target: Convert ->transport_wait_for_tasks usage to transport_generic_free_cmd
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_scdb.h"
58 #include "target_core_ua.h"
59
60 static int sub_api_initialized;
61
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 /* Used for transport_dev_get_map_*() */
73 typedef int (*map_func_t)(struct se_task *, u32);
74
75 static int transport_generic_write_pending(struct se_cmd *);
76 static int transport_processing_thread(void *param);
77 static int __transport_execute_tasks(struct se_device *dev);
78 static void transport_complete_task_attr(struct se_cmd *cmd);
79 static int transport_complete_qf(struct se_cmd *cmd);
80 static void transport_handle_queue_full(struct se_cmd *cmd,
81 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
82 static void transport_direct_request_timeout(struct se_cmd *cmd);
83 static void transport_free_dev_tasks(struct se_cmd *cmd);
84 static u32 transport_allocate_tasks(struct se_cmd *cmd,
85 unsigned long long starting_lba,
86 enum dma_data_direction data_direction,
87 struct scatterlist *sgl, unsigned int nents);
88 static int transport_generic_get_mem(struct se_cmd *cmd);
89 static void transport_put_cmd(struct se_cmd *cmd);
90 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
91 struct se_queue_obj *qobj);
92 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
93 static void transport_stop_all_task_timers(struct se_cmd *cmd);
94
95 int init_se_kmem_caches(void)
96 {
97 se_cmd_cache = kmem_cache_create("se_cmd_cache",
98 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
99 if (!se_cmd_cache) {
100 pr_err("kmem_cache_create for struct se_cmd failed\n");
101 goto out;
102 }
103 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
104 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
105 0, NULL);
106 if (!se_tmr_req_cache) {
107 pr_err("kmem_cache_create() for struct se_tmr_req"
108 " failed\n");
109 goto out;
110 }
111 se_sess_cache = kmem_cache_create("se_sess_cache",
112 sizeof(struct se_session), __alignof__(struct se_session),
113 0, NULL);
114 if (!se_sess_cache) {
115 pr_err("kmem_cache_create() for struct se_session"
116 " failed\n");
117 goto out;
118 }
119 se_ua_cache = kmem_cache_create("se_ua_cache",
120 sizeof(struct se_ua), __alignof__(struct se_ua),
121 0, NULL);
122 if (!se_ua_cache) {
123 pr_err("kmem_cache_create() for struct se_ua failed\n");
124 goto out;
125 }
126 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
127 sizeof(struct t10_pr_registration),
128 __alignof__(struct t10_pr_registration), 0, NULL);
129 if (!t10_pr_reg_cache) {
130 pr_err("kmem_cache_create() for struct t10_pr_registration"
131 " failed\n");
132 goto out;
133 }
134 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
135 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
136 0, NULL);
137 if (!t10_alua_lu_gp_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
139 " failed\n");
140 goto out;
141 }
142 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
143 sizeof(struct t10_alua_lu_gp_member),
144 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
145 if (!t10_alua_lu_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
147 "cache failed\n");
148 goto out;
149 }
150 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
151 sizeof(struct t10_alua_tg_pt_gp),
152 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
153 if (!t10_alua_tg_pt_gp_cache) {
154 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
155 "cache failed\n");
156 goto out;
157 }
158 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
159 "t10_alua_tg_pt_gp_mem_cache",
160 sizeof(struct t10_alua_tg_pt_gp_member),
161 __alignof__(struct t10_alua_tg_pt_gp_member),
162 0, NULL);
163 if (!t10_alua_tg_pt_gp_mem_cache) {
164 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
165 "mem_t failed\n");
166 goto out;
167 }
168
169 return 0;
170 out:
171 if (se_cmd_cache)
172 kmem_cache_destroy(se_cmd_cache);
173 if (se_tmr_req_cache)
174 kmem_cache_destroy(se_tmr_req_cache);
175 if (se_sess_cache)
176 kmem_cache_destroy(se_sess_cache);
177 if (se_ua_cache)
178 kmem_cache_destroy(se_ua_cache);
179 if (t10_pr_reg_cache)
180 kmem_cache_destroy(t10_pr_reg_cache);
181 if (t10_alua_lu_gp_cache)
182 kmem_cache_destroy(t10_alua_lu_gp_cache);
183 if (t10_alua_lu_gp_mem_cache)
184 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
185 if (t10_alua_tg_pt_gp_cache)
186 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
187 if (t10_alua_tg_pt_gp_mem_cache)
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 return -ENOMEM;
190 }
191
192 void release_se_kmem_caches(void)
193 {
194 kmem_cache_destroy(se_cmd_cache);
195 kmem_cache_destroy(se_tmr_req_cache);
196 kmem_cache_destroy(se_sess_cache);
197 kmem_cache_destroy(se_ua_cache);
198 kmem_cache_destroy(t10_pr_reg_cache);
199 kmem_cache_destroy(t10_alua_lu_gp_cache);
200 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
201 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
202 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
203 }
204
205 /* This code ensures unique mib indexes are handed out. */
206 static DEFINE_SPINLOCK(scsi_mib_index_lock);
207 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
208
209 /*
210 * Allocate a new row index for the entry type specified
211 */
212 u32 scsi_get_new_index(scsi_index_t type)
213 {
214 u32 new_index;
215
216 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
217
218 spin_lock(&scsi_mib_index_lock);
219 new_index = ++scsi_mib_index[type];
220 spin_unlock(&scsi_mib_index_lock);
221
222 return new_index;
223 }
224
225 void transport_init_queue_obj(struct se_queue_obj *qobj)
226 {
227 atomic_set(&qobj->queue_cnt, 0);
228 INIT_LIST_HEAD(&qobj->qobj_list);
229 init_waitqueue_head(&qobj->thread_wq);
230 spin_lock_init(&qobj->cmd_queue_lock);
231 }
232 EXPORT_SYMBOL(transport_init_queue_obj);
233
234 static int transport_subsystem_reqmods(void)
235 {
236 int ret;
237
238 ret = request_module("target_core_iblock");
239 if (ret != 0)
240 pr_err("Unable to load target_core_iblock\n");
241
242 ret = request_module("target_core_file");
243 if (ret != 0)
244 pr_err("Unable to load target_core_file\n");
245
246 ret = request_module("target_core_pscsi");
247 if (ret != 0)
248 pr_err("Unable to load target_core_pscsi\n");
249
250 ret = request_module("target_core_stgt");
251 if (ret != 0)
252 pr_err("Unable to load target_core_stgt\n");
253
254 return 0;
255 }
256
257 int transport_subsystem_check_init(void)
258 {
259 int ret;
260
261 if (sub_api_initialized)
262 return 0;
263 /*
264 * Request the loading of known TCM subsystem plugins..
265 */
266 ret = transport_subsystem_reqmods();
267 if (ret < 0)
268 return ret;
269
270 sub_api_initialized = 1;
271 return 0;
272 }
273
274 struct se_session *transport_init_session(void)
275 {
276 struct se_session *se_sess;
277
278 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
279 if (!se_sess) {
280 pr_err("Unable to allocate struct se_session from"
281 " se_sess_cache\n");
282 return ERR_PTR(-ENOMEM);
283 }
284 INIT_LIST_HEAD(&se_sess->sess_list);
285 INIT_LIST_HEAD(&se_sess->sess_acl_list);
286
287 return se_sess;
288 }
289 EXPORT_SYMBOL(transport_init_session);
290
291 /*
292 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
293 */
294 void __transport_register_session(
295 struct se_portal_group *se_tpg,
296 struct se_node_acl *se_nacl,
297 struct se_session *se_sess,
298 void *fabric_sess_ptr)
299 {
300 unsigned char buf[PR_REG_ISID_LEN];
301
302 se_sess->se_tpg = se_tpg;
303 se_sess->fabric_sess_ptr = fabric_sess_ptr;
304 /*
305 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
306 *
307 * Only set for struct se_session's that will actually be moving I/O.
308 * eg: *NOT* discovery sessions.
309 */
310 if (se_nacl) {
311 /*
312 * If the fabric module supports an ISID based TransportID,
313 * save this value in binary from the fabric I_T Nexus now.
314 */
315 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
316 memset(&buf[0], 0, PR_REG_ISID_LEN);
317 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
318 &buf[0], PR_REG_ISID_LEN);
319 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
320 }
321 spin_lock_irq(&se_nacl->nacl_sess_lock);
322 /*
323 * The se_nacl->nacl_sess pointer will be set to the
324 * last active I_T Nexus for each struct se_node_acl.
325 */
326 se_nacl->nacl_sess = se_sess;
327
328 list_add_tail(&se_sess->sess_acl_list,
329 &se_nacl->acl_sess_list);
330 spin_unlock_irq(&se_nacl->nacl_sess_lock);
331 }
332 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
333
334 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
335 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
336 }
337 EXPORT_SYMBOL(__transport_register_session);
338
339 void transport_register_session(
340 struct se_portal_group *se_tpg,
341 struct se_node_acl *se_nacl,
342 struct se_session *se_sess,
343 void *fabric_sess_ptr)
344 {
345 spin_lock_bh(&se_tpg->session_lock);
346 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
347 spin_unlock_bh(&se_tpg->session_lock);
348 }
349 EXPORT_SYMBOL(transport_register_session);
350
351 void transport_deregister_session_configfs(struct se_session *se_sess)
352 {
353 struct se_node_acl *se_nacl;
354 unsigned long flags;
355 /*
356 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
357 */
358 se_nacl = se_sess->se_node_acl;
359 if (se_nacl) {
360 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
361 list_del(&se_sess->sess_acl_list);
362 /*
363 * If the session list is empty, then clear the pointer.
364 * Otherwise, set the struct se_session pointer from the tail
365 * element of the per struct se_node_acl active session list.
366 */
367 if (list_empty(&se_nacl->acl_sess_list))
368 se_nacl->nacl_sess = NULL;
369 else {
370 se_nacl->nacl_sess = container_of(
371 se_nacl->acl_sess_list.prev,
372 struct se_session, sess_acl_list);
373 }
374 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
375 }
376 }
377 EXPORT_SYMBOL(transport_deregister_session_configfs);
378
379 void transport_free_session(struct se_session *se_sess)
380 {
381 kmem_cache_free(se_sess_cache, se_sess);
382 }
383 EXPORT_SYMBOL(transport_free_session);
384
385 void transport_deregister_session(struct se_session *se_sess)
386 {
387 struct se_portal_group *se_tpg = se_sess->se_tpg;
388 struct se_node_acl *se_nacl;
389 unsigned long flags;
390
391 if (!se_tpg) {
392 transport_free_session(se_sess);
393 return;
394 }
395
396 spin_lock_irqsave(&se_tpg->session_lock, flags);
397 list_del(&se_sess->sess_list);
398 se_sess->se_tpg = NULL;
399 se_sess->fabric_sess_ptr = NULL;
400 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
401
402 /*
403 * Determine if we need to do extra work for this initiator node's
404 * struct se_node_acl if it had been previously dynamically generated.
405 */
406 se_nacl = se_sess->se_node_acl;
407 if (se_nacl) {
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 if (se_nacl->dynamic_node_acl) {
410 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
411 se_tpg)) {
412 list_del(&se_nacl->acl_list);
413 se_tpg->num_node_acls--;
414 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
415
416 core_tpg_wait_for_nacl_pr_ref(se_nacl);
417 core_free_device_list_for_node(se_nacl, se_tpg);
418 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
419 se_nacl);
420 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
421 }
422 }
423 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
424 }
425
426 transport_free_session(se_sess);
427
428 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
429 se_tpg->se_tpg_tfo->get_fabric_name());
430 }
431 EXPORT_SYMBOL(transport_deregister_session);
432
433 /*
434 * Called with cmd->t_state_lock held.
435 */
436 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
437 {
438 struct se_device *dev;
439 struct se_task *task;
440 unsigned long flags;
441
442 list_for_each_entry(task, &cmd->t_task_list, t_list) {
443 dev = task->se_dev;
444 if (!dev)
445 continue;
446
447 if (atomic_read(&task->task_active))
448 continue;
449
450 if (!atomic_read(&task->task_state_active))
451 continue;
452
453 spin_lock_irqsave(&dev->execute_task_lock, flags);
454 list_del(&task->t_state_list);
455 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
456 cmd->se_tfo->get_task_tag(cmd), dev, task);
457 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
458
459 atomic_set(&task->task_state_active, 0);
460 atomic_dec(&cmd->t_task_cdbs_ex_left);
461 }
462 }
463
464 /* transport_cmd_check_stop():
465 *
466 * 'transport_off = 1' determines if t_transport_active should be cleared.
467 * 'transport_off = 2' determines if task_dev_state should be removed.
468 *
469 * A non-zero u8 t_state sets cmd->t_state.
470 * Returns 1 when command is stopped, else 0.
471 */
472 static int transport_cmd_check_stop(
473 struct se_cmd *cmd,
474 int transport_off,
475 u8 t_state)
476 {
477 unsigned long flags;
478
479 spin_lock_irqsave(&cmd->t_state_lock, flags);
480 /*
481 * Determine if IOCTL context caller in requesting the stopping of this
482 * command for LUN shutdown purposes.
483 */
484 if (atomic_read(&cmd->transport_lun_stop)) {
485 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
486 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
487 cmd->se_tfo->get_task_tag(cmd));
488
489 cmd->deferred_t_state = cmd->t_state;
490 cmd->t_state = TRANSPORT_DEFERRED_CMD;
491 atomic_set(&cmd->t_transport_active, 0);
492 if (transport_off == 2)
493 transport_all_task_dev_remove_state(cmd);
494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496 complete(&cmd->transport_lun_stop_comp);
497 return 1;
498 }
499 /*
500 * Determine if frontend context caller is requesting the stopping of
501 * this command for frontend exceptions.
502 */
503 if (atomic_read(&cmd->t_transport_stop)) {
504 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
505 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
506 cmd->se_tfo->get_task_tag(cmd));
507
508 cmd->deferred_t_state = cmd->t_state;
509 cmd->t_state = TRANSPORT_DEFERRED_CMD;
510 if (transport_off == 2)
511 transport_all_task_dev_remove_state(cmd);
512
513 /*
514 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
515 * to FE.
516 */
517 if (transport_off == 2)
518 cmd->se_lun = NULL;
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521 complete(&cmd->t_transport_stop_comp);
522 return 1;
523 }
524 if (transport_off) {
525 atomic_set(&cmd->t_transport_active, 0);
526 if (transport_off == 2) {
527 transport_all_task_dev_remove_state(cmd);
528 /*
529 * Clear struct se_cmd->se_lun before the transport_off == 2
530 * handoff to fabric module.
531 */
532 cmd->se_lun = NULL;
533 /*
534 * Some fabric modules like tcm_loop can release
535 * their internally allocated I/O reference now and
536 * struct se_cmd now.
537 */
538 if (cmd->se_tfo->check_stop_free != NULL) {
539 spin_unlock_irqrestore(
540 &cmd->t_state_lock, flags);
541
542 cmd->se_tfo->check_stop_free(cmd);
543 return 1;
544 }
545 }
546 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
547
548 return 0;
549 } else if (t_state)
550 cmd->t_state = t_state;
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552
553 return 0;
554 }
555
556 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
557 {
558 return transport_cmd_check_stop(cmd, 2, 0);
559 }
560
561 static void transport_lun_remove_cmd(struct se_cmd *cmd)
562 {
563 struct se_lun *lun = cmd->se_lun;
564 unsigned long flags;
565
566 if (!lun)
567 return;
568
569 spin_lock_irqsave(&cmd->t_state_lock, flags);
570 if (!atomic_read(&cmd->transport_dev_active)) {
571 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
572 goto check_lun;
573 }
574 atomic_set(&cmd->transport_dev_active, 0);
575 transport_all_task_dev_remove_state(cmd);
576 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577
578
579 check_lun:
580 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
581 if (atomic_read(&cmd->transport_lun_active)) {
582 list_del(&cmd->se_lun_node);
583 atomic_set(&cmd->transport_lun_active, 0);
584 #if 0
585 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
586 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
587 #endif
588 }
589 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
590 }
591
592 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
593 {
594 transport_lun_remove_cmd(cmd);
595
596 if (transport_cmd_check_stop_to_fabric(cmd))
597 return;
598 if (remove) {
599 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
600 transport_put_cmd(cmd);
601 }
602 }
603
604 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
605 {
606 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
607
608 if (transport_cmd_check_stop_to_fabric(cmd))
609 return;
610
611 transport_put_cmd(cmd);
612 }
613
614 static void transport_add_cmd_to_queue(
615 struct se_cmd *cmd,
616 int t_state)
617 {
618 struct se_device *dev = cmd->se_dev;
619 struct se_queue_obj *qobj = &dev->dev_queue_obj;
620 unsigned long flags;
621
622 if (t_state) {
623 spin_lock_irqsave(&cmd->t_state_lock, flags);
624 cmd->t_state = t_state;
625 atomic_set(&cmd->t_transport_active, 1);
626 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
627 }
628
629 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
630
631 /* If the cmd is already on the list, remove it before we add it */
632 if (!list_empty(&cmd->se_queue_node))
633 list_del(&cmd->se_queue_node);
634 else
635 atomic_inc(&qobj->queue_cnt);
636
637 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
638 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
639 list_add(&cmd->se_queue_node, &qobj->qobj_list);
640 } else
641 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
642 atomic_set(&cmd->t_transport_queue_active, 1);
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644
645 wake_up_interruptible(&qobj->thread_wq);
646 }
647
648 static struct se_cmd *
649 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
650 {
651 struct se_cmd *cmd;
652 unsigned long flags;
653
654 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
655 if (list_empty(&qobj->qobj_list)) {
656 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
657 return NULL;
658 }
659 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
660
661 atomic_set(&cmd->t_transport_queue_active, 0);
662
663 list_del_init(&cmd->se_queue_node);
664 atomic_dec(&qobj->queue_cnt);
665 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666
667 return cmd;
668 }
669
670 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
671 struct se_queue_obj *qobj)
672 {
673 unsigned long flags;
674
675 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
676 if (!atomic_read(&cmd->t_transport_queue_active)) {
677 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
678 return;
679 }
680 atomic_set(&cmd->t_transport_queue_active, 0);
681 atomic_dec(&qobj->queue_cnt);
682 list_del_init(&cmd->se_queue_node);
683 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
684
685 if (atomic_read(&cmd->t_transport_queue_active)) {
686 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
687 cmd->se_tfo->get_task_tag(cmd),
688 atomic_read(&cmd->t_transport_queue_active));
689 }
690 }
691
692 /*
693 * Completion function used by TCM subsystem plugins (such as FILEIO)
694 * for queueing up response from struct se_subsystem_api->do_task()
695 */
696 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
697 {
698 struct se_task *task = list_entry(cmd->t_task_list.next,
699 struct se_task, t_list);
700
701 if (good) {
702 cmd->scsi_status = SAM_STAT_GOOD;
703 task->task_scsi_status = GOOD;
704 } else {
705 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
706 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
707 task->task_se_cmd->transport_error_status =
708 PYX_TRANSPORT_ILLEGAL_REQUEST;
709 }
710
711 transport_complete_task(task, good);
712 }
713 EXPORT_SYMBOL(transport_complete_sync_cache);
714
715 /* transport_complete_task():
716 *
717 * Called from interrupt and non interrupt context depending
718 * on the transport plugin.
719 */
720 void transport_complete_task(struct se_task *task, int success)
721 {
722 struct se_cmd *cmd = task->task_se_cmd;
723 struct se_device *dev = task->se_dev;
724 int t_state;
725 unsigned long flags;
726 #if 0
727 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
728 cmd->t_task_cdb[0], dev);
729 #endif
730 if (dev)
731 atomic_inc(&dev->depth_left);
732
733 spin_lock_irqsave(&cmd->t_state_lock, flags);
734 atomic_set(&task->task_active, 0);
735
736 /*
737 * See if any sense data exists, if so set the TASK_SENSE flag.
738 * Also check for any other post completion work that needs to be
739 * done by the plugins.
740 */
741 if (dev && dev->transport->transport_complete) {
742 if (dev->transport->transport_complete(task) != 0) {
743 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
744 task->task_sense = 1;
745 success = 1;
746 }
747 }
748
749 /*
750 * See if we are waiting for outstanding struct se_task
751 * to complete for an exception condition
752 */
753 if (atomic_read(&task->task_stop)) {
754 /*
755 * Decrement cmd->t_se_count if this task had
756 * previously thrown its timeout exception handler.
757 */
758 if (atomic_read(&task->task_timeout)) {
759 atomic_dec(&cmd->t_se_count);
760 atomic_set(&task->task_timeout, 0);
761 }
762 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763
764 complete(&task->task_stop_comp);
765 return;
766 }
767 /*
768 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
769 * left counter to determine when the struct se_cmd is ready to be queued to
770 * the processing thread.
771 */
772 if (atomic_read(&task->task_timeout)) {
773 if (!atomic_dec_and_test(
774 &cmd->t_task_cdbs_timeout_left)) {
775 spin_unlock_irqrestore(&cmd->t_state_lock,
776 flags);
777 return;
778 }
779 t_state = TRANSPORT_COMPLETE_TIMEOUT;
780 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
781
782 transport_add_cmd_to_queue(cmd, t_state);
783 return;
784 }
785 atomic_dec(&cmd->t_task_cdbs_timeout_left);
786
787 /*
788 * Decrement the outstanding t_task_cdbs_left count. The last
789 * struct se_task from struct se_cmd will complete itself into the
790 * device queue depending upon int success.
791 */
792 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
793 if (!success)
794 cmd->t_tasks_failed = 1;
795
796 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
797 return;
798 }
799
800 if (!success || cmd->t_tasks_failed) {
801 t_state = TRANSPORT_COMPLETE_FAILURE;
802 if (!task->task_error_status) {
803 task->task_error_status =
804 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
805 cmd->transport_error_status =
806 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
807 }
808 } else {
809 atomic_set(&cmd->t_transport_complete, 1);
810 t_state = TRANSPORT_COMPLETE_OK;
811 }
812 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
813
814 transport_add_cmd_to_queue(cmd, t_state);
815 }
816 EXPORT_SYMBOL(transport_complete_task);
817
818 /*
819 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
820 * struct se_task list are ready to be added to the active execution list
821 * struct se_device
822
823 * Called with se_dev_t->execute_task_lock called.
824 */
825 static inline int transport_add_task_check_sam_attr(
826 struct se_task *task,
827 struct se_task *task_prev,
828 struct se_device *dev)
829 {
830 /*
831 * No SAM Task attribute emulation enabled, add to tail of
832 * execution queue
833 */
834 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
835 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
836 return 0;
837 }
838 /*
839 * HEAD_OF_QUEUE attribute for received CDB, which means
840 * the first task that is associated with a struct se_cmd goes to
841 * head of the struct se_device->execute_task_list, and task_prev
842 * after that for each subsequent task
843 */
844 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
845 list_add(&task->t_execute_list,
846 (task_prev != NULL) ?
847 &task_prev->t_execute_list :
848 &dev->execute_task_list);
849
850 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
851 " in execution queue\n",
852 task->task_se_cmd->t_task_cdb[0]);
853 return 1;
854 }
855 /*
856 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
857 * transitioned from Dermant -> Active state, and are added to the end
858 * of the struct se_device->execute_task_list
859 */
860 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
861 return 0;
862 }
863
864 /* __transport_add_task_to_execute_queue():
865 *
866 * Called with se_dev_t->execute_task_lock called.
867 */
868 static void __transport_add_task_to_execute_queue(
869 struct se_task *task,
870 struct se_task *task_prev,
871 struct se_device *dev)
872 {
873 int head_of_queue;
874
875 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
876 atomic_inc(&dev->execute_tasks);
877
878 if (atomic_read(&task->task_state_active))
879 return;
880 /*
881 * Determine if this task needs to go to HEAD_OF_QUEUE for the
882 * state list as well. Running with SAM Task Attribute emulation
883 * will always return head_of_queue == 0 here
884 */
885 if (head_of_queue)
886 list_add(&task->t_state_list, (task_prev) ?
887 &task_prev->t_state_list :
888 &dev->state_task_list);
889 else
890 list_add_tail(&task->t_state_list, &dev->state_task_list);
891
892 atomic_set(&task->task_state_active, 1);
893
894 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
895 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
896 task, dev);
897 }
898
899 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
900 {
901 struct se_device *dev;
902 struct se_task *task;
903 unsigned long flags;
904
905 spin_lock_irqsave(&cmd->t_state_lock, flags);
906 list_for_each_entry(task, &cmd->t_task_list, t_list) {
907 dev = task->se_dev;
908
909 if (atomic_read(&task->task_state_active))
910 continue;
911
912 spin_lock(&dev->execute_task_lock);
913 list_add_tail(&task->t_state_list, &dev->state_task_list);
914 atomic_set(&task->task_state_active, 1);
915
916 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
917 task->task_se_cmd->se_tfo->get_task_tag(
918 task->task_se_cmd), task, dev);
919
920 spin_unlock(&dev->execute_task_lock);
921 }
922 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
923 }
924
925 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
926 {
927 struct se_device *dev = cmd->se_dev;
928 struct se_task *task, *task_prev = NULL;
929 unsigned long flags;
930
931 spin_lock_irqsave(&dev->execute_task_lock, flags);
932 list_for_each_entry(task, &cmd->t_task_list, t_list) {
933 if (atomic_read(&task->task_execute_queue))
934 continue;
935 /*
936 * __transport_add_task_to_execute_queue() handles the
937 * SAM Task Attribute emulation if enabled
938 */
939 __transport_add_task_to_execute_queue(task, task_prev, dev);
940 atomic_set(&task->task_execute_queue, 1);
941 task_prev = task;
942 }
943 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
944 }
945
946 /* transport_remove_task_from_execute_queue():
947 *
948 *
949 */
950 void transport_remove_task_from_execute_queue(
951 struct se_task *task,
952 struct se_device *dev)
953 {
954 unsigned long flags;
955
956 if (atomic_read(&task->task_execute_queue) == 0) {
957 dump_stack();
958 return;
959 }
960
961 spin_lock_irqsave(&dev->execute_task_lock, flags);
962 list_del(&task->t_execute_list);
963 atomic_set(&task->task_execute_queue, 0);
964 atomic_dec(&dev->execute_tasks);
965 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
966 }
967
968 /*
969 * Handle QUEUE_FULL / -EAGAIN status
970 */
971
972 static void target_qf_do_work(struct work_struct *work)
973 {
974 struct se_device *dev = container_of(work, struct se_device,
975 qf_work_queue);
976 LIST_HEAD(qf_cmd_list);
977 struct se_cmd *cmd, *cmd_tmp;
978
979 spin_lock_irq(&dev->qf_cmd_lock);
980 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
981 spin_unlock_irq(&dev->qf_cmd_lock);
982
983 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
984 list_del(&cmd->se_qf_node);
985 atomic_dec(&dev->dev_qf_count);
986 smp_mb__after_atomic_dec();
987
988 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
989 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
990 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
991 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
992 : "UNKNOWN");
993 /*
994 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
995 * has been added to head of queue
996 */
997 transport_add_cmd_to_queue(cmd, cmd->t_state);
998 }
999 }
1000
1001 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1002 {
1003 switch (cmd->data_direction) {
1004 case DMA_NONE:
1005 return "NONE";
1006 case DMA_FROM_DEVICE:
1007 return "READ";
1008 case DMA_TO_DEVICE:
1009 return "WRITE";
1010 case DMA_BIDIRECTIONAL:
1011 return "BIDI";
1012 default:
1013 break;
1014 }
1015
1016 return "UNKNOWN";
1017 }
1018
1019 void transport_dump_dev_state(
1020 struct se_device *dev,
1021 char *b,
1022 int *bl)
1023 {
1024 *bl += sprintf(b + *bl, "Status: ");
1025 switch (dev->dev_status) {
1026 case TRANSPORT_DEVICE_ACTIVATED:
1027 *bl += sprintf(b + *bl, "ACTIVATED");
1028 break;
1029 case TRANSPORT_DEVICE_DEACTIVATED:
1030 *bl += sprintf(b + *bl, "DEACTIVATED");
1031 break;
1032 case TRANSPORT_DEVICE_SHUTDOWN:
1033 *bl += sprintf(b + *bl, "SHUTDOWN");
1034 break;
1035 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1036 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1037 *bl += sprintf(b + *bl, "OFFLINE");
1038 break;
1039 default:
1040 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1041 break;
1042 }
1043
1044 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1045 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1046 dev->queue_depth);
1047 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1048 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1049 *bl += sprintf(b + *bl, " ");
1050 }
1051
1052 /* transport_release_all_cmds():
1053 *
1054 *
1055 */
1056 static void transport_release_all_cmds(struct se_device *dev)
1057 {
1058 struct se_cmd *cmd, *tcmd;
1059 int bug_out = 0, t_state;
1060 unsigned long flags;
1061
1062 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1063 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1064 se_queue_node) {
1065 t_state = cmd->t_state;
1066 list_del_init(&cmd->se_queue_node);
1067 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1068 flags);
1069
1070 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1071 " t_state: %u directly\n",
1072 cmd->se_tfo->get_task_tag(cmd),
1073 cmd->se_tfo->get_cmd_state(cmd), t_state);
1074
1075 transport_put_cmd(cmd);
1076 bug_out = 1;
1077
1078 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1079 }
1080 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1081 #if 0
1082 if (bug_out)
1083 BUG();
1084 #endif
1085 }
1086
1087 void transport_dump_vpd_proto_id(
1088 struct t10_vpd *vpd,
1089 unsigned char *p_buf,
1090 int p_buf_len)
1091 {
1092 unsigned char buf[VPD_TMP_BUF_SIZE];
1093 int len;
1094
1095 memset(buf, 0, VPD_TMP_BUF_SIZE);
1096 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1097
1098 switch (vpd->protocol_identifier) {
1099 case 0x00:
1100 sprintf(buf+len, "Fibre Channel\n");
1101 break;
1102 case 0x10:
1103 sprintf(buf+len, "Parallel SCSI\n");
1104 break;
1105 case 0x20:
1106 sprintf(buf+len, "SSA\n");
1107 break;
1108 case 0x30:
1109 sprintf(buf+len, "IEEE 1394\n");
1110 break;
1111 case 0x40:
1112 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1113 " Protocol\n");
1114 break;
1115 case 0x50:
1116 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1117 break;
1118 case 0x60:
1119 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1120 break;
1121 case 0x70:
1122 sprintf(buf+len, "Automation/Drive Interface Transport"
1123 " Protocol\n");
1124 break;
1125 case 0x80:
1126 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1127 break;
1128 default:
1129 sprintf(buf+len, "Unknown 0x%02x\n",
1130 vpd->protocol_identifier);
1131 break;
1132 }
1133
1134 if (p_buf)
1135 strncpy(p_buf, buf, p_buf_len);
1136 else
1137 pr_debug("%s", buf);
1138 }
1139
1140 void
1141 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1142 {
1143 /*
1144 * Check if the Protocol Identifier Valid (PIV) bit is set..
1145 *
1146 * from spc3r23.pdf section 7.5.1
1147 */
1148 if (page_83[1] & 0x80) {
1149 vpd->protocol_identifier = (page_83[0] & 0xf0);
1150 vpd->protocol_identifier_set = 1;
1151 transport_dump_vpd_proto_id(vpd, NULL, 0);
1152 }
1153 }
1154 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1155
1156 int transport_dump_vpd_assoc(
1157 struct t10_vpd *vpd,
1158 unsigned char *p_buf,
1159 int p_buf_len)
1160 {
1161 unsigned char buf[VPD_TMP_BUF_SIZE];
1162 int ret = 0;
1163 int len;
1164
1165 memset(buf, 0, VPD_TMP_BUF_SIZE);
1166 len = sprintf(buf, "T10 VPD Identifier Association: ");
1167
1168 switch (vpd->association) {
1169 case 0x00:
1170 sprintf(buf+len, "addressed logical unit\n");
1171 break;
1172 case 0x10:
1173 sprintf(buf+len, "target port\n");
1174 break;
1175 case 0x20:
1176 sprintf(buf+len, "SCSI target device\n");
1177 break;
1178 default:
1179 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1180 ret = -EINVAL;
1181 break;
1182 }
1183
1184 if (p_buf)
1185 strncpy(p_buf, buf, p_buf_len);
1186 else
1187 pr_debug("%s", buf);
1188
1189 return ret;
1190 }
1191
1192 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1193 {
1194 /*
1195 * The VPD identification association..
1196 *
1197 * from spc3r23.pdf Section 7.6.3.1 Table 297
1198 */
1199 vpd->association = (page_83[1] & 0x30);
1200 return transport_dump_vpd_assoc(vpd, NULL, 0);
1201 }
1202 EXPORT_SYMBOL(transport_set_vpd_assoc);
1203
1204 int transport_dump_vpd_ident_type(
1205 struct t10_vpd *vpd,
1206 unsigned char *p_buf,
1207 int p_buf_len)
1208 {
1209 unsigned char buf[VPD_TMP_BUF_SIZE];
1210 int ret = 0;
1211 int len;
1212
1213 memset(buf, 0, VPD_TMP_BUF_SIZE);
1214 len = sprintf(buf, "T10 VPD Identifier Type: ");
1215
1216 switch (vpd->device_identifier_type) {
1217 case 0x00:
1218 sprintf(buf+len, "Vendor specific\n");
1219 break;
1220 case 0x01:
1221 sprintf(buf+len, "T10 Vendor ID based\n");
1222 break;
1223 case 0x02:
1224 sprintf(buf+len, "EUI-64 based\n");
1225 break;
1226 case 0x03:
1227 sprintf(buf+len, "NAA\n");
1228 break;
1229 case 0x04:
1230 sprintf(buf+len, "Relative target port identifier\n");
1231 break;
1232 case 0x08:
1233 sprintf(buf+len, "SCSI name string\n");
1234 break;
1235 default:
1236 sprintf(buf+len, "Unsupported: 0x%02x\n",
1237 vpd->device_identifier_type);
1238 ret = -EINVAL;
1239 break;
1240 }
1241
1242 if (p_buf) {
1243 if (p_buf_len < strlen(buf)+1)
1244 return -EINVAL;
1245 strncpy(p_buf, buf, p_buf_len);
1246 } else {
1247 pr_debug("%s", buf);
1248 }
1249
1250 return ret;
1251 }
1252
1253 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1254 {
1255 /*
1256 * The VPD identifier type..
1257 *
1258 * from spc3r23.pdf Section 7.6.3.1 Table 298
1259 */
1260 vpd->device_identifier_type = (page_83[1] & 0x0f);
1261 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1262 }
1263 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1264
1265 int transport_dump_vpd_ident(
1266 struct t10_vpd *vpd,
1267 unsigned char *p_buf,
1268 int p_buf_len)
1269 {
1270 unsigned char buf[VPD_TMP_BUF_SIZE];
1271 int ret = 0;
1272
1273 memset(buf, 0, VPD_TMP_BUF_SIZE);
1274
1275 switch (vpd->device_identifier_code_set) {
1276 case 0x01: /* Binary */
1277 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1278 &vpd->device_identifier[0]);
1279 break;
1280 case 0x02: /* ASCII */
1281 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1282 &vpd->device_identifier[0]);
1283 break;
1284 case 0x03: /* UTF-8 */
1285 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1286 &vpd->device_identifier[0]);
1287 break;
1288 default:
1289 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1290 " 0x%02x", vpd->device_identifier_code_set);
1291 ret = -EINVAL;
1292 break;
1293 }
1294
1295 if (p_buf)
1296 strncpy(p_buf, buf, p_buf_len);
1297 else
1298 pr_debug("%s", buf);
1299
1300 return ret;
1301 }
1302
1303 int
1304 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1305 {
1306 static const char hex_str[] = "0123456789abcdef";
1307 int j = 0, i = 4; /* offset to start of the identifer */
1308
1309 /*
1310 * The VPD Code Set (encoding)
1311 *
1312 * from spc3r23.pdf Section 7.6.3.1 Table 296
1313 */
1314 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1315 switch (vpd->device_identifier_code_set) {
1316 case 0x01: /* Binary */
1317 vpd->device_identifier[j++] =
1318 hex_str[vpd->device_identifier_type];
1319 while (i < (4 + page_83[3])) {
1320 vpd->device_identifier[j++] =
1321 hex_str[(page_83[i] & 0xf0) >> 4];
1322 vpd->device_identifier[j++] =
1323 hex_str[page_83[i] & 0x0f];
1324 i++;
1325 }
1326 break;
1327 case 0x02: /* ASCII */
1328 case 0x03: /* UTF-8 */
1329 while (i < (4 + page_83[3]))
1330 vpd->device_identifier[j++] = page_83[i++];
1331 break;
1332 default:
1333 break;
1334 }
1335
1336 return transport_dump_vpd_ident(vpd, NULL, 0);
1337 }
1338 EXPORT_SYMBOL(transport_set_vpd_ident);
1339
1340 static void core_setup_task_attr_emulation(struct se_device *dev)
1341 {
1342 /*
1343 * If this device is from Target_Core_Mod/pSCSI, disable the
1344 * SAM Task Attribute emulation.
1345 *
1346 * This is currently not available in upsream Linux/SCSI Target
1347 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1348 */
1349 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1350 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1351 return;
1352 }
1353
1354 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1355 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1356 " device\n", dev->transport->name,
1357 dev->transport->get_device_rev(dev));
1358 }
1359
1360 static void scsi_dump_inquiry(struct se_device *dev)
1361 {
1362 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1363 int i, device_type;
1364 /*
1365 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1366 */
1367 pr_debug(" Vendor: ");
1368 for (i = 0; i < 8; i++)
1369 if (wwn->vendor[i] >= 0x20)
1370 pr_debug("%c", wwn->vendor[i]);
1371 else
1372 pr_debug(" ");
1373
1374 pr_debug(" Model: ");
1375 for (i = 0; i < 16; i++)
1376 if (wwn->model[i] >= 0x20)
1377 pr_debug("%c", wwn->model[i]);
1378 else
1379 pr_debug(" ");
1380
1381 pr_debug(" Revision: ");
1382 for (i = 0; i < 4; i++)
1383 if (wwn->revision[i] >= 0x20)
1384 pr_debug("%c", wwn->revision[i]);
1385 else
1386 pr_debug(" ");
1387
1388 pr_debug("\n");
1389
1390 device_type = dev->transport->get_device_type(dev);
1391 pr_debug(" Type: %s ", scsi_device_type(device_type));
1392 pr_debug(" ANSI SCSI revision: %02x\n",
1393 dev->transport->get_device_rev(dev));
1394 }
1395
1396 struct se_device *transport_add_device_to_core_hba(
1397 struct se_hba *hba,
1398 struct se_subsystem_api *transport,
1399 struct se_subsystem_dev *se_dev,
1400 u32 device_flags,
1401 void *transport_dev,
1402 struct se_dev_limits *dev_limits,
1403 const char *inquiry_prod,
1404 const char *inquiry_rev)
1405 {
1406 int force_pt;
1407 struct se_device *dev;
1408
1409 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1410 if (!dev) {
1411 pr_err("Unable to allocate memory for se_dev_t\n");
1412 return NULL;
1413 }
1414
1415 transport_init_queue_obj(&dev->dev_queue_obj);
1416 dev->dev_flags = device_flags;
1417 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1418 dev->dev_ptr = transport_dev;
1419 dev->se_hba = hba;
1420 dev->se_sub_dev = se_dev;
1421 dev->transport = transport;
1422 atomic_set(&dev->active_cmds, 0);
1423 INIT_LIST_HEAD(&dev->dev_list);
1424 INIT_LIST_HEAD(&dev->dev_sep_list);
1425 INIT_LIST_HEAD(&dev->dev_tmr_list);
1426 INIT_LIST_HEAD(&dev->execute_task_list);
1427 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1428 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1429 INIT_LIST_HEAD(&dev->state_task_list);
1430 INIT_LIST_HEAD(&dev->qf_cmd_list);
1431 spin_lock_init(&dev->execute_task_lock);
1432 spin_lock_init(&dev->delayed_cmd_lock);
1433 spin_lock_init(&dev->ordered_cmd_lock);
1434 spin_lock_init(&dev->state_task_lock);
1435 spin_lock_init(&dev->dev_alua_lock);
1436 spin_lock_init(&dev->dev_reservation_lock);
1437 spin_lock_init(&dev->dev_status_lock);
1438 spin_lock_init(&dev->dev_status_thr_lock);
1439 spin_lock_init(&dev->se_port_lock);
1440 spin_lock_init(&dev->se_tmr_lock);
1441 spin_lock_init(&dev->qf_cmd_lock);
1442
1443 dev->queue_depth = dev_limits->queue_depth;
1444 atomic_set(&dev->depth_left, dev->queue_depth);
1445 atomic_set(&dev->dev_ordered_id, 0);
1446
1447 se_dev_set_default_attribs(dev, dev_limits);
1448
1449 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1450 dev->creation_time = get_jiffies_64();
1451 spin_lock_init(&dev->stats_lock);
1452
1453 spin_lock(&hba->device_lock);
1454 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1455 hba->dev_count++;
1456 spin_unlock(&hba->device_lock);
1457 /*
1458 * Setup the SAM Task Attribute emulation for struct se_device
1459 */
1460 core_setup_task_attr_emulation(dev);
1461 /*
1462 * Force PR and ALUA passthrough emulation with internal object use.
1463 */
1464 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1465 /*
1466 * Setup the Reservations infrastructure for struct se_device
1467 */
1468 core_setup_reservations(dev, force_pt);
1469 /*
1470 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1471 */
1472 if (core_setup_alua(dev, force_pt) < 0)
1473 goto out;
1474
1475 /*
1476 * Startup the struct se_device processing thread
1477 */
1478 dev->process_thread = kthread_run(transport_processing_thread, dev,
1479 "LIO_%s", dev->transport->name);
1480 if (IS_ERR(dev->process_thread)) {
1481 pr_err("Unable to create kthread: LIO_%s\n",
1482 dev->transport->name);
1483 goto out;
1484 }
1485 /*
1486 * Setup work_queue for QUEUE_FULL
1487 */
1488 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1489 /*
1490 * Preload the initial INQUIRY const values if we are doing
1491 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1492 * passthrough because this is being provided by the backend LLD.
1493 * This is required so that transport_get_inquiry() copies these
1494 * originals once back into DEV_T10_WWN(dev) for the virtual device
1495 * setup.
1496 */
1497 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1498 if (!inquiry_prod || !inquiry_rev) {
1499 pr_err("All non TCM/pSCSI plugins require"
1500 " INQUIRY consts\n");
1501 goto out;
1502 }
1503
1504 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1505 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1506 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1507 }
1508 scsi_dump_inquiry(dev);
1509
1510 return dev;
1511 out:
1512 kthread_stop(dev->process_thread);
1513
1514 spin_lock(&hba->device_lock);
1515 list_del(&dev->dev_list);
1516 hba->dev_count--;
1517 spin_unlock(&hba->device_lock);
1518
1519 se_release_vpd_for_dev(dev);
1520
1521 kfree(dev);
1522
1523 return NULL;
1524 }
1525 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1526
1527 /* transport_generic_prepare_cdb():
1528 *
1529 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1530 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1531 * The point of this is since we are mapping iSCSI LUNs to
1532 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1533 * devices and HBAs for a loop.
1534 */
1535 static inline void transport_generic_prepare_cdb(
1536 unsigned char *cdb)
1537 {
1538 switch (cdb[0]) {
1539 case READ_10: /* SBC - RDProtect */
1540 case READ_12: /* SBC - RDProtect */
1541 case READ_16: /* SBC - RDProtect */
1542 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1543 case VERIFY: /* SBC - VRProtect */
1544 case VERIFY_16: /* SBC - VRProtect */
1545 case WRITE_VERIFY: /* SBC - VRProtect */
1546 case WRITE_VERIFY_12: /* SBC - VRProtect */
1547 break;
1548 default:
1549 cdb[1] &= 0x1f; /* clear logical unit number */
1550 break;
1551 }
1552 }
1553
1554 static struct se_task *
1555 transport_generic_get_task(struct se_cmd *cmd,
1556 enum dma_data_direction data_direction)
1557 {
1558 struct se_task *task;
1559 struct se_device *dev = cmd->se_dev;
1560
1561 task = dev->transport->alloc_task(cmd->t_task_cdb);
1562 if (!task) {
1563 pr_err("Unable to allocate struct se_task\n");
1564 return NULL;
1565 }
1566
1567 INIT_LIST_HEAD(&task->t_list);
1568 INIT_LIST_HEAD(&task->t_execute_list);
1569 INIT_LIST_HEAD(&task->t_state_list);
1570 init_completion(&task->task_stop_comp);
1571 task->task_se_cmd = cmd;
1572 task->se_dev = dev;
1573 task->task_data_direction = data_direction;
1574
1575 return task;
1576 }
1577
1578 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1579
1580 /*
1581 * Used by fabric modules containing a local struct se_cmd within their
1582 * fabric dependent per I/O descriptor.
1583 */
1584 void transport_init_se_cmd(
1585 struct se_cmd *cmd,
1586 struct target_core_fabric_ops *tfo,
1587 struct se_session *se_sess,
1588 u32 data_length,
1589 int data_direction,
1590 int task_attr,
1591 unsigned char *sense_buffer)
1592 {
1593 INIT_LIST_HEAD(&cmd->se_lun_node);
1594 INIT_LIST_HEAD(&cmd->se_delayed_node);
1595 INIT_LIST_HEAD(&cmd->se_ordered_node);
1596 INIT_LIST_HEAD(&cmd->se_qf_node);
1597 INIT_LIST_HEAD(&cmd->se_queue_node);
1598
1599 INIT_LIST_HEAD(&cmd->t_task_list);
1600 init_completion(&cmd->transport_lun_fe_stop_comp);
1601 init_completion(&cmd->transport_lun_stop_comp);
1602 init_completion(&cmd->t_transport_stop_comp);
1603 spin_lock_init(&cmd->t_state_lock);
1604 atomic_set(&cmd->transport_dev_active, 1);
1605
1606 cmd->se_tfo = tfo;
1607 cmd->se_sess = se_sess;
1608 cmd->data_length = data_length;
1609 cmd->data_direction = data_direction;
1610 cmd->sam_task_attr = task_attr;
1611 cmd->sense_buffer = sense_buffer;
1612 }
1613 EXPORT_SYMBOL(transport_init_se_cmd);
1614
1615 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1616 {
1617 /*
1618 * Check if SAM Task Attribute emulation is enabled for this
1619 * struct se_device storage object
1620 */
1621 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1622 return 0;
1623
1624 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1625 pr_debug("SAM Task Attribute ACA"
1626 " emulation is not supported\n");
1627 return -EINVAL;
1628 }
1629 /*
1630 * Used to determine when ORDERED commands should go from
1631 * Dormant to Active status.
1632 */
1633 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1634 smp_mb__after_atomic_inc();
1635 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1636 cmd->se_ordered_id, cmd->sam_task_attr,
1637 cmd->se_dev->transport->name);
1638 return 0;
1639 }
1640
1641 /* transport_generic_allocate_tasks():
1642 *
1643 * Called from fabric RX Thread.
1644 */
1645 int transport_generic_allocate_tasks(
1646 struct se_cmd *cmd,
1647 unsigned char *cdb)
1648 {
1649 int ret;
1650
1651 transport_generic_prepare_cdb(cdb);
1652 /*
1653 * Ensure that the received CDB is less than the max (252 + 8) bytes
1654 * for VARIABLE_LENGTH_CMD
1655 */
1656 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1657 pr_err("Received SCSI CDB with command_size: %d that"
1658 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1659 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1660 return -EINVAL;
1661 }
1662 /*
1663 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1664 * allocate the additional extended CDB buffer now.. Otherwise
1665 * setup the pointer from __t_task_cdb to t_task_cdb.
1666 */
1667 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1668 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1669 GFP_KERNEL);
1670 if (!cmd->t_task_cdb) {
1671 pr_err("Unable to allocate cmd->t_task_cdb"
1672 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1673 scsi_command_size(cdb),
1674 (unsigned long)sizeof(cmd->__t_task_cdb));
1675 return -ENOMEM;
1676 }
1677 } else
1678 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1679 /*
1680 * Copy the original CDB into cmd->
1681 */
1682 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1683 /*
1684 * Setup the received CDB based on SCSI defined opcodes and
1685 * perform unit attention, persistent reservations and ALUA
1686 * checks for virtual device backends. The cmd->t_task_cdb
1687 * pointer is expected to be setup before we reach this point.
1688 */
1689 ret = transport_generic_cmd_sequencer(cmd, cdb);
1690 if (ret < 0)
1691 return ret;
1692 /*
1693 * Check for SAM Task Attribute Emulation
1694 */
1695 if (transport_check_alloc_task_attr(cmd) < 0) {
1696 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1697 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1698 return -EINVAL;
1699 }
1700 spin_lock(&cmd->se_lun->lun_sep_lock);
1701 if (cmd->se_lun->lun_sep)
1702 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1703 spin_unlock(&cmd->se_lun->lun_sep_lock);
1704 return 0;
1705 }
1706 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1707
1708 static void transport_generic_request_failure(struct se_cmd *,
1709 struct se_device *, int, int);
1710 /*
1711 * Used by fabric module frontends to queue tasks directly.
1712 * Many only be used from process context only
1713 */
1714 int transport_handle_cdb_direct(
1715 struct se_cmd *cmd)
1716 {
1717 int ret;
1718
1719 if (!cmd->se_lun) {
1720 dump_stack();
1721 pr_err("cmd->se_lun is NULL\n");
1722 return -EINVAL;
1723 }
1724 if (in_interrupt()) {
1725 dump_stack();
1726 pr_err("transport_generic_handle_cdb cannot be called"
1727 " from interrupt context\n");
1728 return -EINVAL;
1729 }
1730 /*
1731 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1732 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1733 * in existing usage to ensure that outstanding descriptors are handled
1734 * correctly during shutdown via transport_wait_for_tasks()
1735 *
1736 * Also, we don't take cmd->t_state_lock here as we only expect
1737 * this to be called for initial descriptor submission.
1738 */
1739 cmd->t_state = TRANSPORT_NEW_CMD;
1740 atomic_set(&cmd->t_transport_active, 1);
1741 /*
1742 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1743 * so follow TRANSPORT_NEW_CMD processing thread context usage
1744 * and call transport_generic_request_failure() if necessary..
1745 */
1746 ret = transport_generic_new_cmd(cmd);
1747 if (ret == -EAGAIN)
1748 return 0;
1749 else if (ret < 0) {
1750 cmd->transport_error_status = ret;
1751 transport_generic_request_failure(cmd, NULL, 0,
1752 (cmd->data_direction != DMA_TO_DEVICE));
1753 }
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(transport_handle_cdb_direct);
1757
1758 /*
1759 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1760 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1761 * complete setup in TCM process context w/ TFO->new_cmd_map().
1762 */
1763 int transport_generic_handle_cdb_map(
1764 struct se_cmd *cmd)
1765 {
1766 if (!cmd->se_lun) {
1767 dump_stack();
1768 pr_err("cmd->se_lun is NULL\n");
1769 return -EINVAL;
1770 }
1771
1772 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1773 return 0;
1774 }
1775 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1776
1777 /* transport_generic_handle_data():
1778 *
1779 *
1780 */
1781 int transport_generic_handle_data(
1782 struct se_cmd *cmd)
1783 {
1784 /*
1785 * For the software fabric case, then we assume the nexus is being
1786 * failed/shutdown when signals are pending from the kthread context
1787 * caller, so we return a failure. For the HW target mode case running
1788 * in interrupt code, the signal_pending() check is skipped.
1789 */
1790 if (!in_interrupt() && signal_pending(current))
1791 return -EPERM;
1792 /*
1793 * If the received CDB has aleady been ABORTED by the generic
1794 * target engine, we now call transport_check_aborted_status()
1795 * to queue any delated TASK_ABORTED status for the received CDB to the
1796 * fabric module as we are expecting no further incoming DATA OUT
1797 * sequences at this point.
1798 */
1799 if (transport_check_aborted_status(cmd, 1) != 0)
1800 return 0;
1801
1802 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1803 return 0;
1804 }
1805 EXPORT_SYMBOL(transport_generic_handle_data);
1806
1807 /* transport_generic_handle_tmr():
1808 *
1809 *
1810 */
1811 int transport_generic_handle_tmr(
1812 struct se_cmd *cmd)
1813 {
1814 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1815 return 0;
1816 }
1817 EXPORT_SYMBOL(transport_generic_handle_tmr);
1818
1819 void transport_generic_free_cmd_intr(
1820 struct se_cmd *cmd)
1821 {
1822 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1823 }
1824 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1825
1826 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1827 {
1828 struct se_task *task, *task_tmp;
1829 unsigned long flags;
1830 int ret = 0;
1831
1832 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1833 cmd->se_tfo->get_task_tag(cmd));
1834
1835 /*
1836 * No tasks remain in the execution queue
1837 */
1838 spin_lock_irqsave(&cmd->t_state_lock, flags);
1839 list_for_each_entry_safe(task, task_tmp,
1840 &cmd->t_task_list, t_list) {
1841 pr_debug("task_no[%d] - Processing task %p\n",
1842 task->task_no, task);
1843 /*
1844 * If the struct se_task has not been sent and is not active,
1845 * remove the struct se_task from the execution queue.
1846 */
1847 if (!atomic_read(&task->task_sent) &&
1848 !atomic_read(&task->task_active)) {
1849 spin_unlock_irqrestore(&cmd->t_state_lock,
1850 flags);
1851 transport_remove_task_from_execute_queue(task,
1852 task->se_dev);
1853
1854 pr_debug("task_no[%d] - Removed from execute queue\n",
1855 task->task_no);
1856 spin_lock_irqsave(&cmd->t_state_lock, flags);
1857 continue;
1858 }
1859
1860 /*
1861 * If the struct se_task is active, sleep until it is returned
1862 * from the plugin.
1863 */
1864 if (atomic_read(&task->task_active)) {
1865 atomic_set(&task->task_stop, 1);
1866 spin_unlock_irqrestore(&cmd->t_state_lock,
1867 flags);
1868
1869 pr_debug("task_no[%d] - Waiting to complete\n",
1870 task->task_no);
1871 wait_for_completion(&task->task_stop_comp);
1872 pr_debug("task_no[%d] - Stopped successfully\n",
1873 task->task_no);
1874
1875 spin_lock_irqsave(&cmd->t_state_lock, flags);
1876 atomic_dec(&cmd->t_task_cdbs_left);
1877
1878 atomic_set(&task->task_active, 0);
1879 atomic_set(&task->task_stop, 0);
1880 } else {
1881 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1882 ret++;
1883 }
1884
1885 __transport_stop_task_timer(task, &flags);
1886 }
1887 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1888
1889 return ret;
1890 }
1891
1892 /*
1893 * Handle SAM-esque emulation for generic transport request failures.
1894 */
1895 static void transport_generic_request_failure(
1896 struct se_cmd *cmd,
1897 struct se_device *dev,
1898 int complete,
1899 int sc)
1900 {
1901 int ret = 0;
1902
1903 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1904 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1905 cmd->t_task_cdb[0]);
1906 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1907 " %d/%d transport_error_status: %d\n",
1908 cmd->se_tfo->get_cmd_state(cmd),
1909 cmd->t_state, cmd->deferred_t_state,
1910 cmd->transport_error_status);
1911 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1912 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1913 " t_transport_active: %d t_transport_stop: %d"
1914 " t_transport_sent: %d\n", cmd->t_task_list_num,
1915 atomic_read(&cmd->t_task_cdbs_left),
1916 atomic_read(&cmd->t_task_cdbs_sent),
1917 atomic_read(&cmd->t_task_cdbs_ex_left),
1918 atomic_read(&cmd->t_transport_active),
1919 atomic_read(&cmd->t_transport_stop),
1920 atomic_read(&cmd->t_transport_sent));
1921
1922 transport_stop_all_task_timers(cmd);
1923
1924 if (dev)
1925 atomic_inc(&dev->depth_left);
1926 /*
1927 * For SAM Task Attribute emulation for failed struct se_cmd
1928 */
1929 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1930 transport_complete_task_attr(cmd);
1931
1932 if (complete) {
1933 transport_direct_request_timeout(cmd);
1934 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1935 }
1936
1937 switch (cmd->transport_error_status) {
1938 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1939 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1940 break;
1941 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1942 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1943 break;
1944 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1945 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1946 break;
1947 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1948 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1949 break;
1950 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1951 if (!sc)
1952 transport_new_cmd_failure(cmd);
1953 /*
1954 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1955 * we force this session to fall back to session
1956 * recovery.
1957 */
1958 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1959 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1960
1961 goto check_stop;
1962 case PYX_TRANSPORT_LU_COMM_FAILURE:
1963 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1964 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1965 break;
1966 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1967 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1968 break;
1969 case PYX_TRANSPORT_WRITE_PROTECTED:
1970 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1971 break;
1972 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1973 /*
1974 * No SENSE Data payload for this case, set SCSI Status
1975 * and queue the response to $FABRIC_MOD.
1976 *
1977 * Uses linux/include/scsi/scsi.h SAM status codes defs
1978 */
1979 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1980 /*
1981 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1982 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1983 * CONFLICT STATUS.
1984 *
1985 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1986 */
1987 if (cmd->se_sess &&
1988 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1989 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1990 cmd->orig_fe_lun, 0x2C,
1991 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1992
1993 ret = cmd->se_tfo->queue_status(cmd);
1994 if (ret == -EAGAIN)
1995 goto queue_full;
1996 goto check_stop;
1997 case PYX_TRANSPORT_USE_SENSE_REASON:
1998 /*
1999 * struct se_cmd->scsi_sense_reason already set
2000 */
2001 break;
2002 default:
2003 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2004 cmd->t_task_cdb[0],
2005 cmd->transport_error_status);
2006 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2007 break;
2008 }
2009 /*
2010 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2011 * make the call to transport_send_check_condition_and_sense()
2012 * directly. Otherwise expect the fabric to make the call to
2013 * transport_send_check_condition_and_sense() after handling
2014 * possible unsoliticied write data payloads.
2015 */
2016 if (!sc && !cmd->se_tfo->new_cmd_map)
2017 transport_new_cmd_failure(cmd);
2018 else {
2019 ret = transport_send_check_condition_and_sense(cmd,
2020 cmd->scsi_sense_reason, 0);
2021 if (ret == -EAGAIN)
2022 goto queue_full;
2023 }
2024
2025 check_stop:
2026 transport_lun_remove_cmd(cmd);
2027 if (!transport_cmd_check_stop_to_fabric(cmd))
2028 ;
2029 return;
2030
2031 queue_full:
2032 cmd->t_state = TRANSPORT_COMPLETE_OK;
2033 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2034 }
2035
2036 static void transport_direct_request_timeout(struct se_cmd *cmd)
2037 {
2038 unsigned long flags;
2039
2040 spin_lock_irqsave(&cmd->t_state_lock, flags);
2041 if (!atomic_read(&cmd->t_transport_timeout)) {
2042 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2043 return;
2044 }
2045 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2046 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2047 return;
2048 }
2049
2050 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2051 &cmd->t_se_count);
2052 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2053 }
2054
2055 static void transport_generic_request_timeout(struct se_cmd *cmd)
2056 {
2057 unsigned long flags;
2058
2059 /*
2060 * Reset cmd->t_se_count to allow transport_put_cmd()
2061 * to allow last call to free memory resources.
2062 */
2063 spin_lock_irqsave(&cmd->t_state_lock, flags);
2064 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2065 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2066
2067 atomic_sub(tmp, &cmd->t_se_count);
2068 }
2069 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2070
2071 transport_put_cmd(cmd);
2072 }
2073
2074 static inline u32 transport_lba_21(unsigned char *cdb)
2075 {
2076 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2077 }
2078
2079 static inline u32 transport_lba_32(unsigned char *cdb)
2080 {
2081 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2082 }
2083
2084 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2085 {
2086 unsigned int __v1, __v2;
2087
2088 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2089 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2090
2091 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2092 }
2093
2094 /*
2095 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2096 */
2097 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2098 {
2099 unsigned int __v1, __v2;
2100
2101 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2102 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2103
2104 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2105 }
2106
2107 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2108 {
2109 unsigned long flags;
2110
2111 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2112 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2113 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2114 }
2115
2116 /*
2117 * Called from interrupt context.
2118 */
2119 static void transport_task_timeout_handler(unsigned long data)
2120 {
2121 struct se_task *task = (struct se_task *)data;
2122 struct se_cmd *cmd = task->task_se_cmd;
2123 unsigned long flags;
2124
2125 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2126
2127 spin_lock_irqsave(&cmd->t_state_lock, flags);
2128 if (task->task_flags & TF_STOP) {
2129 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2130 return;
2131 }
2132 task->task_flags &= ~TF_RUNNING;
2133
2134 /*
2135 * Determine if transport_complete_task() has already been called.
2136 */
2137 if (!atomic_read(&task->task_active)) {
2138 pr_debug("transport task: %p cmd: %p timeout task_active"
2139 " == 0\n", task, cmd);
2140 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2141 return;
2142 }
2143
2144 atomic_inc(&cmd->t_se_count);
2145 atomic_inc(&cmd->t_transport_timeout);
2146 cmd->t_tasks_failed = 1;
2147
2148 atomic_set(&task->task_timeout, 1);
2149 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2150 task->task_scsi_status = 1;
2151
2152 if (atomic_read(&task->task_stop)) {
2153 pr_debug("transport task: %p cmd: %p timeout task_stop"
2154 " == 1\n", task, cmd);
2155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2156 complete(&task->task_stop_comp);
2157 return;
2158 }
2159
2160 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2161 pr_debug("transport task: %p cmd: %p timeout non zero"
2162 " t_task_cdbs_left\n", task, cmd);
2163 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2164 return;
2165 }
2166 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2167 task, cmd);
2168
2169 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2170 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2171
2172 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2173 }
2174
2175 /*
2176 * Called with cmd->t_state_lock held.
2177 */
2178 static void transport_start_task_timer(struct se_task *task)
2179 {
2180 struct se_device *dev = task->se_dev;
2181 int timeout;
2182
2183 if (task->task_flags & TF_RUNNING)
2184 return;
2185 /*
2186 * If the task_timeout is disabled, exit now.
2187 */
2188 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2189 if (!timeout)
2190 return;
2191
2192 init_timer(&task->task_timer);
2193 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2194 task->task_timer.data = (unsigned long) task;
2195 task->task_timer.function = transport_task_timeout_handler;
2196
2197 task->task_flags |= TF_RUNNING;
2198 add_timer(&task->task_timer);
2199 #if 0
2200 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2201 " %d\n", task->task_se_cmd, task, timeout);
2202 #endif
2203 }
2204
2205 /*
2206 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2207 */
2208 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2209 {
2210 struct se_cmd *cmd = task->task_se_cmd;
2211
2212 if (!task->task_flags & TF_RUNNING)
2213 return;
2214
2215 task->task_flags |= TF_STOP;
2216 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2217
2218 del_timer_sync(&task->task_timer);
2219
2220 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2221 task->task_flags &= ~TF_RUNNING;
2222 task->task_flags &= ~TF_STOP;
2223 }
2224
2225 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2226 {
2227 struct se_task *task = NULL, *task_tmp;
2228 unsigned long flags;
2229
2230 spin_lock_irqsave(&cmd->t_state_lock, flags);
2231 list_for_each_entry_safe(task, task_tmp,
2232 &cmd->t_task_list, t_list)
2233 __transport_stop_task_timer(task, &flags);
2234 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2235 }
2236
2237 static inline int transport_tcq_window_closed(struct se_device *dev)
2238 {
2239 if (dev->dev_tcq_window_closed++ <
2240 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2241 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2242 } else
2243 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2244
2245 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2246 return 0;
2247 }
2248
2249 /*
2250 * Called from Fabric Module context from transport_execute_tasks()
2251 *
2252 * The return of this function determins if the tasks from struct se_cmd
2253 * get added to the execution queue in transport_execute_tasks(),
2254 * or are added to the delayed or ordered lists here.
2255 */
2256 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2257 {
2258 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2259 return 1;
2260 /*
2261 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2262 * to allow the passed struct se_cmd list of tasks to the front of the list.
2263 */
2264 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2265 atomic_inc(&cmd->se_dev->dev_hoq_count);
2266 smp_mb__after_atomic_inc();
2267 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2268 " 0x%02x, se_ordered_id: %u\n",
2269 cmd->t_task_cdb[0],
2270 cmd->se_ordered_id);
2271 return 1;
2272 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2273 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2274 list_add_tail(&cmd->se_ordered_node,
2275 &cmd->se_dev->ordered_cmd_list);
2276 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2277
2278 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2279 smp_mb__after_atomic_inc();
2280
2281 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2282 " list, se_ordered_id: %u\n",
2283 cmd->t_task_cdb[0],
2284 cmd->se_ordered_id);
2285 /*
2286 * Add ORDERED command to tail of execution queue if
2287 * no other older commands exist that need to be
2288 * completed first.
2289 */
2290 if (!atomic_read(&cmd->se_dev->simple_cmds))
2291 return 1;
2292 } else {
2293 /*
2294 * For SIMPLE and UNTAGGED Task Attribute commands
2295 */
2296 atomic_inc(&cmd->se_dev->simple_cmds);
2297 smp_mb__after_atomic_inc();
2298 }
2299 /*
2300 * Otherwise if one or more outstanding ORDERED task attribute exist,
2301 * add the dormant task(s) built for the passed struct se_cmd to the
2302 * execution queue and become in Active state for this struct se_device.
2303 */
2304 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2305 /*
2306 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2307 * will be drained upon completion of HEAD_OF_QUEUE task.
2308 */
2309 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2310 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2311 list_add_tail(&cmd->se_delayed_node,
2312 &cmd->se_dev->delayed_cmd_list);
2313 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2314
2315 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2316 " delayed CMD list, se_ordered_id: %u\n",
2317 cmd->t_task_cdb[0], cmd->sam_task_attr,
2318 cmd->se_ordered_id);
2319 /*
2320 * Return zero to let transport_execute_tasks() know
2321 * not to add the delayed tasks to the execution list.
2322 */
2323 return 0;
2324 }
2325 /*
2326 * Otherwise, no ORDERED task attributes exist..
2327 */
2328 return 1;
2329 }
2330
2331 /*
2332 * Called from fabric module context in transport_generic_new_cmd() and
2333 * transport_generic_process_write()
2334 */
2335 static int transport_execute_tasks(struct se_cmd *cmd)
2336 {
2337 int add_tasks;
2338
2339 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2340 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2341 transport_generic_request_failure(cmd, NULL, 0, 1);
2342 return 0;
2343 }
2344
2345 /*
2346 * Call transport_cmd_check_stop() to see if a fabric exception
2347 * has occurred that prevents execution.
2348 */
2349 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2350 /*
2351 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2352 * attribute for the tasks of the received struct se_cmd CDB
2353 */
2354 add_tasks = transport_execute_task_attr(cmd);
2355 if (!add_tasks)
2356 goto execute_tasks;
2357 /*
2358 * This calls transport_add_tasks_from_cmd() to handle
2359 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2360 * (if enabled) in __transport_add_task_to_execute_queue() and
2361 * transport_add_task_check_sam_attr().
2362 */
2363 transport_add_tasks_from_cmd(cmd);
2364 }
2365 /*
2366 * Kick the execution queue for the cmd associated struct se_device
2367 * storage object.
2368 */
2369 execute_tasks:
2370 __transport_execute_tasks(cmd->se_dev);
2371 return 0;
2372 }
2373
2374 /*
2375 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2376 * from struct se_device->execute_task_list and
2377 *
2378 * Called from transport_processing_thread()
2379 */
2380 static int __transport_execute_tasks(struct se_device *dev)
2381 {
2382 int error;
2383 struct se_cmd *cmd = NULL;
2384 struct se_task *task = NULL;
2385 unsigned long flags;
2386
2387 /*
2388 * Check if there is enough room in the device and HBA queue to send
2389 * struct se_tasks to the selected transport.
2390 */
2391 check_depth:
2392 if (!atomic_read(&dev->depth_left))
2393 return transport_tcq_window_closed(dev);
2394
2395 dev->dev_tcq_window_closed = 0;
2396
2397 spin_lock_irq(&dev->execute_task_lock);
2398 if (list_empty(&dev->execute_task_list)) {
2399 spin_unlock_irq(&dev->execute_task_lock);
2400 return 0;
2401 }
2402 task = list_first_entry(&dev->execute_task_list,
2403 struct se_task, t_execute_list);
2404 list_del(&task->t_execute_list);
2405 atomic_set(&task->task_execute_queue, 0);
2406 atomic_dec(&dev->execute_tasks);
2407 spin_unlock_irq(&dev->execute_task_lock);
2408
2409 atomic_dec(&dev->depth_left);
2410
2411 cmd = task->task_se_cmd;
2412
2413 spin_lock_irqsave(&cmd->t_state_lock, flags);
2414 atomic_set(&task->task_active, 1);
2415 atomic_set(&task->task_sent, 1);
2416 atomic_inc(&cmd->t_task_cdbs_sent);
2417
2418 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2419 cmd->t_task_list_num)
2420 atomic_set(&cmd->transport_sent, 1);
2421
2422 transport_start_task_timer(task);
2423 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2424 /*
2425 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2426 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2427 * struct se_subsystem_api->do_task() caller below.
2428 */
2429 if (cmd->transport_emulate_cdb) {
2430 error = cmd->transport_emulate_cdb(cmd);
2431 if (error != 0) {
2432 cmd->transport_error_status = error;
2433 atomic_set(&task->task_active, 0);
2434 atomic_set(&cmd->transport_sent, 0);
2435 transport_stop_tasks_for_cmd(cmd);
2436 transport_generic_request_failure(cmd, dev, 0, 1);
2437 goto check_depth;
2438 }
2439 /*
2440 * Handle the successful completion for transport_emulate_cdb()
2441 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2442 * Otherwise the caller is expected to complete the task with
2443 * proper status.
2444 */
2445 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2446 cmd->scsi_status = SAM_STAT_GOOD;
2447 task->task_scsi_status = GOOD;
2448 transport_complete_task(task, 1);
2449 }
2450 } else {
2451 /*
2452 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2453 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2454 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2455 * LUN emulation code.
2456 *
2457 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2458 * call ->do_task() directly and let the underlying TCM subsystem plugin
2459 * code handle the CDB emulation.
2460 */
2461 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2462 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2463 error = transport_emulate_control_cdb(task);
2464 else
2465 error = dev->transport->do_task(task);
2466
2467 if (error != 0) {
2468 cmd->transport_error_status = error;
2469 atomic_set(&task->task_active, 0);
2470 atomic_set(&cmd->transport_sent, 0);
2471 transport_stop_tasks_for_cmd(cmd);
2472 transport_generic_request_failure(cmd, dev, 0, 1);
2473 }
2474 }
2475
2476 goto check_depth;
2477
2478 return 0;
2479 }
2480
2481 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2482 {
2483 unsigned long flags;
2484 /*
2485 * Any unsolicited data will get dumped for failed command inside of
2486 * the fabric plugin
2487 */
2488 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2489 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2490 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2491 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2492 }
2493
2494 static inline u32 transport_get_sectors_6(
2495 unsigned char *cdb,
2496 struct se_cmd *cmd,
2497 int *ret)
2498 {
2499 struct se_device *dev = cmd->se_dev;
2500
2501 /*
2502 * Assume TYPE_DISK for non struct se_device objects.
2503 * Use 8-bit sector value.
2504 */
2505 if (!dev)
2506 goto type_disk;
2507
2508 /*
2509 * Use 24-bit allocation length for TYPE_TAPE.
2510 */
2511 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2512 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2513
2514 /*
2515 * Everything else assume TYPE_DISK Sector CDB location.
2516 * Use 8-bit sector value.
2517 */
2518 type_disk:
2519 return (u32)cdb[4];
2520 }
2521
2522 static inline u32 transport_get_sectors_10(
2523 unsigned char *cdb,
2524 struct se_cmd *cmd,
2525 int *ret)
2526 {
2527 struct se_device *dev = cmd->se_dev;
2528
2529 /*
2530 * Assume TYPE_DISK for non struct se_device objects.
2531 * Use 16-bit sector value.
2532 */
2533 if (!dev)
2534 goto type_disk;
2535
2536 /*
2537 * XXX_10 is not defined in SSC, throw an exception
2538 */
2539 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2540 *ret = -EINVAL;
2541 return 0;
2542 }
2543
2544 /*
2545 * Everything else assume TYPE_DISK Sector CDB location.
2546 * Use 16-bit sector value.
2547 */
2548 type_disk:
2549 return (u32)(cdb[7] << 8) + cdb[8];
2550 }
2551
2552 static inline u32 transport_get_sectors_12(
2553 unsigned char *cdb,
2554 struct se_cmd *cmd,
2555 int *ret)
2556 {
2557 struct se_device *dev = cmd->se_dev;
2558
2559 /*
2560 * Assume TYPE_DISK for non struct se_device objects.
2561 * Use 32-bit sector value.
2562 */
2563 if (!dev)
2564 goto type_disk;
2565
2566 /*
2567 * XXX_12 is not defined in SSC, throw an exception
2568 */
2569 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2570 *ret = -EINVAL;
2571 return 0;
2572 }
2573
2574 /*
2575 * Everything else assume TYPE_DISK Sector CDB location.
2576 * Use 32-bit sector value.
2577 */
2578 type_disk:
2579 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2580 }
2581
2582 static inline u32 transport_get_sectors_16(
2583 unsigned char *cdb,
2584 struct se_cmd *cmd,
2585 int *ret)
2586 {
2587 struct se_device *dev = cmd->se_dev;
2588
2589 /*
2590 * Assume TYPE_DISK for non struct se_device objects.
2591 * Use 32-bit sector value.
2592 */
2593 if (!dev)
2594 goto type_disk;
2595
2596 /*
2597 * Use 24-bit allocation length for TYPE_TAPE.
2598 */
2599 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2600 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2601
2602 type_disk:
2603 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2604 (cdb[12] << 8) + cdb[13];
2605 }
2606
2607 /*
2608 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2609 */
2610 static inline u32 transport_get_sectors_32(
2611 unsigned char *cdb,
2612 struct se_cmd *cmd,
2613 int *ret)
2614 {
2615 /*
2616 * Assume TYPE_DISK for non struct se_device objects.
2617 * Use 32-bit sector value.
2618 */
2619 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2620 (cdb[30] << 8) + cdb[31];
2621
2622 }
2623
2624 static inline u32 transport_get_size(
2625 u32 sectors,
2626 unsigned char *cdb,
2627 struct se_cmd *cmd)
2628 {
2629 struct se_device *dev = cmd->se_dev;
2630
2631 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2632 if (cdb[1] & 1) { /* sectors */
2633 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2634 } else /* bytes */
2635 return sectors;
2636 }
2637 #if 0
2638 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2639 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2640 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2641 dev->transport->name);
2642 #endif
2643 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2644 }
2645
2646 static void transport_xor_callback(struct se_cmd *cmd)
2647 {
2648 unsigned char *buf, *addr;
2649 struct scatterlist *sg;
2650 unsigned int offset;
2651 int i;
2652 int count;
2653 /*
2654 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2655 *
2656 * 1) read the specified logical block(s);
2657 * 2) transfer logical blocks from the data-out buffer;
2658 * 3) XOR the logical blocks transferred from the data-out buffer with
2659 * the logical blocks read, storing the resulting XOR data in a buffer;
2660 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2661 * blocks transferred from the data-out buffer; and
2662 * 5) transfer the resulting XOR data to the data-in buffer.
2663 */
2664 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2665 if (!buf) {
2666 pr_err("Unable to allocate xor_callback buf\n");
2667 return;
2668 }
2669 /*
2670 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2671 * into the locally allocated *buf
2672 */
2673 sg_copy_to_buffer(cmd->t_data_sg,
2674 cmd->t_data_nents,
2675 buf,
2676 cmd->data_length);
2677
2678 /*
2679 * Now perform the XOR against the BIDI read memory located at
2680 * cmd->t_mem_bidi_list
2681 */
2682
2683 offset = 0;
2684 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2685 addr = kmap_atomic(sg_page(sg), KM_USER0);
2686 if (!addr)
2687 goto out;
2688
2689 for (i = 0; i < sg->length; i++)
2690 *(addr + sg->offset + i) ^= *(buf + offset + i);
2691
2692 offset += sg->length;
2693 kunmap_atomic(addr, KM_USER0);
2694 }
2695
2696 out:
2697 kfree(buf);
2698 }
2699
2700 /*
2701 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2702 */
2703 static int transport_get_sense_data(struct se_cmd *cmd)
2704 {
2705 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2706 struct se_device *dev;
2707 struct se_task *task = NULL, *task_tmp;
2708 unsigned long flags;
2709 u32 offset = 0;
2710
2711 WARN_ON(!cmd->se_lun);
2712
2713 spin_lock_irqsave(&cmd->t_state_lock, flags);
2714 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2716 return 0;
2717 }
2718
2719 list_for_each_entry_safe(task, task_tmp,
2720 &cmd->t_task_list, t_list) {
2721
2722 if (!task->task_sense)
2723 continue;
2724
2725 dev = task->se_dev;
2726 if (!dev)
2727 continue;
2728
2729 if (!dev->transport->get_sense_buffer) {
2730 pr_err("dev->transport->get_sense_buffer"
2731 " is NULL\n");
2732 continue;
2733 }
2734
2735 sense_buffer = dev->transport->get_sense_buffer(task);
2736 if (!sense_buffer) {
2737 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2738 " sense buffer for task with sense\n",
2739 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2740 continue;
2741 }
2742 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2743
2744 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2745 TRANSPORT_SENSE_BUFFER);
2746
2747 memcpy(&buffer[offset], sense_buffer,
2748 TRANSPORT_SENSE_BUFFER);
2749 cmd->scsi_status = task->task_scsi_status;
2750 /* Automatically padded */
2751 cmd->scsi_sense_length =
2752 (TRANSPORT_SENSE_BUFFER + offset);
2753
2754 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2755 " and sense\n",
2756 dev->se_hba->hba_id, dev->transport->name,
2757 cmd->scsi_status);
2758 return 0;
2759 }
2760 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2761
2762 return -1;
2763 }
2764
2765 static int
2766 transport_handle_reservation_conflict(struct se_cmd *cmd)
2767 {
2768 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2769 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2770 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2771 /*
2772 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2773 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2774 * CONFLICT STATUS.
2775 *
2776 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2777 */
2778 if (cmd->se_sess &&
2779 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2780 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2781 cmd->orig_fe_lun, 0x2C,
2782 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2783 return -EINVAL;
2784 }
2785
2786 static inline long long transport_dev_end_lba(struct se_device *dev)
2787 {
2788 return dev->transport->get_blocks(dev) + 1;
2789 }
2790
2791 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2792 {
2793 struct se_device *dev = cmd->se_dev;
2794 u32 sectors;
2795
2796 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2797 return 0;
2798
2799 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2800
2801 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2802 pr_err("LBA: %llu Sectors: %u exceeds"
2803 " transport_dev_end_lba(): %llu\n",
2804 cmd->t_task_lba, sectors,
2805 transport_dev_end_lba(dev));
2806 return -EINVAL;
2807 }
2808
2809 return 0;
2810 }
2811
2812 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2813 {
2814 /*
2815 * Determine if the received WRITE_SAME is used to for direct
2816 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2817 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2818 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2819 */
2820 int passthrough = (dev->transport->transport_type ==
2821 TRANSPORT_PLUGIN_PHBA_PDEV);
2822
2823 if (!passthrough) {
2824 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2825 pr_err("WRITE_SAME PBDATA and LBDATA"
2826 " bits not supported for Block Discard"
2827 " Emulation\n");
2828 return -ENOSYS;
2829 }
2830 /*
2831 * Currently for the emulated case we only accept
2832 * tpws with the UNMAP=1 bit set.
2833 */
2834 if (!(flags[0] & 0x08)) {
2835 pr_err("WRITE_SAME w/o UNMAP bit not"
2836 " supported for Block Discard Emulation\n");
2837 return -ENOSYS;
2838 }
2839 }
2840
2841 return 0;
2842 }
2843
2844 /* transport_generic_cmd_sequencer():
2845 *
2846 * Generic Command Sequencer that should work for most DAS transport
2847 * drivers.
2848 *
2849 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2850 * RX Thread.
2851 *
2852 * FIXME: Need to support other SCSI OPCODES where as well.
2853 */
2854 static int transport_generic_cmd_sequencer(
2855 struct se_cmd *cmd,
2856 unsigned char *cdb)
2857 {
2858 struct se_device *dev = cmd->se_dev;
2859 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2860 int ret = 0, sector_ret = 0, passthrough;
2861 u32 sectors = 0, size = 0, pr_reg_type = 0;
2862 u16 service_action;
2863 u8 alua_ascq = 0;
2864 /*
2865 * Check for an existing UNIT ATTENTION condition
2866 */
2867 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2868 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2869 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2870 return -EINVAL;
2871 }
2872 /*
2873 * Check status of Asymmetric Logical Unit Assignment port
2874 */
2875 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2876 if (ret != 0) {
2877 /*
2878 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2879 * The ALUA additional sense code qualifier (ASCQ) is determined
2880 * by the ALUA primary or secondary access state..
2881 */
2882 if (ret > 0) {
2883 #if 0
2884 pr_debug("[%s]: ALUA TG Port not available,"
2885 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2886 cmd->se_tfo->get_fabric_name(), alua_ascq);
2887 #endif
2888 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2889 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2890 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2891 return -EINVAL;
2892 }
2893 goto out_invalid_cdb_field;
2894 }
2895 /*
2896 * Check status for SPC-3 Persistent Reservations
2897 */
2898 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2899 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2900 cmd, cdb, pr_reg_type) != 0)
2901 return transport_handle_reservation_conflict(cmd);
2902 /*
2903 * This means the CDB is allowed for the SCSI Initiator port
2904 * when said port is *NOT* holding the legacy SPC-2 or
2905 * SPC-3 Persistent Reservation.
2906 */
2907 }
2908
2909 switch (cdb[0]) {
2910 case READ_6:
2911 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2912 if (sector_ret)
2913 goto out_unsupported_cdb;
2914 size = transport_get_size(sectors, cdb, cmd);
2915 cmd->transport_split_cdb = &split_cdb_XX_6;
2916 cmd->t_task_lba = transport_lba_21(cdb);
2917 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2918 break;
2919 case READ_10:
2920 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2921 if (sector_ret)
2922 goto out_unsupported_cdb;
2923 size = transport_get_size(sectors, cdb, cmd);
2924 cmd->transport_split_cdb = &split_cdb_XX_10;
2925 cmd->t_task_lba = transport_lba_32(cdb);
2926 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2927 break;
2928 case READ_12:
2929 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2930 if (sector_ret)
2931 goto out_unsupported_cdb;
2932 size = transport_get_size(sectors, cdb, cmd);
2933 cmd->transport_split_cdb = &split_cdb_XX_12;
2934 cmd->t_task_lba = transport_lba_32(cdb);
2935 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2936 break;
2937 case READ_16:
2938 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2939 if (sector_ret)
2940 goto out_unsupported_cdb;
2941 size = transport_get_size(sectors, cdb, cmd);
2942 cmd->transport_split_cdb = &split_cdb_XX_16;
2943 cmd->t_task_lba = transport_lba_64(cdb);
2944 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2945 break;
2946 case WRITE_6:
2947 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2948 if (sector_ret)
2949 goto out_unsupported_cdb;
2950 size = transport_get_size(sectors, cdb, cmd);
2951 cmd->transport_split_cdb = &split_cdb_XX_6;
2952 cmd->t_task_lba = transport_lba_21(cdb);
2953 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2954 break;
2955 case WRITE_10:
2956 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2957 if (sector_ret)
2958 goto out_unsupported_cdb;
2959 size = transport_get_size(sectors, cdb, cmd);
2960 cmd->transport_split_cdb = &split_cdb_XX_10;
2961 cmd->t_task_lba = transport_lba_32(cdb);
2962 cmd->t_tasks_fua = (cdb[1] & 0x8);
2963 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2964 break;
2965 case WRITE_12:
2966 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2967 if (sector_ret)
2968 goto out_unsupported_cdb;
2969 size = transport_get_size(sectors, cdb, cmd);
2970 cmd->transport_split_cdb = &split_cdb_XX_12;
2971 cmd->t_task_lba = transport_lba_32(cdb);
2972 cmd->t_tasks_fua = (cdb[1] & 0x8);
2973 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2974 break;
2975 case WRITE_16:
2976 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2977 if (sector_ret)
2978 goto out_unsupported_cdb;
2979 size = transport_get_size(sectors, cdb, cmd);
2980 cmd->transport_split_cdb = &split_cdb_XX_16;
2981 cmd->t_task_lba = transport_lba_64(cdb);
2982 cmd->t_tasks_fua = (cdb[1] & 0x8);
2983 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2984 break;
2985 case XDWRITEREAD_10:
2986 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2987 !(cmd->t_tasks_bidi))
2988 goto out_invalid_cdb_field;
2989 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2990 if (sector_ret)
2991 goto out_unsupported_cdb;
2992 size = transport_get_size(sectors, cdb, cmd);
2993 cmd->transport_split_cdb = &split_cdb_XX_10;
2994 cmd->t_task_lba = transport_lba_32(cdb);
2995 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2996 passthrough = (dev->transport->transport_type ==
2997 TRANSPORT_PLUGIN_PHBA_PDEV);
2998 /*
2999 * Skip the remaining assignments for TCM/PSCSI passthrough
3000 */
3001 if (passthrough)
3002 break;
3003 /*
3004 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3005 */
3006 cmd->transport_complete_callback = &transport_xor_callback;
3007 cmd->t_tasks_fua = (cdb[1] & 0x8);
3008 break;
3009 case VARIABLE_LENGTH_CMD:
3010 service_action = get_unaligned_be16(&cdb[8]);
3011 /*
3012 * Determine if this is TCM/PSCSI device and we should disable
3013 * internal emulation for this CDB.
3014 */
3015 passthrough = (dev->transport->transport_type ==
3016 TRANSPORT_PLUGIN_PHBA_PDEV);
3017
3018 switch (service_action) {
3019 case XDWRITEREAD_32:
3020 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3021 if (sector_ret)
3022 goto out_unsupported_cdb;
3023 size = transport_get_size(sectors, cdb, cmd);
3024 /*
3025 * Use WRITE_32 and READ_32 opcodes for the emulated
3026 * XDWRITE_READ_32 logic.
3027 */
3028 cmd->transport_split_cdb = &split_cdb_XX_32;
3029 cmd->t_task_lba = transport_lba_64_ext(cdb);
3030 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3031
3032 /*
3033 * Skip the remaining assignments for TCM/PSCSI passthrough
3034 */
3035 if (passthrough)
3036 break;
3037
3038 /*
3039 * Setup BIDI XOR callback to be run during
3040 * transport_generic_complete_ok()
3041 */
3042 cmd->transport_complete_callback = &transport_xor_callback;
3043 cmd->t_tasks_fua = (cdb[10] & 0x8);
3044 break;
3045 case WRITE_SAME_32:
3046 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3047 if (sector_ret)
3048 goto out_unsupported_cdb;
3049
3050 if (sectors)
3051 size = transport_get_size(1, cdb, cmd);
3052 else {
3053 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3054 " supported\n");
3055 goto out_invalid_cdb_field;
3056 }
3057
3058 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3059 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3060
3061 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3062 goto out_invalid_cdb_field;
3063
3064 break;
3065 default:
3066 pr_err("VARIABLE_LENGTH_CMD service action"
3067 " 0x%04x not supported\n", service_action);
3068 goto out_unsupported_cdb;
3069 }
3070 break;
3071 case MAINTENANCE_IN:
3072 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3073 /* MAINTENANCE_IN from SCC-2 */
3074 /*
3075 * Check for emulated MI_REPORT_TARGET_PGS.
3076 */
3077 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3078 cmd->transport_emulate_cdb =
3079 (su_dev->t10_alua.alua_type ==
3080 SPC3_ALUA_EMULATED) ?
3081 core_emulate_report_target_port_groups :
3082 NULL;
3083 }
3084 size = (cdb[6] << 24) | (cdb[7] << 16) |
3085 (cdb[8] << 8) | cdb[9];
3086 } else {
3087 /* GPCMD_SEND_KEY from multi media commands */
3088 size = (cdb[8] << 8) + cdb[9];
3089 }
3090 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3091 break;
3092 case MODE_SELECT:
3093 size = cdb[4];
3094 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3095 break;
3096 case MODE_SELECT_10:
3097 size = (cdb[7] << 8) + cdb[8];
3098 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3099 break;
3100 case MODE_SENSE:
3101 size = cdb[4];
3102 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3103 break;
3104 case MODE_SENSE_10:
3105 case GPCMD_READ_BUFFER_CAPACITY:
3106 case GPCMD_SEND_OPC:
3107 case LOG_SELECT:
3108 case LOG_SENSE:
3109 size = (cdb[7] << 8) + cdb[8];
3110 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3111 break;
3112 case READ_BLOCK_LIMITS:
3113 size = READ_BLOCK_LEN;
3114 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3115 break;
3116 case GPCMD_GET_CONFIGURATION:
3117 case GPCMD_READ_FORMAT_CAPACITIES:
3118 case GPCMD_READ_DISC_INFO:
3119 case GPCMD_READ_TRACK_RZONE_INFO:
3120 size = (cdb[7] << 8) + cdb[8];
3121 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3122 break;
3123 case PERSISTENT_RESERVE_IN:
3124 case PERSISTENT_RESERVE_OUT:
3125 cmd->transport_emulate_cdb =
3126 (su_dev->t10_pr.res_type ==
3127 SPC3_PERSISTENT_RESERVATIONS) ?
3128 core_scsi3_emulate_pr : NULL;
3129 size = (cdb[7] << 8) + cdb[8];
3130 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3131 break;
3132 case GPCMD_MECHANISM_STATUS:
3133 case GPCMD_READ_DVD_STRUCTURE:
3134 size = (cdb[8] << 8) + cdb[9];
3135 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3136 break;
3137 case READ_POSITION:
3138 size = READ_POSITION_LEN;
3139 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3140 break;
3141 case MAINTENANCE_OUT:
3142 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3143 /* MAINTENANCE_OUT from SCC-2
3144 *
3145 * Check for emulated MO_SET_TARGET_PGS.
3146 */
3147 if (cdb[1] == MO_SET_TARGET_PGS) {
3148 cmd->transport_emulate_cdb =
3149 (su_dev->t10_alua.alua_type ==
3150 SPC3_ALUA_EMULATED) ?
3151 core_emulate_set_target_port_groups :
3152 NULL;
3153 }
3154
3155 size = (cdb[6] << 24) | (cdb[7] << 16) |
3156 (cdb[8] << 8) | cdb[9];
3157 } else {
3158 /* GPCMD_REPORT_KEY from multi media commands */
3159 size = (cdb[8] << 8) + cdb[9];
3160 }
3161 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3162 break;
3163 case INQUIRY:
3164 size = (cdb[3] << 8) + cdb[4];
3165 /*
3166 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3167 * See spc4r17 section 5.3
3168 */
3169 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3170 cmd->sam_task_attr = MSG_HEAD_TAG;
3171 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3172 break;
3173 case READ_BUFFER:
3174 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3175 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3176 break;
3177 case READ_CAPACITY:
3178 size = READ_CAP_LEN;
3179 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3180 break;
3181 case READ_MEDIA_SERIAL_NUMBER:
3182 case SECURITY_PROTOCOL_IN:
3183 case SECURITY_PROTOCOL_OUT:
3184 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3185 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3186 break;
3187 case SERVICE_ACTION_IN:
3188 case ACCESS_CONTROL_IN:
3189 case ACCESS_CONTROL_OUT:
3190 case EXTENDED_COPY:
3191 case READ_ATTRIBUTE:
3192 case RECEIVE_COPY_RESULTS:
3193 case WRITE_ATTRIBUTE:
3194 size = (cdb[10] << 24) | (cdb[11] << 16) |
3195 (cdb[12] << 8) | cdb[13];
3196 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3197 break;
3198 case RECEIVE_DIAGNOSTIC:
3199 case SEND_DIAGNOSTIC:
3200 size = (cdb[3] << 8) | cdb[4];
3201 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3202 break;
3203 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3204 #if 0
3205 case GPCMD_READ_CD:
3206 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3207 size = (2336 * sectors);
3208 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3209 break;
3210 #endif
3211 case READ_TOC:
3212 size = cdb[8];
3213 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3214 break;
3215 case REQUEST_SENSE:
3216 size = cdb[4];
3217 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3218 break;
3219 case READ_ELEMENT_STATUS:
3220 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3221 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3222 break;
3223 case WRITE_BUFFER:
3224 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3225 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3226 break;
3227 case RESERVE:
3228 case RESERVE_10:
3229 /*
3230 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3231 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3232 */
3233 if (cdb[0] == RESERVE_10)
3234 size = (cdb[7] << 8) | cdb[8];
3235 else
3236 size = cmd->data_length;
3237
3238 /*
3239 * Setup the legacy emulated handler for SPC-2 and
3240 * >= SPC-3 compatible reservation handling (CRH=1)
3241 * Otherwise, we assume the underlying SCSI logic is
3242 * is running in SPC_PASSTHROUGH, and wants reservations
3243 * emulation disabled.
3244 */
3245 cmd->transport_emulate_cdb =
3246 (su_dev->t10_pr.res_type !=
3247 SPC_PASSTHROUGH) ?
3248 core_scsi2_emulate_crh : NULL;
3249 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3250 break;
3251 case RELEASE:
3252 case RELEASE_10:
3253 /*
3254 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3255 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3256 */
3257 if (cdb[0] == RELEASE_10)
3258 size = (cdb[7] << 8) | cdb[8];
3259 else
3260 size = cmd->data_length;
3261
3262 cmd->transport_emulate_cdb =
3263 (su_dev->t10_pr.res_type !=
3264 SPC_PASSTHROUGH) ?
3265 core_scsi2_emulate_crh : NULL;
3266 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3267 break;
3268 case SYNCHRONIZE_CACHE:
3269 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3270 /*
3271 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3272 */
3273 if (cdb[0] == SYNCHRONIZE_CACHE) {
3274 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3275 cmd->t_task_lba = transport_lba_32(cdb);
3276 } else {
3277 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3278 cmd->t_task_lba = transport_lba_64(cdb);
3279 }
3280 if (sector_ret)
3281 goto out_unsupported_cdb;
3282
3283 size = transport_get_size(sectors, cdb, cmd);
3284 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3285
3286 /*
3287 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3288 */
3289 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3290 break;
3291 /*
3292 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3293 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3294 */
3295 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3296 /*
3297 * Check to ensure that LBA + Range does not exceed past end of
3298 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3299 */
3300 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3301 if (transport_cmd_get_valid_sectors(cmd) < 0)
3302 goto out_invalid_cdb_field;
3303 }
3304 break;
3305 case UNMAP:
3306 size = get_unaligned_be16(&cdb[7]);
3307 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3308 break;
3309 case WRITE_SAME_16:
3310 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3311 if (sector_ret)
3312 goto out_unsupported_cdb;
3313
3314 if (sectors)
3315 size = transport_get_size(1, cdb, cmd);
3316 else {
3317 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3318 goto out_invalid_cdb_field;
3319 }
3320
3321 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3322 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3323
3324 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3325 goto out_invalid_cdb_field;
3326 break;
3327 case WRITE_SAME:
3328 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3329 if (sector_ret)
3330 goto out_unsupported_cdb;
3331
3332 if (sectors)
3333 size = transport_get_size(1, cdb, cmd);
3334 else {
3335 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3336 goto out_invalid_cdb_field;
3337 }
3338
3339 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3340 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3341 /*
3342 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3343 * of byte 1 bit 3 UNMAP instead of original reserved field
3344 */
3345 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3346 goto out_invalid_cdb_field;
3347 break;
3348 case ALLOW_MEDIUM_REMOVAL:
3349 case GPCMD_CLOSE_TRACK:
3350 case ERASE:
3351 case INITIALIZE_ELEMENT_STATUS:
3352 case GPCMD_LOAD_UNLOAD:
3353 case REZERO_UNIT:
3354 case SEEK_10:
3355 case GPCMD_SET_SPEED:
3356 case SPACE:
3357 case START_STOP:
3358 case TEST_UNIT_READY:
3359 case VERIFY:
3360 case WRITE_FILEMARKS:
3361 case MOVE_MEDIUM:
3362 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3363 break;
3364 case REPORT_LUNS:
3365 cmd->transport_emulate_cdb =
3366 transport_core_report_lun_response;
3367 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3368 /*
3369 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3370 * See spc4r17 section 5.3
3371 */
3372 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3373 cmd->sam_task_attr = MSG_HEAD_TAG;
3374 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3375 break;
3376 default:
3377 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3378 " 0x%02x, sending CHECK_CONDITION.\n",
3379 cmd->se_tfo->get_fabric_name(), cdb[0]);
3380 goto out_unsupported_cdb;
3381 }
3382
3383 if (size != cmd->data_length) {
3384 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3385 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3386 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3387 cmd->data_length, size, cdb[0]);
3388
3389 cmd->cmd_spdtl = size;
3390
3391 if (cmd->data_direction == DMA_TO_DEVICE) {
3392 pr_err("Rejecting underflow/overflow"
3393 " WRITE data\n");
3394 goto out_invalid_cdb_field;
3395 }
3396 /*
3397 * Reject READ_* or WRITE_* with overflow/underflow for
3398 * type SCF_SCSI_DATA_SG_IO_CDB.
3399 */
3400 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3401 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3402 " CDB on non 512-byte sector setup subsystem"
3403 " plugin: %s\n", dev->transport->name);
3404 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3405 goto out_invalid_cdb_field;
3406 }
3407
3408 if (size > cmd->data_length) {
3409 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3410 cmd->residual_count = (size - cmd->data_length);
3411 } else {
3412 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3413 cmd->residual_count = (cmd->data_length - size);
3414 }
3415 cmd->data_length = size;
3416 }
3417
3418 /* Let's limit control cdbs to a page, for simplicity's sake. */
3419 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3420 size > PAGE_SIZE)
3421 goto out_invalid_cdb_field;
3422
3423 transport_set_supported_SAM_opcode(cmd);
3424 return ret;
3425
3426 out_unsupported_cdb:
3427 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3428 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3429 return -EINVAL;
3430 out_invalid_cdb_field:
3431 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3432 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3433 return -EINVAL;
3434 }
3435
3436 /*
3437 * Called from transport_generic_complete_ok() and
3438 * transport_generic_request_failure() to determine which dormant/delayed
3439 * and ordered cmds need to have their tasks added to the execution queue.
3440 */
3441 static void transport_complete_task_attr(struct se_cmd *cmd)
3442 {
3443 struct se_device *dev = cmd->se_dev;
3444 struct se_cmd *cmd_p, *cmd_tmp;
3445 int new_active_tasks = 0;
3446
3447 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3448 atomic_dec(&dev->simple_cmds);
3449 smp_mb__after_atomic_dec();
3450 dev->dev_cur_ordered_id++;
3451 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3452 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3453 cmd->se_ordered_id);
3454 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3455 atomic_dec(&dev->dev_hoq_count);
3456 smp_mb__after_atomic_dec();
3457 dev->dev_cur_ordered_id++;
3458 pr_debug("Incremented dev_cur_ordered_id: %u for"
3459 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3460 cmd->se_ordered_id);
3461 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3462 spin_lock(&dev->ordered_cmd_lock);
3463 list_del(&cmd->se_ordered_node);
3464 atomic_dec(&dev->dev_ordered_sync);
3465 smp_mb__after_atomic_dec();
3466 spin_unlock(&dev->ordered_cmd_lock);
3467
3468 dev->dev_cur_ordered_id++;
3469 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3470 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3471 }
3472 /*
3473 * Process all commands up to the last received
3474 * ORDERED task attribute which requires another blocking
3475 * boundary
3476 */
3477 spin_lock(&dev->delayed_cmd_lock);
3478 list_for_each_entry_safe(cmd_p, cmd_tmp,
3479 &dev->delayed_cmd_list, se_delayed_node) {
3480
3481 list_del(&cmd_p->se_delayed_node);
3482 spin_unlock(&dev->delayed_cmd_lock);
3483
3484 pr_debug("Calling add_tasks() for"
3485 " cmd_p: 0x%02x Task Attr: 0x%02x"
3486 " Dormant -> Active, se_ordered_id: %u\n",
3487 cmd_p->t_task_cdb[0],
3488 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3489
3490 transport_add_tasks_from_cmd(cmd_p);
3491 new_active_tasks++;
3492
3493 spin_lock(&dev->delayed_cmd_lock);
3494 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3495 break;
3496 }
3497 spin_unlock(&dev->delayed_cmd_lock);
3498 /*
3499 * If new tasks have become active, wake up the transport thread
3500 * to do the processing of the Active tasks.
3501 */
3502 if (new_active_tasks != 0)
3503 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3504 }
3505
3506 static int transport_complete_qf(struct se_cmd *cmd)
3507 {
3508 int ret = 0;
3509
3510 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3511 return cmd->se_tfo->queue_status(cmd);
3512
3513 switch (cmd->data_direction) {
3514 case DMA_FROM_DEVICE:
3515 ret = cmd->se_tfo->queue_data_in(cmd);
3516 break;
3517 case DMA_TO_DEVICE:
3518 if (cmd->t_bidi_data_sg) {
3519 ret = cmd->se_tfo->queue_data_in(cmd);
3520 if (ret < 0)
3521 return ret;
3522 }
3523 /* Fall through for DMA_TO_DEVICE */
3524 case DMA_NONE:
3525 ret = cmd->se_tfo->queue_status(cmd);
3526 break;
3527 default:
3528 break;
3529 }
3530
3531 return ret;
3532 }
3533
3534 static void transport_handle_queue_full(
3535 struct se_cmd *cmd,
3536 struct se_device *dev,
3537 int (*qf_callback)(struct se_cmd *))
3538 {
3539 spin_lock_irq(&dev->qf_cmd_lock);
3540 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3541 cmd->transport_qf_callback = qf_callback;
3542 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3543 atomic_inc(&dev->dev_qf_count);
3544 smp_mb__after_atomic_inc();
3545 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3546
3547 schedule_work(&cmd->se_dev->qf_work_queue);
3548 }
3549
3550 static void transport_generic_complete_ok(struct se_cmd *cmd)
3551 {
3552 int reason = 0, ret;
3553 /*
3554 * Check if we need to move delayed/dormant tasks from cmds on the
3555 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3556 * Attribute.
3557 */
3558 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3559 transport_complete_task_attr(cmd);
3560 /*
3561 * Check to schedule QUEUE_FULL work, or execute an existing
3562 * cmd->transport_qf_callback()
3563 */
3564 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3565 schedule_work(&cmd->se_dev->qf_work_queue);
3566
3567 if (cmd->transport_qf_callback) {
3568 ret = cmd->transport_qf_callback(cmd);
3569 if (ret < 0)
3570 goto queue_full;
3571
3572 cmd->transport_qf_callback = NULL;
3573 goto done;
3574 }
3575 /*
3576 * Check if we need to retrieve a sense buffer from
3577 * the struct se_cmd in question.
3578 */
3579 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3580 if (transport_get_sense_data(cmd) < 0)
3581 reason = TCM_NON_EXISTENT_LUN;
3582
3583 /*
3584 * Only set when an struct se_task->task_scsi_status returned
3585 * a non GOOD status.
3586 */
3587 if (cmd->scsi_status) {
3588 ret = transport_send_check_condition_and_sense(
3589 cmd, reason, 1);
3590 if (ret == -EAGAIN)
3591 goto queue_full;
3592
3593 transport_lun_remove_cmd(cmd);
3594 transport_cmd_check_stop_to_fabric(cmd);
3595 return;
3596 }
3597 }
3598 /*
3599 * Check for a callback, used by amongst other things
3600 * XDWRITE_READ_10 emulation.
3601 */
3602 if (cmd->transport_complete_callback)
3603 cmd->transport_complete_callback(cmd);
3604
3605 switch (cmd->data_direction) {
3606 case DMA_FROM_DEVICE:
3607 spin_lock(&cmd->se_lun->lun_sep_lock);
3608 if (cmd->se_lun->lun_sep) {
3609 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3610 cmd->data_length;
3611 }
3612 spin_unlock(&cmd->se_lun->lun_sep_lock);
3613
3614 ret = cmd->se_tfo->queue_data_in(cmd);
3615 if (ret == -EAGAIN)
3616 goto queue_full;
3617 break;
3618 case DMA_TO_DEVICE:
3619 spin_lock(&cmd->se_lun->lun_sep_lock);
3620 if (cmd->se_lun->lun_sep) {
3621 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3622 cmd->data_length;
3623 }
3624 spin_unlock(&cmd->se_lun->lun_sep_lock);
3625 /*
3626 * Check if we need to send READ payload for BIDI-COMMAND
3627 */
3628 if (cmd->t_bidi_data_sg) {
3629 spin_lock(&cmd->se_lun->lun_sep_lock);
3630 if (cmd->se_lun->lun_sep) {
3631 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3632 cmd->data_length;
3633 }
3634 spin_unlock(&cmd->se_lun->lun_sep_lock);
3635 ret = cmd->se_tfo->queue_data_in(cmd);
3636 if (ret == -EAGAIN)
3637 goto queue_full;
3638 break;
3639 }
3640 /* Fall through for DMA_TO_DEVICE */
3641 case DMA_NONE:
3642 ret = cmd->se_tfo->queue_status(cmd);
3643 if (ret == -EAGAIN)
3644 goto queue_full;
3645 break;
3646 default:
3647 break;
3648 }
3649
3650 done:
3651 transport_lun_remove_cmd(cmd);
3652 transport_cmd_check_stop_to_fabric(cmd);
3653 return;
3654
3655 queue_full:
3656 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3657 " data_direction: %d\n", cmd, cmd->data_direction);
3658 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3659 }
3660
3661 static void transport_free_dev_tasks(struct se_cmd *cmd)
3662 {
3663 struct se_task *task, *task_tmp;
3664 unsigned long flags;
3665
3666 spin_lock_irqsave(&cmd->t_state_lock, flags);
3667 list_for_each_entry_safe(task, task_tmp,
3668 &cmd->t_task_list, t_list) {
3669 if (atomic_read(&task->task_active))
3670 continue;
3671
3672 kfree(task->task_sg_bidi);
3673 kfree(task->task_sg);
3674
3675 list_del(&task->t_list);
3676
3677 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3678 if (task->se_dev)
3679 task->se_dev->transport->free_task(task);
3680 else
3681 pr_err("task[%u] - task->se_dev is NULL\n",
3682 task->task_no);
3683 spin_lock_irqsave(&cmd->t_state_lock, flags);
3684 }
3685 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3686 }
3687
3688 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3689 {
3690 struct scatterlist *sg;
3691 int count;
3692
3693 for_each_sg(sgl, sg, nents, count)
3694 __free_page(sg_page(sg));
3695
3696 kfree(sgl);
3697 }
3698
3699 static inline void transport_free_pages(struct se_cmd *cmd)
3700 {
3701 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3702 return;
3703
3704 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3705 cmd->t_data_sg = NULL;
3706 cmd->t_data_nents = 0;
3707
3708 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3709 cmd->t_bidi_data_sg = NULL;
3710 cmd->t_bidi_data_nents = 0;
3711 }
3712
3713 /**
3714 * transport_put_cmd - release a reference to a command
3715 * @cmd: command to release
3716 *
3717 * This routine releases our reference to the command and frees it if possible.
3718 */
3719 static void transport_put_cmd(struct se_cmd *cmd)
3720 {
3721 unsigned long flags;
3722 int free_tasks = 0;
3723
3724 spin_lock_irqsave(&cmd->t_state_lock, flags);
3725 if (atomic_read(&cmd->t_fe_count)) {
3726 if (!atomic_dec_and_test(&cmd->t_fe_count))
3727 goto out_busy;
3728 }
3729
3730 if (atomic_read(&cmd->t_se_count)) {
3731 if (!atomic_dec_and_test(&cmd->t_se_count))
3732 goto out_busy;
3733 }
3734
3735 if (atomic_read(&cmd->transport_dev_active)) {
3736 atomic_set(&cmd->transport_dev_active, 0);
3737 transport_all_task_dev_remove_state(cmd);
3738 free_tasks = 1;
3739 }
3740 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3741
3742 if (free_tasks != 0)
3743 transport_free_dev_tasks(cmd);
3744
3745 transport_free_pages(cmd);
3746 transport_release_cmd(cmd);
3747 return;
3748 out_busy:
3749 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3750 }
3751
3752 /*
3753 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3754 * allocating in the core.
3755 * @cmd: Associated se_cmd descriptor
3756 * @mem: SGL style memory for TCM WRITE / READ
3757 * @sg_mem_num: Number of SGL elements
3758 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3759 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3760 *
3761 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3762 * of parameters.
3763 */
3764 int transport_generic_map_mem_to_cmd(
3765 struct se_cmd *cmd,
3766 struct scatterlist *sgl,
3767 u32 sgl_count,
3768 struct scatterlist *sgl_bidi,
3769 u32 sgl_bidi_count)
3770 {
3771 if (!sgl || !sgl_count)
3772 return 0;
3773
3774 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3775 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3776
3777 cmd->t_data_sg = sgl;
3778 cmd->t_data_nents = sgl_count;
3779
3780 if (sgl_bidi && sgl_bidi_count) {
3781 cmd->t_bidi_data_sg = sgl_bidi;
3782 cmd->t_bidi_data_nents = sgl_bidi_count;
3783 }
3784 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3785 }
3786
3787 return 0;
3788 }
3789 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3790
3791 static int transport_new_cmd_obj(struct se_cmd *cmd)
3792 {
3793 struct se_device *dev = cmd->se_dev;
3794 int set_counts = 1, rc, task_cdbs;
3795
3796 /*
3797 * Setup any BIDI READ tasks and memory from
3798 * cmd->t_mem_bidi_list so the READ struct se_tasks
3799 * are queued first for the non pSCSI passthrough case.
3800 */
3801 if (cmd->t_bidi_data_sg &&
3802 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3803 rc = transport_allocate_tasks(cmd,
3804 cmd->t_task_lba,
3805 DMA_FROM_DEVICE,
3806 cmd->t_bidi_data_sg,
3807 cmd->t_bidi_data_nents);
3808 if (rc <= 0) {
3809 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3810 cmd->scsi_sense_reason =
3811 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3812 return -EINVAL;
3813 }
3814 atomic_inc(&cmd->t_fe_count);
3815 atomic_inc(&cmd->t_se_count);
3816 set_counts = 0;
3817 }
3818 /*
3819 * Setup the tasks and memory from cmd->t_mem_list
3820 * Note for BIDI transfers this will contain the WRITE payload
3821 */
3822 task_cdbs = transport_allocate_tasks(cmd,
3823 cmd->t_task_lba,
3824 cmd->data_direction,
3825 cmd->t_data_sg,
3826 cmd->t_data_nents);
3827 if (task_cdbs <= 0) {
3828 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3829 cmd->scsi_sense_reason =
3830 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3831 return -EINVAL;
3832 }
3833
3834 if (set_counts) {
3835 atomic_inc(&cmd->t_fe_count);
3836 atomic_inc(&cmd->t_se_count);
3837 }
3838
3839 cmd->t_task_list_num = task_cdbs;
3840
3841 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3842 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3843 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3844 return 0;
3845 }
3846
3847 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3848 {
3849 struct scatterlist *sg = cmd->t_data_sg;
3850
3851 BUG_ON(!sg);
3852 /*
3853 * We need to take into account a possible offset here for fabrics like
3854 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3855 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3856 */
3857 return kmap(sg_page(sg)) + sg->offset;
3858 }
3859 EXPORT_SYMBOL(transport_kmap_first_data_page);
3860
3861 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3862 {
3863 kunmap(sg_page(cmd->t_data_sg));
3864 }
3865 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3866
3867 static int
3868 transport_generic_get_mem(struct se_cmd *cmd)
3869 {
3870 u32 length = cmd->data_length;
3871 unsigned int nents;
3872 struct page *page;
3873 int i = 0;
3874
3875 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3876 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3877 if (!cmd->t_data_sg)
3878 return -ENOMEM;
3879
3880 cmd->t_data_nents = nents;
3881 sg_init_table(cmd->t_data_sg, nents);
3882
3883 while (length) {
3884 u32 page_len = min_t(u32, length, PAGE_SIZE);
3885 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3886 if (!page)
3887 goto out;
3888
3889 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3890 length -= page_len;
3891 i++;
3892 }
3893 return 0;
3894
3895 out:
3896 while (i >= 0) {
3897 __free_page(sg_page(&cmd->t_data_sg[i]));
3898 i--;
3899 }
3900 kfree(cmd->t_data_sg);
3901 cmd->t_data_sg = NULL;
3902 return -ENOMEM;
3903 }
3904
3905 /* Reduce sectors if they are too long for the device */
3906 static inline sector_t transport_limit_task_sectors(
3907 struct se_device *dev,
3908 unsigned long long lba,
3909 sector_t sectors)
3910 {
3911 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3912
3913 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3914 if ((lba + sectors) > transport_dev_end_lba(dev))
3915 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3916
3917 return sectors;
3918 }
3919
3920
3921 /*
3922 * This function can be used by HW target mode drivers to create a linked
3923 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3924 * This is intended to be called during the completion path by TCM Core
3925 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3926 */
3927 void transport_do_task_sg_chain(struct se_cmd *cmd)
3928 {
3929 struct scatterlist *sg_first = NULL;
3930 struct scatterlist *sg_prev = NULL;
3931 int sg_prev_nents = 0;
3932 struct scatterlist *sg;
3933 struct se_task *task;
3934 u32 chained_nents = 0;
3935 int i;
3936
3937 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3938
3939 /*
3940 * Walk the struct se_task list and setup scatterlist chains
3941 * for each contiguously allocated struct se_task->task_sg[].
3942 */
3943 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3944 if (!task->task_sg)
3945 continue;
3946
3947 if (!sg_first) {
3948 sg_first = task->task_sg;
3949 chained_nents = task->task_sg_nents;
3950 } else {
3951 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3952 chained_nents += task->task_sg_nents;
3953 }
3954 /*
3955 * For the padded tasks, use the extra SGL vector allocated
3956 * in transport_allocate_data_tasks() for the sg_prev_nents
3957 * offset into sg_chain() above.. The last task of a
3958 * multi-task list, or a single task will not have
3959 * task->task_sg_padded set..
3960 */
3961 if (task->task_padded_sg)
3962 sg_prev_nents = (task->task_sg_nents + 1);
3963 else
3964 sg_prev_nents = task->task_sg_nents;
3965
3966 sg_prev = task->task_sg;
3967 }
3968 /*
3969 * Setup the starting pointer and total t_tasks_sg_linked_no including
3970 * padding SGs for linking and to mark the end.
3971 */
3972 cmd->t_tasks_sg_chained = sg_first;
3973 cmd->t_tasks_sg_chained_no = chained_nents;
3974
3975 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3976 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3977 cmd->t_tasks_sg_chained_no);
3978
3979 for_each_sg(cmd->t_tasks_sg_chained, sg,
3980 cmd->t_tasks_sg_chained_no, i) {
3981
3982 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3983 i, sg, sg_page(sg), sg->length, sg->offset);
3984 if (sg_is_chain(sg))
3985 pr_debug("SG: %p sg_is_chain=1\n", sg);
3986 if (sg_is_last(sg))
3987 pr_debug("SG: %p sg_is_last=1\n", sg);
3988 }
3989 }
3990 EXPORT_SYMBOL(transport_do_task_sg_chain);
3991
3992 /*
3993 * Break up cmd into chunks transport can handle
3994 */
3995 static int transport_allocate_data_tasks(
3996 struct se_cmd *cmd,
3997 unsigned long long lba,
3998 enum dma_data_direction data_direction,
3999 struct scatterlist *sgl,
4000 unsigned int sgl_nents)
4001 {
4002 unsigned char *cdb = NULL;
4003 struct se_task *task;
4004 struct se_device *dev = cmd->se_dev;
4005 unsigned long flags;
4006 int task_count, i;
4007 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4008 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4009 struct scatterlist *sg;
4010 struct scatterlist *cmd_sg;
4011
4012 WARN_ON(cmd->data_length % sector_size);
4013 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4014 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4015
4016 cmd_sg = sgl;
4017 for (i = 0; i < task_count; i++) {
4018 unsigned int task_size, task_sg_nents_padded;
4019 int count;
4020
4021 task = transport_generic_get_task(cmd, data_direction);
4022 if (!task)
4023 return -ENOMEM;
4024
4025 task->task_lba = lba;
4026 task->task_sectors = min(sectors, dev_max_sectors);
4027 task->task_size = task->task_sectors * sector_size;
4028
4029 cdb = dev->transport->get_cdb(task);
4030 BUG_ON(!cdb);
4031
4032 memcpy(cdb, cmd->t_task_cdb,
4033 scsi_command_size(cmd->t_task_cdb));
4034
4035 /* Update new cdb with updated lba/sectors */
4036 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4037 /*
4038 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4039 * in order to calculate the number per task SGL entries
4040 */
4041 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
4042 /*
4043 * Check if the fabric module driver is requesting that all
4044 * struct se_task->task_sg[] be chained together.. If so,
4045 * then allocate an extra padding SG entry for linking and
4046 * marking the end of the chained SGL for every task except
4047 * the last one for (task_count > 1) operation, or skipping
4048 * the extra padding for the (task_count == 1) case.
4049 */
4050 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4051 task_sg_nents_padded = (task->task_sg_nents + 1);
4052 task->task_padded_sg = 1;
4053 } else
4054 task_sg_nents_padded = task->task_sg_nents;
4055
4056 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4057 task_sg_nents_padded, GFP_KERNEL);
4058 if (!task->task_sg) {
4059 cmd->se_dev->transport->free_task(task);
4060 return -ENOMEM;
4061 }
4062
4063 sg_init_table(task->task_sg, task_sg_nents_padded);
4064
4065 task_size = task->task_size;
4066
4067 /* Build new sgl, only up to task_size */
4068 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4069 if (cmd_sg->length > task_size)
4070 break;
4071
4072 *sg = *cmd_sg;
4073 task_size -= cmd_sg->length;
4074 cmd_sg = sg_next(cmd_sg);
4075 }
4076
4077 lba += task->task_sectors;
4078 sectors -= task->task_sectors;
4079
4080 spin_lock_irqsave(&cmd->t_state_lock, flags);
4081 list_add_tail(&task->t_list, &cmd->t_task_list);
4082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4083 }
4084
4085 return task_count;
4086 }
4087
4088 static int
4089 transport_allocate_control_task(struct se_cmd *cmd)
4090 {
4091 struct se_device *dev = cmd->se_dev;
4092 unsigned char *cdb;
4093 struct se_task *task;
4094 unsigned long flags;
4095
4096 task = transport_generic_get_task(cmd, cmd->data_direction);
4097 if (!task)
4098 return -ENOMEM;
4099
4100 cdb = dev->transport->get_cdb(task);
4101 BUG_ON(!cdb);
4102 memcpy(cdb, cmd->t_task_cdb,
4103 scsi_command_size(cmd->t_task_cdb));
4104
4105 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4106 GFP_KERNEL);
4107 if (!task->task_sg) {
4108 cmd->se_dev->transport->free_task(task);
4109 return -ENOMEM;
4110 }
4111
4112 memcpy(task->task_sg, cmd->t_data_sg,
4113 sizeof(struct scatterlist) * cmd->t_data_nents);
4114 task->task_size = cmd->data_length;
4115 task->task_sg_nents = cmd->t_data_nents;
4116
4117 spin_lock_irqsave(&cmd->t_state_lock, flags);
4118 list_add_tail(&task->t_list, &cmd->t_task_list);
4119 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4120
4121 /* Success! Return number of tasks allocated */
4122 return 1;
4123 }
4124
4125 static u32 transport_allocate_tasks(
4126 struct se_cmd *cmd,
4127 unsigned long long lba,
4128 enum dma_data_direction data_direction,
4129 struct scatterlist *sgl,
4130 unsigned int sgl_nents)
4131 {
4132 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4133 if (transport_cmd_get_valid_sectors(cmd) < 0)
4134 return -EINVAL;
4135
4136 return transport_allocate_data_tasks(cmd, lba, data_direction,
4137 sgl, sgl_nents);
4138 } else
4139 return transport_allocate_control_task(cmd);
4140
4141 }
4142
4143
4144 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4145 *
4146 * Allocate storage transport resources from a set of values predefined
4147 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4148 * Any non zero return here is treated as an "out of resource' op here.
4149 */
4150 /*
4151 * Generate struct se_task(s) and/or their payloads for this CDB.
4152 */
4153 int transport_generic_new_cmd(struct se_cmd *cmd)
4154 {
4155 int ret = 0;
4156
4157 /*
4158 * Determine is the TCM fabric module has already allocated physical
4159 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4160 * beforehand.
4161 */
4162 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4163 cmd->data_length) {
4164 ret = transport_generic_get_mem(cmd);
4165 if (ret < 0)
4166 return ret;
4167 }
4168 /*
4169 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4170 * control or data CDB types, and perform the map to backend subsystem
4171 * code from SGL memory allocated here by transport_generic_get_mem(), or
4172 * via pre-existing SGL memory setup explictly by fabric module code with
4173 * transport_generic_map_mem_to_cmd().
4174 */
4175 ret = transport_new_cmd_obj(cmd);
4176 if (ret < 0)
4177 return ret;
4178 /*
4179 * For WRITEs, let the fabric know its buffer is ready..
4180 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4181 * will be added to the struct se_device execution queue after its WRITE
4182 * data has arrived. (ie: It gets handled by the transport processing
4183 * thread a second time)
4184 */
4185 if (cmd->data_direction == DMA_TO_DEVICE) {
4186 transport_add_tasks_to_state_queue(cmd);
4187 return transport_generic_write_pending(cmd);
4188 }
4189 /*
4190 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4191 * to the execution queue.
4192 */
4193 transport_execute_tasks(cmd);
4194 return 0;
4195 }
4196 EXPORT_SYMBOL(transport_generic_new_cmd);
4197
4198 /* transport_generic_process_write():
4199 *
4200 *
4201 */
4202 void transport_generic_process_write(struct se_cmd *cmd)
4203 {
4204 transport_execute_tasks(cmd);
4205 }
4206 EXPORT_SYMBOL(transport_generic_process_write);
4207
4208 static int transport_write_pending_qf(struct se_cmd *cmd)
4209 {
4210 return cmd->se_tfo->write_pending(cmd);
4211 }
4212
4213 /* transport_generic_write_pending():
4214 *
4215 *
4216 */
4217 static int transport_generic_write_pending(struct se_cmd *cmd)
4218 {
4219 unsigned long flags;
4220 int ret;
4221
4222 spin_lock_irqsave(&cmd->t_state_lock, flags);
4223 cmd->t_state = TRANSPORT_WRITE_PENDING;
4224 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4225
4226 if (cmd->transport_qf_callback) {
4227 ret = cmd->transport_qf_callback(cmd);
4228 if (ret == -EAGAIN)
4229 goto queue_full;
4230 else if (ret < 0)
4231 return ret;
4232
4233 cmd->transport_qf_callback = NULL;
4234 return 0;
4235 }
4236
4237 /*
4238 * Clear the se_cmd for WRITE_PENDING status in order to set
4239 * cmd->t_transport_active=0 so that transport_generic_handle_data
4240 * can be called from HW target mode interrupt code. This is safe
4241 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4242 * because the se_cmd->se_lun pointer is not being cleared.
4243 */
4244 transport_cmd_check_stop(cmd, 1, 0);
4245
4246 /*
4247 * Call the fabric write_pending function here to let the
4248 * frontend know that WRITE buffers are ready.
4249 */
4250 ret = cmd->se_tfo->write_pending(cmd);
4251 if (ret == -EAGAIN)
4252 goto queue_full;
4253 else if (ret < 0)
4254 return ret;
4255
4256 return PYX_TRANSPORT_WRITE_PENDING;
4257
4258 queue_full:
4259 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4260 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4261 transport_handle_queue_full(cmd, cmd->se_dev,
4262 transport_write_pending_qf);
4263 return ret;
4264 }
4265
4266 /**
4267 * transport_release_cmd - free a command
4268 * @cmd: command to free
4269 *
4270 * This routine unconditionally frees a command, and reference counting
4271 * or list removal must be done in the caller.
4272 */
4273 void transport_release_cmd(struct se_cmd *cmd)
4274 {
4275 BUG_ON(!cmd->se_tfo);
4276
4277 if (cmd->se_tmr_req)
4278 core_tmr_release_req(cmd->se_tmr_req);
4279 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4280 kfree(cmd->t_task_cdb);
4281 cmd->se_tfo->release_cmd(cmd);
4282 }
4283 EXPORT_SYMBOL(transport_release_cmd);
4284
4285 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4286 {
4287 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4288 if (wait_for_tasks && cmd->se_tmr_req)
4289 transport_wait_for_tasks(cmd);
4290
4291 transport_release_cmd(cmd);
4292 } else {
4293 if (wait_for_tasks)
4294 transport_wait_for_tasks(cmd);
4295
4296 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4297
4298 if (cmd->se_lun)
4299 transport_lun_remove_cmd(cmd);
4300
4301 transport_free_dev_tasks(cmd);
4302
4303 transport_put_cmd(cmd);
4304 }
4305 }
4306 EXPORT_SYMBOL(transport_generic_free_cmd);
4307
4308 /* transport_lun_wait_for_tasks():
4309 *
4310 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4311 * an struct se_lun to be successfully shutdown.
4312 */
4313 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4314 {
4315 unsigned long flags;
4316 int ret;
4317 /*
4318 * If the frontend has already requested this struct se_cmd to
4319 * be stopped, we can safely ignore this struct se_cmd.
4320 */
4321 spin_lock_irqsave(&cmd->t_state_lock, flags);
4322 if (atomic_read(&cmd->t_transport_stop)) {
4323 atomic_set(&cmd->transport_lun_stop, 0);
4324 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4325 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4326 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4327 transport_cmd_check_stop(cmd, 1, 0);
4328 return -EPERM;
4329 }
4330 atomic_set(&cmd->transport_lun_fe_stop, 1);
4331 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4332
4333 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4334
4335 ret = transport_stop_tasks_for_cmd(cmd);
4336
4337 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4338 " %d\n", cmd, cmd->t_task_list_num, ret);
4339 if (!ret) {
4340 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4341 cmd->se_tfo->get_task_tag(cmd));
4342 wait_for_completion(&cmd->transport_lun_stop_comp);
4343 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4344 cmd->se_tfo->get_task_tag(cmd));
4345 }
4346 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4347
4348 return 0;
4349 }
4350
4351 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4352 {
4353 struct se_cmd *cmd = NULL;
4354 unsigned long lun_flags, cmd_flags;
4355 /*
4356 * Do exception processing and return CHECK_CONDITION status to the
4357 * Initiator Port.
4358 */
4359 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4360 while (!list_empty(&lun->lun_cmd_list)) {
4361 cmd = list_first_entry(&lun->lun_cmd_list,
4362 struct se_cmd, se_lun_node);
4363 list_del(&cmd->se_lun_node);
4364
4365 atomic_set(&cmd->transport_lun_active, 0);
4366 /*
4367 * This will notify iscsi_target_transport.c:
4368 * transport_cmd_check_stop() that a LUN shutdown is in
4369 * progress for the iscsi_cmd_t.
4370 */
4371 spin_lock(&cmd->t_state_lock);
4372 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4373 "_lun_stop for ITT: 0x%08x\n",
4374 cmd->se_lun->unpacked_lun,
4375 cmd->se_tfo->get_task_tag(cmd));
4376 atomic_set(&cmd->transport_lun_stop, 1);
4377 spin_unlock(&cmd->t_state_lock);
4378
4379 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4380
4381 if (!cmd->se_lun) {
4382 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4383 cmd->se_tfo->get_task_tag(cmd),
4384 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4385 BUG();
4386 }
4387 /*
4388 * If the Storage engine still owns the iscsi_cmd_t, determine
4389 * and/or stop its context.
4390 */
4391 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4392 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4393 cmd->se_tfo->get_task_tag(cmd));
4394
4395 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4396 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4397 continue;
4398 }
4399
4400 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4401 "_wait_for_tasks(): SUCCESS\n",
4402 cmd->se_lun->unpacked_lun,
4403 cmd->se_tfo->get_task_tag(cmd));
4404
4405 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4406 if (!atomic_read(&cmd->transport_dev_active)) {
4407 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4408 goto check_cond;
4409 }
4410 atomic_set(&cmd->transport_dev_active, 0);
4411 transport_all_task_dev_remove_state(cmd);
4412 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4413
4414 transport_free_dev_tasks(cmd);
4415 /*
4416 * The Storage engine stopped this struct se_cmd before it was
4417 * send to the fabric frontend for delivery back to the
4418 * Initiator Node. Return this SCSI CDB back with an
4419 * CHECK_CONDITION status.
4420 */
4421 check_cond:
4422 transport_send_check_condition_and_sense(cmd,
4423 TCM_NON_EXISTENT_LUN, 0);
4424 /*
4425 * If the fabric frontend is waiting for this iscsi_cmd_t to
4426 * be released, notify the waiting thread now that LU has
4427 * finished accessing it.
4428 */
4429 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4430 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4431 pr_debug("SE_LUN[%d] - Detected FE stop for"
4432 " struct se_cmd: %p ITT: 0x%08x\n",
4433 lun->unpacked_lun,
4434 cmd, cmd->se_tfo->get_task_tag(cmd));
4435
4436 spin_unlock_irqrestore(&cmd->t_state_lock,
4437 cmd_flags);
4438 transport_cmd_check_stop(cmd, 1, 0);
4439 complete(&cmd->transport_lun_fe_stop_comp);
4440 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4441 continue;
4442 }
4443 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4444 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4445
4446 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4447 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4448 }
4449 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4450 }
4451
4452 static int transport_clear_lun_thread(void *p)
4453 {
4454 struct se_lun *lun = (struct se_lun *)p;
4455
4456 __transport_clear_lun_from_sessions(lun);
4457 complete(&lun->lun_shutdown_comp);
4458
4459 return 0;
4460 }
4461
4462 int transport_clear_lun_from_sessions(struct se_lun *lun)
4463 {
4464 struct task_struct *kt;
4465
4466 kt = kthread_run(transport_clear_lun_thread, lun,
4467 "tcm_cl_%u", lun->unpacked_lun);
4468 if (IS_ERR(kt)) {
4469 pr_err("Unable to start clear_lun thread\n");
4470 return PTR_ERR(kt);
4471 }
4472 wait_for_completion(&lun->lun_shutdown_comp);
4473
4474 return 0;
4475 }
4476
4477 /**
4478 * transport_wait_for_tasks - wait for completion to occur
4479 * @cmd: command to wait
4480 *
4481 * Called from frontend fabric context to wait for storage engine
4482 * to pause and/or release frontend generated struct se_cmd.
4483 */
4484 void transport_wait_for_tasks(struct se_cmd *cmd)
4485 {
4486 unsigned long flags;
4487
4488 spin_lock_irqsave(&cmd->t_state_lock, flags);
4489 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4490 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4491 return;
4492 }
4493 /*
4494 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4495 * has been set in transport_set_supported_SAM_opcode().
4496 */
4497 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4498 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4499 return;
4500 }
4501 /*
4502 * If we are already stopped due to an external event (ie: LUN shutdown)
4503 * sleep until the connection can have the passed struct se_cmd back.
4504 * The cmd->transport_lun_stopped_sem will be upped by
4505 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4506 * has completed its operation on the struct se_cmd.
4507 */
4508 if (atomic_read(&cmd->transport_lun_stop)) {
4509
4510 pr_debug("wait_for_tasks: Stopping"
4511 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4512 "_stop_comp); for ITT: 0x%08x\n",
4513 cmd->se_tfo->get_task_tag(cmd));
4514 /*
4515 * There is a special case for WRITES where a FE exception +
4516 * LUN shutdown means ConfigFS context is still sleeping on
4517 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4518 * We go ahead and up transport_lun_stop_comp just to be sure
4519 * here.
4520 */
4521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4522 complete(&cmd->transport_lun_stop_comp);
4523 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4524 spin_lock_irqsave(&cmd->t_state_lock, flags);
4525
4526 transport_all_task_dev_remove_state(cmd);
4527 /*
4528 * At this point, the frontend who was the originator of this
4529 * struct se_cmd, now owns the structure and can be released through
4530 * normal means below.
4531 */
4532 pr_debug("wait_for_tasks: Stopped"
4533 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4534 "stop_comp); for ITT: 0x%08x\n",
4535 cmd->se_tfo->get_task_tag(cmd));
4536
4537 atomic_set(&cmd->transport_lun_stop, 0);
4538 }
4539 if (!atomic_read(&cmd->t_transport_active) ||
4540 atomic_read(&cmd->t_transport_aborted)) {
4541 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4542 return;
4543 }
4544
4545 atomic_set(&cmd->t_transport_stop, 1);
4546
4547 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4548 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4549 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4550 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4551 cmd->deferred_t_state);
4552
4553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4554
4555 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4556
4557 wait_for_completion(&cmd->t_transport_stop_comp);
4558
4559 spin_lock_irqsave(&cmd->t_state_lock, flags);
4560 atomic_set(&cmd->t_transport_active, 0);
4561 atomic_set(&cmd->t_transport_stop, 0);
4562
4563 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4564 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4565 cmd->se_tfo->get_task_tag(cmd));
4566
4567 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4568 }
4569 EXPORT_SYMBOL(transport_wait_for_tasks);
4570
4571 static int transport_get_sense_codes(
4572 struct se_cmd *cmd,
4573 u8 *asc,
4574 u8 *ascq)
4575 {
4576 *asc = cmd->scsi_asc;
4577 *ascq = cmd->scsi_ascq;
4578
4579 return 0;
4580 }
4581
4582 static int transport_set_sense_codes(
4583 struct se_cmd *cmd,
4584 u8 asc,
4585 u8 ascq)
4586 {
4587 cmd->scsi_asc = asc;
4588 cmd->scsi_ascq = ascq;
4589
4590 return 0;
4591 }
4592
4593 int transport_send_check_condition_and_sense(
4594 struct se_cmd *cmd,
4595 u8 reason,
4596 int from_transport)
4597 {
4598 unsigned char *buffer = cmd->sense_buffer;
4599 unsigned long flags;
4600 int offset;
4601 u8 asc = 0, ascq = 0;
4602
4603 spin_lock_irqsave(&cmd->t_state_lock, flags);
4604 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4605 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4606 return 0;
4607 }
4608 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4609 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4610
4611 if (!reason && from_transport)
4612 goto after_reason;
4613
4614 if (!from_transport)
4615 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4616 /*
4617 * Data Segment and SenseLength of the fabric response PDU.
4618 *
4619 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4620 * from include/scsi/scsi_cmnd.h
4621 */
4622 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4623 TRANSPORT_SENSE_BUFFER);
4624 /*
4625 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4626 * SENSE KEY values from include/scsi/scsi.h
4627 */
4628 switch (reason) {
4629 case TCM_NON_EXISTENT_LUN:
4630 /* CURRENT ERROR */
4631 buffer[offset] = 0x70;
4632 /* ILLEGAL REQUEST */
4633 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4634 /* LOGICAL UNIT NOT SUPPORTED */
4635 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4636 break;
4637 case TCM_UNSUPPORTED_SCSI_OPCODE:
4638 case TCM_SECTOR_COUNT_TOO_MANY:
4639 /* CURRENT ERROR */
4640 buffer[offset] = 0x70;
4641 /* ILLEGAL REQUEST */
4642 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4643 /* INVALID COMMAND OPERATION CODE */
4644 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4645 break;
4646 case TCM_UNKNOWN_MODE_PAGE:
4647 /* CURRENT ERROR */
4648 buffer[offset] = 0x70;
4649 /* ILLEGAL REQUEST */
4650 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4651 /* INVALID FIELD IN CDB */
4652 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4653 break;
4654 case TCM_CHECK_CONDITION_ABORT_CMD:
4655 /* CURRENT ERROR */
4656 buffer[offset] = 0x70;
4657 /* ABORTED COMMAND */
4658 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4659 /* BUS DEVICE RESET FUNCTION OCCURRED */
4660 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4661 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4662 break;
4663 case TCM_INCORRECT_AMOUNT_OF_DATA:
4664 /* CURRENT ERROR */
4665 buffer[offset] = 0x70;
4666 /* ABORTED COMMAND */
4667 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4668 /* WRITE ERROR */
4669 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4670 /* NOT ENOUGH UNSOLICITED DATA */
4671 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4672 break;
4673 case TCM_INVALID_CDB_FIELD:
4674 /* CURRENT ERROR */
4675 buffer[offset] = 0x70;
4676 /* ABORTED COMMAND */
4677 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4678 /* INVALID FIELD IN CDB */
4679 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4680 break;
4681 case TCM_INVALID_PARAMETER_LIST:
4682 /* CURRENT ERROR */
4683 buffer[offset] = 0x70;
4684 /* ABORTED COMMAND */
4685 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4686 /* INVALID FIELD IN PARAMETER LIST */
4687 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4688 break;
4689 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4690 /* CURRENT ERROR */
4691 buffer[offset] = 0x70;
4692 /* ABORTED COMMAND */
4693 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4694 /* WRITE ERROR */
4695 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4696 /* UNEXPECTED_UNSOLICITED_DATA */
4697 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4698 break;
4699 case TCM_SERVICE_CRC_ERROR:
4700 /* CURRENT ERROR */
4701 buffer[offset] = 0x70;
4702 /* ABORTED COMMAND */
4703 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4704 /* PROTOCOL SERVICE CRC ERROR */
4705 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4706 /* N/A */
4707 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4708 break;
4709 case TCM_SNACK_REJECTED:
4710 /* CURRENT ERROR */
4711 buffer[offset] = 0x70;
4712 /* ABORTED COMMAND */
4713 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4714 /* READ ERROR */
4715 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4716 /* FAILED RETRANSMISSION REQUEST */
4717 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4718 break;
4719 case TCM_WRITE_PROTECTED:
4720 /* CURRENT ERROR */
4721 buffer[offset] = 0x70;
4722 /* DATA PROTECT */
4723 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4724 /* WRITE PROTECTED */
4725 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4726 break;
4727 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4728 /* CURRENT ERROR */
4729 buffer[offset] = 0x70;
4730 /* UNIT ATTENTION */
4731 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4732 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4733 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4734 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4735 break;
4736 case TCM_CHECK_CONDITION_NOT_READY:
4737 /* CURRENT ERROR */
4738 buffer[offset] = 0x70;
4739 /* Not Ready */
4740 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4741 transport_get_sense_codes(cmd, &asc, &ascq);
4742 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4743 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4744 break;
4745 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4746 default:
4747 /* CURRENT ERROR */
4748 buffer[offset] = 0x70;
4749 /* ILLEGAL REQUEST */
4750 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4751 /* LOGICAL UNIT COMMUNICATION FAILURE */
4752 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4753 break;
4754 }
4755 /*
4756 * This code uses linux/include/scsi/scsi.h SAM status codes!
4757 */
4758 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4759 /*
4760 * Automatically padded, this value is encoded in the fabric's
4761 * data_length response PDU containing the SCSI defined sense data.
4762 */
4763 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4764
4765 after_reason:
4766 return cmd->se_tfo->queue_status(cmd);
4767 }
4768 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4769
4770 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4771 {
4772 int ret = 0;
4773
4774 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4775 if (!send_status ||
4776 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4777 return 1;
4778 #if 0
4779 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4780 " status for CDB: 0x%02x ITT: 0x%08x\n",
4781 cmd->t_task_cdb[0],
4782 cmd->se_tfo->get_task_tag(cmd));
4783 #endif
4784 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4785 cmd->se_tfo->queue_status(cmd);
4786 ret = 1;
4787 }
4788 return ret;
4789 }
4790 EXPORT_SYMBOL(transport_check_aborted_status);
4791
4792 void transport_send_task_abort(struct se_cmd *cmd)
4793 {
4794 unsigned long flags;
4795
4796 spin_lock_irqsave(&cmd->t_state_lock, flags);
4797 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4798 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4799 return;
4800 }
4801 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4802
4803 /*
4804 * If there are still expected incoming fabric WRITEs, we wait
4805 * until until they have completed before sending a TASK_ABORTED
4806 * response. This response with TASK_ABORTED status will be
4807 * queued back to fabric module by transport_check_aborted_status().
4808 */
4809 if (cmd->data_direction == DMA_TO_DEVICE) {
4810 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4811 atomic_inc(&cmd->t_transport_aborted);
4812 smp_mb__after_atomic_inc();
4813 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4814 transport_new_cmd_failure(cmd);
4815 return;
4816 }
4817 }
4818 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4819 #if 0
4820 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4821 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4822 cmd->se_tfo->get_task_tag(cmd));
4823 #endif
4824 cmd->se_tfo->queue_status(cmd);
4825 }
4826
4827 /* transport_generic_do_tmr():
4828 *
4829 *
4830 */
4831 int transport_generic_do_tmr(struct se_cmd *cmd)
4832 {
4833 struct se_device *dev = cmd->se_dev;
4834 struct se_tmr_req *tmr = cmd->se_tmr_req;
4835 int ret;
4836
4837 switch (tmr->function) {
4838 case TMR_ABORT_TASK:
4839 tmr->response = TMR_FUNCTION_REJECTED;
4840 break;
4841 case TMR_ABORT_TASK_SET:
4842 case TMR_CLEAR_ACA:
4843 case TMR_CLEAR_TASK_SET:
4844 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4845 break;
4846 case TMR_LUN_RESET:
4847 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4848 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4849 TMR_FUNCTION_REJECTED;
4850 break;
4851 case TMR_TARGET_WARM_RESET:
4852 tmr->response = TMR_FUNCTION_REJECTED;
4853 break;
4854 case TMR_TARGET_COLD_RESET:
4855 tmr->response = TMR_FUNCTION_REJECTED;
4856 break;
4857 default:
4858 pr_err("Uknown TMR function: 0x%02x.\n",
4859 tmr->function);
4860 tmr->response = TMR_FUNCTION_REJECTED;
4861 break;
4862 }
4863
4864 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4865 cmd->se_tfo->queue_tm_rsp(cmd);
4866
4867 transport_cmd_check_stop(cmd, 2, 0);
4868 return 0;
4869 }
4870
4871 /*
4872 * Called with spin_lock_irq(&dev->execute_task_lock); held
4873 *
4874 */
4875 static struct se_task *
4876 transport_get_task_from_state_list(struct se_device *dev)
4877 {
4878 struct se_task *task;
4879
4880 if (list_empty(&dev->state_task_list))
4881 return NULL;
4882
4883 list_for_each_entry(task, &dev->state_task_list, t_state_list)
4884 break;
4885
4886 list_del(&task->t_state_list);
4887 atomic_set(&task->task_state_active, 0);
4888
4889 return task;
4890 }
4891
4892 static void transport_processing_shutdown(struct se_device *dev)
4893 {
4894 struct se_cmd *cmd;
4895 struct se_task *task;
4896 unsigned long flags;
4897 /*
4898 * Empty the struct se_device's struct se_task state list.
4899 */
4900 spin_lock_irqsave(&dev->execute_task_lock, flags);
4901 while ((task = transport_get_task_from_state_list(dev))) {
4902 if (!task->task_se_cmd) {
4903 pr_err("task->task_se_cmd is NULL!\n");
4904 continue;
4905 }
4906 cmd = task->task_se_cmd;
4907
4908 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
4909
4910 spin_lock_irqsave(&cmd->t_state_lock, flags);
4911
4912 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
4913 " i_state: %d, t_state/def_t_state:"
4914 " %d/%d cdb: 0x%02x\n", cmd, task,
4915 cmd->se_tfo->get_task_tag(cmd),
4916 cmd->se_tfo->get_cmd_state(cmd),
4917 cmd->t_state, cmd->deferred_t_state,
4918 cmd->t_task_cdb[0]);
4919 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
4920 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
4921 " t_transport_stop: %d t_transport_sent: %d\n",
4922 cmd->se_tfo->get_task_tag(cmd),
4923 cmd->t_task_list_num,
4924 atomic_read(&cmd->t_task_cdbs_left),
4925 atomic_read(&cmd->t_task_cdbs_sent),
4926 atomic_read(&cmd->t_transport_active),
4927 atomic_read(&cmd->t_transport_stop),
4928 atomic_read(&cmd->t_transport_sent));
4929
4930 if (atomic_read(&task->task_active)) {
4931 atomic_set(&task->task_stop, 1);
4932 spin_unlock_irqrestore(
4933 &cmd->t_state_lock, flags);
4934
4935 pr_debug("Waiting for task: %p to shutdown for dev:"
4936 " %p\n", task, dev);
4937 wait_for_completion(&task->task_stop_comp);
4938 pr_debug("Completed task: %p shutdown for dev: %p\n",
4939 task, dev);
4940
4941 spin_lock_irqsave(&cmd->t_state_lock, flags);
4942 atomic_dec(&cmd->t_task_cdbs_left);
4943
4944 atomic_set(&task->task_active, 0);
4945 atomic_set(&task->task_stop, 0);
4946 } else {
4947 if (atomic_read(&task->task_execute_queue) != 0)
4948 transport_remove_task_from_execute_queue(task, dev);
4949 }
4950 __transport_stop_task_timer(task, &flags);
4951
4952 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
4953 spin_unlock_irqrestore(
4954 &cmd->t_state_lock, flags);
4955
4956 pr_debug("Skipping task: %p, dev: %p for"
4957 " t_task_cdbs_ex_left: %d\n", task, dev,
4958 atomic_read(&cmd->t_task_cdbs_ex_left));
4959
4960 spin_lock_irqsave(&dev->execute_task_lock, flags);
4961 continue;
4962 }
4963
4964 if (atomic_read(&cmd->t_transport_active)) {
4965 pr_debug("got t_transport_active = 1 for task: %p, dev:"
4966 " %p\n", task, dev);
4967
4968 if (atomic_read(&cmd->t_fe_count)) {
4969 spin_unlock_irqrestore(
4970 &cmd->t_state_lock, flags);
4971 transport_send_check_condition_and_sense(
4972 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
4973 0);
4974 transport_remove_cmd_from_queue(cmd,
4975 &cmd->se_dev->dev_queue_obj);
4976
4977 transport_lun_remove_cmd(cmd);
4978 transport_cmd_check_stop(cmd, 1, 0);
4979 } else {
4980 spin_unlock_irqrestore(
4981 &cmd->t_state_lock, flags);
4982
4983 transport_remove_cmd_from_queue(cmd,
4984 &cmd->se_dev->dev_queue_obj);
4985
4986 transport_lun_remove_cmd(cmd);
4987
4988 if (transport_cmd_check_stop(cmd, 1, 0))
4989 transport_put_cmd(cmd);
4990 }
4991
4992 spin_lock_irqsave(&dev->execute_task_lock, flags);
4993 continue;
4994 }
4995 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
4996 task, dev);
4997
4998 if (atomic_read(&cmd->t_fe_count)) {
4999 spin_unlock_irqrestore(
5000 &cmd->t_state_lock, flags);
5001 transport_send_check_condition_and_sense(cmd,
5002 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5003 transport_remove_cmd_from_queue(cmd,
5004 &cmd->se_dev->dev_queue_obj);
5005
5006 transport_lun_remove_cmd(cmd);
5007 transport_cmd_check_stop(cmd, 1, 0);
5008 } else {
5009 spin_unlock_irqrestore(
5010 &cmd->t_state_lock, flags);
5011
5012 transport_remove_cmd_from_queue(cmd,
5013 &cmd->se_dev->dev_queue_obj);
5014 transport_lun_remove_cmd(cmd);
5015
5016 if (transport_cmd_check_stop(cmd, 1, 0))
5017 transport_put_cmd(cmd);
5018 }
5019
5020 spin_lock_irqsave(&dev->execute_task_lock, flags);
5021 }
5022 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5023 /*
5024 * Empty the struct se_device's struct se_cmd list.
5025 */
5026 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5027
5028 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5029 cmd, cmd->t_state);
5030
5031 if (atomic_read(&cmd->t_fe_count)) {
5032 transport_send_check_condition_and_sense(cmd,
5033 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5034
5035 transport_lun_remove_cmd(cmd);
5036 transport_cmd_check_stop(cmd, 1, 0);
5037 } else {
5038 transport_lun_remove_cmd(cmd);
5039 if (transport_cmd_check_stop(cmd, 1, 0))
5040 transport_put_cmd(cmd);
5041 }
5042 }
5043 }
5044
5045 /* transport_processing_thread():
5046 *
5047 *
5048 */
5049 static int transport_processing_thread(void *param)
5050 {
5051 int ret;
5052 struct se_cmd *cmd;
5053 struct se_device *dev = (struct se_device *) param;
5054
5055 set_user_nice(current, -20);
5056
5057 while (!kthread_should_stop()) {
5058 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5059 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5060 kthread_should_stop());
5061 if (ret < 0)
5062 goto out;
5063
5064 spin_lock_irq(&dev->dev_status_lock);
5065 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5066 spin_unlock_irq(&dev->dev_status_lock);
5067 transport_processing_shutdown(dev);
5068 continue;
5069 }
5070 spin_unlock_irq(&dev->dev_status_lock);
5071
5072 get_cmd:
5073 __transport_execute_tasks(dev);
5074
5075 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5076 if (!cmd)
5077 continue;
5078
5079 switch (cmd->t_state) {
5080 case TRANSPORT_NEW_CMD:
5081 BUG();
5082 break;
5083 case TRANSPORT_NEW_CMD_MAP:
5084 if (!cmd->se_tfo->new_cmd_map) {
5085 pr_err("cmd->se_tfo->new_cmd_map is"
5086 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5087 BUG();
5088 }
5089 ret = cmd->se_tfo->new_cmd_map(cmd);
5090 if (ret < 0) {
5091 cmd->transport_error_status = ret;
5092 transport_generic_request_failure(cmd, NULL,
5093 0, (cmd->data_direction !=
5094 DMA_TO_DEVICE));
5095 break;
5096 }
5097 ret = transport_generic_new_cmd(cmd);
5098 if (ret == -EAGAIN)
5099 break;
5100 else if (ret < 0) {
5101 cmd->transport_error_status = ret;
5102 transport_generic_request_failure(cmd, NULL,
5103 0, (cmd->data_direction !=
5104 DMA_TO_DEVICE));
5105 }
5106 break;
5107 case TRANSPORT_PROCESS_WRITE:
5108 transport_generic_process_write(cmd);
5109 break;
5110 case TRANSPORT_COMPLETE_OK:
5111 transport_stop_all_task_timers(cmd);
5112 transport_generic_complete_ok(cmd);
5113 break;
5114 case TRANSPORT_REMOVE:
5115 transport_put_cmd(cmd);
5116 break;
5117 case TRANSPORT_FREE_CMD_INTR:
5118 transport_generic_free_cmd(cmd, 0);
5119 break;
5120 case TRANSPORT_PROCESS_TMR:
5121 transport_generic_do_tmr(cmd);
5122 break;
5123 case TRANSPORT_COMPLETE_FAILURE:
5124 transport_generic_request_failure(cmd, NULL, 1, 1);
5125 break;
5126 case TRANSPORT_COMPLETE_TIMEOUT:
5127 transport_stop_all_task_timers(cmd);
5128 transport_generic_request_timeout(cmd);
5129 break;
5130 case TRANSPORT_COMPLETE_QF_WP:
5131 transport_generic_write_pending(cmd);
5132 break;
5133 default:
5134 pr_err("Unknown t_state: %d deferred_t_state:"
5135 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5136 " %u\n", cmd->t_state, cmd->deferred_t_state,
5137 cmd->se_tfo->get_task_tag(cmd),
5138 cmd->se_tfo->get_cmd_state(cmd),
5139 cmd->se_lun->unpacked_lun);
5140 BUG();
5141 }
5142
5143 goto get_cmd;
5144 }
5145
5146 out:
5147 transport_release_all_cmds(dev);
5148 dev->process_thread = NULL;
5149 return 0;
5150 }
This page took 0.159582 seconds and 6 git commands to generate.