target: remove TF_TIMER_STOP
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80 unsigned long long starting_lba,
81 enum dma_data_direction data_direction,
82 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
86 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
87 static void transport_stop_all_task_timers(struct se_cmd *cmd);
88
89 int init_se_kmem_caches(void)
90 {
91 se_cmd_cache = kmem_cache_create("se_cmd_cache",
92 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
93 if (!se_cmd_cache) {
94 pr_err("kmem_cache_create for struct se_cmd failed\n");
95 goto out;
96 }
97 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
98 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
99 0, NULL);
100 if (!se_tmr_req_cache) {
101 pr_err("kmem_cache_create() for struct se_tmr_req"
102 " failed\n");
103 goto out;
104 }
105 se_sess_cache = kmem_cache_create("se_sess_cache",
106 sizeof(struct se_session), __alignof__(struct se_session),
107 0, NULL);
108 if (!se_sess_cache) {
109 pr_err("kmem_cache_create() for struct se_session"
110 " failed\n");
111 goto out;
112 }
113 se_ua_cache = kmem_cache_create("se_ua_cache",
114 sizeof(struct se_ua), __alignof__(struct se_ua),
115 0, NULL);
116 if (!se_ua_cache) {
117 pr_err("kmem_cache_create() for struct se_ua failed\n");
118 goto out;
119 }
120 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
121 sizeof(struct t10_pr_registration),
122 __alignof__(struct t10_pr_registration), 0, NULL);
123 if (!t10_pr_reg_cache) {
124 pr_err("kmem_cache_create() for struct t10_pr_registration"
125 " failed\n");
126 goto out;
127 }
128 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
129 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
130 0, NULL);
131 if (!t10_alua_lu_gp_cache) {
132 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
133 " failed\n");
134 goto out;
135 }
136 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
137 sizeof(struct t10_alua_lu_gp_member),
138 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
139 if (!t10_alua_lu_gp_mem_cache) {
140 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
141 "cache failed\n");
142 goto out;
143 }
144 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
145 sizeof(struct t10_alua_tg_pt_gp),
146 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
147 if (!t10_alua_tg_pt_gp_cache) {
148 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
149 "cache failed\n");
150 goto out;
151 }
152 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
153 "t10_alua_tg_pt_gp_mem_cache",
154 sizeof(struct t10_alua_tg_pt_gp_member),
155 __alignof__(struct t10_alua_tg_pt_gp_member),
156 0, NULL);
157 if (!t10_alua_tg_pt_gp_mem_cache) {
158 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
159 "mem_t failed\n");
160 goto out;
161 }
162
163 return 0;
164 out:
165 if (se_cmd_cache)
166 kmem_cache_destroy(se_cmd_cache);
167 if (se_tmr_req_cache)
168 kmem_cache_destroy(se_tmr_req_cache);
169 if (se_sess_cache)
170 kmem_cache_destroy(se_sess_cache);
171 if (se_ua_cache)
172 kmem_cache_destroy(se_ua_cache);
173 if (t10_pr_reg_cache)
174 kmem_cache_destroy(t10_pr_reg_cache);
175 if (t10_alua_lu_gp_cache)
176 kmem_cache_destroy(t10_alua_lu_gp_cache);
177 if (t10_alua_lu_gp_mem_cache)
178 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
179 if (t10_alua_tg_pt_gp_cache)
180 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
181 if (t10_alua_tg_pt_gp_mem_cache)
182 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
183 return -ENOMEM;
184 }
185
186 void release_se_kmem_caches(void)
187 {
188 kmem_cache_destroy(se_cmd_cache);
189 kmem_cache_destroy(se_tmr_req_cache);
190 kmem_cache_destroy(se_sess_cache);
191 kmem_cache_destroy(se_ua_cache);
192 kmem_cache_destroy(t10_pr_reg_cache);
193 kmem_cache_destroy(t10_alua_lu_gp_cache);
194 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
195 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
196 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
197 }
198
199 /* This code ensures unique mib indexes are handed out. */
200 static DEFINE_SPINLOCK(scsi_mib_index_lock);
201 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
202
203 /*
204 * Allocate a new row index for the entry type specified
205 */
206 u32 scsi_get_new_index(scsi_index_t type)
207 {
208 u32 new_index;
209
210 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
211
212 spin_lock(&scsi_mib_index_lock);
213 new_index = ++scsi_mib_index[type];
214 spin_unlock(&scsi_mib_index_lock);
215
216 return new_index;
217 }
218
219 void transport_init_queue_obj(struct se_queue_obj *qobj)
220 {
221 atomic_set(&qobj->queue_cnt, 0);
222 INIT_LIST_HEAD(&qobj->qobj_list);
223 init_waitqueue_head(&qobj->thread_wq);
224 spin_lock_init(&qobj->cmd_queue_lock);
225 }
226 EXPORT_SYMBOL(transport_init_queue_obj);
227
228 static int transport_subsystem_reqmods(void)
229 {
230 int ret;
231
232 ret = request_module("target_core_iblock");
233 if (ret != 0)
234 pr_err("Unable to load target_core_iblock\n");
235
236 ret = request_module("target_core_file");
237 if (ret != 0)
238 pr_err("Unable to load target_core_file\n");
239
240 ret = request_module("target_core_pscsi");
241 if (ret != 0)
242 pr_err("Unable to load target_core_pscsi\n");
243
244 ret = request_module("target_core_stgt");
245 if (ret != 0)
246 pr_err("Unable to load target_core_stgt\n");
247
248 return 0;
249 }
250
251 int transport_subsystem_check_init(void)
252 {
253 int ret;
254
255 if (sub_api_initialized)
256 return 0;
257 /*
258 * Request the loading of known TCM subsystem plugins..
259 */
260 ret = transport_subsystem_reqmods();
261 if (ret < 0)
262 return ret;
263
264 sub_api_initialized = 1;
265 return 0;
266 }
267
268 struct se_session *transport_init_session(void)
269 {
270 struct se_session *se_sess;
271
272 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
273 if (!se_sess) {
274 pr_err("Unable to allocate struct se_session from"
275 " se_sess_cache\n");
276 return ERR_PTR(-ENOMEM);
277 }
278 INIT_LIST_HEAD(&se_sess->sess_list);
279 INIT_LIST_HEAD(&se_sess->sess_acl_list);
280
281 return se_sess;
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /*
286 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
287 */
288 void __transport_register_session(
289 struct se_portal_group *se_tpg,
290 struct se_node_acl *se_nacl,
291 struct se_session *se_sess,
292 void *fabric_sess_ptr)
293 {
294 unsigned char buf[PR_REG_ISID_LEN];
295
296 se_sess->se_tpg = se_tpg;
297 se_sess->fabric_sess_ptr = fabric_sess_ptr;
298 /*
299 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
300 *
301 * Only set for struct se_session's that will actually be moving I/O.
302 * eg: *NOT* discovery sessions.
303 */
304 if (se_nacl) {
305 /*
306 * If the fabric module supports an ISID based TransportID,
307 * save this value in binary from the fabric I_T Nexus now.
308 */
309 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310 memset(&buf[0], 0, PR_REG_ISID_LEN);
311 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312 &buf[0], PR_REG_ISID_LEN);
313 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
314 }
315 spin_lock_irq(&se_nacl->nacl_sess_lock);
316 /*
317 * The se_nacl->nacl_sess pointer will be set to the
318 * last active I_T Nexus for each struct se_node_acl.
319 */
320 se_nacl->nacl_sess = se_sess;
321
322 list_add_tail(&se_sess->sess_acl_list,
323 &se_nacl->acl_sess_list);
324 spin_unlock_irq(&se_nacl->nacl_sess_lock);
325 }
326 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
327
328 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
329 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
330 }
331 EXPORT_SYMBOL(__transport_register_session);
332
333 void transport_register_session(
334 struct se_portal_group *se_tpg,
335 struct se_node_acl *se_nacl,
336 struct se_session *se_sess,
337 void *fabric_sess_ptr)
338 {
339 spin_lock_bh(&se_tpg->session_lock);
340 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
341 spin_unlock_bh(&se_tpg->session_lock);
342 }
343 EXPORT_SYMBOL(transport_register_session);
344
345 void transport_deregister_session_configfs(struct se_session *se_sess)
346 {
347 struct se_node_acl *se_nacl;
348 unsigned long flags;
349 /*
350 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
351 */
352 se_nacl = se_sess->se_node_acl;
353 if (se_nacl) {
354 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
355 list_del(&se_sess->sess_acl_list);
356 /*
357 * If the session list is empty, then clear the pointer.
358 * Otherwise, set the struct se_session pointer from the tail
359 * element of the per struct se_node_acl active session list.
360 */
361 if (list_empty(&se_nacl->acl_sess_list))
362 se_nacl->nacl_sess = NULL;
363 else {
364 se_nacl->nacl_sess = container_of(
365 se_nacl->acl_sess_list.prev,
366 struct se_session, sess_acl_list);
367 }
368 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
369 }
370 }
371 EXPORT_SYMBOL(transport_deregister_session_configfs);
372
373 void transport_free_session(struct se_session *se_sess)
374 {
375 kmem_cache_free(se_sess_cache, se_sess);
376 }
377 EXPORT_SYMBOL(transport_free_session);
378
379 void transport_deregister_session(struct se_session *se_sess)
380 {
381 struct se_portal_group *se_tpg = se_sess->se_tpg;
382 struct se_node_acl *se_nacl;
383 unsigned long flags;
384
385 if (!se_tpg) {
386 transport_free_session(se_sess);
387 return;
388 }
389
390 spin_lock_irqsave(&se_tpg->session_lock, flags);
391 list_del(&se_sess->sess_list);
392 se_sess->se_tpg = NULL;
393 se_sess->fabric_sess_ptr = NULL;
394 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
395
396 /*
397 * Determine if we need to do extra work for this initiator node's
398 * struct se_node_acl if it had been previously dynamically generated.
399 */
400 se_nacl = se_sess->se_node_acl;
401 if (se_nacl) {
402 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
403 if (se_nacl->dynamic_node_acl) {
404 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
405 se_tpg)) {
406 list_del(&se_nacl->acl_list);
407 se_tpg->num_node_acls--;
408 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
409
410 core_tpg_wait_for_nacl_pr_ref(se_nacl);
411 core_free_device_list_for_node(se_nacl, se_tpg);
412 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
413 se_nacl);
414 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 }
416 }
417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418 }
419
420 transport_free_session(se_sess);
421
422 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
423 se_tpg->se_tpg_tfo->get_fabric_name());
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428 * Called with cmd->t_state_lock held.
429 */
430 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
431 {
432 struct se_device *dev = cmd->se_dev;
433 struct se_task *task;
434 unsigned long flags;
435
436 if (!dev)
437 return;
438
439 list_for_each_entry(task, &cmd->t_task_list, t_list) {
440 if (task->task_flags & TF_ACTIVE)
441 continue;
442
443 if (!atomic_read(&task->task_state_active))
444 continue;
445
446 spin_lock_irqsave(&dev->execute_task_lock, flags);
447 list_del(&task->t_state_list);
448 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
449 cmd->se_tfo->get_task_tag(cmd), dev, task);
450 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
451
452 atomic_set(&task->task_state_active, 0);
453 atomic_dec(&cmd->t_task_cdbs_ex_left);
454 }
455 }
456
457 /* transport_cmd_check_stop():
458 *
459 * 'transport_off = 1' determines if t_transport_active should be cleared.
460 * 'transport_off = 2' determines if task_dev_state should be removed.
461 *
462 * A non-zero u8 t_state sets cmd->t_state.
463 * Returns 1 when command is stopped, else 0.
464 */
465 static int transport_cmd_check_stop(
466 struct se_cmd *cmd,
467 int transport_off,
468 u8 t_state)
469 {
470 unsigned long flags;
471
472 spin_lock_irqsave(&cmd->t_state_lock, flags);
473 /*
474 * Determine if IOCTL context caller in requesting the stopping of this
475 * command for LUN shutdown purposes.
476 */
477 if (atomic_read(&cmd->transport_lun_stop)) {
478 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
479 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
480 cmd->se_tfo->get_task_tag(cmd));
481
482 cmd->deferred_t_state = cmd->t_state;
483 cmd->t_state = TRANSPORT_DEFERRED_CMD;
484 atomic_set(&cmd->t_transport_active, 0);
485 if (transport_off == 2)
486 transport_all_task_dev_remove_state(cmd);
487 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
488
489 complete(&cmd->transport_lun_stop_comp);
490 return 1;
491 }
492 /*
493 * Determine if frontend context caller is requesting the stopping of
494 * this command for frontend exceptions.
495 */
496 if (atomic_read(&cmd->t_transport_stop)) {
497 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
498 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
499 cmd->se_tfo->get_task_tag(cmd));
500
501 cmd->deferred_t_state = cmd->t_state;
502 cmd->t_state = TRANSPORT_DEFERRED_CMD;
503 if (transport_off == 2)
504 transport_all_task_dev_remove_state(cmd);
505
506 /*
507 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
508 * to FE.
509 */
510 if (transport_off == 2)
511 cmd->se_lun = NULL;
512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513
514 complete(&cmd->t_transport_stop_comp);
515 return 1;
516 }
517 if (transport_off) {
518 atomic_set(&cmd->t_transport_active, 0);
519 if (transport_off == 2) {
520 transport_all_task_dev_remove_state(cmd);
521 /*
522 * Clear struct se_cmd->se_lun before the transport_off == 2
523 * handoff to fabric module.
524 */
525 cmd->se_lun = NULL;
526 /*
527 * Some fabric modules like tcm_loop can release
528 * their internally allocated I/O reference now and
529 * struct se_cmd now.
530 */
531 if (cmd->se_tfo->check_stop_free != NULL) {
532 spin_unlock_irqrestore(
533 &cmd->t_state_lock, flags);
534
535 cmd->se_tfo->check_stop_free(cmd);
536 return 1;
537 }
538 }
539 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
540
541 return 0;
542 } else if (t_state)
543 cmd->t_state = t_state;
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546 return 0;
547 }
548
549 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
550 {
551 return transport_cmd_check_stop(cmd, 2, 0);
552 }
553
554 static void transport_lun_remove_cmd(struct se_cmd *cmd)
555 {
556 struct se_lun *lun = cmd->se_lun;
557 unsigned long flags;
558
559 if (!lun)
560 return;
561
562 spin_lock_irqsave(&cmd->t_state_lock, flags);
563 if (!atomic_read(&cmd->transport_dev_active)) {
564 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565 goto check_lun;
566 }
567 atomic_set(&cmd->transport_dev_active, 0);
568 transport_all_task_dev_remove_state(cmd);
569 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570
571
572 check_lun:
573 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
574 if (atomic_read(&cmd->transport_lun_active)) {
575 list_del(&cmd->se_lun_node);
576 atomic_set(&cmd->transport_lun_active, 0);
577 #if 0
578 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
579 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
580 #endif
581 }
582 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
583 }
584
585 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
586 {
587 if (!cmd->se_tmr_req)
588 transport_lun_remove_cmd(cmd);
589
590 if (transport_cmd_check_stop_to_fabric(cmd))
591 return;
592 if (remove) {
593 transport_remove_cmd_from_queue(cmd);
594 transport_put_cmd(cmd);
595 }
596 }
597
598 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
599 bool at_head)
600 {
601 struct se_device *dev = cmd->se_dev;
602 struct se_queue_obj *qobj = &dev->dev_queue_obj;
603 unsigned long flags;
604
605 if (t_state) {
606 spin_lock_irqsave(&cmd->t_state_lock, flags);
607 cmd->t_state = t_state;
608 atomic_set(&cmd->t_transport_active, 1);
609 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
610 }
611
612 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
613
614 /* If the cmd is already on the list, remove it before we add it */
615 if (!list_empty(&cmd->se_queue_node))
616 list_del(&cmd->se_queue_node);
617 else
618 atomic_inc(&qobj->queue_cnt);
619
620 if (at_head)
621 list_add(&cmd->se_queue_node, &qobj->qobj_list);
622 else
623 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
624 atomic_set(&cmd->t_transport_queue_active, 1);
625 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
626
627 wake_up_interruptible(&qobj->thread_wq);
628 }
629
630 static struct se_cmd *
631 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
632 {
633 struct se_cmd *cmd;
634 unsigned long flags;
635
636 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
637 if (list_empty(&qobj->qobj_list)) {
638 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
639 return NULL;
640 }
641 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
642
643 atomic_set(&cmd->t_transport_queue_active, 0);
644
645 list_del_init(&cmd->se_queue_node);
646 atomic_dec(&qobj->queue_cnt);
647 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648
649 return cmd;
650 }
651
652 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
653 {
654 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
655 unsigned long flags;
656
657 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
658 if (!atomic_read(&cmd->t_transport_queue_active)) {
659 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660 return;
661 }
662 atomic_set(&cmd->t_transport_queue_active, 0);
663 atomic_dec(&qobj->queue_cnt);
664 list_del_init(&cmd->se_queue_node);
665 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666
667 if (atomic_read(&cmd->t_transport_queue_active)) {
668 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
669 cmd->se_tfo->get_task_tag(cmd),
670 atomic_read(&cmd->t_transport_queue_active));
671 }
672 }
673
674 /*
675 * Completion function used by TCM subsystem plugins (such as FILEIO)
676 * for queueing up response from struct se_subsystem_api->do_task()
677 */
678 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
679 {
680 struct se_task *task = list_entry(cmd->t_task_list.next,
681 struct se_task, t_list);
682
683 if (good) {
684 cmd->scsi_status = SAM_STAT_GOOD;
685 task->task_scsi_status = GOOD;
686 } else {
687 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
688 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
689 task->task_se_cmd->transport_error_status =
690 PYX_TRANSPORT_ILLEGAL_REQUEST;
691 }
692
693 transport_complete_task(task, good);
694 }
695 EXPORT_SYMBOL(transport_complete_sync_cache);
696
697 /* transport_complete_task():
698 *
699 * Called from interrupt and non interrupt context depending
700 * on the transport plugin.
701 */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704 struct se_cmd *cmd = task->task_se_cmd;
705 struct se_device *dev = cmd->se_dev;
706 int t_state;
707 unsigned long flags;
708 #if 0
709 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
710 cmd->t_task_cdb[0], dev);
711 #endif
712 if (dev)
713 atomic_inc(&dev->depth_left);
714
715 spin_lock_irqsave(&cmd->t_state_lock, flags);
716 task->task_flags &= ~TF_ACTIVE;
717
718 /*
719 * See if any sense data exists, if so set the TASK_SENSE flag.
720 * Also check for any other post completion work that needs to be
721 * done by the plugins.
722 */
723 if (dev && dev->transport->transport_complete) {
724 if (dev->transport->transport_complete(task) != 0) {
725 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
726 task->task_sense = 1;
727 success = 1;
728 }
729 }
730
731 /*
732 * See if we are waiting for outstanding struct se_task
733 * to complete for an exception condition
734 */
735 if (task->task_flags & TF_REQUEST_STOP) {
736 /*
737 * Decrement cmd->t_se_count if this task had
738 * previously thrown its timeout exception handler.
739 */
740 if (task->task_flags & TF_TIMEOUT) {
741 atomic_dec(&cmd->t_se_count);
742 task->task_flags &= ~TF_TIMEOUT;
743 }
744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746 complete(&task->task_stop_comp);
747 return;
748 }
749 /*
750 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
751 * left counter to determine when the struct se_cmd is ready to be queued to
752 * the processing thread.
753 */
754 if (task->task_flags & TF_TIMEOUT) {
755 if (!atomic_dec_and_test(
756 &cmd->t_task_cdbs_timeout_left)) {
757 spin_unlock_irqrestore(&cmd->t_state_lock,
758 flags);
759 return;
760 }
761 t_state = TRANSPORT_COMPLETE_TIMEOUT;
762 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763
764 transport_add_cmd_to_queue(cmd, t_state, false);
765 return;
766 }
767 atomic_dec(&cmd->t_task_cdbs_timeout_left);
768
769 /*
770 * Decrement the outstanding t_task_cdbs_left count. The last
771 * struct se_task from struct se_cmd will complete itself into the
772 * device queue depending upon int success.
773 */
774 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
775 if (!success)
776 cmd->t_tasks_failed = 1;
777
778 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
779 return;
780 }
781
782 if (!success || cmd->t_tasks_failed) {
783 t_state = TRANSPORT_COMPLETE_FAILURE;
784 if (!task->task_error_status) {
785 task->task_error_status =
786 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
787 cmd->transport_error_status =
788 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
789 }
790 } else {
791 atomic_set(&cmd->t_transport_complete, 1);
792 t_state = TRANSPORT_COMPLETE_OK;
793 }
794 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
795
796 transport_add_cmd_to_queue(cmd, t_state, false);
797 }
798 EXPORT_SYMBOL(transport_complete_task);
799
800 /*
801 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
802 * struct se_task list are ready to be added to the active execution list
803 * struct se_device
804
805 * Called with se_dev_t->execute_task_lock called.
806 */
807 static inline int transport_add_task_check_sam_attr(
808 struct se_task *task,
809 struct se_task *task_prev,
810 struct se_device *dev)
811 {
812 /*
813 * No SAM Task attribute emulation enabled, add to tail of
814 * execution queue
815 */
816 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
817 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 return 0;
819 }
820 /*
821 * HEAD_OF_QUEUE attribute for received CDB, which means
822 * the first task that is associated with a struct se_cmd goes to
823 * head of the struct se_device->execute_task_list, and task_prev
824 * after that for each subsequent task
825 */
826 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
827 list_add(&task->t_execute_list,
828 (task_prev != NULL) ?
829 &task_prev->t_execute_list :
830 &dev->execute_task_list);
831
832 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
833 " in execution queue\n",
834 task->task_se_cmd->t_task_cdb[0]);
835 return 1;
836 }
837 /*
838 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
839 * transitioned from Dermant -> Active state, and are added to the end
840 * of the struct se_device->execute_task_list
841 */
842 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
843 return 0;
844 }
845
846 /* __transport_add_task_to_execute_queue():
847 *
848 * Called with se_dev_t->execute_task_lock called.
849 */
850 static void __transport_add_task_to_execute_queue(
851 struct se_task *task,
852 struct se_task *task_prev,
853 struct se_device *dev)
854 {
855 int head_of_queue;
856
857 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
858 atomic_inc(&dev->execute_tasks);
859
860 if (atomic_read(&task->task_state_active))
861 return;
862 /*
863 * Determine if this task needs to go to HEAD_OF_QUEUE for the
864 * state list as well. Running with SAM Task Attribute emulation
865 * will always return head_of_queue == 0 here
866 */
867 if (head_of_queue)
868 list_add(&task->t_state_list, (task_prev) ?
869 &task_prev->t_state_list :
870 &dev->state_task_list);
871 else
872 list_add_tail(&task->t_state_list, &dev->state_task_list);
873
874 atomic_set(&task->task_state_active, 1);
875
876 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
877 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
878 task, dev);
879 }
880
881 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
882 {
883 struct se_device *dev = cmd->se_dev;
884 struct se_task *task;
885 unsigned long flags;
886
887 spin_lock_irqsave(&cmd->t_state_lock, flags);
888 list_for_each_entry(task, &cmd->t_task_list, t_list) {
889 if (atomic_read(&task->task_state_active))
890 continue;
891
892 spin_lock(&dev->execute_task_lock);
893 list_add_tail(&task->t_state_list, &dev->state_task_list);
894 atomic_set(&task->task_state_active, 1);
895
896 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
897 task->task_se_cmd->se_tfo->get_task_tag(
898 task->task_se_cmd), task, dev);
899
900 spin_unlock(&dev->execute_task_lock);
901 }
902 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
903 }
904
905 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
906 {
907 struct se_device *dev = cmd->se_dev;
908 struct se_task *task, *task_prev = NULL;
909 unsigned long flags;
910
911 spin_lock_irqsave(&dev->execute_task_lock, flags);
912 list_for_each_entry(task, &cmd->t_task_list, t_list) {
913 if (!list_empty(&task->t_execute_list))
914 continue;
915 /*
916 * __transport_add_task_to_execute_queue() handles the
917 * SAM Task Attribute emulation if enabled
918 */
919 __transport_add_task_to_execute_queue(task, task_prev, dev);
920 task_prev = task;
921 }
922 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
923 }
924
925 void __transport_remove_task_from_execute_queue(struct se_task *task,
926 struct se_device *dev)
927 {
928 list_del_init(&task->t_execute_list);
929 atomic_dec(&dev->execute_tasks);
930 }
931
932 void transport_remove_task_from_execute_queue(
933 struct se_task *task,
934 struct se_device *dev)
935 {
936 unsigned long flags;
937
938 if (WARN_ON(list_empty(&task->t_execute_list)))
939 return;
940
941 spin_lock_irqsave(&dev->execute_task_lock, flags);
942 __transport_remove_task_from_execute_queue(task, dev);
943 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
944 }
945
946 /*
947 * Handle QUEUE_FULL / -EAGAIN status
948 */
949
950 static void target_qf_do_work(struct work_struct *work)
951 {
952 struct se_device *dev = container_of(work, struct se_device,
953 qf_work_queue);
954 LIST_HEAD(qf_cmd_list);
955 struct se_cmd *cmd, *cmd_tmp;
956
957 spin_lock_irq(&dev->qf_cmd_lock);
958 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
959 spin_unlock_irq(&dev->qf_cmd_lock);
960
961 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
962 list_del(&cmd->se_qf_node);
963 atomic_dec(&dev->dev_qf_count);
964 smp_mb__after_atomic_dec();
965
966 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
967 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
968 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
969 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
970 : "UNKNOWN");
971
972 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
973 }
974 }
975
976 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
977 {
978 switch (cmd->data_direction) {
979 case DMA_NONE:
980 return "NONE";
981 case DMA_FROM_DEVICE:
982 return "READ";
983 case DMA_TO_DEVICE:
984 return "WRITE";
985 case DMA_BIDIRECTIONAL:
986 return "BIDI";
987 default:
988 break;
989 }
990
991 return "UNKNOWN";
992 }
993
994 void transport_dump_dev_state(
995 struct se_device *dev,
996 char *b,
997 int *bl)
998 {
999 *bl += sprintf(b + *bl, "Status: ");
1000 switch (dev->dev_status) {
1001 case TRANSPORT_DEVICE_ACTIVATED:
1002 *bl += sprintf(b + *bl, "ACTIVATED");
1003 break;
1004 case TRANSPORT_DEVICE_DEACTIVATED:
1005 *bl += sprintf(b + *bl, "DEACTIVATED");
1006 break;
1007 case TRANSPORT_DEVICE_SHUTDOWN:
1008 *bl += sprintf(b + *bl, "SHUTDOWN");
1009 break;
1010 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1011 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1012 *bl += sprintf(b + *bl, "OFFLINE");
1013 break;
1014 default:
1015 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1016 break;
1017 }
1018
1019 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1020 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1021 dev->queue_depth);
1022 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1023 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1024 *bl += sprintf(b + *bl, " ");
1025 }
1026
1027 void transport_dump_vpd_proto_id(
1028 struct t10_vpd *vpd,
1029 unsigned char *p_buf,
1030 int p_buf_len)
1031 {
1032 unsigned char buf[VPD_TMP_BUF_SIZE];
1033 int len;
1034
1035 memset(buf, 0, VPD_TMP_BUF_SIZE);
1036 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1037
1038 switch (vpd->protocol_identifier) {
1039 case 0x00:
1040 sprintf(buf+len, "Fibre Channel\n");
1041 break;
1042 case 0x10:
1043 sprintf(buf+len, "Parallel SCSI\n");
1044 break;
1045 case 0x20:
1046 sprintf(buf+len, "SSA\n");
1047 break;
1048 case 0x30:
1049 sprintf(buf+len, "IEEE 1394\n");
1050 break;
1051 case 0x40:
1052 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1053 " Protocol\n");
1054 break;
1055 case 0x50:
1056 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1057 break;
1058 case 0x60:
1059 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1060 break;
1061 case 0x70:
1062 sprintf(buf+len, "Automation/Drive Interface Transport"
1063 " Protocol\n");
1064 break;
1065 case 0x80:
1066 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1067 break;
1068 default:
1069 sprintf(buf+len, "Unknown 0x%02x\n",
1070 vpd->protocol_identifier);
1071 break;
1072 }
1073
1074 if (p_buf)
1075 strncpy(p_buf, buf, p_buf_len);
1076 else
1077 pr_debug("%s", buf);
1078 }
1079
1080 void
1081 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1082 {
1083 /*
1084 * Check if the Protocol Identifier Valid (PIV) bit is set..
1085 *
1086 * from spc3r23.pdf section 7.5.1
1087 */
1088 if (page_83[1] & 0x80) {
1089 vpd->protocol_identifier = (page_83[0] & 0xf0);
1090 vpd->protocol_identifier_set = 1;
1091 transport_dump_vpd_proto_id(vpd, NULL, 0);
1092 }
1093 }
1094 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1095
1096 int transport_dump_vpd_assoc(
1097 struct t10_vpd *vpd,
1098 unsigned char *p_buf,
1099 int p_buf_len)
1100 {
1101 unsigned char buf[VPD_TMP_BUF_SIZE];
1102 int ret = 0;
1103 int len;
1104
1105 memset(buf, 0, VPD_TMP_BUF_SIZE);
1106 len = sprintf(buf, "T10 VPD Identifier Association: ");
1107
1108 switch (vpd->association) {
1109 case 0x00:
1110 sprintf(buf+len, "addressed logical unit\n");
1111 break;
1112 case 0x10:
1113 sprintf(buf+len, "target port\n");
1114 break;
1115 case 0x20:
1116 sprintf(buf+len, "SCSI target device\n");
1117 break;
1118 default:
1119 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1120 ret = -EINVAL;
1121 break;
1122 }
1123
1124 if (p_buf)
1125 strncpy(p_buf, buf, p_buf_len);
1126 else
1127 pr_debug("%s", buf);
1128
1129 return ret;
1130 }
1131
1132 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1133 {
1134 /*
1135 * The VPD identification association..
1136 *
1137 * from spc3r23.pdf Section 7.6.3.1 Table 297
1138 */
1139 vpd->association = (page_83[1] & 0x30);
1140 return transport_dump_vpd_assoc(vpd, NULL, 0);
1141 }
1142 EXPORT_SYMBOL(transport_set_vpd_assoc);
1143
1144 int transport_dump_vpd_ident_type(
1145 struct t10_vpd *vpd,
1146 unsigned char *p_buf,
1147 int p_buf_len)
1148 {
1149 unsigned char buf[VPD_TMP_BUF_SIZE];
1150 int ret = 0;
1151 int len;
1152
1153 memset(buf, 0, VPD_TMP_BUF_SIZE);
1154 len = sprintf(buf, "T10 VPD Identifier Type: ");
1155
1156 switch (vpd->device_identifier_type) {
1157 case 0x00:
1158 sprintf(buf+len, "Vendor specific\n");
1159 break;
1160 case 0x01:
1161 sprintf(buf+len, "T10 Vendor ID based\n");
1162 break;
1163 case 0x02:
1164 sprintf(buf+len, "EUI-64 based\n");
1165 break;
1166 case 0x03:
1167 sprintf(buf+len, "NAA\n");
1168 break;
1169 case 0x04:
1170 sprintf(buf+len, "Relative target port identifier\n");
1171 break;
1172 case 0x08:
1173 sprintf(buf+len, "SCSI name string\n");
1174 break;
1175 default:
1176 sprintf(buf+len, "Unsupported: 0x%02x\n",
1177 vpd->device_identifier_type);
1178 ret = -EINVAL;
1179 break;
1180 }
1181
1182 if (p_buf) {
1183 if (p_buf_len < strlen(buf)+1)
1184 return -EINVAL;
1185 strncpy(p_buf, buf, p_buf_len);
1186 } else {
1187 pr_debug("%s", buf);
1188 }
1189
1190 return ret;
1191 }
1192
1193 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1194 {
1195 /*
1196 * The VPD identifier type..
1197 *
1198 * from spc3r23.pdf Section 7.6.3.1 Table 298
1199 */
1200 vpd->device_identifier_type = (page_83[1] & 0x0f);
1201 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1202 }
1203 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1204
1205 int transport_dump_vpd_ident(
1206 struct t10_vpd *vpd,
1207 unsigned char *p_buf,
1208 int p_buf_len)
1209 {
1210 unsigned char buf[VPD_TMP_BUF_SIZE];
1211 int ret = 0;
1212
1213 memset(buf, 0, VPD_TMP_BUF_SIZE);
1214
1215 switch (vpd->device_identifier_code_set) {
1216 case 0x01: /* Binary */
1217 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1218 &vpd->device_identifier[0]);
1219 break;
1220 case 0x02: /* ASCII */
1221 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1222 &vpd->device_identifier[0]);
1223 break;
1224 case 0x03: /* UTF-8 */
1225 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1226 &vpd->device_identifier[0]);
1227 break;
1228 default:
1229 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1230 " 0x%02x", vpd->device_identifier_code_set);
1231 ret = -EINVAL;
1232 break;
1233 }
1234
1235 if (p_buf)
1236 strncpy(p_buf, buf, p_buf_len);
1237 else
1238 pr_debug("%s", buf);
1239
1240 return ret;
1241 }
1242
1243 int
1244 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1245 {
1246 static const char hex_str[] = "0123456789abcdef";
1247 int j = 0, i = 4; /* offset to start of the identifer */
1248
1249 /*
1250 * The VPD Code Set (encoding)
1251 *
1252 * from spc3r23.pdf Section 7.6.3.1 Table 296
1253 */
1254 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1255 switch (vpd->device_identifier_code_set) {
1256 case 0x01: /* Binary */
1257 vpd->device_identifier[j++] =
1258 hex_str[vpd->device_identifier_type];
1259 while (i < (4 + page_83[3])) {
1260 vpd->device_identifier[j++] =
1261 hex_str[(page_83[i] & 0xf0) >> 4];
1262 vpd->device_identifier[j++] =
1263 hex_str[page_83[i] & 0x0f];
1264 i++;
1265 }
1266 break;
1267 case 0x02: /* ASCII */
1268 case 0x03: /* UTF-8 */
1269 while (i < (4 + page_83[3]))
1270 vpd->device_identifier[j++] = page_83[i++];
1271 break;
1272 default:
1273 break;
1274 }
1275
1276 return transport_dump_vpd_ident(vpd, NULL, 0);
1277 }
1278 EXPORT_SYMBOL(transport_set_vpd_ident);
1279
1280 static void core_setup_task_attr_emulation(struct se_device *dev)
1281 {
1282 /*
1283 * If this device is from Target_Core_Mod/pSCSI, disable the
1284 * SAM Task Attribute emulation.
1285 *
1286 * This is currently not available in upsream Linux/SCSI Target
1287 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1288 */
1289 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1290 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1291 return;
1292 }
1293
1294 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1295 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1296 " device\n", dev->transport->name,
1297 dev->transport->get_device_rev(dev));
1298 }
1299
1300 static void scsi_dump_inquiry(struct se_device *dev)
1301 {
1302 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1303 int i, device_type;
1304 /*
1305 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1306 */
1307 pr_debug(" Vendor: ");
1308 for (i = 0; i < 8; i++)
1309 if (wwn->vendor[i] >= 0x20)
1310 pr_debug("%c", wwn->vendor[i]);
1311 else
1312 pr_debug(" ");
1313
1314 pr_debug(" Model: ");
1315 for (i = 0; i < 16; i++)
1316 if (wwn->model[i] >= 0x20)
1317 pr_debug("%c", wwn->model[i]);
1318 else
1319 pr_debug(" ");
1320
1321 pr_debug(" Revision: ");
1322 for (i = 0; i < 4; i++)
1323 if (wwn->revision[i] >= 0x20)
1324 pr_debug("%c", wwn->revision[i]);
1325 else
1326 pr_debug(" ");
1327
1328 pr_debug("\n");
1329
1330 device_type = dev->transport->get_device_type(dev);
1331 pr_debug(" Type: %s ", scsi_device_type(device_type));
1332 pr_debug(" ANSI SCSI revision: %02x\n",
1333 dev->transport->get_device_rev(dev));
1334 }
1335
1336 struct se_device *transport_add_device_to_core_hba(
1337 struct se_hba *hba,
1338 struct se_subsystem_api *transport,
1339 struct se_subsystem_dev *se_dev,
1340 u32 device_flags,
1341 void *transport_dev,
1342 struct se_dev_limits *dev_limits,
1343 const char *inquiry_prod,
1344 const char *inquiry_rev)
1345 {
1346 int force_pt;
1347 struct se_device *dev;
1348
1349 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1350 if (!dev) {
1351 pr_err("Unable to allocate memory for se_dev_t\n");
1352 return NULL;
1353 }
1354
1355 transport_init_queue_obj(&dev->dev_queue_obj);
1356 dev->dev_flags = device_flags;
1357 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1358 dev->dev_ptr = transport_dev;
1359 dev->se_hba = hba;
1360 dev->se_sub_dev = se_dev;
1361 dev->transport = transport;
1362 atomic_set(&dev->active_cmds, 0);
1363 INIT_LIST_HEAD(&dev->dev_list);
1364 INIT_LIST_HEAD(&dev->dev_sep_list);
1365 INIT_LIST_HEAD(&dev->dev_tmr_list);
1366 INIT_LIST_HEAD(&dev->execute_task_list);
1367 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1368 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1369 INIT_LIST_HEAD(&dev->state_task_list);
1370 INIT_LIST_HEAD(&dev->qf_cmd_list);
1371 spin_lock_init(&dev->execute_task_lock);
1372 spin_lock_init(&dev->delayed_cmd_lock);
1373 spin_lock_init(&dev->ordered_cmd_lock);
1374 spin_lock_init(&dev->state_task_lock);
1375 spin_lock_init(&dev->dev_alua_lock);
1376 spin_lock_init(&dev->dev_reservation_lock);
1377 spin_lock_init(&dev->dev_status_lock);
1378 spin_lock_init(&dev->dev_status_thr_lock);
1379 spin_lock_init(&dev->se_port_lock);
1380 spin_lock_init(&dev->se_tmr_lock);
1381 spin_lock_init(&dev->qf_cmd_lock);
1382
1383 dev->queue_depth = dev_limits->queue_depth;
1384 atomic_set(&dev->depth_left, dev->queue_depth);
1385 atomic_set(&dev->dev_ordered_id, 0);
1386
1387 se_dev_set_default_attribs(dev, dev_limits);
1388
1389 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1390 dev->creation_time = get_jiffies_64();
1391 spin_lock_init(&dev->stats_lock);
1392
1393 spin_lock(&hba->device_lock);
1394 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1395 hba->dev_count++;
1396 spin_unlock(&hba->device_lock);
1397 /*
1398 * Setup the SAM Task Attribute emulation for struct se_device
1399 */
1400 core_setup_task_attr_emulation(dev);
1401 /*
1402 * Force PR and ALUA passthrough emulation with internal object use.
1403 */
1404 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1405 /*
1406 * Setup the Reservations infrastructure for struct se_device
1407 */
1408 core_setup_reservations(dev, force_pt);
1409 /*
1410 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1411 */
1412 if (core_setup_alua(dev, force_pt) < 0)
1413 goto out;
1414
1415 /*
1416 * Startup the struct se_device processing thread
1417 */
1418 dev->process_thread = kthread_run(transport_processing_thread, dev,
1419 "LIO_%s", dev->transport->name);
1420 if (IS_ERR(dev->process_thread)) {
1421 pr_err("Unable to create kthread: LIO_%s\n",
1422 dev->transport->name);
1423 goto out;
1424 }
1425 /*
1426 * Setup work_queue for QUEUE_FULL
1427 */
1428 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1429 /*
1430 * Preload the initial INQUIRY const values if we are doing
1431 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1432 * passthrough because this is being provided by the backend LLD.
1433 * This is required so that transport_get_inquiry() copies these
1434 * originals once back into DEV_T10_WWN(dev) for the virtual device
1435 * setup.
1436 */
1437 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1438 if (!inquiry_prod || !inquiry_rev) {
1439 pr_err("All non TCM/pSCSI plugins require"
1440 " INQUIRY consts\n");
1441 goto out;
1442 }
1443
1444 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1445 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1446 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1447 }
1448 scsi_dump_inquiry(dev);
1449
1450 return dev;
1451 out:
1452 kthread_stop(dev->process_thread);
1453
1454 spin_lock(&hba->device_lock);
1455 list_del(&dev->dev_list);
1456 hba->dev_count--;
1457 spin_unlock(&hba->device_lock);
1458
1459 se_release_vpd_for_dev(dev);
1460
1461 kfree(dev);
1462
1463 return NULL;
1464 }
1465 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1466
1467 /* transport_generic_prepare_cdb():
1468 *
1469 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1470 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1471 * The point of this is since we are mapping iSCSI LUNs to
1472 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1473 * devices and HBAs for a loop.
1474 */
1475 static inline void transport_generic_prepare_cdb(
1476 unsigned char *cdb)
1477 {
1478 switch (cdb[0]) {
1479 case READ_10: /* SBC - RDProtect */
1480 case READ_12: /* SBC - RDProtect */
1481 case READ_16: /* SBC - RDProtect */
1482 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1483 case VERIFY: /* SBC - VRProtect */
1484 case VERIFY_16: /* SBC - VRProtect */
1485 case WRITE_VERIFY: /* SBC - VRProtect */
1486 case WRITE_VERIFY_12: /* SBC - VRProtect */
1487 break;
1488 default:
1489 cdb[1] &= 0x1f; /* clear logical unit number */
1490 break;
1491 }
1492 }
1493
1494 static struct se_task *
1495 transport_generic_get_task(struct se_cmd *cmd,
1496 enum dma_data_direction data_direction)
1497 {
1498 struct se_task *task;
1499 struct se_device *dev = cmd->se_dev;
1500
1501 task = dev->transport->alloc_task(cmd->t_task_cdb);
1502 if (!task) {
1503 pr_err("Unable to allocate struct se_task\n");
1504 return NULL;
1505 }
1506
1507 INIT_LIST_HEAD(&task->t_list);
1508 INIT_LIST_HEAD(&task->t_execute_list);
1509 INIT_LIST_HEAD(&task->t_state_list);
1510 init_completion(&task->task_stop_comp);
1511 task->task_se_cmd = cmd;
1512 task->task_data_direction = data_direction;
1513
1514 return task;
1515 }
1516
1517 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1518
1519 /*
1520 * Used by fabric modules containing a local struct se_cmd within their
1521 * fabric dependent per I/O descriptor.
1522 */
1523 void transport_init_se_cmd(
1524 struct se_cmd *cmd,
1525 struct target_core_fabric_ops *tfo,
1526 struct se_session *se_sess,
1527 u32 data_length,
1528 int data_direction,
1529 int task_attr,
1530 unsigned char *sense_buffer)
1531 {
1532 INIT_LIST_HEAD(&cmd->se_lun_node);
1533 INIT_LIST_HEAD(&cmd->se_delayed_node);
1534 INIT_LIST_HEAD(&cmd->se_ordered_node);
1535 INIT_LIST_HEAD(&cmd->se_qf_node);
1536 INIT_LIST_HEAD(&cmd->se_queue_node);
1537
1538 INIT_LIST_HEAD(&cmd->t_task_list);
1539 init_completion(&cmd->transport_lun_fe_stop_comp);
1540 init_completion(&cmd->transport_lun_stop_comp);
1541 init_completion(&cmd->t_transport_stop_comp);
1542 spin_lock_init(&cmd->t_state_lock);
1543 atomic_set(&cmd->transport_dev_active, 1);
1544
1545 cmd->se_tfo = tfo;
1546 cmd->se_sess = se_sess;
1547 cmd->data_length = data_length;
1548 cmd->data_direction = data_direction;
1549 cmd->sam_task_attr = task_attr;
1550 cmd->sense_buffer = sense_buffer;
1551 }
1552 EXPORT_SYMBOL(transport_init_se_cmd);
1553
1554 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1555 {
1556 /*
1557 * Check if SAM Task Attribute emulation is enabled for this
1558 * struct se_device storage object
1559 */
1560 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1561 return 0;
1562
1563 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1564 pr_debug("SAM Task Attribute ACA"
1565 " emulation is not supported\n");
1566 return -EINVAL;
1567 }
1568 /*
1569 * Used to determine when ORDERED commands should go from
1570 * Dormant to Active status.
1571 */
1572 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1573 smp_mb__after_atomic_inc();
1574 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1575 cmd->se_ordered_id, cmd->sam_task_attr,
1576 cmd->se_dev->transport->name);
1577 return 0;
1578 }
1579
1580 /* transport_generic_allocate_tasks():
1581 *
1582 * Called from fabric RX Thread.
1583 */
1584 int transport_generic_allocate_tasks(
1585 struct se_cmd *cmd,
1586 unsigned char *cdb)
1587 {
1588 int ret;
1589
1590 transport_generic_prepare_cdb(cdb);
1591 /*
1592 * Ensure that the received CDB is less than the max (252 + 8) bytes
1593 * for VARIABLE_LENGTH_CMD
1594 */
1595 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1596 pr_err("Received SCSI CDB with command_size: %d that"
1597 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1598 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1599 return -EINVAL;
1600 }
1601 /*
1602 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1603 * allocate the additional extended CDB buffer now.. Otherwise
1604 * setup the pointer from __t_task_cdb to t_task_cdb.
1605 */
1606 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1607 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1608 GFP_KERNEL);
1609 if (!cmd->t_task_cdb) {
1610 pr_err("Unable to allocate cmd->t_task_cdb"
1611 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1612 scsi_command_size(cdb),
1613 (unsigned long)sizeof(cmd->__t_task_cdb));
1614 return -ENOMEM;
1615 }
1616 } else
1617 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1618 /*
1619 * Copy the original CDB into cmd->
1620 */
1621 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1622 /*
1623 * Setup the received CDB based on SCSI defined opcodes and
1624 * perform unit attention, persistent reservations and ALUA
1625 * checks for virtual device backends. The cmd->t_task_cdb
1626 * pointer is expected to be setup before we reach this point.
1627 */
1628 ret = transport_generic_cmd_sequencer(cmd, cdb);
1629 if (ret < 0)
1630 return ret;
1631 /*
1632 * Check for SAM Task Attribute Emulation
1633 */
1634 if (transport_check_alloc_task_attr(cmd) < 0) {
1635 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1636 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1637 return -EINVAL;
1638 }
1639 spin_lock(&cmd->se_lun->lun_sep_lock);
1640 if (cmd->se_lun->lun_sep)
1641 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1642 spin_unlock(&cmd->se_lun->lun_sep_lock);
1643 return 0;
1644 }
1645 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1646
1647 static void transport_generic_request_failure(struct se_cmd *,
1648 struct se_device *, int, int);
1649 /*
1650 * Used by fabric module frontends to queue tasks directly.
1651 * Many only be used from process context only
1652 */
1653 int transport_handle_cdb_direct(
1654 struct se_cmd *cmd)
1655 {
1656 int ret;
1657
1658 if (!cmd->se_lun) {
1659 dump_stack();
1660 pr_err("cmd->se_lun is NULL\n");
1661 return -EINVAL;
1662 }
1663 if (in_interrupt()) {
1664 dump_stack();
1665 pr_err("transport_generic_handle_cdb cannot be called"
1666 " from interrupt context\n");
1667 return -EINVAL;
1668 }
1669 /*
1670 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1671 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1672 * in existing usage to ensure that outstanding descriptors are handled
1673 * correctly during shutdown via transport_wait_for_tasks()
1674 *
1675 * Also, we don't take cmd->t_state_lock here as we only expect
1676 * this to be called for initial descriptor submission.
1677 */
1678 cmd->t_state = TRANSPORT_NEW_CMD;
1679 atomic_set(&cmd->t_transport_active, 1);
1680 /*
1681 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1682 * so follow TRANSPORT_NEW_CMD processing thread context usage
1683 * and call transport_generic_request_failure() if necessary..
1684 */
1685 ret = transport_generic_new_cmd(cmd);
1686 if (ret == -EAGAIN)
1687 return 0;
1688 else if (ret < 0) {
1689 cmd->transport_error_status = ret;
1690 transport_generic_request_failure(cmd, NULL, 0,
1691 (cmd->data_direction != DMA_TO_DEVICE));
1692 }
1693 return 0;
1694 }
1695 EXPORT_SYMBOL(transport_handle_cdb_direct);
1696
1697 /*
1698 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1699 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1700 * complete setup in TCM process context w/ TFO->new_cmd_map().
1701 */
1702 int transport_generic_handle_cdb_map(
1703 struct se_cmd *cmd)
1704 {
1705 if (!cmd->se_lun) {
1706 dump_stack();
1707 pr_err("cmd->se_lun is NULL\n");
1708 return -EINVAL;
1709 }
1710
1711 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1712 return 0;
1713 }
1714 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1715
1716 /* transport_generic_handle_data():
1717 *
1718 *
1719 */
1720 int transport_generic_handle_data(
1721 struct se_cmd *cmd)
1722 {
1723 /*
1724 * For the software fabric case, then we assume the nexus is being
1725 * failed/shutdown when signals are pending from the kthread context
1726 * caller, so we return a failure. For the HW target mode case running
1727 * in interrupt code, the signal_pending() check is skipped.
1728 */
1729 if (!in_interrupt() && signal_pending(current))
1730 return -EPERM;
1731 /*
1732 * If the received CDB has aleady been ABORTED by the generic
1733 * target engine, we now call transport_check_aborted_status()
1734 * to queue any delated TASK_ABORTED status for the received CDB to the
1735 * fabric module as we are expecting no further incoming DATA OUT
1736 * sequences at this point.
1737 */
1738 if (transport_check_aborted_status(cmd, 1) != 0)
1739 return 0;
1740
1741 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1742 return 0;
1743 }
1744 EXPORT_SYMBOL(transport_generic_handle_data);
1745
1746 /* transport_generic_handle_tmr():
1747 *
1748 *
1749 */
1750 int transport_generic_handle_tmr(
1751 struct se_cmd *cmd)
1752 {
1753 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(transport_generic_handle_tmr);
1757
1758 void transport_generic_free_cmd_intr(
1759 struct se_cmd *cmd)
1760 {
1761 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1762 }
1763 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1764
1765 /*
1766 * If the task is active, request it to be stopped and sleep until it
1767 * has completed.
1768 */
1769 bool target_stop_task(struct se_task *task, unsigned long *flags)
1770 {
1771 struct se_cmd *cmd = task->task_se_cmd;
1772 bool was_active = false;
1773
1774 if (task->task_flags & TF_ACTIVE) {
1775 task->task_flags |= TF_REQUEST_STOP;
1776 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1777
1778 pr_debug("Task %p waiting to complete\n", task);
1779 wait_for_completion(&task->task_stop_comp);
1780 pr_debug("Task %p stopped successfully\n", task);
1781
1782 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1783 atomic_dec(&cmd->t_task_cdbs_left);
1784 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1785 was_active = true;
1786 }
1787
1788 __transport_stop_task_timer(task, flags);
1789 return was_active;
1790 }
1791
1792 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1793 {
1794 struct se_task *task, *task_tmp;
1795 unsigned long flags;
1796 int ret = 0;
1797
1798 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1799 cmd->se_tfo->get_task_tag(cmd));
1800
1801 /*
1802 * No tasks remain in the execution queue
1803 */
1804 spin_lock_irqsave(&cmd->t_state_lock, flags);
1805 list_for_each_entry_safe(task, task_tmp,
1806 &cmd->t_task_list, t_list) {
1807 pr_debug("Processing task %p\n", task);
1808 /*
1809 * If the struct se_task has not been sent and is not active,
1810 * remove the struct se_task from the execution queue.
1811 */
1812 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1813 spin_unlock_irqrestore(&cmd->t_state_lock,
1814 flags);
1815 transport_remove_task_from_execute_queue(task,
1816 cmd->se_dev);
1817
1818 pr_debug("Task %p removed from execute queue\n", task);
1819 spin_lock_irqsave(&cmd->t_state_lock, flags);
1820 continue;
1821 }
1822
1823 if (!target_stop_task(task, &flags)) {
1824 pr_debug("Task %p - did nothing\n", task);
1825 ret++;
1826 }
1827 }
1828 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1829
1830 return ret;
1831 }
1832
1833 /*
1834 * Handle SAM-esque emulation for generic transport request failures.
1835 */
1836 static void transport_generic_request_failure(
1837 struct se_cmd *cmd,
1838 struct se_device *dev,
1839 int complete,
1840 int sc)
1841 {
1842 int ret = 0;
1843
1844 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1845 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1846 cmd->t_task_cdb[0]);
1847 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1848 " %d/%d transport_error_status: %d\n",
1849 cmd->se_tfo->get_cmd_state(cmd),
1850 cmd->t_state, cmd->deferred_t_state,
1851 cmd->transport_error_status);
1852 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1853 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1854 " t_transport_active: %d t_transport_stop: %d"
1855 " t_transport_sent: %d\n", cmd->t_task_list_num,
1856 atomic_read(&cmd->t_task_cdbs_left),
1857 atomic_read(&cmd->t_task_cdbs_sent),
1858 atomic_read(&cmd->t_task_cdbs_ex_left),
1859 atomic_read(&cmd->t_transport_active),
1860 atomic_read(&cmd->t_transport_stop),
1861 atomic_read(&cmd->t_transport_sent));
1862
1863 transport_stop_all_task_timers(cmd);
1864
1865 if (dev)
1866 atomic_inc(&dev->depth_left);
1867 /*
1868 * For SAM Task Attribute emulation for failed struct se_cmd
1869 */
1870 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1871 transport_complete_task_attr(cmd);
1872
1873 if (complete) {
1874 transport_direct_request_timeout(cmd);
1875 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1876 }
1877
1878 switch (cmd->transport_error_status) {
1879 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1880 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1881 break;
1882 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1883 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1884 break;
1885 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1886 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1887 break;
1888 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1889 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1890 break;
1891 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1892 if (!sc)
1893 transport_new_cmd_failure(cmd);
1894 /*
1895 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1896 * we force this session to fall back to session
1897 * recovery.
1898 */
1899 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1900 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1901
1902 goto check_stop;
1903 case PYX_TRANSPORT_LU_COMM_FAILURE:
1904 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1905 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1906 break;
1907 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1908 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1909 break;
1910 case PYX_TRANSPORT_WRITE_PROTECTED:
1911 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1912 break;
1913 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1914 /*
1915 * No SENSE Data payload for this case, set SCSI Status
1916 * and queue the response to $FABRIC_MOD.
1917 *
1918 * Uses linux/include/scsi/scsi.h SAM status codes defs
1919 */
1920 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1921 /*
1922 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1923 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1924 * CONFLICT STATUS.
1925 *
1926 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1927 */
1928 if (cmd->se_sess &&
1929 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1930 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1931 cmd->orig_fe_lun, 0x2C,
1932 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1933
1934 ret = cmd->se_tfo->queue_status(cmd);
1935 if (ret == -EAGAIN)
1936 goto queue_full;
1937 goto check_stop;
1938 case PYX_TRANSPORT_USE_SENSE_REASON:
1939 /*
1940 * struct se_cmd->scsi_sense_reason already set
1941 */
1942 break;
1943 default:
1944 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1945 cmd->t_task_cdb[0],
1946 cmd->transport_error_status);
1947 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1948 break;
1949 }
1950 /*
1951 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1952 * make the call to transport_send_check_condition_and_sense()
1953 * directly. Otherwise expect the fabric to make the call to
1954 * transport_send_check_condition_and_sense() after handling
1955 * possible unsoliticied write data payloads.
1956 */
1957 if (!sc && !cmd->se_tfo->new_cmd_map)
1958 transport_new_cmd_failure(cmd);
1959 else {
1960 ret = transport_send_check_condition_and_sense(cmd,
1961 cmd->scsi_sense_reason, 0);
1962 if (ret == -EAGAIN)
1963 goto queue_full;
1964 }
1965
1966 check_stop:
1967 transport_lun_remove_cmd(cmd);
1968 if (!transport_cmd_check_stop_to_fabric(cmd))
1969 ;
1970 return;
1971
1972 queue_full:
1973 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1974 transport_handle_queue_full(cmd, cmd->se_dev);
1975 }
1976
1977 static void transport_direct_request_timeout(struct se_cmd *cmd)
1978 {
1979 unsigned long flags;
1980
1981 spin_lock_irqsave(&cmd->t_state_lock, flags);
1982 if (!atomic_read(&cmd->t_transport_timeout)) {
1983 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1984 return;
1985 }
1986 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1987 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1988 return;
1989 }
1990
1991 atomic_sub(atomic_read(&cmd->t_transport_timeout),
1992 &cmd->t_se_count);
1993 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1994 }
1995
1996 static void transport_generic_request_timeout(struct se_cmd *cmd)
1997 {
1998 unsigned long flags;
1999
2000 /*
2001 * Reset cmd->t_se_count to allow transport_put_cmd()
2002 * to allow last call to free memory resources.
2003 */
2004 spin_lock_irqsave(&cmd->t_state_lock, flags);
2005 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2006 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2007
2008 atomic_sub(tmp, &cmd->t_se_count);
2009 }
2010 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2011
2012 transport_put_cmd(cmd);
2013 }
2014
2015 static inline u32 transport_lba_21(unsigned char *cdb)
2016 {
2017 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2018 }
2019
2020 static inline u32 transport_lba_32(unsigned char *cdb)
2021 {
2022 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2023 }
2024
2025 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2026 {
2027 unsigned int __v1, __v2;
2028
2029 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2030 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2031
2032 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2033 }
2034
2035 /*
2036 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2037 */
2038 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2039 {
2040 unsigned int __v1, __v2;
2041
2042 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2043 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2044
2045 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2046 }
2047
2048 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2049 {
2050 unsigned long flags;
2051
2052 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2053 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2054 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2055 }
2056
2057 /*
2058 * Called from interrupt context.
2059 */
2060 static void transport_task_timeout_handler(unsigned long data)
2061 {
2062 struct se_task *task = (struct se_task *)data;
2063 struct se_cmd *cmd = task->task_se_cmd;
2064 unsigned long flags;
2065
2066 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2067
2068 spin_lock_irqsave(&cmd->t_state_lock, flags);
2069 task->task_flags &= ~TF_TIMER_RUNNING;
2070
2071 /*
2072 * Determine if transport_complete_task() has already been called.
2073 */
2074 if (!(task->task_flags & TF_ACTIVE)) {
2075 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2076 task, cmd);
2077 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2078 return;
2079 }
2080
2081 atomic_inc(&cmd->t_se_count);
2082 atomic_inc(&cmd->t_transport_timeout);
2083 cmd->t_tasks_failed = 1;
2084
2085 task->task_flags |= TF_TIMEOUT;
2086 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2087 task->task_scsi_status = 1;
2088
2089 if (task->task_flags & TF_REQUEST_STOP) {
2090 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2091 " == 1\n", task, cmd);
2092 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2093 complete(&task->task_stop_comp);
2094 return;
2095 }
2096
2097 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2098 pr_debug("transport task: %p cmd: %p timeout non zero"
2099 " t_task_cdbs_left\n", task, cmd);
2100 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2101 return;
2102 }
2103 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2104 task, cmd);
2105
2106 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2107 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2108
2109 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2110 }
2111
2112 /*
2113 * Called with cmd->t_state_lock held.
2114 */
2115 static void transport_start_task_timer(struct se_task *task)
2116 {
2117 struct se_device *dev = task->task_se_cmd->se_dev;
2118 int timeout;
2119
2120 if (task->task_flags & TF_TIMER_RUNNING)
2121 return;
2122 /*
2123 * If the task_timeout is disabled, exit now.
2124 */
2125 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2126 if (!timeout)
2127 return;
2128
2129 init_timer(&task->task_timer);
2130 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2131 task->task_timer.data = (unsigned long) task;
2132 task->task_timer.function = transport_task_timeout_handler;
2133
2134 task->task_flags |= TF_TIMER_RUNNING;
2135 add_timer(&task->task_timer);
2136 #if 0
2137 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2138 " %d\n", task->task_se_cmd, task, timeout);
2139 #endif
2140 }
2141
2142 /*
2143 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2144 */
2145 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2146 {
2147 struct se_cmd *cmd = task->task_se_cmd;
2148
2149 if (!(task->task_flags & TF_TIMER_RUNNING))
2150 return;
2151
2152 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2153
2154 del_timer_sync(&task->task_timer);
2155
2156 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2157 task->task_flags &= ~TF_TIMER_RUNNING;
2158 }
2159
2160 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2161 {
2162 struct se_task *task = NULL, *task_tmp;
2163 unsigned long flags;
2164
2165 spin_lock_irqsave(&cmd->t_state_lock, flags);
2166 list_for_each_entry_safe(task, task_tmp,
2167 &cmd->t_task_list, t_list)
2168 __transport_stop_task_timer(task, &flags);
2169 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2170 }
2171
2172 static inline int transport_tcq_window_closed(struct se_device *dev)
2173 {
2174 if (dev->dev_tcq_window_closed++ <
2175 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2176 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2177 } else
2178 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2179
2180 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2181 return 0;
2182 }
2183
2184 /*
2185 * Called from Fabric Module context from transport_execute_tasks()
2186 *
2187 * The return of this function determins if the tasks from struct se_cmd
2188 * get added to the execution queue in transport_execute_tasks(),
2189 * or are added to the delayed or ordered lists here.
2190 */
2191 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2192 {
2193 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2194 return 1;
2195 /*
2196 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2197 * to allow the passed struct se_cmd list of tasks to the front of the list.
2198 */
2199 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2200 atomic_inc(&cmd->se_dev->dev_hoq_count);
2201 smp_mb__after_atomic_inc();
2202 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2203 " 0x%02x, se_ordered_id: %u\n",
2204 cmd->t_task_cdb[0],
2205 cmd->se_ordered_id);
2206 return 1;
2207 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2208 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2209 list_add_tail(&cmd->se_ordered_node,
2210 &cmd->se_dev->ordered_cmd_list);
2211 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2212
2213 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2214 smp_mb__after_atomic_inc();
2215
2216 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2217 " list, se_ordered_id: %u\n",
2218 cmd->t_task_cdb[0],
2219 cmd->se_ordered_id);
2220 /*
2221 * Add ORDERED command to tail of execution queue if
2222 * no other older commands exist that need to be
2223 * completed first.
2224 */
2225 if (!atomic_read(&cmd->se_dev->simple_cmds))
2226 return 1;
2227 } else {
2228 /*
2229 * For SIMPLE and UNTAGGED Task Attribute commands
2230 */
2231 atomic_inc(&cmd->se_dev->simple_cmds);
2232 smp_mb__after_atomic_inc();
2233 }
2234 /*
2235 * Otherwise if one or more outstanding ORDERED task attribute exist,
2236 * add the dormant task(s) built for the passed struct se_cmd to the
2237 * execution queue and become in Active state for this struct se_device.
2238 */
2239 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2240 /*
2241 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2242 * will be drained upon completion of HEAD_OF_QUEUE task.
2243 */
2244 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2245 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2246 list_add_tail(&cmd->se_delayed_node,
2247 &cmd->se_dev->delayed_cmd_list);
2248 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2249
2250 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2251 " delayed CMD list, se_ordered_id: %u\n",
2252 cmd->t_task_cdb[0], cmd->sam_task_attr,
2253 cmd->se_ordered_id);
2254 /*
2255 * Return zero to let transport_execute_tasks() know
2256 * not to add the delayed tasks to the execution list.
2257 */
2258 return 0;
2259 }
2260 /*
2261 * Otherwise, no ORDERED task attributes exist..
2262 */
2263 return 1;
2264 }
2265
2266 /*
2267 * Called from fabric module context in transport_generic_new_cmd() and
2268 * transport_generic_process_write()
2269 */
2270 static int transport_execute_tasks(struct se_cmd *cmd)
2271 {
2272 int add_tasks;
2273
2274 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2275 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2276 transport_generic_request_failure(cmd, NULL, 0, 1);
2277 return 0;
2278 }
2279
2280 /*
2281 * Call transport_cmd_check_stop() to see if a fabric exception
2282 * has occurred that prevents execution.
2283 */
2284 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2285 /*
2286 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2287 * attribute for the tasks of the received struct se_cmd CDB
2288 */
2289 add_tasks = transport_execute_task_attr(cmd);
2290 if (!add_tasks)
2291 goto execute_tasks;
2292 /*
2293 * This calls transport_add_tasks_from_cmd() to handle
2294 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2295 * (if enabled) in __transport_add_task_to_execute_queue() and
2296 * transport_add_task_check_sam_attr().
2297 */
2298 transport_add_tasks_from_cmd(cmd);
2299 }
2300 /*
2301 * Kick the execution queue for the cmd associated struct se_device
2302 * storage object.
2303 */
2304 execute_tasks:
2305 __transport_execute_tasks(cmd->se_dev);
2306 return 0;
2307 }
2308
2309 /*
2310 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2311 * from struct se_device->execute_task_list and
2312 *
2313 * Called from transport_processing_thread()
2314 */
2315 static int __transport_execute_tasks(struct se_device *dev)
2316 {
2317 int error;
2318 struct se_cmd *cmd = NULL;
2319 struct se_task *task = NULL;
2320 unsigned long flags;
2321
2322 /*
2323 * Check if there is enough room in the device and HBA queue to send
2324 * struct se_tasks to the selected transport.
2325 */
2326 check_depth:
2327 if (!atomic_read(&dev->depth_left))
2328 return transport_tcq_window_closed(dev);
2329
2330 dev->dev_tcq_window_closed = 0;
2331
2332 spin_lock_irq(&dev->execute_task_lock);
2333 if (list_empty(&dev->execute_task_list)) {
2334 spin_unlock_irq(&dev->execute_task_lock);
2335 return 0;
2336 }
2337 task = list_first_entry(&dev->execute_task_list,
2338 struct se_task, t_execute_list);
2339 __transport_remove_task_from_execute_queue(task, dev);
2340 spin_unlock_irq(&dev->execute_task_lock);
2341
2342 atomic_dec(&dev->depth_left);
2343
2344 cmd = task->task_se_cmd;
2345
2346 spin_lock_irqsave(&cmd->t_state_lock, flags);
2347 task->task_flags |= (TF_ACTIVE | TF_SENT);
2348 atomic_inc(&cmd->t_task_cdbs_sent);
2349
2350 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2351 cmd->t_task_list_num)
2352 atomic_set(&cmd->transport_sent, 1);
2353
2354 transport_start_task_timer(task);
2355 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2356 /*
2357 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2358 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2359 * struct se_subsystem_api->do_task() caller below.
2360 */
2361 if (cmd->transport_emulate_cdb) {
2362 error = cmd->transport_emulate_cdb(cmd);
2363 if (error != 0) {
2364 cmd->transport_error_status = error;
2365 spin_lock_irqsave(&cmd->t_state_lock, flags);
2366 task->task_flags &= ~TF_ACTIVE;
2367 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2368 atomic_set(&cmd->transport_sent, 0);
2369 transport_stop_tasks_for_cmd(cmd);
2370 transport_generic_request_failure(cmd, dev, 0, 1);
2371 goto check_depth;
2372 }
2373 /*
2374 * Handle the successful completion for transport_emulate_cdb()
2375 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2376 * Otherwise the caller is expected to complete the task with
2377 * proper status.
2378 */
2379 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2380 cmd->scsi_status = SAM_STAT_GOOD;
2381 task->task_scsi_status = GOOD;
2382 transport_complete_task(task, 1);
2383 }
2384 } else {
2385 /*
2386 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2387 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2388 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2389 * LUN emulation code.
2390 *
2391 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2392 * call ->do_task() directly and let the underlying TCM subsystem plugin
2393 * code handle the CDB emulation.
2394 */
2395 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2396 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2397 error = transport_emulate_control_cdb(task);
2398 else
2399 error = dev->transport->do_task(task);
2400
2401 if (error != 0) {
2402 cmd->transport_error_status = error;
2403 spin_lock_irqsave(&cmd->t_state_lock, flags);
2404 task->task_flags &= ~TF_ACTIVE;
2405 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2406 atomic_set(&cmd->transport_sent, 0);
2407 transport_stop_tasks_for_cmd(cmd);
2408 transport_generic_request_failure(cmd, dev, 0, 1);
2409 }
2410 }
2411
2412 goto check_depth;
2413
2414 return 0;
2415 }
2416
2417 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2418 {
2419 unsigned long flags;
2420 /*
2421 * Any unsolicited data will get dumped for failed command inside of
2422 * the fabric plugin
2423 */
2424 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2425 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2426 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2427 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2428 }
2429
2430 static inline u32 transport_get_sectors_6(
2431 unsigned char *cdb,
2432 struct se_cmd *cmd,
2433 int *ret)
2434 {
2435 struct se_device *dev = cmd->se_dev;
2436
2437 /*
2438 * Assume TYPE_DISK for non struct se_device objects.
2439 * Use 8-bit sector value.
2440 */
2441 if (!dev)
2442 goto type_disk;
2443
2444 /*
2445 * Use 24-bit allocation length for TYPE_TAPE.
2446 */
2447 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2448 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2449
2450 /*
2451 * Everything else assume TYPE_DISK Sector CDB location.
2452 * Use 8-bit sector value.
2453 */
2454 type_disk:
2455 return (u32)cdb[4];
2456 }
2457
2458 static inline u32 transport_get_sectors_10(
2459 unsigned char *cdb,
2460 struct se_cmd *cmd,
2461 int *ret)
2462 {
2463 struct se_device *dev = cmd->se_dev;
2464
2465 /*
2466 * Assume TYPE_DISK for non struct se_device objects.
2467 * Use 16-bit sector value.
2468 */
2469 if (!dev)
2470 goto type_disk;
2471
2472 /*
2473 * XXX_10 is not defined in SSC, throw an exception
2474 */
2475 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2476 *ret = -EINVAL;
2477 return 0;
2478 }
2479
2480 /*
2481 * Everything else assume TYPE_DISK Sector CDB location.
2482 * Use 16-bit sector value.
2483 */
2484 type_disk:
2485 return (u32)(cdb[7] << 8) + cdb[8];
2486 }
2487
2488 static inline u32 transport_get_sectors_12(
2489 unsigned char *cdb,
2490 struct se_cmd *cmd,
2491 int *ret)
2492 {
2493 struct se_device *dev = cmd->se_dev;
2494
2495 /*
2496 * Assume TYPE_DISK for non struct se_device objects.
2497 * Use 32-bit sector value.
2498 */
2499 if (!dev)
2500 goto type_disk;
2501
2502 /*
2503 * XXX_12 is not defined in SSC, throw an exception
2504 */
2505 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2506 *ret = -EINVAL;
2507 return 0;
2508 }
2509
2510 /*
2511 * Everything else assume TYPE_DISK Sector CDB location.
2512 * Use 32-bit sector value.
2513 */
2514 type_disk:
2515 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2516 }
2517
2518 static inline u32 transport_get_sectors_16(
2519 unsigned char *cdb,
2520 struct se_cmd *cmd,
2521 int *ret)
2522 {
2523 struct se_device *dev = cmd->se_dev;
2524
2525 /*
2526 * Assume TYPE_DISK for non struct se_device objects.
2527 * Use 32-bit sector value.
2528 */
2529 if (!dev)
2530 goto type_disk;
2531
2532 /*
2533 * Use 24-bit allocation length for TYPE_TAPE.
2534 */
2535 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2536 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2537
2538 type_disk:
2539 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2540 (cdb[12] << 8) + cdb[13];
2541 }
2542
2543 /*
2544 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2545 */
2546 static inline u32 transport_get_sectors_32(
2547 unsigned char *cdb,
2548 struct se_cmd *cmd,
2549 int *ret)
2550 {
2551 /*
2552 * Assume TYPE_DISK for non struct se_device objects.
2553 * Use 32-bit sector value.
2554 */
2555 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2556 (cdb[30] << 8) + cdb[31];
2557
2558 }
2559
2560 static inline u32 transport_get_size(
2561 u32 sectors,
2562 unsigned char *cdb,
2563 struct se_cmd *cmd)
2564 {
2565 struct se_device *dev = cmd->se_dev;
2566
2567 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2568 if (cdb[1] & 1) { /* sectors */
2569 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2570 } else /* bytes */
2571 return sectors;
2572 }
2573 #if 0
2574 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2575 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2576 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2577 dev->transport->name);
2578 #endif
2579 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2580 }
2581
2582 static void transport_xor_callback(struct se_cmd *cmd)
2583 {
2584 unsigned char *buf, *addr;
2585 struct scatterlist *sg;
2586 unsigned int offset;
2587 int i;
2588 int count;
2589 /*
2590 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2591 *
2592 * 1) read the specified logical block(s);
2593 * 2) transfer logical blocks from the data-out buffer;
2594 * 3) XOR the logical blocks transferred from the data-out buffer with
2595 * the logical blocks read, storing the resulting XOR data in a buffer;
2596 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2597 * blocks transferred from the data-out buffer; and
2598 * 5) transfer the resulting XOR data to the data-in buffer.
2599 */
2600 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2601 if (!buf) {
2602 pr_err("Unable to allocate xor_callback buf\n");
2603 return;
2604 }
2605 /*
2606 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2607 * into the locally allocated *buf
2608 */
2609 sg_copy_to_buffer(cmd->t_data_sg,
2610 cmd->t_data_nents,
2611 buf,
2612 cmd->data_length);
2613
2614 /*
2615 * Now perform the XOR against the BIDI read memory located at
2616 * cmd->t_mem_bidi_list
2617 */
2618
2619 offset = 0;
2620 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2621 addr = kmap_atomic(sg_page(sg), KM_USER0);
2622 if (!addr)
2623 goto out;
2624
2625 for (i = 0; i < sg->length; i++)
2626 *(addr + sg->offset + i) ^= *(buf + offset + i);
2627
2628 offset += sg->length;
2629 kunmap_atomic(addr, KM_USER0);
2630 }
2631
2632 out:
2633 kfree(buf);
2634 }
2635
2636 /*
2637 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2638 */
2639 static int transport_get_sense_data(struct se_cmd *cmd)
2640 {
2641 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2642 struct se_device *dev = cmd->se_dev;
2643 struct se_task *task = NULL, *task_tmp;
2644 unsigned long flags;
2645 u32 offset = 0;
2646
2647 WARN_ON(!cmd->se_lun);
2648
2649 if (!dev)
2650 return 0;
2651
2652 spin_lock_irqsave(&cmd->t_state_lock, flags);
2653 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2654 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2655 return 0;
2656 }
2657
2658 list_for_each_entry_safe(task, task_tmp,
2659 &cmd->t_task_list, t_list) {
2660 if (!task->task_sense)
2661 continue;
2662
2663 if (!dev->transport->get_sense_buffer) {
2664 pr_err("dev->transport->get_sense_buffer"
2665 " is NULL\n");
2666 continue;
2667 }
2668
2669 sense_buffer = dev->transport->get_sense_buffer(task);
2670 if (!sense_buffer) {
2671 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2672 " sense buffer for task with sense\n",
2673 cmd->se_tfo->get_task_tag(cmd), task);
2674 continue;
2675 }
2676 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2677
2678 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2679 TRANSPORT_SENSE_BUFFER);
2680
2681 memcpy(&buffer[offset], sense_buffer,
2682 TRANSPORT_SENSE_BUFFER);
2683 cmd->scsi_status = task->task_scsi_status;
2684 /* Automatically padded */
2685 cmd->scsi_sense_length =
2686 (TRANSPORT_SENSE_BUFFER + offset);
2687
2688 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2689 " and sense\n",
2690 dev->se_hba->hba_id, dev->transport->name,
2691 cmd->scsi_status);
2692 return 0;
2693 }
2694 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2695
2696 return -1;
2697 }
2698
2699 static int
2700 transport_handle_reservation_conflict(struct se_cmd *cmd)
2701 {
2702 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2703 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2704 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2705 /*
2706 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2707 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2708 * CONFLICT STATUS.
2709 *
2710 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2711 */
2712 if (cmd->se_sess &&
2713 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2714 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2715 cmd->orig_fe_lun, 0x2C,
2716 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2717 return -EINVAL;
2718 }
2719
2720 static inline long long transport_dev_end_lba(struct se_device *dev)
2721 {
2722 return dev->transport->get_blocks(dev) + 1;
2723 }
2724
2725 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2726 {
2727 struct se_device *dev = cmd->se_dev;
2728 u32 sectors;
2729
2730 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2731 return 0;
2732
2733 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2734
2735 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2736 pr_err("LBA: %llu Sectors: %u exceeds"
2737 " transport_dev_end_lba(): %llu\n",
2738 cmd->t_task_lba, sectors,
2739 transport_dev_end_lba(dev));
2740 return -EINVAL;
2741 }
2742
2743 return 0;
2744 }
2745
2746 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2747 {
2748 /*
2749 * Determine if the received WRITE_SAME is used to for direct
2750 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2751 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2752 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2753 */
2754 int passthrough = (dev->transport->transport_type ==
2755 TRANSPORT_PLUGIN_PHBA_PDEV);
2756
2757 if (!passthrough) {
2758 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2759 pr_err("WRITE_SAME PBDATA and LBDATA"
2760 " bits not supported for Block Discard"
2761 " Emulation\n");
2762 return -ENOSYS;
2763 }
2764 /*
2765 * Currently for the emulated case we only accept
2766 * tpws with the UNMAP=1 bit set.
2767 */
2768 if (!(flags[0] & 0x08)) {
2769 pr_err("WRITE_SAME w/o UNMAP bit not"
2770 " supported for Block Discard Emulation\n");
2771 return -ENOSYS;
2772 }
2773 }
2774
2775 return 0;
2776 }
2777
2778 /* transport_generic_cmd_sequencer():
2779 *
2780 * Generic Command Sequencer that should work for most DAS transport
2781 * drivers.
2782 *
2783 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2784 * RX Thread.
2785 *
2786 * FIXME: Need to support other SCSI OPCODES where as well.
2787 */
2788 static int transport_generic_cmd_sequencer(
2789 struct se_cmd *cmd,
2790 unsigned char *cdb)
2791 {
2792 struct se_device *dev = cmd->se_dev;
2793 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2794 int ret = 0, sector_ret = 0, passthrough;
2795 u32 sectors = 0, size = 0, pr_reg_type = 0;
2796 u16 service_action;
2797 u8 alua_ascq = 0;
2798 /*
2799 * Check for an existing UNIT ATTENTION condition
2800 */
2801 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2802 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2803 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2804 return -EINVAL;
2805 }
2806 /*
2807 * Check status of Asymmetric Logical Unit Assignment port
2808 */
2809 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2810 if (ret != 0) {
2811 /*
2812 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2813 * The ALUA additional sense code qualifier (ASCQ) is determined
2814 * by the ALUA primary or secondary access state..
2815 */
2816 if (ret > 0) {
2817 #if 0
2818 pr_debug("[%s]: ALUA TG Port not available,"
2819 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2820 cmd->se_tfo->get_fabric_name(), alua_ascq);
2821 #endif
2822 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2823 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2824 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2825 return -EINVAL;
2826 }
2827 goto out_invalid_cdb_field;
2828 }
2829 /*
2830 * Check status for SPC-3 Persistent Reservations
2831 */
2832 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2833 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2834 cmd, cdb, pr_reg_type) != 0)
2835 return transport_handle_reservation_conflict(cmd);
2836 /*
2837 * This means the CDB is allowed for the SCSI Initiator port
2838 * when said port is *NOT* holding the legacy SPC-2 or
2839 * SPC-3 Persistent Reservation.
2840 */
2841 }
2842
2843 switch (cdb[0]) {
2844 case READ_6:
2845 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2846 if (sector_ret)
2847 goto out_unsupported_cdb;
2848 size = transport_get_size(sectors, cdb, cmd);
2849 cmd->t_task_lba = transport_lba_21(cdb);
2850 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2851 break;
2852 case READ_10:
2853 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2854 if (sector_ret)
2855 goto out_unsupported_cdb;
2856 size = transport_get_size(sectors, cdb, cmd);
2857 cmd->t_task_lba = transport_lba_32(cdb);
2858 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2859 break;
2860 case READ_12:
2861 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2862 if (sector_ret)
2863 goto out_unsupported_cdb;
2864 size = transport_get_size(sectors, cdb, cmd);
2865 cmd->t_task_lba = transport_lba_32(cdb);
2866 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2867 break;
2868 case READ_16:
2869 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2870 if (sector_ret)
2871 goto out_unsupported_cdb;
2872 size = transport_get_size(sectors, cdb, cmd);
2873 cmd->t_task_lba = transport_lba_64(cdb);
2874 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2875 break;
2876 case WRITE_6:
2877 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2878 if (sector_ret)
2879 goto out_unsupported_cdb;
2880 size = transport_get_size(sectors, cdb, cmd);
2881 cmd->t_task_lba = transport_lba_21(cdb);
2882 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2883 break;
2884 case WRITE_10:
2885 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2886 if (sector_ret)
2887 goto out_unsupported_cdb;
2888 size = transport_get_size(sectors, cdb, cmd);
2889 cmd->t_task_lba = transport_lba_32(cdb);
2890 cmd->t_tasks_fua = (cdb[1] & 0x8);
2891 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2892 break;
2893 case WRITE_12:
2894 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2895 if (sector_ret)
2896 goto out_unsupported_cdb;
2897 size = transport_get_size(sectors, cdb, cmd);
2898 cmd->t_task_lba = transport_lba_32(cdb);
2899 cmd->t_tasks_fua = (cdb[1] & 0x8);
2900 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2901 break;
2902 case WRITE_16:
2903 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2904 if (sector_ret)
2905 goto out_unsupported_cdb;
2906 size = transport_get_size(sectors, cdb, cmd);
2907 cmd->t_task_lba = transport_lba_64(cdb);
2908 cmd->t_tasks_fua = (cdb[1] & 0x8);
2909 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2910 break;
2911 case XDWRITEREAD_10:
2912 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2913 !(cmd->t_tasks_bidi))
2914 goto out_invalid_cdb_field;
2915 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2916 if (sector_ret)
2917 goto out_unsupported_cdb;
2918 size = transport_get_size(sectors, cdb, cmd);
2919 cmd->t_task_lba = transport_lba_32(cdb);
2920 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2921 passthrough = (dev->transport->transport_type ==
2922 TRANSPORT_PLUGIN_PHBA_PDEV);
2923 /*
2924 * Skip the remaining assignments for TCM/PSCSI passthrough
2925 */
2926 if (passthrough)
2927 break;
2928 /*
2929 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2930 */
2931 cmd->transport_complete_callback = &transport_xor_callback;
2932 cmd->t_tasks_fua = (cdb[1] & 0x8);
2933 break;
2934 case VARIABLE_LENGTH_CMD:
2935 service_action = get_unaligned_be16(&cdb[8]);
2936 /*
2937 * Determine if this is TCM/PSCSI device and we should disable
2938 * internal emulation for this CDB.
2939 */
2940 passthrough = (dev->transport->transport_type ==
2941 TRANSPORT_PLUGIN_PHBA_PDEV);
2942
2943 switch (service_action) {
2944 case XDWRITEREAD_32:
2945 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2946 if (sector_ret)
2947 goto out_unsupported_cdb;
2948 size = transport_get_size(sectors, cdb, cmd);
2949 /*
2950 * Use WRITE_32 and READ_32 opcodes for the emulated
2951 * XDWRITE_READ_32 logic.
2952 */
2953 cmd->t_task_lba = transport_lba_64_ext(cdb);
2954 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2955
2956 /*
2957 * Skip the remaining assignments for TCM/PSCSI passthrough
2958 */
2959 if (passthrough)
2960 break;
2961
2962 /*
2963 * Setup BIDI XOR callback to be run during
2964 * transport_generic_complete_ok()
2965 */
2966 cmd->transport_complete_callback = &transport_xor_callback;
2967 cmd->t_tasks_fua = (cdb[10] & 0x8);
2968 break;
2969 case WRITE_SAME_32:
2970 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2971 if (sector_ret)
2972 goto out_unsupported_cdb;
2973
2974 if (sectors)
2975 size = transport_get_size(1, cdb, cmd);
2976 else {
2977 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2978 " supported\n");
2979 goto out_invalid_cdb_field;
2980 }
2981
2982 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2983 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2984
2985 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2986 goto out_invalid_cdb_field;
2987
2988 break;
2989 default:
2990 pr_err("VARIABLE_LENGTH_CMD service action"
2991 " 0x%04x not supported\n", service_action);
2992 goto out_unsupported_cdb;
2993 }
2994 break;
2995 case MAINTENANCE_IN:
2996 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2997 /* MAINTENANCE_IN from SCC-2 */
2998 /*
2999 * Check for emulated MI_REPORT_TARGET_PGS.
3000 */
3001 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3002 cmd->transport_emulate_cdb =
3003 (su_dev->t10_alua.alua_type ==
3004 SPC3_ALUA_EMULATED) ?
3005 core_emulate_report_target_port_groups :
3006 NULL;
3007 }
3008 size = (cdb[6] << 24) | (cdb[7] << 16) |
3009 (cdb[8] << 8) | cdb[9];
3010 } else {
3011 /* GPCMD_SEND_KEY from multi media commands */
3012 size = (cdb[8] << 8) + cdb[9];
3013 }
3014 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3015 break;
3016 case MODE_SELECT:
3017 size = cdb[4];
3018 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3019 break;
3020 case MODE_SELECT_10:
3021 size = (cdb[7] << 8) + cdb[8];
3022 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3023 break;
3024 case MODE_SENSE:
3025 size = cdb[4];
3026 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3027 break;
3028 case MODE_SENSE_10:
3029 case GPCMD_READ_BUFFER_CAPACITY:
3030 case GPCMD_SEND_OPC:
3031 case LOG_SELECT:
3032 case LOG_SENSE:
3033 size = (cdb[7] << 8) + cdb[8];
3034 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3035 break;
3036 case READ_BLOCK_LIMITS:
3037 size = READ_BLOCK_LEN;
3038 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3039 break;
3040 case GPCMD_GET_CONFIGURATION:
3041 case GPCMD_READ_FORMAT_CAPACITIES:
3042 case GPCMD_READ_DISC_INFO:
3043 case GPCMD_READ_TRACK_RZONE_INFO:
3044 size = (cdb[7] << 8) + cdb[8];
3045 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3046 break;
3047 case PERSISTENT_RESERVE_IN:
3048 case PERSISTENT_RESERVE_OUT:
3049 cmd->transport_emulate_cdb =
3050 (su_dev->t10_pr.res_type ==
3051 SPC3_PERSISTENT_RESERVATIONS) ?
3052 core_scsi3_emulate_pr : NULL;
3053 size = (cdb[7] << 8) + cdb[8];
3054 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3055 break;
3056 case GPCMD_MECHANISM_STATUS:
3057 case GPCMD_READ_DVD_STRUCTURE:
3058 size = (cdb[8] << 8) + cdb[9];
3059 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3060 break;
3061 case READ_POSITION:
3062 size = READ_POSITION_LEN;
3063 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3064 break;
3065 case MAINTENANCE_OUT:
3066 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3067 /* MAINTENANCE_OUT from SCC-2
3068 *
3069 * Check for emulated MO_SET_TARGET_PGS.
3070 */
3071 if (cdb[1] == MO_SET_TARGET_PGS) {
3072 cmd->transport_emulate_cdb =
3073 (su_dev->t10_alua.alua_type ==
3074 SPC3_ALUA_EMULATED) ?
3075 core_emulate_set_target_port_groups :
3076 NULL;
3077 }
3078
3079 size = (cdb[6] << 24) | (cdb[7] << 16) |
3080 (cdb[8] << 8) | cdb[9];
3081 } else {
3082 /* GPCMD_REPORT_KEY from multi media commands */
3083 size = (cdb[8] << 8) + cdb[9];
3084 }
3085 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3086 break;
3087 case INQUIRY:
3088 size = (cdb[3] << 8) + cdb[4];
3089 /*
3090 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3091 * See spc4r17 section 5.3
3092 */
3093 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3094 cmd->sam_task_attr = MSG_HEAD_TAG;
3095 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3096 break;
3097 case READ_BUFFER:
3098 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3099 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3100 break;
3101 case READ_CAPACITY:
3102 size = READ_CAP_LEN;
3103 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3104 break;
3105 case READ_MEDIA_SERIAL_NUMBER:
3106 case SECURITY_PROTOCOL_IN:
3107 case SECURITY_PROTOCOL_OUT:
3108 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3109 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3110 break;
3111 case SERVICE_ACTION_IN:
3112 case ACCESS_CONTROL_IN:
3113 case ACCESS_CONTROL_OUT:
3114 case EXTENDED_COPY:
3115 case READ_ATTRIBUTE:
3116 case RECEIVE_COPY_RESULTS:
3117 case WRITE_ATTRIBUTE:
3118 size = (cdb[10] << 24) | (cdb[11] << 16) |
3119 (cdb[12] << 8) | cdb[13];
3120 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3121 break;
3122 case RECEIVE_DIAGNOSTIC:
3123 case SEND_DIAGNOSTIC:
3124 size = (cdb[3] << 8) | cdb[4];
3125 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3126 break;
3127 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3128 #if 0
3129 case GPCMD_READ_CD:
3130 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3131 size = (2336 * sectors);
3132 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3133 break;
3134 #endif
3135 case READ_TOC:
3136 size = cdb[8];
3137 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3138 break;
3139 case REQUEST_SENSE:
3140 size = cdb[4];
3141 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3142 break;
3143 case READ_ELEMENT_STATUS:
3144 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3145 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3146 break;
3147 case WRITE_BUFFER:
3148 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3149 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3150 break;
3151 case RESERVE:
3152 case RESERVE_10:
3153 /*
3154 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3155 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3156 */
3157 if (cdb[0] == RESERVE_10)
3158 size = (cdb[7] << 8) | cdb[8];
3159 else
3160 size = cmd->data_length;
3161
3162 /*
3163 * Setup the legacy emulated handler for SPC-2 and
3164 * >= SPC-3 compatible reservation handling (CRH=1)
3165 * Otherwise, we assume the underlying SCSI logic is
3166 * is running in SPC_PASSTHROUGH, and wants reservations
3167 * emulation disabled.
3168 */
3169 cmd->transport_emulate_cdb =
3170 (su_dev->t10_pr.res_type !=
3171 SPC_PASSTHROUGH) ?
3172 core_scsi2_emulate_crh : NULL;
3173 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3174 break;
3175 case RELEASE:
3176 case RELEASE_10:
3177 /*
3178 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3179 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3180 */
3181 if (cdb[0] == RELEASE_10)
3182 size = (cdb[7] << 8) | cdb[8];
3183 else
3184 size = cmd->data_length;
3185
3186 cmd->transport_emulate_cdb =
3187 (su_dev->t10_pr.res_type !=
3188 SPC_PASSTHROUGH) ?
3189 core_scsi2_emulate_crh : NULL;
3190 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3191 break;
3192 case SYNCHRONIZE_CACHE:
3193 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3194 /*
3195 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3196 */
3197 if (cdb[0] == SYNCHRONIZE_CACHE) {
3198 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3199 cmd->t_task_lba = transport_lba_32(cdb);
3200 } else {
3201 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3202 cmd->t_task_lba = transport_lba_64(cdb);
3203 }
3204 if (sector_ret)
3205 goto out_unsupported_cdb;
3206
3207 size = transport_get_size(sectors, cdb, cmd);
3208 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3209
3210 /*
3211 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3212 */
3213 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3214 break;
3215 /*
3216 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3217 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3218 */
3219 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3220 /*
3221 * Check to ensure that LBA + Range does not exceed past end of
3222 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3223 */
3224 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3225 if (transport_cmd_get_valid_sectors(cmd) < 0)
3226 goto out_invalid_cdb_field;
3227 }
3228 break;
3229 case UNMAP:
3230 size = get_unaligned_be16(&cdb[7]);
3231 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3232 break;
3233 case WRITE_SAME_16:
3234 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3235 if (sector_ret)
3236 goto out_unsupported_cdb;
3237
3238 if (sectors)
3239 size = transport_get_size(1, cdb, cmd);
3240 else {
3241 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3242 goto out_invalid_cdb_field;
3243 }
3244
3245 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3246 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3247
3248 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3249 goto out_invalid_cdb_field;
3250 break;
3251 case WRITE_SAME:
3252 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3253 if (sector_ret)
3254 goto out_unsupported_cdb;
3255
3256 if (sectors)
3257 size = transport_get_size(1, cdb, cmd);
3258 else {
3259 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3260 goto out_invalid_cdb_field;
3261 }
3262
3263 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3264 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3265 /*
3266 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3267 * of byte 1 bit 3 UNMAP instead of original reserved field
3268 */
3269 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3270 goto out_invalid_cdb_field;
3271 break;
3272 case ALLOW_MEDIUM_REMOVAL:
3273 case GPCMD_CLOSE_TRACK:
3274 case ERASE:
3275 case INITIALIZE_ELEMENT_STATUS:
3276 case GPCMD_LOAD_UNLOAD:
3277 case REZERO_UNIT:
3278 case SEEK_10:
3279 case GPCMD_SET_SPEED:
3280 case SPACE:
3281 case START_STOP:
3282 case TEST_UNIT_READY:
3283 case VERIFY:
3284 case WRITE_FILEMARKS:
3285 case MOVE_MEDIUM:
3286 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3287 break;
3288 case REPORT_LUNS:
3289 cmd->transport_emulate_cdb =
3290 transport_core_report_lun_response;
3291 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3292 /*
3293 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3294 * See spc4r17 section 5.3
3295 */
3296 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3297 cmd->sam_task_attr = MSG_HEAD_TAG;
3298 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3299 break;
3300 default:
3301 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3302 " 0x%02x, sending CHECK_CONDITION.\n",
3303 cmd->se_tfo->get_fabric_name(), cdb[0]);
3304 goto out_unsupported_cdb;
3305 }
3306
3307 if (size != cmd->data_length) {
3308 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3309 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3310 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3311 cmd->data_length, size, cdb[0]);
3312
3313 cmd->cmd_spdtl = size;
3314
3315 if (cmd->data_direction == DMA_TO_DEVICE) {
3316 pr_err("Rejecting underflow/overflow"
3317 " WRITE data\n");
3318 goto out_invalid_cdb_field;
3319 }
3320 /*
3321 * Reject READ_* or WRITE_* with overflow/underflow for
3322 * type SCF_SCSI_DATA_SG_IO_CDB.
3323 */
3324 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3325 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3326 " CDB on non 512-byte sector setup subsystem"
3327 " plugin: %s\n", dev->transport->name);
3328 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3329 goto out_invalid_cdb_field;
3330 }
3331
3332 if (size > cmd->data_length) {
3333 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3334 cmd->residual_count = (size - cmd->data_length);
3335 } else {
3336 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3337 cmd->residual_count = (cmd->data_length - size);
3338 }
3339 cmd->data_length = size;
3340 }
3341
3342 /* Let's limit control cdbs to a page, for simplicity's sake. */
3343 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3344 size > PAGE_SIZE)
3345 goto out_invalid_cdb_field;
3346
3347 transport_set_supported_SAM_opcode(cmd);
3348 return ret;
3349
3350 out_unsupported_cdb:
3351 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3352 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3353 return -EINVAL;
3354 out_invalid_cdb_field:
3355 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3356 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3357 return -EINVAL;
3358 }
3359
3360 /*
3361 * Called from transport_generic_complete_ok() and
3362 * transport_generic_request_failure() to determine which dormant/delayed
3363 * and ordered cmds need to have their tasks added to the execution queue.
3364 */
3365 static void transport_complete_task_attr(struct se_cmd *cmd)
3366 {
3367 struct se_device *dev = cmd->se_dev;
3368 struct se_cmd *cmd_p, *cmd_tmp;
3369 int new_active_tasks = 0;
3370
3371 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3372 atomic_dec(&dev->simple_cmds);
3373 smp_mb__after_atomic_dec();
3374 dev->dev_cur_ordered_id++;
3375 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3376 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3377 cmd->se_ordered_id);
3378 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3379 atomic_dec(&dev->dev_hoq_count);
3380 smp_mb__after_atomic_dec();
3381 dev->dev_cur_ordered_id++;
3382 pr_debug("Incremented dev_cur_ordered_id: %u for"
3383 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3384 cmd->se_ordered_id);
3385 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3386 spin_lock(&dev->ordered_cmd_lock);
3387 list_del(&cmd->se_ordered_node);
3388 atomic_dec(&dev->dev_ordered_sync);
3389 smp_mb__after_atomic_dec();
3390 spin_unlock(&dev->ordered_cmd_lock);
3391
3392 dev->dev_cur_ordered_id++;
3393 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3394 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3395 }
3396 /*
3397 * Process all commands up to the last received
3398 * ORDERED task attribute which requires another blocking
3399 * boundary
3400 */
3401 spin_lock(&dev->delayed_cmd_lock);
3402 list_for_each_entry_safe(cmd_p, cmd_tmp,
3403 &dev->delayed_cmd_list, se_delayed_node) {
3404
3405 list_del(&cmd_p->se_delayed_node);
3406 spin_unlock(&dev->delayed_cmd_lock);
3407
3408 pr_debug("Calling add_tasks() for"
3409 " cmd_p: 0x%02x Task Attr: 0x%02x"
3410 " Dormant -> Active, se_ordered_id: %u\n",
3411 cmd_p->t_task_cdb[0],
3412 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3413
3414 transport_add_tasks_from_cmd(cmd_p);
3415 new_active_tasks++;
3416
3417 spin_lock(&dev->delayed_cmd_lock);
3418 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3419 break;
3420 }
3421 spin_unlock(&dev->delayed_cmd_lock);
3422 /*
3423 * If new tasks have become active, wake up the transport thread
3424 * to do the processing of the Active tasks.
3425 */
3426 if (new_active_tasks != 0)
3427 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3428 }
3429
3430 static void transport_complete_qf(struct se_cmd *cmd)
3431 {
3432 int ret = 0;
3433
3434 transport_stop_all_task_timers(cmd);
3435 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3436 transport_complete_task_attr(cmd);
3437
3438 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3439 ret = cmd->se_tfo->queue_status(cmd);
3440 if (ret)
3441 goto out;
3442 }
3443
3444 switch (cmd->data_direction) {
3445 case DMA_FROM_DEVICE:
3446 ret = cmd->se_tfo->queue_data_in(cmd);
3447 break;
3448 case DMA_TO_DEVICE:
3449 if (cmd->t_bidi_data_sg) {
3450 ret = cmd->se_tfo->queue_data_in(cmd);
3451 if (ret < 0)
3452 break;
3453 }
3454 /* Fall through for DMA_TO_DEVICE */
3455 case DMA_NONE:
3456 ret = cmd->se_tfo->queue_status(cmd);
3457 break;
3458 default:
3459 break;
3460 }
3461
3462 out:
3463 if (ret < 0) {
3464 transport_handle_queue_full(cmd, cmd->se_dev);
3465 return;
3466 }
3467 transport_lun_remove_cmd(cmd);
3468 transport_cmd_check_stop_to_fabric(cmd);
3469 }
3470
3471 static void transport_handle_queue_full(
3472 struct se_cmd *cmd,
3473 struct se_device *dev)
3474 {
3475 spin_lock_irq(&dev->qf_cmd_lock);
3476 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3477 atomic_inc(&dev->dev_qf_count);
3478 smp_mb__after_atomic_inc();
3479 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3480
3481 schedule_work(&cmd->se_dev->qf_work_queue);
3482 }
3483
3484 static void transport_generic_complete_ok(struct se_cmd *cmd)
3485 {
3486 int reason = 0, ret;
3487 /*
3488 * Check if we need to move delayed/dormant tasks from cmds on the
3489 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3490 * Attribute.
3491 */
3492 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3493 transport_complete_task_attr(cmd);
3494 /*
3495 * Check to schedule QUEUE_FULL work, or execute an existing
3496 * cmd->transport_qf_callback()
3497 */
3498 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3499 schedule_work(&cmd->se_dev->qf_work_queue);
3500
3501 /*
3502 * Check if we need to retrieve a sense buffer from
3503 * the struct se_cmd in question.
3504 */
3505 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3506 if (transport_get_sense_data(cmd) < 0)
3507 reason = TCM_NON_EXISTENT_LUN;
3508
3509 /*
3510 * Only set when an struct se_task->task_scsi_status returned
3511 * a non GOOD status.
3512 */
3513 if (cmd->scsi_status) {
3514 ret = transport_send_check_condition_and_sense(
3515 cmd, reason, 1);
3516 if (ret == -EAGAIN)
3517 goto queue_full;
3518
3519 transport_lun_remove_cmd(cmd);
3520 transport_cmd_check_stop_to_fabric(cmd);
3521 return;
3522 }
3523 }
3524 /*
3525 * Check for a callback, used by amongst other things
3526 * XDWRITE_READ_10 emulation.
3527 */
3528 if (cmd->transport_complete_callback)
3529 cmd->transport_complete_callback(cmd);
3530
3531 switch (cmd->data_direction) {
3532 case DMA_FROM_DEVICE:
3533 spin_lock(&cmd->se_lun->lun_sep_lock);
3534 if (cmd->se_lun->lun_sep) {
3535 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3536 cmd->data_length;
3537 }
3538 spin_unlock(&cmd->se_lun->lun_sep_lock);
3539
3540 ret = cmd->se_tfo->queue_data_in(cmd);
3541 if (ret == -EAGAIN)
3542 goto queue_full;
3543 break;
3544 case DMA_TO_DEVICE:
3545 spin_lock(&cmd->se_lun->lun_sep_lock);
3546 if (cmd->se_lun->lun_sep) {
3547 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3548 cmd->data_length;
3549 }
3550 spin_unlock(&cmd->se_lun->lun_sep_lock);
3551 /*
3552 * Check if we need to send READ payload for BIDI-COMMAND
3553 */
3554 if (cmd->t_bidi_data_sg) {
3555 spin_lock(&cmd->se_lun->lun_sep_lock);
3556 if (cmd->se_lun->lun_sep) {
3557 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3558 cmd->data_length;
3559 }
3560 spin_unlock(&cmd->se_lun->lun_sep_lock);
3561 ret = cmd->se_tfo->queue_data_in(cmd);
3562 if (ret == -EAGAIN)
3563 goto queue_full;
3564 break;
3565 }
3566 /* Fall through for DMA_TO_DEVICE */
3567 case DMA_NONE:
3568 ret = cmd->se_tfo->queue_status(cmd);
3569 if (ret == -EAGAIN)
3570 goto queue_full;
3571 break;
3572 default:
3573 break;
3574 }
3575
3576 transport_lun_remove_cmd(cmd);
3577 transport_cmd_check_stop_to_fabric(cmd);
3578 return;
3579
3580 queue_full:
3581 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3582 " data_direction: %d\n", cmd, cmd->data_direction);
3583 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3584 transport_handle_queue_full(cmd, cmd->se_dev);
3585 }
3586
3587 static void transport_free_dev_tasks(struct se_cmd *cmd)
3588 {
3589 struct se_task *task, *task_tmp;
3590 unsigned long flags;
3591 LIST_HEAD(dispose_list);
3592
3593 spin_lock_irqsave(&cmd->t_state_lock, flags);
3594 list_for_each_entry_safe(task, task_tmp,
3595 &cmd->t_task_list, t_list) {
3596 if (!(task->task_flags & TF_ACTIVE))
3597 list_move_tail(&task->t_list, &dispose_list);
3598 }
3599 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3600
3601 while (!list_empty(&dispose_list)) {
3602 task = list_first_entry(&dispose_list, struct se_task, t_list);
3603
3604 kfree(task->task_sg_bidi);
3605 kfree(task->task_sg);
3606
3607 list_del(&task->t_list);
3608
3609 cmd->se_dev->transport->free_task(task);
3610 }
3611 }
3612
3613 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3614 {
3615 struct scatterlist *sg;
3616 int count;
3617
3618 for_each_sg(sgl, sg, nents, count)
3619 __free_page(sg_page(sg));
3620
3621 kfree(sgl);
3622 }
3623
3624 static inline void transport_free_pages(struct se_cmd *cmd)
3625 {
3626 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3627 return;
3628
3629 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3630 cmd->t_data_sg = NULL;
3631 cmd->t_data_nents = 0;
3632
3633 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3634 cmd->t_bidi_data_sg = NULL;
3635 cmd->t_bidi_data_nents = 0;
3636 }
3637
3638 /**
3639 * transport_put_cmd - release a reference to a command
3640 * @cmd: command to release
3641 *
3642 * This routine releases our reference to the command and frees it if possible.
3643 */
3644 static void transport_put_cmd(struct se_cmd *cmd)
3645 {
3646 unsigned long flags;
3647 int free_tasks = 0;
3648
3649 spin_lock_irqsave(&cmd->t_state_lock, flags);
3650 if (atomic_read(&cmd->t_fe_count)) {
3651 if (!atomic_dec_and_test(&cmd->t_fe_count))
3652 goto out_busy;
3653 }
3654
3655 if (atomic_read(&cmd->t_se_count)) {
3656 if (!atomic_dec_and_test(&cmd->t_se_count))
3657 goto out_busy;
3658 }
3659
3660 if (atomic_read(&cmd->transport_dev_active)) {
3661 atomic_set(&cmd->transport_dev_active, 0);
3662 transport_all_task_dev_remove_state(cmd);
3663 free_tasks = 1;
3664 }
3665 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3666
3667 if (free_tasks != 0)
3668 transport_free_dev_tasks(cmd);
3669
3670 transport_free_pages(cmd);
3671 transport_release_cmd(cmd);
3672 return;
3673 out_busy:
3674 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3675 }
3676
3677 /*
3678 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3679 * allocating in the core.
3680 * @cmd: Associated se_cmd descriptor
3681 * @mem: SGL style memory for TCM WRITE / READ
3682 * @sg_mem_num: Number of SGL elements
3683 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3684 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3685 *
3686 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3687 * of parameters.
3688 */
3689 int transport_generic_map_mem_to_cmd(
3690 struct se_cmd *cmd,
3691 struct scatterlist *sgl,
3692 u32 sgl_count,
3693 struct scatterlist *sgl_bidi,
3694 u32 sgl_bidi_count)
3695 {
3696 if (!sgl || !sgl_count)
3697 return 0;
3698
3699 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3700 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3701
3702 cmd->t_data_sg = sgl;
3703 cmd->t_data_nents = sgl_count;
3704
3705 if (sgl_bidi && sgl_bidi_count) {
3706 cmd->t_bidi_data_sg = sgl_bidi;
3707 cmd->t_bidi_data_nents = sgl_bidi_count;
3708 }
3709 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3710 }
3711
3712 return 0;
3713 }
3714 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3715
3716 static int transport_new_cmd_obj(struct se_cmd *cmd)
3717 {
3718 struct se_device *dev = cmd->se_dev;
3719 int set_counts = 1, rc, task_cdbs;
3720
3721 /*
3722 * Setup any BIDI READ tasks and memory from
3723 * cmd->t_mem_bidi_list so the READ struct se_tasks
3724 * are queued first for the non pSCSI passthrough case.
3725 */
3726 if (cmd->t_bidi_data_sg &&
3727 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3728 rc = transport_allocate_tasks(cmd,
3729 cmd->t_task_lba,
3730 DMA_FROM_DEVICE,
3731 cmd->t_bidi_data_sg,
3732 cmd->t_bidi_data_nents);
3733 if (rc <= 0) {
3734 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3735 cmd->scsi_sense_reason =
3736 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3737 return -EINVAL;
3738 }
3739 atomic_inc(&cmd->t_fe_count);
3740 atomic_inc(&cmd->t_se_count);
3741 set_counts = 0;
3742 }
3743 /*
3744 * Setup the tasks and memory from cmd->t_mem_list
3745 * Note for BIDI transfers this will contain the WRITE payload
3746 */
3747 task_cdbs = transport_allocate_tasks(cmd,
3748 cmd->t_task_lba,
3749 cmd->data_direction,
3750 cmd->t_data_sg,
3751 cmd->t_data_nents);
3752 if (task_cdbs <= 0) {
3753 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3754 cmd->scsi_sense_reason =
3755 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3756 return -EINVAL;
3757 }
3758
3759 if (set_counts) {
3760 atomic_inc(&cmd->t_fe_count);
3761 atomic_inc(&cmd->t_se_count);
3762 }
3763
3764 cmd->t_task_list_num = task_cdbs;
3765
3766 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3767 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3768 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3769 return 0;
3770 }
3771
3772 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3773 {
3774 struct scatterlist *sg = cmd->t_data_sg;
3775
3776 BUG_ON(!sg);
3777 /*
3778 * We need to take into account a possible offset here for fabrics like
3779 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3780 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3781 */
3782 return kmap(sg_page(sg)) + sg->offset;
3783 }
3784 EXPORT_SYMBOL(transport_kmap_first_data_page);
3785
3786 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3787 {
3788 kunmap(sg_page(cmd->t_data_sg));
3789 }
3790 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3791
3792 static int
3793 transport_generic_get_mem(struct se_cmd *cmd)
3794 {
3795 u32 length = cmd->data_length;
3796 unsigned int nents;
3797 struct page *page;
3798 int i = 0;
3799
3800 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3801 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3802 if (!cmd->t_data_sg)
3803 return -ENOMEM;
3804
3805 cmd->t_data_nents = nents;
3806 sg_init_table(cmd->t_data_sg, nents);
3807
3808 while (length) {
3809 u32 page_len = min_t(u32, length, PAGE_SIZE);
3810 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3811 if (!page)
3812 goto out;
3813
3814 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3815 length -= page_len;
3816 i++;
3817 }
3818 return 0;
3819
3820 out:
3821 while (i >= 0) {
3822 __free_page(sg_page(&cmd->t_data_sg[i]));
3823 i--;
3824 }
3825 kfree(cmd->t_data_sg);
3826 cmd->t_data_sg = NULL;
3827 return -ENOMEM;
3828 }
3829
3830 /* Reduce sectors if they are too long for the device */
3831 static inline sector_t transport_limit_task_sectors(
3832 struct se_device *dev,
3833 unsigned long long lba,
3834 sector_t sectors)
3835 {
3836 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3837
3838 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3839 if ((lba + sectors) > transport_dev_end_lba(dev))
3840 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3841
3842 return sectors;
3843 }
3844
3845
3846 /*
3847 * This function can be used by HW target mode drivers to create a linked
3848 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3849 * This is intended to be called during the completion path by TCM Core
3850 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3851 */
3852 void transport_do_task_sg_chain(struct se_cmd *cmd)
3853 {
3854 struct scatterlist *sg_first = NULL;
3855 struct scatterlist *sg_prev = NULL;
3856 int sg_prev_nents = 0;
3857 struct scatterlist *sg;
3858 struct se_task *task;
3859 u32 chained_nents = 0;
3860 int i;
3861
3862 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3863
3864 /*
3865 * Walk the struct se_task list and setup scatterlist chains
3866 * for each contiguously allocated struct se_task->task_sg[].
3867 */
3868 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3869 if (!task->task_sg)
3870 continue;
3871
3872 if (!sg_first) {
3873 sg_first = task->task_sg;
3874 chained_nents = task->task_sg_nents;
3875 } else {
3876 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3877 chained_nents += task->task_sg_nents;
3878 }
3879 /*
3880 * For the padded tasks, use the extra SGL vector allocated
3881 * in transport_allocate_data_tasks() for the sg_prev_nents
3882 * offset into sg_chain() above.
3883 *
3884 * We do not need the padding for the last task (or a single
3885 * task), but in that case we will never use the sg_prev_nents
3886 * value below which would be incorrect.
3887 */
3888 sg_prev_nents = (task->task_sg_nents + 1);
3889 sg_prev = task->task_sg;
3890 }
3891 /*
3892 * Setup the starting pointer and total t_tasks_sg_linked_no including
3893 * padding SGs for linking and to mark the end.
3894 */
3895 cmd->t_tasks_sg_chained = sg_first;
3896 cmd->t_tasks_sg_chained_no = chained_nents;
3897
3898 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3899 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3900 cmd->t_tasks_sg_chained_no);
3901
3902 for_each_sg(cmd->t_tasks_sg_chained, sg,
3903 cmd->t_tasks_sg_chained_no, i) {
3904
3905 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3906 i, sg, sg_page(sg), sg->length, sg->offset);
3907 if (sg_is_chain(sg))
3908 pr_debug("SG: %p sg_is_chain=1\n", sg);
3909 if (sg_is_last(sg))
3910 pr_debug("SG: %p sg_is_last=1\n", sg);
3911 }
3912 }
3913 EXPORT_SYMBOL(transport_do_task_sg_chain);
3914
3915 /*
3916 * Break up cmd into chunks transport can handle
3917 */
3918 static int transport_allocate_data_tasks(
3919 struct se_cmd *cmd,
3920 unsigned long long lba,
3921 enum dma_data_direction data_direction,
3922 struct scatterlist *sgl,
3923 unsigned int sgl_nents)
3924 {
3925 struct se_task *task;
3926 struct se_device *dev = cmd->se_dev;
3927 unsigned long flags;
3928 int task_count, i;
3929 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3930 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3931 struct scatterlist *sg;
3932 struct scatterlist *cmd_sg;
3933
3934 WARN_ON(cmd->data_length % sector_size);
3935 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3936 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3937
3938 cmd_sg = sgl;
3939 for (i = 0; i < task_count; i++) {
3940 unsigned int task_size, task_sg_nents_padded;
3941 int count;
3942
3943 task = transport_generic_get_task(cmd, data_direction);
3944 if (!task)
3945 return -ENOMEM;
3946
3947 task->task_lba = lba;
3948 task->task_sectors = min(sectors, dev_max_sectors);
3949 task->task_size = task->task_sectors * sector_size;
3950
3951 /*
3952 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3953 * in order to calculate the number per task SGL entries
3954 */
3955 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3956 /*
3957 * Check if the fabric module driver is requesting that all
3958 * struct se_task->task_sg[] be chained together.. If so,
3959 * then allocate an extra padding SG entry for linking and
3960 * marking the end of the chained SGL for every task except
3961 * the last one for (task_count > 1) operation, or skipping
3962 * the extra padding for the (task_count == 1) case.
3963 */
3964 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3965 task_sg_nents_padded = (task->task_sg_nents + 1);
3966 } else
3967 task_sg_nents_padded = task->task_sg_nents;
3968
3969 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3970 task_sg_nents_padded, GFP_KERNEL);
3971 if (!task->task_sg) {
3972 cmd->se_dev->transport->free_task(task);
3973 return -ENOMEM;
3974 }
3975
3976 sg_init_table(task->task_sg, task_sg_nents_padded);
3977
3978 task_size = task->task_size;
3979
3980 /* Build new sgl, only up to task_size */
3981 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3982 if (cmd_sg->length > task_size)
3983 break;
3984
3985 *sg = *cmd_sg;
3986 task_size -= cmd_sg->length;
3987 cmd_sg = sg_next(cmd_sg);
3988 }
3989
3990 lba += task->task_sectors;
3991 sectors -= task->task_sectors;
3992
3993 spin_lock_irqsave(&cmd->t_state_lock, flags);
3994 list_add_tail(&task->t_list, &cmd->t_task_list);
3995 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3996 }
3997
3998 return task_count;
3999 }
4000
4001 static int
4002 transport_allocate_control_task(struct se_cmd *cmd)
4003 {
4004 struct se_task *task;
4005 unsigned long flags;
4006
4007 task = transport_generic_get_task(cmd, cmd->data_direction);
4008 if (!task)
4009 return -ENOMEM;
4010
4011 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4012 GFP_KERNEL);
4013 if (!task->task_sg) {
4014 cmd->se_dev->transport->free_task(task);
4015 return -ENOMEM;
4016 }
4017
4018 memcpy(task->task_sg, cmd->t_data_sg,
4019 sizeof(struct scatterlist) * cmd->t_data_nents);
4020 task->task_size = cmd->data_length;
4021 task->task_sg_nents = cmd->t_data_nents;
4022
4023 spin_lock_irqsave(&cmd->t_state_lock, flags);
4024 list_add_tail(&task->t_list, &cmd->t_task_list);
4025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4026
4027 /* Success! Return number of tasks allocated */
4028 return 1;
4029 }
4030
4031 static u32 transport_allocate_tasks(
4032 struct se_cmd *cmd,
4033 unsigned long long lba,
4034 enum dma_data_direction data_direction,
4035 struct scatterlist *sgl,
4036 unsigned int sgl_nents)
4037 {
4038 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4039 if (transport_cmd_get_valid_sectors(cmd) < 0)
4040 return -EINVAL;
4041
4042 return transport_allocate_data_tasks(cmd, lba, data_direction,
4043 sgl, sgl_nents);
4044 } else
4045 return transport_allocate_control_task(cmd);
4046
4047 }
4048
4049
4050 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4051 *
4052 * Allocate storage transport resources from a set of values predefined
4053 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4054 * Any non zero return here is treated as an "out of resource' op here.
4055 */
4056 /*
4057 * Generate struct se_task(s) and/or their payloads for this CDB.
4058 */
4059 int transport_generic_new_cmd(struct se_cmd *cmd)
4060 {
4061 int ret = 0;
4062
4063 /*
4064 * Determine is the TCM fabric module has already allocated physical
4065 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4066 * beforehand.
4067 */
4068 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4069 cmd->data_length) {
4070 ret = transport_generic_get_mem(cmd);
4071 if (ret < 0)
4072 return ret;
4073 }
4074 /*
4075 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4076 * control or data CDB types, and perform the map to backend subsystem
4077 * code from SGL memory allocated here by transport_generic_get_mem(), or
4078 * via pre-existing SGL memory setup explictly by fabric module code with
4079 * transport_generic_map_mem_to_cmd().
4080 */
4081 ret = transport_new_cmd_obj(cmd);
4082 if (ret < 0)
4083 return ret;
4084 /*
4085 * For WRITEs, let the fabric know its buffer is ready..
4086 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4087 * will be added to the struct se_device execution queue after its WRITE
4088 * data has arrived. (ie: It gets handled by the transport processing
4089 * thread a second time)
4090 */
4091 if (cmd->data_direction == DMA_TO_DEVICE) {
4092 transport_add_tasks_to_state_queue(cmd);
4093 return transport_generic_write_pending(cmd);
4094 }
4095 /*
4096 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4097 * to the execution queue.
4098 */
4099 transport_execute_tasks(cmd);
4100 return 0;
4101 }
4102 EXPORT_SYMBOL(transport_generic_new_cmd);
4103
4104 /* transport_generic_process_write():
4105 *
4106 *
4107 */
4108 void transport_generic_process_write(struct se_cmd *cmd)
4109 {
4110 transport_execute_tasks(cmd);
4111 }
4112 EXPORT_SYMBOL(transport_generic_process_write);
4113
4114 static void transport_write_pending_qf(struct se_cmd *cmd)
4115 {
4116 if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4117 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4118 cmd);
4119 transport_handle_queue_full(cmd, cmd->se_dev);
4120 }
4121 }
4122
4123 static int transport_generic_write_pending(struct se_cmd *cmd)
4124 {
4125 unsigned long flags;
4126 int ret;
4127
4128 spin_lock_irqsave(&cmd->t_state_lock, flags);
4129 cmd->t_state = TRANSPORT_WRITE_PENDING;
4130 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4131
4132 /*
4133 * Clear the se_cmd for WRITE_PENDING status in order to set
4134 * cmd->t_transport_active=0 so that transport_generic_handle_data
4135 * can be called from HW target mode interrupt code. This is safe
4136 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4137 * because the se_cmd->se_lun pointer is not being cleared.
4138 */
4139 transport_cmd_check_stop(cmd, 1, 0);
4140
4141 /*
4142 * Call the fabric write_pending function here to let the
4143 * frontend know that WRITE buffers are ready.
4144 */
4145 ret = cmd->se_tfo->write_pending(cmd);
4146 if (ret == -EAGAIN)
4147 goto queue_full;
4148 else if (ret < 0)
4149 return ret;
4150
4151 return PYX_TRANSPORT_WRITE_PENDING;
4152
4153 queue_full:
4154 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4155 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4156 transport_handle_queue_full(cmd, cmd->se_dev);
4157 return ret;
4158 }
4159
4160 /**
4161 * transport_release_cmd - free a command
4162 * @cmd: command to free
4163 *
4164 * This routine unconditionally frees a command, and reference counting
4165 * or list removal must be done in the caller.
4166 */
4167 void transport_release_cmd(struct se_cmd *cmd)
4168 {
4169 BUG_ON(!cmd->se_tfo);
4170
4171 if (cmd->se_tmr_req)
4172 core_tmr_release_req(cmd->se_tmr_req);
4173 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4174 kfree(cmd->t_task_cdb);
4175 cmd->se_tfo->release_cmd(cmd);
4176 }
4177 EXPORT_SYMBOL(transport_release_cmd);
4178
4179 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4180 {
4181 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4182 if (wait_for_tasks && cmd->se_tmr_req)
4183 transport_wait_for_tasks(cmd);
4184
4185 transport_release_cmd(cmd);
4186 } else {
4187 if (wait_for_tasks)
4188 transport_wait_for_tasks(cmd);
4189
4190 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4191
4192 if (cmd->se_lun)
4193 transport_lun_remove_cmd(cmd);
4194
4195 transport_free_dev_tasks(cmd);
4196
4197 transport_put_cmd(cmd);
4198 }
4199 }
4200 EXPORT_SYMBOL(transport_generic_free_cmd);
4201
4202 /* transport_lun_wait_for_tasks():
4203 *
4204 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4205 * an struct se_lun to be successfully shutdown.
4206 */
4207 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4208 {
4209 unsigned long flags;
4210 int ret;
4211 /*
4212 * If the frontend has already requested this struct se_cmd to
4213 * be stopped, we can safely ignore this struct se_cmd.
4214 */
4215 spin_lock_irqsave(&cmd->t_state_lock, flags);
4216 if (atomic_read(&cmd->t_transport_stop)) {
4217 atomic_set(&cmd->transport_lun_stop, 0);
4218 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4219 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4220 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4221 transport_cmd_check_stop(cmd, 1, 0);
4222 return -EPERM;
4223 }
4224 atomic_set(&cmd->transport_lun_fe_stop, 1);
4225 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4226
4227 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4228
4229 ret = transport_stop_tasks_for_cmd(cmd);
4230
4231 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4232 " %d\n", cmd, cmd->t_task_list_num, ret);
4233 if (!ret) {
4234 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4235 cmd->se_tfo->get_task_tag(cmd));
4236 wait_for_completion(&cmd->transport_lun_stop_comp);
4237 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4238 cmd->se_tfo->get_task_tag(cmd));
4239 }
4240 transport_remove_cmd_from_queue(cmd);
4241
4242 return 0;
4243 }
4244
4245 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4246 {
4247 struct se_cmd *cmd = NULL;
4248 unsigned long lun_flags, cmd_flags;
4249 /*
4250 * Do exception processing and return CHECK_CONDITION status to the
4251 * Initiator Port.
4252 */
4253 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4254 while (!list_empty(&lun->lun_cmd_list)) {
4255 cmd = list_first_entry(&lun->lun_cmd_list,
4256 struct se_cmd, se_lun_node);
4257 list_del(&cmd->se_lun_node);
4258
4259 atomic_set(&cmd->transport_lun_active, 0);
4260 /*
4261 * This will notify iscsi_target_transport.c:
4262 * transport_cmd_check_stop() that a LUN shutdown is in
4263 * progress for the iscsi_cmd_t.
4264 */
4265 spin_lock(&cmd->t_state_lock);
4266 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4267 "_lun_stop for ITT: 0x%08x\n",
4268 cmd->se_lun->unpacked_lun,
4269 cmd->se_tfo->get_task_tag(cmd));
4270 atomic_set(&cmd->transport_lun_stop, 1);
4271 spin_unlock(&cmd->t_state_lock);
4272
4273 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4274
4275 if (!cmd->se_lun) {
4276 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4277 cmd->se_tfo->get_task_tag(cmd),
4278 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4279 BUG();
4280 }
4281 /*
4282 * If the Storage engine still owns the iscsi_cmd_t, determine
4283 * and/or stop its context.
4284 */
4285 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4286 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4287 cmd->se_tfo->get_task_tag(cmd));
4288
4289 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4290 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4291 continue;
4292 }
4293
4294 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4295 "_wait_for_tasks(): SUCCESS\n",
4296 cmd->se_lun->unpacked_lun,
4297 cmd->se_tfo->get_task_tag(cmd));
4298
4299 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4300 if (!atomic_read(&cmd->transport_dev_active)) {
4301 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4302 goto check_cond;
4303 }
4304 atomic_set(&cmd->transport_dev_active, 0);
4305 transport_all_task_dev_remove_state(cmd);
4306 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4307
4308 transport_free_dev_tasks(cmd);
4309 /*
4310 * The Storage engine stopped this struct se_cmd before it was
4311 * send to the fabric frontend for delivery back to the
4312 * Initiator Node. Return this SCSI CDB back with an
4313 * CHECK_CONDITION status.
4314 */
4315 check_cond:
4316 transport_send_check_condition_and_sense(cmd,
4317 TCM_NON_EXISTENT_LUN, 0);
4318 /*
4319 * If the fabric frontend is waiting for this iscsi_cmd_t to
4320 * be released, notify the waiting thread now that LU has
4321 * finished accessing it.
4322 */
4323 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4324 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4325 pr_debug("SE_LUN[%d] - Detected FE stop for"
4326 " struct se_cmd: %p ITT: 0x%08x\n",
4327 lun->unpacked_lun,
4328 cmd, cmd->se_tfo->get_task_tag(cmd));
4329
4330 spin_unlock_irqrestore(&cmd->t_state_lock,
4331 cmd_flags);
4332 transport_cmd_check_stop(cmd, 1, 0);
4333 complete(&cmd->transport_lun_fe_stop_comp);
4334 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4335 continue;
4336 }
4337 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4338 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4339
4340 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4341 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4342 }
4343 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4344 }
4345
4346 static int transport_clear_lun_thread(void *p)
4347 {
4348 struct se_lun *lun = (struct se_lun *)p;
4349
4350 __transport_clear_lun_from_sessions(lun);
4351 complete(&lun->lun_shutdown_comp);
4352
4353 return 0;
4354 }
4355
4356 int transport_clear_lun_from_sessions(struct se_lun *lun)
4357 {
4358 struct task_struct *kt;
4359
4360 kt = kthread_run(transport_clear_lun_thread, lun,
4361 "tcm_cl_%u", lun->unpacked_lun);
4362 if (IS_ERR(kt)) {
4363 pr_err("Unable to start clear_lun thread\n");
4364 return PTR_ERR(kt);
4365 }
4366 wait_for_completion(&lun->lun_shutdown_comp);
4367
4368 return 0;
4369 }
4370
4371 /**
4372 * transport_wait_for_tasks - wait for completion to occur
4373 * @cmd: command to wait
4374 *
4375 * Called from frontend fabric context to wait for storage engine
4376 * to pause and/or release frontend generated struct se_cmd.
4377 */
4378 void transport_wait_for_tasks(struct se_cmd *cmd)
4379 {
4380 unsigned long flags;
4381
4382 spin_lock_irqsave(&cmd->t_state_lock, flags);
4383 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4384 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4385 return;
4386 }
4387 /*
4388 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4389 * has been set in transport_set_supported_SAM_opcode().
4390 */
4391 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4392 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4393 return;
4394 }
4395 /*
4396 * If we are already stopped due to an external event (ie: LUN shutdown)
4397 * sleep until the connection can have the passed struct se_cmd back.
4398 * The cmd->transport_lun_stopped_sem will be upped by
4399 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4400 * has completed its operation on the struct se_cmd.
4401 */
4402 if (atomic_read(&cmd->transport_lun_stop)) {
4403
4404 pr_debug("wait_for_tasks: Stopping"
4405 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4406 "_stop_comp); for ITT: 0x%08x\n",
4407 cmd->se_tfo->get_task_tag(cmd));
4408 /*
4409 * There is a special case for WRITES where a FE exception +
4410 * LUN shutdown means ConfigFS context is still sleeping on
4411 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4412 * We go ahead and up transport_lun_stop_comp just to be sure
4413 * here.
4414 */
4415 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4416 complete(&cmd->transport_lun_stop_comp);
4417 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4418 spin_lock_irqsave(&cmd->t_state_lock, flags);
4419
4420 transport_all_task_dev_remove_state(cmd);
4421 /*
4422 * At this point, the frontend who was the originator of this
4423 * struct se_cmd, now owns the structure and can be released through
4424 * normal means below.
4425 */
4426 pr_debug("wait_for_tasks: Stopped"
4427 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4428 "stop_comp); for ITT: 0x%08x\n",
4429 cmd->se_tfo->get_task_tag(cmd));
4430
4431 atomic_set(&cmd->transport_lun_stop, 0);
4432 }
4433 if (!atomic_read(&cmd->t_transport_active) ||
4434 atomic_read(&cmd->t_transport_aborted)) {
4435 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4436 return;
4437 }
4438
4439 atomic_set(&cmd->t_transport_stop, 1);
4440
4441 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4442 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4443 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4444 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4445 cmd->deferred_t_state);
4446
4447 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4448
4449 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4450
4451 wait_for_completion(&cmd->t_transport_stop_comp);
4452
4453 spin_lock_irqsave(&cmd->t_state_lock, flags);
4454 atomic_set(&cmd->t_transport_active, 0);
4455 atomic_set(&cmd->t_transport_stop, 0);
4456
4457 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4458 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4459 cmd->se_tfo->get_task_tag(cmd));
4460
4461 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4462 }
4463 EXPORT_SYMBOL(transport_wait_for_tasks);
4464
4465 static int transport_get_sense_codes(
4466 struct se_cmd *cmd,
4467 u8 *asc,
4468 u8 *ascq)
4469 {
4470 *asc = cmd->scsi_asc;
4471 *ascq = cmd->scsi_ascq;
4472
4473 return 0;
4474 }
4475
4476 static int transport_set_sense_codes(
4477 struct se_cmd *cmd,
4478 u8 asc,
4479 u8 ascq)
4480 {
4481 cmd->scsi_asc = asc;
4482 cmd->scsi_ascq = ascq;
4483
4484 return 0;
4485 }
4486
4487 int transport_send_check_condition_and_sense(
4488 struct se_cmd *cmd,
4489 u8 reason,
4490 int from_transport)
4491 {
4492 unsigned char *buffer = cmd->sense_buffer;
4493 unsigned long flags;
4494 int offset;
4495 u8 asc = 0, ascq = 0;
4496
4497 spin_lock_irqsave(&cmd->t_state_lock, flags);
4498 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4499 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4500 return 0;
4501 }
4502 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4503 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4504
4505 if (!reason && from_transport)
4506 goto after_reason;
4507
4508 if (!from_transport)
4509 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4510 /*
4511 * Data Segment and SenseLength of the fabric response PDU.
4512 *
4513 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4514 * from include/scsi/scsi_cmnd.h
4515 */
4516 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4517 TRANSPORT_SENSE_BUFFER);
4518 /*
4519 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4520 * SENSE KEY values from include/scsi/scsi.h
4521 */
4522 switch (reason) {
4523 case TCM_NON_EXISTENT_LUN:
4524 /* CURRENT ERROR */
4525 buffer[offset] = 0x70;
4526 /* ILLEGAL REQUEST */
4527 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4528 /* LOGICAL UNIT NOT SUPPORTED */
4529 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4530 break;
4531 case TCM_UNSUPPORTED_SCSI_OPCODE:
4532 case TCM_SECTOR_COUNT_TOO_MANY:
4533 /* CURRENT ERROR */
4534 buffer[offset] = 0x70;
4535 /* ILLEGAL REQUEST */
4536 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4537 /* INVALID COMMAND OPERATION CODE */
4538 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4539 break;
4540 case TCM_UNKNOWN_MODE_PAGE:
4541 /* CURRENT ERROR */
4542 buffer[offset] = 0x70;
4543 /* ILLEGAL REQUEST */
4544 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4545 /* INVALID FIELD IN CDB */
4546 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4547 break;
4548 case TCM_CHECK_CONDITION_ABORT_CMD:
4549 /* CURRENT ERROR */
4550 buffer[offset] = 0x70;
4551 /* ABORTED COMMAND */
4552 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4553 /* BUS DEVICE RESET FUNCTION OCCURRED */
4554 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4555 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4556 break;
4557 case TCM_INCORRECT_AMOUNT_OF_DATA:
4558 /* CURRENT ERROR */
4559 buffer[offset] = 0x70;
4560 /* ABORTED COMMAND */
4561 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4562 /* WRITE ERROR */
4563 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4564 /* NOT ENOUGH UNSOLICITED DATA */
4565 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4566 break;
4567 case TCM_INVALID_CDB_FIELD:
4568 /* CURRENT ERROR */
4569 buffer[offset] = 0x70;
4570 /* ABORTED COMMAND */
4571 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4572 /* INVALID FIELD IN CDB */
4573 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4574 break;
4575 case TCM_INVALID_PARAMETER_LIST:
4576 /* CURRENT ERROR */
4577 buffer[offset] = 0x70;
4578 /* ABORTED COMMAND */
4579 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4580 /* INVALID FIELD IN PARAMETER LIST */
4581 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4582 break;
4583 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4584 /* CURRENT ERROR */
4585 buffer[offset] = 0x70;
4586 /* ABORTED COMMAND */
4587 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4588 /* WRITE ERROR */
4589 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4590 /* UNEXPECTED_UNSOLICITED_DATA */
4591 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4592 break;
4593 case TCM_SERVICE_CRC_ERROR:
4594 /* CURRENT ERROR */
4595 buffer[offset] = 0x70;
4596 /* ABORTED COMMAND */
4597 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4598 /* PROTOCOL SERVICE CRC ERROR */
4599 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4600 /* N/A */
4601 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4602 break;
4603 case TCM_SNACK_REJECTED:
4604 /* CURRENT ERROR */
4605 buffer[offset] = 0x70;
4606 /* ABORTED COMMAND */
4607 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4608 /* READ ERROR */
4609 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4610 /* FAILED RETRANSMISSION REQUEST */
4611 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4612 break;
4613 case TCM_WRITE_PROTECTED:
4614 /* CURRENT ERROR */
4615 buffer[offset] = 0x70;
4616 /* DATA PROTECT */
4617 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4618 /* WRITE PROTECTED */
4619 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4620 break;
4621 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4622 /* CURRENT ERROR */
4623 buffer[offset] = 0x70;
4624 /* UNIT ATTENTION */
4625 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4626 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4627 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4628 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4629 break;
4630 case TCM_CHECK_CONDITION_NOT_READY:
4631 /* CURRENT ERROR */
4632 buffer[offset] = 0x70;
4633 /* Not Ready */
4634 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4635 transport_get_sense_codes(cmd, &asc, &ascq);
4636 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4637 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4638 break;
4639 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4640 default:
4641 /* CURRENT ERROR */
4642 buffer[offset] = 0x70;
4643 /* ILLEGAL REQUEST */
4644 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4645 /* LOGICAL UNIT COMMUNICATION FAILURE */
4646 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4647 break;
4648 }
4649 /*
4650 * This code uses linux/include/scsi/scsi.h SAM status codes!
4651 */
4652 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4653 /*
4654 * Automatically padded, this value is encoded in the fabric's
4655 * data_length response PDU containing the SCSI defined sense data.
4656 */
4657 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4658
4659 after_reason:
4660 return cmd->se_tfo->queue_status(cmd);
4661 }
4662 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4663
4664 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4665 {
4666 int ret = 0;
4667
4668 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4669 if (!send_status ||
4670 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4671 return 1;
4672 #if 0
4673 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4674 " status for CDB: 0x%02x ITT: 0x%08x\n",
4675 cmd->t_task_cdb[0],
4676 cmd->se_tfo->get_task_tag(cmd));
4677 #endif
4678 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4679 cmd->se_tfo->queue_status(cmd);
4680 ret = 1;
4681 }
4682 return ret;
4683 }
4684 EXPORT_SYMBOL(transport_check_aborted_status);
4685
4686 void transport_send_task_abort(struct se_cmd *cmd)
4687 {
4688 unsigned long flags;
4689
4690 spin_lock_irqsave(&cmd->t_state_lock, flags);
4691 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4692 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4693 return;
4694 }
4695 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4696
4697 /*
4698 * If there are still expected incoming fabric WRITEs, we wait
4699 * until until they have completed before sending a TASK_ABORTED
4700 * response. This response with TASK_ABORTED status will be
4701 * queued back to fabric module by transport_check_aborted_status().
4702 */
4703 if (cmd->data_direction == DMA_TO_DEVICE) {
4704 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4705 atomic_inc(&cmd->t_transport_aborted);
4706 smp_mb__after_atomic_inc();
4707 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4708 transport_new_cmd_failure(cmd);
4709 return;
4710 }
4711 }
4712 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4713 #if 0
4714 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4715 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4716 cmd->se_tfo->get_task_tag(cmd));
4717 #endif
4718 cmd->se_tfo->queue_status(cmd);
4719 }
4720
4721 /* transport_generic_do_tmr():
4722 *
4723 *
4724 */
4725 int transport_generic_do_tmr(struct se_cmd *cmd)
4726 {
4727 struct se_device *dev = cmd->se_dev;
4728 struct se_tmr_req *tmr = cmd->se_tmr_req;
4729 int ret;
4730
4731 switch (tmr->function) {
4732 case TMR_ABORT_TASK:
4733 tmr->response = TMR_FUNCTION_REJECTED;
4734 break;
4735 case TMR_ABORT_TASK_SET:
4736 case TMR_CLEAR_ACA:
4737 case TMR_CLEAR_TASK_SET:
4738 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4739 break;
4740 case TMR_LUN_RESET:
4741 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4742 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4743 TMR_FUNCTION_REJECTED;
4744 break;
4745 case TMR_TARGET_WARM_RESET:
4746 tmr->response = TMR_FUNCTION_REJECTED;
4747 break;
4748 case TMR_TARGET_COLD_RESET:
4749 tmr->response = TMR_FUNCTION_REJECTED;
4750 break;
4751 default:
4752 pr_err("Uknown TMR function: 0x%02x.\n",
4753 tmr->function);
4754 tmr->response = TMR_FUNCTION_REJECTED;
4755 break;
4756 }
4757
4758 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4759 cmd->se_tfo->queue_tm_rsp(cmd);
4760
4761 transport_cmd_check_stop_to_fabric(cmd);
4762 return 0;
4763 }
4764
4765 /* transport_processing_thread():
4766 *
4767 *
4768 */
4769 static int transport_processing_thread(void *param)
4770 {
4771 int ret;
4772 struct se_cmd *cmd;
4773 struct se_device *dev = (struct se_device *) param;
4774
4775 set_user_nice(current, -20);
4776
4777 while (!kthread_should_stop()) {
4778 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4779 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4780 kthread_should_stop());
4781 if (ret < 0)
4782 goto out;
4783
4784 get_cmd:
4785 __transport_execute_tasks(dev);
4786
4787 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4788 if (!cmd)
4789 continue;
4790
4791 switch (cmd->t_state) {
4792 case TRANSPORT_NEW_CMD:
4793 BUG();
4794 break;
4795 case TRANSPORT_NEW_CMD_MAP:
4796 if (!cmd->se_tfo->new_cmd_map) {
4797 pr_err("cmd->se_tfo->new_cmd_map is"
4798 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4799 BUG();
4800 }
4801 ret = cmd->se_tfo->new_cmd_map(cmd);
4802 if (ret < 0) {
4803 cmd->transport_error_status = ret;
4804 transport_generic_request_failure(cmd, NULL,
4805 0, (cmd->data_direction !=
4806 DMA_TO_DEVICE));
4807 break;
4808 }
4809 ret = transport_generic_new_cmd(cmd);
4810 if (ret == -EAGAIN)
4811 break;
4812 else if (ret < 0) {
4813 cmd->transport_error_status = ret;
4814 transport_generic_request_failure(cmd, NULL,
4815 0, (cmd->data_direction !=
4816 DMA_TO_DEVICE));
4817 }
4818 break;
4819 case TRANSPORT_PROCESS_WRITE:
4820 transport_generic_process_write(cmd);
4821 break;
4822 case TRANSPORT_COMPLETE_OK:
4823 transport_stop_all_task_timers(cmd);
4824 transport_generic_complete_ok(cmd);
4825 break;
4826 case TRANSPORT_REMOVE:
4827 transport_put_cmd(cmd);
4828 break;
4829 case TRANSPORT_FREE_CMD_INTR:
4830 transport_generic_free_cmd(cmd, 0);
4831 break;
4832 case TRANSPORT_PROCESS_TMR:
4833 transport_generic_do_tmr(cmd);
4834 break;
4835 case TRANSPORT_COMPLETE_FAILURE:
4836 transport_generic_request_failure(cmd, NULL, 1, 1);
4837 break;
4838 case TRANSPORT_COMPLETE_TIMEOUT:
4839 transport_stop_all_task_timers(cmd);
4840 transport_generic_request_timeout(cmd);
4841 break;
4842 case TRANSPORT_COMPLETE_QF_WP:
4843 transport_write_pending_qf(cmd);
4844 break;
4845 case TRANSPORT_COMPLETE_QF_OK:
4846 transport_complete_qf(cmd);
4847 break;
4848 default:
4849 pr_err("Unknown t_state: %d deferred_t_state:"
4850 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4851 " %u\n", cmd->t_state, cmd->deferred_t_state,
4852 cmd->se_tfo->get_task_tag(cmd),
4853 cmd->se_tfo->get_cmd_state(cmd),
4854 cmd->se_lun->unpacked_lun);
4855 BUG();
4856 }
4857
4858 goto get_cmd;
4859 }
4860
4861 out:
4862 WARN_ON(!list_empty(&dev->state_task_list));
4863 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4864 dev->process_thread = NULL;
4865 return 0;
4866 }
This page took 0.152469 seconds and 6 git commands to generate.