serial: amba-pl011: Use container_of() to get uart_amba_port
[deliverable/linux.git] / drivers / tty / serial / amba-pl011.c
1 /*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61
62 #define UART_NR 14
63
64 #define SERIAL_AMBA_MAJOR 204
65 #define SERIAL_AMBA_MINOR 64
66 #define SERIAL_AMBA_NR UART_NR
67
68 #define AMBA_ISR_PASS_LIMIT 256
69
70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX (1 << 16)
72
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 unsigned int ifls;
76 unsigned int lcrh_tx;
77 unsigned int lcrh_rx;
78 bool oversampling;
79 bool dma_threshold;
80 bool cts_event_workaround;
81
82 unsigned int (*get_fifosize)(struct amba_device *dev);
83 };
84
85 static unsigned int get_fifosize_arm(struct amba_device *dev)
86 {
87 return amba_rev(dev) < 3 ? 16 : 32;
88 }
89
90 static struct vendor_data vendor_arm = {
91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
92 .lcrh_tx = UART011_LCRH,
93 .lcrh_rx = UART011_LCRH,
94 .oversampling = false,
95 .dma_threshold = false,
96 .cts_event_workaround = false,
97 .get_fifosize = get_fifosize_arm,
98 };
99
100 static unsigned int get_fifosize_st(struct amba_device *dev)
101 {
102 return 64;
103 }
104
105 static struct vendor_data vendor_st = {
106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
107 .lcrh_tx = ST_UART011_LCRH_TX,
108 .lcrh_rx = ST_UART011_LCRH_RX,
109 .oversampling = true,
110 .dma_threshold = true,
111 .cts_event_workaround = true,
112 .get_fifosize = get_fifosize_st,
113 };
114
115 /* Deals with DMA transactions */
116
117 struct pl011_sgbuf {
118 struct scatterlist sg;
119 char *buf;
120 };
121
122 struct pl011_dmarx_data {
123 struct dma_chan *chan;
124 struct completion complete;
125 bool use_buf_b;
126 struct pl011_sgbuf sgbuf_a;
127 struct pl011_sgbuf sgbuf_b;
128 dma_cookie_t cookie;
129 bool running;
130 struct timer_list timer;
131 unsigned int last_residue;
132 unsigned long last_jiffies;
133 bool auto_poll_rate;
134 unsigned int poll_rate;
135 unsigned int poll_timeout;
136 };
137
138 struct pl011_dmatx_data {
139 struct dma_chan *chan;
140 struct scatterlist sg;
141 char *buf;
142 bool queued;
143 };
144
145 /*
146 * We wrap our port structure around the generic uart_port.
147 */
148 struct uart_amba_port {
149 struct uart_port port;
150 struct clk *clk;
151 const struct vendor_data *vendor;
152 unsigned int dmacr; /* dma control reg */
153 unsigned int im; /* interrupt mask */
154 unsigned int old_status;
155 unsigned int fifosize; /* vendor-specific */
156 unsigned int lcrh_tx; /* vendor-specific */
157 unsigned int lcrh_rx; /* vendor-specific */
158 unsigned int old_cr; /* state during shutdown */
159 bool autorts;
160 char type[12];
161 #ifdef CONFIG_DMA_ENGINE
162 /* DMA stuff */
163 bool using_tx_dma;
164 bool using_rx_dma;
165 struct pl011_dmarx_data dmarx;
166 struct pl011_dmatx_data dmatx;
167 #endif
168 };
169
170 /*
171 * Reads up to 256 characters from the FIFO or until it's empty and
172 * inserts them into the TTY layer. Returns the number of characters
173 * read from the FIFO.
174 */
175 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
176 {
177 u16 status, ch;
178 unsigned int flag, max_count = 256;
179 int fifotaken = 0;
180
181 while (max_count--) {
182 status = readw(uap->port.membase + UART01x_FR);
183 if (status & UART01x_FR_RXFE)
184 break;
185
186 /* Take chars from the FIFO and update status */
187 ch = readw(uap->port.membase + UART01x_DR) |
188 UART_DUMMY_DR_RX;
189 flag = TTY_NORMAL;
190 uap->port.icount.rx++;
191 fifotaken++;
192
193 if (unlikely(ch & UART_DR_ERROR)) {
194 if (ch & UART011_DR_BE) {
195 ch &= ~(UART011_DR_FE | UART011_DR_PE);
196 uap->port.icount.brk++;
197 if (uart_handle_break(&uap->port))
198 continue;
199 } else if (ch & UART011_DR_PE)
200 uap->port.icount.parity++;
201 else if (ch & UART011_DR_FE)
202 uap->port.icount.frame++;
203 if (ch & UART011_DR_OE)
204 uap->port.icount.overrun++;
205
206 ch &= uap->port.read_status_mask;
207
208 if (ch & UART011_DR_BE)
209 flag = TTY_BREAK;
210 else if (ch & UART011_DR_PE)
211 flag = TTY_PARITY;
212 else if (ch & UART011_DR_FE)
213 flag = TTY_FRAME;
214 }
215
216 if (uart_handle_sysrq_char(&uap->port, ch & 255))
217 continue;
218
219 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
220 }
221
222 return fifotaken;
223 }
224
225
226 /*
227 * All the DMA operation mode stuff goes inside this ifdef.
228 * This assumes that you have a generic DMA device interface,
229 * no custom DMA interfaces are supported.
230 */
231 #ifdef CONFIG_DMA_ENGINE
232
233 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
234
235 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
236 enum dma_data_direction dir)
237 {
238 dma_addr_t dma_addr;
239
240 sg->buf = dma_alloc_coherent(chan->device->dev,
241 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
242 if (!sg->buf)
243 return -ENOMEM;
244
245 sg_init_table(&sg->sg, 1);
246 sg_set_page(&sg->sg, phys_to_page(dma_addr),
247 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
248 sg_dma_address(&sg->sg) = dma_addr;
249
250 return 0;
251 }
252
253 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
254 enum dma_data_direction dir)
255 {
256 if (sg->buf) {
257 dma_free_coherent(chan->device->dev,
258 PL011_DMA_BUFFER_SIZE, sg->buf,
259 sg_dma_address(&sg->sg));
260 }
261 }
262
263 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
264 {
265 /* DMA is the sole user of the platform data right now */
266 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
267 struct dma_slave_config tx_conf = {
268 .dst_addr = uap->port.mapbase + UART01x_DR,
269 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
270 .direction = DMA_MEM_TO_DEV,
271 .dst_maxburst = uap->fifosize >> 1,
272 .device_fc = false,
273 };
274 struct dma_chan *chan;
275 dma_cap_mask_t mask;
276
277 chan = dma_request_slave_channel(dev, "tx");
278
279 if (!chan) {
280 /* We need platform data */
281 if (!plat || !plat->dma_filter) {
282 dev_info(uap->port.dev, "no DMA platform data\n");
283 return;
284 }
285
286 /* Try to acquire a generic DMA engine slave TX channel */
287 dma_cap_zero(mask);
288 dma_cap_set(DMA_SLAVE, mask);
289
290 chan = dma_request_channel(mask, plat->dma_filter,
291 plat->dma_tx_param);
292 if (!chan) {
293 dev_err(uap->port.dev, "no TX DMA channel!\n");
294 return;
295 }
296 }
297
298 dmaengine_slave_config(chan, &tx_conf);
299 uap->dmatx.chan = chan;
300
301 dev_info(uap->port.dev, "DMA channel TX %s\n",
302 dma_chan_name(uap->dmatx.chan));
303
304 /* Optionally make use of an RX channel as well */
305 chan = dma_request_slave_channel(dev, "rx");
306
307 if (!chan && plat->dma_rx_param) {
308 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
309
310 if (!chan) {
311 dev_err(uap->port.dev, "no RX DMA channel!\n");
312 return;
313 }
314 }
315
316 if (chan) {
317 struct dma_slave_config rx_conf = {
318 .src_addr = uap->port.mapbase + UART01x_DR,
319 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
320 .direction = DMA_DEV_TO_MEM,
321 .src_maxburst = uap->fifosize >> 2,
322 .device_fc = false,
323 };
324
325 dmaengine_slave_config(chan, &rx_conf);
326 uap->dmarx.chan = chan;
327
328 if (plat && plat->dma_rx_poll_enable) {
329 /* Set poll rate if specified. */
330 if (plat->dma_rx_poll_rate) {
331 uap->dmarx.auto_poll_rate = false;
332 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
333 } else {
334 /*
335 * 100 ms defaults to poll rate if not
336 * specified. This will be adjusted with
337 * the baud rate at set_termios.
338 */
339 uap->dmarx.auto_poll_rate = true;
340 uap->dmarx.poll_rate = 100;
341 }
342 /* 3 secs defaults poll_timeout if not specified. */
343 if (plat->dma_rx_poll_timeout)
344 uap->dmarx.poll_timeout =
345 plat->dma_rx_poll_timeout;
346 else
347 uap->dmarx.poll_timeout = 3000;
348 } else
349 uap->dmarx.auto_poll_rate = false;
350
351 dev_info(uap->port.dev, "DMA channel RX %s\n",
352 dma_chan_name(uap->dmarx.chan));
353 }
354 }
355
356 #ifndef MODULE
357 /*
358 * Stack up the UARTs and let the above initcall be done at device
359 * initcall time, because the serial driver is called as an arch
360 * initcall, and at this time the DMA subsystem is not yet registered.
361 * At this point the driver will switch over to using DMA where desired.
362 */
363 struct dma_uap {
364 struct list_head node;
365 struct uart_amba_port *uap;
366 struct device *dev;
367 };
368
369 static LIST_HEAD(pl011_dma_uarts);
370
371 static int __init pl011_dma_initcall(void)
372 {
373 struct list_head *node, *tmp;
374
375 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
376 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
377 pl011_dma_probe_initcall(dmau->dev, dmau->uap);
378 list_del(node);
379 kfree(dmau);
380 }
381 return 0;
382 }
383
384 device_initcall(pl011_dma_initcall);
385
386 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
387 {
388 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
389 if (dmau) {
390 dmau->uap = uap;
391 dmau->dev = dev;
392 list_add_tail(&dmau->node, &pl011_dma_uarts);
393 }
394 }
395 #else
396 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
397 {
398 pl011_dma_probe_initcall(dev, uap);
399 }
400 #endif
401
402 static void pl011_dma_remove(struct uart_amba_port *uap)
403 {
404 /* TODO: remove the initcall if it has not yet executed */
405 if (uap->dmatx.chan)
406 dma_release_channel(uap->dmatx.chan);
407 if (uap->dmarx.chan)
408 dma_release_channel(uap->dmarx.chan);
409 }
410
411 /* Forward declare this for the refill routine */
412 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
413
414 /*
415 * The current DMA TX buffer has been sent.
416 * Try to queue up another DMA buffer.
417 */
418 static void pl011_dma_tx_callback(void *data)
419 {
420 struct uart_amba_port *uap = data;
421 struct pl011_dmatx_data *dmatx = &uap->dmatx;
422 unsigned long flags;
423 u16 dmacr;
424
425 spin_lock_irqsave(&uap->port.lock, flags);
426 if (uap->dmatx.queued)
427 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
428 DMA_TO_DEVICE);
429
430 dmacr = uap->dmacr;
431 uap->dmacr = dmacr & ~UART011_TXDMAE;
432 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
433
434 /*
435 * If TX DMA was disabled, it means that we've stopped the DMA for
436 * some reason (eg, XOFF received, or we want to send an X-char.)
437 *
438 * Note: we need to be careful here of a potential race between DMA
439 * and the rest of the driver - if the driver disables TX DMA while
440 * a TX buffer completing, we must update the tx queued status to
441 * get further refills (hence we check dmacr).
442 */
443 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
444 uart_circ_empty(&uap->port.state->xmit)) {
445 uap->dmatx.queued = false;
446 spin_unlock_irqrestore(&uap->port.lock, flags);
447 return;
448 }
449
450 if (pl011_dma_tx_refill(uap) <= 0) {
451 /*
452 * We didn't queue a DMA buffer for some reason, but we
453 * have data pending to be sent. Re-enable the TX IRQ.
454 */
455 uap->im |= UART011_TXIM;
456 writew(uap->im, uap->port.membase + UART011_IMSC);
457 }
458 spin_unlock_irqrestore(&uap->port.lock, flags);
459 }
460
461 /*
462 * Try to refill the TX DMA buffer.
463 * Locking: called with port lock held and IRQs disabled.
464 * Returns:
465 * 1 if we queued up a TX DMA buffer.
466 * 0 if we didn't want to handle this by DMA
467 * <0 on error
468 */
469 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
470 {
471 struct pl011_dmatx_data *dmatx = &uap->dmatx;
472 struct dma_chan *chan = dmatx->chan;
473 struct dma_device *dma_dev = chan->device;
474 struct dma_async_tx_descriptor *desc;
475 struct circ_buf *xmit = &uap->port.state->xmit;
476 unsigned int count;
477
478 /*
479 * Try to avoid the overhead involved in using DMA if the
480 * transaction fits in the first half of the FIFO, by using
481 * the standard interrupt handling. This ensures that we
482 * issue a uart_write_wakeup() at the appropriate time.
483 */
484 count = uart_circ_chars_pending(xmit);
485 if (count < (uap->fifosize >> 1)) {
486 uap->dmatx.queued = false;
487 return 0;
488 }
489
490 /*
491 * Bodge: don't send the last character by DMA, as this
492 * will prevent XON from notifying us to restart DMA.
493 */
494 count -= 1;
495
496 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
497 if (count > PL011_DMA_BUFFER_SIZE)
498 count = PL011_DMA_BUFFER_SIZE;
499
500 if (xmit->tail < xmit->head)
501 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
502 else {
503 size_t first = UART_XMIT_SIZE - xmit->tail;
504 size_t second = xmit->head;
505
506 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
507 if (second)
508 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
509 }
510
511 dmatx->sg.length = count;
512
513 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
514 uap->dmatx.queued = false;
515 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
516 return -EBUSY;
517 }
518
519 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
520 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
521 if (!desc) {
522 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
523 uap->dmatx.queued = false;
524 /*
525 * If DMA cannot be used right now, we complete this
526 * transaction via IRQ and let the TTY layer retry.
527 */
528 dev_dbg(uap->port.dev, "TX DMA busy\n");
529 return -EBUSY;
530 }
531
532 /* Some data to go along to the callback */
533 desc->callback = pl011_dma_tx_callback;
534 desc->callback_param = uap;
535
536 /* All errors should happen at prepare time */
537 dmaengine_submit(desc);
538
539 /* Fire the DMA transaction */
540 dma_dev->device_issue_pending(chan);
541
542 uap->dmacr |= UART011_TXDMAE;
543 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
544 uap->dmatx.queued = true;
545
546 /*
547 * Now we know that DMA will fire, so advance the ring buffer
548 * with the stuff we just dispatched.
549 */
550 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
551 uap->port.icount.tx += count;
552
553 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
554 uart_write_wakeup(&uap->port);
555
556 return 1;
557 }
558
559 /*
560 * We received a transmit interrupt without a pending X-char but with
561 * pending characters.
562 * Locking: called with port lock held and IRQs disabled.
563 * Returns:
564 * false if we want to use PIO to transmit
565 * true if we queued a DMA buffer
566 */
567 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
568 {
569 if (!uap->using_tx_dma)
570 return false;
571
572 /*
573 * If we already have a TX buffer queued, but received a
574 * TX interrupt, it will be because we've just sent an X-char.
575 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
576 */
577 if (uap->dmatx.queued) {
578 uap->dmacr |= UART011_TXDMAE;
579 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
580 uap->im &= ~UART011_TXIM;
581 writew(uap->im, uap->port.membase + UART011_IMSC);
582 return true;
583 }
584
585 /*
586 * We don't have a TX buffer queued, so try to queue one.
587 * If we successfully queued a buffer, mask the TX IRQ.
588 */
589 if (pl011_dma_tx_refill(uap) > 0) {
590 uap->im &= ~UART011_TXIM;
591 writew(uap->im, uap->port.membase + UART011_IMSC);
592 return true;
593 }
594 return false;
595 }
596
597 /*
598 * Stop the DMA transmit (eg, due to received XOFF).
599 * Locking: called with port lock held and IRQs disabled.
600 */
601 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
602 {
603 if (uap->dmatx.queued) {
604 uap->dmacr &= ~UART011_TXDMAE;
605 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
606 }
607 }
608
609 /*
610 * Try to start a DMA transmit, or in the case of an XON/OFF
611 * character queued for send, try to get that character out ASAP.
612 * Locking: called with port lock held and IRQs disabled.
613 * Returns:
614 * false if we want the TX IRQ to be enabled
615 * true if we have a buffer queued
616 */
617 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
618 {
619 u16 dmacr;
620
621 if (!uap->using_tx_dma)
622 return false;
623
624 if (!uap->port.x_char) {
625 /* no X-char, try to push chars out in DMA mode */
626 bool ret = true;
627
628 if (!uap->dmatx.queued) {
629 if (pl011_dma_tx_refill(uap) > 0) {
630 uap->im &= ~UART011_TXIM;
631 ret = true;
632 } else {
633 uap->im |= UART011_TXIM;
634 ret = false;
635 }
636 writew(uap->im, uap->port.membase + UART011_IMSC);
637 } else if (!(uap->dmacr & UART011_TXDMAE)) {
638 uap->dmacr |= UART011_TXDMAE;
639 writew(uap->dmacr,
640 uap->port.membase + UART011_DMACR);
641 }
642 return ret;
643 }
644
645 /*
646 * We have an X-char to send. Disable DMA to prevent it loading
647 * the TX fifo, and then see if we can stuff it into the FIFO.
648 */
649 dmacr = uap->dmacr;
650 uap->dmacr &= ~UART011_TXDMAE;
651 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
652
653 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
654 /*
655 * No space in the FIFO, so enable the transmit interrupt
656 * so we know when there is space. Note that once we've
657 * loaded the character, we should just re-enable DMA.
658 */
659 return false;
660 }
661
662 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
663 uap->port.icount.tx++;
664 uap->port.x_char = 0;
665
666 /* Success - restore the DMA state */
667 uap->dmacr = dmacr;
668 writew(dmacr, uap->port.membase + UART011_DMACR);
669
670 return true;
671 }
672
673 /*
674 * Flush the transmit buffer.
675 * Locking: called with port lock held and IRQs disabled.
676 */
677 static void pl011_dma_flush_buffer(struct uart_port *port)
678 __releases(&uap->port.lock)
679 __acquires(&uap->port.lock)
680 {
681 struct uart_amba_port *uap =
682 container_of(port, struct uart_amba_port, port);
683
684 if (!uap->using_tx_dma)
685 return;
686
687 /* Avoid deadlock with the DMA engine callback */
688 spin_unlock(&uap->port.lock);
689 dmaengine_terminate_all(uap->dmatx.chan);
690 spin_lock(&uap->port.lock);
691 if (uap->dmatx.queued) {
692 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
693 DMA_TO_DEVICE);
694 uap->dmatx.queued = false;
695 uap->dmacr &= ~UART011_TXDMAE;
696 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
697 }
698 }
699
700 static void pl011_dma_rx_callback(void *data);
701
702 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
703 {
704 struct dma_chan *rxchan = uap->dmarx.chan;
705 struct pl011_dmarx_data *dmarx = &uap->dmarx;
706 struct dma_async_tx_descriptor *desc;
707 struct pl011_sgbuf *sgbuf;
708
709 if (!rxchan)
710 return -EIO;
711
712 /* Start the RX DMA job */
713 sgbuf = uap->dmarx.use_buf_b ?
714 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
715 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
716 DMA_DEV_TO_MEM,
717 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
718 /*
719 * If the DMA engine is busy and cannot prepare a
720 * channel, no big deal, the driver will fall back
721 * to interrupt mode as a result of this error code.
722 */
723 if (!desc) {
724 uap->dmarx.running = false;
725 dmaengine_terminate_all(rxchan);
726 return -EBUSY;
727 }
728
729 /* Some data to go along to the callback */
730 desc->callback = pl011_dma_rx_callback;
731 desc->callback_param = uap;
732 dmarx->cookie = dmaengine_submit(desc);
733 dma_async_issue_pending(rxchan);
734
735 uap->dmacr |= UART011_RXDMAE;
736 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
737 uap->dmarx.running = true;
738
739 uap->im &= ~UART011_RXIM;
740 writew(uap->im, uap->port.membase + UART011_IMSC);
741
742 return 0;
743 }
744
745 /*
746 * This is called when either the DMA job is complete, or
747 * the FIFO timeout interrupt occurred. This must be called
748 * with the port spinlock uap->port.lock held.
749 */
750 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
751 u32 pending, bool use_buf_b,
752 bool readfifo)
753 {
754 struct tty_port *port = &uap->port.state->port;
755 struct pl011_sgbuf *sgbuf = use_buf_b ?
756 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
757 int dma_count = 0;
758 u32 fifotaken = 0; /* only used for vdbg() */
759
760 struct pl011_dmarx_data *dmarx = &uap->dmarx;
761 int dmataken = 0;
762
763 if (uap->dmarx.poll_rate) {
764 /* The data can be taken by polling */
765 dmataken = sgbuf->sg.length - dmarx->last_residue;
766 /* Recalculate the pending size */
767 if (pending >= dmataken)
768 pending -= dmataken;
769 }
770
771 /* Pick the remain data from the DMA */
772 if (pending) {
773
774 /*
775 * First take all chars in the DMA pipe, then look in the FIFO.
776 * Note that tty_insert_flip_buf() tries to take as many chars
777 * as it can.
778 */
779 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
780 pending);
781
782 uap->port.icount.rx += dma_count;
783 if (dma_count < pending)
784 dev_warn(uap->port.dev,
785 "couldn't insert all characters (TTY is full?)\n");
786 }
787
788 /* Reset the last_residue for Rx DMA poll */
789 if (uap->dmarx.poll_rate)
790 dmarx->last_residue = sgbuf->sg.length;
791
792 /*
793 * Only continue with trying to read the FIFO if all DMA chars have
794 * been taken first.
795 */
796 if (dma_count == pending && readfifo) {
797 /* Clear any error flags */
798 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
799 uap->port.membase + UART011_ICR);
800
801 /*
802 * If we read all the DMA'd characters, and we had an
803 * incomplete buffer, that could be due to an rx error, or
804 * maybe we just timed out. Read any pending chars and check
805 * the error status.
806 *
807 * Error conditions will only occur in the FIFO, these will
808 * trigger an immediate interrupt and stop the DMA job, so we
809 * will always find the error in the FIFO, never in the DMA
810 * buffer.
811 */
812 fifotaken = pl011_fifo_to_tty(uap);
813 }
814
815 spin_unlock(&uap->port.lock);
816 dev_vdbg(uap->port.dev,
817 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
818 dma_count, fifotaken);
819 tty_flip_buffer_push(port);
820 spin_lock(&uap->port.lock);
821 }
822
823 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
824 {
825 struct pl011_dmarx_data *dmarx = &uap->dmarx;
826 struct dma_chan *rxchan = dmarx->chan;
827 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
828 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
829 size_t pending;
830 struct dma_tx_state state;
831 enum dma_status dmastat;
832
833 /*
834 * Pause the transfer so we can trust the current counter,
835 * do this before we pause the PL011 block, else we may
836 * overflow the FIFO.
837 */
838 if (dmaengine_pause(rxchan))
839 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
840 dmastat = rxchan->device->device_tx_status(rxchan,
841 dmarx->cookie, &state);
842 if (dmastat != DMA_PAUSED)
843 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
844
845 /* Disable RX DMA - incoming data will wait in the FIFO */
846 uap->dmacr &= ~UART011_RXDMAE;
847 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
848 uap->dmarx.running = false;
849
850 pending = sgbuf->sg.length - state.residue;
851 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
852 /* Then we terminate the transfer - we now know our residue */
853 dmaengine_terminate_all(rxchan);
854
855 /*
856 * This will take the chars we have so far and insert
857 * into the framework.
858 */
859 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
860
861 /* Switch buffer & re-trigger DMA job */
862 dmarx->use_buf_b = !dmarx->use_buf_b;
863 if (pl011_dma_rx_trigger_dma(uap)) {
864 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
865 "fall back to interrupt mode\n");
866 uap->im |= UART011_RXIM;
867 writew(uap->im, uap->port.membase + UART011_IMSC);
868 }
869 }
870
871 static void pl011_dma_rx_callback(void *data)
872 {
873 struct uart_amba_port *uap = data;
874 struct pl011_dmarx_data *dmarx = &uap->dmarx;
875 struct dma_chan *rxchan = dmarx->chan;
876 bool lastbuf = dmarx->use_buf_b;
877 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
878 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
879 size_t pending;
880 struct dma_tx_state state;
881 int ret;
882
883 /*
884 * This completion interrupt occurs typically when the
885 * RX buffer is totally stuffed but no timeout has yet
886 * occurred. When that happens, we just want the RX
887 * routine to flush out the secondary DMA buffer while
888 * we immediately trigger the next DMA job.
889 */
890 spin_lock_irq(&uap->port.lock);
891 /*
892 * Rx data can be taken by the UART interrupts during
893 * the DMA irq handler. So we check the residue here.
894 */
895 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
896 pending = sgbuf->sg.length - state.residue;
897 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
898 /* Then we terminate the transfer - we now know our residue */
899 dmaengine_terminate_all(rxchan);
900
901 uap->dmarx.running = false;
902 dmarx->use_buf_b = !lastbuf;
903 ret = pl011_dma_rx_trigger_dma(uap);
904
905 pl011_dma_rx_chars(uap, pending, lastbuf, false);
906 spin_unlock_irq(&uap->port.lock);
907 /*
908 * Do this check after we picked the DMA chars so we don't
909 * get some IRQ immediately from RX.
910 */
911 if (ret) {
912 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
913 "fall back to interrupt mode\n");
914 uap->im |= UART011_RXIM;
915 writew(uap->im, uap->port.membase + UART011_IMSC);
916 }
917 }
918
919 /*
920 * Stop accepting received characters, when we're shutting down or
921 * suspending this port.
922 * Locking: called with port lock held and IRQs disabled.
923 */
924 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
925 {
926 /* FIXME. Just disable the DMA enable */
927 uap->dmacr &= ~UART011_RXDMAE;
928 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
929 }
930
931 /*
932 * Timer handler for Rx DMA polling.
933 * Every polling, It checks the residue in the dma buffer and transfer
934 * data to the tty. Also, last_residue is updated for the next polling.
935 */
936 static void pl011_dma_rx_poll(unsigned long args)
937 {
938 struct uart_amba_port *uap = (struct uart_amba_port *)args;
939 struct tty_port *port = &uap->port.state->port;
940 struct pl011_dmarx_data *dmarx = &uap->dmarx;
941 struct dma_chan *rxchan = uap->dmarx.chan;
942 unsigned long flags = 0;
943 unsigned int dmataken = 0;
944 unsigned int size = 0;
945 struct pl011_sgbuf *sgbuf;
946 int dma_count;
947 struct dma_tx_state state;
948
949 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
950 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
951 if (likely(state.residue < dmarx->last_residue)) {
952 dmataken = sgbuf->sg.length - dmarx->last_residue;
953 size = dmarx->last_residue - state.residue;
954 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
955 size);
956 if (dma_count == size)
957 dmarx->last_residue = state.residue;
958 dmarx->last_jiffies = jiffies;
959 }
960 tty_flip_buffer_push(port);
961
962 /*
963 * If no data is received in poll_timeout, the driver will fall back
964 * to interrupt mode. We will retrigger DMA at the first interrupt.
965 */
966 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
967 > uap->dmarx.poll_timeout) {
968
969 spin_lock_irqsave(&uap->port.lock, flags);
970 pl011_dma_rx_stop(uap);
971 uap->im |= UART011_RXIM;
972 writew(uap->im, uap->port.membase + UART011_IMSC);
973 spin_unlock_irqrestore(&uap->port.lock, flags);
974
975 uap->dmarx.running = false;
976 dmaengine_terminate_all(rxchan);
977 del_timer(&uap->dmarx.timer);
978 } else {
979 mod_timer(&uap->dmarx.timer,
980 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
981 }
982 }
983
984 static void pl011_dma_startup(struct uart_amba_port *uap)
985 {
986 int ret;
987
988 if (!uap->dmatx.chan)
989 return;
990
991 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
992 if (!uap->dmatx.buf) {
993 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
994 uap->port.fifosize = uap->fifosize;
995 return;
996 }
997
998 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
999
1000 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1001 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1002 uap->using_tx_dma = true;
1003
1004 if (!uap->dmarx.chan)
1005 goto skip_rx;
1006
1007 /* Allocate and map DMA RX buffers */
1008 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1009 DMA_FROM_DEVICE);
1010 if (ret) {
1011 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1012 "RX buffer A", ret);
1013 goto skip_rx;
1014 }
1015
1016 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1017 DMA_FROM_DEVICE);
1018 if (ret) {
1019 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1020 "RX buffer B", ret);
1021 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1022 DMA_FROM_DEVICE);
1023 goto skip_rx;
1024 }
1025
1026 uap->using_rx_dma = true;
1027
1028 skip_rx:
1029 /* Turn on DMA error (RX/TX will be enabled on demand) */
1030 uap->dmacr |= UART011_DMAONERR;
1031 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1032
1033 /*
1034 * ST Micro variants has some specific dma burst threshold
1035 * compensation. Set this to 16 bytes, so burst will only
1036 * be issued above/below 16 bytes.
1037 */
1038 if (uap->vendor->dma_threshold)
1039 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1040 uap->port.membase + ST_UART011_DMAWM);
1041
1042 if (uap->using_rx_dma) {
1043 if (pl011_dma_rx_trigger_dma(uap))
1044 dev_dbg(uap->port.dev, "could not trigger initial "
1045 "RX DMA job, fall back to interrupt mode\n");
1046 if (uap->dmarx.poll_rate) {
1047 init_timer(&(uap->dmarx.timer));
1048 uap->dmarx.timer.function = pl011_dma_rx_poll;
1049 uap->dmarx.timer.data = (unsigned long)uap;
1050 mod_timer(&uap->dmarx.timer,
1051 jiffies +
1052 msecs_to_jiffies(uap->dmarx.poll_rate));
1053 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1054 uap->dmarx.last_jiffies = jiffies;
1055 }
1056 }
1057 }
1058
1059 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1060 {
1061 if (!(uap->using_tx_dma || uap->using_rx_dma))
1062 return;
1063
1064 /* Disable RX and TX DMA */
1065 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1066 barrier();
1067
1068 spin_lock_irq(&uap->port.lock);
1069 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1070 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1071 spin_unlock_irq(&uap->port.lock);
1072
1073 if (uap->using_tx_dma) {
1074 /* In theory, this should already be done by pl011_dma_flush_buffer */
1075 dmaengine_terminate_all(uap->dmatx.chan);
1076 if (uap->dmatx.queued) {
1077 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1078 DMA_TO_DEVICE);
1079 uap->dmatx.queued = false;
1080 }
1081
1082 kfree(uap->dmatx.buf);
1083 uap->using_tx_dma = false;
1084 }
1085
1086 if (uap->using_rx_dma) {
1087 dmaengine_terminate_all(uap->dmarx.chan);
1088 /* Clean up the RX DMA */
1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1090 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1091 if (uap->dmarx.poll_rate)
1092 del_timer_sync(&uap->dmarx.timer);
1093 uap->using_rx_dma = false;
1094 }
1095 }
1096
1097 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1098 {
1099 return uap->using_rx_dma;
1100 }
1101
1102 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1103 {
1104 return uap->using_rx_dma && uap->dmarx.running;
1105 }
1106
1107 #else
1108 /* Blank functions if the DMA engine is not available */
1109 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1110 {
1111 }
1112
1113 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1114 {
1115 }
1116
1117 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1118 {
1119 }
1120
1121 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1122 {
1123 }
1124
1125 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1126 {
1127 return false;
1128 }
1129
1130 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1131 {
1132 }
1133
1134 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1135 {
1136 return false;
1137 }
1138
1139 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1140 {
1141 }
1142
1143 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1144 {
1145 }
1146
1147 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1148 {
1149 return -EIO;
1150 }
1151
1152 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1153 {
1154 return false;
1155 }
1156
1157 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1158 {
1159 return false;
1160 }
1161
1162 #define pl011_dma_flush_buffer NULL
1163 #endif
1164
1165 static void pl011_stop_tx(struct uart_port *port)
1166 {
1167 struct uart_amba_port *uap =
1168 container_of(port, struct uart_amba_port, port);
1169
1170 uap->im &= ~UART011_TXIM;
1171 writew(uap->im, uap->port.membase + UART011_IMSC);
1172 pl011_dma_tx_stop(uap);
1173 }
1174
1175 static void pl011_start_tx(struct uart_port *port)
1176 {
1177 struct uart_amba_port *uap =
1178 container_of(port, struct uart_amba_port, port);
1179
1180 if (!pl011_dma_tx_start(uap)) {
1181 uap->im |= UART011_TXIM;
1182 writew(uap->im, uap->port.membase + UART011_IMSC);
1183 }
1184 }
1185
1186 static void pl011_stop_rx(struct uart_port *port)
1187 {
1188 struct uart_amba_port *uap =
1189 container_of(port, struct uart_amba_port, port);
1190
1191 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1192 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1193 writew(uap->im, uap->port.membase + UART011_IMSC);
1194
1195 pl011_dma_rx_stop(uap);
1196 }
1197
1198 static void pl011_enable_ms(struct uart_port *port)
1199 {
1200 struct uart_amba_port *uap =
1201 container_of(port, struct uart_amba_port, port);
1202
1203 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1204 writew(uap->im, uap->port.membase + UART011_IMSC);
1205 }
1206
1207 static void pl011_rx_chars(struct uart_amba_port *uap)
1208 __releases(&uap->port.lock)
1209 __acquires(&uap->port.lock)
1210 {
1211 pl011_fifo_to_tty(uap);
1212
1213 spin_unlock(&uap->port.lock);
1214 tty_flip_buffer_push(&uap->port.state->port);
1215 /*
1216 * If we were temporarily out of DMA mode for a while,
1217 * attempt to switch back to DMA mode again.
1218 */
1219 if (pl011_dma_rx_available(uap)) {
1220 if (pl011_dma_rx_trigger_dma(uap)) {
1221 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1222 "fall back to interrupt mode again\n");
1223 uap->im |= UART011_RXIM;
1224 writew(uap->im, uap->port.membase + UART011_IMSC);
1225 } else {
1226 #ifdef CONFIG_DMA_ENGINE
1227 /* Start Rx DMA poll */
1228 if (uap->dmarx.poll_rate) {
1229 uap->dmarx.last_jiffies = jiffies;
1230 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1231 mod_timer(&uap->dmarx.timer,
1232 jiffies +
1233 msecs_to_jiffies(uap->dmarx.poll_rate));
1234 }
1235 #endif
1236 }
1237 }
1238 spin_lock(&uap->port.lock);
1239 }
1240
1241 static void pl011_tx_chars(struct uart_amba_port *uap)
1242 {
1243 struct circ_buf *xmit = &uap->port.state->xmit;
1244 int count;
1245
1246 if (uap->port.x_char) {
1247 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1248 uap->port.icount.tx++;
1249 uap->port.x_char = 0;
1250 return;
1251 }
1252 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1253 pl011_stop_tx(&uap->port);
1254 return;
1255 }
1256
1257 /* If we are using DMA mode, try to send some characters. */
1258 if (pl011_dma_tx_irq(uap))
1259 return;
1260
1261 count = uap->fifosize >> 1;
1262 do {
1263 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1264 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1265 uap->port.icount.tx++;
1266 if (uart_circ_empty(xmit))
1267 break;
1268 } while (--count > 0);
1269
1270 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1271 uart_write_wakeup(&uap->port);
1272
1273 if (uart_circ_empty(xmit))
1274 pl011_stop_tx(&uap->port);
1275 }
1276
1277 static void pl011_modem_status(struct uart_amba_port *uap)
1278 {
1279 unsigned int status, delta;
1280
1281 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1282
1283 delta = status ^ uap->old_status;
1284 uap->old_status = status;
1285
1286 if (!delta)
1287 return;
1288
1289 if (delta & UART01x_FR_DCD)
1290 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1291
1292 if (delta & UART01x_FR_DSR)
1293 uap->port.icount.dsr++;
1294
1295 if (delta & UART01x_FR_CTS)
1296 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1297
1298 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1299 }
1300
1301 static irqreturn_t pl011_int(int irq, void *dev_id)
1302 {
1303 struct uart_amba_port *uap = dev_id;
1304 unsigned long flags;
1305 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1306 int handled = 0;
1307 unsigned int dummy_read;
1308
1309 spin_lock_irqsave(&uap->port.lock, flags);
1310 status = readw(uap->port.membase + UART011_MIS);
1311 if (status) {
1312 do {
1313 if (uap->vendor->cts_event_workaround) {
1314 /* workaround to make sure that all bits are unlocked.. */
1315 writew(0x00, uap->port.membase + UART011_ICR);
1316
1317 /*
1318 * WA: introduce 26ns(1 uart clk) delay before W1C;
1319 * single apb access will incur 2 pclk(133.12Mhz) delay,
1320 * so add 2 dummy reads
1321 */
1322 dummy_read = readw(uap->port.membase + UART011_ICR);
1323 dummy_read = readw(uap->port.membase + UART011_ICR);
1324 }
1325
1326 writew(status & ~(UART011_TXIS|UART011_RTIS|
1327 UART011_RXIS),
1328 uap->port.membase + UART011_ICR);
1329
1330 if (status & (UART011_RTIS|UART011_RXIS)) {
1331 if (pl011_dma_rx_running(uap))
1332 pl011_dma_rx_irq(uap);
1333 else
1334 pl011_rx_chars(uap);
1335 }
1336 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1337 UART011_CTSMIS|UART011_RIMIS))
1338 pl011_modem_status(uap);
1339 if (status & UART011_TXIS)
1340 pl011_tx_chars(uap);
1341
1342 if (pass_counter-- == 0)
1343 break;
1344
1345 status = readw(uap->port.membase + UART011_MIS);
1346 } while (status != 0);
1347 handled = 1;
1348 }
1349
1350 spin_unlock_irqrestore(&uap->port.lock, flags);
1351
1352 return IRQ_RETVAL(handled);
1353 }
1354
1355 static unsigned int pl011_tx_empty(struct uart_port *port)
1356 {
1357 struct uart_amba_port *uap =
1358 container_of(port, struct uart_amba_port, port);
1359 unsigned int status = readw(uap->port.membase + UART01x_FR);
1360 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1361 }
1362
1363 static unsigned int pl011_get_mctrl(struct uart_port *port)
1364 {
1365 struct uart_amba_port *uap =
1366 container_of(port, struct uart_amba_port, port);
1367 unsigned int result = 0;
1368 unsigned int status = readw(uap->port.membase + UART01x_FR);
1369
1370 #define TIOCMBIT(uartbit, tiocmbit) \
1371 if (status & uartbit) \
1372 result |= tiocmbit
1373
1374 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1375 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1376 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1377 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1378 #undef TIOCMBIT
1379 return result;
1380 }
1381
1382 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1383 {
1384 struct uart_amba_port *uap =
1385 container_of(port, struct uart_amba_port, port);
1386 unsigned int cr;
1387
1388 cr = readw(uap->port.membase + UART011_CR);
1389
1390 #define TIOCMBIT(tiocmbit, uartbit) \
1391 if (mctrl & tiocmbit) \
1392 cr |= uartbit; \
1393 else \
1394 cr &= ~uartbit
1395
1396 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1397 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1398 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1399 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1400 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1401
1402 if (uap->autorts) {
1403 /* We need to disable auto-RTS if we want to turn RTS off */
1404 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1405 }
1406 #undef TIOCMBIT
1407
1408 writew(cr, uap->port.membase + UART011_CR);
1409 }
1410
1411 static void pl011_break_ctl(struct uart_port *port, int break_state)
1412 {
1413 struct uart_amba_port *uap =
1414 container_of(port, struct uart_amba_port, port);
1415 unsigned long flags;
1416 unsigned int lcr_h;
1417
1418 spin_lock_irqsave(&uap->port.lock, flags);
1419 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1420 if (break_state == -1)
1421 lcr_h |= UART01x_LCRH_BRK;
1422 else
1423 lcr_h &= ~UART01x_LCRH_BRK;
1424 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1425 spin_unlock_irqrestore(&uap->port.lock, flags);
1426 }
1427
1428 #ifdef CONFIG_CONSOLE_POLL
1429
1430 static void pl011_quiesce_irqs(struct uart_port *port)
1431 {
1432 struct uart_amba_port *uap =
1433 container_of(port, struct uart_amba_port, port);
1434 unsigned char __iomem *regs = uap->port.membase;
1435
1436 writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1437 /*
1438 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1439 * we simply mask it. start_tx() will unmask it.
1440 *
1441 * Note we can race with start_tx(), and if the race happens, the
1442 * polling user might get another interrupt just after we clear it.
1443 * But it should be OK and can happen even w/o the race, e.g.
1444 * controller immediately got some new data and raised the IRQ.
1445 *
1446 * And whoever uses polling routines assumes that it manages the device
1447 * (including tx queue), so we're also fine with start_tx()'s caller
1448 * side.
1449 */
1450 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1451 }
1452
1453 static int pl011_get_poll_char(struct uart_port *port)
1454 {
1455 struct uart_amba_port *uap =
1456 container_of(port, struct uart_amba_port, port);
1457 unsigned int status;
1458
1459 /*
1460 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1461 * debugger.
1462 */
1463 pl011_quiesce_irqs(port);
1464
1465 status = readw(uap->port.membase + UART01x_FR);
1466 if (status & UART01x_FR_RXFE)
1467 return NO_POLL_CHAR;
1468
1469 return readw(uap->port.membase + UART01x_DR);
1470 }
1471
1472 static void pl011_put_poll_char(struct uart_port *port,
1473 unsigned char ch)
1474 {
1475 struct uart_amba_port *uap =
1476 container_of(port, struct uart_amba_port, port);
1477
1478 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1479 barrier();
1480
1481 writew(ch, uap->port.membase + UART01x_DR);
1482 }
1483
1484 #endif /* CONFIG_CONSOLE_POLL */
1485
1486 static int pl011_hwinit(struct uart_port *port)
1487 {
1488 struct uart_amba_port *uap =
1489 container_of(port, struct uart_amba_port, port);
1490 int retval;
1491
1492 /* Optionaly enable pins to be muxed in and configured */
1493 pinctrl_pm_select_default_state(port->dev);
1494
1495 /*
1496 * Try to enable the clock producer.
1497 */
1498 retval = clk_prepare_enable(uap->clk);
1499 if (retval)
1500 return retval;
1501
1502 uap->port.uartclk = clk_get_rate(uap->clk);
1503
1504 /* Clear pending error and receive interrupts */
1505 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1506 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1507
1508 /*
1509 * Save interrupts enable mask, and enable RX interrupts in case if
1510 * the interrupt is used for NMI entry.
1511 */
1512 uap->im = readw(uap->port.membase + UART011_IMSC);
1513 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1514
1515 if (dev_get_platdata(uap->port.dev)) {
1516 struct amba_pl011_data *plat;
1517
1518 plat = dev_get_platdata(uap->port.dev);
1519 if (plat->init)
1520 plat->init();
1521 }
1522 return 0;
1523 }
1524
1525 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1526 {
1527 writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1528 if (uap->lcrh_rx != uap->lcrh_tx) {
1529 int i;
1530 /*
1531 * Wait 10 PCLKs before writing LCRH_TX register,
1532 * to get this delay write read only register 10 times
1533 */
1534 for (i = 0; i < 10; ++i)
1535 writew(0xff, uap->port.membase + UART011_MIS);
1536 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1537 }
1538 }
1539
1540 static int pl011_startup(struct uart_port *port)
1541 {
1542 struct uart_amba_port *uap =
1543 container_of(port, struct uart_amba_port, port);
1544 unsigned int cr, lcr_h, fbrd, ibrd;
1545 int retval;
1546
1547 retval = pl011_hwinit(port);
1548 if (retval)
1549 goto clk_dis;
1550
1551 writew(uap->im, uap->port.membase + UART011_IMSC);
1552
1553 /*
1554 * Allocate the IRQ
1555 */
1556 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1557 if (retval)
1558 goto clk_dis;
1559
1560 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1561
1562 /*
1563 * Provoke TX FIFO interrupt into asserting. Taking care to preserve
1564 * baud rate and data format specified by FBRD, IBRD and LCRH as the
1565 * UART may already be in use as a console.
1566 */
1567 spin_lock_irq(&uap->port.lock);
1568
1569 fbrd = readw(uap->port.membase + UART011_FBRD);
1570 ibrd = readw(uap->port.membase + UART011_IBRD);
1571 lcr_h = readw(uap->port.membase + uap->lcrh_rx);
1572
1573 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1574 writew(cr, uap->port.membase + UART011_CR);
1575 writew(0, uap->port.membase + UART011_FBRD);
1576 writew(1, uap->port.membase + UART011_IBRD);
1577 pl011_write_lcr_h(uap, 0);
1578 writew(0, uap->port.membase + UART01x_DR);
1579 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1580 barrier();
1581
1582 writew(fbrd, uap->port.membase + UART011_FBRD);
1583 writew(ibrd, uap->port.membase + UART011_IBRD);
1584 pl011_write_lcr_h(uap, lcr_h);
1585
1586 /* restore RTS and DTR */
1587 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1588 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1589 writew(cr, uap->port.membase + UART011_CR);
1590
1591 spin_unlock_irq(&uap->port.lock);
1592
1593 /*
1594 * initialise the old status of the modem signals
1595 */
1596 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1597
1598 /* Startup DMA */
1599 pl011_dma_startup(uap);
1600
1601 /*
1602 * Finally, enable interrupts, only timeouts when using DMA
1603 * if initial RX DMA job failed, start in interrupt mode
1604 * as well.
1605 */
1606 spin_lock_irq(&uap->port.lock);
1607 /* Clear out any spuriously appearing RX interrupts */
1608 writew(UART011_RTIS | UART011_RXIS,
1609 uap->port.membase + UART011_ICR);
1610 uap->im = UART011_RTIM;
1611 if (!pl011_dma_rx_running(uap))
1612 uap->im |= UART011_RXIM;
1613 writew(uap->im, uap->port.membase + UART011_IMSC);
1614 spin_unlock_irq(&uap->port.lock);
1615
1616 return 0;
1617
1618 clk_dis:
1619 clk_disable_unprepare(uap->clk);
1620 return retval;
1621 }
1622
1623 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1624 unsigned int lcrh)
1625 {
1626 unsigned long val;
1627
1628 val = readw(uap->port.membase + lcrh);
1629 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1630 writew(val, uap->port.membase + lcrh);
1631 }
1632
1633 static void pl011_shutdown(struct uart_port *port)
1634 {
1635 struct uart_amba_port *uap =
1636 container_of(port, struct uart_amba_port, port);
1637 unsigned int cr;
1638
1639 /*
1640 * disable all interrupts
1641 */
1642 spin_lock_irq(&uap->port.lock);
1643 uap->im = 0;
1644 writew(uap->im, uap->port.membase + UART011_IMSC);
1645 writew(0xffff, uap->port.membase + UART011_ICR);
1646 spin_unlock_irq(&uap->port.lock);
1647
1648 pl011_dma_shutdown(uap);
1649
1650 /*
1651 * Free the interrupt
1652 */
1653 free_irq(uap->port.irq, uap);
1654
1655 /*
1656 * disable the port
1657 * disable the port. It should not disable RTS and DTR.
1658 * Also RTS and DTR state should be preserved to restore
1659 * it during startup().
1660 */
1661 uap->autorts = false;
1662 spin_lock_irq(&uap->port.lock);
1663 cr = readw(uap->port.membase + UART011_CR);
1664 uap->old_cr = cr;
1665 cr &= UART011_CR_RTS | UART011_CR_DTR;
1666 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1667 writew(cr, uap->port.membase + UART011_CR);
1668 spin_unlock_irq(&uap->port.lock);
1669
1670 /*
1671 * disable break condition and fifos
1672 */
1673 pl011_shutdown_channel(uap, uap->lcrh_rx);
1674 if (uap->lcrh_rx != uap->lcrh_tx)
1675 pl011_shutdown_channel(uap, uap->lcrh_tx);
1676
1677 /*
1678 * Shut down the clock producer
1679 */
1680 clk_disable_unprepare(uap->clk);
1681 /* Optionally let pins go into sleep states */
1682 pinctrl_pm_select_sleep_state(port->dev);
1683
1684 if (dev_get_platdata(uap->port.dev)) {
1685 struct amba_pl011_data *plat;
1686
1687 plat = dev_get_platdata(uap->port.dev);
1688 if (plat->exit)
1689 plat->exit();
1690 }
1691
1692 }
1693
1694 static void
1695 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1696 struct ktermios *old)
1697 {
1698 struct uart_amba_port *uap =
1699 container_of(port, struct uart_amba_port, port);
1700 unsigned int lcr_h, old_cr;
1701 unsigned long flags;
1702 unsigned int baud, quot, clkdiv;
1703
1704 if (uap->vendor->oversampling)
1705 clkdiv = 8;
1706 else
1707 clkdiv = 16;
1708
1709 /*
1710 * Ask the core to calculate the divisor for us.
1711 */
1712 baud = uart_get_baud_rate(port, termios, old, 0,
1713 port->uartclk / clkdiv);
1714 #ifdef CONFIG_DMA_ENGINE
1715 /*
1716 * Adjust RX DMA polling rate with baud rate if not specified.
1717 */
1718 if (uap->dmarx.auto_poll_rate)
1719 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1720 #endif
1721
1722 if (baud > port->uartclk/16)
1723 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1724 else
1725 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1726
1727 switch (termios->c_cflag & CSIZE) {
1728 case CS5:
1729 lcr_h = UART01x_LCRH_WLEN_5;
1730 break;
1731 case CS6:
1732 lcr_h = UART01x_LCRH_WLEN_6;
1733 break;
1734 case CS7:
1735 lcr_h = UART01x_LCRH_WLEN_7;
1736 break;
1737 default: // CS8
1738 lcr_h = UART01x_LCRH_WLEN_8;
1739 break;
1740 }
1741 if (termios->c_cflag & CSTOPB)
1742 lcr_h |= UART01x_LCRH_STP2;
1743 if (termios->c_cflag & PARENB) {
1744 lcr_h |= UART01x_LCRH_PEN;
1745 if (!(termios->c_cflag & PARODD))
1746 lcr_h |= UART01x_LCRH_EPS;
1747 }
1748 if (uap->fifosize > 1)
1749 lcr_h |= UART01x_LCRH_FEN;
1750
1751 spin_lock_irqsave(&port->lock, flags);
1752
1753 /*
1754 * Update the per-port timeout.
1755 */
1756 uart_update_timeout(port, termios->c_cflag, baud);
1757
1758 port->read_status_mask = UART011_DR_OE | 255;
1759 if (termios->c_iflag & INPCK)
1760 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1761 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1762 port->read_status_mask |= UART011_DR_BE;
1763
1764 /*
1765 * Characters to ignore
1766 */
1767 port->ignore_status_mask = 0;
1768 if (termios->c_iflag & IGNPAR)
1769 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1770 if (termios->c_iflag & IGNBRK) {
1771 port->ignore_status_mask |= UART011_DR_BE;
1772 /*
1773 * If we're ignoring parity and break indicators,
1774 * ignore overruns too (for real raw support).
1775 */
1776 if (termios->c_iflag & IGNPAR)
1777 port->ignore_status_mask |= UART011_DR_OE;
1778 }
1779
1780 /*
1781 * Ignore all characters if CREAD is not set.
1782 */
1783 if ((termios->c_cflag & CREAD) == 0)
1784 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1785
1786 if (UART_ENABLE_MS(port, termios->c_cflag))
1787 pl011_enable_ms(port);
1788
1789 /* first, disable everything */
1790 old_cr = readw(port->membase + UART011_CR);
1791 writew(0, port->membase + UART011_CR);
1792
1793 if (termios->c_cflag & CRTSCTS) {
1794 if (old_cr & UART011_CR_RTS)
1795 old_cr |= UART011_CR_RTSEN;
1796
1797 old_cr |= UART011_CR_CTSEN;
1798 uap->autorts = true;
1799 } else {
1800 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1801 uap->autorts = false;
1802 }
1803
1804 if (uap->vendor->oversampling) {
1805 if (baud > port->uartclk / 16)
1806 old_cr |= ST_UART011_CR_OVSFACT;
1807 else
1808 old_cr &= ~ST_UART011_CR_OVSFACT;
1809 }
1810
1811 /*
1812 * Workaround for the ST Micro oversampling variants to
1813 * increase the bitrate slightly, by lowering the divisor,
1814 * to avoid delayed sampling of start bit at high speeds,
1815 * else we see data corruption.
1816 */
1817 if (uap->vendor->oversampling) {
1818 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1819 quot -= 1;
1820 else if ((baud > 3250000) && (quot > 2))
1821 quot -= 2;
1822 }
1823 /* Set baud rate */
1824 writew(quot & 0x3f, port->membase + UART011_FBRD);
1825 writew(quot >> 6, port->membase + UART011_IBRD);
1826
1827 /*
1828 * ----------v----------v----------v----------v-----
1829 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1830 * UART011_FBRD & UART011_IBRD.
1831 * ----------^----------^----------^----------^-----
1832 */
1833 pl011_write_lcr_h(uap, lcr_h);
1834 writew(old_cr, port->membase + UART011_CR);
1835
1836 spin_unlock_irqrestore(&port->lock, flags);
1837 }
1838
1839 static const char *pl011_type(struct uart_port *port)
1840 {
1841 struct uart_amba_port *uap =
1842 container_of(port, struct uart_amba_port, port);
1843 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1844 }
1845
1846 /*
1847 * Release the memory region(s) being used by 'port'
1848 */
1849 static void pl011_release_port(struct uart_port *port)
1850 {
1851 release_mem_region(port->mapbase, SZ_4K);
1852 }
1853
1854 /*
1855 * Request the memory region(s) being used by 'port'
1856 */
1857 static int pl011_request_port(struct uart_port *port)
1858 {
1859 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1860 != NULL ? 0 : -EBUSY;
1861 }
1862
1863 /*
1864 * Configure/autoconfigure the port.
1865 */
1866 static void pl011_config_port(struct uart_port *port, int flags)
1867 {
1868 if (flags & UART_CONFIG_TYPE) {
1869 port->type = PORT_AMBA;
1870 pl011_request_port(port);
1871 }
1872 }
1873
1874 /*
1875 * verify the new serial_struct (for TIOCSSERIAL).
1876 */
1877 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1878 {
1879 int ret = 0;
1880 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1881 ret = -EINVAL;
1882 if (ser->irq < 0 || ser->irq >= nr_irqs)
1883 ret = -EINVAL;
1884 if (ser->baud_base < 9600)
1885 ret = -EINVAL;
1886 return ret;
1887 }
1888
1889 static struct uart_ops amba_pl011_pops = {
1890 .tx_empty = pl011_tx_empty,
1891 .set_mctrl = pl011_set_mctrl,
1892 .get_mctrl = pl011_get_mctrl,
1893 .stop_tx = pl011_stop_tx,
1894 .start_tx = pl011_start_tx,
1895 .stop_rx = pl011_stop_rx,
1896 .enable_ms = pl011_enable_ms,
1897 .break_ctl = pl011_break_ctl,
1898 .startup = pl011_startup,
1899 .shutdown = pl011_shutdown,
1900 .flush_buffer = pl011_dma_flush_buffer,
1901 .set_termios = pl011_set_termios,
1902 .type = pl011_type,
1903 .release_port = pl011_release_port,
1904 .request_port = pl011_request_port,
1905 .config_port = pl011_config_port,
1906 .verify_port = pl011_verify_port,
1907 #ifdef CONFIG_CONSOLE_POLL
1908 .poll_init = pl011_hwinit,
1909 .poll_get_char = pl011_get_poll_char,
1910 .poll_put_char = pl011_put_poll_char,
1911 #endif
1912 };
1913
1914 static struct uart_amba_port *amba_ports[UART_NR];
1915
1916 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1917
1918 static void pl011_console_putchar(struct uart_port *port, int ch)
1919 {
1920 struct uart_amba_port *uap =
1921 container_of(port, struct uart_amba_port, port);
1922
1923 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1924 barrier();
1925 writew(ch, uap->port.membase + UART01x_DR);
1926 }
1927
1928 static void
1929 pl011_console_write(struct console *co, const char *s, unsigned int count)
1930 {
1931 struct uart_amba_port *uap = amba_ports[co->index];
1932 unsigned int status, old_cr, new_cr;
1933 unsigned long flags;
1934 int locked = 1;
1935
1936 clk_enable(uap->clk);
1937
1938 local_irq_save(flags);
1939 if (uap->port.sysrq)
1940 locked = 0;
1941 else if (oops_in_progress)
1942 locked = spin_trylock(&uap->port.lock);
1943 else
1944 spin_lock(&uap->port.lock);
1945
1946 /*
1947 * First save the CR then disable the interrupts
1948 */
1949 old_cr = readw(uap->port.membase + UART011_CR);
1950 new_cr = old_cr & ~UART011_CR_CTSEN;
1951 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1952 writew(new_cr, uap->port.membase + UART011_CR);
1953
1954 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1955
1956 /*
1957 * Finally, wait for transmitter to become empty
1958 * and restore the TCR
1959 */
1960 do {
1961 status = readw(uap->port.membase + UART01x_FR);
1962 } while (status & UART01x_FR_BUSY);
1963 writew(old_cr, uap->port.membase + UART011_CR);
1964
1965 if (locked)
1966 spin_unlock(&uap->port.lock);
1967 local_irq_restore(flags);
1968
1969 clk_disable(uap->clk);
1970 }
1971
1972 static void __init
1973 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1974 int *parity, int *bits)
1975 {
1976 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1977 unsigned int lcr_h, ibrd, fbrd;
1978
1979 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1980
1981 *parity = 'n';
1982 if (lcr_h & UART01x_LCRH_PEN) {
1983 if (lcr_h & UART01x_LCRH_EPS)
1984 *parity = 'e';
1985 else
1986 *parity = 'o';
1987 }
1988
1989 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1990 *bits = 7;
1991 else
1992 *bits = 8;
1993
1994 ibrd = readw(uap->port.membase + UART011_IBRD);
1995 fbrd = readw(uap->port.membase + UART011_FBRD);
1996
1997 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1998
1999 if (uap->vendor->oversampling) {
2000 if (readw(uap->port.membase + UART011_CR)
2001 & ST_UART011_CR_OVSFACT)
2002 *baud *= 2;
2003 }
2004 }
2005 }
2006
2007 static int __init pl011_console_setup(struct console *co, char *options)
2008 {
2009 struct uart_amba_port *uap;
2010 int baud = 38400;
2011 int bits = 8;
2012 int parity = 'n';
2013 int flow = 'n';
2014 int ret;
2015
2016 /*
2017 * Check whether an invalid uart number has been specified, and
2018 * if so, search for the first available port that does have
2019 * console support.
2020 */
2021 if (co->index >= UART_NR)
2022 co->index = 0;
2023 uap = amba_ports[co->index];
2024 if (!uap)
2025 return -ENODEV;
2026
2027 /* Allow pins to be muxed in and configured */
2028 pinctrl_pm_select_default_state(uap->port.dev);
2029
2030 ret = clk_prepare(uap->clk);
2031 if (ret)
2032 return ret;
2033
2034 if (dev_get_platdata(uap->port.dev)) {
2035 struct amba_pl011_data *plat;
2036
2037 plat = dev_get_platdata(uap->port.dev);
2038 if (plat->init)
2039 plat->init();
2040 }
2041
2042 uap->port.uartclk = clk_get_rate(uap->clk);
2043
2044 if (options)
2045 uart_parse_options(options, &baud, &parity, &bits, &flow);
2046 else
2047 pl011_console_get_options(uap, &baud, &parity, &bits);
2048
2049 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2050 }
2051
2052 static struct uart_driver amba_reg;
2053 static struct console amba_console = {
2054 .name = "ttyAMA",
2055 .write = pl011_console_write,
2056 .device = uart_console_device,
2057 .setup = pl011_console_setup,
2058 .flags = CON_PRINTBUFFER,
2059 .index = -1,
2060 .data = &amba_reg,
2061 };
2062
2063 #define AMBA_CONSOLE (&amba_console)
2064
2065 static void pl011_putc(struct uart_port *port, int c)
2066 {
2067 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2068 ;
2069 writeb(c, port->membase + UART01x_DR);
2070 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2071 ;
2072 }
2073
2074 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2075 {
2076 struct earlycon_device *dev = con->data;
2077
2078 uart_console_write(&dev->port, s, n, pl011_putc);
2079 }
2080
2081 static int __init pl011_early_console_setup(struct earlycon_device *device,
2082 const char *opt)
2083 {
2084 if (!device->port.membase)
2085 return -ENODEV;
2086
2087 device->con->write = pl011_early_write;
2088 return 0;
2089 }
2090 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2091 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2092
2093 #else
2094 #define AMBA_CONSOLE NULL
2095 #endif
2096
2097 static struct uart_driver amba_reg = {
2098 .owner = THIS_MODULE,
2099 .driver_name = "ttyAMA",
2100 .dev_name = "ttyAMA",
2101 .major = SERIAL_AMBA_MAJOR,
2102 .minor = SERIAL_AMBA_MINOR,
2103 .nr = UART_NR,
2104 .cons = AMBA_CONSOLE,
2105 };
2106
2107 static int pl011_probe_dt_alias(int index, struct device *dev)
2108 {
2109 struct device_node *np;
2110 static bool seen_dev_with_alias = false;
2111 static bool seen_dev_without_alias = false;
2112 int ret = index;
2113
2114 if (!IS_ENABLED(CONFIG_OF))
2115 return ret;
2116
2117 np = dev->of_node;
2118 if (!np)
2119 return ret;
2120
2121 ret = of_alias_get_id(np, "serial");
2122 if (IS_ERR_VALUE(ret)) {
2123 seen_dev_without_alias = true;
2124 ret = index;
2125 } else {
2126 seen_dev_with_alias = true;
2127 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2128 dev_warn(dev, "requested serial port %d not available.\n", ret);
2129 ret = index;
2130 }
2131 }
2132
2133 if (seen_dev_with_alias && seen_dev_without_alias)
2134 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2135
2136 return ret;
2137 }
2138
2139 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2140 {
2141 struct uart_amba_port *uap;
2142 struct vendor_data *vendor = id->data;
2143 void __iomem *base;
2144 int i, ret;
2145
2146 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2147 if (amba_ports[i] == NULL)
2148 break;
2149
2150 if (i == ARRAY_SIZE(amba_ports))
2151 return -EBUSY;
2152
2153 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2154 GFP_KERNEL);
2155 if (uap == NULL)
2156 return -ENOMEM;
2157
2158 i = pl011_probe_dt_alias(i, &dev->dev);
2159
2160 base = devm_ioremap(&dev->dev, dev->res.start,
2161 resource_size(&dev->res));
2162 if (!base)
2163 return -ENOMEM;
2164
2165 uap->clk = devm_clk_get(&dev->dev, NULL);
2166 if (IS_ERR(uap->clk))
2167 return PTR_ERR(uap->clk);
2168
2169 uap->vendor = vendor;
2170 uap->lcrh_rx = vendor->lcrh_rx;
2171 uap->lcrh_tx = vendor->lcrh_tx;
2172 uap->old_cr = 0;
2173 uap->fifosize = vendor->get_fifosize(dev);
2174 uap->port.dev = &dev->dev;
2175 uap->port.mapbase = dev->res.start;
2176 uap->port.membase = base;
2177 uap->port.iotype = UPIO_MEM;
2178 uap->port.irq = dev->irq[0];
2179 uap->port.fifosize = uap->fifosize;
2180 uap->port.ops = &amba_pl011_pops;
2181 uap->port.flags = UPF_BOOT_AUTOCONF;
2182 uap->port.line = i;
2183 pl011_dma_probe(&dev->dev, uap);
2184
2185 /* Ensure interrupts from this UART are masked and cleared */
2186 writew(0, uap->port.membase + UART011_IMSC);
2187 writew(0xffff, uap->port.membase + UART011_ICR);
2188
2189 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2190
2191 amba_ports[i] = uap;
2192
2193 amba_set_drvdata(dev, uap);
2194
2195 if (!amba_reg.state) {
2196 ret = uart_register_driver(&amba_reg);
2197 if (ret < 0) {
2198 pr_err("Failed to register AMBA-PL011 driver\n");
2199 return ret;
2200 }
2201 }
2202
2203 ret = uart_add_one_port(&amba_reg, &uap->port);
2204 if (ret) {
2205 amba_ports[i] = NULL;
2206 uart_unregister_driver(&amba_reg);
2207 pl011_dma_remove(uap);
2208 }
2209
2210 return ret;
2211 }
2212
2213 static int pl011_remove(struct amba_device *dev)
2214 {
2215 struct uart_amba_port *uap = amba_get_drvdata(dev);
2216 bool busy = false;
2217 int i;
2218
2219 uart_remove_one_port(&amba_reg, &uap->port);
2220
2221 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2222 if (amba_ports[i] == uap)
2223 amba_ports[i] = NULL;
2224 else if (amba_ports[i])
2225 busy = true;
2226
2227 pl011_dma_remove(uap);
2228 if (!busy)
2229 uart_unregister_driver(&amba_reg);
2230 return 0;
2231 }
2232
2233 #ifdef CONFIG_PM_SLEEP
2234 static int pl011_suspend(struct device *dev)
2235 {
2236 struct uart_amba_port *uap = dev_get_drvdata(dev);
2237
2238 if (!uap)
2239 return -EINVAL;
2240
2241 return uart_suspend_port(&amba_reg, &uap->port);
2242 }
2243
2244 static int pl011_resume(struct device *dev)
2245 {
2246 struct uart_amba_port *uap = dev_get_drvdata(dev);
2247
2248 if (!uap)
2249 return -EINVAL;
2250
2251 return uart_resume_port(&amba_reg, &uap->port);
2252 }
2253 #endif
2254
2255 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2256
2257 static struct amba_id pl011_ids[] = {
2258 {
2259 .id = 0x00041011,
2260 .mask = 0x000fffff,
2261 .data = &vendor_arm,
2262 },
2263 {
2264 .id = 0x00380802,
2265 .mask = 0x00ffffff,
2266 .data = &vendor_st,
2267 },
2268 { 0, 0 },
2269 };
2270
2271 MODULE_DEVICE_TABLE(amba, pl011_ids);
2272
2273 static struct amba_driver pl011_driver = {
2274 .drv = {
2275 .name = "uart-pl011",
2276 .pm = &pl011_dev_pm_ops,
2277 },
2278 .id_table = pl011_ids,
2279 .probe = pl011_probe,
2280 .remove = pl011_remove,
2281 };
2282
2283 static int __init pl011_init(void)
2284 {
2285 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2286
2287 return amba_driver_register(&pl011_driver);
2288 }
2289
2290 static void __exit pl011_exit(void)
2291 {
2292 amba_driver_unregister(&pl011_driver);
2293 }
2294
2295 /*
2296 * While this can be a module, if builtin it's most likely the console
2297 * So let's leave module_exit but move module_init to an earlier place
2298 */
2299 arch_initcall(pl011_init);
2300 module_exit(pl011_exit);
2301
2302 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2303 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2304 MODULE_LICENSE("GPL");
This page took 0.130968 seconds and 5 git commands to generate.