target: factor some duplicate code for stopping a task
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80 unsigned long long starting_lba,
81 enum dma_data_direction data_direction,
82 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
86 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
87 static void transport_stop_all_task_timers(struct se_cmd *cmd);
88
89 int init_se_kmem_caches(void)
90 {
91 se_cmd_cache = kmem_cache_create("se_cmd_cache",
92 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
93 if (!se_cmd_cache) {
94 pr_err("kmem_cache_create for struct se_cmd failed\n");
95 goto out;
96 }
97 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
98 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
99 0, NULL);
100 if (!se_tmr_req_cache) {
101 pr_err("kmem_cache_create() for struct se_tmr_req"
102 " failed\n");
103 goto out;
104 }
105 se_sess_cache = kmem_cache_create("se_sess_cache",
106 sizeof(struct se_session), __alignof__(struct se_session),
107 0, NULL);
108 if (!se_sess_cache) {
109 pr_err("kmem_cache_create() for struct se_session"
110 " failed\n");
111 goto out;
112 }
113 se_ua_cache = kmem_cache_create("se_ua_cache",
114 sizeof(struct se_ua), __alignof__(struct se_ua),
115 0, NULL);
116 if (!se_ua_cache) {
117 pr_err("kmem_cache_create() for struct se_ua failed\n");
118 goto out;
119 }
120 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
121 sizeof(struct t10_pr_registration),
122 __alignof__(struct t10_pr_registration), 0, NULL);
123 if (!t10_pr_reg_cache) {
124 pr_err("kmem_cache_create() for struct t10_pr_registration"
125 " failed\n");
126 goto out;
127 }
128 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
129 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
130 0, NULL);
131 if (!t10_alua_lu_gp_cache) {
132 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
133 " failed\n");
134 goto out;
135 }
136 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
137 sizeof(struct t10_alua_lu_gp_member),
138 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
139 if (!t10_alua_lu_gp_mem_cache) {
140 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
141 "cache failed\n");
142 goto out;
143 }
144 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
145 sizeof(struct t10_alua_tg_pt_gp),
146 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
147 if (!t10_alua_tg_pt_gp_cache) {
148 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
149 "cache failed\n");
150 goto out;
151 }
152 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
153 "t10_alua_tg_pt_gp_mem_cache",
154 sizeof(struct t10_alua_tg_pt_gp_member),
155 __alignof__(struct t10_alua_tg_pt_gp_member),
156 0, NULL);
157 if (!t10_alua_tg_pt_gp_mem_cache) {
158 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
159 "mem_t failed\n");
160 goto out;
161 }
162
163 return 0;
164 out:
165 if (se_cmd_cache)
166 kmem_cache_destroy(se_cmd_cache);
167 if (se_tmr_req_cache)
168 kmem_cache_destroy(se_tmr_req_cache);
169 if (se_sess_cache)
170 kmem_cache_destroy(se_sess_cache);
171 if (se_ua_cache)
172 kmem_cache_destroy(se_ua_cache);
173 if (t10_pr_reg_cache)
174 kmem_cache_destroy(t10_pr_reg_cache);
175 if (t10_alua_lu_gp_cache)
176 kmem_cache_destroy(t10_alua_lu_gp_cache);
177 if (t10_alua_lu_gp_mem_cache)
178 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
179 if (t10_alua_tg_pt_gp_cache)
180 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
181 if (t10_alua_tg_pt_gp_mem_cache)
182 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
183 return -ENOMEM;
184 }
185
186 void release_se_kmem_caches(void)
187 {
188 kmem_cache_destroy(se_cmd_cache);
189 kmem_cache_destroy(se_tmr_req_cache);
190 kmem_cache_destroy(se_sess_cache);
191 kmem_cache_destroy(se_ua_cache);
192 kmem_cache_destroy(t10_pr_reg_cache);
193 kmem_cache_destroy(t10_alua_lu_gp_cache);
194 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
195 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
196 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
197 }
198
199 /* This code ensures unique mib indexes are handed out. */
200 static DEFINE_SPINLOCK(scsi_mib_index_lock);
201 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
202
203 /*
204 * Allocate a new row index for the entry type specified
205 */
206 u32 scsi_get_new_index(scsi_index_t type)
207 {
208 u32 new_index;
209
210 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
211
212 spin_lock(&scsi_mib_index_lock);
213 new_index = ++scsi_mib_index[type];
214 spin_unlock(&scsi_mib_index_lock);
215
216 return new_index;
217 }
218
219 void transport_init_queue_obj(struct se_queue_obj *qobj)
220 {
221 atomic_set(&qobj->queue_cnt, 0);
222 INIT_LIST_HEAD(&qobj->qobj_list);
223 init_waitqueue_head(&qobj->thread_wq);
224 spin_lock_init(&qobj->cmd_queue_lock);
225 }
226 EXPORT_SYMBOL(transport_init_queue_obj);
227
228 static int transport_subsystem_reqmods(void)
229 {
230 int ret;
231
232 ret = request_module("target_core_iblock");
233 if (ret != 0)
234 pr_err("Unable to load target_core_iblock\n");
235
236 ret = request_module("target_core_file");
237 if (ret != 0)
238 pr_err("Unable to load target_core_file\n");
239
240 ret = request_module("target_core_pscsi");
241 if (ret != 0)
242 pr_err("Unable to load target_core_pscsi\n");
243
244 ret = request_module("target_core_stgt");
245 if (ret != 0)
246 pr_err("Unable to load target_core_stgt\n");
247
248 return 0;
249 }
250
251 int transport_subsystem_check_init(void)
252 {
253 int ret;
254
255 if (sub_api_initialized)
256 return 0;
257 /*
258 * Request the loading of known TCM subsystem plugins..
259 */
260 ret = transport_subsystem_reqmods();
261 if (ret < 0)
262 return ret;
263
264 sub_api_initialized = 1;
265 return 0;
266 }
267
268 struct se_session *transport_init_session(void)
269 {
270 struct se_session *se_sess;
271
272 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
273 if (!se_sess) {
274 pr_err("Unable to allocate struct se_session from"
275 " se_sess_cache\n");
276 return ERR_PTR(-ENOMEM);
277 }
278 INIT_LIST_HEAD(&se_sess->sess_list);
279 INIT_LIST_HEAD(&se_sess->sess_acl_list);
280
281 return se_sess;
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /*
286 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
287 */
288 void __transport_register_session(
289 struct se_portal_group *se_tpg,
290 struct se_node_acl *se_nacl,
291 struct se_session *se_sess,
292 void *fabric_sess_ptr)
293 {
294 unsigned char buf[PR_REG_ISID_LEN];
295
296 se_sess->se_tpg = se_tpg;
297 se_sess->fabric_sess_ptr = fabric_sess_ptr;
298 /*
299 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
300 *
301 * Only set for struct se_session's that will actually be moving I/O.
302 * eg: *NOT* discovery sessions.
303 */
304 if (se_nacl) {
305 /*
306 * If the fabric module supports an ISID based TransportID,
307 * save this value in binary from the fabric I_T Nexus now.
308 */
309 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310 memset(&buf[0], 0, PR_REG_ISID_LEN);
311 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312 &buf[0], PR_REG_ISID_LEN);
313 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
314 }
315 spin_lock_irq(&se_nacl->nacl_sess_lock);
316 /*
317 * The se_nacl->nacl_sess pointer will be set to the
318 * last active I_T Nexus for each struct se_node_acl.
319 */
320 se_nacl->nacl_sess = se_sess;
321
322 list_add_tail(&se_sess->sess_acl_list,
323 &se_nacl->acl_sess_list);
324 spin_unlock_irq(&se_nacl->nacl_sess_lock);
325 }
326 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
327
328 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
329 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
330 }
331 EXPORT_SYMBOL(__transport_register_session);
332
333 void transport_register_session(
334 struct se_portal_group *se_tpg,
335 struct se_node_acl *se_nacl,
336 struct se_session *se_sess,
337 void *fabric_sess_ptr)
338 {
339 spin_lock_bh(&se_tpg->session_lock);
340 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
341 spin_unlock_bh(&se_tpg->session_lock);
342 }
343 EXPORT_SYMBOL(transport_register_session);
344
345 void transport_deregister_session_configfs(struct se_session *se_sess)
346 {
347 struct se_node_acl *se_nacl;
348 unsigned long flags;
349 /*
350 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
351 */
352 se_nacl = se_sess->se_node_acl;
353 if (se_nacl) {
354 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
355 list_del(&se_sess->sess_acl_list);
356 /*
357 * If the session list is empty, then clear the pointer.
358 * Otherwise, set the struct se_session pointer from the tail
359 * element of the per struct se_node_acl active session list.
360 */
361 if (list_empty(&se_nacl->acl_sess_list))
362 se_nacl->nacl_sess = NULL;
363 else {
364 se_nacl->nacl_sess = container_of(
365 se_nacl->acl_sess_list.prev,
366 struct se_session, sess_acl_list);
367 }
368 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
369 }
370 }
371 EXPORT_SYMBOL(transport_deregister_session_configfs);
372
373 void transport_free_session(struct se_session *se_sess)
374 {
375 kmem_cache_free(se_sess_cache, se_sess);
376 }
377 EXPORT_SYMBOL(transport_free_session);
378
379 void transport_deregister_session(struct se_session *se_sess)
380 {
381 struct se_portal_group *se_tpg = se_sess->se_tpg;
382 struct se_node_acl *se_nacl;
383 unsigned long flags;
384
385 if (!se_tpg) {
386 transport_free_session(se_sess);
387 return;
388 }
389
390 spin_lock_irqsave(&se_tpg->session_lock, flags);
391 list_del(&se_sess->sess_list);
392 se_sess->se_tpg = NULL;
393 se_sess->fabric_sess_ptr = NULL;
394 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
395
396 /*
397 * Determine if we need to do extra work for this initiator node's
398 * struct se_node_acl if it had been previously dynamically generated.
399 */
400 se_nacl = se_sess->se_node_acl;
401 if (se_nacl) {
402 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
403 if (se_nacl->dynamic_node_acl) {
404 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
405 se_tpg)) {
406 list_del(&se_nacl->acl_list);
407 se_tpg->num_node_acls--;
408 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
409
410 core_tpg_wait_for_nacl_pr_ref(se_nacl);
411 core_free_device_list_for_node(se_nacl, se_tpg);
412 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
413 se_nacl);
414 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 }
416 }
417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418 }
419
420 transport_free_session(se_sess);
421
422 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
423 se_tpg->se_tpg_tfo->get_fabric_name());
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428 * Called with cmd->t_state_lock held.
429 */
430 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
431 {
432 struct se_device *dev = cmd->se_dev;
433 struct se_task *task;
434 unsigned long flags;
435
436 if (!dev)
437 return;
438
439 list_for_each_entry(task, &cmd->t_task_list, t_list) {
440 if (task->task_flags & TF_ACTIVE)
441 continue;
442
443 if (!atomic_read(&task->task_state_active))
444 continue;
445
446 spin_lock_irqsave(&dev->execute_task_lock, flags);
447 list_del(&task->t_state_list);
448 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
449 cmd->se_tfo->get_task_tag(cmd), dev, task);
450 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
451
452 atomic_set(&task->task_state_active, 0);
453 atomic_dec(&cmd->t_task_cdbs_ex_left);
454 }
455 }
456
457 /* transport_cmd_check_stop():
458 *
459 * 'transport_off = 1' determines if t_transport_active should be cleared.
460 * 'transport_off = 2' determines if task_dev_state should be removed.
461 *
462 * A non-zero u8 t_state sets cmd->t_state.
463 * Returns 1 when command is stopped, else 0.
464 */
465 static int transport_cmd_check_stop(
466 struct se_cmd *cmd,
467 int transport_off,
468 u8 t_state)
469 {
470 unsigned long flags;
471
472 spin_lock_irqsave(&cmd->t_state_lock, flags);
473 /*
474 * Determine if IOCTL context caller in requesting the stopping of this
475 * command for LUN shutdown purposes.
476 */
477 if (atomic_read(&cmd->transport_lun_stop)) {
478 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
479 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
480 cmd->se_tfo->get_task_tag(cmd));
481
482 cmd->deferred_t_state = cmd->t_state;
483 cmd->t_state = TRANSPORT_DEFERRED_CMD;
484 atomic_set(&cmd->t_transport_active, 0);
485 if (transport_off == 2)
486 transport_all_task_dev_remove_state(cmd);
487 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
488
489 complete(&cmd->transport_lun_stop_comp);
490 return 1;
491 }
492 /*
493 * Determine if frontend context caller is requesting the stopping of
494 * this command for frontend exceptions.
495 */
496 if (atomic_read(&cmd->t_transport_stop)) {
497 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
498 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
499 cmd->se_tfo->get_task_tag(cmd));
500
501 cmd->deferred_t_state = cmd->t_state;
502 cmd->t_state = TRANSPORT_DEFERRED_CMD;
503 if (transport_off == 2)
504 transport_all_task_dev_remove_state(cmd);
505
506 /*
507 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
508 * to FE.
509 */
510 if (transport_off == 2)
511 cmd->se_lun = NULL;
512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513
514 complete(&cmd->t_transport_stop_comp);
515 return 1;
516 }
517 if (transport_off) {
518 atomic_set(&cmd->t_transport_active, 0);
519 if (transport_off == 2) {
520 transport_all_task_dev_remove_state(cmd);
521 /*
522 * Clear struct se_cmd->se_lun before the transport_off == 2
523 * handoff to fabric module.
524 */
525 cmd->se_lun = NULL;
526 /*
527 * Some fabric modules like tcm_loop can release
528 * their internally allocated I/O reference now and
529 * struct se_cmd now.
530 */
531 if (cmd->se_tfo->check_stop_free != NULL) {
532 spin_unlock_irqrestore(
533 &cmd->t_state_lock, flags);
534
535 cmd->se_tfo->check_stop_free(cmd);
536 return 1;
537 }
538 }
539 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
540
541 return 0;
542 } else if (t_state)
543 cmd->t_state = t_state;
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546 return 0;
547 }
548
549 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
550 {
551 return transport_cmd_check_stop(cmd, 2, 0);
552 }
553
554 static void transport_lun_remove_cmd(struct se_cmd *cmd)
555 {
556 struct se_lun *lun = cmd->se_lun;
557 unsigned long flags;
558
559 if (!lun)
560 return;
561
562 spin_lock_irqsave(&cmd->t_state_lock, flags);
563 if (!atomic_read(&cmd->transport_dev_active)) {
564 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565 goto check_lun;
566 }
567 atomic_set(&cmd->transport_dev_active, 0);
568 transport_all_task_dev_remove_state(cmd);
569 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570
571
572 check_lun:
573 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
574 if (atomic_read(&cmd->transport_lun_active)) {
575 list_del(&cmd->se_lun_node);
576 atomic_set(&cmd->transport_lun_active, 0);
577 #if 0
578 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
579 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
580 #endif
581 }
582 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
583 }
584
585 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
586 {
587 if (!cmd->se_tmr_req)
588 transport_lun_remove_cmd(cmd);
589
590 if (transport_cmd_check_stop_to_fabric(cmd))
591 return;
592 if (remove) {
593 transport_remove_cmd_from_queue(cmd);
594 transport_put_cmd(cmd);
595 }
596 }
597
598 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
599 bool at_head)
600 {
601 struct se_device *dev = cmd->se_dev;
602 struct se_queue_obj *qobj = &dev->dev_queue_obj;
603 unsigned long flags;
604
605 if (t_state) {
606 spin_lock_irqsave(&cmd->t_state_lock, flags);
607 cmd->t_state = t_state;
608 atomic_set(&cmd->t_transport_active, 1);
609 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
610 }
611
612 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
613
614 /* If the cmd is already on the list, remove it before we add it */
615 if (!list_empty(&cmd->se_queue_node))
616 list_del(&cmd->se_queue_node);
617 else
618 atomic_inc(&qobj->queue_cnt);
619
620 if (at_head)
621 list_add(&cmd->se_queue_node, &qobj->qobj_list);
622 else
623 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
624 atomic_set(&cmd->t_transport_queue_active, 1);
625 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
626
627 wake_up_interruptible(&qobj->thread_wq);
628 }
629
630 static struct se_cmd *
631 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
632 {
633 struct se_cmd *cmd;
634 unsigned long flags;
635
636 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
637 if (list_empty(&qobj->qobj_list)) {
638 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
639 return NULL;
640 }
641 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
642
643 atomic_set(&cmd->t_transport_queue_active, 0);
644
645 list_del_init(&cmd->se_queue_node);
646 atomic_dec(&qobj->queue_cnt);
647 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648
649 return cmd;
650 }
651
652 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
653 {
654 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
655 unsigned long flags;
656
657 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
658 if (!atomic_read(&cmd->t_transport_queue_active)) {
659 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660 return;
661 }
662 atomic_set(&cmd->t_transport_queue_active, 0);
663 atomic_dec(&qobj->queue_cnt);
664 list_del_init(&cmd->se_queue_node);
665 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666
667 if (atomic_read(&cmd->t_transport_queue_active)) {
668 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
669 cmd->se_tfo->get_task_tag(cmd),
670 atomic_read(&cmd->t_transport_queue_active));
671 }
672 }
673
674 /*
675 * Completion function used by TCM subsystem plugins (such as FILEIO)
676 * for queueing up response from struct se_subsystem_api->do_task()
677 */
678 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
679 {
680 struct se_task *task = list_entry(cmd->t_task_list.next,
681 struct se_task, t_list);
682
683 if (good) {
684 cmd->scsi_status = SAM_STAT_GOOD;
685 task->task_scsi_status = GOOD;
686 } else {
687 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
688 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
689 task->task_se_cmd->transport_error_status =
690 PYX_TRANSPORT_ILLEGAL_REQUEST;
691 }
692
693 transport_complete_task(task, good);
694 }
695 EXPORT_SYMBOL(transport_complete_sync_cache);
696
697 /* transport_complete_task():
698 *
699 * Called from interrupt and non interrupt context depending
700 * on the transport plugin.
701 */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704 struct se_cmd *cmd = task->task_se_cmd;
705 struct se_device *dev = cmd->se_dev;
706 int t_state;
707 unsigned long flags;
708 #if 0
709 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
710 cmd->t_task_cdb[0], dev);
711 #endif
712 if (dev)
713 atomic_inc(&dev->depth_left);
714
715 spin_lock_irqsave(&cmd->t_state_lock, flags);
716 task->task_flags &= ~TF_ACTIVE;
717
718 /*
719 * See if any sense data exists, if so set the TASK_SENSE flag.
720 * Also check for any other post completion work that needs to be
721 * done by the plugins.
722 */
723 if (dev && dev->transport->transport_complete) {
724 if (dev->transport->transport_complete(task) != 0) {
725 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
726 task->task_sense = 1;
727 success = 1;
728 }
729 }
730
731 /*
732 * See if we are waiting for outstanding struct se_task
733 * to complete for an exception condition
734 */
735 if (task->task_flags & TF_REQUEST_STOP) {
736 /*
737 * Decrement cmd->t_se_count if this task had
738 * previously thrown its timeout exception handler.
739 */
740 if (task->task_flags & TF_TIMEOUT) {
741 atomic_dec(&cmd->t_se_count);
742 task->task_flags &= ~TF_TIMEOUT;
743 }
744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746 complete(&task->task_stop_comp);
747 return;
748 }
749 /*
750 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
751 * left counter to determine when the struct se_cmd is ready to be queued to
752 * the processing thread.
753 */
754 if (task->task_flags & TF_TIMEOUT) {
755 if (!atomic_dec_and_test(
756 &cmd->t_task_cdbs_timeout_left)) {
757 spin_unlock_irqrestore(&cmd->t_state_lock,
758 flags);
759 return;
760 }
761 t_state = TRANSPORT_COMPLETE_TIMEOUT;
762 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763
764 transport_add_cmd_to_queue(cmd, t_state, false);
765 return;
766 }
767 atomic_dec(&cmd->t_task_cdbs_timeout_left);
768
769 /*
770 * Decrement the outstanding t_task_cdbs_left count. The last
771 * struct se_task from struct se_cmd will complete itself into the
772 * device queue depending upon int success.
773 */
774 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
775 if (!success)
776 cmd->t_tasks_failed = 1;
777
778 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
779 return;
780 }
781
782 if (!success || cmd->t_tasks_failed) {
783 t_state = TRANSPORT_COMPLETE_FAILURE;
784 if (!task->task_error_status) {
785 task->task_error_status =
786 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
787 cmd->transport_error_status =
788 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
789 }
790 } else {
791 atomic_set(&cmd->t_transport_complete, 1);
792 t_state = TRANSPORT_COMPLETE_OK;
793 }
794 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
795
796 transport_add_cmd_to_queue(cmd, t_state, false);
797 }
798 EXPORT_SYMBOL(transport_complete_task);
799
800 /*
801 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
802 * struct se_task list are ready to be added to the active execution list
803 * struct se_device
804
805 * Called with se_dev_t->execute_task_lock called.
806 */
807 static inline int transport_add_task_check_sam_attr(
808 struct se_task *task,
809 struct se_task *task_prev,
810 struct se_device *dev)
811 {
812 /*
813 * No SAM Task attribute emulation enabled, add to tail of
814 * execution queue
815 */
816 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
817 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 return 0;
819 }
820 /*
821 * HEAD_OF_QUEUE attribute for received CDB, which means
822 * the first task that is associated with a struct se_cmd goes to
823 * head of the struct se_device->execute_task_list, and task_prev
824 * after that for each subsequent task
825 */
826 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
827 list_add(&task->t_execute_list,
828 (task_prev != NULL) ?
829 &task_prev->t_execute_list :
830 &dev->execute_task_list);
831
832 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
833 " in execution queue\n",
834 task->task_se_cmd->t_task_cdb[0]);
835 return 1;
836 }
837 /*
838 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
839 * transitioned from Dermant -> Active state, and are added to the end
840 * of the struct se_device->execute_task_list
841 */
842 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
843 return 0;
844 }
845
846 /* __transport_add_task_to_execute_queue():
847 *
848 * Called with se_dev_t->execute_task_lock called.
849 */
850 static void __transport_add_task_to_execute_queue(
851 struct se_task *task,
852 struct se_task *task_prev,
853 struct se_device *dev)
854 {
855 int head_of_queue;
856
857 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
858 atomic_inc(&dev->execute_tasks);
859
860 if (atomic_read(&task->task_state_active))
861 return;
862 /*
863 * Determine if this task needs to go to HEAD_OF_QUEUE for the
864 * state list as well. Running with SAM Task Attribute emulation
865 * will always return head_of_queue == 0 here
866 */
867 if (head_of_queue)
868 list_add(&task->t_state_list, (task_prev) ?
869 &task_prev->t_state_list :
870 &dev->state_task_list);
871 else
872 list_add_tail(&task->t_state_list, &dev->state_task_list);
873
874 atomic_set(&task->task_state_active, 1);
875
876 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
877 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
878 task, dev);
879 }
880
881 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
882 {
883 struct se_device *dev = cmd->se_dev;
884 struct se_task *task;
885 unsigned long flags;
886
887 spin_lock_irqsave(&cmd->t_state_lock, flags);
888 list_for_each_entry(task, &cmd->t_task_list, t_list) {
889 if (atomic_read(&task->task_state_active))
890 continue;
891
892 spin_lock(&dev->execute_task_lock);
893 list_add_tail(&task->t_state_list, &dev->state_task_list);
894 atomic_set(&task->task_state_active, 1);
895
896 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
897 task->task_se_cmd->se_tfo->get_task_tag(
898 task->task_se_cmd), task, dev);
899
900 spin_unlock(&dev->execute_task_lock);
901 }
902 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
903 }
904
905 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
906 {
907 struct se_device *dev = cmd->se_dev;
908 struct se_task *task, *task_prev = NULL;
909 unsigned long flags;
910
911 spin_lock_irqsave(&dev->execute_task_lock, flags);
912 list_for_each_entry(task, &cmd->t_task_list, t_list) {
913 if (!list_empty(&task->t_execute_list))
914 continue;
915 /*
916 * __transport_add_task_to_execute_queue() handles the
917 * SAM Task Attribute emulation if enabled
918 */
919 __transport_add_task_to_execute_queue(task, task_prev, dev);
920 task_prev = task;
921 }
922 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
923 }
924
925 void __transport_remove_task_from_execute_queue(struct se_task *task,
926 struct se_device *dev)
927 {
928 list_del_init(&task->t_execute_list);
929 atomic_dec(&dev->execute_tasks);
930 }
931
932 void transport_remove_task_from_execute_queue(
933 struct se_task *task,
934 struct se_device *dev)
935 {
936 unsigned long flags;
937
938 if (WARN_ON(list_empty(&task->t_execute_list)))
939 return;
940
941 spin_lock_irqsave(&dev->execute_task_lock, flags);
942 __transport_remove_task_from_execute_queue(task, dev);
943 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
944 }
945
946 /*
947 * Handle QUEUE_FULL / -EAGAIN status
948 */
949
950 static void target_qf_do_work(struct work_struct *work)
951 {
952 struct se_device *dev = container_of(work, struct se_device,
953 qf_work_queue);
954 LIST_HEAD(qf_cmd_list);
955 struct se_cmd *cmd, *cmd_tmp;
956
957 spin_lock_irq(&dev->qf_cmd_lock);
958 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
959 spin_unlock_irq(&dev->qf_cmd_lock);
960
961 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
962 list_del(&cmd->se_qf_node);
963 atomic_dec(&dev->dev_qf_count);
964 smp_mb__after_atomic_dec();
965
966 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
967 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
968 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
969 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
970 : "UNKNOWN");
971
972 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
973 }
974 }
975
976 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
977 {
978 switch (cmd->data_direction) {
979 case DMA_NONE:
980 return "NONE";
981 case DMA_FROM_DEVICE:
982 return "READ";
983 case DMA_TO_DEVICE:
984 return "WRITE";
985 case DMA_BIDIRECTIONAL:
986 return "BIDI";
987 default:
988 break;
989 }
990
991 return "UNKNOWN";
992 }
993
994 void transport_dump_dev_state(
995 struct se_device *dev,
996 char *b,
997 int *bl)
998 {
999 *bl += sprintf(b + *bl, "Status: ");
1000 switch (dev->dev_status) {
1001 case TRANSPORT_DEVICE_ACTIVATED:
1002 *bl += sprintf(b + *bl, "ACTIVATED");
1003 break;
1004 case TRANSPORT_DEVICE_DEACTIVATED:
1005 *bl += sprintf(b + *bl, "DEACTIVATED");
1006 break;
1007 case TRANSPORT_DEVICE_SHUTDOWN:
1008 *bl += sprintf(b + *bl, "SHUTDOWN");
1009 break;
1010 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1011 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1012 *bl += sprintf(b + *bl, "OFFLINE");
1013 break;
1014 default:
1015 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1016 break;
1017 }
1018
1019 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1020 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1021 dev->queue_depth);
1022 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1023 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1024 *bl += sprintf(b + *bl, " ");
1025 }
1026
1027 void transport_dump_vpd_proto_id(
1028 struct t10_vpd *vpd,
1029 unsigned char *p_buf,
1030 int p_buf_len)
1031 {
1032 unsigned char buf[VPD_TMP_BUF_SIZE];
1033 int len;
1034
1035 memset(buf, 0, VPD_TMP_BUF_SIZE);
1036 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1037
1038 switch (vpd->protocol_identifier) {
1039 case 0x00:
1040 sprintf(buf+len, "Fibre Channel\n");
1041 break;
1042 case 0x10:
1043 sprintf(buf+len, "Parallel SCSI\n");
1044 break;
1045 case 0x20:
1046 sprintf(buf+len, "SSA\n");
1047 break;
1048 case 0x30:
1049 sprintf(buf+len, "IEEE 1394\n");
1050 break;
1051 case 0x40:
1052 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1053 " Protocol\n");
1054 break;
1055 case 0x50:
1056 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1057 break;
1058 case 0x60:
1059 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1060 break;
1061 case 0x70:
1062 sprintf(buf+len, "Automation/Drive Interface Transport"
1063 " Protocol\n");
1064 break;
1065 case 0x80:
1066 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1067 break;
1068 default:
1069 sprintf(buf+len, "Unknown 0x%02x\n",
1070 vpd->protocol_identifier);
1071 break;
1072 }
1073
1074 if (p_buf)
1075 strncpy(p_buf, buf, p_buf_len);
1076 else
1077 pr_debug("%s", buf);
1078 }
1079
1080 void
1081 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1082 {
1083 /*
1084 * Check if the Protocol Identifier Valid (PIV) bit is set..
1085 *
1086 * from spc3r23.pdf section 7.5.1
1087 */
1088 if (page_83[1] & 0x80) {
1089 vpd->protocol_identifier = (page_83[0] & 0xf0);
1090 vpd->protocol_identifier_set = 1;
1091 transport_dump_vpd_proto_id(vpd, NULL, 0);
1092 }
1093 }
1094 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1095
1096 int transport_dump_vpd_assoc(
1097 struct t10_vpd *vpd,
1098 unsigned char *p_buf,
1099 int p_buf_len)
1100 {
1101 unsigned char buf[VPD_TMP_BUF_SIZE];
1102 int ret = 0;
1103 int len;
1104
1105 memset(buf, 0, VPD_TMP_BUF_SIZE);
1106 len = sprintf(buf, "T10 VPD Identifier Association: ");
1107
1108 switch (vpd->association) {
1109 case 0x00:
1110 sprintf(buf+len, "addressed logical unit\n");
1111 break;
1112 case 0x10:
1113 sprintf(buf+len, "target port\n");
1114 break;
1115 case 0x20:
1116 sprintf(buf+len, "SCSI target device\n");
1117 break;
1118 default:
1119 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1120 ret = -EINVAL;
1121 break;
1122 }
1123
1124 if (p_buf)
1125 strncpy(p_buf, buf, p_buf_len);
1126 else
1127 pr_debug("%s", buf);
1128
1129 return ret;
1130 }
1131
1132 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1133 {
1134 /*
1135 * The VPD identification association..
1136 *
1137 * from spc3r23.pdf Section 7.6.3.1 Table 297
1138 */
1139 vpd->association = (page_83[1] & 0x30);
1140 return transport_dump_vpd_assoc(vpd, NULL, 0);
1141 }
1142 EXPORT_SYMBOL(transport_set_vpd_assoc);
1143
1144 int transport_dump_vpd_ident_type(
1145 struct t10_vpd *vpd,
1146 unsigned char *p_buf,
1147 int p_buf_len)
1148 {
1149 unsigned char buf[VPD_TMP_BUF_SIZE];
1150 int ret = 0;
1151 int len;
1152
1153 memset(buf, 0, VPD_TMP_BUF_SIZE);
1154 len = sprintf(buf, "T10 VPD Identifier Type: ");
1155
1156 switch (vpd->device_identifier_type) {
1157 case 0x00:
1158 sprintf(buf+len, "Vendor specific\n");
1159 break;
1160 case 0x01:
1161 sprintf(buf+len, "T10 Vendor ID based\n");
1162 break;
1163 case 0x02:
1164 sprintf(buf+len, "EUI-64 based\n");
1165 break;
1166 case 0x03:
1167 sprintf(buf+len, "NAA\n");
1168 break;
1169 case 0x04:
1170 sprintf(buf+len, "Relative target port identifier\n");
1171 break;
1172 case 0x08:
1173 sprintf(buf+len, "SCSI name string\n");
1174 break;
1175 default:
1176 sprintf(buf+len, "Unsupported: 0x%02x\n",
1177 vpd->device_identifier_type);
1178 ret = -EINVAL;
1179 break;
1180 }
1181
1182 if (p_buf) {
1183 if (p_buf_len < strlen(buf)+1)
1184 return -EINVAL;
1185 strncpy(p_buf, buf, p_buf_len);
1186 } else {
1187 pr_debug("%s", buf);
1188 }
1189
1190 return ret;
1191 }
1192
1193 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1194 {
1195 /*
1196 * The VPD identifier type..
1197 *
1198 * from spc3r23.pdf Section 7.6.3.1 Table 298
1199 */
1200 vpd->device_identifier_type = (page_83[1] & 0x0f);
1201 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1202 }
1203 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1204
1205 int transport_dump_vpd_ident(
1206 struct t10_vpd *vpd,
1207 unsigned char *p_buf,
1208 int p_buf_len)
1209 {
1210 unsigned char buf[VPD_TMP_BUF_SIZE];
1211 int ret = 0;
1212
1213 memset(buf, 0, VPD_TMP_BUF_SIZE);
1214
1215 switch (vpd->device_identifier_code_set) {
1216 case 0x01: /* Binary */
1217 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1218 &vpd->device_identifier[0]);
1219 break;
1220 case 0x02: /* ASCII */
1221 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1222 &vpd->device_identifier[0]);
1223 break;
1224 case 0x03: /* UTF-8 */
1225 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1226 &vpd->device_identifier[0]);
1227 break;
1228 default:
1229 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1230 " 0x%02x", vpd->device_identifier_code_set);
1231 ret = -EINVAL;
1232 break;
1233 }
1234
1235 if (p_buf)
1236 strncpy(p_buf, buf, p_buf_len);
1237 else
1238 pr_debug("%s", buf);
1239
1240 return ret;
1241 }
1242
1243 int
1244 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1245 {
1246 static const char hex_str[] = "0123456789abcdef";
1247 int j = 0, i = 4; /* offset to start of the identifer */
1248
1249 /*
1250 * The VPD Code Set (encoding)
1251 *
1252 * from spc3r23.pdf Section 7.6.3.1 Table 296
1253 */
1254 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1255 switch (vpd->device_identifier_code_set) {
1256 case 0x01: /* Binary */
1257 vpd->device_identifier[j++] =
1258 hex_str[vpd->device_identifier_type];
1259 while (i < (4 + page_83[3])) {
1260 vpd->device_identifier[j++] =
1261 hex_str[(page_83[i] & 0xf0) >> 4];
1262 vpd->device_identifier[j++] =
1263 hex_str[page_83[i] & 0x0f];
1264 i++;
1265 }
1266 break;
1267 case 0x02: /* ASCII */
1268 case 0x03: /* UTF-8 */
1269 while (i < (4 + page_83[3]))
1270 vpd->device_identifier[j++] = page_83[i++];
1271 break;
1272 default:
1273 break;
1274 }
1275
1276 return transport_dump_vpd_ident(vpd, NULL, 0);
1277 }
1278 EXPORT_SYMBOL(transport_set_vpd_ident);
1279
1280 static void core_setup_task_attr_emulation(struct se_device *dev)
1281 {
1282 /*
1283 * If this device is from Target_Core_Mod/pSCSI, disable the
1284 * SAM Task Attribute emulation.
1285 *
1286 * This is currently not available in upsream Linux/SCSI Target
1287 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1288 */
1289 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1290 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1291 return;
1292 }
1293
1294 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1295 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1296 " device\n", dev->transport->name,
1297 dev->transport->get_device_rev(dev));
1298 }
1299
1300 static void scsi_dump_inquiry(struct se_device *dev)
1301 {
1302 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1303 int i, device_type;
1304 /*
1305 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1306 */
1307 pr_debug(" Vendor: ");
1308 for (i = 0; i < 8; i++)
1309 if (wwn->vendor[i] >= 0x20)
1310 pr_debug("%c", wwn->vendor[i]);
1311 else
1312 pr_debug(" ");
1313
1314 pr_debug(" Model: ");
1315 for (i = 0; i < 16; i++)
1316 if (wwn->model[i] >= 0x20)
1317 pr_debug("%c", wwn->model[i]);
1318 else
1319 pr_debug(" ");
1320
1321 pr_debug(" Revision: ");
1322 for (i = 0; i < 4; i++)
1323 if (wwn->revision[i] >= 0x20)
1324 pr_debug("%c", wwn->revision[i]);
1325 else
1326 pr_debug(" ");
1327
1328 pr_debug("\n");
1329
1330 device_type = dev->transport->get_device_type(dev);
1331 pr_debug(" Type: %s ", scsi_device_type(device_type));
1332 pr_debug(" ANSI SCSI revision: %02x\n",
1333 dev->transport->get_device_rev(dev));
1334 }
1335
1336 struct se_device *transport_add_device_to_core_hba(
1337 struct se_hba *hba,
1338 struct se_subsystem_api *transport,
1339 struct se_subsystem_dev *se_dev,
1340 u32 device_flags,
1341 void *transport_dev,
1342 struct se_dev_limits *dev_limits,
1343 const char *inquiry_prod,
1344 const char *inquiry_rev)
1345 {
1346 int force_pt;
1347 struct se_device *dev;
1348
1349 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1350 if (!dev) {
1351 pr_err("Unable to allocate memory for se_dev_t\n");
1352 return NULL;
1353 }
1354
1355 transport_init_queue_obj(&dev->dev_queue_obj);
1356 dev->dev_flags = device_flags;
1357 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1358 dev->dev_ptr = transport_dev;
1359 dev->se_hba = hba;
1360 dev->se_sub_dev = se_dev;
1361 dev->transport = transport;
1362 atomic_set(&dev->active_cmds, 0);
1363 INIT_LIST_HEAD(&dev->dev_list);
1364 INIT_LIST_HEAD(&dev->dev_sep_list);
1365 INIT_LIST_HEAD(&dev->dev_tmr_list);
1366 INIT_LIST_HEAD(&dev->execute_task_list);
1367 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1368 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1369 INIT_LIST_HEAD(&dev->state_task_list);
1370 INIT_LIST_HEAD(&dev->qf_cmd_list);
1371 spin_lock_init(&dev->execute_task_lock);
1372 spin_lock_init(&dev->delayed_cmd_lock);
1373 spin_lock_init(&dev->ordered_cmd_lock);
1374 spin_lock_init(&dev->state_task_lock);
1375 spin_lock_init(&dev->dev_alua_lock);
1376 spin_lock_init(&dev->dev_reservation_lock);
1377 spin_lock_init(&dev->dev_status_lock);
1378 spin_lock_init(&dev->dev_status_thr_lock);
1379 spin_lock_init(&dev->se_port_lock);
1380 spin_lock_init(&dev->se_tmr_lock);
1381 spin_lock_init(&dev->qf_cmd_lock);
1382
1383 dev->queue_depth = dev_limits->queue_depth;
1384 atomic_set(&dev->depth_left, dev->queue_depth);
1385 atomic_set(&dev->dev_ordered_id, 0);
1386
1387 se_dev_set_default_attribs(dev, dev_limits);
1388
1389 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1390 dev->creation_time = get_jiffies_64();
1391 spin_lock_init(&dev->stats_lock);
1392
1393 spin_lock(&hba->device_lock);
1394 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1395 hba->dev_count++;
1396 spin_unlock(&hba->device_lock);
1397 /*
1398 * Setup the SAM Task Attribute emulation for struct se_device
1399 */
1400 core_setup_task_attr_emulation(dev);
1401 /*
1402 * Force PR and ALUA passthrough emulation with internal object use.
1403 */
1404 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1405 /*
1406 * Setup the Reservations infrastructure for struct se_device
1407 */
1408 core_setup_reservations(dev, force_pt);
1409 /*
1410 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1411 */
1412 if (core_setup_alua(dev, force_pt) < 0)
1413 goto out;
1414
1415 /*
1416 * Startup the struct se_device processing thread
1417 */
1418 dev->process_thread = kthread_run(transport_processing_thread, dev,
1419 "LIO_%s", dev->transport->name);
1420 if (IS_ERR(dev->process_thread)) {
1421 pr_err("Unable to create kthread: LIO_%s\n",
1422 dev->transport->name);
1423 goto out;
1424 }
1425 /*
1426 * Setup work_queue for QUEUE_FULL
1427 */
1428 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1429 /*
1430 * Preload the initial INQUIRY const values if we are doing
1431 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1432 * passthrough because this is being provided by the backend LLD.
1433 * This is required so that transport_get_inquiry() copies these
1434 * originals once back into DEV_T10_WWN(dev) for the virtual device
1435 * setup.
1436 */
1437 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1438 if (!inquiry_prod || !inquiry_rev) {
1439 pr_err("All non TCM/pSCSI plugins require"
1440 " INQUIRY consts\n");
1441 goto out;
1442 }
1443
1444 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1445 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1446 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1447 }
1448 scsi_dump_inquiry(dev);
1449
1450 return dev;
1451 out:
1452 kthread_stop(dev->process_thread);
1453
1454 spin_lock(&hba->device_lock);
1455 list_del(&dev->dev_list);
1456 hba->dev_count--;
1457 spin_unlock(&hba->device_lock);
1458
1459 se_release_vpd_for_dev(dev);
1460
1461 kfree(dev);
1462
1463 return NULL;
1464 }
1465 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1466
1467 /* transport_generic_prepare_cdb():
1468 *
1469 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1470 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1471 * The point of this is since we are mapping iSCSI LUNs to
1472 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1473 * devices and HBAs for a loop.
1474 */
1475 static inline void transport_generic_prepare_cdb(
1476 unsigned char *cdb)
1477 {
1478 switch (cdb[0]) {
1479 case READ_10: /* SBC - RDProtect */
1480 case READ_12: /* SBC - RDProtect */
1481 case READ_16: /* SBC - RDProtect */
1482 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1483 case VERIFY: /* SBC - VRProtect */
1484 case VERIFY_16: /* SBC - VRProtect */
1485 case WRITE_VERIFY: /* SBC - VRProtect */
1486 case WRITE_VERIFY_12: /* SBC - VRProtect */
1487 break;
1488 default:
1489 cdb[1] &= 0x1f; /* clear logical unit number */
1490 break;
1491 }
1492 }
1493
1494 static struct se_task *
1495 transport_generic_get_task(struct se_cmd *cmd,
1496 enum dma_data_direction data_direction)
1497 {
1498 struct se_task *task;
1499 struct se_device *dev = cmd->se_dev;
1500
1501 task = dev->transport->alloc_task(cmd->t_task_cdb);
1502 if (!task) {
1503 pr_err("Unable to allocate struct se_task\n");
1504 return NULL;
1505 }
1506
1507 INIT_LIST_HEAD(&task->t_list);
1508 INIT_LIST_HEAD(&task->t_execute_list);
1509 INIT_LIST_HEAD(&task->t_state_list);
1510 init_completion(&task->task_stop_comp);
1511 task->task_se_cmd = cmd;
1512 task->task_data_direction = data_direction;
1513
1514 return task;
1515 }
1516
1517 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1518
1519 /*
1520 * Used by fabric modules containing a local struct se_cmd within their
1521 * fabric dependent per I/O descriptor.
1522 */
1523 void transport_init_se_cmd(
1524 struct se_cmd *cmd,
1525 struct target_core_fabric_ops *tfo,
1526 struct se_session *se_sess,
1527 u32 data_length,
1528 int data_direction,
1529 int task_attr,
1530 unsigned char *sense_buffer)
1531 {
1532 INIT_LIST_HEAD(&cmd->se_lun_node);
1533 INIT_LIST_HEAD(&cmd->se_delayed_node);
1534 INIT_LIST_HEAD(&cmd->se_ordered_node);
1535 INIT_LIST_HEAD(&cmd->se_qf_node);
1536 INIT_LIST_HEAD(&cmd->se_queue_node);
1537
1538 INIT_LIST_HEAD(&cmd->t_task_list);
1539 init_completion(&cmd->transport_lun_fe_stop_comp);
1540 init_completion(&cmd->transport_lun_stop_comp);
1541 init_completion(&cmd->t_transport_stop_comp);
1542 spin_lock_init(&cmd->t_state_lock);
1543 atomic_set(&cmd->transport_dev_active, 1);
1544
1545 cmd->se_tfo = tfo;
1546 cmd->se_sess = se_sess;
1547 cmd->data_length = data_length;
1548 cmd->data_direction = data_direction;
1549 cmd->sam_task_attr = task_attr;
1550 cmd->sense_buffer = sense_buffer;
1551 }
1552 EXPORT_SYMBOL(transport_init_se_cmd);
1553
1554 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1555 {
1556 /*
1557 * Check if SAM Task Attribute emulation is enabled for this
1558 * struct se_device storage object
1559 */
1560 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1561 return 0;
1562
1563 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1564 pr_debug("SAM Task Attribute ACA"
1565 " emulation is not supported\n");
1566 return -EINVAL;
1567 }
1568 /*
1569 * Used to determine when ORDERED commands should go from
1570 * Dormant to Active status.
1571 */
1572 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1573 smp_mb__after_atomic_inc();
1574 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1575 cmd->se_ordered_id, cmd->sam_task_attr,
1576 cmd->se_dev->transport->name);
1577 return 0;
1578 }
1579
1580 /* transport_generic_allocate_tasks():
1581 *
1582 * Called from fabric RX Thread.
1583 */
1584 int transport_generic_allocate_tasks(
1585 struct se_cmd *cmd,
1586 unsigned char *cdb)
1587 {
1588 int ret;
1589
1590 transport_generic_prepare_cdb(cdb);
1591 /*
1592 * Ensure that the received CDB is less than the max (252 + 8) bytes
1593 * for VARIABLE_LENGTH_CMD
1594 */
1595 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1596 pr_err("Received SCSI CDB with command_size: %d that"
1597 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1598 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1599 return -EINVAL;
1600 }
1601 /*
1602 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1603 * allocate the additional extended CDB buffer now.. Otherwise
1604 * setup the pointer from __t_task_cdb to t_task_cdb.
1605 */
1606 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1607 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1608 GFP_KERNEL);
1609 if (!cmd->t_task_cdb) {
1610 pr_err("Unable to allocate cmd->t_task_cdb"
1611 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1612 scsi_command_size(cdb),
1613 (unsigned long)sizeof(cmd->__t_task_cdb));
1614 return -ENOMEM;
1615 }
1616 } else
1617 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1618 /*
1619 * Copy the original CDB into cmd->
1620 */
1621 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1622 /*
1623 * Setup the received CDB based on SCSI defined opcodes and
1624 * perform unit attention, persistent reservations and ALUA
1625 * checks for virtual device backends. The cmd->t_task_cdb
1626 * pointer is expected to be setup before we reach this point.
1627 */
1628 ret = transport_generic_cmd_sequencer(cmd, cdb);
1629 if (ret < 0)
1630 return ret;
1631 /*
1632 * Check for SAM Task Attribute Emulation
1633 */
1634 if (transport_check_alloc_task_attr(cmd) < 0) {
1635 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1636 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1637 return -EINVAL;
1638 }
1639 spin_lock(&cmd->se_lun->lun_sep_lock);
1640 if (cmd->se_lun->lun_sep)
1641 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1642 spin_unlock(&cmd->se_lun->lun_sep_lock);
1643 return 0;
1644 }
1645 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1646
1647 static void transport_generic_request_failure(struct se_cmd *,
1648 struct se_device *, int, int);
1649 /*
1650 * Used by fabric module frontends to queue tasks directly.
1651 * Many only be used from process context only
1652 */
1653 int transport_handle_cdb_direct(
1654 struct se_cmd *cmd)
1655 {
1656 int ret;
1657
1658 if (!cmd->se_lun) {
1659 dump_stack();
1660 pr_err("cmd->se_lun is NULL\n");
1661 return -EINVAL;
1662 }
1663 if (in_interrupt()) {
1664 dump_stack();
1665 pr_err("transport_generic_handle_cdb cannot be called"
1666 " from interrupt context\n");
1667 return -EINVAL;
1668 }
1669 /*
1670 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1671 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1672 * in existing usage to ensure that outstanding descriptors are handled
1673 * correctly during shutdown via transport_wait_for_tasks()
1674 *
1675 * Also, we don't take cmd->t_state_lock here as we only expect
1676 * this to be called for initial descriptor submission.
1677 */
1678 cmd->t_state = TRANSPORT_NEW_CMD;
1679 atomic_set(&cmd->t_transport_active, 1);
1680 /*
1681 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1682 * so follow TRANSPORT_NEW_CMD processing thread context usage
1683 * and call transport_generic_request_failure() if necessary..
1684 */
1685 ret = transport_generic_new_cmd(cmd);
1686 if (ret == -EAGAIN)
1687 return 0;
1688 else if (ret < 0) {
1689 cmd->transport_error_status = ret;
1690 transport_generic_request_failure(cmd, NULL, 0,
1691 (cmd->data_direction != DMA_TO_DEVICE));
1692 }
1693 return 0;
1694 }
1695 EXPORT_SYMBOL(transport_handle_cdb_direct);
1696
1697 /*
1698 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1699 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1700 * complete setup in TCM process context w/ TFO->new_cmd_map().
1701 */
1702 int transport_generic_handle_cdb_map(
1703 struct se_cmd *cmd)
1704 {
1705 if (!cmd->se_lun) {
1706 dump_stack();
1707 pr_err("cmd->se_lun is NULL\n");
1708 return -EINVAL;
1709 }
1710
1711 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1712 return 0;
1713 }
1714 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1715
1716 /* transport_generic_handle_data():
1717 *
1718 *
1719 */
1720 int transport_generic_handle_data(
1721 struct se_cmd *cmd)
1722 {
1723 /*
1724 * For the software fabric case, then we assume the nexus is being
1725 * failed/shutdown when signals are pending from the kthread context
1726 * caller, so we return a failure. For the HW target mode case running
1727 * in interrupt code, the signal_pending() check is skipped.
1728 */
1729 if (!in_interrupt() && signal_pending(current))
1730 return -EPERM;
1731 /*
1732 * If the received CDB has aleady been ABORTED by the generic
1733 * target engine, we now call transport_check_aborted_status()
1734 * to queue any delated TASK_ABORTED status for the received CDB to the
1735 * fabric module as we are expecting no further incoming DATA OUT
1736 * sequences at this point.
1737 */
1738 if (transport_check_aborted_status(cmd, 1) != 0)
1739 return 0;
1740
1741 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1742 return 0;
1743 }
1744 EXPORT_SYMBOL(transport_generic_handle_data);
1745
1746 /* transport_generic_handle_tmr():
1747 *
1748 *
1749 */
1750 int transport_generic_handle_tmr(
1751 struct se_cmd *cmd)
1752 {
1753 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(transport_generic_handle_tmr);
1757
1758 void transport_generic_free_cmd_intr(
1759 struct se_cmd *cmd)
1760 {
1761 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1762 }
1763 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1764
1765 /*
1766 * If the task is active, request it to be stopped and sleep until it
1767 * has completed.
1768 */
1769 bool target_stop_task(struct se_task *task, unsigned long *flags)
1770 {
1771 struct se_cmd *cmd = task->task_se_cmd;
1772 bool was_active = false;
1773
1774 if (task->task_flags & TF_ACTIVE) {
1775 task->task_flags |= TF_REQUEST_STOP;
1776 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1777
1778 pr_debug("Task %p waiting to complete\n", task);
1779 wait_for_completion(&task->task_stop_comp);
1780 pr_debug("Task %p stopped successfully\n", task);
1781
1782 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1783 atomic_dec(&cmd->t_task_cdbs_left);
1784 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1785 was_active = true;
1786 }
1787
1788 __transport_stop_task_timer(task, flags);
1789 return was_active;
1790 }
1791
1792 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1793 {
1794 struct se_task *task, *task_tmp;
1795 unsigned long flags;
1796 int ret = 0;
1797
1798 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1799 cmd->se_tfo->get_task_tag(cmd));
1800
1801 /*
1802 * No tasks remain in the execution queue
1803 */
1804 spin_lock_irqsave(&cmd->t_state_lock, flags);
1805 list_for_each_entry_safe(task, task_tmp,
1806 &cmd->t_task_list, t_list) {
1807 pr_debug("Processing task %p\n", task);
1808 /*
1809 * If the struct se_task has not been sent and is not active,
1810 * remove the struct se_task from the execution queue.
1811 */
1812 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1813 spin_unlock_irqrestore(&cmd->t_state_lock,
1814 flags);
1815 transport_remove_task_from_execute_queue(task,
1816 cmd->se_dev);
1817
1818 pr_debug("Task %p removed from execute queue\n", task);
1819 spin_lock_irqsave(&cmd->t_state_lock, flags);
1820 continue;
1821 }
1822
1823 if (!target_stop_task(task, &flags)) {
1824 pr_debug("Task %p - did nothing\n", task);
1825 ret++;
1826 }
1827 }
1828 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1829
1830 return ret;
1831 }
1832
1833 /*
1834 * Handle SAM-esque emulation for generic transport request failures.
1835 */
1836 static void transport_generic_request_failure(
1837 struct se_cmd *cmd,
1838 struct se_device *dev,
1839 int complete,
1840 int sc)
1841 {
1842 int ret = 0;
1843
1844 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1845 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1846 cmd->t_task_cdb[0]);
1847 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1848 " %d/%d transport_error_status: %d\n",
1849 cmd->se_tfo->get_cmd_state(cmd),
1850 cmd->t_state, cmd->deferred_t_state,
1851 cmd->transport_error_status);
1852 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1853 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1854 " t_transport_active: %d t_transport_stop: %d"
1855 " t_transport_sent: %d\n", cmd->t_task_list_num,
1856 atomic_read(&cmd->t_task_cdbs_left),
1857 atomic_read(&cmd->t_task_cdbs_sent),
1858 atomic_read(&cmd->t_task_cdbs_ex_left),
1859 atomic_read(&cmd->t_transport_active),
1860 atomic_read(&cmd->t_transport_stop),
1861 atomic_read(&cmd->t_transport_sent));
1862
1863 transport_stop_all_task_timers(cmd);
1864
1865 if (dev)
1866 atomic_inc(&dev->depth_left);
1867 /*
1868 * For SAM Task Attribute emulation for failed struct se_cmd
1869 */
1870 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1871 transport_complete_task_attr(cmd);
1872
1873 if (complete) {
1874 transport_direct_request_timeout(cmd);
1875 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1876 }
1877
1878 switch (cmd->transport_error_status) {
1879 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1880 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1881 break;
1882 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1883 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1884 break;
1885 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1886 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1887 break;
1888 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1889 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1890 break;
1891 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1892 if (!sc)
1893 transport_new_cmd_failure(cmd);
1894 /*
1895 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1896 * we force this session to fall back to session
1897 * recovery.
1898 */
1899 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1900 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1901
1902 goto check_stop;
1903 case PYX_TRANSPORT_LU_COMM_FAILURE:
1904 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1905 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1906 break;
1907 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1908 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1909 break;
1910 case PYX_TRANSPORT_WRITE_PROTECTED:
1911 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1912 break;
1913 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1914 /*
1915 * No SENSE Data payload for this case, set SCSI Status
1916 * and queue the response to $FABRIC_MOD.
1917 *
1918 * Uses linux/include/scsi/scsi.h SAM status codes defs
1919 */
1920 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1921 /*
1922 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1923 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1924 * CONFLICT STATUS.
1925 *
1926 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1927 */
1928 if (cmd->se_sess &&
1929 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1930 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1931 cmd->orig_fe_lun, 0x2C,
1932 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1933
1934 ret = cmd->se_tfo->queue_status(cmd);
1935 if (ret == -EAGAIN)
1936 goto queue_full;
1937 goto check_stop;
1938 case PYX_TRANSPORT_USE_SENSE_REASON:
1939 /*
1940 * struct se_cmd->scsi_sense_reason already set
1941 */
1942 break;
1943 default:
1944 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1945 cmd->t_task_cdb[0],
1946 cmd->transport_error_status);
1947 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1948 break;
1949 }
1950 /*
1951 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1952 * make the call to transport_send_check_condition_and_sense()
1953 * directly. Otherwise expect the fabric to make the call to
1954 * transport_send_check_condition_and_sense() after handling
1955 * possible unsoliticied write data payloads.
1956 */
1957 if (!sc && !cmd->se_tfo->new_cmd_map)
1958 transport_new_cmd_failure(cmd);
1959 else {
1960 ret = transport_send_check_condition_and_sense(cmd,
1961 cmd->scsi_sense_reason, 0);
1962 if (ret == -EAGAIN)
1963 goto queue_full;
1964 }
1965
1966 check_stop:
1967 transport_lun_remove_cmd(cmd);
1968 if (!transport_cmd_check_stop_to_fabric(cmd))
1969 ;
1970 return;
1971
1972 queue_full:
1973 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1974 transport_handle_queue_full(cmd, cmd->se_dev);
1975 }
1976
1977 static void transport_direct_request_timeout(struct se_cmd *cmd)
1978 {
1979 unsigned long flags;
1980
1981 spin_lock_irqsave(&cmd->t_state_lock, flags);
1982 if (!atomic_read(&cmd->t_transport_timeout)) {
1983 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1984 return;
1985 }
1986 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1987 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1988 return;
1989 }
1990
1991 atomic_sub(atomic_read(&cmd->t_transport_timeout),
1992 &cmd->t_se_count);
1993 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1994 }
1995
1996 static void transport_generic_request_timeout(struct se_cmd *cmd)
1997 {
1998 unsigned long flags;
1999
2000 /*
2001 * Reset cmd->t_se_count to allow transport_put_cmd()
2002 * to allow last call to free memory resources.
2003 */
2004 spin_lock_irqsave(&cmd->t_state_lock, flags);
2005 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2006 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2007
2008 atomic_sub(tmp, &cmd->t_se_count);
2009 }
2010 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2011
2012 transport_put_cmd(cmd);
2013 }
2014
2015 static inline u32 transport_lba_21(unsigned char *cdb)
2016 {
2017 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2018 }
2019
2020 static inline u32 transport_lba_32(unsigned char *cdb)
2021 {
2022 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2023 }
2024
2025 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2026 {
2027 unsigned int __v1, __v2;
2028
2029 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2030 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2031
2032 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2033 }
2034
2035 /*
2036 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2037 */
2038 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2039 {
2040 unsigned int __v1, __v2;
2041
2042 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2043 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2044
2045 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2046 }
2047
2048 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2049 {
2050 unsigned long flags;
2051
2052 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2053 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2054 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2055 }
2056
2057 /*
2058 * Called from interrupt context.
2059 */
2060 static void transport_task_timeout_handler(unsigned long data)
2061 {
2062 struct se_task *task = (struct se_task *)data;
2063 struct se_cmd *cmd = task->task_se_cmd;
2064 unsigned long flags;
2065
2066 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2067
2068 spin_lock_irqsave(&cmd->t_state_lock, flags);
2069 if (task->task_flags & TF_TIMER_STOP) {
2070 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2071 return;
2072 }
2073 task->task_flags &= ~TF_TIMER_RUNNING;
2074
2075 /*
2076 * Determine if transport_complete_task() has already been called.
2077 */
2078 if (!(task->task_flags & TF_ACTIVE)) {
2079 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2080 task, cmd);
2081 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2082 return;
2083 }
2084
2085 atomic_inc(&cmd->t_se_count);
2086 atomic_inc(&cmd->t_transport_timeout);
2087 cmd->t_tasks_failed = 1;
2088
2089 task->task_flags |= TF_TIMEOUT;
2090 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2091 task->task_scsi_status = 1;
2092
2093 if (task->task_flags & TF_REQUEST_STOP) {
2094 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2095 " == 1\n", task, cmd);
2096 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2097 complete(&task->task_stop_comp);
2098 return;
2099 }
2100
2101 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2102 pr_debug("transport task: %p cmd: %p timeout non zero"
2103 " t_task_cdbs_left\n", task, cmd);
2104 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2105 return;
2106 }
2107 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2108 task, cmd);
2109
2110 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2111 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112
2113 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2114 }
2115
2116 /*
2117 * Called with cmd->t_state_lock held.
2118 */
2119 static void transport_start_task_timer(struct se_task *task)
2120 {
2121 struct se_device *dev = task->task_se_cmd->se_dev;
2122 int timeout;
2123
2124 if (task->task_flags & TF_TIMER_RUNNING)
2125 return;
2126 /*
2127 * If the task_timeout is disabled, exit now.
2128 */
2129 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2130 if (!timeout)
2131 return;
2132
2133 init_timer(&task->task_timer);
2134 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2135 task->task_timer.data = (unsigned long) task;
2136 task->task_timer.function = transport_task_timeout_handler;
2137
2138 task->task_flags |= TF_TIMER_RUNNING;
2139 add_timer(&task->task_timer);
2140 #if 0
2141 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2142 " %d\n", task->task_se_cmd, task, timeout);
2143 #endif
2144 }
2145
2146 /*
2147 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2148 */
2149 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2150 {
2151 struct se_cmd *cmd = task->task_se_cmd;
2152
2153 if (!(task->task_flags & TF_TIMER_RUNNING))
2154 return;
2155
2156 task->task_flags |= TF_TIMER_STOP;
2157 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2158
2159 del_timer_sync(&task->task_timer);
2160
2161 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2162 task->task_flags &= ~TF_TIMER_RUNNING;
2163 task->task_flags &= ~TF_TIMER_STOP;
2164 }
2165
2166 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2167 {
2168 struct se_task *task = NULL, *task_tmp;
2169 unsigned long flags;
2170
2171 spin_lock_irqsave(&cmd->t_state_lock, flags);
2172 list_for_each_entry_safe(task, task_tmp,
2173 &cmd->t_task_list, t_list)
2174 __transport_stop_task_timer(task, &flags);
2175 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2176 }
2177
2178 static inline int transport_tcq_window_closed(struct se_device *dev)
2179 {
2180 if (dev->dev_tcq_window_closed++ <
2181 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2182 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2183 } else
2184 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2185
2186 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2187 return 0;
2188 }
2189
2190 /*
2191 * Called from Fabric Module context from transport_execute_tasks()
2192 *
2193 * The return of this function determins if the tasks from struct se_cmd
2194 * get added to the execution queue in transport_execute_tasks(),
2195 * or are added to the delayed or ordered lists here.
2196 */
2197 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2198 {
2199 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2200 return 1;
2201 /*
2202 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2203 * to allow the passed struct se_cmd list of tasks to the front of the list.
2204 */
2205 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2206 atomic_inc(&cmd->se_dev->dev_hoq_count);
2207 smp_mb__after_atomic_inc();
2208 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2209 " 0x%02x, se_ordered_id: %u\n",
2210 cmd->t_task_cdb[0],
2211 cmd->se_ordered_id);
2212 return 1;
2213 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2214 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2215 list_add_tail(&cmd->se_ordered_node,
2216 &cmd->se_dev->ordered_cmd_list);
2217 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2218
2219 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2220 smp_mb__after_atomic_inc();
2221
2222 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2223 " list, se_ordered_id: %u\n",
2224 cmd->t_task_cdb[0],
2225 cmd->se_ordered_id);
2226 /*
2227 * Add ORDERED command to tail of execution queue if
2228 * no other older commands exist that need to be
2229 * completed first.
2230 */
2231 if (!atomic_read(&cmd->se_dev->simple_cmds))
2232 return 1;
2233 } else {
2234 /*
2235 * For SIMPLE and UNTAGGED Task Attribute commands
2236 */
2237 atomic_inc(&cmd->se_dev->simple_cmds);
2238 smp_mb__after_atomic_inc();
2239 }
2240 /*
2241 * Otherwise if one or more outstanding ORDERED task attribute exist,
2242 * add the dormant task(s) built for the passed struct se_cmd to the
2243 * execution queue and become in Active state for this struct se_device.
2244 */
2245 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2246 /*
2247 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2248 * will be drained upon completion of HEAD_OF_QUEUE task.
2249 */
2250 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2251 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2252 list_add_tail(&cmd->se_delayed_node,
2253 &cmd->se_dev->delayed_cmd_list);
2254 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2255
2256 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2257 " delayed CMD list, se_ordered_id: %u\n",
2258 cmd->t_task_cdb[0], cmd->sam_task_attr,
2259 cmd->se_ordered_id);
2260 /*
2261 * Return zero to let transport_execute_tasks() know
2262 * not to add the delayed tasks to the execution list.
2263 */
2264 return 0;
2265 }
2266 /*
2267 * Otherwise, no ORDERED task attributes exist..
2268 */
2269 return 1;
2270 }
2271
2272 /*
2273 * Called from fabric module context in transport_generic_new_cmd() and
2274 * transport_generic_process_write()
2275 */
2276 static int transport_execute_tasks(struct se_cmd *cmd)
2277 {
2278 int add_tasks;
2279
2280 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2281 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2282 transport_generic_request_failure(cmd, NULL, 0, 1);
2283 return 0;
2284 }
2285
2286 /*
2287 * Call transport_cmd_check_stop() to see if a fabric exception
2288 * has occurred that prevents execution.
2289 */
2290 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2291 /*
2292 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2293 * attribute for the tasks of the received struct se_cmd CDB
2294 */
2295 add_tasks = transport_execute_task_attr(cmd);
2296 if (!add_tasks)
2297 goto execute_tasks;
2298 /*
2299 * This calls transport_add_tasks_from_cmd() to handle
2300 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2301 * (if enabled) in __transport_add_task_to_execute_queue() and
2302 * transport_add_task_check_sam_attr().
2303 */
2304 transport_add_tasks_from_cmd(cmd);
2305 }
2306 /*
2307 * Kick the execution queue for the cmd associated struct se_device
2308 * storage object.
2309 */
2310 execute_tasks:
2311 __transport_execute_tasks(cmd->se_dev);
2312 return 0;
2313 }
2314
2315 /*
2316 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2317 * from struct se_device->execute_task_list and
2318 *
2319 * Called from transport_processing_thread()
2320 */
2321 static int __transport_execute_tasks(struct se_device *dev)
2322 {
2323 int error;
2324 struct se_cmd *cmd = NULL;
2325 struct se_task *task = NULL;
2326 unsigned long flags;
2327
2328 /*
2329 * Check if there is enough room in the device and HBA queue to send
2330 * struct se_tasks to the selected transport.
2331 */
2332 check_depth:
2333 if (!atomic_read(&dev->depth_left))
2334 return transport_tcq_window_closed(dev);
2335
2336 dev->dev_tcq_window_closed = 0;
2337
2338 spin_lock_irq(&dev->execute_task_lock);
2339 if (list_empty(&dev->execute_task_list)) {
2340 spin_unlock_irq(&dev->execute_task_lock);
2341 return 0;
2342 }
2343 task = list_first_entry(&dev->execute_task_list,
2344 struct se_task, t_execute_list);
2345 __transport_remove_task_from_execute_queue(task, dev);
2346 spin_unlock_irq(&dev->execute_task_lock);
2347
2348 atomic_dec(&dev->depth_left);
2349
2350 cmd = task->task_se_cmd;
2351
2352 spin_lock_irqsave(&cmd->t_state_lock, flags);
2353 task->task_flags |= (TF_ACTIVE | TF_SENT);
2354 atomic_inc(&cmd->t_task_cdbs_sent);
2355
2356 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2357 cmd->t_task_list_num)
2358 atomic_set(&cmd->transport_sent, 1);
2359
2360 transport_start_task_timer(task);
2361 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2362 /*
2363 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2364 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2365 * struct se_subsystem_api->do_task() caller below.
2366 */
2367 if (cmd->transport_emulate_cdb) {
2368 error = cmd->transport_emulate_cdb(cmd);
2369 if (error != 0) {
2370 cmd->transport_error_status = error;
2371 spin_lock_irqsave(&cmd->t_state_lock, flags);
2372 task->task_flags &= ~TF_ACTIVE;
2373 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2374 atomic_set(&cmd->transport_sent, 0);
2375 transport_stop_tasks_for_cmd(cmd);
2376 transport_generic_request_failure(cmd, dev, 0, 1);
2377 goto check_depth;
2378 }
2379 /*
2380 * Handle the successful completion for transport_emulate_cdb()
2381 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2382 * Otherwise the caller is expected to complete the task with
2383 * proper status.
2384 */
2385 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2386 cmd->scsi_status = SAM_STAT_GOOD;
2387 task->task_scsi_status = GOOD;
2388 transport_complete_task(task, 1);
2389 }
2390 } else {
2391 /*
2392 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2393 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2394 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2395 * LUN emulation code.
2396 *
2397 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2398 * call ->do_task() directly and let the underlying TCM subsystem plugin
2399 * code handle the CDB emulation.
2400 */
2401 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2402 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2403 error = transport_emulate_control_cdb(task);
2404 else
2405 error = dev->transport->do_task(task);
2406
2407 if (error != 0) {
2408 cmd->transport_error_status = error;
2409 spin_lock_irqsave(&cmd->t_state_lock, flags);
2410 task->task_flags &= ~TF_ACTIVE;
2411 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2412 atomic_set(&cmd->transport_sent, 0);
2413 transport_stop_tasks_for_cmd(cmd);
2414 transport_generic_request_failure(cmd, dev, 0, 1);
2415 }
2416 }
2417
2418 goto check_depth;
2419
2420 return 0;
2421 }
2422
2423 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2424 {
2425 unsigned long flags;
2426 /*
2427 * Any unsolicited data will get dumped for failed command inside of
2428 * the fabric plugin
2429 */
2430 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2431 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2432 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2433 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2434 }
2435
2436 static inline u32 transport_get_sectors_6(
2437 unsigned char *cdb,
2438 struct se_cmd *cmd,
2439 int *ret)
2440 {
2441 struct se_device *dev = cmd->se_dev;
2442
2443 /*
2444 * Assume TYPE_DISK for non struct se_device objects.
2445 * Use 8-bit sector value.
2446 */
2447 if (!dev)
2448 goto type_disk;
2449
2450 /*
2451 * Use 24-bit allocation length for TYPE_TAPE.
2452 */
2453 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2454 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2455
2456 /*
2457 * Everything else assume TYPE_DISK Sector CDB location.
2458 * Use 8-bit sector value.
2459 */
2460 type_disk:
2461 return (u32)cdb[4];
2462 }
2463
2464 static inline u32 transport_get_sectors_10(
2465 unsigned char *cdb,
2466 struct se_cmd *cmd,
2467 int *ret)
2468 {
2469 struct se_device *dev = cmd->se_dev;
2470
2471 /*
2472 * Assume TYPE_DISK for non struct se_device objects.
2473 * Use 16-bit sector value.
2474 */
2475 if (!dev)
2476 goto type_disk;
2477
2478 /*
2479 * XXX_10 is not defined in SSC, throw an exception
2480 */
2481 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2482 *ret = -EINVAL;
2483 return 0;
2484 }
2485
2486 /*
2487 * Everything else assume TYPE_DISK Sector CDB location.
2488 * Use 16-bit sector value.
2489 */
2490 type_disk:
2491 return (u32)(cdb[7] << 8) + cdb[8];
2492 }
2493
2494 static inline u32 transport_get_sectors_12(
2495 unsigned char *cdb,
2496 struct se_cmd *cmd,
2497 int *ret)
2498 {
2499 struct se_device *dev = cmd->se_dev;
2500
2501 /*
2502 * Assume TYPE_DISK for non struct se_device objects.
2503 * Use 32-bit sector value.
2504 */
2505 if (!dev)
2506 goto type_disk;
2507
2508 /*
2509 * XXX_12 is not defined in SSC, throw an exception
2510 */
2511 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2512 *ret = -EINVAL;
2513 return 0;
2514 }
2515
2516 /*
2517 * Everything else assume TYPE_DISK Sector CDB location.
2518 * Use 32-bit sector value.
2519 */
2520 type_disk:
2521 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2522 }
2523
2524 static inline u32 transport_get_sectors_16(
2525 unsigned char *cdb,
2526 struct se_cmd *cmd,
2527 int *ret)
2528 {
2529 struct se_device *dev = cmd->se_dev;
2530
2531 /*
2532 * Assume TYPE_DISK for non struct se_device objects.
2533 * Use 32-bit sector value.
2534 */
2535 if (!dev)
2536 goto type_disk;
2537
2538 /*
2539 * Use 24-bit allocation length for TYPE_TAPE.
2540 */
2541 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2542 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2543
2544 type_disk:
2545 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2546 (cdb[12] << 8) + cdb[13];
2547 }
2548
2549 /*
2550 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2551 */
2552 static inline u32 transport_get_sectors_32(
2553 unsigned char *cdb,
2554 struct se_cmd *cmd,
2555 int *ret)
2556 {
2557 /*
2558 * Assume TYPE_DISK for non struct se_device objects.
2559 * Use 32-bit sector value.
2560 */
2561 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2562 (cdb[30] << 8) + cdb[31];
2563
2564 }
2565
2566 static inline u32 transport_get_size(
2567 u32 sectors,
2568 unsigned char *cdb,
2569 struct se_cmd *cmd)
2570 {
2571 struct se_device *dev = cmd->se_dev;
2572
2573 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2574 if (cdb[1] & 1) { /* sectors */
2575 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2576 } else /* bytes */
2577 return sectors;
2578 }
2579 #if 0
2580 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2581 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2582 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2583 dev->transport->name);
2584 #endif
2585 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2586 }
2587
2588 static void transport_xor_callback(struct se_cmd *cmd)
2589 {
2590 unsigned char *buf, *addr;
2591 struct scatterlist *sg;
2592 unsigned int offset;
2593 int i;
2594 int count;
2595 /*
2596 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2597 *
2598 * 1) read the specified logical block(s);
2599 * 2) transfer logical blocks from the data-out buffer;
2600 * 3) XOR the logical blocks transferred from the data-out buffer with
2601 * the logical blocks read, storing the resulting XOR data in a buffer;
2602 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2603 * blocks transferred from the data-out buffer; and
2604 * 5) transfer the resulting XOR data to the data-in buffer.
2605 */
2606 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2607 if (!buf) {
2608 pr_err("Unable to allocate xor_callback buf\n");
2609 return;
2610 }
2611 /*
2612 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2613 * into the locally allocated *buf
2614 */
2615 sg_copy_to_buffer(cmd->t_data_sg,
2616 cmd->t_data_nents,
2617 buf,
2618 cmd->data_length);
2619
2620 /*
2621 * Now perform the XOR against the BIDI read memory located at
2622 * cmd->t_mem_bidi_list
2623 */
2624
2625 offset = 0;
2626 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2627 addr = kmap_atomic(sg_page(sg), KM_USER0);
2628 if (!addr)
2629 goto out;
2630
2631 for (i = 0; i < sg->length; i++)
2632 *(addr + sg->offset + i) ^= *(buf + offset + i);
2633
2634 offset += sg->length;
2635 kunmap_atomic(addr, KM_USER0);
2636 }
2637
2638 out:
2639 kfree(buf);
2640 }
2641
2642 /*
2643 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2644 */
2645 static int transport_get_sense_data(struct se_cmd *cmd)
2646 {
2647 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2648 struct se_device *dev = cmd->se_dev;
2649 struct se_task *task = NULL, *task_tmp;
2650 unsigned long flags;
2651 u32 offset = 0;
2652
2653 WARN_ON(!cmd->se_lun);
2654
2655 if (!dev)
2656 return 0;
2657
2658 spin_lock_irqsave(&cmd->t_state_lock, flags);
2659 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2660 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2661 return 0;
2662 }
2663
2664 list_for_each_entry_safe(task, task_tmp,
2665 &cmd->t_task_list, t_list) {
2666 if (!task->task_sense)
2667 continue;
2668
2669 if (!dev->transport->get_sense_buffer) {
2670 pr_err("dev->transport->get_sense_buffer"
2671 " is NULL\n");
2672 continue;
2673 }
2674
2675 sense_buffer = dev->transport->get_sense_buffer(task);
2676 if (!sense_buffer) {
2677 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2678 " sense buffer for task with sense\n",
2679 cmd->se_tfo->get_task_tag(cmd), task);
2680 continue;
2681 }
2682 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2683
2684 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2685 TRANSPORT_SENSE_BUFFER);
2686
2687 memcpy(&buffer[offset], sense_buffer,
2688 TRANSPORT_SENSE_BUFFER);
2689 cmd->scsi_status = task->task_scsi_status;
2690 /* Automatically padded */
2691 cmd->scsi_sense_length =
2692 (TRANSPORT_SENSE_BUFFER + offset);
2693
2694 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2695 " and sense\n",
2696 dev->se_hba->hba_id, dev->transport->name,
2697 cmd->scsi_status);
2698 return 0;
2699 }
2700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2701
2702 return -1;
2703 }
2704
2705 static int
2706 transport_handle_reservation_conflict(struct se_cmd *cmd)
2707 {
2708 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2709 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2710 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2711 /*
2712 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2713 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2714 * CONFLICT STATUS.
2715 *
2716 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2717 */
2718 if (cmd->se_sess &&
2719 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2720 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2721 cmd->orig_fe_lun, 0x2C,
2722 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2723 return -EINVAL;
2724 }
2725
2726 static inline long long transport_dev_end_lba(struct se_device *dev)
2727 {
2728 return dev->transport->get_blocks(dev) + 1;
2729 }
2730
2731 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2732 {
2733 struct se_device *dev = cmd->se_dev;
2734 u32 sectors;
2735
2736 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2737 return 0;
2738
2739 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2740
2741 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2742 pr_err("LBA: %llu Sectors: %u exceeds"
2743 " transport_dev_end_lba(): %llu\n",
2744 cmd->t_task_lba, sectors,
2745 transport_dev_end_lba(dev));
2746 return -EINVAL;
2747 }
2748
2749 return 0;
2750 }
2751
2752 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2753 {
2754 /*
2755 * Determine if the received WRITE_SAME is used to for direct
2756 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2757 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2758 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2759 */
2760 int passthrough = (dev->transport->transport_type ==
2761 TRANSPORT_PLUGIN_PHBA_PDEV);
2762
2763 if (!passthrough) {
2764 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2765 pr_err("WRITE_SAME PBDATA and LBDATA"
2766 " bits not supported for Block Discard"
2767 " Emulation\n");
2768 return -ENOSYS;
2769 }
2770 /*
2771 * Currently for the emulated case we only accept
2772 * tpws with the UNMAP=1 bit set.
2773 */
2774 if (!(flags[0] & 0x08)) {
2775 pr_err("WRITE_SAME w/o UNMAP bit not"
2776 " supported for Block Discard Emulation\n");
2777 return -ENOSYS;
2778 }
2779 }
2780
2781 return 0;
2782 }
2783
2784 /* transport_generic_cmd_sequencer():
2785 *
2786 * Generic Command Sequencer that should work for most DAS transport
2787 * drivers.
2788 *
2789 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2790 * RX Thread.
2791 *
2792 * FIXME: Need to support other SCSI OPCODES where as well.
2793 */
2794 static int transport_generic_cmd_sequencer(
2795 struct se_cmd *cmd,
2796 unsigned char *cdb)
2797 {
2798 struct se_device *dev = cmd->se_dev;
2799 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2800 int ret = 0, sector_ret = 0, passthrough;
2801 u32 sectors = 0, size = 0, pr_reg_type = 0;
2802 u16 service_action;
2803 u8 alua_ascq = 0;
2804 /*
2805 * Check for an existing UNIT ATTENTION condition
2806 */
2807 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2808 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2809 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2810 return -EINVAL;
2811 }
2812 /*
2813 * Check status of Asymmetric Logical Unit Assignment port
2814 */
2815 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2816 if (ret != 0) {
2817 /*
2818 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2819 * The ALUA additional sense code qualifier (ASCQ) is determined
2820 * by the ALUA primary or secondary access state..
2821 */
2822 if (ret > 0) {
2823 #if 0
2824 pr_debug("[%s]: ALUA TG Port not available,"
2825 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2826 cmd->se_tfo->get_fabric_name(), alua_ascq);
2827 #endif
2828 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2829 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2830 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2831 return -EINVAL;
2832 }
2833 goto out_invalid_cdb_field;
2834 }
2835 /*
2836 * Check status for SPC-3 Persistent Reservations
2837 */
2838 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2839 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2840 cmd, cdb, pr_reg_type) != 0)
2841 return transport_handle_reservation_conflict(cmd);
2842 /*
2843 * This means the CDB is allowed for the SCSI Initiator port
2844 * when said port is *NOT* holding the legacy SPC-2 or
2845 * SPC-3 Persistent Reservation.
2846 */
2847 }
2848
2849 switch (cdb[0]) {
2850 case READ_6:
2851 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2852 if (sector_ret)
2853 goto out_unsupported_cdb;
2854 size = transport_get_size(sectors, cdb, cmd);
2855 cmd->t_task_lba = transport_lba_21(cdb);
2856 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2857 break;
2858 case READ_10:
2859 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2860 if (sector_ret)
2861 goto out_unsupported_cdb;
2862 size = transport_get_size(sectors, cdb, cmd);
2863 cmd->t_task_lba = transport_lba_32(cdb);
2864 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2865 break;
2866 case READ_12:
2867 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2868 if (sector_ret)
2869 goto out_unsupported_cdb;
2870 size = transport_get_size(sectors, cdb, cmd);
2871 cmd->t_task_lba = transport_lba_32(cdb);
2872 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2873 break;
2874 case READ_16:
2875 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2876 if (sector_ret)
2877 goto out_unsupported_cdb;
2878 size = transport_get_size(sectors, cdb, cmd);
2879 cmd->t_task_lba = transport_lba_64(cdb);
2880 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2881 break;
2882 case WRITE_6:
2883 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2884 if (sector_ret)
2885 goto out_unsupported_cdb;
2886 size = transport_get_size(sectors, cdb, cmd);
2887 cmd->t_task_lba = transport_lba_21(cdb);
2888 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2889 break;
2890 case WRITE_10:
2891 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2892 if (sector_ret)
2893 goto out_unsupported_cdb;
2894 size = transport_get_size(sectors, cdb, cmd);
2895 cmd->t_task_lba = transport_lba_32(cdb);
2896 cmd->t_tasks_fua = (cdb[1] & 0x8);
2897 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2898 break;
2899 case WRITE_12:
2900 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2901 if (sector_ret)
2902 goto out_unsupported_cdb;
2903 size = transport_get_size(sectors, cdb, cmd);
2904 cmd->t_task_lba = transport_lba_32(cdb);
2905 cmd->t_tasks_fua = (cdb[1] & 0x8);
2906 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2907 break;
2908 case WRITE_16:
2909 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2910 if (sector_ret)
2911 goto out_unsupported_cdb;
2912 size = transport_get_size(sectors, cdb, cmd);
2913 cmd->t_task_lba = transport_lba_64(cdb);
2914 cmd->t_tasks_fua = (cdb[1] & 0x8);
2915 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2916 break;
2917 case XDWRITEREAD_10:
2918 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2919 !(cmd->t_tasks_bidi))
2920 goto out_invalid_cdb_field;
2921 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2922 if (sector_ret)
2923 goto out_unsupported_cdb;
2924 size = transport_get_size(sectors, cdb, cmd);
2925 cmd->t_task_lba = transport_lba_32(cdb);
2926 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2927 passthrough = (dev->transport->transport_type ==
2928 TRANSPORT_PLUGIN_PHBA_PDEV);
2929 /*
2930 * Skip the remaining assignments for TCM/PSCSI passthrough
2931 */
2932 if (passthrough)
2933 break;
2934 /*
2935 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2936 */
2937 cmd->transport_complete_callback = &transport_xor_callback;
2938 cmd->t_tasks_fua = (cdb[1] & 0x8);
2939 break;
2940 case VARIABLE_LENGTH_CMD:
2941 service_action = get_unaligned_be16(&cdb[8]);
2942 /*
2943 * Determine if this is TCM/PSCSI device and we should disable
2944 * internal emulation for this CDB.
2945 */
2946 passthrough = (dev->transport->transport_type ==
2947 TRANSPORT_PLUGIN_PHBA_PDEV);
2948
2949 switch (service_action) {
2950 case XDWRITEREAD_32:
2951 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2952 if (sector_ret)
2953 goto out_unsupported_cdb;
2954 size = transport_get_size(sectors, cdb, cmd);
2955 /*
2956 * Use WRITE_32 and READ_32 opcodes for the emulated
2957 * XDWRITE_READ_32 logic.
2958 */
2959 cmd->t_task_lba = transport_lba_64_ext(cdb);
2960 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2961
2962 /*
2963 * Skip the remaining assignments for TCM/PSCSI passthrough
2964 */
2965 if (passthrough)
2966 break;
2967
2968 /*
2969 * Setup BIDI XOR callback to be run during
2970 * transport_generic_complete_ok()
2971 */
2972 cmd->transport_complete_callback = &transport_xor_callback;
2973 cmd->t_tasks_fua = (cdb[10] & 0x8);
2974 break;
2975 case WRITE_SAME_32:
2976 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2977 if (sector_ret)
2978 goto out_unsupported_cdb;
2979
2980 if (sectors)
2981 size = transport_get_size(1, cdb, cmd);
2982 else {
2983 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2984 " supported\n");
2985 goto out_invalid_cdb_field;
2986 }
2987
2988 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2989 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2990
2991 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2992 goto out_invalid_cdb_field;
2993
2994 break;
2995 default:
2996 pr_err("VARIABLE_LENGTH_CMD service action"
2997 " 0x%04x not supported\n", service_action);
2998 goto out_unsupported_cdb;
2999 }
3000 break;
3001 case MAINTENANCE_IN:
3002 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3003 /* MAINTENANCE_IN from SCC-2 */
3004 /*
3005 * Check for emulated MI_REPORT_TARGET_PGS.
3006 */
3007 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3008 cmd->transport_emulate_cdb =
3009 (su_dev->t10_alua.alua_type ==
3010 SPC3_ALUA_EMULATED) ?
3011 core_emulate_report_target_port_groups :
3012 NULL;
3013 }
3014 size = (cdb[6] << 24) | (cdb[7] << 16) |
3015 (cdb[8] << 8) | cdb[9];
3016 } else {
3017 /* GPCMD_SEND_KEY from multi media commands */
3018 size = (cdb[8] << 8) + cdb[9];
3019 }
3020 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3021 break;
3022 case MODE_SELECT:
3023 size = cdb[4];
3024 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3025 break;
3026 case MODE_SELECT_10:
3027 size = (cdb[7] << 8) + cdb[8];
3028 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3029 break;
3030 case MODE_SENSE:
3031 size = cdb[4];
3032 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3033 break;
3034 case MODE_SENSE_10:
3035 case GPCMD_READ_BUFFER_CAPACITY:
3036 case GPCMD_SEND_OPC:
3037 case LOG_SELECT:
3038 case LOG_SENSE:
3039 size = (cdb[7] << 8) + cdb[8];
3040 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3041 break;
3042 case READ_BLOCK_LIMITS:
3043 size = READ_BLOCK_LEN;
3044 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3045 break;
3046 case GPCMD_GET_CONFIGURATION:
3047 case GPCMD_READ_FORMAT_CAPACITIES:
3048 case GPCMD_READ_DISC_INFO:
3049 case GPCMD_READ_TRACK_RZONE_INFO:
3050 size = (cdb[7] << 8) + cdb[8];
3051 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3052 break;
3053 case PERSISTENT_RESERVE_IN:
3054 case PERSISTENT_RESERVE_OUT:
3055 cmd->transport_emulate_cdb =
3056 (su_dev->t10_pr.res_type ==
3057 SPC3_PERSISTENT_RESERVATIONS) ?
3058 core_scsi3_emulate_pr : NULL;
3059 size = (cdb[7] << 8) + cdb[8];
3060 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061 break;
3062 case GPCMD_MECHANISM_STATUS:
3063 case GPCMD_READ_DVD_STRUCTURE:
3064 size = (cdb[8] << 8) + cdb[9];
3065 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3066 break;
3067 case READ_POSITION:
3068 size = READ_POSITION_LEN;
3069 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3070 break;
3071 case MAINTENANCE_OUT:
3072 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3073 /* MAINTENANCE_OUT from SCC-2
3074 *
3075 * Check for emulated MO_SET_TARGET_PGS.
3076 */
3077 if (cdb[1] == MO_SET_TARGET_PGS) {
3078 cmd->transport_emulate_cdb =
3079 (su_dev->t10_alua.alua_type ==
3080 SPC3_ALUA_EMULATED) ?
3081 core_emulate_set_target_port_groups :
3082 NULL;
3083 }
3084
3085 size = (cdb[6] << 24) | (cdb[7] << 16) |
3086 (cdb[8] << 8) | cdb[9];
3087 } else {
3088 /* GPCMD_REPORT_KEY from multi media commands */
3089 size = (cdb[8] << 8) + cdb[9];
3090 }
3091 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092 break;
3093 case INQUIRY:
3094 size = (cdb[3] << 8) + cdb[4];
3095 /*
3096 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3097 * See spc4r17 section 5.3
3098 */
3099 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3100 cmd->sam_task_attr = MSG_HEAD_TAG;
3101 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3102 break;
3103 case READ_BUFFER:
3104 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3105 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3106 break;
3107 case READ_CAPACITY:
3108 size = READ_CAP_LEN;
3109 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3110 break;
3111 case READ_MEDIA_SERIAL_NUMBER:
3112 case SECURITY_PROTOCOL_IN:
3113 case SECURITY_PROTOCOL_OUT:
3114 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3115 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3116 break;
3117 case SERVICE_ACTION_IN:
3118 case ACCESS_CONTROL_IN:
3119 case ACCESS_CONTROL_OUT:
3120 case EXTENDED_COPY:
3121 case READ_ATTRIBUTE:
3122 case RECEIVE_COPY_RESULTS:
3123 case WRITE_ATTRIBUTE:
3124 size = (cdb[10] << 24) | (cdb[11] << 16) |
3125 (cdb[12] << 8) | cdb[13];
3126 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3127 break;
3128 case RECEIVE_DIAGNOSTIC:
3129 case SEND_DIAGNOSTIC:
3130 size = (cdb[3] << 8) | cdb[4];
3131 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3132 break;
3133 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3134 #if 0
3135 case GPCMD_READ_CD:
3136 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3137 size = (2336 * sectors);
3138 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3139 break;
3140 #endif
3141 case READ_TOC:
3142 size = cdb[8];
3143 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3144 break;
3145 case REQUEST_SENSE:
3146 size = cdb[4];
3147 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148 break;
3149 case READ_ELEMENT_STATUS:
3150 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3151 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3152 break;
3153 case WRITE_BUFFER:
3154 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3155 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3156 break;
3157 case RESERVE:
3158 case RESERVE_10:
3159 /*
3160 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3161 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3162 */
3163 if (cdb[0] == RESERVE_10)
3164 size = (cdb[7] << 8) | cdb[8];
3165 else
3166 size = cmd->data_length;
3167
3168 /*
3169 * Setup the legacy emulated handler for SPC-2 and
3170 * >= SPC-3 compatible reservation handling (CRH=1)
3171 * Otherwise, we assume the underlying SCSI logic is
3172 * is running in SPC_PASSTHROUGH, and wants reservations
3173 * emulation disabled.
3174 */
3175 cmd->transport_emulate_cdb =
3176 (su_dev->t10_pr.res_type !=
3177 SPC_PASSTHROUGH) ?
3178 core_scsi2_emulate_crh : NULL;
3179 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3180 break;
3181 case RELEASE:
3182 case RELEASE_10:
3183 /*
3184 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3185 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3186 */
3187 if (cdb[0] == RELEASE_10)
3188 size = (cdb[7] << 8) | cdb[8];
3189 else
3190 size = cmd->data_length;
3191
3192 cmd->transport_emulate_cdb =
3193 (su_dev->t10_pr.res_type !=
3194 SPC_PASSTHROUGH) ?
3195 core_scsi2_emulate_crh : NULL;
3196 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3197 break;
3198 case SYNCHRONIZE_CACHE:
3199 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3200 /*
3201 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3202 */
3203 if (cdb[0] == SYNCHRONIZE_CACHE) {
3204 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3205 cmd->t_task_lba = transport_lba_32(cdb);
3206 } else {
3207 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3208 cmd->t_task_lba = transport_lba_64(cdb);
3209 }
3210 if (sector_ret)
3211 goto out_unsupported_cdb;
3212
3213 size = transport_get_size(sectors, cdb, cmd);
3214 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3215
3216 /*
3217 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3218 */
3219 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3220 break;
3221 /*
3222 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3223 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3224 */
3225 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3226 /*
3227 * Check to ensure that LBA + Range does not exceed past end of
3228 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3229 */
3230 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3231 if (transport_cmd_get_valid_sectors(cmd) < 0)
3232 goto out_invalid_cdb_field;
3233 }
3234 break;
3235 case UNMAP:
3236 size = get_unaligned_be16(&cdb[7]);
3237 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3238 break;
3239 case WRITE_SAME_16:
3240 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3241 if (sector_ret)
3242 goto out_unsupported_cdb;
3243
3244 if (sectors)
3245 size = transport_get_size(1, cdb, cmd);
3246 else {
3247 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3248 goto out_invalid_cdb_field;
3249 }
3250
3251 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3252 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3253
3254 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3255 goto out_invalid_cdb_field;
3256 break;
3257 case WRITE_SAME:
3258 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3259 if (sector_ret)
3260 goto out_unsupported_cdb;
3261
3262 if (sectors)
3263 size = transport_get_size(1, cdb, cmd);
3264 else {
3265 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3266 goto out_invalid_cdb_field;
3267 }
3268
3269 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3270 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3271 /*
3272 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3273 * of byte 1 bit 3 UNMAP instead of original reserved field
3274 */
3275 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3276 goto out_invalid_cdb_field;
3277 break;
3278 case ALLOW_MEDIUM_REMOVAL:
3279 case GPCMD_CLOSE_TRACK:
3280 case ERASE:
3281 case INITIALIZE_ELEMENT_STATUS:
3282 case GPCMD_LOAD_UNLOAD:
3283 case REZERO_UNIT:
3284 case SEEK_10:
3285 case GPCMD_SET_SPEED:
3286 case SPACE:
3287 case START_STOP:
3288 case TEST_UNIT_READY:
3289 case VERIFY:
3290 case WRITE_FILEMARKS:
3291 case MOVE_MEDIUM:
3292 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3293 break;
3294 case REPORT_LUNS:
3295 cmd->transport_emulate_cdb =
3296 transport_core_report_lun_response;
3297 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3298 /*
3299 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3300 * See spc4r17 section 5.3
3301 */
3302 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3303 cmd->sam_task_attr = MSG_HEAD_TAG;
3304 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3305 break;
3306 default:
3307 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3308 " 0x%02x, sending CHECK_CONDITION.\n",
3309 cmd->se_tfo->get_fabric_name(), cdb[0]);
3310 goto out_unsupported_cdb;
3311 }
3312
3313 if (size != cmd->data_length) {
3314 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3315 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3316 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3317 cmd->data_length, size, cdb[0]);
3318
3319 cmd->cmd_spdtl = size;
3320
3321 if (cmd->data_direction == DMA_TO_DEVICE) {
3322 pr_err("Rejecting underflow/overflow"
3323 " WRITE data\n");
3324 goto out_invalid_cdb_field;
3325 }
3326 /*
3327 * Reject READ_* or WRITE_* with overflow/underflow for
3328 * type SCF_SCSI_DATA_SG_IO_CDB.
3329 */
3330 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3331 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3332 " CDB on non 512-byte sector setup subsystem"
3333 " plugin: %s\n", dev->transport->name);
3334 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3335 goto out_invalid_cdb_field;
3336 }
3337
3338 if (size > cmd->data_length) {
3339 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3340 cmd->residual_count = (size - cmd->data_length);
3341 } else {
3342 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3343 cmd->residual_count = (cmd->data_length - size);
3344 }
3345 cmd->data_length = size;
3346 }
3347
3348 /* Let's limit control cdbs to a page, for simplicity's sake. */
3349 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3350 size > PAGE_SIZE)
3351 goto out_invalid_cdb_field;
3352
3353 transport_set_supported_SAM_opcode(cmd);
3354 return ret;
3355
3356 out_unsupported_cdb:
3357 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3358 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3359 return -EINVAL;
3360 out_invalid_cdb_field:
3361 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3362 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3363 return -EINVAL;
3364 }
3365
3366 /*
3367 * Called from transport_generic_complete_ok() and
3368 * transport_generic_request_failure() to determine which dormant/delayed
3369 * and ordered cmds need to have their tasks added to the execution queue.
3370 */
3371 static void transport_complete_task_attr(struct se_cmd *cmd)
3372 {
3373 struct se_device *dev = cmd->se_dev;
3374 struct se_cmd *cmd_p, *cmd_tmp;
3375 int new_active_tasks = 0;
3376
3377 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3378 atomic_dec(&dev->simple_cmds);
3379 smp_mb__after_atomic_dec();
3380 dev->dev_cur_ordered_id++;
3381 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3382 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3383 cmd->se_ordered_id);
3384 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3385 atomic_dec(&dev->dev_hoq_count);
3386 smp_mb__after_atomic_dec();
3387 dev->dev_cur_ordered_id++;
3388 pr_debug("Incremented dev_cur_ordered_id: %u for"
3389 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3390 cmd->se_ordered_id);
3391 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3392 spin_lock(&dev->ordered_cmd_lock);
3393 list_del(&cmd->se_ordered_node);
3394 atomic_dec(&dev->dev_ordered_sync);
3395 smp_mb__after_atomic_dec();
3396 spin_unlock(&dev->ordered_cmd_lock);
3397
3398 dev->dev_cur_ordered_id++;
3399 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3400 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3401 }
3402 /*
3403 * Process all commands up to the last received
3404 * ORDERED task attribute which requires another blocking
3405 * boundary
3406 */
3407 spin_lock(&dev->delayed_cmd_lock);
3408 list_for_each_entry_safe(cmd_p, cmd_tmp,
3409 &dev->delayed_cmd_list, se_delayed_node) {
3410
3411 list_del(&cmd_p->se_delayed_node);
3412 spin_unlock(&dev->delayed_cmd_lock);
3413
3414 pr_debug("Calling add_tasks() for"
3415 " cmd_p: 0x%02x Task Attr: 0x%02x"
3416 " Dormant -> Active, se_ordered_id: %u\n",
3417 cmd_p->t_task_cdb[0],
3418 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3419
3420 transport_add_tasks_from_cmd(cmd_p);
3421 new_active_tasks++;
3422
3423 spin_lock(&dev->delayed_cmd_lock);
3424 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3425 break;
3426 }
3427 spin_unlock(&dev->delayed_cmd_lock);
3428 /*
3429 * If new tasks have become active, wake up the transport thread
3430 * to do the processing of the Active tasks.
3431 */
3432 if (new_active_tasks != 0)
3433 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3434 }
3435
3436 static void transport_complete_qf(struct se_cmd *cmd)
3437 {
3438 int ret = 0;
3439
3440 transport_stop_all_task_timers(cmd);
3441 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3442 transport_complete_task_attr(cmd);
3443
3444 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3445 ret = cmd->se_tfo->queue_status(cmd);
3446 if (ret)
3447 goto out;
3448 }
3449
3450 switch (cmd->data_direction) {
3451 case DMA_FROM_DEVICE:
3452 ret = cmd->se_tfo->queue_data_in(cmd);
3453 break;
3454 case DMA_TO_DEVICE:
3455 if (cmd->t_bidi_data_sg) {
3456 ret = cmd->se_tfo->queue_data_in(cmd);
3457 if (ret < 0)
3458 break;
3459 }
3460 /* Fall through for DMA_TO_DEVICE */
3461 case DMA_NONE:
3462 ret = cmd->se_tfo->queue_status(cmd);
3463 break;
3464 default:
3465 break;
3466 }
3467
3468 out:
3469 if (ret < 0) {
3470 transport_handle_queue_full(cmd, cmd->se_dev);
3471 return;
3472 }
3473 transport_lun_remove_cmd(cmd);
3474 transport_cmd_check_stop_to_fabric(cmd);
3475 }
3476
3477 static void transport_handle_queue_full(
3478 struct se_cmd *cmd,
3479 struct se_device *dev)
3480 {
3481 spin_lock_irq(&dev->qf_cmd_lock);
3482 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3483 atomic_inc(&dev->dev_qf_count);
3484 smp_mb__after_atomic_inc();
3485 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3486
3487 schedule_work(&cmd->se_dev->qf_work_queue);
3488 }
3489
3490 static void transport_generic_complete_ok(struct se_cmd *cmd)
3491 {
3492 int reason = 0, ret;
3493 /*
3494 * Check if we need to move delayed/dormant tasks from cmds on the
3495 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3496 * Attribute.
3497 */
3498 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3499 transport_complete_task_attr(cmd);
3500 /*
3501 * Check to schedule QUEUE_FULL work, or execute an existing
3502 * cmd->transport_qf_callback()
3503 */
3504 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3505 schedule_work(&cmd->se_dev->qf_work_queue);
3506
3507 /*
3508 * Check if we need to retrieve a sense buffer from
3509 * the struct se_cmd in question.
3510 */
3511 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3512 if (transport_get_sense_data(cmd) < 0)
3513 reason = TCM_NON_EXISTENT_LUN;
3514
3515 /*
3516 * Only set when an struct se_task->task_scsi_status returned
3517 * a non GOOD status.
3518 */
3519 if (cmd->scsi_status) {
3520 ret = transport_send_check_condition_and_sense(
3521 cmd, reason, 1);
3522 if (ret == -EAGAIN)
3523 goto queue_full;
3524
3525 transport_lun_remove_cmd(cmd);
3526 transport_cmd_check_stop_to_fabric(cmd);
3527 return;
3528 }
3529 }
3530 /*
3531 * Check for a callback, used by amongst other things
3532 * XDWRITE_READ_10 emulation.
3533 */
3534 if (cmd->transport_complete_callback)
3535 cmd->transport_complete_callback(cmd);
3536
3537 switch (cmd->data_direction) {
3538 case DMA_FROM_DEVICE:
3539 spin_lock(&cmd->se_lun->lun_sep_lock);
3540 if (cmd->se_lun->lun_sep) {
3541 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3542 cmd->data_length;
3543 }
3544 spin_unlock(&cmd->se_lun->lun_sep_lock);
3545
3546 ret = cmd->se_tfo->queue_data_in(cmd);
3547 if (ret == -EAGAIN)
3548 goto queue_full;
3549 break;
3550 case DMA_TO_DEVICE:
3551 spin_lock(&cmd->se_lun->lun_sep_lock);
3552 if (cmd->se_lun->lun_sep) {
3553 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3554 cmd->data_length;
3555 }
3556 spin_unlock(&cmd->se_lun->lun_sep_lock);
3557 /*
3558 * Check if we need to send READ payload for BIDI-COMMAND
3559 */
3560 if (cmd->t_bidi_data_sg) {
3561 spin_lock(&cmd->se_lun->lun_sep_lock);
3562 if (cmd->se_lun->lun_sep) {
3563 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3564 cmd->data_length;
3565 }
3566 spin_unlock(&cmd->se_lun->lun_sep_lock);
3567 ret = cmd->se_tfo->queue_data_in(cmd);
3568 if (ret == -EAGAIN)
3569 goto queue_full;
3570 break;
3571 }
3572 /* Fall through for DMA_TO_DEVICE */
3573 case DMA_NONE:
3574 ret = cmd->se_tfo->queue_status(cmd);
3575 if (ret == -EAGAIN)
3576 goto queue_full;
3577 break;
3578 default:
3579 break;
3580 }
3581
3582 transport_lun_remove_cmd(cmd);
3583 transport_cmd_check_stop_to_fabric(cmd);
3584 return;
3585
3586 queue_full:
3587 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3588 " data_direction: %d\n", cmd, cmd->data_direction);
3589 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3590 transport_handle_queue_full(cmd, cmd->se_dev);
3591 }
3592
3593 static void transport_free_dev_tasks(struct se_cmd *cmd)
3594 {
3595 struct se_task *task, *task_tmp;
3596 unsigned long flags;
3597 LIST_HEAD(dispose_list);
3598
3599 spin_lock_irqsave(&cmd->t_state_lock, flags);
3600 list_for_each_entry_safe(task, task_tmp,
3601 &cmd->t_task_list, t_list) {
3602 if (!(task->task_flags & TF_ACTIVE))
3603 list_move_tail(&task->t_list, &dispose_list);
3604 }
3605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3606
3607 while (!list_empty(&dispose_list)) {
3608 task = list_first_entry(&dispose_list, struct se_task, t_list);
3609
3610 kfree(task->task_sg_bidi);
3611 kfree(task->task_sg);
3612
3613 list_del(&task->t_list);
3614
3615 cmd->se_dev->transport->free_task(task);
3616 }
3617 }
3618
3619 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3620 {
3621 struct scatterlist *sg;
3622 int count;
3623
3624 for_each_sg(sgl, sg, nents, count)
3625 __free_page(sg_page(sg));
3626
3627 kfree(sgl);
3628 }
3629
3630 static inline void transport_free_pages(struct se_cmd *cmd)
3631 {
3632 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3633 return;
3634
3635 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3636 cmd->t_data_sg = NULL;
3637 cmd->t_data_nents = 0;
3638
3639 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3640 cmd->t_bidi_data_sg = NULL;
3641 cmd->t_bidi_data_nents = 0;
3642 }
3643
3644 /**
3645 * transport_put_cmd - release a reference to a command
3646 * @cmd: command to release
3647 *
3648 * This routine releases our reference to the command and frees it if possible.
3649 */
3650 static void transport_put_cmd(struct se_cmd *cmd)
3651 {
3652 unsigned long flags;
3653 int free_tasks = 0;
3654
3655 spin_lock_irqsave(&cmd->t_state_lock, flags);
3656 if (atomic_read(&cmd->t_fe_count)) {
3657 if (!atomic_dec_and_test(&cmd->t_fe_count))
3658 goto out_busy;
3659 }
3660
3661 if (atomic_read(&cmd->t_se_count)) {
3662 if (!atomic_dec_and_test(&cmd->t_se_count))
3663 goto out_busy;
3664 }
3665
3666 if (atomic_read(&cmd->transport_dev_active)) {
3667 atomic_set(&cmd->transport_dev_active, 0);
3668 transport_all_task_dev_remove_state(cmd);
3669 free_tasks = 1;
3670 }
3671 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3672
3673 if (free_tasks != 0)
3674 transport_free_dev_tasks(cmd);
3675
3676 transport_free_pages(cmd);
3677 transport_release_cmd(cmd);
3678 return;
3679 out_busy:
3680 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3681 }
3682
3683 /*
3684 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3685 * allocating in the core.
3686 * @cmd: Associated se_cmd descriptor
3687 * @mem: SGL style memory for TCM WRITE / READ
3688 * @sg_mem_num: Number of SGL elements
3689 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3690 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3691 *
3692 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3693 * of parameters.
3694 */
3695 int transport_generic_map_mem_to_cmd(
3696 struct se_cmd *cmd,
3697 struct scatterlist *sgl,
3698 u32 sgl_count,
3699 struct scatterlist *sgl_bidi,
3700 u32 sgl_bidi_count)
3701 {
3702 if (!sgl || !sgl_count)
3703 return 0;
3704
3705 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3706 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3707
3708 cmd->t_data_sg = sgl;
3709 cmd->t_data_nents = sgl_count;
3710
3711 if (sgl_bidi && sgl_bidi_count) {
3712 cmd->t_bidi_data_sg = sgl_bidi;
3713 cmd->t_bidi_data_nents = sgl_bidi_count;
3714 }
3715 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3716 }
3717
3718 return 0;
3719 }
3720 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3721
3722 static int transport_new_cmd_obj(struct se_cmd *cmd)
3723 {
3724 struct se_device *dev = cmd->se_dev;
3725 int set_counts = 1, rc, task_cdbs;
3726
3727 /*
3728 * Setup any BIDI READ tasks and memory from
3729 * cmd->t_mem_bidi_list so the READ struct se_tasks
3730 * are queued first for the non pSCSI passthrough case.
3731 */
3732 if (cmd->t_bidi_data_sg &&
3733 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3734 rc = transport_allocate_tasks(cmd,
3735 cmd->t_task_lba,
3736 DMA_FROM_DEVICE,
3737 cmd->t_bidi_data_sg,
3738 cmd->t_bidi_data_nents);
3739 if (rc <= 0) {
3740 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3741 cmd->scsi_sense_reason =
3742 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3743 return -EINVAL;
3744 }
3745 atomic_inc(&cmd->t_fe_count);
3746 atomic_inc(&cmd->t_se_count);
3747 set_counts = 0;
3748 }
3749 /*
3750 * Setup the tasks and memory from cmd->t_mem_list
3751 * Note for BIDI transfers this will contain the WRITE payload
3752 */
3753 task_cdbs = transport_allocate_tasks(cmd,
3754 cmd->t_task_lba,
3755 cmd->data_direction,
3756 cmd->t_data_sg,
3757 cmd->t_data_nents);
3758 if (task_cdbs <= 0) {
3759 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3760 cmd->scsi_sense_reason =
3761 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3762 return -EINVAL;
3763 }
3764
3765 if (set_counts) {
3766 atomic_inc(&cmd->t_fe_count);
3767 atomic_inc(&cmd->t_se_count);
3768 }
3769
3770 cmd->t_task_list_num = task_cdbs;
3771
3772 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3773 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3774 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3775 return 0;
3776 }
3777
3778 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3779 {
3780 struct scatterlist *sg = cmd->t_data_sg;
3781
3782 BUG_ON(!sg);
3783 /*
3784 * We need to take into account a possible offset here for fabrics like
3785 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3786 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3787 */
3788 return kmap(sg_page(sg)) + sg->offset;
3789 }
3790 EXPORT_SYMBOL(transport_kmap_first_data_page);
3791
3792 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3793 {
3794 kunmap(sg_page(cmd->t_data_sg));
3795 }
3796 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3797
3798 static int
3799 transport_generic_get_mem(struct se_cmd *cmd)
3800 {
3801 u32 length = cmd->data_length;
3802 unsigned int nents;
3803 struct page *page;
3804 int i = 0;
3805
3806 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3807 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3808 if (!cmd->t_data_sg)
3809 return -ENOMEM;
3810
3811 cmd->t_data_nents = nents;
3812 sg_init_table(cmd->t_data_sg, nents);
3813
3814 while (length) {
3815 u32 page_len = min_t(u32, length, PAGE_SIZE);
3816 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3817 if (!page)
3818 goto out;
3819
3820 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3821 length -= page_len;
3822 i++;
3823 }
3824 return 0;
3825
3826 out:
3827 while (i >= 0) {
3828 __free_page(sg_page(&cmd->t_data_sg[i]));
3829 i--;
3830 }
3831 kfree(cmd->t_data_sg);
3832 cmd->t_data_sg = NULL;
3833 return -ENOMEM;
3834 }
3835
3836 /* Reduce sectors if they are too long for the device */
3837 static inline sector_t transport_limit_task_sectors(
3838 struct se_device *dev,
3839 unsigned long long lba,
3840 sector_t sectors)
3841 {
3842 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3843
3844 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3845 if ((lba + sectors) > transport_dev_end_lba(dev))
3846 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3847
3848 return sectors;
3849 }
3850
3851
3852 /*
3853 * This function can be used by HW target mode drivers to create a linked
3854 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3855 * This is intended to be called during the completion path by TCM Core
3856 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3857 */
3858 void transport_do_task_sg_chain(struct se_cmd *cmd)
3859 {
3860 struct scatterlist *sg_first = NULL;
3861 struct scatterlist *sg_prev = NULL;
3862 int sg_prev_nents = 0;
3863 struct scatterlist *sg;
3864 struct se_task *task;
3865 u32 chained_nents = 0;
3866 int i;
3867
3868 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3869
3870 /*
3871 * Walk the struct se_task list and setup scatterlist chains
3872 * for each contiguously allocated struct se_task->task_sg[].
3873 */
3874 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3875 if (!task->task_sg)
3876 continue;
3877
3878 if (!sg_first) {
3879 sg_first = task->task_sg;
3880 chained_nents = task->task_sg_nents;
3881 } else {
3882 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3883 chained_nents += task->task_sg_nents;
3884 }
3885 /*
3886 * For the padded tasks, use the extra SGL vector allocated
3887 * in transport_allocate_data_tasks() for the sg_prev_nents
3888 * offset into sg_chain() above.
3889 *
3890 * We do not need the padding for the last task (or a single
3891 * task), but in that case we will never use the sg_prev_nents
3892 * value below which would be incorrect.
3893 */
3894 sg_prev_nents = (task->task_sg_nents + 1);
3895 sg_prev = task->task_sg;
3896 }
3897 /*
3898 * Setup the starting pointer and total t_tasks_sg_linked_no including
3899 * padding SGs for linking and to mark the end.
3900 */
3901 cmd->t_tasks_sg_chained = sg_first;
3902 cmd->t_tasks_sg_chained_no = chained_nents;
3903
3904 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3905 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3906 cmd->t_tasks_sg_chained_no);
3907
3908 for_each_sg(cmd->t_tasks_sg_chained, sg,
3909 cmd->t_tasks_sg_chained_no, i) {
3910
3911 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3912 i, sg, sg_page(sg), sg->length, sg->offset);
3913 if (sg_is_chain(sg))
3914 pr_debug("SG: %p sg_is_chain=1\n", sg);
3915 if (sg_is_last(sg))
3916 pr_debug("SG: %p sg_is_last=1\n", sg);
3917 }
3918 }
3919 EXPORT_SYMBOL(transport_do_task_sg_chain);
3920
3921 /*
3922 * Break up cmd into chunks transport can handle
3923 */
3924 static int transport_allocate_data_tasks(
3925 struct se_cmd *cmd,
3926 unsigned long long lba,
3927 enum dma_data_direction data_direction,
3928 struct scatterlist *sgl,
3929 unsigned int sgl_nents)
3930 {
3931 struct se_task *task;
3932 struct se_device *dev = cmd->se_dev;
3933 unsigned long flags;
3934 int task_count, i;
3935 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3936 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3937 struct scatterlist *sg;
3938 struct scatterlist *cmd_sg;
3939
3940 WARN_ON(cmd->data_length % sector_size);
3941 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3942 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3943
3944 cmd_sg = sgl;
3945 for (i = 0; i < task_count; i++) {
3946 unsigned int task_size, task_sg_nents_padded;
3947 int count;
3948
3949 task = transport_generic_get_task(cmd, data_direction);
3950 if (!task)
3951 return -ENOMEM;
3952
3953 task->task_lba = lba;
3954 task->task_sectors = min(sectors, dev_max_sectors);
3955 task->task_size = task->task_sectors * sector_size;
3956
3957 /*
3958 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3959 * in order to calculate the number per task SGL entries
3960 */
3961 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3962 /*
3963 * Check if the fabric module driver is requesting that all
3964 * struct se_task->task_sg[] be chained together.. If so,
3965 * then allocate an extra padding SG entry for linking and
3966 * marking the end of the chained SGL for every task except
3967 * the last one for (task_count > 1) operation, or skipping
3968 * the extra padding for the (task_count == 1) case.
3969 */
3970 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3971 task_sg_nents_padded = (task->task_sg_nents + 1);
3972 } else
3973 task_sg_nents_padded = task->task_sg_nents;
3974
3975 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3976 task_sg_nents_padded, GFP_KERNEL);
3977 if (!task->task_sg) {
3978 cmd->se_dev->transport->free_task(task);
3979 return -ENOMEM;
3980 }
3981
3982 sg_init_table(task->task_sg, task_sg_nents_padded);
3983
3984 task_size = task->task_size;
3985
3986 /* Build new sgl, only up to task_size */
3987 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3988 if (cmd_sg->length > task_size)
3989 break;
3990
3991 *sg = *cmd_sg;
3992 task_size -= cmd_sg->length;
3993 cmd_sg = sg_next(cmd_sg);
3994 }
3995
3996 lba += task->task_sectors;
3997 sectors -= task->task_sectors;
3998
3999 spin_lock_irqsave(&cmd->t_state_lock, flags);
4000 list_add_tail(&task->t_list, &cmd->t_task_list);
4001 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4002 }
4003
4004 return task_count;
4005 }
4006
4007 static int
4008 transport_allocate_control_task(struct se_cmd *cmd)
4009 {
4010 struct se_task *task;
4011 unsigned long flags;
4012
4013 task = transport_generic_get_task(cmd, cmd->data_direction);
4014 if (!task)
4015 return -ENOMEM;
4016
4017 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4018 GFP_KERNEL);
4019 if (!task->task_sg) {
4020 cmd->se_dev->transport->free_task(task);
4021 return -ENOMEM;
4022 }
4023
4024 memcpy(task->task_sg, cmd->t_data_sg,
4025 sizeof(struct scatterlist) * cmd->t_data_nents);
4026 task->task_size = cmd->data_length;
4027 task->task_sg_nents = cmd->t_data_nents;
4028
4029 spin_lock_irqsave(&cmd->t_state_lock, flags);
4030 list_add_tail(&task->t_list, &cmd->t_task_list);
4031 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4032
4033 /* Success! Return number of tasks allocated */
4034 return 1;
4035 }
4036
4037 static u32 transport_allocate_tasks(
4038 struct se_cmd *cmd,
4039 unsigned long long lba,
4040 enum dma_data_direction data_direction,
4041 struct scatterlist *sgl,
4042 unsigned int sgl_nents)
4043 {
4044 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4045 if (transport_cmd_get_valid_sectors(cmd) < 0)
4046 return -EINVAL;
4047
4048 return transport_allocate_data_tasks(cmd, lba, data_direction,
4049 sgl, sgl_nents);
4050 } else
4051 return transport_allocate_control_task(cmd);
4052
4053 }
4054
4055
4056 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4057 *
4058 * Allocate storage transport resources from a set of values predefined
4059 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4060 * Any non zero return here is treated as an "out of resource' op here.
4061 */
4062 /*
4063 * Generate struct se_task(s) and/or their payloads for this CDB.
4064 */
4065 int transport_generic_new_cmd(struct se_cmd *cmd)
4066 {
4067 int ret = 0;
4068
4069 /*
4070 * Determine is the TCM fabric module has already allocated physical
4071 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4072 * beforehand.
4073 */
4074 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4075 cmd->data_length) {
4076 ret = transport_generic_get_mem(cmd);
4077 if (ret < 0)
4078 return ret;
4079 }
4080 /*
4081 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4082 * control or data CDB types, and perform the map to backend subsystem
4083 * code from SGL memory allocated here by transport_generic_get_mem(), or
4084 * via pre-existing SGL memory setup explictly by fabric module code with
4085 * transport_generic_map_mem_to_cmd().
4086 */
4087 ret = transport_new_cmd_obj(cmd);
4088 if (ret < 0)
4089 return ret;
4090 /*
4091 * For WRITEs, let the fabric know its buffer is ready..
4092 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4093 * will be added to the struct se_device execution queue after its WRITE
4094 * data has arrived. (ie: It gets handled by the transport processing
4095 * thread a second time)
4096 */
4097 if (cmd->data_direction == DMA_TO_DEVICE) {
4098 transport_add_tasks_to_state_queue(cmd);
4099 return transport_generic_write_pending(cmd);
4100 }
4101 /*
4102 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4103 * to the execution queue.
4104 */
4105 transport_execute_tasks(cmd);
4106 return 0;
4107 }
4108 EXPORT_SYMBOL(transport_generic_new_cmd);
4109
4110 /* transport_generic_process_write():
4111 *
4112 *
4113 */
4114 void transport_generic_process_write(struct se_cmd *cmd)
4115 {
4116 transport_execute_tasks(cmd);
4117 }
4118 EXPORT_SYMBOL(transport_generic_process_write);
4119
4120 static void transport_write_pending_qf(struct se_cmd *cmd)
4121 {
4122 if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4123 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4124 cmd);
4125 transport_handle_queue_full(cmd, cmd->se_dev);
4126 }
4127 }
4128
4129 static int transport_generic_write_pending(struct se_cmd *cmd)
4130 {
4131 unsigned long flags;
4132 int ret;
4133
4134 spin_lock_irqsave(&cmd->t_state_lock, flags);
4135 cmd->t_state = TRANSPORT_WRITE_PENDING;
4136 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4137
4138 /*
4139 * Clear the se_cmd for WRITE_PENDING status in order to set
4140 * cmd->t_transport_active=0 so that transport_generic_handle_data
4141 * can be called from HW target mode interrupt code. This is safe
4142 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4143 * because the se_cmd->se_lun pointer is not being cleared.
4144 */
4145 transport_cmd_check_stop(cmd, 1, 0);
4146
4147 /*
4148 * Call the fabric write_pending function here to let the
4149 * frontend know that WRITE buffers are ready.
4150 */
4151 ret = cmd->se_tfo->write_pending(cmd);
4152 if (ret == -EAGAIN)
4153 goto queue_full;
4154 else if (ret < 0)
4155 return ret;
4156
4157 return PYX_TRANSPORT_WRITE_PENDING;
4158
4159 queue_full:
4160 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4161 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4162 transport_handle_queue_full(cmd, cmd->se_dev);
4163 return ret;
4164 }
4165
4166 /**
4167 * transport_release_cmd - free a command
4168 * @cmd: command to free
4169 *
4170 * This routine unconditionally frees a command, and reference counting
4171 * or list removal must be done in the caller.
4172 */
4173 void transport_release_cmd(struct se_cmd *cmd)
4174 {
4175 BUG_ON(!cmd->se_tfo);
4176
4177 if (cmd->se_tmr_req)
4178 core_tmr_release_req(cmd->se_tmr_req);
4179 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4180 kfree(cmd->t_task_cdb);
4181 cmd->se_tfo->release_cmd(cmd);
4182 }
4183 EXPORT_SYMBOL(transport_release_cmd);
4184
4185 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4186 {
4187 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4188 if (wait_for_tasks && cmd->se_tmr_req)
4189 transport_wait_for_tasks(cmd);
4190
4191 transport_release_cmd(cmd);
4192 } else {
4193 if (wait_for_tasks)
4194 transport_wait_for_tasks(cmd);
4195
4196 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4197
4198 if (cmd->se_lun)
4199 transport_lun_remove_cmd(cmd);
4200
4201 transport_free_dev_tasks(cmd);
4202
4203 transport_put_cmd(cmd);
4204 }
4205 }
4206 EXPORT_SYMBOL(transport_generic_free_cmd);
4207
4208 /* transport_lun_wait_for_tasks():
4209 *
4210 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4211 * an struct se_lun to be successfully shutdown.
4212 */
4213 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4214 {
4215 unsigned long flags;
4216 int ret;
4217 /*
4218 * If the frontend has already requested this struct se_cmd to
4219 * be stopped, we can safely ignore this struct se_cmd.
4220 */
4221 spin_lock_irqsave(&cmd->t_state_lock, flags);
4222 if (atomic_read(&cmd->t_transport_stop)) {
4223 atomic_set(&cmd->transport_lun_stop, 0);
4224 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4225 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4226 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4227 transport_cmd_check_stop(cmd, 1, 0);
4228 return -EPERM;
4229 }
4230 atomic_set(&cmd->transport_lun_fe_stop, 1);
4231 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4232
4233 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4234
4235 ret = transport_stop_tasks_for_cmd(cmd);
4236
4237 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4238 " %d\n", cmd, cmd->t_task_list_num, ret);
4239 if (!ret) {
4240 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4241 cmd->se_tfo->get_task_tag(cmd));
4242 wait_for_completion(&cmd->transport_lun_stop_comp);
4243 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4244 cmd->se_tfo->get_task_tag(cmd));
4245 }
4246 transport_remove_cmd_from_queue(cmd);
4247
4248 return 0;
4249 }
4250
4251 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4252 {
4253 struct se_cmd *cmd = NULL;
4254 unsigned long lun_flags, cmd_flags;
4255 /*
4256 * Do exception processing and return CHECK_CONDITION status to the
4257 * Initiator Port.
4258 */
4259 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4260 while (!list_empty(&lun->lun_cmd_list)) {
4261 cmd = list_first_entry(&lun->lun_cmd_list,
4262 struct se_cmd, se_lun_node);
4263 list_del(&cmd->se_lun_node);
4264
4265 atomic_set(&cmd->transport_lun_active, 0);
4266 /*
4267 * This will notify iscsi_target_transport.c:
4268 * transport_cmd_check_stop() that a LUN shutdown is in
4269 * progress for the iscsi_cmd_t.
4270 */
4271 spin_lock(&cmd->t_state_lock);
4272 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4273 "_lun_stop for ITT: 0x%08x\n",
4274 cmd->se_lun->unpacked_lun,
4275 cmd->se_tfo->get_task_tag(cmd));
4276 atomic_set(&cmd->transport_lun_stop, 1);
4277 spin_unlock(&cmd->t_state_lock);
4278
4279 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4280
4281 if (!cmd->se_lun) {
4282 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4283 cmd->se_tfo->get_task_tag(cmd),
4284 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4285 BUG();
4286 }
4287 /*
4288 * If the Storage engine still owns the iscsi_cmd_t, determine
4289 * and/or stop its context.
4290 */
4291 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4292 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4293 cmd->se_tfo->get_task_tag(cmd));
4294
4295 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4296 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4297 continue;
4298 }
4299
4300 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4301 "_wait_for_tasks(): SUCCESS\n",
4302 cmd->se_lun->unpacked_lun,
4303 cmd->se_tfo->get_task_tag(cmd));
4304
4305 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4306 if (!atomic_read(&cmd->transport_dev_active)) {
4307 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4308 goto check_cond;
4309 }
4310 atomic_set(&cmd->transport_dev_active, 0);
4311 transport_all_task_dev_remove_state(cmd);
4312 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4313
4314 transport_free_dev_tasks(cmd);
4315 /*
4316 * The Storage engine stopped this struct se_cmd before it was
4317 * send to the fabric frontend for delivery back to the
4318 * Initiator Node. Return this SCSI CDB back with an
4319 * CHECK_CONDITION status.
4320 */
4321 check_cond:
4322 transport_send_check_condition_and_sense(cmd,
4323 TCM_NON_EXISTENT_LUN, 0);
4324 /*
4325 * If the fabric frontend is waiting for this iscsi_cmd_t to
4326 * be released, notify the waiting thread now that LU has
4327 * finished accessing it.
4328 */
4329 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4330 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4331 pr_debug("SE_LUN[%d] - Detected FE stop for"
4332 " struct se_cmd: %p ITT: 0x%08x\n",
4333 lun->unpacked_lun,
4334 cmd, cmd->se_tfo->get_task_tag(cmd));
4335
4336 spin_unlock_irqrestore(&cmd->t_state_lock,
4337 cmd_flags);
4338 transport_cmd_check_stop(cmd, 1, 0);
4339 complete(&cmd->transport_lun_fe_stop_comp);
4340 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4341 continue;
4342 }
4343 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4344 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4345
4346 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4347 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4348 }
4349 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4350 }
4351
4352 static int transport_clear_lun_thread(void *p)
4353 {
4354 struct se_lun *lun = (struct se_lun *)p;
4355
4356 __transport_clear_lun_from_sessions(lun);
4357 complete(&lun->lun_shutdown_comp);
4358
4359 return 0;
4360 }
4361
4362 int transport_clear_lun_from_sessions(struct se_lun *lun)
4363 {
4364 struct task_struct *kt;
4365
4366 kt = kthread_run(transport_clear_lun_thread, lun,
4367 "tcm_cl_%u", lun->unpacked_lun);
4368 if (IS_ERR(kt)) {
4369 pr_err("Unable to start clear_lun thread\n");
4370 return PTR_ERR(kt);
4371 }
4372 wait_for_completion(&lun->lun_shutdown_comp);
4373
4374 return 0;
4375 }
4376
4377 /**
4378 * transport_wait_for_tasks - wait for completion to occur
4379 * @cmd: command to wait
4380 *
4381 * Called from frontend fabric context to wait for storage engine
4382 * to pause and/or release frontend generated struct se_cmd.
4383 */
4384 void transport_wait_for_tasks(struct se_cmd *cmd)
4385 {
4386 unsigned long flags;
4387
4388 spin_lock_irqsave(&cmd->t_state_lock, flags);
4389 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4390 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4391 return;
4392 }
4393 /*
4394 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4395 * has been set in transport_set_supported_SAM_opcode().
4396 */
4397 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4398 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4399 return;
4400 }
4401 /*
4402 * If we are already stopped due to an external event (ie: LUN shutdown)
4403 * sleep until the connection can have the passed struct se_cmd back.
4404 * The cmd->transport_lun_stopped_sem will be upped by
4405 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4406 * has completed its operation on the struct se_cmd.
4407 */
4408 if (atomic_read(&cmd->transport_lun_stop)) {
4409
4410 pr_debug("wait_for_tasks: Stopping"
4411 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4412 "_stop_comp); for ITT: 0x%08x\n",
4413 cmd->se_tfo->get_task_tag(cmd));
4414 /*
4415 * There is a special case for WRITES where a FE exception +
4416 * LUN shutdown means ConfigFS context is still sleeping on
4417 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4418 * We go ahead and up transport_lun_stop_comp just to be sure
4419 * here.
4420 */
4421 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4422 complete(&cmd->transport_lun_stop_comp);
4423 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4424 spin_lock_irqsave(&cmd->t_state_lock, flags);
4425
4426 transport_all_task_dev_remove_state(cmd);
4427 /*
4428 * At this point, the frontend who was the originator of this
4429 * struct se_cmd, now owns the structure and can be released through
4430 * normal means below.
4431 */
4432 pr_debug("wait_for_tasks: Stopped"
4433 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4434 "stop_comp); for ITT: 0x%08x\n",
4435 cmd->se_tfo->get_task_tag(cmd));
4436
4437 atomic_set(&cmd->transport_lun_stop, 0);
4438 }
4439 if (!atomic_read(&cmd->t_transport_active) ||
4440 atomic_read(&cmd->t_transport_aborted)) {
4441 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4442 return;
4443 }
4444
4445 atomic_set(&cmd->t_transport_stop, 1);
4446
4447 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4448 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4449 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4450 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4451 cmd->deferred_t_state);
4452
4453 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4454
4455 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4456
4457 wait_for_completion(&cmd->t_transport_stop_comp);
4458
4459 spin_lock_irqsave(&cmd->t_state_lock, flags);
4460 atomic_set(&cmd->t_transport_active, 0);
4461 atomic_set(&cmd->t_transport_stop, 0);
4462
4463 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4464 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4465 cmd->se_tfo->get_task_tag(cmd));
4466
4467 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4468 }
4469 EXPORT_SYMBOL(transport_wait_for_tasks);
4470
4471 static int transport_get_sense_codes(
4472 struct se_cmd *cmd,
4473 u8 *asc,
4474 u8 *ascq)
4475 {
4476 *asc = cmd->scsi_asc;
4477 *ascq = cmd->scsi_ascq;
4478
4479 return 0;
4480 }
4481
4482 static int transport_set_sense_codes(
4483 struct se_cmd *cmd,
4484 u8 asc,
4485 u8 ascq)
4486 {
4487 cmd->scsi_asc = asc;
4488 cmd->scsi_ascq = ascq;
4489
4490 return 0;
4491 }
4492
4493 int transport_send_check_condition_and_sense(
4494 struct se_cmd *cmd,
4495 u8 reason,
4496 int from_transport)
4497 {
4498 unsigned char *buffer = cmd->sense_buffer;
4499 unsigned long flags;
4500 int offset;
4501 u8 asc = 0, ascq = 0;
4502
4503 spin_lock_irqsave(&cmd->t_state_lock, flags);
4504 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4505 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4506 return 0;
4507 }
4508 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4509 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4510
4511 if (!reason && from_transport)
4512 goto after_reason;
4513
4514 if (!from_transport)
4515 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4516 /*
4517 * Data Segment and SenseLength of the fabric response PDU.
4518 *
4519 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4520 * from include/scsi/scsi_cmnd.h
4521 */
4522 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4523 TRANSPORT_SENSE_BUFFER);
4524 /*
4525 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4526 * SENSE KEY values from include/scsi/scsi.h
4527 */
4528 switch (reason) {
4529 case TCM_NON_EXISTENT_LUN:
4530 /* CURRENT ERROR */
4531 buffer[offset] = 0x70;
4532 /* ILLEGAL REQUEST */
4533 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4534 /* LOGICAL UNIT NOT SUPPORTED */
4535 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4536 break;
4537 case TCM_UNSUPPORTED_SCSI_OPCODE:
4538 case TCM_SECTOR_COUNT_TOO_MANY:
4539 /* CURRENT ERROR */
4540 buffer[offset] = 0x70;
4541 /* ILLEGAL REQUEST */
4542 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4543 /* INVALID COMMAND OPERATION CODE */
4544 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4545 break;
4546 case TCM_UNKNOWN_MODE_PAGE:
4547 /* CURRENT ERROR */
4548 buffer[offset] = 0x70;
4549 /* ILLEGAL REQUEST */
4550 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4551 /* INVALID FIELD IN CDB */
4552 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4553 break;
4554 case TCM_CHECK_CONDITION_ABORT_CMD:
4555 /* CURRENT ERROR */
4556 buffer[offset] = 0x70;
4557 /* ABORTED COMMAND */
4558 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4559 /* BUS DEVICE RESET FUNCTION OCCURRED */
4560 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4561 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4562 break;
4563 case TCM_INCORRECT_AMOUNT_OF_DATA:
4564 /* CURRENT ERROR */
4565 buffer[offset] = 0x70;
4566 /* ABORTED COMMAND */
4567 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4568 /* WRITE ERROR */
4569 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4570 /* NOT ENOUGH UNSOLICITED DATA */
4571 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4572 break;
4573 case TCM_INVALID_CDB_FIELD:
4574 /* CURRENT ERROR */
4575 buffer[offset] = 0x70;
4576 /* ABORTED COMMAND */
4577 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4578 /* INVALID FIELD IN CDB */
4579 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4580 break;
4581 case TCM_INVALID_PARAMETER_LIST:
4582 /* CURRENT ERROR */
4583 buffer[offset] = 0x70;
4584 /* ABORTED COMMAND */
4585 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4586 /* INVALID FIELD IN PARAMETER LIST */
4587 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4588 break;
4589 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4590 /* CURRENT ERROR */
4591 buffer[offset] = 0x70;
4592 /* ABORTED COMMAND */
4593 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4594 /* WRITE ERROR */
4595 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4596 /* UNEXPECTED_UNSOLICITED_DATA */
4597 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4598 break;
4599 case TCM_SERVICE_CRC_ERROR:
4600 /* CURRENT ERROR */
4601 buffer[offset] = 0x70;
4602 /* ABORTED COMMAND */
4603 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4604 /* PROTOCOL SERVICE CRC ERROR */
4605 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4606 /* N/A */
4607 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4608 break;
4609 case TCM_SNACK_REJECTED:
4610 /* CURRENT ERROR */
4611 buffer[offset] = 0x70;
4612 /* ABORTED COMMAND */
4613 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4614 /* READ ERROR */
4615 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4616 /* FAILED RETRANSMISSION REQUEST */
4617 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4618 break;
4619 case TCM_WRITE_PROTECTED:
4620 /* CURRENT ERROR */
4621 buffer[offset] = 0x70;
4622 /* DATA PROTECT */
4623 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4624 /* WRITE PROTECTED */
4625 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4626 break;
4627 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4628 /* CURRENT ERROR */
4629 buffer[offset] = 0x70;
4630 /* UNIT ATTENTION */
4631 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4632 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4633 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4634 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4635 break;
4636 case TCM_CHECK_CONDITION_NOT_READY:
4637 /* CURRENT ERROR */
4638 buffer[offset] = 0x70;
4639 /* Not Ready */
4640 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4641 transport_get_sense_codes(cmd, &asc, &ascq);
4642 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4643 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4644 break;
4645 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4646 default:
4647 /* CURRENT ERROR */
4648 buffer[offset] = 0x70;
4649 /* ILLEGAL REQUEST */
4650 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4651 /* LOGICAL UNIT COMMUNICATION FAILURE */
4652 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4653 break;
4654 }
4655 /*
4656 * This code uses linux/include/scsi/scsi.h SAM status codes!
4657 */
4658 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4659 /*
4660 * Automatically padded, this value is encoded in the fabric's
4661 * data_length response PDU containing the SCSI defined sense data.
4662 */
4663 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4664
4665 after_reason:
4666 return cmd->se_tfo->queue_status(cmd);
4667 }
4668 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4669
4670 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4671 {
4672 int ret = 0;
4673
4674 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4675 if (!send_status ||
4676 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4677 return 1;
4678 #if 0
4679 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4680 " status for CDB: 0x%02x ITT: 0x%08x\n",
4681 cmd->t_task_cdb[0],
4682 cmd->se_tfo->get_task_tag(cmd));
4683 #endif
4684 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4685 cmd->se_tfo->queue_status(cmd);
4686 ret = 1;
4687 }
4688 return ret;
4689 }
4690 EXPORT_SYMBOL(transport_check_aborted_status);
4691
4692 void transport_send_task_abort(struct se_cmd *cmd)
4693 {
4694 unsigned long flags;
4695
4696 spin_lock_irqsave(&cmd->t_state_lock, flags);
4697 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4698 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4699 return;
4700 }
4701 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4702
4703 /*
4704 * If there are still expected incoming fabric WRITEs, we wait
4705 * until until they have completed before sending a TASK_ABORTED
4706 * response. This response with TASK_ABORTED status will be
4707 * queued back to fabric module by transport_check_aborted_status().
4708 */
4709 if (cmd->data_direction == DMA_TO_DEVICE) {
4710 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4711 atomic_inc(&cmd->t_transport_aborted);
4712 smp_mb__after_atomic_inc();
4713 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4714 transport_new_cmd_failure(cmd);
4715 return;
4716 }
4717 }
4718 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4719 #if 0
4720 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4721 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4722 cmd->se_tfo->get_task_tag(cmd));
4723 #endif
4724 cmd->se_tfo->queue_status(cmd);
4725 }
4726
4727 /* transport_generic_do_tmr():
4728 *
4729 *
4730 */
4731 int transport_generic_do_tmr(struct se_cmd *cmd)
4732 {
4733 struct se_device *dev = cmd->se_dev;
4734 struct se_tmr_req *tmr = cmd->se_tmr_req;
4735 int ret;
4736
4737 switch (tmr->function) {
4738 case TMR_ABORT_TASK:
4739 tmr->response = TMR_FUNCTION_REJECTED;
4740 break;
4741 case TMR_ABORT_TASK_SET:
4742 case TMR_CLEAR_ACA:
4743 case TMR_CLEAR_TASK_SET:
4744 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4745 break;
4746 case TMR_LUN_RESET:
4747 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4748 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4749 TMR_FUNCTION_REJECTED;
4750 break;
4751 case TMR_TARGET_WARM_RESET:
4752 tmr->response = TMR_FUNCTION_REJECTED;
4753 break;
4754 case TMR_TARGET_COLD_RESET:
4755 tmr->response = TMR_FUNCTION_REJECTED;
4756 break;
4757 default:
4758 pr_err("Uknown TMR function: 0x%02x.\n",
4759 tmr->function);
4760 tmr->response = TMR_FUNCTION_REJECTED;
4761 break;
4762 }
4763
4764 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4765 cmd->se_tfo->queue_tm_rsp(cmd);
4766
4767 transport_cmd_check_stop_to_fabric(cmd);
4768 return 0;
4769 }
4770
4771 /* transport_processing_thread():
4772 *
4773 *
4774 */
4775 static int transport_processing_thread(void *param)
4776 {
4777 int ret;
4778 struct se_cmd *cmd;
4779 struct se_device *dev = (struct se_device *) param;
4780
4781 set_user_nice(current, -20);
4782
4783 while (!kthread_should_stop()) {
4784 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4785 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4786 kthread_should_stop());
4787 if (ret < 0)
4788 goto out;
4789
4790 get_cmd:
4791 __transport_execute_tasks(dev);
4792
4793 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4794 if (!cmd)
4795 continue;
4796
4797 switch (cmd->t_state) {
4798 case TRANSPORT_NEW_CMD:
4799 BUG();
4800 break;
4801 case TRANSPORT_NEW_CMD_MAP:
4802 if (!cmd->se_tfo->new_cmd_map) {
4803 pr_err("cmd->se_tfo->new_cmd_map is"
4804 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4805 BUG();
4806 }
4807 ret = cmd->se_tfo->new_cmd_map(cmd);
4808 if (ret < 0) {
4809 cmd->transport_error_status = ret;
4810 transport_generic_request_failure(cmd, NULL,
4811 0, (cmd->data_direction !=
4812 DMA_TO_DEVICE));
4813 break;
4814 }
4815 ret = transport_generic_new_cmd(cmd);
4816 if (ret == -EAGAIN)
4817 break;
4818 else if (ret < 0) {
4819 cmd->transport_error_status = ret;
4820 transport_generic_request_failure(cmd, NULL,
4821 0, (cmd->data_direction !=
4822 DMA_TO_DEVICE));
4823 }
4824 break;
4825 case TRANSPORT_PROCESS_WRITE:
4826 transport_generic_process_write(cmd);
4827 break;
4828 case TRANSPORT_COMPLETE_OK:
4829 transport_stop_all_task_timers(cmd);
4830 transport_generic_complete_ok(cmd);
4831 break;
4832 case TRANSPORT_REMOVE:
4833 transport_put_cmd(cmd);
4834 break;
4835 case TRANSPORT_FREE_CMD_INTR:
4836 transport_generic_free_cmd(cmd, 0);
4837 break;
4838 case TRANSPORT_PROCESS_TMR:
4839 transport_generic_do_tmr(cmd);
4840 break;
4841 case TRANSPORT_COMPLETE_FAILURE:
4842 transport_generic_request_failure(cmd, NULL, 1, 1);
4843 break;
4844 case TRANSPORT_COMPLETE_TIMEOUT:
4845 transport_stop_all_task_timers(cmd);
4846 transport_generic_request_timeout(cmd);
4847 break;
4848 case TRANSPORT_COMPLETE_QF_WP:
4849 transport_write_pending_qf(cmd);
4850 break;
4851 case TRANSPORT_COMPLETE_QF_OK:
4852 transport_complete_qf(cmd);
4853 break;
4854 default:
4855 pr_err("Unknown t_state: %d deferred_t_state:"
4856 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4857 " %u\n", cmd->t_state, cmd->deferred_t_state,
4858 cmd->se_tfo->get_task_tag(cmd),
4859 cmd->se_tfo->get_cmd_state(cmd),
4860 cmd->se_lun->unpacked_lun);
4861 BUG();
4862 }
4863
4864 goto get_cmd;
4865 }
4866
4867 out:
4868 WARN_ON(!list_empty(&dev->state_task_list));
4869 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4870 dev->process_thread = NULL;
4871 return 0;
4872 }
This page took 0.131601 seconds and 6 git commands to generate.