl_sess_list.prev,
369 struct se_session, sess_acl_list);
370 }
371 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
372 }
373 }
374 EXPORT_SYMBOL(transport_deregister_session_configfs);
375
376 void transport_free_session(struct se_session *se_sess)
377 {
378 kmem_cache_free(se_sess_cache, se_sess);
379 }
380 EXPORT_SYMBOL(transport_free_session);
381
382 void transport_deregister_session(struct se_session *se_sess)
383 {
384 struct se_portal_group *se_tpg = se_sess->se_tpg;
385 struct target_core_fabric_ops *se_tfo;
386 struct se_node_acl *se_nacl;
387 unsigned long flags;
388 bool comp_nacl = true;
389
390 if (!se_tpg) {
391 transport_free_session(se_sess);
392 return;
393 }
394 se_tfo = se_tpg->se_tpg_tfo;
395
396 spin_lock_irqsave(&se_tpg->session_lock, flags);
397 list_del(&se_sess->sess_list);
398 se_sess->se_tpg = NULL;
399 se_sess->fabric_sess_ptr = NULL;
400 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
401
402 /*
403 * Determine if we need to do extra work for this initiator node's
404 * struct se_node_acl if it had been previously dynamically generated.
405 */
406 se_nacl = se_sess->se_node_acl;
407
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 if (se_nacl && se_nacl->dynamic_node_acl) {
410 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
411 list_del(&se_nacl->acl_list);
412 se_tpg->num_node_acls--;
413 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
414 core_tpg_wait_for_nacl_pr_ref(se_nacl);
415 core_free_device_list_for_node(se_nacl, se_tpg);
416 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
417
418 comp_nacl = false;
419 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
420 }
421 }
422 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
423
424 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
425 se_tpg->se_tpg_tfo->get_fabric_name());
426 /*
427 * If last kref is dropping now for an explict NodeACL, awake sleeping
428 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
429 * removal context.
430 */
431 if (se_nacl && comp_nacl == true)
432 target_put_nacl(se_nacl);
433
434 transport_free_session(se_sess);
435 }
436 EXPORT_SYMBOL(transport_deregister_session);
437
438 /*
439 * Called with cmd->t_state_lock held.
440 */
441 static void target_remove_from_state_list(struct se_cmd *cmd)
442 {
443 struct se_device *dev = cmd->se_dev;
444 unsigned long flags;
445
446 if (!dev)
447 return;
448
449 if (cmd->transport_state & CMD_T_BUSY)
450 return;
451
452 spin_lock_irqsave(&dev->execute_task_lock, flags);
453 if (cmd->state_active) {
454 list_del(&cmd->state_list);
455 cmd->state_active = false;
456 }
457 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
458 }
459
460 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&cmd->t_state_lock, flags);
465 /*
466 * Determine if IOCTL context caller in requesting the stopping of this
467 * command for LUN shutdown purposes.
468 */
469 if (cmd->transport_state & CMD_T_LUN_STOP) {
470 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
471 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
472
473 cmd->transport_state &= ~CMD_T_ACTIVE;
474 if (remove_from_lists)
475 target_remove_from_state_list(cmd);
476 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
477
478 complete(&cmd->transport_lun_stop_comp);
479 return 1;
480 }
481
482 if (remove_from_lists) {
483 target_remove_from_state_list(cmd);
484
485 /*
486 * Clear struct se_cmd->se_lun before the handoff to FE.
487 */
488 cmd->se_lun = NULL;
489 }
490
491 /*
492 * Determine if frontend context caller is requesting the stopping of
493 * this command for frontend exceptions.
494 */
495 if (cmd->transport_state & CMD_T_STOP) {
496 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
497 __func__, __LINE__,
498 cmd->se_tfo->get_task_tag(cmd));
499
500 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
501
502 complete(&cmd->t_transport_stop_comp);
503 return 1;
504 }
505
506 cmd->transport_state &= ~CMD_T_ACTIVE;
507 if (remove_from_lists) {
508 /*
509 * Some fabric modules like tcm_loop can release
510 * their internally allocated I/O reference now and
511 * struct se_cmd now.
512 *
513 * Fabric modules are expected to return '1' here if the
514 * se_cmd being passed is released at this point,
515 * or zero if not being released.
516 */
517 if (cmd->se_tfo->check_stop_free != NULL) {
518 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
519 return cmd->se_tfo->check_stop_free(cmd);
520 }
521 }
522
523 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
524 return 0;
525 }
526
527 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
528 {
529 return transport_cmd_check_stop(cmd, true);
530 }
531
532 static void transport_lun_remove_cmd(struct se_cmd *cmd)
533 {
534 struct se_lun *lun = cmd->se_lun;
535 unsigned long flags;
536
537 if (!lun)
538 return;
539
540 spin_lock_irqsave(&cmd->t_state_lock, flags);
541 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
542 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
543 target_remove_from_state_list(cmd);
544 }
545 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
546
547 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
548 if (!list_empty(&cmd->se_lun_node))
549 list_del_init(&cmd->se_lun_node);
550 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
551 }
552
553 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
554 {
555 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
556 transport_lun_remove_cmd(cmd);
557
558 if (transport_cmd_check_stop_to_fabric(cmd))
559 return;
560 if (remove)
561 transport_put_cmd(cmd);
562 }
563
564 static void target_complete_failure_work(struct work_struct *work)
565 {
566 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
567
568 transport_generic_request_failure(cmd);
569 }
570
571 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
572 {
573 struct se_device *dev = cmd->se_dev;
574 int success = scsi_status == GOOD;
575 unsigned long flags;
576
577 cmd->scsi_status = scsi_status;
578
579
580 spin_lock_irqsave(&cmd->t_state_lock, flags);
581 cmd->transport_state &= ~CMD_T_BUSY;
582
583 if (dev && dev->transport->transport_complete) {
584 if (dev->transport->transport_complete(cmd,
585 cmd->t_data_sg) != 0) {
586 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
587 success = 1;
588 }
589 }
590
591 /*
592 * See if we are waiting to complete for an exception condition.
593 */
594 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
595 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
596 complete(&cmd->task_stop_comp);
597 return;
598 }
599
600 if (!success)
601 cmd->transport_state |= CMD_T_FAILED;
602
603 /*
604 * Check for case where an explict ABORT_TASK has been received
605 * and transport_wait_for_tasks() will be waiting for completion..
606 */
607 if (cmd->transport_state & CMD_T_ABORTED &&
608 cmd->transport_state & CMD_T_STOP) {
609 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
610 complete(&cmd->t_transport_stop_comp);
611 return;
612 } else if (cmd->transport_state & CMD_T_FAILED) {
613 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
614 INIT_WORK(&cmd->work, target_complete_failure_work);
615 } else {
616 INIT_WORK(&cmd->work, target_complete_ok_work);
617 }
618
619 cmd->t_state = TRANSPORT_COMPLETE;
620 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
621 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
622
623 queue_work(target_completion_wq, &cmd->work);
624 }
625 EXPORT_SYMBOL(target_complete_cmd);
626
627 static void target_add_to_state_list(struct se_cmd *cmd)
628 {
629 struct se_device *dev = cmd->se_dev;
630 unsigned long flags;
631
632 spin_lock_irqsave(&dev->execute_task_lock, flags);
633 if (!cmd->state_active) {
634 list_add_tail(&cmd->state_list, &dev->state_list);
635 cmd->state_active = true;
636 }
637 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
638 }
639
640 /*
641 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
642 */
643 static void transport_write_pending_qf(struct se_cmd *cmd);
644 static void transport_complete_qf(struct se_cmd *cmd);
645
646 static void target_qf_do_work(struct work_struct *work)
647 {
648 struct se_device *dev = container_of(work, struct se_device,
649 qf_work_queue);
650 LIST_HEAD(qf_cmd_list);
651 struct se_cmd *cmd, *cmd_tmp;
652
653 spin_lock_irq(&dev->qf_cmd_lock);
654 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
655 spin_unlock_irq(&dev->qf_cmd_lock);
656
657 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
658 list_del(&cmd->se_qf_node);
659 atomic_dec(&dev->dev_qf_count);
660 smp_mb__after_atomic_dec();
661
662 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
663 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
664 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
665 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
666 : "UNKNOWN");
667
668 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
669 transport_write_pending_qf(cmd);
670 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
671 transport_complete_qf(cmd);
672 }
673 }
674
675 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
676 {
677 switch (cmd->data_direction) {
678 case DMA_NONE:
679 return "NONE";
680 case DMA_FROM_DEVICE:
681 return "READ";
682 case DMA_TO_DEVICE:
683 return "WRITE";
684 case DMA_BIDIRECTIONAL:
685 return "BIDI";
686 default:
687 break;
688 }
689
690 return "UNKNOWN";
691 }
692
693 void transport_dump_dev_state(
694 struct se_device *dev,
695 char *b,
696 int *bl)
697 {
698 *bl += sprintf(b + *bl, "Status: ");
699 switch (dev->dev_status) {
700 case TRANSPORT_DEVICE_ACTIVATED:
701 *bl += sprintf(b + *bl, "ACTIVATED");
702 break;
703 case TRANSPORT_DEVICE_DEACTIVATED:
704 *bl += sprintf(b + *bl, "DEACTIVATED");
705 break;
706 case TRANSPORT_DEVICE_SHUTDOWN:
707 *bl += sprintf(b + *bl, "SHUTDOWN");
708 break;
709 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
710 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
711 *bl += sprintf(b + *bl, "OFFLINE");
712 break;
713 default:
714 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
715 break;
716 }
717
718 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
719 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
720 dev->se_sub_dev->se_dev_attrib.block_size,
721 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
722 *bl += sprintf(b + *bl, " ");
723 }
724
725 void transport_dump_vpd_proto_id(
726 struct t10_vpd *vpd,
727 unsigned char *p_buf,
728 int p_buf_len)
729 {
730 unsigned char buf[VPD_TMP_BUF_SIZE];
731 int len;
732
733 memset(buf, 0, VPD_TMP_BUF_SIZE);
734 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
735
736 switch (vpd->protocol_identifier) {
737 case 0x00:
738 sprintf(buf+len, "Fibre Channel\n");
739 break;
740 case 0x10:
741 sprintf(buf+len, "Parallel SCSI\n");
742 break;
743 case 0x20:
744 sprintf(buf+len, "SSA\n");
745 break;
746 case 0x30:
747 sprintf(buf+len, "IEEE 1394\n");
748 break;
749 case 0x40:
750 sprintf(buf+len, "SCSI Remote Direct Memory Access"
751 " Protocol\n");
752 break;
753 case 0x50:
754 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
755 break;
756 case 0x60:
757 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
758 break;
759 case 0x70:
760 sprintf(buf+len, "Automation/Drive Interface Transport"
761 " Protocol\n");
762 break;
763 case 0x80:
764 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
765 break;
766 default:
767 sprintf(buf+len, "Unknown 0x%02x\n",
768 vpd->protocol_identifier);
769 break;
770 }
771
772 if (p_buf)
773 strncpy(p_buf, buf, p_buf_len);
774 else
775 pr_debug("%s", buf);
776 }
777
778 void
779 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
780 {
781 /*
782 * Check if the Protocol Identifier Valid (PIV) bit is set..
783 *
784 * from spc3r23.pdf section 7.5.1
785 */
786 if (page_83[1] & 0x80) {
787 vpd->protocol_identifier = (page_83[0] & 0xf0);
788 vpd->protocol_identifier_set = 1;
789 transport_dump_vpd_proto_id(vpd, NULL, 0);
790 }
791 }
792 EXPORT_SYMBOL(transport_set_vpd_proto_id);
793
794 int transport_dump_vpd_assoc(
795 struct t10_vpd *vpd,
796 unsigned char *p_buf,
797 int p_buf_len)
798 {
799 unsigned char buf[VPD_TMP_BUF_SIZE];
800 int ret = 0;
801 int len;
802
803 memset(buf, 0, VPD_TMP_BUF_SIZE);
804 len = sprintf(buf, "T10 VPD Identifier Association: ");
805
806 switch (vpd->association) {
807 case 0x00:
808 sprintf(buf+len, "addressed logical unit\n");
809 break;
810 case 0x10:
811 sprintf(buf+len, "target port\n");
812 break;
813 case 0x20:
814 sprintf(buf+len, "SCSI target device\n");
815 break;
816 default:
817 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
818 ret = -EINVAL;
819 break;
820 }
821
822 if (p_buf)
823 strncpy(p_buf, buf, p_buf_len);
824 else
825 pr_debug("%s", buf);
826
827 return ret;
828 }
829
830 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
831 {
832 /*
833 * The VPD identification association..
834 *
835 * from spc3r23.pdf Section 7.6.3.1 Table 297
836 */
837 vpd->association = (page_83[1] & 0x30);
838 return transport_dump_vpd_assoc(vpd, NULL, 0);
839 }
840 EXPORT_SYMBOL(transport_set_vpd_assoc);
841
842 int transport_dump_vpd_ident_type(
843 struct t10_vpd *vpd,
844 unsigned char *p_buf,
845 int p_buf_len)
846 {
847 unsigned char buf[VPD_TMP_BUF_SIZE];
848 int ret = 0;
849 int len;
850
851 memset(buf, 0, VPD_TMP_BUF_SIZE);
852 len = sprintf(buf, "T10 VPD Identifier Type: ");
853
854 switch (vpd->device_identifier_type) {
855 case 0x00:
856 sprintf(buf+len, "Vendor specific\n");
857 break;
858 case 0x01:
859 sprintf(buf+len, "T10 Vendor ID based\n");
860 break;
861 case 0x02:
862 sprintf(buf+len, "EUI-64 based\n");
863 break;
864 case 0x03:
865 sprintf(buf+len, "NAA\n");
866 break;
867 case 0x04:
868 sprintf(buf+len, "Relative target port identifier\n");
869 break;
870 case 0x08:
871 sprintf(buf+len, "SCSI name string\n");
872 break;
873 default:
874 sprintf(buf+len, "Unsupported: 0x%02x\n",
875 vpd->device_identifier_type);
876 ret = -EINVAL;
877 break;
878 }
879
880 if (p_buf) {
881 if (p_buf_len < strlen(buf)+1)
882 return -EINVAL;
883 strncpy(p_buf, buf, p_buf_len);
884 } else {
885 pr_debug("%s", buf);
886 }
887
888 return ret;
889 }
890
891 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
892 {
893 /*
894 * The VPD identifier type..
895 *
896 * from spc3r23.pdf Section 7.6.3.1 Table 298
897 */
898 vpd->device_identifier_type = (page_83[1] & 0x0f);
899 return transport_dump_vpd_ident_type(vpd, NULL, 0);
900 }
901 EXPORT_SYMBOL(transport_set_vpd_ident_type);
902
903 int transport_dump_vpd_ident(
904 struct t10_vpd *vpd,
905 unsigned char *p_buf,
906 int p_buf_len)
907 {
908 unsigned char buf[VPD_TMP_BUF_SIZE];
909 int ret = 0;
910
911 memset(buf, 0, VPD_TMP_BUF_SIZE);
912
913 switch (vpd->device_identifier_code_set) {
914 case 0x01: /* Binary */
915 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
916 &vpd->device_identifier[0]);
917 break;
918 case 0x02: /* ASCII */
919 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
920 &vpd->device_identifier[0]);
921 break;
922 case 0x03: /* UTF-8 */
923 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
924 &vpd->device_identifier[0]);
925 break;
926 default:
927 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
928 " 0x%02x", vpd->device_identifier_code_set);
929 ret = -EINVAL;
930 break;
931 }
932
933 if (p_buf)
934 strncpy(p_buf, buf, p_buf_len);
935 else
936 pr_debug("%s", buf);
937
938 return ret;
939 }
940
941 int
942 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
943 {
944 static const char hex_str[] = "0123456789abcdef";
945 int j = 0, i = 4; /* offset to start of the identifer */
946
947 /*
948 * The VPD Code Set (encoding)
949 *
950 * from spc3r23.pdf Section 7.6.3.1 Table 296
951 */
952 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
953 switch (vpd->device_identifier_code_set) {
954 case 0x01: /* Binary */
955 vpd->device_identifier[j++] =
956 hex_str[vpd->device_identifier_type];
957 while (i < (4 + page_83[3])) {
958 vpd->device_identifier[j++] =
959 hex_str[(page_83[i] & 0xf0) >> 4];
960 vpd->device_identifier[j++] =
961 hex_str[page_83[i] & 0x0f];
962 i++;
963 }
964 break;
965 case 0x02: /* ASCII */
966 case 0x03: /* UTF-8 */
967 while (i < (4 + page_83[3]))
968 vpd->device_identifier[j++] = page_83[i++];
969 break;
970 default:
971 break;
972 }
973
974 return transport_dump_vpd_ident(vpd, NULL, 0);
975 }
976 EXPORT_SYMBOL(transport_set_vpd_ident);
977
978 static void core_setup_task_attr_emulation(struct se_device *dev)
979 {
980 /*
981 * If this device is from Target_Core_Mod/pSCSI, disable the
982 * SAM Task Attribute emulation.
983 *
984 * This is currently not available in upsream Linux/SCSI Target
985 * mode code, and is assumed to be disabled while using TCM/pSCSI.
986 */
987 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
988 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
989 return;
990 }
991
992 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
993 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
994 " device\n", dev->transport->name,
995 dev->transport->get_device_rev(dev));
996 }
997
998 static void scsi_dump_inquiry(struct se_device *dev)
999 {
1000 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1001 char buf[17];
1002 int i, device_type;
1003 /*
1004 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1005 */
1006 for (i = 0; i < 8; i++)
1007 if (wwn->vendor[i] >= 0x20)
1008 buf[i] = wwn->vendor[i];
1009 else
1010 buf[i] = ' ';
1011 buf[i] = '\0';
1012 pr_debug(" Vendor: %s\n", buf);
1013
1014 for (i = 0; i < 16; i++)
1015 if (wwn->model[i] >= 0x20)
1016 buf[i] = wwn->model[i];
1017 else
1018 buf[i] = ' ';
1019 buf[i] = '\0';
1020 pr_debug(" Model: %s\n", buf);
1021
1022 for (i = 0; i < 4; i++)
1023 if (wwn->revision[i] >= 0x20)
1024 buf[i] = wwn->revision[i];
1025 else
1026 buf[i] = ' ';
1027 buf[i] = '\0';
1028 pr_debug(" Revision: %s\n", buf);
1029
1030 device_type = dev->transport->get_device_type(dev);
1031 pr_debug(" Type: %s ", scsi_device_type(device_type));
1032 pr_debug(" ANSI SCSI revision: %02x\n",
1033 dev->transport->get_device_rev(dev));
1034 }
1035
1036 struct se_device *transport_add_device_to_core_hba(
1037 struct se_hba *hba,
1038 struct se_subsystem_api *transport,
1039 struct se_subsystem_dev *se_dev,
1040 u32 device_flags,
1041 void *transport_dev,
1042 struct se_dev_limits *dev_limits,
1043 const char *inquiry_prod,
1044 const char *inquiry_rev)
1045 {
1046 int force_pt;
1047 struct se_device *dev;
1048
1049 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1050 if (!dev) {
1051 pr_err("Unable to allocate memory for se_dev_t\n");
1052 return NULL;
1053 }
1054
1055 dev->dev_flags = device_flags;
1056 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1057 dev->dev_ptr = transport_dev;
1058 dev->se_hba = hba;
1059 dev->se_sub_dev = se_dev;
1060 dev->transport = transport;
1061 INIT_LIST_HEAD(&dev->dev_list);
1062 INIT_LIST_HEAD(&dev->dev_sep_list);
1063 INIT_LIST_HEAD(&dev->dev_tmr_list);
1064 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1065 INIT_LIST_HEAD(&dev->state_list);
1066 INIT_LIST_HEAD(&dev->qf_cmd_list);
1067 spin_lock_init(&dev->execute_task_lock);
1068 spin_lock_init(&dev->delayed_cmd_lock);
1069 spin_lock_init(&dev->dev_reservation_lock);
1070 spin_lock_init(&dev->dev_status_lock);
1071 spin_lock_init(&dev->se_port_lock);
1072 spin_lock_init(&dev->se_tmr_lock);
1073 spin_lock_init(&dev->qf_cmd_lock);
1074 atomic_set(&dev->dev_ordered_id, 0);
1075
1076 se_dev_set_default_attribs(dev, dev_limits);
1077
1078 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1079 dev->creation_time = get_jiffies_64();
1080 spin_lock_init(&dev->stats_lock);
1081
1082 spin_lock(&hba->device_lock);
1083 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1084 hba->dev_count++;
1085 spin_unlock(&hba->device_lock);
1086 /*
1087 * Setup the SAM Task Attribute emulation for struct se_device
1088 */
1089 core_setup_task_attr_emulation(dev);
1090 /*
1091 * Force PR and ALUA passthrough emulation with internal object use.
1092 */
1093 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1094 /*
1095 * Setup the Reservations infrastructure for struct se_device
1096 */
1097 core_setup_reservations(dev, force_pt);
1098 /*
1099 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1100 */
1101 if (core_setup_alua(dev, force_pt) < 0)
1102 goto out;
1103
1104 /*
1105 * Startup the struct se_device processing thread
1106 */
1107 dev->tmr_wq = alloc_workqueue("tmr-%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 1,
1108 dev->transport->name);
1109 if (!dev->tmr_wq) {
1110 pr_err("Unable to create tmr workqueue for %s\n",
1111 dev->transport->name);
1112 goto out;
1113 }
1114 /*
1115 * Setup work_queue for QUEUE_FULL
1116 */
1117 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1118 /*
1119 * Preload the initial INQUIRY const values if we are doing
1120 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1121 * passthrough because this is being provided by the backend LLD.
1122 * This is required so that transport_get_inquiry() copies these
1123 * originals once back into DEV_T10_WWN(dev) for the virtual device
1124 * setup.
1125 */
1126 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1127 if (!inquiry_prod || !inquiry_rev) {
1128 pr_err("All non TCM/pSCSI plugins require"
1129 " INQUIRY consts\n");
1130 goto out;
1131 }
1132
1133 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1134 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1135 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1136 }
1137 scsi_dump_inquiry(dev);
1138
1139 return dev;
1140 out:
1141 destroy_workqueue(dev->tmr_wq);
1142
1143 spin_lock(&hba->device_lock);
1144 list_del(&dev->dev_list);
1145 hba->dev_count--;
1146 spin_unlock(&hba->device_lock);
1147
1148 se_release_vpd_for_dev(dev);
1149
1150 kfree(dev);
1151
1152 return NULL;
1153 }
1154 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1155
1156 int target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1157 {
1158 struct se_device *dev = cmd->se_dev;
1159
1160 if (cmd->unknown_data_length) {
1161 cmd->data_length = size;
1162 } else if (size != cmd->data_length) {
1163 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1164 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1165 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1166 cmd->data_length, size, cmd->t_task_cdb[0]);
1167
1168 cmd->cmd_spdtl = size;
1169
1170 if (cmd->data_direction == DMA_TO_DEVICE) {
1171 pr_err("Rejecting underflow/overflow"
1172 " WRITE data\n");
1173 goto out_invalid_cdb_field;
1174 }
1175 /*
1176 * Reject READ_* or WRITE_* with overflow/underflow for
1177 * type SCF_SCSI_DATA_CDB.
1178 */
1179 if (dev->se_sub_dev->se_dev_attrib.block_size != 512) {
1180 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1181 " CDB on non 512-byte sector setup subsystem"
1182 " plugin: %s\n", dev->transport->name);
1183 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1184 goto out_invalid_cdb_field;
1185 }
1186
1187 if (size > cmd->data_length) {
1188 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1189 cmd->residual_count = (size - cmd->data_length);
1190 } else {
1191 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1192 cmd->residual_count = (cmd->data_length - size);
1193 }
1194 cmd->data_length = size;
1195 }
1196
1197 return 0;
1198
1199 out_invalid_cdb_field:
1200 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1201 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1202 return -EINVAL;
1203 }
1204
1205 /*
1206 * Used by fabric modules containing a local struct se_cmd within their
1207 * fabric dependent per I/O descriptor.
1208 */
1209 void transport_init_se_cmd(
1210 struct se_cmd *cmd,
1211 struct target_core_fabric_ops *tfo,
1212 struct se_session *se_sess,
1213 u32 data_length,
1214 int data_direction,
1215 int task_attr,
1216 unsigned char *sense_buffer)
1217 {
1218 INIT_LIST_HEAD(&cmd->se_lun_node);
1219 INIT_LIST_HEAD(&cmd->se_delayed_node);
1220 INIT_LIST_HEAD(&cmd->se_qf_node);
1221 INIT_LIST_HEAD(&cmd->se_cmd_list);
1222 INIT_LIST_HEAD(&cmd->state_list);
1223 init_completion(&cmd->transport_lun_fe_stop_comp);
1224 init_completion(&cmd->transport_lun_stop_comp);
1225 init_completion(&cmd->t_transport_stop_comp);
1226 init_completion(&cmd->cmd_wait_comp);
1227 init_completion(&cmd->task_stop_comp);
1228 spin_lock_init(&cmd->t_state_lock);
1229 cmd->transport_state = CMD_T_DEV_ACTIVE;
1230
1231 cmd->se_tfo = tfo;
1232 cmd->se_sess = se_sess;
1233 cmd->data_length = data_length;
1234 cmd->data_direction = data_direction;
1235 cmd->sam_task_attr = task_attr;
1236 cmd->sense_buffer = sense_buffer;
1237
1238 cmd->state_active = false;
1239 }
1240 EXPORT_SYMBOL(transport_init_se_cmd);
1241
1242 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1243 {
1244 /*
1245 * Check if SAM Task Attribute emulation is enabled for this
1246 * struct se_device storage object
1247 */
1248 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1249 return 0;
1250
1251 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1252 pr_debug("SAM Task Attribute ACA"
1253 " emulation is not supported\n");
1254 return -EINVAL;
1255 }
1256 /*
1257 * Used to determine when ORDERED commands should go from
1258 * Dormant to Active status.
1259 */
1260 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1261 smp_mb__after_atomic_inc();
1262 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1263 cmd->se_ordered_id, cmd->sam_task_attr,
1264 cmd->se_dev->transport->name);
1265 return 0;
1266 }
1267
1268 /* target_setup_cmd_from_cdb():
1269 *
1270 * Called from fabric RX Thread.
1271 */
1272 int target_setup_cmd_from_cdb(
1273 struct se_cmd *cmd,
1274 unsigned char *cdb)
1275 {
1276 struct se_subsystem_dev *su_dev = cmd->se_dev->se_sub_dev;
1277 u32 pr_reg_type = 0;
1278 u8 alua_ascq = 0;
1279 unsigned long flags;
1280 int ret;
1281
1282 /*
1283 * Ensure that the received CDB is less than the max (252 + 8) bytes
1284 * for VARIABLE_LENGTH_CMD
1285 */
1286 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1287 pr_err("Received SCSI CDB with command_size: %d that"
1288 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1289 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1290 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1291 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1292 return -EINVAL;
1293 }
1294 /*
1295 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1296 * allocate the additional extended CDB buffer now.. Otherwise
1297 * setup the pointer from __t_task_cdb to t_task_cdb.
1298 */
1299 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1300 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1301 GFP_KERNEL);
1302 if (!cmd->t_task_cdb) {
1303 pr_err("Unable to allocate cmd->t_task_cdb"
1304 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1305 scsi_command_size(cdb),
1306 (unsigned long)sizeof(cmd->__t_task_cdb));
1307 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1308 cmd->scsi_sense_reason =
1309 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1310 return -ENOMEM;
1311 }
1312 } else
1313 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1314 /*
1315 * Copy the original CDB into cmd->
1316 */
1317 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1318
1319 /*
1320 * Check for an existing UNIT ATTENTION condition
1321 */
1322 if (core_scsi3_ua_check(cmd, cdb) < 0) {
1323 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1324 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
1325 return -EINVAL;
1326 }
1327
1328 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
1329 if (ret != 0) {
1330 /*
1331 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
1332 * The ALUA additional sense code qualifier (ASCQ) is determined
1333 * by the ALUA primary or secondary access state..
1334 */
1335 if (ret > 0) {
1336 pr_debug("[%s]: ALUA TG Port not available, "
1337 "SenseKey: NOT_READY, ASC/ASCQ: "
1338 "0x04/0x%02x\n",
1339 cmd->se_tfo->get_fabric_name(), alua_ascq);
1340
1341 transport_set_sense_codes(cmd, 0x04, alua_ascq);
1342 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1343 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
1344 return -EINVAL;
1345 }
1346 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1347 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1348 return -EINVAL;
1349 }
1350
1351 /*
1352 * Check status for SPC-3 Persistent Reservations
1353 */
1354 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type)) {
1355 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
1356 cmd, cdb, pr_reg_type) != 0) {
1357 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1358 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
1359 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1360 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
1361 return -EBUSY;
1362 }
1363 /*
1364 * This means the CDB is allowed for the SCSI Initiator port
1365 * when said port is *NOT* holding the legacy SPC-2 or
1366 * SPC-3 Persistent Reservation.
1367 */
1368 }
1369
1370 ret = cmd->se_dev->transport->parse_cdb(cmd);
1371 if (ret < 0)
1372 return ret;
1373
1374 spin_lock_irqsave(&cmd->t_state_lock, flags);
1375 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1376 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1377
1378 /*
1379 * Check for SAM Task Attribute Emulation
1380 */
1381 if (transport_check_alloc_task_attr(cmd) < 0) {
1382 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1383 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1384 return -EINVAL;
1385 }
1386 spin_lock(&cmd->se_lun->lun_sep_lock);
1387 if (cmd->se_lun->lun_sep)
1388 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1389 spin_unlock(&cmd->se_lun->lun_sep_lock);
1390 return 0;
1391 }
1392 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1393
1394 /*
1395 * Used by fabric module frontends to queue tasks directly.
1396 * Many only be used from process context only
1397 */
1398 int transport_handle_cdb_direct(
1399 struct se_cmd *cmd)
1400 {
1401 int ret;
1402
1403 if (!cmd->se_lun) {
1404 dump_stack();
1405 pr_err("cmd->se_lun is NULL\n");
1406 return -EINVAL;
1407 }
1408 if (in_interrupt()) {
1409 dump_stack();
1410 pr_err("transport_generic_handle_cdb cannot be called"
1411 " from interrupt context\n");
1412 return -EINVAL;
1413 }
1414 /*
1415 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1416 * outstanding descriptors are handled correctly during shutdown via
1417 * transport_wait_for_tasks()
1418 *
1419 * Also, we don't take cmd->t_state_lock here as we only expect
1420 * this to be called for initial descriptor submission.
1421 */
1422 cmd->t_state = TRANSPORT_NEW_CMD;
1423 cmd->transport_state |= CMD_T_ACTIVE;
1424
1425 /*
1426 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1427 * so follow TRANSPORT_NEW_CMD processing thread context usage
1428 * and call transport_generic_request_failure() if necessary..
1429 */
1430 ret = transport_generic_new_cmd(cmd);
1431 if (ret < 0)
1432 transport_generic_request_failure(cmd);
1433
1434 return 0;
1435 }
1436 EXPORT_SYMBOL(transport_handle_cdb_direct);
1437
1438 /**
1439 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1440 *
1441 * @se_cmd: command descriptor to submit
1442 * @se_sess: associated se_sess for endpoint
1443 * @cdb: pointer to SCSI CDB
1444 * @sense: pointer to SCSI sense buffer
1445 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1446 * @data_length: fabric expected data transfer length
1447 * @task_addr: SAM task attribute
1448 * @data_dir: DMA data direction
1449 * @flags: flags for command submission from target_sc_flags_tables
1450 *
1451 * This may only be called from process context, and also currently
1452 * assumes internal allocation of fabric payload buffer by target-core.
1453 **/
1454 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1455 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1456 u32 data_length, int task_attr, int data_dir, int flags)
1457 {
1458 struct se_portal_group *se_tpg;
1459 int rc;
1460
1461 se_tpg = se_sess->se_tpg;
1462 BUG_ON(!se_tpg);
1463 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1464 BUG_ON(in_interrupt());
1465 /*
1466 * Initialize se_cmd for target operation. From this point
1467 * exceptions are handled by sending exception status via
1468 * target_core_fabric_ops->queue_status() callback
1469 */
1470 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1471 data_length, data_dir, task_attr, sense);
1472 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1473 se_cmd->unknown_data_length = 1;
1474 /*
1475 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1476 * se_sess->sess_cmd_list. A second kref_get here is necessary
1477 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1478 * kref_put() to happen during fabric packet acknowledgement.
1479 */
1480 rc = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1481 if (rc)
1482 return;
1483 /*
1484 * Signal bidirectional data payloads to target-core
1485 */
1486 if (flags & TARGET_SCF_BIDI_OP)
1487 se_cmd->se_cmd_flags |= SCF_BIDI;
1488 /*
1489 * Locate se_lun pointer and attach it to struct se_cmd
1490 */
1491 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1492 transport_send_check_condition_and_sense(se_cmd,
1493 se_cmd->scsi_sense_reason, 0);
1494 target_put_sess_cmd(se_sess, se_cmd);
1495 return;
1496 }
1497
1498 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1499 if (rc != 0) {
1500 transport_generic_request_failure(se_cmd);
1501 return;
1502 }
1503
1504 /*
1505 * Check if we need to delay processing because of ALUA
1506 * Active/NonOptimized primary access state..
1507 */
1508 core_alua_check_nonop_delay(se_cmd);
1509
1510 transport_handle_cdb_direct(se_cmd);
1511 return;
1512 }
1513 EXPORT_SYMBOL(target_submit_cmd);
1514
1515 static void target_complete_tmr_failure(struct work_struct *work)
1516 {
1517 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1518
1519 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1520 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1521 transport_generic_free_cmd(se_cmd, 0);
1522 }
1523
1524 /**
1525 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1526 * for TMR CDBs
1527 *
1528 * @se_cmd: command descriptor to submit
1529 * @se_sess: associated se_sess for endpoint
1530 * @sense: pointer to SCSI sense buffer
1531 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1532 * @fabric_context: fabric context for TMR req
1533 * @tm_type: Type of TM request
1534 * @gfp: gfp type for caller
1535 * @tag: referenced task tag for TMR_ABORT_TASK
1536 * @flags: submit cmd flags
1537 *
1538 * Callable from all contexts.
1539 **/
1540
1541 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1542 unsigned char *sense, u32 unpacked_lun,
1543 void *fabric_tmr_ptr, unsigned char tm_type,
1544 gfp_t gfp, unsigned int tag, int flags)
1545 {
1546 struct se_portal_group *se_tpg;
1547 int ret;
1548
1549 se_tpg = se_sess->se_tpg;
1550 BUG_ON(!se_tpg);
1551
1552 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1553 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1554 /*
1555 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1556 * allocation failure.
1557 */
1558 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1559 if (ret < 0)
1560 return -ENOMEM;
1561
1562 if (tm_type == TMR_ABORT_TASK)
1563 se_cmd->se_tmr_req->ref_task_tag = tag;
1564
1565 /* See target_submit_cmd for commentary */
1566 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1567 if (ret) {
1568 core_tmr_release_req(se_cmd->se_tmr_req);
1569 return ret;
1570 }
1571
1572 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1573 if (ret) {
1574 /*
1575 * For callback during failure handling, push this work off
1576 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1577 */
1578 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1579 schedule_work(&se_cmd->work);
1580 return 0;
1581 }
1582 transport_generic_handle_tmr(se_cmd);
1583 return 0;
1584 }
1585 EXPORT_SYMBOL(target_submit_tmr);
1586
1587 /*
1588 * If the cmd is active, request it to be stopped and sleep until it
1589 * has completed.
1590 */
1591 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1592 {
1593 bool was_active = false;
1594
1595 if (cmd->transport_state & CMD_T_BUSY) {
1596 cmd->transport_state |= CMD_T_REQUEST_STOP;
1597 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1598
1599 pr_debug("cmd %p waiting to complete\n", cmd);
1600 wait_for_completion(&cmd->task_stop_comp);
1601 pr_debug("cmd %p stopped successfully\n", cmd);
1602
1603 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1604 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1605 cmd->transport_state &= ~CMD_T_BUSY;
1606 was_active = true;
1607 }
1608
1609 return was_active;
1610 }
1611
1612 /*
1613 * Handle SAM-esque emulation for generic transport request failures.
1614 */
1615 void transport_generic_request_failure(struct se_cmd *cmd)
1616 {
1617 int ret = 0;
1618
1619 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1620 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1621 cmd->t_task_cdb[0]);
1622 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1623 cmd->se_tfo->get_cmd_state(cmd),
1624 cmd->t_state, cmd->scsi_sense_reason);
1625 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1626 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1627 (cmd->transport_state & CMD_T_STOP) != 0,
1628 (cmd->transport_state & CMD_T_SENT) != 0);
1629
1630 /*
1631 * For SAM Task Attribute emulation for failed struct se_cmd
1632 */
1633 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1634 transport_complete_task_attr(cmd);
1635
1636 switch (cmd->scsi_sense_reason) {
1637 case TCM_NON_EXISTENT_LUN:
1638 case TCM_UNSUPPORTED_SCSI_OPCODE:
1639 case TCM_INVALID_CDB_FIELD:
1640 case TCM_INVALID_PARAMETER_LIST:
1641 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1642 case TCM_UNKNOWN_MODE_PAGE:
1643 case TCM_WRITE_PROTECTED:
1644 case TCM_CHECK_CONDITION_ABORT_CMD:
1645 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1646 case TCM_CHECK_CONDITION_NOT_READY:
1647 break;
1648 case TCM_RESERVATION_CONFLICT:
1649 /*
1650 * No SENSE Data payload for this case, set SCSI Status
1651 * and queue the response to $FABRIC_MOD.
1652 *
1653 * Uses linux/include/scsi/scsi.h SAM status codes defs
1654 */
1655 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1656 /*
1657 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1658 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1659 * CONFLICT STATUS.
1660 *
1661 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1662 */
1663 if (cmd->se_sess &&
1664 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1665 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1666 cmd->orig_fe_lun, 0x2C,
1667 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1668
1669 ret = cmd->se_tfo->queue_status(cmd);
1670 if (ret == -EAGAIN || ret == -ENOMEM)
1671 goto queue_full;
1672 goto check_stop;
1673 default:
1674 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1675 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1676 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1677 break;
1678 }
1679
1680 ret = transport_send_check_condition_and_sense(cmd,
1681 cmd->scsi_sense_reason, 0);
1682 if (ret == -EAGAIN || ret == -ENOMEM)
1683 goto queue_full;
1684
1685 check_stop:
1686 transport_lun_remove_cmd(cmd);
1687 if (!transport_cmd_check_stop_to_fabric(cmd))
1688 ;
1689 return;
1690
1691 queue_full:
1692 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1693 transport_handle_queue_full(cmd, cmd->se_dev);
1694 }
1695 EXPORT_SYMBOL(transport_generic_request_failure);
1696
1697 static void __target_execute_cmd(struct se_cmd *cmd)
1698 {
1699 int error = 0;
1700
1701 spin_lock_irq(&cmd->t_state_lock);
1702 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1703 spin_unlock_irq(&cmd->t_state_lock);
1704
1705 if (cmd->execute_cmd)
1706 error = cmd->execute_cmd(cmd);
1707
1708 if (error) {
1709 spin_lock_irq(&cmd->t_state_lock);
1710 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1711 spin_unlock_irq(&cmd->t_state_lock);
1712
1713 transport_generic_request_failure(cmd);
1714 }
1715 }
1716
1717 void target_execute_cmd(struct se_cmd *cmd)
1718 {
1719 struct se_device *dev = cmd->se_dev;
1720
1721 /*
1722 * If the received CDB has aleady been aborted stop processing it here.
1723 */
1724 if (transport_check_aborted_status(cmd, 1))
1725 return;
1726
1727 /*
1728 * Determine if IOCTL context caller in requesting the stopping of this
1729 * command for LUN shutdown purposes.
1730 */
1731 spin_lock_irq(&cmd->t_state_lock);
1732 if (cmd->transport_state & CMD_T_LUN_STOP) {
1733 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1734 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1735
1736 cmd->transport_state &= ~CMD_T_ACTIVE;
1737 spin_unlock_irq(&cmd->t_state_lock);
1738 complete(&cmd->transport_lun_stop_comp);
1739 return;
1740 }
1741 /*
1742 * Determine if frontend context caller is requesting the stopping of
1743 * this command for frontend exceptions.
1744 */
1745 if (cmd->transport_state & CMD_T_STOP) {
1746 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1747 __func__, __LINE__,
1748 cmd->se_tfo->get_task_tag(cmd));
1749
1750 spin_unlock_irq(&cmd->t_state_lock);
1751 complete(&cmd->t_transport_stop_comp);
1752 return;
1753 }
1754
1755 cmd->t_state = TRANSPORT_PROCESSING;
1756 spin_unlock_irq(&cmd->t_state_lock);
1757
1758 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1759 goto execute;
1760
1761 /*
1762 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1763 * to allow the passed struct se_cmd list of tasks to the front of the list.
1764 */
1765 switch (cmd->sam_task_attr) {
1766 case MSG_HEAD_TAG:
1767 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1768 "se_ordered_id: %u\n",
1769 cmd->t_task_cdb[0], cmd->se_ordered_id);
1770 goto execute;
1771 case MSG_ORDERED_TAG:
1772 atomic_inc(&dev->dev_ordered_sync);
1773 smp_mb__after_atomic_inc();
1774
1775 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1776 " se_ordered_id: %u\n",
1777 cmd->t_task_cdb[0], cmd->se_ordered_id);
1778
1779 /*
1780 * Execute an ORDERED command if no other older commands
1781 * exist that need to be completed first.
1782 */
1783 if (!atomic_read(&dev->simple_cmds))
1784 goto execute;
1785 break;
1786 default:
1787 /*
1788 * For SIMPLE and UNTAGGED Task Attribute commands
1789 */
1790 atomic_inc(&dev->simple_cmds);
1791 smp_mb__after_atomic_inc();
1792 break;
1793 }
1794
1795 if (atomic_read(&dev->dev_ordered_sync) != 0) {
1796 spin_lock(&dev->delayed_cmd_lock);
1797 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1798 spin_unlock(&dev->delayed_cmd_lock);
1799
1800 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1801 " delayed CMD list, se_ordered_id: %u\n",
1802 cmd->t_task_cdb[0], cmd->sam_task_attr,
1803 cmd->se_ordered_id);
1804 return;
1805 }
1806
1807 execute:
1808 /*
1809 * Otherwise, no ORDERED task attributes exist..
1810 */
1811 __target_execute_cmd(cmd);
1812 }
1813 EXPORT_SYMBOL(target_execute_cmd);
1814
1815 /*
1816 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
1817 */
1818 static int transport_get_sense_data(struct se_cmd *cmd)
1819 {
1820 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
1821 struct se_device *dev = cmd->se_dev;
1822 unsigned long flags;
1823 u32 offset = 0;
1824
1825 WARN_ON(!cmd->se_lun);
1826
1827 if (!dev)
1828 return 0;
1829
1830 spin_lock_irqsave(&cmd->t_state_lock, flags);
1831 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
1832 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1833 return 0;
1834 }
1835
1836 if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
1837 goto out;
1838
1839 if (!dev->transport->get_sense_buffer) {
1840 pr_err("dev->transport->get_sense_buffer is NULL\n");
1841 goto out;
1842 }
1843
1844 sense_buffer = dev->transport->get_sense_buffer(cmd);
1845 if (!sense_buffer) {
1846 pr_err("ITT 0x%08x cmd %p: Unable to locate"
1847 " sense buffer for task with sense\n",
1848 cmd->se_tfo->get_task_tag(cmd), cmd);
1849 goto out;
1850 }
1851
1852 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1853
1854 offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
1855
1856 memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
1857
1858 /* Automatically padded */
1859 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
1860
1861 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
1862 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
1863 return 0;
1864
1865 out:
1866 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1867 return -1;
1868 }
1869
1870 /*
1871 * Process all commands up to the last received ORDERED task attribute which
1872 * requires another blocking boundary
1873 */
1874 static void target_restart_delayed_cmds(struct se_device *dev)
1875 {
1876 for (;;) {
1877 struct se_cmd *cmd;
1878
1879 spin_lock(&dev->delayed_cmd_lock);
1880 if (list_empty(&dev->delayed_cmd_list)) {
1881 spin_unlock(&dev->delayed_cmd_lock);
1882 break;
1883 }
1884
1885 cmd = list_entry(dev->delayed_cmd_list.next,
1886 struct se_cmd, se_delayed_node);
1887 list_del(&cmd->se_delayed_node);
1888 spin_unlock(&dev->delayed_cmd_lock);
1889
1890 __target_execute_cmd(cmd);
1891
1892 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1893 break;
1894 }
1895 }
1896
1897 /*
1898 * Called from I/O completion to determine which dormant/delayed
1899 * and ordered cmds need to have their tasks added to the execution queue.
1900 */
1901 static void transport_complete_task_attr(struct se_cmd *cmd)
1902 {
1903 struct se_device *dev = cmd->se_dev;
1904
1905 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1906 atomic_dec(&dev->simple_cmds);
1907 smp_mb__after_atomic_dec();
1908 dev->dev_cur_ordered_id++;
1909 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1910 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1911 cmd->se_ordered_id);
1912 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1913 dev->dev_cur_ordered_id++;
1914 pr_debug("Incremented dev_cur_ordered_id: %u for"
1915 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1916 cmd->se_ordered_id);
1917 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1918 atomic_dec(&dev->dev_ordered_sync);
1919 smp_mb__after_atomic_dec();
1920
1921 dev->dev_cur_ordered_id++;
1922 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1923 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1924 }
1925
1926 target_restart_delayed_cmds(dev);
1927 }
1928
1929 static void transport_complete_qf(struct se_cmd *cmd)
1930 {
1931 int ret = 0;
1932
1933 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1934 transport_complete_task_attr(cmd);
1935
1936 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1937 ret = cmd->se_tfo->queue_status(cmd);
1938 if (ret)
1939 goto out;
1940 }
1941
1942 switch (cmd->data_direction) {
1943 case DMA_FROM_DEVICE:
1944 ret = cmd->se_tfo->queue_data_in(cmd);
1945 break;
1946 case DMA_TO_DEVICE:
1947 if (cmd->t_bidi_data_sg) {
1948 ret = cmd->se_tfo->queue_data_in(cmd);
1949 if (ret < 0)
1950 break;
1951 }
1952 /* Fall through for DMA_TO_DEVICE */
1953 case DMA_NONE:
1954 ret = cmd->se_tfo->queue_status(cmd);
1955 break;
1956 default:
1957 break;
1958 }
1959
1960 out:
1961 if (ret < 0) {
1962 transport_handle_queue_full(cmd, cmd->se_dev);
1963 return;
1964 }
1965 transport_lun_remove_cmd(cmd);
1966 transport_cmd_check_stop_to_fabric(cmd);
1967 }
1968
1969 static void transport_handle_queue_full(
1970 struct se_cmd *cmd,
1971 struct se_device *dev)
1972 {
1973 spin_lock_irq(&dev->qf_cmd_lock);
1974 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1975 atomic_inc(&dev->dev_qf_count);
1976 smp_mb__after_atomic_inc();
1977 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1978
1979 schedule_work(&cmd->se_dev->qf_work_queue);
1980 }
1981
1982 static void target_complete_ok_work(struct work_struct *work)
1983 {
1984 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1985 int reason = 0, ret;
1986
1987 /*
1988 * Check if we need to move delayed/dormant tasks from cmds on the
1989 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1990 * Attribute.
1991 */
1992 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1993 transport_complete_task_attr(cmd);
1994 /*
1995 * Check to schedule QUEUE_FULL work, or execute an existing
1996 * cmd->transport_qf_callback()
1997 */
1998 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1999 schedule_work(&cmd->se_dev->qf_work_queue);
2000
2001 /*
2002 * Check if we need to retrieve a sense buffer from
2003 * the struct se_cmd in question.
2004 */
2005 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2006 if (transport_get_sense_data(cmd) < 0)
2007 reason = TCM_NON_EXISTENT_LUN;
2008
2009 if (cmd->scsi_status) {
2010 ret = transport_send_check_condition_and_sense(
2011 cmd, reason, 1);
2012 if (ret == -EAGAIN || ret == -ENOMEM)
2013 goto queue_full;
2014
2015 transport_lun_remove_cmd(cmd);
2016 transport_cmd_check_stop_to_fabric(cmd);
2017 return;
2018 }
2019 }
2020 /*
2021 * Check for a callback, used by amongst other things
2022 * XDWRITE_READ_10 emulation.
2023 */
2024 if (cmd->transport_complete_callback)
2025 cmd->transport_complete_callback(cmd);
2026
2027 switch (cmd->data_direction) {
2028 case DMA_FROM_DEVICE:
2029 spin_lock(&cmd->se_lun->lun_sep_lock);
2030 if (cmd->se_lun->lun_sep) {
2031 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2032 cmd->data_length;
2033 }
2034 spin_unlock(&cmd->se_lun->lun_sep_lock);
2035
2036 ret = cmd->se_tfo->queue_data_in(cmd);
2037 if (ret == -EAGAIN || ret == -ENOMEM)
2038 goto queue_full;
2039 break;
2040 case DMA_TO_DEVICE:
2041 spin_lock(&cmd->se_lun->lun_sep_lock);
2042 if (cmd->se_lun->lun_sep) {
2043 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2044 cmd->data_length;
2045 }
2046 spin_unlock(&cmd->se_lun->lun_sep_lock);
2047 /*
2048 * Check if we need to send READ payload for BIDI-COMMAND
2049 */
2050 if (cmd->t_bidi_data_sg) {
2051 spin_lock(&cmd->se_lun->lun_sep_lock);
2052 if (cmd->se_lun->lun_sep) {
2053 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2054 cmd->data_length;
2055 }
2056 spin_unlock(&cmd->se_lun->lun_sep_lock);
2057 ret = cmd->se_tfo->queue_data_in(cmd);
2058 if (ret == -EAGAIN || ret == -ENOMEM)
2059 goto queue_full;
2060 break;
2061 }
2062 /* Fall through for DMA_TO_DEVICE */
2063 case DMA_NONE:
2064 ret = cmd->se_tfo->queue_status(cmd);
2065 if (ret == -EAGAIN || ret == -ENOMEM)
2066 goto queue_full;
2067 break;
2068 default:
2069 break;
2070 }
2071
2072 transport_lun_remove_cmd(cmd);
2073 transport_cmd_check_stop_to_fabric(cmd);
2074 return;
2075
2076 queue_full:
2077 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2078 " data_direction: %d\n", cmd, cmd->data_direction);
2079 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2080 transport_handle_queue_full(cmd, cmd->se_dev);
2081 }
2082
2083 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2084 {
2085 struct scatterlist *sg;
2086 int count;
2087
2088 for_each_sg(sgl, sg, nents, count)
2089 __free_page(sg_page(sg));
2090
2091 kfree(sgl);
2092 }
2093
2094 static inline void transport_free_pages(struct se_cmd *cmd)
2095 {
2096 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
2097 return;
2098
2099 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2100 cmd->t_data_sg = NULL;
2101 cmd->t_data_nents = 0;
2102
2103 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2104 cmd->t_bidi_data_sg = NULL;
2105 cmd->t_bidi_data_nents = 0;
2106 }
2107
2108 /**
2109 * transport_release_cmd - free a command
2110 * @cmd: command to free
2111 *
2112 * This routine unconditionally frees a command, and reference counting
2113 * or list removal must be done in the caller.
2114 */
2115 static void transport_release_cmd(struct se_cmd *cmd)
2116 {
2117 BUG_ON(!cmd->se_tfo);
2118
2119 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2120 core_tmr_release_req(cmd->se_tmr_req);
2121 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2122 kfree(cmd->t_task_cdb);
2123 /*
2124 * If this cmd has been setup with target_get_sess_cmd(), drop
2125 * the kref and call ->release_cmd() in kref callback.
2126 */
2127 if (cmd->check_release != 0) {
2128 target_put_sess_cmd(cmd->se_sess, cmd);
2129 return;
2130 }
2131 cmd->se_tfo->release_cmd(cmd);
2132 }
2133
2134 /**
2135 * transport_put_cmd - release a reference to a command
2136 * @cmd: command to release
2137 *
2138 * This routine releases our reference to the command and frees it if possible.
2139 */
2140 static void transport_put_cmd(struct se_cmd *cmd)
2141 {
2142 unsigned long flags;
2143
2144 spin_lock_irqsave(&cmd->t_state_lock, flags);
2145 if (atomic_read(&cmd->t_fe_count)) {
2146 if (!atomic_dec_and_test(&cmd->t_fe_count))
2147 goto out_busy;
2148 }
2149
2150 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
2151 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2152 target_remove_from_state_list(cmd);
2153 }
2154 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2155
2156 transport_free_pages(cmd);
2157 transport_release_cmd(cmd);
2158 return;
2159 out_busy:
2160 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2161 }
2162
2163 /*
2164 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
2165 * allocating in the core.
2166 * @cmd: Associated se_cmd descriptor
2167 * @mem: SGL style memory for TCM WRITE / READ
2168 * @sg_mem_num: Number of SGL elements
2169 * @mem_bidi_in: SGL style memory for TCM BIDI READ
2170 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
2171 *
2172 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
2173 * of parameters.
2174 */
2175 int transport_generic_map_mem_to_cmd(
2176 struct se_cmd *cmd,
2177 struct scatterlist *sgl,
2178 u32 sgl_count,
2179 struct scatterlist *sgl_bidi,
2180 u32 sgl_bidi_count)
2181 {
2182 if (!sgl || !sgl_count)
2183 return 0;
2184
2185 /*
2186 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
2187 * scatterlists already have been set to follow what the fabric
2188 * passes for the original expected data transfer length.
2189 */
2190 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
2191 pr_warn("Rejecting SCSI DATA overflow for fabric using"
2192 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
2193 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2194 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2195 return -EINVAL;
2196 }
2197
2198 cmd->t_data_sg = sgl;
2199 cmd->t_data_nents = sgl_count;
2200
2201 if (sgl_bidi && sgl_bidi_count) {
2202 cmd->t_bidi_data_sg = sgl_bidi;
2203 cmd->t_bidi_data_nents = sgl_bidi_count;
2204 }
2205 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
2209
2210 void *transport_kmap_data_sg(struct se_cmd *cmd)
2211 {
2212 struct scatterlist *sg = cmd->t_data_sg;
2213 struct page **pages;
2214 int i;
2215
2216 BUG_ON(!sg);
2217 /*
2218 * We need to take into account a possible offset here for fabrics like
2219 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2220 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2221 */
2222 if (!cmd->t_data_nents)
2223 return NULL;
2224 else if (cmd->t_data_nents == 1)
2225 return kmap(sg_page(sg)) + sg->offset;
2226
2227 /* >1 page. use vmap */
2228 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2229 if (!pages)
2230 return NULL;
2231
2232 /* convert sg[] to pages[] */
2233 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2234 pages[i] = sg_page(sg);
2235 }
2236
2237 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2238 kfree(pages);
2239 if (!cmd->t_data_vmap)
2240 return NULL;
2241
2242 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2243 }
2244 EXPORT_SYMBOL(transport_kmap_data_sg);
2245
2246 void transport_kunmap_data_sg(struct se_cmd *cmd)
2247 {
2248 if (!cmd->t_data_nents) {
2249 return;
2250 } else if (cmd->t_data_nents == 1) {
2251 kunmap(sg_page(cmd->t_data_sg));
2252 return;
2253 }
2254
2255 vunmap(cmd->t_data_vmap);
2256 cmd->t_data_vmap = NULL;
2257 }
2258 EXPORT_SYMBOL(transport_kunmap_data_sg);
2259
2260 static int
2261 transport_generic_get_mem(struct se_cmd *cmd)
2262 {
2263 u32 length = cmd->data_length;
2264 unsigned int nents;
2265 struct page *page;
2266 gfp_t zero_flag;
2267 int i = 0;
2268
2269 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2270 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2271 if (!cmd->t_data_sg)
2272 return -ENOMEM;
2273
2274 cmd->t_data_nents = nents;
2275 sg_init_table(cmd->t_data_sg, nents);
2276
2277 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2278
2279 while (length) {
2280 u32 page_len = min_t(u32, length, PAGE_SIZE);
2281 page = alloc_page(GFP_KERNEL | zero_flag);
2282 if (!page)
2283 goto out;
2284
2285 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2286 length -= page_len;
2287 i++;
2288 }
2289 return 0;
2290
2291 out:
2292 while (i >= 0) {
2293 __free_page(sg_page(&cmd->t_data_sg[i]));
2294 i--;
2295 }
2296 kfree(cmd->t_data_sg);
2297 cmd->t_data_sg = NULL;
2298 return -ENOMEM;
2299 }
2300
2301 /*
2302 * Allocate any required resources to execute the command. For writes we
2303 * might not have the payload yet, so notify the fabric via a call to
2304 * ->write_pending instead. Otherwise place it on the execution queue.
2305 */
2306 int transport_generic_new_cmd(struct se_cmd *cmd)
2307 {
2308 int ret = 0;
2309
2310 /*
2311 * Determine is the TCM fabric module has already allocated physical
2312 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2313 * beforehand.
2314 */
2315 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2316 cmd->data_length) {
2317 ret = transport_generic_get_mem(cmd);
2318 if (ret < 0)
2319 goto out_fail;
2320 }
2321
2322 /* Workaround for handling zero-length control CDBs */
2323 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && !cmd->data_length) {
2324 spin_lock_irq(&cmd->t_state_lock);
2325 cmd->t_state = TRANSPORT_COMPLETE;
2326 cmd->transport_state |= CMD_T_ACTIVE;
2327 spin_unlock_irq(&cmd->t_state_lock);
2328
2329 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
2330 u8 ua_asc = 0, ua_ascq = 0;
2331
2332 core_scsi3_ua_clear_for_request_sense(cmd,
2333 &ua_asc, &ua_ascq);
2334 }
2335
2336 INIT_WORK(&cmd->work, target_complete_ok_work);
2337 queue_work(target_completion_wq, &cmd->work);
2338 return 0;
2339 }
2340
2341 atomic_inc(&cmd->t_fe_count);
2342
2343 /*
2344 * If this command is not a write we can execute it right here,
2345 * for write buffers we need to notify the fabric driver first
2346 * and let it call back once the write buffers are ready.
2347 */
2348 target_add_to_state_list(cmd);
2349 if (cmd->data_direction != DMA_TO_DEVICE) {
2350 target_execute_cmd(cmd);
2351 return 0;
2352 }
2353
2354 spin_lock_irq(&cmd->t_state_lock);
2355 cmd->t_state = TRANSPORT_WRITE_PENDING;
2356 spin_unlock_irq(&cmd->t_state_lock);
2357
2358 transport_cmd_check_stop(cmd, false);
2359
2360 ret = cmd->se_tfo->write_pending(cmd);
2361 if (ret == -EAGAIN || ret == -ENOMEM)
2362 goto queue_full;
2363
2364 if (ret < 0)
2365 return ret;
2366 return 1;
2367
2368 out_fail:
2369 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2370 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2371 return -EINVAL;
2372 queue_full:
2373 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2374 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2375 transport_handle_queue_full(cmd, cmd->se_dev);
2376 return 0;
2377 }
2378 EXPORT_SYMBOL(transport_generic_new_cmd);
2379
2380 static void transport_write_pending_qf(struct se_cmd *cmd)
2381 {
2382 int ret;
2383
2384 ret = cmd->se_tfo->write_pending(cmd);
2385 if (ret == -EAGAIN || ret == -ENOMEM) {
2386 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2387 cmd);
2388 transport_handle_queue_full(cmd, cmd->se_dev);
2389 }
2390 }
2391
2392 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2393 {
2394 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2395 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2396 transport_wait_for_tasks(cmd);
2397
2398 transport_release_cmd(cmd);
2399 } else {
2400 if (wait_for_tasks)
2401 transport_wait_for_tasks(cmd);
2402
2403 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2404
2405 if (cmd->se_lun)
2406 transport_lun_remove_cmd(cmd);
2407
2408 transport_put_cmd(cmd);
2409 }
2410 }
2411 EXPORT_SYMBOL(transport_generic_free_cmd);
2412
2413 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2414 * @se_sess: session to reference
2415 * @se_cmd: command descriptor to add
2416 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2417 */
2418 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2419 bool ack_kref)
2420 {
2421 unsigned long flags;
2422 int ret = 0;
2423
2424 kref_init(&se_cmd->cmd_kref);
2425 /*
2426 * Add a second kref if the fabric caller is expecting to handle
2427 * fabric acknowledgement that requires two target_put_sess_cmd()
2428 * invocations before se_cmd descriptor release.
2429 */
2430 if (ack_kref == true) {
2431 kref_get(&se_cmd->cmd_kref);
2432 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2433 }
2434
2435 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2436 if (se_sess->sess_tearing_down) {
2437 ret = -ESHUTDOWN;
2438 goto out;
2439 }
2440 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2441 se_cmd->check_release = 1;
2442
2443 out:
2444 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2445 return ret;
2446 }
2447
2448 static void target_release_cmd_kref(struct kref *kref)
2449 {
2450 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2451 struct se_session *se_sess = se_cmd->se_sess;
2452 unsigned long flags;
2453
2454 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2455 if (list_empty(&se_cmd->se_cmd_list)) {
2456 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2457 se_cmd->se_tfo->release_cmd(se_cmd);
2458 return;
2459 }
2460 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2461 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2462 complete(&se_cmd->cmd_wait_comp);
2463 return;
2464 }
2465 list_del(&se_cmd->se_cmd_list);
2466 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2467
2468 se_cmd->se_tfo->release_cmd(se_cmd);
2469 }
2470
2471 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2472 * @se_sess: session to reference
2473 * @se_cmd: command descriptor to drop
2474 */
2475 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2476 {
2477 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2478 }
2479 EXPORT_SYMBOL(target_put_sess_cmd);
2480
2481 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
2482 * @se_sess: session to split
2483 */
2484 void target_splice_sess_cmd_list(struct se_session *se_sess)
2485 {
2486 struct se_cmd *se_cmd;
2487 unsigned long flags;
2488
2489 WARN_ON(!list_empty(&se_sess->sess_wait_list));
2490 INIT_LIST_HEAD(&se_sess->sess_wait_list);
2491
2492 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2493 se_sess->sess_tearing_down = 1;
2494
2495 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2496
2497 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2498 se_cmd->cmd_wait_set = 1;
2499
2500 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2501 }
2502 EXPORT_SYMBOL(target_splice_sess_cmd_list);
2503
2504 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2505 * @se_sess: session to wait for active I/O
2506 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2507 */
2508 void target_wait_for_sess_cmds(
2509 struct se_session *se_sess,
2510 int wait_for_tasks)
2511 {
2512 struct se_cmd *se_cmd, *tmp_cmd;
2513 bool rc = false;
2514
2515 list_for_each_entry_safe(se_cmd, tmp_cmd,
2516 &se_sess->sess_wait_list, se_cmd_list) {
2517 list_del(&se_cmd->se_cmd_list);
2518
2519 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2520 " %d\n", se_cmd, se_cmd->t_state,
2521 se_cmd->se_tfo->get_cmd_state(se_cmd));
2522
2523 if (wait_for_tasks) {
2524 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2525 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2526 se_cmd->se_tfo->get_cmd_state(se_cmd));
2527
2528 rc = transport_wait_for_tasks(se_cmd);
2529
2530 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2531 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2532 se_cmd->se_tfo->get_cmd_state(se_cmd));
2533 }
2534
2535 if (!rc) {
2536 wait_for_completion(&se_cmd->cmd_wait_comp);
2537 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2538 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2539 se_cmd->se_tfo->get_cmd_state(se_cmd));
2540 }
2541
2542 se_cmd->se_tfo->release_cmd(se_cmd);
2543 }
2544 }
2545 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2546
2547 /* transport_lun_wait_for_tasks():
2548 *
2549 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2550 * an struct se_lun to be successfully shutdown.
2551 */
2552 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2553 {
2554 unsigned long flags;
2555 int ret = 0;
2556
2557 /*
2558 * If the frontend has already requested this struct se_cmd to
2559 * be stopped, we can safely ignore this struct se_cmd.
2560 */
2561 spin_lock_irqsave(&cmd->t_state_lock, flags);
2562 if (cmd->transport_state & CMD_T_STOP) {
2563 cmd->transport_state &= ~CMD_T_LUN_STOP;
2564
2565 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2566 cmd->se_tfo->get_task_tag(cmd));
2567 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2568 transport_cmd_check_stop(cmd, false);
2569 return -EPERM;
2570 }
2571 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2572 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2573
2574 // XXX: audit task_flags checks.
2575 spin_lock_irqsave(&cmd->t_state_lock, flags);
2576 if ((cmd->transport_state & CMD_T_BUSY) &&
2577 (cmd->transport_state & CMD_T_SENT)) {
2578 if (!target_stop_cmd(cmd, &flags))
2579 ret++;
2580 }
2581 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2582
2583 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2584 " %d\n", cmd, ret);
2585 if (!ret) {
2586 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2587 cmd->se_tfo->get_task_tag(cmd));
2588 wait_for_completion(&cmd->transport_lun_stop_comp);
2589 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2590 cmd->se_tfo->get_task_tag(cmd));
2591 }
2592
2593 return 0;
2594 }
2595
2596 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2597 {
2598 struct se_cmd *cmd = NULL;
2599 unsigned long lun_flags, cmd_flags;
2600 /*
2601 * Do exception processing and return CHECK_CONDITION status to the
2602 * Initiator Port.
2603 */
2604 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2605 while (!list_empty(&lun->lun_cmd_list)) {
2606 cmd = list_first_entry(&lun->lun_cmd_list,
2607 struct se_cmd, se_lun_node);
2608 list_del_init(&cmd->se_lun_node);
2609
2610 spin_lock(&cmd->t_state_lock);
2611 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2612 "_lun_stop for ITT: 0x%08x\n",
2613 cmd->se_lun->unpacked_lun,
2614 cmd->se_tfo->get_task_tag(cmd));
2615 cmd->transport_state |= CMD_T_LUN_STOP;
2616 spin_unlock(&cmd->t_state_lock);
2617
2618 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2619
2620 if (!cmd->se_lun) {
2621 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2622 cmd->se_tfo->get_task_tag(cmd),
2623 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2624 BUG();
2625 }
2626 /*
2627 * If the Storage engine still owns the iscsi_cmd_t, determine
2628 * and/or stop its context.
2629 */
2630 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2631 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2632 cmd->se_tfo->get_task_tag(cmd));
2633
2634 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2635 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2636 continue;
2637 }
2638
2639 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2640 "_wait_for_tasks(): SUCCESS\n",
2641 cmd->se_lun->unpacked_lun,
2642 cmd->se_tfo->get_task_tag(cmd));
2643
2644 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2645 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2646 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2647 goto check_cond;
2648 }
2649 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2650 target_remove_from_state_list(cmd);
2651 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2652
2653 /*
2654 * The Storage engine stopped this struct se_cmd before it was
2655 * send to the fabric frontend for delivery back to the
2656 * Initiator Node. Return this SCSI CDB back with an
2657 * CHECK_CONDITION status.
2658 */
2659 check_cond:
2660 transport_send_check_condition_and_sense(cmd,
2661 TCM_NON_EXISTENT_LUN, 0);
2662 /*
2663 * If the fabric frontend is waiting for this iscsi_cmd_t to
2664 * be released, notify the waiting thread now that LU has
2665 * finished accessing it.
2666 */
2667 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2668 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2669 pr_debug("SE_LUN[%d] - Detected FE stop for"
2670 " struct se_cmd: %p ITT: 0x%08x\n",
2671 lun->unpacked_lun,
2672 cmd, cmd->se_tfo->get_task_tag(cmd));
2673
2674 spin_unlock_irqrestore(&cmd->t_state_lock,
2675 cmd_flags);
2676 transport_cmd_check_stop(cmd, false);
2677 complete(&cmd->transport_lun_fe_stop_comp);
2678 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2679 continue;
2680 }
2681 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2682 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2683
2684 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2685 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2686 }
2687 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2688 }
2689
2690 static int transport_clear_lun_thread(void *p)
2691 {
2692 struct se_lun *lun = p;
2693
2694 __transport_clear_lun_from_sessions(lun);
2695 complete(&lun->lun_shutdown_comp);
2696
2697 return 0;
2698 }
2699
2700 int transport_clear_lun_from_sessions(struct se_lun *lun)
2701 {
2702 struct task_struct *kt;
2703
2704 kt = kthread_run(transport_clear_lun_thread, lun,
2705 "tcm_cl_%u", lun->unpacked_lun);
2706 if (IS_ERR(kt)) {
2707 pr_err("Unable to start clear_lun thread\n");
2708 return PTR_ERR(kt);
2709 }
2710 wait_for_completion(&lun->lun_shutdown_comp);
2711
2712 return 0;
2713 }
2714
2715 /**
2716 * transport_wait_for_tasks - wait for completion to occur
2717 * @cmd: command to wait
2718 *
2719 * Called from frontend fabric context to wait for storage engine
2720 * to pause and/or release frontend generated struct se_cmd.
2721 */
2722 bool transport_wait_for_tasks(struct se_cmd *cmd)
2723 {
2724 unsigned long flags;
2725
2726 spin_lock_irqsave(&cmd->t_state_lock, flags);
2727 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2728 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2729 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2730 return false;
2731 }
2732
2733 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2734 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2736 return false;
2737 }
2738 /*
2739 * If we are already stopped due to an external event (ie: LUN shutdown)
2740 * sleep until the connection can have the passed struct se_cmd back.
2741 * The cmd->transport_lun_stopped_sem will be upped by
2742 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2743 * has completed its operation on the struct se_cmd.
2744 */
2745 if (cmd->transport_state & CMD_T_LUN_STOP) {
2746 pr_debug("wait_for_tasks: Stopping"
2747 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2748 "_stop_comp); for ITT: 0x%08x\n",
2749 cmd->se_tfo->get_task_tag(cmd));
2750 /*
2751 * There is a special case for WRITES where a FE exception +
2752 * LUN shutdown means ConfigFS context is still sleeping on
2753 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2754 * We go ahead and up transport_lun_stop_comp just to be sure
2755 * here.
2756 */
2757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2758 complete(&cmd->transport_lun_stop_comp);
2759 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2760 spin_lock_irqsave(&cmd->t_state_lock, flags);
2761
2762 target_remove_from_state_list(cmd);
2763 /*
2764 * At this point, the frontend who was the originator of this
2765 * struct se_cmd, now owns the structure and can be released through
2766 * normal means below.
2767 */
2768 pr_debug("wait_for_tasks: Stopped"
2769 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2770 "stop_comp); for ITT: 0x%08x\n",
2771 cmd->se_tfo->get_task_tag(cmd));
2772
2773 cmd->transport_state &= ~CMD_T_LUN_STOP;
2774 }
2775
2776 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2777 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2778 return false;
2779 }
2780
2781 cmd->transport_state |= CMD_T_STOP;
2782
2783 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2784 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2785 cmd, cmd->se_tfo->get_task_tag(cmd),
2786 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2787
2788 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2789
2790 wait_for_completion(&cmd->t_transport_stop_comp);
2791
2792 spin_lock_irqsave(&cmd->t_state_lock, flags);
2793 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2794
2795 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
2796 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2797 cmd->se_tfo->get_task_tag(cmd));
2798
2799 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2800
2801 return true;
2802 }
2803 EXPORT_SYMBOL(transport_wait_for_tasks);
2804
2805 static int transport_get_sense_codes(
2806 struct se_cmd *cmd,
2807 u8 *asc,
2808 u8 *ascq)
2809 {
2810 *asc = cmd->scsi_asc;
2811 *ascq = cmd->scsi_ascq;
2812
2813 return 0;
2814 }
2815
2816 static int transport_set_sense_codes(
2817 struct se_cmd *cmd,
2818 u8 asc,
2819 u8 ascq)
2820 {
2821 cmd->scsi_asc = asc;
2822 cmd->scsi_ascq = ascq;
2823
2824 return 0;
2825 }
2826
2827 int transport_send_check_condition_and_sense(
2828 struct se_cmd *cmd,
2829 u8 reason,
2830 int from_transport)
2831 {
2832 unsigned char *buffer = cmd->sense_buffer;
2833 unsigned long flags;
2834 int offset;
2835 u8 asc = 0, ascq = 0;
2836
2837 spin_lock_irqsave(&cmd->t_state_lock, flags);
2838 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2839 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2840 return 0;
2841 }
2842 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2843 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2844
2845 if (!reason && from_transport)
2846 goto after_reason;
2847
2848 if (!from_transport)
2849 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2850 /*
2851 * Data Segment and SenseLength of the fabric response PDU.
2852 *
2853 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
2854 * from include/scsi/scsi_cmnd.h
2855 */
2856 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2857 TRANSPORT_SENSE_BUFFER);
2858 /*
2859 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2860 * SENSE KEY values from include/scsi/scsi.h
2861 */
2862 switch (reason) {
2863 case TCM_NON_EXISTENT_LUN:
2864 /* CURRENT ERROR */
2865 buffer[offset] = 0x70;
2866 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2867 /* ILLEGAL REQUEST */
2868 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2869 /* LOGICAL UNIT NOT SUPPORTED */
2870 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
2871 break;
2872 case TCM_UNSUPPORTED_SCSI_OPCODE:
2873 case TCM_SECTOR_COUNT_TOO_MANY:
2874 /* CURRENT ERROR */
2875 buffer[offset] = 0x70;
2876 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2877 /* ILLEGAL REQUEST */
2878 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2879 /* INVALID COMMAND OPERATION CODE */
2880 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
2881 break;
2882 case TCM_UNKNOWN_MODE_PAGE:
2883 /* CURRENT ERROR */
2884 buffer[offset] = 0x70;
2885 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2886 /* ILLEGAL REQUEST */
2887 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2888 /* INVALID FIELD IN CDB */
2889 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2890 break;
2891 case TCM_CHECK_CONDITION_ABORT_CMD:
2892 /* CURRENT ERROR */
2893 buffer[offset] = 0x70;
2894 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2895 /* ABORTED COMMAND */
2896 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2897 /* BUS DEVICE RESET FUNCTION OCCURRED */
2898 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
2899 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
2900 break;
2901 case TCM_INCORRECT_AMOUNT_OF_DATA:
2902 /* CURRENT ERROR */
2903 buffer[offset] = 0x70;
2904 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2905 /* ABORTED COMMAND */
2906 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2907 /* WRITE ERROR */
2908 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2909 /* NOT ENOUGH UNSOLICITED DATA */
2910 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
2911 break;
2912 case TCM_INVALID_CDB_FIELD:
2913 /* CURRENT ERROR */
2914 buffer[offset] = 0x70;
2915 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2916 /* ILLEGAL REQUEST */
2917 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2918 /* INVALID FIELD IN CDB */
2919 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
2920 break;
2921 case TCM_INVALID_PARAMETER_LIST:
2922 /* CURRENT ERROR */
2923 buffer[offset] = 0x70;
2924 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2925 /* ILLEGAL REQUEST */
2926 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2927 /* INVALID FIELD IN PARAMETER LIST */
2928 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
2929 break;
2930 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2931 /* CURRENT ERROR */
2932 buffer[offset] = 0x70;
2933 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2934 /* ABORTED COMMAND */
2935 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2936 /* WRITE ERROR */
2937 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
2938 /* UNEXPECTED_UNSOLICITED_DATA */
2939 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
2940 break;
2941 case TCM_SERVICE_CRC_ERROR:
2942 /* CURRENT ERROR */
2943 buffer[offset] = 0x70;
2944 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2945 /* ABORTED COMMAND */
2946 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2947 /* PROTOCOL SERVICE CRC ERROR */
2948 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
2949 /* N/A */
2950 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
2951 break;
2952 case TCM_SNACK_REJECTED:
2953 /* CURRENT ERROR */
2954 buffer[offset] = 0x70;
2955 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2956 /* ABORTED COMMAND */
2957 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2958 /* READ ERROR */
2959 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
2960 /* FAILED RETRANSMISSION REQUEST */
2961 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
2962 break;
2963 case TCM_WRITE_PROTECTED:
2964 /* CURRENT ERROR */
2965 buffer[offset] = 0x70;
2966 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2967 /* DATA PROTECT */
2968 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2969 /* WRITE PROTECTED */
2970 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
2971 break;
2972 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2973 /* CURRENT ERROR */
2974 buffer[offset] = 0x70;
2975 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2976 /* UNIT ATTENTION */
2977 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2978 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2979 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2980 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
2981 break;
2982 case TCM_CHECK_CONDITION_NOT_READY:
2983 /* CURRENT ERROR */
2984 buffer[offset] = 0x70;
2985 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2986 /* Not Ready */
2987 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
2988 transport_get_sense_codes(cmd, &asc, &ascq);
2989 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
2990 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
2991 break;
2992 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2993 default:
2994 /* CURRENT ERROR */
2995 buffer[offset] = 0x70;
2996 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
2997 /* ILLEGAL REQUEST */
2998 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2999 /* LOGICAL UNIT COMMUNICATION FAILURE */
3000 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
3001 break;
3002 }
3003 /*
3004 * This code uses linux/include/scsi/scsi.h SAM status codes!
3005 */
3006 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3007 /*
3008 * Automatically padded, this value is encoded in the fabric's
3009 * data_length response PDU containing the SCSI defined sense data.
3010 */
3011 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
3012
3013 after_reason:
3014 return cmd->se_tfo->queue_status(cmd);
3015 }
3016 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3017
3018 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3019 {
3020 int ret = 0;
3021
3022 if (cmd->transport_state & CMD_T_ABORTED) {
3023 if (!send_status ||
3024 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
3025 return 1;
3026
3027 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
3028 " status for CDB: 0x%02x ITT: 0x%08x\n",
3029 cmd->t_task_cdb[0],
3030 cmd->se_tfo->get_task_tag(cmd));
3031
3032 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
3033 cmd->se_tfo->queue_status(cmd);
3034 ret = 1;
3035 }
3036 return ret;
3037 }
3038 EXPORT_SYMBOL(transport_check_aborted_status);
3039
3040 void transport_send_task_abort(struct se_cmd *cmd)
3041 {
3042 unsigned long flags;
3043
3044 spin_lock_irqsave(&cmd->t_state_lock, flags);
3045 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3046 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3047 return;
3048 }
3049 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3050
3051 /*
3052 * If there are still expected incoming fabric WRITEs, we wait
3053 * until until they have completed before sending a TASK_ABORTED
3054 * response. This response with TASK_ABORTED status will be
3055 * queued back to fabric module by transport_check_aborted_status().
3056 */
3057 if (cmd->data_direction == DMA_TO_DEVICE) {
3058 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3059 cmd->transport_state |= CMD_T_ABORTED;
3060 smp_mb__after_atomic_inc();
3061 }
3062 }
3063 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3064
3065 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3066 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3067 cmd->se_tfo->get_task_tag(cmd));
3068
3069 cmd->se_tfo->queue_status(cmd);
3070 }
3071
3072 static void target_tmr_work(struct work_struct *work)
3073 {
3074 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3075 struct se_device *dev = cmd->se_dev;
3076 struct se_tmr_req *tmr = cmd->se_tmr_req;
3077 int ret;
3078
3079 switch (tmr->function) {
3080 case TMR_ABORT_TASK:
3081 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3082 break;
3083 case TMR_ABORT_TASK_SET:
3084 case TMR_CLEAR_ACA:
3085 case TMR_CLEAR_TASK_SET:
3086 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3087 break;
3088 case TMR_LUN_RESET:
3089 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3090 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3091 TMR_FUNCTION_REJECTED;
3092 break;
3093 case TMR_TARGET_WARM_RESET:
3094 tmr->response = TMR_FUNCTION_REJECTED;
3095 break;
3096 case TMR_TARGET_COLD_RESET:
3097 tmr->response = TMR_FUNCTION_REJECTED;
3098 break;
3099 default:
3100 pr_err("Uknown TMR function: 0x%02x.\n",
3101 tmr->function);
3102 tmr->response = TMR_FUNCTION_REJECTED;
3103 break;
3104 }
3105
3106 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3107 cmd->se_tfo->queue_tm_rsp(cmd);
3108
3109 transport_cmd_check_stop_to_fabric(cmd);
3110 }
3111
3112 int transport_generic_handle_tmr(
3113 struct se_cmd *cmd)
3114 {
3115 INIT_WORK(&cmd->work, target_tmr_work);
3116 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3117 return 0;
3118 }
3119 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.095424 seconds and 6 git commands to generate.