0f2afae25f6e78e360c124d11a82424720a0d41e
[deliverable/linux.git] / drivers / tty / serial / imx.c
1 /*
2 * Driver for Motorola IMX serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Author: Sascha Hauer <sascha@saschahauer.de>
7 * Copyright (C) 2004 Pengutronix
8 *
9 * Copyright (C) 2009 emlix GmbH
10 * Author: Fabian Godehardt (added IrDA support for iMX)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * [29-Mar-2005] Mike Lee
27 * Added hardware handshake
28 */
29
30 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
31 #define SUPPORT_SYSRQ
32 #endif
33
34 #include <linux/module.h>
35 #include <linux/ioport.h>
36 #include <linux/init.h>
37 #include <linux/console.h>
38 #include <linux/sysrq.h>
39 #include <linux/platform_device.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/serial_core.h>
43 #include <linux/serial.h>
44 #include <linux/clk.h>
45 #include <linux/delay.h>
46 #include <linux/rational.h>
47 #include <linux/slab.h>
48 #include <linux/of.h>
49 #include <linux/of_device.h>
50 #include <linux/io.h>
51 #include <linux/dma-mapping.h>
52
53 #include <asm/irq.h>
54 #include <linux/platform_data/serial-imx.h>
55 #include <linux/platform_data/dma-imx.h>
56
57 /* Register definitions */
58 #define URXD0 0x0 /* Receiver Register */
59 #define URTX0 0x40 /* Transmitter Register */
60 #define UCR1 0x80 /* Control Register 1 */
61 #define UCR2 0x84 /* Control Register 2 */
62 #define UCR3 0x88 /* Control Register 3 */
63 #define UCR4 0x8c /* Control Register 4 */
64 #define UFCR 0x90 /* FIFO Control Register */
65 #define USR1 0x94 /* Status Register 1 */
66 #define USR2 0x98 /* Status Register 2 */
67 #define UESC 0x9c /* Escape Character Register */
68 #define UTIM 0xa0 /* Escape Timer Register */
69 #define UBIR 0xa4 /* BRM Incremental Register */
70 #define UBMR 0xa8 /* BRM Modulator Register */
71 #define UBRC 0xac /* Baud Rate Count Register */
72 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
73 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
74 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
75
76 /* UART Control Register Bit Fields.*/
77 #define URXD_DUMMY_READ (1<<16)
78 #define URXD_CHARRDY (1<<15)
79 #define URXD_ERR (1<<14)
80 #define URXD_OVRRUN (1<<13)
81 #define URXD_FRMERR (1<<12)
82 #define URXD_BRK (1<<11)
83 #define URXD_PRERR (1<<10)
84 #define URXD_RX_DATA (0xFF<<0)
85 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */
86 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */
87 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */
88 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */
89 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
90 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */
91 #define UCR1_RDMAEN (1<<8) /* Recv ready DMA enable */
92 #define UCR1_IREN (1<<7) /* Infrared interface enable */
93 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */
94 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */
95 #define UCR1_SNDBRK (1<<4) /* Send break */
96 #define UCR1_TDMAEN (1<<3) /* Transmitter ready DMA enable */
97 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
98 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */
99 #define UCR1_DOZE (1<<1) /* Doze */
100 #define UCR1_UARTEN (1<<0) /* UART enabled */
101 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */
102 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */
103 #define UCR2_CTSC (1<<13) /* CTS pin control */
104 #define UCR2_CTS (1<<12) /* Clear to send */
105 #define UCR2_ESCEN (1<<11) /* Escape enable */
106 #define UCR2_PREN (1<<8) /* Parity enable */
107 #define UCR2_PROE (1<<7) /* Parity odd/even */
108 #define UCR2_STPB (1<<6) /* Stop */
109 #define UCR2_WS (1<<5) /* Word size */
110 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */
111 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */
112 #define UCR2_TXEN (1<<2) /* Transmitter enabled */
113 #define UCR2_RXEN (1<<1) /* Receiver enabled */
114 #define UCR2_SRST (1<<0) /* SW reset */
115 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */
116 #define UCR3_PARERREN (1<<12) /* Parity enable */
117 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */
118 #define UCR3_DSR (1<<10) /* Data set ready */
119 #define UCR3_DCD (1<<9) /* Data carrier detect */
120 #define UCR3_RI (1<<8) /* Ring indicator */
121 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */
122 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */
123 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */
124 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */
125 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */
126 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */
127 #define UCR3_BPEN (1<<0) /* Preset registers enable */
128 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */
129 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */
130 #define UCR4_INVR (1<<9) /* Inverted infrared reception */
131 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */
132 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */
133 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */
134 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */
135 #define UCR4_IRSC (1<<5) /* IR special case */
136 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */
137 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */
138 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */
139 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */
140 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */
141 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */
142 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */
143 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7)
144 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */
145 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */
146 #define USR1_RTSS (1<<14) /* RTS pin status */
147 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */
148 #define USR1_RTSD (1<<12) /* RTS delta */
149 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */
150 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */
151 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */
152 #define USR1_TIMEOUT (1<<7) /* Receive timeout interrupt status */
153 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */
154 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */
155 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */
156 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */
157 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */
158 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */
159 #define USR2_IDLE (1<<12) /* Idle condition */
160 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */
161 #define USR2_WAKE (1<<7) /* Wake */
162 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */
163 #define USR2_TXDC (1<<3) /* Transmitter complete */
164 #define USR2_BRCD (1<<2) /* Break condition */
165 #define USR2_ORE (1<<1) /* Overrun error */
166 #define USR2_RDR (1<<0) /* Recv data ready */
167 #define UTS_FRCPERR (1<<13) /* Force parity error */
168 #define UTS_LOOP (1<<12) /* Loop tx and rx */
169 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */
170 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */
171 #define UTS_TXFULL (1<<4) /* TxFIFO full */
172 #define UTS_RXFULL (1<<3) /* RxFIFO full */
173 #define UTS_SOFTRST (1<<0) /* Software reset */
174
175 /* We've been assigned a range on the "Low-density serial ports" major */
176 #define SERIAL_IMX_MAJOR 207
177 #define MINOR_START 16
178 #define DEV_NAME "ttymxc"
179
180 /*
181 * This determines how often we check the modem status signals
182 * for any change. They generally aren't connected to an IRQ
183 * so we have to poll them. We also check immediately before
184 * filling the TX fifo incase CTS has been dropped.
185 */
186 #define MCTRL_TIMEOUT (250*HZ/1000)
187
188 #define DRIVER_NAME "IMX-uart"
189
190 #define UART_NR 8
191
192 /* i.mx21 type uart runs on all i.mx except i.mx1 */
193 enum imx_uart_type {
194 IMX1_UART,
195 IMX21_UART,
196 IMX6Q_UART,
197 };
198
199 /* device type dependent stuff */
200 struct imx_uart_data {
201 unsigned uts_reg;
202 enum imx_uart_type devtype;
203 };
204
205 struct imx_port {
206 struct uart_port port;
207 struct timer_list timer;
208 unsigned int old_status;
209 int txirq, rxirq, rtsirq;
210 unsigned int have_rtscts:1;
211 unsigned int dte_mode:1;
212 unsigned int use_irda:1;
213 unsigned int irda_inv_rx:1;
214 unsigned int irda_inv_tx:1;
215 unsigned short trcv_delay; /* transceiver delay */
216 struct clk *clk_ipg;
217 struct clk *clk_per;
218 const struct imx_uart_data *devdata;
219
220 /* DMA fields */
221 unsigned int dma_is_inited:1;
222 unsigned int dma_is_enabled:1;
223 unsigned int dma_is_rxing:1;
224 unsigned int dma_is_txing:1;
225 struct dma_chan *dma_chan_rx, *dma_chan_tx;
226 struct scatterlist rx_sgl, tx_sgl[2];
227 void *rx_buf;
228 unsigned int tx_bytes;
229 unsigned int dma_tx_nents;
230 wait_queue_head_t dma_wait;
231 };
232
233 struct imx_port_ucrs {
234 unsigned int ucr1;
235 unsigned int ucr2;
236 unsigned int ucr3;
237 };
238
239 #ifdef CONFIG_IRDA
240 #define USE_IRDA(sport) ((sport)->use_irda)
241 #else
242 #define USE_IRDA(sport) (0)
243 #endif
244
245 static struct imx_uart_data imx_uart_devdata[] = {
246 [IMX1_UART] = {
247 .uts_reg = IMX1_UTS,
248 .devtype = IMX1_UART,
249 },
250 [IMX21_UART] = {
251 .uts_reg = IMX21_UTS,
252 .devtype = IMX21_UART,
253 },
254 [IMX6Q_UART] = {
255 .uts_reg = IMX21_UTS,
256 .devtype = IMX6Q_UART,
257 },
258 };
259
260 static struct platform_device_id imx_uart_devtype[] = {
261 {
262 .name = "imx1-uart",
263 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
264 }, {
265 .name = "imx21-uart",
266 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
267 }, {
268 .name = "imx6q-uart",
269 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
270 }, {
271 /* sentinel */
272 }
273 };
274 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
275
276 static const struct of_device_id imx_uart_dt_ids[] = {
277 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
278 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
279 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
280 { /* sentinel */ }
281 };
282 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
283
284 static inline unsigned uts_reg(struct imx_port *sport)
285 {
286 return sport->devdata->uts_reg;
287 }
288
289 static inline int is_imx1_uart(struct imx_port *sport)
290 {
291 return sport->devdata->devtype == IMX1_UART;
292 }
293
294 static inline int is_imx21_uart(struct imx_port *sport)
295 {
296 return sport->devdata->devtype == IMX21_UART;
297 }
298
299 static inline int is_imx6q_uart(struct imx_port *sport)
300 {
301 return sport->devdata->devtype == IMX6Q_UART;
302 }
303 /*
304 * Save and restore functions for UCR1, UCR2 and UCR3 registers
305 */
306 #if defined(CONFIG_SERIAL_IMX_CONSOLE)
307 static void imx_port_ucrs_save(struct uart_port *port,
308 struct imx_port_ucrs *ucr)
309 {
310 /* save control registers */
311 ucr->ucr1 = readl(port->membase + UCR1);
312 ucr->ucr2 = readl(port->membase + UCR2);
313 ucr->ucr3 = readl(port->membase + UCR3);
314 }
315
316 static void imx_port_ucrs_restore(struct uart_port *port,
317 struct imx_port_ucrs *ucr)
318 {
319 /* restore control registers */
320 writel(ucr->ucr1, port->membase + UCR1);
321 writel(ucr->ucr2, port->membase + UCR2);
322 writel(ucr->ucr3, port->membase + UCR3);
323 }
324 #endif
325
326 /*
327 * Handle any change of modem status signal since we were last called.
328 */
329 static void imx_mctrl_check(struct imx_port *sport)
330 {
331 unsigned int status, changed;
332
333 status = sport->port.ops->get_mctrl(&sport->port);
334 changed = status ^ sport->old_status;
335
336 if (changed == 0)
337 return;
338
339 sport->old_status = status;
340
341 if (changed & TIOCM_RI)
342 sport->port.icount.rng++;
343 if (changed & TIOCM_DSR)
344 sport->port.icount.dsr++;
345 if (changed & TIOCM_CAR)
346 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
347 if (changed & TIOCM_CTS)
348 uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
349
350 wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
351 }
352
353 /*
354 * This is our per-port timeout handler, for checking the
355 * modem status signals.
356 */
357 static void imx_timeout(unsigned long data)
358 {
359 struct imx_port *sport = (struct imx_port *)data;
360 unsigned long flags;
361
362 if (sport->port.state) {
363 spin_lock_irqsave(&sport->port.lock, flags);
364 imx_mctrl_check(sport);
365 spin_unlock_irqrestore(&sport->port.lock, flags);
366
367 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
368 }
369 }
370
371 /*
372 * interrupts disabled on entry
373 */
374 static void imx_stop_tx(struct uart_port *port)
375 {
376 struct imx_port *sport = (struct imx_port *)port;
377 unsigned long temp;
378
379 if (USE_IRDA(sport)) {
380 /* half duplex - wait for end of transmission */
381 int n = 256;
382 while ((--n > 0) &&
383 !(readl(sport->port.membase + USR2) & USR2_TXDC)) {
384 udelay(5);
385 barrier();
386 }
387 /*
388 * irda transceiver - wait a bit more to avoid
389 * cutoff, hardware dependent
390 */
391 udelay(sport->trcv_delay);
392
393 /*
394 * half duplex - reactivate receive mode,
395 * flush receive pipe echo crap
396 */
397 if (readl(sport->port.membase + USR2) & USR2_TXDC) {
398 temp = readl(sport->port.membase + UCR1);
399 temp &= ~(UCR1_TXMPTYEN | UCR1_TRDYEN);
400 writel(temp, sport->port.membase + UCR1);
401
402 temp = readl(sport->port.membase + UCR4);
403 temp &= ~(UCR4_TCEN);
404 writel(temp, sport->port.membase + UCR4);
405
406 while (readl(sport->port.membase + URXD0) &
407 URXD_CHARRDY)
408 barrier();
409
410 temp = readl(sport->port.membase + UCR1);
411 temp |= UCR1_RRDYEN;
412 writel(temp, sport->port.membase + UCR1);
413
414 temp = readl(sport->port.membase + UCR4);
415 temp |= UCR4_DREN;
416 writel(temp, sport->port.membase + UCR4);
417 }
418 return;
419 }
420
421 /*
422 * We are maybe in the SMP context, so if the DMA TX thread is running
423 * on other cpu, we have to wait for it to finish.
424 */
425 if (sport->dma_is_enabled && sport->dma_is_txing)
426 return;
427
428 temp = readl(sport->port.membase + UCR1);
429 writel(temp & ~UCR1_TXMPTYEN, sport->port.membase + UCR1);
430 }
431
432 /*
433 * interrupts disabled on entry
434 */
435 static void imx_stop_rx(struct uart_port *port)
436 {
437 struct imx_port *sport = (struct imx_port *)port;
438 unsigned long temp;
439
440 if (sport->dma_is_enabled && sport->dma_is_rxing) {
441 if (sport->port.suspended) {
442 dmaengine_terminate_all(sport->dma_chan_rx);
443 sport->dma_is_rxing = 0;
444 } else {
445 return;
446 }
447 }
448
449 temp = readl(sport->port.membase + UCR2);
450 writel(temp & ~UCR2_RXEN, sport->port.membase + UCR2);
451
452 /* disable the `Receiver Ready Interrrupt` */
453 temp = readl(sport->port.membase + UCR1);
454 writel(temp & ~UCR1_RRDYEN, sport->port.membase + UCR1);
455 }
456
457 /*
458 * Set the modem control timer to fire immediately.
459 */
460 static void imx_enable_ms(struct uart_port *port)
461 {
462 struct imx_port *sport = (struct imx_port *)port;
463
464 mod_timer(&sport->timer, jiffies);
465 }
466
467 static void imx_dma_tx(struct imx_port *sport);
468 static inline void imx_transmit_buffer(struct imx_port *sport)
469 {
470 struct circ_buf *xmit = &sport->port.state->xmit;
471 unsigned long temp;
472
473 if (sport->port.x_char) {
474 /* Send next char */
475 writel(sport->port.x_char, sport->port.membase + URTX0);
476 sport->port.icount.tx++;
477 sport->port.x_char = 0;
478 return;
479 }
480
481 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
482 imx_stop_tx(&sport->port);
483 return;
484 }
485
486 if (sport->dma_is_enabled) {
487 /*
488 * We've just sent a X-char Ensure the TX DMA is enabled
489 * and the TX IRQ is disabled.
490 **/
491 temp = readl(sport->port.membase + UCR1);
492 temp &= ~UCR1_TXMPTYEN;
493 if (sport->dma_is_txing) {
494 temp |= UCR1_TDMAEN;
495 writel(temp, sport->port.membase + UCR1);
496 } else {
497 writel(temp, sport->port.membase + UCR1);
498 imx_dma_tx(sport);
499 }
500 }
501
502 while (!uart_circ_empty(xmit) &&
503 !(readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)) {
504 /* send xmit->buf[xmit->tail]
505 * out the port here */
506 writel(xmit->buf[xmit->tail], sport->port.membase + URTX0);
507 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
508 sport->port.icount.tx++;
509 }
510
511 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
512 uart_write_wakeup(&sport->port);
513
514 if (uart_circ_empty(xmit))
515 imx_stop_tx(&sport->port);
516 }
517
518 static void dma_tx_callback(void *data)
519 {
520 struct imx_port *sport = data;
521 struct scatterlist *sgl = &sport->tx_sgl[0];
522 struct circ_buf *xmit = &sport->port.state->xmit;
523 unsigned long flags;
524 unsigned long temp;
525
526 spin_lock_irqsave(&sport->port.lock, flags);
527
528 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
529
530 temp = readl(sport->port.membase + UCR1);
531 temp &= ~UCR1_TDMAEN;
532 writel(temp, sport->port.membase + UCR1);
533
534 /* update the stat */
535 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
536 sport->port.icount.tx += sport->tx_bytes;
537
538 dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
539
540 sport->dma_is_txing = 0;
541
542 spin_unlock_irqrestore(&sport->port.lock, flags);
543
544 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
545 uart_write_wakeup(&sport->port);
546
547 if (waitqueue_active(&sport->dma_wait)) {
548 wake_up(&sport->dma_wait);
549 dev_dbg(sport->port.dev, "exit in %s.\n", __func__);
550 return;
551 }
552
553 spin_lock_irqsave(&sport->port.lock, flags);
554 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
555 imx_dma_tx(sport);
556 spin_unlock_irqrestore(&sport->port.lock, flags);
557 }
558
559 static void imx_dma_tx(struct imx_port *sport)
560 {
561 struct circ_buf *xmit = &sport->port.state->xmit;
562 struct scatterlist *sgl = sport->tx_sgl;
563 struct dma_async_tx_descriptor *desc;
564 struct dma_chan *chan = sport->dma_chan_tx;
565 struct device *dev = sport->port.dev;
566 unsigned long temp;
567 int ret;
568
569 if (sport->dma_is_txing)
570 return;
571
572 sport->tx_bytes = uart_circ_chars_pending(xmit);
573
574 if (xmit->tail < xmit->head) {
575 sport->dma_tx_nents = 1;
576 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
577 } else {
578 sport->dma_tx_nents = 2;
579 sg_init_table(sgl, 2);
580 sg_set_buf(sgl, xmit->buf + xmit->tail,
581 UART_XMIT_SIZE - xmit->tail);
582 sg_set_buf(sgl + 1, xmit->buf, xmit->head);
583 }
584
585 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
586 if (ret == 0) {
587 dev_err(dev, "DMA mapping error for TX.\n");
588 return;
589 }
590 desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents,
591 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
592 if (!desc) {
593 dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
594 DMA_TO_DEVICE);
595 dev_err(dev, "We cannot prepare for the TX slave dma!\n");
596 return;
597 }
598 desc->callback = dma_tx_callback;
599 desc->callback_param = sport;
600
601 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
602 uart_circ_chars_pending(xmit));
603
604 temp = readl(sport->port.membase + UCR1);
605 temp |= UCR1_TDMAEN;
606 writel(temp, sport->port.membase + UCR1);
607
608 /* fire it */
609 sport->dma_is_txing = 1;
610 dmaengine_submit(desc);
611 dma_async_issue_pending(chan);
612 return;
613 }
614
615 /*
616 * interrupts disabled on entry
617 */
618 static void imx_start_tx(struct uart_port *port)
619 {
620 struct imx_port *sport = (struct imx_port *)port;
621 unsigned long temp;
622
623 if (USE_IRDA(sport)) {
624 /* half duplex in IrDA mode; have to disable receive mode */
625 temp = readl(sport->port.membase + UCR4);
626 temp &= ~(UCR4_DREN);
627 writel(temp, sport->port.membase + UCR4);
628
629 temp = readl(sport->port.membase + UCR1);
630 temp &= ~(UCR1_RRDYEN);
631 writel(temp, sport->port.membase + UCR1);
632 }
633
634 if (!sport->dma_is_enabled) {
635 temp = readl(sport->port.membase + UCR1);
636 writel(temp | UCR1_TXMPTYEN, sport->port.membase + UCR1);
637 }
638
639 if (USE_IRDA(sport)) {
640 temp = readl(sport->port.membase + UCR1);
641 temp |= UCR1_TRDYEN;
642 writel(temp, sport->port.membase + UCR1);
643
644 temp = readl(sport->port.membase + UCR4);
645 temp |= UCR4_TCEN;
646 writel(temp, sport->port.membase + UCR4);
647 }
648
649 if (sport->dma_is_enabled) {
650 if (sport->port.x_char) {
651 /* We have X-char to send, so enable TX IRQ and
652 * disable TX DMA to let TX interrupt to send X-char */
653 temp = readl(sport->port.membase + UCR1);
654 temp &= ~UCR1_TDMAEN;
655 temp |= UCR1_TXMPTYEN;
656 writel(temp, sport->port.membase + UCR1);
657 return;
658 }
659
660 if (!uart_circ_empty(&port->state->xmit) &&
661 !uart_tx_stopped(port))
662 imx_dma_tx(sport);
663 return;
664 }
665 }
666
667 static irqreturn_t imx_rtsint(int irq, void *dev_id)
668 {
669 struct imx_port *sport = dev_id;
670 unsigned int val;
671 unsigned long flags;
672
673 spin_lock_irqsave(&sport->port.lock, flags);
674
675 writel(USR1_RTSD, sport->port.membase + USR1);
676 val = readl(sport->port.membase + USR1) & USR1_RTSS;
677 uart_handle_cts_change(&sport->port, !!val);
678 wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
679
680 spin_unlock_irqrestore(&sport->port.lock, flags);
681 return IRQ_HANDLED;
682 }
683
684 static irqreturn_t imx_txint(int irq, void *dev_id)
685 {
686 struct imx_port *sport = dev_id;
687 unsigned long flags;
688
689 spin_lock_irqsave(&sport->port.lock, flags);
690 imx_transmit_buffer(sport);
691 spin_unlock_irqrestore(&sport->port.lock, flags);
692 return IRQ_HANDLED;
693 }
694
695 static irqreturn_t imx_rxint(int irq, void *dev_id)
696 {
697 struct imx_port *sport = dev_id;
698 unsigned int rx, flg, ignored = 0;
699 struct tty_port *port = &sport->port.state->port;
700 unsigned long flags, temp;
701
702 spin_lock_irqsave(&sport->port.lock, flags);
703
704 while (readl(sport->port.membase + USR2) & USR2_RDR) {
705 flg = TTY_NORMAL;
706 sport->port.icount.rx++;
707
708 rx = readl(sport->port.membase + URXD0);
709
710 temp = readl(sport->port.membase + USR2);
711 if (temp & USR2_BRCD) {
712 writel(USR2_BRCD, sport->port.membase + USR2);
713 if (uart_handle_break(&sport->port))
714 continue;
715 }
716
717 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
718 continue;
719
720 if (unlikely(rx & URXD_ERR)) {
721 if (rx & URXD_BRK)
722 sport->port.icount.brk++;
723 else if (rx & URXD_PRERR)
724 sport->port.icount.parity++;
725 else if (rx & URXD_FRMERR)
726 sport->port.icount.frame++;
727 if (rx & URXD_OVRRUN)
728 sport->port.icount.overrun++;
729
730 if (rx & sport->port.ignore_status_mask) {
731 if (++ignored > 100)
732 goto out;
733 continue;
734 }
735
736 rx &= (sport->port.read_status_mask | 0xFF);
737
738 if (rx & URXD_BRK)
739 flg = TTY_BREAK;
740 else if (rx & URXD_PRERR)
741 flg = TTY_PARITY;
742 else if (rx & URXD_FRMERR)
743 flg = TTY_FRAME;
744 if (rx & URXD_OVRRUN)
745 flg = TTY_OVERRUN;
746
747 #ifdef SUPPORT_SYSRQ
748 sport->port.sysrq = 0;
749 #endif
750 }
751
752 if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
753 goto out;
754
755 tty_insert_flip_char(port, rx, flg);
756 }
757
758 out:
759 spin_unlock_irqrestore(&sport->port.lock, flags);
760 tty_flip_buffer_push(port);
761 return IRQ_HANDLED;
762 }
763
764 static int start_rx_dma(struct imx_port *sport);
765 /*
766 * If the RXFIFO is filled with some data, and then we
767 * arise a DMA operation to receive them.
768 */
769 static void imx_dma_rxint(struct imx_port *sport)
770 {
771 unsigned long temp;
772 unsigned long flags;
773
774 spin_lock_irqsave(&sport->port.lock, flags);
775
776 temp = readl(sport->port.membase + USR2);
777 if ((temp & USR2_RDR) && !sport->dma_is_rxing) {
778 sport->dma_is_rxing = 1;
779
780 /* disable the `Recerver Ready Interrrupt` */
781 temp = readl(sport->port.membase + UCR1);
782 temp &= ~(UCR1_RRDYEN);
783 writel(temp, sport->port.membase + UCR1);
784
785 /* tell the DMA to receive the data. */
786 start_rx_dma(sport);
787 }
788
789 spin_unlock_irqrestore(&sport->port.lock, flags);
790 }
791
792 static irqreturn_t imx_int(int irq, void *dev_id)
793 {
794 struct imx_port *sport = dev_id;
795 unsigned int sts;
796 unsigned int sts2;
797
798 sts = readl(sport->port.membase + USR1);
799
800 if (sts & USR1_RRDY) {
801 if (sport->dma_is_enabled)
802 imx_dma_rxint(sport);
803 else
804 imx_rxint(irq, dev_id);
805 }
806
807 if (sts & USR1_TRDY &&
808 readl(sport->port.membase + UCR1) & UCR1_TXMPTYEN)
809 imx_txint(irq, dev_id);
810
811 if (sts & USR1_RTSD)
812 imx_rtsint(irq, dev_id);
813
814 if (sts & USR1_AWAKE)
815 writel(USR1_AWAKE, sport->port.membase + USR1);
816
817 sts2 = readl(sport->port.membase + USR2);
818 if (sts2 & USR2_ORE) {
819 dev_err(sport->port.dev, "Rx FIFO overrun\n");
820 sport->port.icount.overrun++;
821 writel(USR2_ORE, sport->port.membase + USR2);
822 }
823
824 return IRQ_HANDLED;
825 }
826
827 /*
828 * Return TIOCSER_TEMT when transmitter is not busy.
829 */
830 static unsigned int imx_tx_empty(struct uart_port *port)
831 {
832 struct imx_port *sport = (struct imx_port *)port;
833 unsigned int ret;
834
835 ret = (readl(sport->port.membase + USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0;
836
837 /* If the TX DMA is working, return 0. */
838 if (sport->dma_is_enabled && sport->dma_is_txing)
839 ret = 0;
840
841 return ret;
842 }
843
844 /*
845 * We have a modem side uart, so the meanings of RTS and CTS are inverted.
846 */
847 static unsigned int imx_get_mctrl(struct uart_port *port)
848 {
849 struct imx_port *sport = (struct imx_port *)port;
850 unsigned int tmp = TIOCM_DSR | TIOCM_CAR;
851
852 if (readl(sport->port.membase + USR1) & USR1_RTSS)
853 tmp |= TIOCM_CTS;
854
855 if (readl(sport->port.membase + UCR2) & UCR2_CTS)
856 tmp |= TIOCM_RTS;
857
858 if (readl(sport->port.membase + uts_reg(sport)) & UTS_LOOP)
859 tmp |= TIOCM_LOOP;
860
861 return tmp;
862 }
863
864 static void imx_set_mctrl(struct uart_port *port, unsigned int mctrl)
865 {
866 struct imx_port *sport = (struct imx_port *)port;
867 unsigned long temp;
868
869 temp = readl(sport->port.membase + UCR2) & ~(UCR2_CTS | UCR2_CTSC);
870 if (mctrl & TIOCM_RTS)
871 temp |= UCR2_CTS | UCR2_CTSC;
872
873 writel(temp, sport->port.membase + UCR2);
874
875 temp = readl(sport->port.membase + uts_reg(sport)) & ~UTS_LOOP;
876 if (mctrl & TIOCM_LOOP)
877 temp |= UTS_LOOP;
878 writel(temp, sport->port.membase + uts_reg(sport));
879 }
880
881 /*
882 * Interrupts always disabled.
883 */
884 static void imx_break_ctl(struct uart_port *port, int break_state)
885 {
886 struct imx_port *sport = (struct imx_port *)port;
887 unsigned long flags, temp;
888
889 spin_lock_irqsave(&sport->port.lock, flags);
890
891 temp = readl(sport->port.membase + UCR1) & ~UCR1_SNDBRK;
892
893 if (break_state != 0)
894 temp |= UCR1_SNDBRK;
895
896 writel(temp, sport->port.membase + UCR1);
897
898 spin_unlock_irqrestore(&sport->port.lock, flags);
899 }
900
901 #define TXTL 2 /* reset default */
902 #define RXTL 1 /* reset default */
903
904 static int imx_setup_ufcr(struct imx_port *sport, unsigned int mode)
905 {
906 unsigned int val;
907
908 /* set receiver / transmitter trigger level */
909 val = readl(sport->port.membase + UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
910 val |= TXTL << UFCR_TXTL_SHF | RXTL;
911 writel(val, sport->port.membase + UFCR);
912 return 0;
913 }
914
915 #define RX_BUF_SIZE (PAGE_SIZE)
916 static void imx_rx_dma_done(struct imx_port *sport)
917 {
918 unsigned long temp;
919 unsigned long flags;
920
921 spin_lock_irqsave(&sport->port.lock, flags);
922
923 /* Enable this interrupt when the RXFIFO is empty. */
924 temp = readl(sport->port.membase + UCR1);
925 temp |= UCR1_RRDYEN;
926 writel(temp, sport->port.membase + UCR1);
927
928 sport->dma_is_rxing = 0;
929
930 /* Is the shutdown waiting for us? */
931 if (waitqueue_active(&sport->dma_wait))
932 wake_up(&sport->dma_wait);
933
934 spin_unlock_irqrestore(&sport->port.lock, flags);
935 }
936
937 /*
938 * There are three kinds of RX DMA interrupts(such as in the MX6Q):
939 * [1] the RX DMA buffer is full.
940 * [2] the Aging timer expires(wait for 8 bytes long)
941 * [3] the Idle Condition Detect(enabled the UCR4_IDDMAEN).
942 *
943 * The [2] is trigger when a character was been sitting in the FIFO
944 * meanwhile [3] can wait for 32 bytes long when the RX line is
945 * on IDLE state and RxFIFO is empty.
946 */
947 static void dma_rx_callback(void *data)
948 {
949 struct imx_port *sport = data;
950 struct dma_chan *chan = sport->dma_chan_rx;
951 struct scatterlist *sgl = &sport->rx_sgl;
952 struct tty_port *port = &sport->port.state->port;
953 struct dma_tx_state state;
954 enum dma_status status;
955 unsigned int count;
956
957 /* unmap it first */
958 dma_unmap_sg(sport->port.dev, sgl, 1, DMA_FROM_DEVICE);
959
960 status = dmaengine_tx_status(chan, (dma_cookie_t)0, &state);
961 count = RX_BUF_SIZE - state.residue;
962 dev_dbg(sport->port.dev, "We get %d bytes.\n", count);
963
964 if (count) {
965 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ))
966 tty_insert_flip_string(port, sport->rx_buf, count);
967 tty_flip_buffer_push(port);
968
969 start_rx_dma(sport);
970 } else if (readl(sport->port.membase + USR2) & USR2_RDR) {
971 /*
972 * start rx_dma directly once data in RXFIFO, more efficient
973 * than before:
974 * 1. call imx_rx_dma_done to stop dma if no data received
975 * 2. wait next RDR interrupt to start dma transfer.
976 */
977 start_rx_dma(sport);
978 } else {
979 /*
980 * stop dma to prevent too many IDLE event trigged if no data
981 * in RXFIFO
982 */
983 imx_rx_dma_done(sport);
984 }
985 }
986
987 static int start_rx_dma(struct imx_port *sport)
988 {
989 struct scatterlist *sgl = &sport->rx_sgl;
990 struct dma_chan *chan = sport->dma_chan_rx;
991 struct device *dev = sport->port.dev;
992 struct dma_async_tx_descriptor *desc;
993 int ret;
994
995 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
996 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
997 if (ret == 0) {
998 dev_err(dev, "DMA mapping error for RX.\n");
999 return -EINVAL;
1000 }
1001 desc = dmaengine_prep_slave_sg(chan, sgl, 1, DMA_DEV_TO_MEM,
1002 DMA_PREP_INTERRUPT);
1003 if (!desc) {
1004 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1005 dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1006 return -EINVAL;
1007 }
1008 desc->callback = dma_rx_callback;
1009 desc->callback_param = sport;
1010
1011 dev_dbg(dev, "RX: prepare for the DMA.\n");
1012 dmaengine_submit(desc);
1013 dma_async_issue_pending(chan);
1014 return 0;
1015 }
1016
1017 static void imx_uart_dma_exit(struct imx_port *sport)
1018 {
1019 if (sport->dma_chan_rx) {
1020 dma_release_channel(sport->dma_chan_rx);
1021 sport->dma_chan_rx = NULL;
1022
1023 kfree(sport->rx_buf);
1024 sport->rx_buf = NULL;
1025 }
1026
1027 if (sport->dma_chan_tx) {
1028 dma_release_channel(sport->dma_chan_tx);
1029 sport->dma_chan_tx = NULL;
1030 }
1031
1032 sport->dma_is_inited = 0;
1033 }
1034
1035 static int imx_uart_dma_init(struct imx_port *sport)
1036 {
1037 struct dma_slave_config slave_config = {};
1038 struct device *dev = sport->port.dev;
1039 int ret;
1040
1041 /* Prepare for RX : */
1042 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1043 if (!sport->dma_chan_rx) {
1044 dev_dbg(dev, "cannot get the DMA channel.\n");
1045 ret = -EINVAL;
1046 goto err;
1047 }
1048
1049 slave_config.direction = DMA_DEV_TO_MEM;
1050 slave_config.src_addr = sport->port.mapbase + URXD0;
1051 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1052 slave_config.src_maxburst = RXTL;
1053 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1054 if (ret) {
1055 dev_err(dev, "error in RX dma configuration.\n");
1056 goto err;
1057 }
1058
1059 sport->rx_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1060 if (!sport->rx_buf) {
1061 ret = -ENOMEM;
1062 goto err;
1063 }
1064
1065 /* Prepare for TX : */
1066 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1067 if (!sport->dma_chan_tx) {
1068 dev_err(dev, "cannot get the TX DMA channel!\n");
1069 ret = -EINVAL;
1070 goto err;
1071 }
1072
1073 slave_config.direction = DMA_MEM_TO_DEV;
1074 slave_config.dst_addr = sport->port.mapbase + URTX0;
1075 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1076 slave_config.dst_maxburst = TXTL;
1077 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1078 if (ret) {
1079 dev_err(dev, "error in TX dma configuration.");
1080 goto err;
1081 }
1082
1083 sport->dma_is_inited = 1;
1084
1085 return 0;
1086 err:
1087 imx_uart_dma_exit(sport);
1088 return ret;
1089 }
1090
1091 static void imx_enable_dma(struct imx_port *sport)
1092 {
1093 unsigned long temp;
1094
1095 init_waitqueue_head(&sport->dma_wait);
1096
1097 /* set UCR1 */
1098 temp = readl(sport->port.membase + UCR1);
1099 temp |= UCR1_RDMAEN | UCR1_TDMAEN | UCR1_ATDMAEN |
1100 /* wait for 32 idle frames for IDDMA interrupt */
1101 UCR1_ICD_REG(3);
1102 writel(temp, sport->port.membase + UCR1);
1103
1104 /* set UCR4 */
1105 temp = readl(sport->port.membase + UCR4);
1106 temp |= UCR4_IDDMAEN;
1107 writel(temp, sport->port.membase + UCR4);
1108
1109 sport->dma_is_enabled = 1;
1110 }
1111
1112 static void imx_disable_dma(struct imx_port *sport)
1113 {
1114 unsigned long temp;
1115
1116 /* clear UCR1 */
1117 temp = readl(sport->port.membase + UCR1);
1118 temp &= ~(UCR1_RDMAEN | UCR1_TDMAEN | UCR1_ATDMAEN);
1119 writel(temp, sport->port.membase + UCR1);
1120
1121 /* clear UCR2 */
1122 temp = readl(sport->port.membase + UCR2);
1123 temp &= ~(UCR2_CTSC | UCR2_CTS);
1124 writel(temp, sport->port.membase + UCR2);
1125
1126 /* clear UCR4 */
1127 temp = readl(sport->port.membase + UCR4);
1128 temp &= ~UCR4_IDDMAEN;
1129 writel(temp, sport->port.membase + UCR4);
1130
1131 sport->dma_is_enabled = 0;
1132 }
1133
1134 /* half the RX buffer size */
1135 #define CTSTL 16
1136
1137 static int imx_startup(struct uart_port *port)
1138 {
1139 struct imx_port *sport = (struct imx_port *)port;
1140 int retval, i;
1141 unsigned long flags, temp;
1142
1143 retval = clk_prepare_enable(sport->clk_per);
1144 if (retval)
1145 return retval;
1146 retval = clk_prepare_enable(sport->clk_ipg);
1147 if (retval) {
1148 clk_disable_unprepare(sport->clk_per);
1149 return retval;
1150 }
1151
1152 imx_setup_ufcr(sport, 0);
1153
1154 /* disable the DREN bit (Data Ready interrupt enable) before
1155 * requesting IRQs
1156 */
1157 temp = readl(sport->port.membase + UCR4);
1158
1159 if (USE_IRDA(sport))
1160 temp |= UCR4_IRSC;
1161
1162 /* set the trigger level for CTS */
1163 temp &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1164 temp |= CTSTL << UCR4_CTSTL_SHF;
1165
1166 writel(temp & ~UCR4_DREN, sport->port.membase + UCR4);
1167
1168 /* Reset fifo's and state machines */
1169 i = 100;
1170
1171 temp = readl(sport->port.membase + UCR2);
1172 temp &= ~UCR2_SRST;
1173 writel(temp, sport->port.membase + UCR2);
1174
1175 while (!(readl(sport->port.membase + UCR2) & UCR2_SRST) && (--i > 0))
1176 udelay(1);
1177
1178 /* Can we enable the DMA support? */
1179 if (is_imx6q_uart(sport) && !uart_console(port) &&
1180 !sport->dma_is_inited)
1181 imx_uart_dma_init(sport);
1182
1183 spin_lock_irqsave(&sport->port.lock, flags);
1184
1185 /*
1186 * Finally, clear and enable interrupts
1187 */
1188 writel(USR1_RTSD, sport->port.membase + USR1);
1189 writel(USR2_ORE, sport->port.membase + USR2);
1190
1191 if (sport->dma_is_inited && !sport->dma_is_enabled)
1192 imx_enable_dma(sport);
1193
1194 temp = readl(sport->port.membase + UCR1);
1195 temp |= UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN;
1196
1197 if (USE_IRDA(sport)) {
1198 temp |= UCR1_IREN;
1199 temp &= ~(UCR1_RTSDEN);
1200 }
1201
1202 writel(temp, sport->port.membase + UCR1);
1203
1204 temp = readl(sport->port.membase + UCR4);
1205 temp |= UCR4_OREN;
1206 writel(temp, sport->port.membase + UCR4);
1207
1208 temp = readl(sport->port.membase + UCR2);
1209 temp |= (UCR2_RXEN | UCR2_TXEN);
1210 if (!sport->have_rtscts)
1211 temp |= UCR2_IRTS;
1212 writel(temp, sport->port.membase + UCR2);
1213
1214 if (!is_imx1_uart(sport)) {
1215 temp = readl(sport->port.membase + UCR3);
1216 temp |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
1217 writel(temp, sport->port.membase + UCR3);
1218 }
1219
1220 if (USE_IRDA(sport)) {
1221 temp = readl(sport->port.membase + UCR4);
1222 if (sport->irda_inv_rx)
1223 temp |= UCR4_INVR;
1224 else
1225 temp &= ~(UCR4_INVR);
1226 writel(temp | UCR4_DREN, sport->port.membase + UCR4);
1227
1228 temp = readl(sport->port.membase + UCR3);
1229 if (sport->irda_inv_tx)
1230 temp |= UCR3_INVT;
1231 else
1232 temp &= ~(UCR3_INVT);
1233 writel(temp, sport->port.membase + UCR3);
1234 }
1235
1236 /*
1237 * Enable modem status interrupts
1238 */
1239 imx_enable_ms(&sport->port);
1240 spin_unlock_irqrestore(&sport->port.lock, flags);
1241
1242 if (USE_IRDA(sport)) {
1243 struct imxuart_platform_data *pdata;
1244 pdata = dev_get_platdata(sport->port.dev);
1245 sport->irda_inv_rx = pdata->irda_inv_rx;
1246 sport->irda_inv_tx = pdata->irda_inv_tx;
1247 sport->trcv_delay = pdata->transceiver_delay;
1248 if (pdata->irda_enable)
1249 pdata->irda_enable(1);
1250 }
1251
1252 return 0;
1253 }
1254
1255 static void imx_shutdown(struct uart_port *port)
1256 {
1257 struct imx_port *sport = (struct imx_port *)port;
1258 unsigned long temp;
1259 unsigned long flags;
1260
1261 if (sport->dma_is_enabled) {
1262 int ret;
1263
1264 /* We have to wait for the DMA to finish. */
1265 ret = wait_event_interruptible(sport->dma_wait,
1266 !sport->dma_is_rxing && !sport->dma_is_txing);
1267 if (ret != 0) {
1268 sport->dma_is_rxing = 0;
1269 sport->dma_is_txing = 0;
1270 dmaengine_terminate_all(sport->dma_chan_tx);
1271 dmaengine_terminate_all(sport->dma_chan_rx);
1272 }
1273 spin_lock_irqsave(&sport->port.lock, flags);
1274 imx_stop_tx(port);
1275 imx_stop_rx(port);
1276 imx_disable_dma(sport);
1277 spin_unlock_irqrestore(&sport->port.lock, flags);
1278 imx_uart_dma_exit(sport);
1279 }
1280
1281 spin_lock_irqsave(&sport->port.lock, flags);
1282 temp = readl(sport->port.membase + UCR2);
1283 temp &= ~(UCR2_TXEN);
1284 writel(temp, sport->port.membase + UCR2);
1285 spin_unlock_irqrestore(&sport->port.lock, flags);
1286
1287 if (USE_IRDA(sport)) {
1288 struct imxuart_platform_data *pdata;
1289 pdata = dev_get_platdata(sport->port.dev);
1290 if (pdata->irda_enable)
1291 pdata->irda_enable(0);
1292 }
1293
1294 /*
1295 * Stop our timer.
1296 */
1297 del_timer_sync(&sport->timer);
1298
1299 /*
1300 * Disable all interrupts, port and break condition.
1301 */
1302
1303 spin_lock_irqsave(&sport->port.lock, flags);
1304 temp = readl(sport->port.membase + UCR1);
1305 temp &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN);
1306 if (USE_IRDA(sport))
1307 temp &= ~(UCR1_IREN);
1308
1309 writel(temp, sport->port.membase + UCR1);
1310 spin_unlock_irqrestore(&sport->port.lock, flags);
1311
1312 clk_disable_unprepare(sport->clk_per);
1313 clk_disable_unprepare(sport->clk_ipg);
1314 }
1315
1316 static void imx_flush_buffer(struct uart_port *port)
1317 {
1318 struct imx_port *sport = (struct imx_port *)port;
1319 struct scatterlist *sgl = &sport->tx_sgl[0];
1320 unsigned long temp;
1321 int i = 100, ubir, ubmr, uts;
1322
1323 if (!sport->dma_chan_tx)
1324 return;
1325
1326 sport->tx_bytes = 0;
1327 dmaengine_terminate_all(sport->dma_chan_tx);
1328 if (sport->dma_is_txing) {
1329 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1330 DMA_TO_DEVICE);
1331 temp = readl(sport->port.membase + UCR1);
1332 temp &= ~UCR1_TDMAEN;
1333 writel(temp, sport->port.membase + UCR1);
1334 sport->dma_is_txing = false;
1335 }
1336
1337 /*
1338 * According to the Reference Manual description of the UART SRST bit:
1339 * "Reset the transmit and receive state machines,
1340 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1341 * and UTS[6-3]". As we don't need to restore the old values from
1342 * USR1, USR2, URXD, UTXD, only save/restore the other four registers
1343 */
1344 ubir = readl(sport->port.membase + UBIR);
1345 ubmr = readl(sport->port.membase + UBMR);
1346 uts = readl(sport->port.membase + IMX21_UTS);
1347
1348 temp = readl(sport->port.membase + UCR2);
1349 temp &= ~UCR2_SRST;
1350 writel(temp, sport->port.membase + UCR2);
1351
1352 while (!(readl(sport->port.membase + UCR2) & UCR2_SRST) && (--i > 0))
1353 udelay(1);
1354
1355 /* Restore the registers */
1356 writel(ubir, sport->port.membase + UBIR);
1357 writel(ubmr, sport->port.membase + UBMR);
1358 writel(uts, sport->port.membase + IMX21_UTS);
1359 }
1360
1361 static void
1362 imx_set_termios(struct uart_port *port, struct ktermios *termios,
1363 struct ktermios *old)
1364 {
1365 struct imx_port *sport = (struct imx_port *)port;
1366 unsigned long flags;
1367 unsigned int ucr2, old_ucr1, old_txrxen, baud, quot;
1368 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1369 unsigned int div, ufcr;
1370 unsigned long num, denom;
1371 uint64_t tdiv64;
1372
1373 /*
1374 * If we don't support modem control lines, don't allow
1375 * these to be set.
1376 */
1377 if (0) {
1378 termios->c_cflag &= ~(HUPCL | CRTSCTS | CMSPAR);
1379 termios->c_cflag |= CLOCAL;
1380 }
1381
1382 /*
1383 * We only support CS7 and CS8.
1384 */
1385 while ((termios->c_cflag & CSIZE) != CS7 &&
1386 (termios->c_cflag & CSIZE) != CS8) {
1387 termios->c_cflag &= ~CSIZE;
1388 termios->c_cflag |= old_csize;
1389 old_csize = CS8;
1390 }
1391
1392 if ((termios->c_cflag & CSIZE) == CS8)
1393 ucr2 = UCR2_WS | UCR2_SRST | UCR2_IRTS;
1394 else
1395 ucr2 = UCR2_SRST | UCR2_IRTS;
1396
1397 if (termios->c_cflag & CRTSCTS) {
1398 if (sport->have_rtscts) {
1399 ucr2 &= ~UCR2_IRTS;
1400 ucr2 |= UCR2_CTSC;
1401 } else {
1402 termios->c_cflag &= ~CRTSCTS;
1403 }
1404 }
1405
1406 if (termios->c_cflag & CSTOPB)
1407 ucr2 |= UCR2_STPB;
1408 if (termios->c_cflag & PARENB) {
1409 ucr2 |= UCR2_PREN;
1410 if (termios->c_cflag & PARODD)
1411 ucr2 |= UCR2_PROE;
1412 }
1413
1414 del_timer_sync(&sport->timer);
1415
1416 /*
1417 * Ask the core to calculate the divisor for us.
1418 */
1419 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1420 quot = uart_get_divisor(port, baud);
1421
1422 spin_lock_irqsave(&sport->port.lock, flags);
1423
1424 sport->port.read_status_mask = 0;
1425 if (termios->c_iflag & INPCK)
1426 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1427 if (termios->c_iflag & (BRKINT | PARMRK))
1428 sport->port.read_status_mask |= URXD_BRK;
1429
1430 /*
1431 * Characters to ignore
1432 */
1433 sport->port.ignore_status_mask = 0;
1434 if (termios->c_iflag & IGNPAR)
1435 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1436 if (termios->c_iflag & IGNBRK) {
1437 sport->port.ignore_status_mask |= URXD_BRK;
1438 /*
1439 * If we're ignoring parity and break indicators,
1440 * ignore overruns too (for real raw support).
1441 */
1442 if (termios->c_iflag & IGNPAR)
1443 sport->port.ignore_status_mask |= URXD_OVRRUN;
1444 }
1445
1446 if ((termios->c_cflag & CREAD) == 0)
1447 sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1448
1449 /*
1450 * Update the per-port timeout.
1451 */
1452 uart_update_timeout(port, termios->c_cflag, baud);
1453
1454 /*
1455 * disable interrupts and drain transmitter
1456 */
1457 old_ucr1 = readl(sport->port.membase + UCR1);
1458 writel(old_ucr1 & ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN),
1459 sport->port.membase + UCR1);
1460
1461 while (!(readl(sport->port.membase + USR2) & USR2_TXDC))
1462 barrier();
1463
1464 /* then, disable everything */
1465 old_txrxen = readl(sport->port.membase + UCR2);
1466 writel(old_txrxen & ~(UCR2_TXEN | UCR2_RXEN),
1467 sport->port.membase + UCR2);
1468 old_txrxen &= (UCR2_TXEN | UCR2_RXEN);
1469
1470 if (USE_IRDA(sport)) {
1471 /*
1472 * use maximum available submodule frequency to
1473 * avoid missing short pulses due to low sampling rate
1474 */
1475 div = 1;
1476 } else {
1477 /* custom-baudrate handling */
1478 div = sport->port.uartclk / (baud * 16);
1479 if (baud == 38400 && quot != div)
1480 baud = sport->port.uartclk / (quot * 16);
1481
1482 div = sport->port.uartclk / (baud * 16);
1483 if (div > 7)
1484 div = 7;
1485 if (!div)
1486 div = 1;
1487 }
1488
1489 rational_best_approximation(16 * div * baud, sport->port.uartclk,
1490 1 << 16, 1 << 16, &num, &denom);
1491
1492 tdiv64 = sport->port.uartclk;
1493 tdiv64 *= num;
1494 do_div(tdiv64, denom * 16 * div);
1495 tty_termios_encode_baud_rate(termios,
1496 (speed_t)tdiv64, (speed_t)tdiv64);
1497
1498 num -= 1;
1499 denom -= 1;
1500
1501 ufcr = readl(sport->port.membase + UFCR);
1502 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1503 if (sport->dte_mode)
1504 ufcr |= UFCR_DCEDTE;
1505 writel(ufcr, sport->port.membase + UFCR);
1506
1507 writel(num, sport->port.membase + UBIR);
1508 writel(denom, sport->port.membase + UBMR);
1509
1510 if (!is_imx1_uart(sport))
1511 writel(sport->port.uartclk / div / 1000,
1512 sport->port.membase + IMX21_ONEMS);
1513
1514 writel(old_ucr1, sport->port.membase + UCR1);
1515
1516 /* set the parity, stop bits and data size */
1517 writel(ucr2 | old_txrxen, sport->port.membase + UCR2);
1518
1519 if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1520 imx_enable_ms(&sport->port);
1521
1522 spin_unlock_irqrestore(&sport->port.lock, flags);
1523 }
1524
1525 static const char *imx_type(struct uart_port *port)
1526 {
1527 struct imx_port *sport = (struct imx_port *)port;
1528
1529 return sport->port.type == PORT_IMX ? "IMX" : NULL;
1530 }
1531
1532 /*
1533 * Configure/autoconfigure the port.
1534 */
1535 static void imx_config_port(struct uart_port *port, int flags)
1536 {
1537 struct imx_port *sport = (struct imx_port *)port;
1538
1539 if (flags & UART_CONFIG_TYPE)
1540 sport->port.type = PORT_IMX;
1541 }
1542
1543 /*
1544 * Verify the new serial_struct (for TIOCSSERIAL).
1545 * The only change we allow are to the flags and type, and
1546 * even then only between PORT_IMX and PORT_UNKNOWN
1547 */
1548 static int
1549 imx_verify_port(struct uart_port *port, struct serial_struct *ser)
1550 {
1551 struct imx_port *sport = (struct imx_port *)port;
1552 int ret = 0;
1553
1554 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1555 ret = -EINVAL;
1556 if (sport->port.irq != ser->irq)
1557 ret = -EINVAL;
1558 if (ser->io_type != UPIO_MEM)
1559 ret = -EINVAL;
1560 if (sport->port.uartclk / 16 != ser->baud_base)
1561 ret = -EINVAL;
1562 if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1563 ret = -EINVAL;
1564 if (sport->port.iobase != ser->port)
1565 ret = -EINVAL;
1566 if (ser->hub6 != 0)
1567 ret = -EINVAL;
1568 return ret;
1569 }
1570
1571 #if defined(CONFIG_CONSOLE_POLL)
1572
1573 static int imx_poll_init(struct uart_port *port)
1574 {
1575 struct imx_port *sport = (struct imx_port *)port;
1576 unsigned long flags;
1577 unsigned long temp;
1578 int retval;
1579
1580 retval = clk_prepare_enable(sport->clk_ipg);
1581 if (retval)
1582 return retval;
1583 retval = clk_prepare_enable(sport->clk_per);
1584 if (retval)
1585 clk_disable_unprepare(sport->clk_ipg);
1586
1587 imx_setup_ufcr(sport, 0);
1588
1589 spin_lock_irqsave(&sport->port.lock, flags);
1590
1591 temp = readl(sport->port.membase + UCR1);
1592 if (is_imx1_uart(sport))
1593 temp |= IMX1_UCR1_UARTCLKEN;
1594 temp |= UCR1_UARTEN | UCR1_RRDYEN;
1595 temp &= ~(UCR1_TXMPTYEN | UCR1_RTSDEN);
1596 writel(temp, sport->port.membase + UCR1);
1597
1598 temp = readl(sport->port.membase + UCR2);
1599 temp |= UCR2_RXEN;
1600 writel(temp, sport->port.membase + UCR2);
1601
1602 spin_unlock_irqrestore(&sport->port.lock, flags);
1603
1604 return 0;
1605 }
1606
1607 static int imx_poll_get_char(struct uart_port *port)
1608 {
1609 if (!(readl_relaxed(port->membase + USR2) & USR2_RDR))
1610 return NO_POLL_CHAR;
1611
1612 return readl_relaxed(port->membase + URXD0) & URXD_RX_DATA;
1613 }
1614
1615 static void imx_poll_put_char(struct uart_port *port, unsigned char c)
1616 {
1617 unsigned int status;
1618
1619 /* drain */
1620 do {
1621 status = readl_relaxed(port->membase + USR1);
1622 } while (~status & USR1_TRDY);
1623
1624 /* write */
1625 writel_relaxed(c, port->membase + URTX0);
1626
1627 /* flush */
1628 do {
1629 status = readl_relaxed(port->membase + USR2);
1630 } while (~status & USR2_TXDC);
1631 }
1632 #endif
1633
1634 static struct uart_ops imx_pops = {
1635 .tx_empty = imx_tx_empty,
1636 .set_mctrl = imx_set_mctrl,
1637 .get_mctrl = imx_get_mctrl,
1638 .stop_tx = imx_stop_tx,
1639 .start_tx = imx_start_tx,
1640 .stop_rx = imx_stop_rx,
1641 .enable_ms = imx_enable_ms,
1642 .break_ctl = imx_break_ctl,
1643 .startup = imx_startup,
1644 .shutdown = imx_shutdown,
1645 .flush_buffer = imx_flush_buffer,
1646 .set_termios = imx_set_termios,
1647 .type = imx_type,
1648 .config_port = imx_config_port,
1649 .verify_port = imx_verify_port,
1650 #if defined(CONFIG_CONSOLE_POLL)
1651 .poll_init = imx_poll_init,
1652 .poll_get_char = imx_poll_get_char,
1653 .poll_put_char = imx_poll_put_char,
1654 #endif
1655 };
1656
1657 static struct imx_port *imx_ports[UART_NR];
1658
1659 #ifdef CONFIG_SERIAL_IMX_CONSOLE
1660 static void imx_console_putchar(struct uart_port *port, int ch)
1661 {
1662 struct imx_port *sport = (struct imx_port *)port;
1663
1664 while (readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)
1665 barrier();
1666
1667 writel(ch, sport->port.membase + URTX0);
1668 }
1669
1670 /*
1671 * Interrupts are disabled on entering
1672 */
1673 static void
1674 imx_console_write(struct console *co, const char *s, unsigned int count)
1675 {
1676 struct imx_port *sport = imx_ports[co->index];
1677 struct imx_port_ucrs old_ucr;
1678 unsigned int ucr1;
1679 unsigned long flags = 0;
1680 int locked = 1;
1681 int retval;
1682
1683 retval = clk_enable(sport->clk_per);
1684 if (retval)
1685 return;
1686 retval = clk_enable(sport->clk_ipg);
1687 if (retval) {
1688 clk_disable(sport->clk_per);
1689 return;
1690 }
1691
1692 if (sport->port.sysrq)
1693 locked = 0;
1694 else if (oops_in_progress)
1695 locked = spin_trylock_irqsave(&sport->port.lock, flags);
1696 else
1697 spin_lock_irqsave(&sport->port.lock, flags);
1698
1699 /*
1700 * First, save UCR1/2/3 and then disable interrupts
1701 */
1702 imx_port_ucrs_save(&sport->port, &old_ucr);
1703 ucr1 = old_ucr.ucr1;
1704
1705 if (is_imx1_uart(sport))
1706 ucr1 |= IMX1_UCR1_UARTCLKEN;
1707 ucr1 |= UCR1_UARTEN;
1708 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1709
1710 writel(ucr1, sport->port.membase + UCR1);
1711
1712 writel(old_ucr.ucr2 | UCR2_TXEN, sport->port.membase + UCR2);
1713
1714 uart_console_write(&sport->port, s, count, imx_console_putchar);
1715
1716 /*
1717 * Finally, wait for transmitter to become empty
1718 * and restore UCR1/2/3
1719 */
1720 while (!(readl(sport->port.membase + USR2) & USR2_TXDC));
1721
1722 imx_port_ucrs_restore(&sport->port, &old_ucr);
1723
1724 if (locked)
1725 spin_unlock_irqrestore(&sport->port.lock, flags);
1726
1727 clk_disable(sport->clk_ipg);
1728 clk_disable(sport->clk_per);
1729 }
1730
1731 /*
1732 * If the port was already initialised (eg, by a boot loader),
1733 * try to determine the current setup.
1734 */
1735 static void __init
1736 imx_console_get_options(struct imx_port *sport, int *baud,
1737 int *parity, int *bits)
1738 {
1739
1740 if (readl(sport->port.membase + UCR1) & UCR1_UARTEN) {
1741 /* ok, the port was enabled */
1742 unsigned int ucr2, ubir, ubmr, uartclk;
1743 unsigned int baud_raw;
1744 unsigned int ucfr_rfdiv;
1745
1746 ucr2 = readl(sport->port.membase + UCR2);
1747
1748 *parity = 'n';
1749 if (ucr2 & UCR2_PREN) {
1750 if (ucr2 & UCR2_PROE)
1751 *parity = 'o';
1752 else
1753 *parity = 'e';
1754 }
1755
1756 if (ucr2 & UCR2_WS)
1757 *bits = 8;
1758 else
1759 *bits = 7;
1760
1761 ubir = readl(sport->port.membase + UBIR) & 0xffff;
1762 ubmr = readl(sport->port.membase + UBMR) & 0xffff;
1763
1764 ucfr_rfdiv = (readl(sport->port.membase + UFCR) & UFCR_RFDIV) >> 7;
1765 if (ucfr_rfdiv == 6)
1766 ucfr_rfdiv = 7;
1767 else
1768 ucfr_rfdiv = 6 - ucfr_rfdiv;
1769
1770 uartclk = clk_get_rate(sport->clk_per);
1771 uartclk /= ucfr_rfdiv;
1772
1773 { /*
1774 * The next code provides exact computation of
1775 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
1776 * without need of float support or long long division,
1777 * which would be required to prevent 32bit arithmetic overflow
1778 */
1779 unsigned int mul = ubir + 1;
1780 unsigned int div = 16 * (ubmr + 1);
1781 unsigned int rem = uartclk % div;
1782
1783 baud_raw = (uartclk / div) * mul;
1784 baud_raw += (rem * mul + div / 2) / div;
1785 *baud = (baud_raw + 50) / 100 * 100;
1786 }
1787
1788 if (*baud != baud_raw)
1789 pr_info("Console IMX rounded baud rate from %d to %d\n",
1790 baud_raw, *baud);
1791 }
1792 }
1793
1794 static int __init
1795 imx_console_setup(struct console *co, char *options)
1796 {
1797 struct imx_port *sport;
1798 int baud = 9600;
1799 int bits = 8;
1800 int parity = 'n';
1801 int flow = 'n';
1802 int retval;
1803
1804 /*
1805 * Check whether an invalid uart number has been specified, and
1806 * if so, search for the first available port that does have
1807 * console support.
1808 */
1809 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_ports))
1810 co->index = 0;
1811 sport = imx_ports[co->index];
1812 if (sport == NULL)
1813 return -ENODEV;
1814
1815 /* For setting the registers, we only need to enable the ipg clock. */
1816 retval = clk_prepare_enable(sport->clk_ipg);
1817 if (retval)
1818 goto error_console;
1819
1820 if (options)
1821 uart_parse_options(options, &baud, &parity, &bits, &flow);
1822 else
1823 imx_console_get_options(sport, &baud, &parity, &bits);
1824
1825 imx_setup_ufcr(sport, 0);
1826
1827 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
1828
1829 clk_disable(sport->clk_ipg);
1830 if (retval) {
1831 clk_unprepare(sport->clk_ipg);
1832 goto error_console;
1833 }
1834
1835 retval = clk_prepare(sport->clk_per);
1836 if (retval)
1837 clk_disable_unprepare(sport->clk_ipg);
1838
1839 error_console:
1840 return retval;
1841 }
1842
1843 static struct uart_driver imx_reg;
1844 static struct console imx_console = {
1845 .name = DEV_NAME,
1846 .write = imx_console_write,
1847 .device = uart_console_device,
1848 .setup = imx_console_setup,
1849 .flags = CON_PRINTBUFFER,
1850 .index = -1,
1851 .data = &imx_reg,
1852 };
1853
1854 #define IMX_CONSOLE &imx_console
1855 #else
1856 #define IMX_CONSOLE NULL
1857 #endif
1858
1859 static struct uart_driver imx_reg = {
1860 .owner = THIS_MODULE,
1861 .driver_name = DRIVER_NAME,
1862 .dev_name = DEV_NAME,
1863 .major = SERIAL_IMX_MAJOR,
1864 .minor = MINOR_START,
1865 .nr = ARRAY_SIZE(imx_ports),
1866 .cons = IMX_CONSOLE,
1867 };
1868
1869 static int serial_imx_suspend(struct platform_device *dev, pm_message_t state)
1870 {
1871 struct imx_port *sport = platform_get_drvdata(dev);
1872 unsigned int val;
1873
1874 /* enable wakeup from i.MX UART */
1875 val = readl(sport->port.membase + UCR3);
1876 val |= UCR3_AWAKEN;
1877 writel(val, sport->port.membase + UCR3);
1878
1879 uart_suspend_port(&imx_reg, &sport->port);
1880
1881 return 0;
1882 }
1883
1884 static int serial_imx_resume(struct platform_device *dev)
1885 {
1886 struct imx_port *sport = platform_get_drvdata(dev);
1887 unsigned int val;
1888
1889 /* disable wakeup from i.MX UART */
1890 val = readl(sport->port.membase + UCR3);
1891 val &= ~UCR3_AWAKEN;
1892 writel(val, sport->port.membase + UCR3);
1893
1894 uart_resume_port(&imx_reg, &sport->port);
1895
1896 return 0;
1897 }
1898
1899 #ifdef CONFIG_OF
1900 /*
1901 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
1902 * could successfully get all information from dt or a negative errno.
1903 */
1904 static int serial_imx_probe_dt(struct imx_port *sport,
1905 struct platform_device *pdev)
1906 {
1907 struct device_node *np = pdev->dev.of_node;
1908 const struct of_device_id *of_id =
1909 of_match_device(imx_uart_dt_ids, &pdev->dev);
1910 int ret;
1911
1912 if (!np)
1913 /* no device tree device */
1914 return 1;
1915
1916 ret = of_alias_get_id(np, "serial");
1917 if (ret < 0) {
1918 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
1919 return ret;
1920 }
1921 sport->port.line = ret;
1922
1923 if (of_get_property(np, "fsl,uart-has-rtscts", NULL))
1924 sport->have_rtscts = 1;
1925
1926 if (of_get_property(np, "fsl,irda-mode", NULL))
1927 sport->use_irda = 1;
1928
1929 if (of_get_property(np, "fsl,dte-mode", NULL))
1930 sport->dte_mode = 1;
1931
1932 sport->devdata = of_id->data;
1933
1934 return 0;
1935 }
1936 #else
1937 static inline int serial_imx_probe_dt(struct imx_port *sport,
1938 struct platform_device *pdev)
1939 {
1940 return 1;
1941 }
1942 #endif
1943
1944 static void serial_imx_probe_pdata(struct imx_port *sport,
1945 struct platform_device *pdev)
1946 {
1947 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
1948
1949 sport->port.line = pdev->id;
1950 sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data;
1951
1952 if (!pdata)
1953 return;
1954
1955 if (pdata->flags & IMXUART_HAVE_RTSCTS)
1956 sport->have_rtscts = 1;
1957
1958 if (pdata->flags & IMXUART_IRDA)
1959 sport->use_irda = 1;
1960 }
1961
1962 static int serial_imx_probe(struct platform_device *pdev)
1963 {
1964 struct imx_port *sport;
1965 void __iomem *base;
1966 int ret = 0;
1967 struct resource *res;
1968
1969 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
1970 if (!sport)
1971 return -ENOMEM;
1972
1973 ret = serial_imx_probe_dt(sport, pdev);
1974 if (ret > 0)
1975 serial_imx_probe_pdata(sport, pdev);
1976 else if (ret < 0)
1977 return ret;
1978
1979 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1980 base = devm_ioremap_resource(&pdev->dev, res);
1981 if (IS_ERR(base))
1982 return PTR_ERR(base);
1983
1984 sport->port.dev = &pdev->dev;
1985 sport->port.mapbase = res->start;
1986 sport->port.membase = base;
1987 sport->port.type = PORT_IMX,
1988 sport->port.iotype = UPIO_MEM;
1989 sport->port.irq = platform_get_irq(pdev, 0);
1990 sport->rxirq = platform_get_irq(pdev, 0);
1991 sport->txirq = platform_get_irq(pdev, 1);
1992 sport->rtsirq = platform_get_irq(pdev, 2);
1993 sport->port.fifosize = 32;
1994 sport->port.ops = &imx_pops;
1995 sport->port.flags = UPF_BOOT_AUTOCONF;
1996 init_timer(&sport->timer);
1997 sport->timer.function = imx_timeout;
1998 sport->timer.data = (unsigned long)sport;
1999
2000 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2001 if (IS_ERR(sport->clk_ipg)) {
2002 ret = PTR_ERR(sport->clk_ipg);
2003 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2004 return ret;
2005 }
2006
2007 sport->clk_per = devm_clk_get(&pdev->dev, "per");
2008 if (IS_ERR(sport->clk_per)) {
2009 ret = PTR_ERR(sport->clk_per);
2010 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2011 return ret;
2012 }
2013
2014 sport->port.uartclk = clk_get_rate(sport->clk_per);
2015
2016 /*
2017 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2018 * chips only have one interrupt.
2019 */
2020 if (sport->txirq > 0) {
2021 ret = devm_request_irq(&pdev->dev, sport->rxirq, imx_rxint, 0,
2022 dev_name(&pdev->dev), sport);
2023 if (ret)
2024 return ret;
2025
2026 ret = devm_request_irq(&pdev->dev, sport->txirq, imx_txint, 0,
2027 dev_name(&pdev->dev), sport);
2028 if (ret)
2029 return ret;
2030
2031 /* do not use RTS IRQ on IrDA */
2032 if (!USE_IRDA(sport)) {
2033 ret = devm_request_irq(&pdev->dev, sport->rtsirq,
2034 imx_rtsint, 0,
2035 dev_name(&pdev->dev), sport);
2036 if (ret)
2037 return ret;
2038 }
2039 } else {
2040 ret = devm_request_irq(&pdev->dev, sport->port.irq, imx_int, 0,
2041 dev_name(&pdev->dev), sport);
2042 if (ret)
2043 return ret;
2044 }
2045
2046 imx_ports[sport->port.line] = sport;
2047
2048 platform_set_drvdata(pdev, sport);
2049
2050 return uart_add_one_port(&imx_reg, &sport->port);
2051 }
2052
2053 static int serial_imx_remove(struct platform_device *pdev)
2054 {
2055 struct imx_port *sport = platform_get_drvdata(pdev);
2056
2057 return uart_remove_one_port(&imx_reg, &sport->port);
2058 }
2059
2060 static struct platform_driver serial_imx_driver = {
2061 .probe = serial_imx_probe,
2062 .remove = serial_imx_remove,
2063
2064 .suspend = serial_imx_suspend,
2065 .resume = serial_imx_resume,
2066 .id_table = imx_uart_devtype,
2067 .driver = {
2068 .name = "imx-uart",
2069 .of_match_table = imx_uart_dt_ids,
2070 },
2071 };
2072
2073 static int __init imx_serial_init(void)
2074 {
2075 int ret = uart_register_driver(&imx_reg);
2076
2077 if (ret)
2078 return ret;
2079
2080 ret = platform_driver_register(&serial_imx_driver);
2081 if (ret != 0)
2082 uart_unregister_driver(&imx_reg);
2083
2084 return ret;
2085 }
2086
2087 static void __exit imx_serial_exit(void)
2088 {
2089 platform_driver_unregister(&serial_imx_driver);
2090 uart_unregister_driver(&imx_reg);
2091 }
2092
2093 module_init(imx_serial_init);
2094 module_exit(imx_serial_exit);
2095
2096 MODULE_AUTHOR("Sascha Hauer");
2097 MODULE_DESCRIPTION("IMX generic serial port driver");
2098 MODULE_LICENSE("GPL");
2099 MODULE_ALIAS("platform:imx-uart");
This page took 0.071573 seconds and 4 git commands to generate.