Merge branch 'for-3.7' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / tty / serial / sh-sci.c
1 /*
2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
3 *
4 * Copyright (C) 2002 - 2011 Paul Mundt
5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6 *
7 * based off of the old drivers/char/sh-sci.c by:
8 *
9 * Copyright (C) 1999, 2000 Niibe Yutaka
10 * Copyright (C) 2000 Sugioka Toshinobu
11 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
12 * Modified to support SecureEdge. David McCullough (2002)
13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14 * Removed SH7300 support (Jul 2007).
15 *
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file "COPYING" in the main directory of this archive
18 * for more details.
19 */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23
24 #undef DEBUG
25
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/sh_dma.h>
29 #include <linux/timer.h>
30 #include <linux/interrupt.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/serial.h>
34 #include <linux/major.h>
35 #include <linux/string.h>
36 #include <linux/sysrq.h>
37 #include <linux/ioport.h>
38 #include <linux/mm.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/console.h>
42 #include <linux/platform_device.h>
43 #include <linux/serial_sci.h>
44 #include <linux/notifier.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/cpufreq.h>
47 #include <linux/clk.h>
48 #include <linux/ctype.h>
49 #include <linux/err.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/slab.h>
54 #include <linux/gpio.h>
55
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59
60 #include "sh-sci.h"
61
62 struct sci_port {
63 struct uart_port port;
64
65 /* Platform configuration */
66 struct plat_sci_port *cfg;
67
68 /* Break timer */
69 struct timer_list break_timer;
70 int break_flag;
71
72 /* Interface clock */
73 struct clk *iclk;
74 /* Function clock */
75 struct clk *fclk;
76
77 char *irqstr[SCIx_NR_IRQS];
78 char *gpiostr[SCIx_NR_FNS];
79
80 struct dma_chan *chan_tx;
81 struct dma_chan *chan_rx;
82
83 #ifdef CONFIG_SERIAL_SH_SCI_DMA
84 struct dma_async_tx_descriptor *desc_tx;
85 struct dma_async_tx_descriptor *desc_rx[2];
86 dma_cookie_t cookie_tx;
87 dma_cookie_t cookie_rx[2];
88 dma_cookie_t active_rx;
89 struct scatterlist sg_tx;
90 unsigned int sg_len_tx;
91 struct scatterlist sg_rx[2];
92 size_t buf_len_rx;
93 struct sh_dmae_slave param_tx;
94 struct sh_dmae_slave param_rx;
95 struct work_struct work_tx;
96 struct work_struct work_rx;
97 struct timer_list rx_timer;
98 unsigned int rx_timeout;
99 #endif
100
101 struct notifier_block freq_transition;
102
103 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
104 unsigned short saved_smr;
105 unsigned short saved_fcr;
106 unsigned char saved_brr;
107 #endif
108 };
109
110 /* Function prototypes */
111 static void sci_start_tx(struct uart_port *port);
112 static void sci_stop_tx(struct uart_port *port);
113 static void sci_start_rx(struct uart_port *port);
114
115 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
116
117 static struct sci_port sci_ports[SCI_NPORTS];
118 static struct uart_driver sci_uart_driver;
119
120 static inline struct sci_port *
121 to_sci_port(struct uart_port *uart)
122 {
123 return container_of(uart, struct sci_port, port);
124 }
125
126 struct plat_sci_reg {
127 u8 offset, size;
128 };
129
130 /* Helper for invalidating specific entries of an inherited map. */
131 #define sci_reg_invalid { .offset = 0, .size = 0 }
132
133 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
134 [SCIx_PROBE_REGTYPE] = {
135 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
136 },
137
138 /*
139 * Common SCI definitions, dependent on the port's regshift
140 * value.
141 */
142 [SCIx_SCI_REGTYPE] = {
143 [SCSMR] = { 0x00, 8 },
144 [SCBRR] = { 0x01, 8 },
145 [SCSCR] = { 0x02, 8 },
146 [SCxTDR] = { 0x03, 8 },
147 [SCxSR] = { 0x04, 8 },
148 [SCxRDR] = { 0x05, 8 },
149 [SCFCR] = sci_reg_invalid,
150 [SCFDR] = sci_reg_invalid,
151 [SCTFDR] = sci_reg_invalid,
152 [SCRFDR] = sci_reg_invalid,
153 [SCSPTR] = sci_reg_invalid,
154 [SCLSR] = sci_reg_invalid,
155 },
156
157 /*
158 * Common definitions for legacy IrDA ports, dependent on
159 * regshift value.
160 */
161 [SCIx_IRDA_REGTYPE] = {
162 [SCSMR] = { 0x00, 8 },
163 [SCBRR] = { 0x01, 8 },
164 [SCSCR] = { 0x02, 8 },
165 [SCxTDR] = { 0x03, 8 },
166 [SCxSR] = { 0x04, 8 },
167 [SCxRDR] = { 0x05, 8 },
168 [SCFCR] = { 0x06, 8 },
169 [SCFDR] = { 0x07, 16 },
170 [SCTFDR] = sci_reg_invalid,
171 [SCRFDR] = sci_reg_invalid,
172 [SCSPTR] = sci_reg_invalid,
173 [SCLSR] = sci_reg_invalid,
174 },
175
176 /*
177 * Common SCIFA definitions.
178 */
179 [SCIx_SCIFA_REGTYPE] = {
180 [SCSMR] = { 0x00, 16 },
181 [SCBRR] = { 0x04, 8 },
182 [SCSCR] = { 0x08, 16 },
183 [SCxTDR] = { 0x20, 8 },
184 [SCxSR] = { 0x14, 16 },
185 [SCxRDR] = { 0x24, 8 },
186 [SCFCR] = { 0x18, 16 },
187 [SCFDR] = { 0x1c, 16 },
188 [SCTFDR] = sci_reg_invalid,
189 [SCRFDR] = sci_reg_invalid,
190 [SCSPTR] = sci_reg_invalid,
191 [SCLSR] = sci_reg_invalid,
192 },
193
194 /*
195 * Common SCIFB definitions.
196 */
197 [SCIx_SCIFB_REGTYPE] = {
198 [SCSMR] = { 0x00, 16 },
199 [SCBRR] = { 0x04, 8 },
200 [SCSCR] = { 0x08, 16 },
201 [SCxTDR] = { 0x40, 8 },
202 [SCxSR] = { 0x14, 16 },
203 [SCxRDR] = { 0x60, 8 },
204 [SCFCR] = { 0x18, 16 },
205 [SCFDR] = { 0x1c, 16 },
206 [SCTFDR] = sci_reg_invalid,
207 [SCRFDR] = sci_reg_invalid,
208 [SCSPTR] = sci_reg_invalid,
209 [SCLSR] = sci_reg_invalid,
210 },
211
212 /*
213 * Common SH-2(A) SCIF definitions for ports with FIFO data
214 * count registers.
215 */
216 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
217 [SCSMR] = { 0x00, 16 },
218 [SCBRR] = { 0x04, 8 },
219 [SCSCR] = { 0x08, 16 },
220 [SCxTDR] = { 0x0c, 8 },
221 [SCxSR] = { 0x10, 16 },
222 [SCxRDR] = { 0x14, 8 },
223 [SCFCR] = { 0x18, 16 },
224 [SCFDR] = { 0x1c, 16 },
225 [SCTFDR] = sci_reg_invalid,
226 [SCRFDR] = sci_reg_invalid,
227 [SCSPTR] = { 0x20, 16 },
228 [SCLSR] = { 0x24, 16 },
229 },
230
231 /*
232 * Common SH-3 SCIF definitions.
233 */
234 [SCIx_SH3_SCIF_REGTYPE] = {
235 [SCSMR] = { 0x00, 8 },
236 [SCBRR] = { 0x02, 8 },
237 [SCSCR] = { 0x04, 8 },
238 [SCxTDR] = { 0x06, 8 },
239 [SCxSR] = { 0x08, 16 },
240 [SCxRDR] = { 0x0a, 8 },
241 [SCFCR] = { 0x0c, 8 },
242 [SCFDR] = { 0x0e, 16 },
243 [SCTFDR] = sci_reg_invalid,
244 [SCRFDR] = sci_reg_invalid,
245 [SCSPTR] = sci_reg_invalid,
246 [SCLSR] = sci_reg_invalid,
247 },
248
249 /*
250 * Common SH-4(A) SCIF(B) definitions.
251 */
252 [SCIx_SH4_SCIF_REGTYPE] = {
253 [SCSMR] = { 0x00, 16 },
254 [SCBRR] = { 0x04, 8 },
255 [SCSCR] = { 0x08, 16 },
256 [SCxTDR] = { 0x0c, 8 },
257 [SCxSR] = { 0x10, 16 },
258 [SCxRDR] = { 0x14, 8 },
259 [SCFCR] = { 0x18, 16 },
260 [SCFDR] = { 0x1c, 16 },
261 [SCTFDR] = sci_reg_invalid,
262 [SCRFDR] = sci_reg_invalid,
263 [SCSPTR] = { 0x20, 16 },
264 [SCLSR] = { 0x24, 16 },
265 },
266
267 /*
268 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
269 * register.
270 */
271 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
272 [SCSMR] = { 0x00, 16 },
273 [SCBRR] = { 0x04, 8 },
274 [SCSCR] = { 0x08, 16 },
275 [SCxTDR] = { 0x0c, 8 },
276 [SCxSR] = { 0x10, 16 },
277 [SCxRDR] = { 0x14, 8 },
278 [SCFCR] = { 0x18, 16 },
279 [SCFDR] = { 0x1c, 16 },
280 [SCTFDR] = sci_reg_invalid,
281 [SCRFDR] = sci_reg_invalid,
282 [SCSPTR] = sci_reg_invalid,
283 [SCLSR] = { 0x24, 16 },
284 },
285
286 /*
287 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
288 * count registers.
289 */
290 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
291 [SCSMR] = { 0x00, 16 },
292 [SCBRR] = { 0x04, 8 },
293 [SCSCR] = { 0x08, 16 },
294 [SCxTDR] = { 0x0c, 8 },
295 [SCxSR] = { 0x10, 16 },
296 [SCxRDR] = { 0x14, 8 },
297 [SCFCR] = { 0x18, 16 },
298 [SCFDR] = { 0x1c, 16 },
299 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
300 [SCRFDR] = { 0x20, 16 },
301 [SCSPTR] = { 0x24, 16 },
302 [SCLSR] = { 0x28, 16 },
303 },
304
305 /*
306 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
307 * registers.
308 */
309 [SCIx_SH7705_SCIF_REGTYPE] = {
310 [SCSMR] = { 0x00, 16 },
311 [SCBRR] = { 0x04, 8 },
312 [SCSCR] = { 0x08, 16 },
313 [SCxTDR] = { 0x20, 8 },
314 [SCxSR] = { 0x14, 16 },
315 [SCxRDR] = { 0x24, 8 },
316 [SCFCR] = { 0x18, 16 },
317 [SCFDR] = { 0x1c, 16 },
318 [SCTFDR] = sci_reg_invalid,
319 [SCRFDR] = sci_reg_invalid,
320 [SCSPTR] = sci_reg_invalid,
321 [SCLSR] = sci_reg_invalid,
322 },
323 };
324
325 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
326
327 /*
328 * The "offset" here is rather misleading, in that it refers to an enum
329 * value relative to the port mapping rather than the fixed offset
330 * itself, which needs to be manually retrieved from the platform's
331 * register map for the given port.
332 */
333 static unsigned int sci_serial_in(struct uart_port *p, int offset)
334 {
335 struct plat_sci_reg *reg = sci_getreg(p, offset);
336
337 if (reg->size == 8)
338 return ioread8(p->membase + (reg->offset << p->regshift));
339 else if (reg->size == 16)
340 return ioread16(p->membase + (reg->offset << p->regshift));
341 else
342 WARN(1, "Invalid register access\n");
343
344 return 0;
345 }
346
347 static void sci_serial_out(struct uart_port *p, int offset, int value)
348 {
349 struct plat_sci_reg *reg = sci_getreg(p, offset);
350
351 if (reg->size == 8)
352 iowrite8(value, p->membase + (reg->offset << p->regshift));
353 else if (reg->size == 16)
354 iowrite16(value, p->membase + (reg->offset << p->regshift));
355 else
356 WARN(1, "Invalid register access\n");
357 }
358
359 static int sci_probe_regmap(struct plat_sci_port *cfg)
360 {
361 switch (cfg->type) {
362 case PORT_SCI:
363 cfg->regtype = SCIx_SCI_REGTYPE;
364 break;
365 case PORT_IRDA:
366 cfg->regtype = SCIx_IRDA_REGTYPE;
367 break;
368 case PORT_SCIFA:
369 cfg->regtype = SCIx_SCIFA_REGTYPE;
370 break;
371 case PORT_SCIFB:
372 cfg->regtype = SCIx_SCIFB_REGTYPE;
373 break;
374 case PORT_SCIF:
375 /*
376 * The SH-4 is a bit of a misnomer here, although that's
377 * where this particular port layout originated. This
378 * configuration (or some slight variation thereof)
379 * remains the dominant model for all SCIFs.
380 */
381 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
382 break;
383 default:
384 printk(KERN_ERR "Can't probe register map for given port\n");
385 return -EINVAL;
386 }
387
388 return 0;
389 }
390
391 static void sci_port_enable(struct sci_port *sci_port)
392 {
393 if (!sci_port->port.dev)
394 return;
395
396 pm_runtime_get_sync(sci_port->port.dev);
397
398 clk_enable(sci_port->iclk);
399 sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
400 clk_enable(sci_port->fclk);
401 }
402
403 static void sci_port_disable(struct sci_port *sci_port)
404 {
405 if (!sci_port->port.dev)
406 return;
407
408 clk_disable(sci_port->fclk);
409 clk_disable(sci_port->iclk);
410
411 pm_runtime_put_sync(sci_port->port.dev);
412 }
413
414 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
415
416 #ifdef CONFIG_CONSOLE_POLL
417 static int sci_poll_get_char(struct uart_port *port)
418 {
419 unsigned short status;
420 int c;
421
422 do {
423 status = serial_port_in(port, SCxSR);
424 if (status & SCxSR_ERRORS(port)) {
425 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
426 continue;
427 }
428 break;
429 } while (1);
430
431 if (!(status & SCxSR_RDxF(port)))
432 return NO_POLL_CHAR;
433
434 c = serial_port_in(port, SCxRDR);
435
436 /* Dummy read */
437 serial_port_in(port, SCxSR);
438 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
439
440 return c;
441 }
442 #endif
443
444 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
445 {
446 unsigned short status;
447
448 do {
449 status = serial_port_in(port, SCxSR);
450 } while (!(status & SCxSR_TDxE(port)));
451
452 serial_port_out(port, SCxTDR, c);
453 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
454 }
455 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
456
457 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
458 {
459 struct sci_port *s = to_sci_port(port);
460 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
461
462 /*
463 * Use port-specific handler if provided.
464 */
465 if (s->cfg->ops && s->cfg->ops->init_pins) {
466 s->cfg->ops->init_pins(port, cflag);
467 return;
468 }
469
470 /*
471 * For the generic path SCSPTR is necessary. Bail out if that's
472 * unavailable, too.
473 */
474 if (!reg->size)
475 return;
476
477 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
478 ((!(cflag & CRTSCTS)))) {
479 unsigned short status;
480
481 status = serial_port_in(port, SCSPTR);
482 status &= ~SCSPTR_CTSIO;
483 status |= SCSPTR_RTSIO;
484 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
485 }
486 }
487
488 static int sci_txfill(struct uart_port *port)
489 {
490 struct plat_sci_reg *reg;
491
492 reg = sci_getreg(port, SCTFDR);
493 if (reg->size)
494 return serial_port_in(port, SCTFDR) & 0xff;
495
496 reg = sci_getreg(port, SCFDR);
497 if (reg->size)
498 return serial_port_in(port, SCFDR) >> 8;
499
500 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
501 }
502
503 static int sci_txroom(struct uart_port *port)
504 {
505 return port->fifosize - sci_txfill(port);
506 }
507
508 static int sci_rxfill(struct uart_port *port)
509 {
510 struct plat_sci_reg *reg;
511
512 reg = sci_getreg(port, SCRFDR);
513 if (reg->size)
514 return serial_port_in(port, SCRFDR) & 0xff;
515
516 reg = sci_getreg(port, SCFDR);
517 if (reg->size)
518 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
519
520 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
521 }
522
523 /*
524 * SCI helper for checking the state of the muxed port/RXD pins.
525 */
526 static inline int sci_rxd_in(struct uart_port *port)
527 {
528 struct sci_port *s = to_sci_port(port);
529
530 if (s->cfg->port_reg <= 0)
531 return 1;
532
533 /* Cast for ARM damage */
534 return !!__raw_readb((void __iomem *)s->cfg->port_reg);
535 }
536
537 /* ********************************************************************** *
538 * the interrupt related routines *
539 * ********************************************************************** */
540
541 static void sci_transmit_chars(struct uart_port *port)
542 {
543 struct circ_buf *xmit = &port->state->xmit;
544 unsigned int stopped = uart_tx_stopped(port);
545 unsigned short status;
546 unsigned short ctrl;
547 int count;
548
549 status = serial_port_in(port, SCxSR);
550 if (!(status & SCxSR_TDxE(port))) {
551 ctrl = serial_port_in(port, SCSCR);
552 if (uart_circ_empty(xmit))
553 ctrl &= ~SCSCR_TIE;
554 else
555 ctrl |= SCSCR_TIE;
556 serial_port_out(port, SCSCR, ctrl);
557 return;
558 }
559
560 count = sci_txroom(port);
561
562 do {
563 unsigned char c;
564
565 if (port->x_char) {
566 c = port->x_char;
567 port->x_char = 0;
568 } else if (!uart_circ_empty(xmit) && !stopped) {
569 c = xmit->buf[xmit->tail];
570 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
571 } else {
572 break;
573 }
574
575 serial_port_out(port, SCxTDR, c);
576
577 port->icount.tx++;
578 } while (--count > 0);
579
580 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
581
582 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
583 uart_write_wakeup(port);
584 if (uart_circ_empty(xmit)) {
585 sci_stop_tx(port);
586 } else {
587 ctrl = serial_port_in(port, SCSCR);
588
589 if (port->type != PORT_SCI) {
590 serial_port_in(port, SCxSR); /* Dummy read */
591 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
592 }
593
594 ctrl |= SCSCR_TIE;
595 serial_port_out(port, SCSCR, ctrl);
596 }
597 }
598
599 /* On SH3, SCIF may read end-of-break as a space->mark char */
600 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
601
602 static void sci_receive_chars(struct uart_port *port)
603 {
604 struct sci_port *sci_port = to_sci_port(port);
605 struct tty_struct *tty = port->state->port.tty;
606 int i, count, copied = 0;
607 unsigned short status;
608 unsigned char flag;
609
610 status = serial_port_in(port, SCxSR);
611 if (!(status & SCxSR_RDxF(port)))
612 return;
613
614 while (1) {
615 /* Don't copy more bytes than there is room for in the buffer */
616 count = tty_buffer_request_room(tty, sci_rxfill(port));
617
618 /* If for any reason we can't copy more data, we're done! */
619 if (count == 0)
620 break;
621
622 if (port->type == PORT_SCI) {
623 char c = serial_port_in(port, SCxRDR);
624 if (uart_handle_sysrq_char(port, c) ||
625 sci_port->break_flag)
626 count = 0;
627 else
628 tty_insert_flip_char(tty, c, TTY_NORMAL);
629 } else {
630 for (i = 0; i < count; i++) {
631 char c = serial_port_in(port, SCxRDR);
632
633 status = serial_port_in(port, SCxSR);
634 #if defined(CONFIG_CPU_SH3)
635 /* Skip "chars" during break */
636 if (sci_port->break_flag) {
637 if ((c == 0) &&
638 (status & SCxSR_FER(port))) {
639 count--; i--;
640 continue;
641 }
642
643 /* Nonzero => end-of-break */
644 dev_dbg(port->dev, "debounce<%02x>\n", c);
645 sci_port->break_flag = 0;
646
647 if (STEPFN(c)) {
648 count--; i--;
649 continue;
650 }
651 }
652 #endif /* CONFIG_CPU_SH3 */
653 if (uart_handle_sysrq_char(port, c)) {
654 count--; i--;
655 continue;
656 }
657
658 /* Store data and status */
659 if (status & SCxSR_FER(port)) {
660 flag = TTY_FRAME;
661 port->icount.frame++;
662 dev_notice(port->dev, "frame error\n");
663 } else if (status & SCxSR_PER(port)) {
664 flag = TTY_PARITY;
665 port->icount.parity++;
666 dev_notice(port->dev, "parity error\n");
667 } else
668 flag = TTY_NORMAL;
669
670 tty_insert_flip_char(tty, c, flag);
671 }
672 }
673
674 serial_port_in(port, SCxSR); /* dummy read */
675 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
676
677 copied += count;
678 port->icount.rx += count;
679 }
680
681 if (copied) {
682 /* Tell the rest of the system the news. New characters! */
683 tty_flip_buffer_push(tty);
684 } else {
685 serial_port_in(port, SCxSR); /* dummy read */
686 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
687 }
688 }
689
690 #define SCI_BREAK_JIFFIES (HZ/20)
691
692 /*
693 * The sci generates interrupts during the break,
694 * 1 per millisecond or so during the break period, for 9600 baud.
695 * So dont bother disabling interrupts.
696 * But dont want more than 1 break event.
697 * Use a kernel timer to periodically poll the rx line until
698 * the break is finished.
699 */
700 static inline void sci_schedule_break_timer(struct sci_port *port)
701 {
702 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
703 }
704
705 /* Ensure that two consecutive samples find the break over. */
706 static void sci_break_timer(unsigned long data)
707 {
708 struct sci_port *port = (struct sci_port *)data;
709
710 sci_port_enable(port);
711
712 if (sci_rxd_in(&port->port) == 0) {
713 port->break_flag = 1;
714 sci_schedule_break_timer(port);
715 } else if (port->break_flag == 1) {
716 /* break is over. */
717 port->break_flag = 2;
718 sci_schedule_break_timer(port);
719 } else
720 port->break_flag = 0;
721
722 sci_port_disable(port);
723 }
724
725 static int sci_handle_errors(struct uart_port *port)
726 {
727 int copied = 0;
728 unsigned short status = serial_port_in(port, SCxSR);
729 struct tty_struct *tty = port->state->port.tty;
730 struct sci_port *s = to_sci_port(port);
731
732 /*
733 * Handle overruns, if supported.
734 */
735 if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
736 if (status & (1 << s->cfg->overrun_bit)) {
737 port->icount.overrun++;
738
739 /* overrun error */
740 if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
741 copied++;
742
743 dev_notice(port->dev, "overrun error");
744 }
745 }
746
747 if (status & SCxSR_FER(port)) {
748 if (sci_rxd_in(port) == 0) {
749 /* Notify of BREAK */
750 struct sci_port *sci_port = to_sci_port(port);
751
752 if (!sci_port->break_flag) {
753 port->icount.brk++;
754
755 sci_port->break_flag = 1;
756 sci_schedule_break_timer(sci_port);
757
758 /* Do sysrq handling. */
759 if (uart_handle_break(port))
760 return 0;
761
762 dev_dbg(port->dev, "BREAK detected\n");
763
764 if (tty_insert_flip_char(tty, 0, TTY_BREAK))
765 copied++;
766 }
767
768 } else {
769 /* frame error */
770 port->icount.frame++;
771
772 if (tty_insert_flip_char(tty, 0, TTY_FRAME))
773 copied++;
774
775 dev_notice(port->dev, "frame error\n");
776 }
777 }
778
779 if (status & SCxSR_PER(port)) {
780 /* parity error */
781 port->icount.parity++;
782
783 if (tty_insert_flip_char(tty, 0, TTY_PARITY))
784 copied++;
785
786 dev_notice(port->dev, "parity error");
787 }
788
789 if (copied)
790 tty_flip_buffer_push(tty);
791
792 return copied;
793 }
794
795 static int sci_handle_fifo_overrun(struct uart_port *port)
796 {
797 struct tty_struct *tty = port->state->port.tty;
798 struct sci_port *s = to_sci_port(port);
799 struct plat_sci_reg *reg;
800 int copied = 0;
801
802 reg = sci_getreg(port, SCLSR);
803 if (!reg->size)
804 return 0;
805
806 if ((serial_port_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
807 serial_port_out(port, SCLSR, 0);
808
809 port->icount.overrun++;
810
811 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
812 tty_flip_buffer_push(tty);
813
814 dev_notice(port->dev, "overrun error\n");
815 copied++;
816 }
817
818 return copied;
819 }
820
821 static int sci_handle_breaks(struct uart_port *port)
822 {
823 int copied = 0;
824 unsigned short status = serial_port_in(port, SCxSR);
825 struct tty_struct *tty = port->state->port.tty;
826 struct sci_port *s = to_sci_port(port);
827
828 if (uart_handle_break(port))
829 return 0;
830
831 if (!s->break_flag && status & SCxSR_BRK(port)) {
832 #if defined(CONFIG_CPU_SH3)
833 /* Debounce break */
834 s->break_flag = 1;
835 #endif
836
837 port->icount.brk++;
838
839 /* Notify of BREAK */
840 if (tty_insert_flip_char(tty, 0, TTY_BREAK))
841 copied++;
842
843 dev_dbg(port->dev, "BREAK detected\n");
844 }
845
846 if (copied)
847 tty_flip_buffer_push(tty);
848
849 copied += sci_handle_fifo_overrun(port);
850
851 return copied;
852 }
853
854 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
855 {
856 #ifdef CONFIG_SERIAL_SH_SCI_DMA
857 struct uart_port *port = ptr;
858 struct sci_port *s = to_sci_port(port);
859
860 if (s->chan_rx) {
861 u16 scr = serial_port_in(port, SCSCR);
862 u16 ssr = serial_port_in(port, SCxSR);
863
864 /* Disable future Rx interrupts */
865 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
866 disable_irq_nosync(irq);
867 scr |= 0x4000;
868 } else {
869 scr &= ~SCSCR_RIE;
870 }
871 serial_port_out(port, SCSCR, scr);
872 /* Clear current interrupt */
873 serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
874 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
875 jiffies, s->rx_timeout);
876 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
877
878 return IRQ_HANDLED;
879 }
880 #endif
881
882 /* I think sci_receive_chars has to be called irrespective
883 * of whether the I_IXOFF is set, otherwise, how is the interrupt
884 * to be disabled?
885 */
886 sci_receive_chars(ptr);
887
888 return IRQ_HANDLED;
889 }
890
891 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
892 {
893 struct uart_port *port = ptr;
894 unsigned long flags;
895
896 spin_lock_irqsave(&port->lock, flags);
897 sci_transmit_chars(port);
898 spin_unlock_irqrestore(&port->lock, flags);
899
900 return IRQ_HANDLED;
901 }
902
903 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
904 {
905 struct uart_port *port = ptr;
906
907 /* Handle errors */
908 if (port->type == PORT_SCI) {
909 if (sci_handle_errors(port)) {
910 /* discard character in rx buffer */
911 serial_port_in(port, SCxSR);
912 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
913 }
914 } else {
915 sci_handle_fifo_overrun(port);
916 sci_rx_interrupt(irq, ptr);
917 }
918
919 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
920
921 /* Kick the transmission */
922 sci_tx_interrupt(irq, ptr);
923
924 return IRQ_HANDLED;
925 }
926
927 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
928 {
929 struct uart_port *port = ptr;
930
931 /* Handle BREAKs */
932 sci_handle_breaks(port);
933 serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
934
935 return IRQ_HANDLED;
936 }
937
938 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
939 {
940 /*
941 * Not all ports (such as SCIFA) will support REIE. Rather than
942 * special-casing the port type, we check the port initialization
943 * IRQ enable mask to see whether the IRQ is desired at all. If
944 * it's unset, it's logically inferred that there's no point in
945 * testing for it.
946 */
947 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
948 }
949
950 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
951 {
952 unsigned short ssr_status, scr_status, err_enabled;
953 struct uart_port *port = ptr;
954 struct sci_port *s = to_sci_port(port);
955 irqreturn_t ret = IRQ_NONE;
956
957 ssr_status = serial_port_in(port, SCxSR);
958 scr_status = serial_port_in(port, SCSCR);
959 err_enabled = scr_status & port_rx_irq_mask(port);
960
961 /* Tx Interrupt */
962 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
963 !s->chan_tx)
964 ret = sci_tx_interrupt(irq, ptr);
965
966 /*
967 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
968 * DR flags
969 */
970 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
971 (scr_status & SCSCR_RIE))
972 ret = sci_rx_interrupt(irq, ptr);
973
974 /* Error Interrupt */
975 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
976 ret = sci_er_interrupt(irq, ptr);
977
978 /* Break Interrupt */
979 if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
980 ret = sci_br_interrupt(irq, ptr);
981
982 return ret;
983 }
984
985 /*
986 * Here we define a transition notifier so that we can update all of our
987 * ports' baud rate when the peripheral clock changes.
988 */
989 static int sci_notifier(struct notifier_block *self,
990 unsigned long phase, void *p)
991 {
992 struct sci_port *sci_port;
993 unsigned long flags;
994
995 sci_port = container_of(self, struct sci_port, freq_transition);
996
997 if ((phase == CPUFREQ_POSTCHANGE) ||
998 (phase == CPUFREQ_RESUMECHANGE)) {
999 struct uart_port *port = &sci_port->port;
1000
1001 spin_lock_irqsave(&port->lock, flags);
1002 port->uartclk = clk_get_rate(sci_port->iclk);
1003 spin_unlock_irqrestore(&port->lock, flags);
1004 }
1005
1006 return NOTIFY_OK;
1007 }
1008
1009 static struct sci_irq_desc {
1010 const char *desc;
1011 irq_handler_t handler;
1012 } sci_irq_desc[] = {
1013 /*
1014 * Split out handlers, the default case.
1015 */
1016 [SCIx_ERI_IRQ] = {
1017 .desc = "rx err",
1018 .handler = sci_er_interrupt,
1019 },
1020
1021 [SCIx_RXI_IRQ] = {
1022 .desc = "rx full",
1023 .handler = sci_rx_interrupt,
1024 },
1025
1026 [SCIx_TXI_IRQ] = {
1027 .desc = "tx empty",
1028 .handler = sci_tx_interrupt,
1029 },
1030
1031 [SCIx_BRI_IRQ] = {
1032 .desc = "break",
1033 .handler = sci_br_interrupt,
1034 },
1035
1036 /*
1037 * Special muxed handler.
1038 */
1039 [SCIx_MUX_IRQ] = {
1040 .desc = "mux",
1041 .handler = sci_mpxed_interrupt,
1042 },
1043 };
1044
1045 static int sci_request_irq(struct sci_port *port)
1046 {
1047 struct uart_port *up = &port->port;
1048 int i, j, ret = 0;
1049
1050 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1051 struct sci_irq_desc *desc;
1052 unsigned int irq;
1053
1054 if (SCIx_IRQ_IS_MUXED(port)) {
1055 i = SCIx_MUX_IRQ;
1056 irq = up->irq;
1057 } else {
1058 irq = port->cfg->irqs[i];
1059
1060 /*
1061 * Certain port types won't support all of the
1062 * available interrupt sources.
1063 */
1064 if (unlikely(!irq))
1065 continue;
1066 }
1067
1068 desc = sci_irq_desc + i;
1069 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1070 dev_name(up->dev), desc->desc);
1071 if (!port->irqstr[j]) {
1072 dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1073 desc->desc);
1074 goto out_nomem;
1075 }
1076
1077 ret = request_irq(irq, desc->handler, up->irqflags,
1078 port->irqstr[j], port);
1079 if (unlikely(ret)) {
1080 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1081 goto out_noirq;
1082 }
1083 }
1084
1085 return 0;
1086
1087 out_noirq:
1088 while (--i >= 0)
1089 free_irq(port->cfg->irqs[i], port);
1090
1091 out_nomem:
1092 while (--j >= 0)
1093 kfree(port->irqstr[j]);
1094
1095 return ret;
1096 }
1097
1098 static void sci_free_irq(struct sci_port *port)
1099 {
1100 int i;
1101
1102 /*
1103 * Intentionally in reverse order so we iterate over the muxed
1104 * IRQ first.
1105 */
1106 for (i = 0; i < SCIx_NR_IRQS; i++) {
1107 unsigned int irq = port->cfg->irqs[i];
1108
1109 /*
1110 * Certain port types won't support all of the available
1111 * interrupt sources.
1112 */
1113 if (unlikely(!irq))
1114 continue;
1115
1116 free_irq(port->cfg->irqs[i], port);
1117 kfree(port->irqstr[i]);
1118
1119 if (SCIx_IRQ_IS_MUXED(port)) {
1120 /* If there's only one IRQ, we're done. */
1121 return;
1122 }
1123 }
1124 }
1125
1126 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1127 "sck", "rxd", "txd", "cts", "rts",
1128 };
1129
1130 static const char *sci_gpio_str(unsigned int index)
1131 {
1132 return sci_gpio_names[index];
1133 }
1134
1135 static void __devinit sci_init_gpios(struct sci_port *port)
1136 {
1137 struct uart_port *up = &port->port;
1138 int i;
1139
1140 if (!port->cfg)
1141 return;
1142
1143 for (i = 0; i < SCIx_NR_FNS; i++) {
1144 const char *desc;
1145 int ret;
1146
1147 if (!port->cfg->gpios[i])
1148 continue;
1149
1150 desc = sci_gpio_str(i);
1151
1152 port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1153 dev_name(up->dev), desc);
1154
1155 /*
1156 * If we've failed the allocation, we can still continue
1157 * on with a NULL string.
1158 */
1159 if (!port->gpiostr[i])
1160 dev_notice(up->dev, "%s string allocation failure\n",
1161 desc);
1162
1163 ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1164 if (unlikely(ret != 0)) {
1165 dev_notice(up->dev, "failed %s gpio request\n", desc);
1166
1167 /*
1168 * If we can't get the GPIO for whatever reason,
1169 * no point in keeping the verbose string around.
1170 */
1171 kfree(port->gpiostr[i]);
1172 }
1173 }
1174 }
1175
1176 static void sci_free_gpios(struct sci_port *port)
1177 {
1178 int i;
1179
1180 for (i = 0; i < SCIx_NR_FNS; i++)
1181 if (port->cfg->gpios[i]) {
1182 gpio_free(port->cfg->gpios[i]);
1183 kfree(port->gpiostr[i]);
1184 }
1185 }
1186
1187 static unsigned int sci_tx_empty(struct uart_port *port)
1188 {
1189 unsigned short status = serial_port_in(port, SCxSR);
1190 unsigned short in_tx_fifo = sci_txfill(port);
1191
1192 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1193 }
1194
1195 /*
1196 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1197 * CTS/RTS is supported in hardware by at least one port and controlled
1198 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1199 * handled via the ->init_pins() op, which is a bit of a one-way street,
1200 * lacking any ability to defer pin control -- this will later be
1201 * converted over to the GPIO framework).
1202 *
1203 * Other modes (such as loopback) are supported generically on certain
1204 * port types, but not others. For these it's sufficient to test for the
1205 * existence of the support register and simply ignore the port type.
1206 */
1207 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1208 {
1209 if (mctrl & TIOCM_LOOP) {
1210 struct plat_sci_reg *reg;
1211
1212 /*
1213 * Standard loopback mode for SCFCR ports.
1214 */
1215 reg = sci_getreg(port, SCFCR);
1216 if (reg->size)
1217 serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | 1);
1218 }
1219 }
1220
1221 static unsigned int sci_get_mctrl(struct uart_port *port)
1222 {
1223 /*
1224 * CTS/RTS is handled in hardware when supported, while nothing
1225 * else is wired up. Keep it simple and simply assert DSR/CAR.
1226 */
1227 return TIOCM_DSR | TIOCM_CAR;
1228 }
1229
1230 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1231 static void sci_dma_tx_complete(void *arg)
1232 {
1233 struct sci_port *s = arg;
1234 struct uart_port *port = &s->port;
1235 struct circ_buf *xmit = &port->state->xmit;
1236 unsigned long flags;
1237
1238 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1239
1240 spin_lock_irqsave(&port->lock, flags);
1241
1242 xmit->tail += sg_dma_len(&s->sg_tx);
1243 xmit->tail &= UART_XMIT_SIZE - 1;
1244
1245 port->icount.tx += sg_dma_len(&s->sg_tx);
1246
1247 async_tx_ack(s->desc_tx);
1248 s->desc_tx = NULL;
1249
1250 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1251 uart_write_wakeup(port);
1252
1253 if (!uart_circ_empty(xmit)) {
1254 s->cookie_tx = 0;
1255 schedule_work(&s->work_tx);
1256 } else {
1257 s->cookie_tx = -EINVAL;
1258 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1259 u16 ctrl = serial_port_in(port, SCSCR);
1260 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1261 }
1262 }
1263
1264 spin_unlock_irqrestore(&port->lock, flags);
1265 }
1266
1267 /* Locking: called with port lock held */
1268 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1269 size_t count)
1270 {
1271 struct uart_port *port = &s->port;
1272 int i, active, room;
1273
1274 room = tty_buffer_request_room(tty, count);
1275
1276 if (s->active_rx == s->cookie_rx[0]) {
1277 active = 0;
1278 } else if (s->active_rx == s->cookie_rx[1]) {
1279 active = 1;
1280 } else {
1281 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1282 return 0;
1283 }
1284
1285 if (room < count)
1286 dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1287 count - room);
1288 if (!room)
1289 return room;
1290
1291 for (i = 0; i < room; i++)
1292 tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1293 TTY_NORMAL);
1294
1295 port->icount.rx += room;
1296
1297 return room;
1298 }
1299
1300 static void sci_dma_rx_complete(void *arg)
1301 {
1302 struct sci_port *s = arg;
1303 struct uart_port *port = &s->port;
1304 struct tty_struct *tty = port->state->port.tty;
1305 unsigned long flags;
1306 int count;
1307
1308 dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1309
1310 spin_lock_irqsave(&port->lock, flags);
1311
1312 count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1313
1314 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1315
1316 spin_unlock_irqrestore(&port->lock, flags);
1317
1318 if (count)
1319 tty_flip_buffer_push(tty);
1320
1321 schedule_work(&s->work_rx);
1322 }
1323
1324 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1325 {
1326 struct dma_chan *chan = s->chan_rx;
1327 struct uart_port *port = &s->port;
1328
1329 s->chan_rx = NULL;
1330 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1331 dma_release_channel(chan);
1332 if (sg_dma_address(&s->sg_rx[0]))
1333 dma_free_coherent(port->dev, s->buf_len_rx * 2,
1334 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1335 if (enable_pio)
1336 sci_start_rx(port);
1337 }
1338
1339 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1340 {
1341 struct dma_chan *chan = s->chan_tx;
1342 struct uart_port *port = &s->port;
1343
1344 s->chan_tx = NULL;
1345 s->cookie_tx = -EINVAL;
1346 dma_release_channel(chan);
1347 if (enable_pio)
1348 sci_start_tx(port);
1349 }
1350
1351 static void sci_submit_rx(struct sci_port *s)
1352 {
1353 struct dma_chan *chan = s->chan_rx;
1354 int i;
1355
1356 for (i = 0; i < 2; i++) {
1357 struct scatterlist *sg = &s->sg_rx[i];
1358 struct dma_async_tx_descriptor *desc;
1359
1360 desc = dmaengine_prep_slave_sg(chan,
1361 sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1362
1363 if (desc) {
1364 s->desc_rx[i] = desc;
1365 desc->callback = sci_dma_rx_complete;
1366 desc->callback_param = s;
1367 s->cookie_rx[i] = desc->tx_submit(desc);
1368 }
1369
1370 if (!desc || s->cookie_rx[i] < 0) {
1371 if (i) {
1372 async_tx_ack(s->desc_rx[0]);
1373 s->cookie_rx[0] = -EINVAL;
1374 }
1375 if (desc) {
1376 async_tx_ack(desc);
1377 s->cookie_rx[i] = -EINVAL;
1378 }
1379 dev_warn(s->port.dev,
1380 "failed to re-start DMA, using PIO\n");
1381 sci_rx_dma_release(s, true);
1382 return;
1383 }
1384 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1385 s->cookie_rx[i], i);
1386 }
1387
1388 s->active_rx = s->cookie_rx[0];
1389
1390 dma_async_issue_pending(chan);
1391 }
1392
1393 static void work_fn_rx(struct work_struct *work)
1394 {
1395 struct sci_port *s = container_of(work, struct sci_port, work_rx);
1396 struct uart_port *port = &s->port;
1397 struct dma_async_tx_descriptor *desc;
1398 int new;
1399
1400 if (s->active_rx == s->cookie_rx[0]) {
1401 new = 0;
1402 } else if (s->active_rx == s->cookie_rx[1]) {
1403 new = 1;
1404 } else {
1405 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1406 return;
1407 }
1408 desc = s->desc_rx[new];
1409
1410 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1411 DMA_SUCCESS) {
1412 /* Handle incomplete DMA receive */
1413 struct tty_struct *tty = port->state->port.tty;
1414 struct dma_chan *chan = s->chan_rx;
1415 struct shdma_desc *sh_desc = container_of(desc,
1416 struct shdma_desc, async_tx);
1417 unsigned long flags;
1418 int count;
1419
1420 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1421 dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1422 sh_desc->partial, sh_desc->cookie);
1423
1424 spin_lock_irqsave(&port->lock, flags);
1425 count = sci_dma_rx_push(s, tty, sh_desc->partial);
1426 spin_unlock_irqrestore(&port->lock, flags);
1427
1428 if (count)
1429 tty_flip_buffer_push(tty);
1430
1431 sci_submit_rx(s);
1432
1433 return;
1434 }
1435
1436 s->cookie_rx[new] = desc->tx_submit(desc);
1437 if (s->cookie_rx[new] < 0) {
1438 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1439 sci_rx_dma_release(s, true);
1440 return;
1441 }
1442
1443 s->active_rx = s->cookie_rx[!new];
1444
1445 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1446 s->cookie_rx[new], new, s->active_rx);
1447 }
1448
1449 static void work_fn_tx(struct work_struct *work)
1450 {
1451 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1452 struct dma_async_tx_descriptor *desc;
1453 struct dma_chan *chan = s->chan_tx;
1454 struct uart_port *port = &s->port;
1455 struct circ_buf *xmit = &port->state->xmit;
1456 struct scatterlist *sg = &s->sg_tx;
1457
1458 /*
1459 * DMA is idle now.
1460 * Port xmit buffer is already mapped, and it is one page... Just adjust
1461 * offsets and lengths. Since it is a circular buffer, we have to
1462 * transmit till the end, and then the rest. Take the port lock to get a
1463 * consistent xmit buffer state.
1464 */
1465 spin_lock_irq(&port->lock);
1466 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1467 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1468 sg->offset;
1469 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1470 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1471 spin_unlock_irq(&port->lock);
1472
1473 BUG_ON(!sg_dma_len(sg));
1474
1475 desc = dmaengine_prep_slave_sg(chan,
1476 sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1477 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1478 if (!desc) {
1479 /* switch to PIO */
1480 sci_tx_dma_release(s, true);
1481 return;
1482 }
1483
1484 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1485
1486 spin_lock_irq(&port->lock);
1487 s->desc_tx = desc;
1488 desc->callback = sci_dma_tx_complete;
1489 desc->callback_param = s;
1490 spin_unlock_irq(&port->lock);
1491 s->cookie_tx = desc->tx_submit(desc);
1492 if (s->cookie_tx < 0) {
1493 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1494 /* switch to PIO */
1495 sci_tx_dma_release(s, true);
1496 return;
1497 }
1498
1499 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1500 xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1501
1502 dma_async_issue_pending(chan);
1503 }
1504 #endif
1505
1506 static void sci_start_tx(struct uart_port *port)
1507 {
1508 struct sci_port *s = to_sci_port(port);
1509 unsigned short ctrl;
1510
1511 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1512 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1513 u16 new, scr = serial_port_in(port, SCSCR);
1514 if (s->chan_tx)
1515 new = scr | 0x8000;
1516 else
1517 new = scr & ~0x8000;
1518 if (new != scr)
1519 serial_port_out(port, SCSCR, new);
1520 }
1521
1522 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1523 s->cookie_tx < 0) {
1524 s->cookie_tx = 0;
1525 schedule_work(&s->work_tx);
1526 }
1527 #endif
1528
1529 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1530 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1531 ctrl = serial_port_in(port, SCSCR);
1532 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1533 }
1534 }
1535
1536 static void sci_stop_tx(struct uart_port *port)
1537 {
1538 unsigned short ctrl;
1539
1540 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1541 ctrl = serial_port_in(port, SCSCR);
1542
1543 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1544 ctrl &= ~0x8000;
1545
1546 ctrl &= ~SCSCR_TIE;
1547
1548 serial_port_out(port, SCSCR, ctrl);
1549 }
1550
1551 static void sci_start_rx(struct uart_port *port)
1552 {
1553 unsigned short ctrl;
1554
1555 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1556
1557 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1558 ctrl &= ~0x4000;
1559
1560 serial_port_out(port, SCSCR, ctrl);
1561 }
1562
1563 static void sci_stop_rx(struct uart_port *port)
1564 {
1565 unsigned short ctrl;
1566
1567 ctrl = serial_port_in(port, SCSCR);
1568
1569 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1570 ctrl &= ~0x4000;
1571
1572 ctrl &= ~port_rx_irq_mask(port);
1573
1574 serial_port_out(port, SCSCR, ctrl);
1575 }
1576
1577 static void sci_enable_ms(struct uart_port *port)
1578 {
1579 /*
1580 * Not supported by hardware, always a nop.
1581 */
1582 }
1583
1584 static void sci_break_ctl(struct uart_port *port, int break_state)
1585 {
1586 struct sci_port *s = to_sci_port(port);
1587 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1588 unsigned short scscr, scsptr;
1589
1590 /* check wheter the port has SCSPTR */
1591 if (!reg->size) {
1592 /*
1593 * Not supported by hardware. Most parts couple break and rx
1594 * interrupts together, with break detection always enabled.
1595 */
1596 return;
1597 }
1598
1599 scsptr = serial_port_in(port, SCSPTR);
1600 scscr = serial_port_in(port, SCSCR);
1601
1602 if (break_state == -1) {
1603 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1604 scscr &= ~SCSCR_TE;
1605 } else {
1606 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1607 scscr |= SCSCR_TE;
1608 }
1609
1610 serial_port_out(port, SCSPTR, scsptr);
1611 serial_port_out(port, SCSCR, scscr);
1612 }
1613
1614 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1615 static bool filter(struct dma_chan *chan, void *slave)
1616 {
1617 struct sh_dmae_slave *param = slave;
1618
1619 dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1620 param->shdma_slave.slave_id);
1621
1622 chan->private = &param->shdma_slave;
1623 return true;
1624 }
1625
1626 static void rx_timer_fn(unsigned long arg)
1627 {
1628 struct sci_port *s = (struct sci_port *)arg;
1629 struct uart_port *port = &s->port;
1630 u16 scr = serial_port_in(port, SCSCR);
1631
1632 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1633 scr &= ~0x4000;
1634 enable_irq(s->cfg->irqs[1]);
1635 }
1636 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1637 dev_dbg(port->dev, "DMA Rx timed out\n");
1638 schedule_work(&s->work_rx);
1639 }
1640
1641 static void sci_request_dma(struct uart_port *port)
1642 {
1643 struct sci_port *s = to_sci_port(port);
1644 struct sh_dmae_slave *param;
1645 struct dma_chan *chan;
1646 dma_cap_mask_t mask;
1647 int nent;
1648
1649 dev_dbg(port->dev, "%s: port %d\n", __func__,
1650 port->line);
1651
1652 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1653 return;
1654
1655 dma_cap_zero(mask);
1656 dma_cap_set(DMA_SLAVE, mask);
1657
1658 param = &s->param_tx;
1659
1660 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1661 param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1662
1663 s->cookie_tx = -EINVAL;
1664 chan = dma_request_channel(mask, filter, param);
1665 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1666 if (chan) {
1667 s->chan_tx = chan;
1668 sg_init_table(&s->sg_tx, 1);
1669 /* UART circular tx buffer is an aligned page. */
1670 BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1671 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1672 UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1673 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1674 if (!nent)
1675 sci_tx_dma_release(s, false);
1676 else
1677 dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1678 sg_dma_len(&s->sg_tx),
1679 port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1680
1681 s->sg_len_tx = nent;
1682
1683 INIT_WORK(&s->work_tx, work_fn_tx);
1684 }
1685
1686 param = &s->param_rx;
1687
1688 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1689 param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1690
1691 chan = dma_request_channel(mask, filter, param);
1692 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1693 if (chan) {
1694 dma_addr_t dma[2];
1695 void *buf[2];
1696 int i;
1697
1698 s->chan_rx = chan;
1699
1700 s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1701 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1702 &dma[0], GFP_KERNEL);
1703
1704 if (!buf[0]) {
1705 dev_warn(port->dev,
1706 "failed to allocate dma buffer, using PIO\n");
1707 sci_rx_dma_release(s, true);
1708 return;
1709 }
1710
1711 buf[1] = buf[0] + s->buf_len_rx;
1712 dma[1] = dma[0] + s->buf_len_rx;
1713
1714 for (i = 0; i < 2; i++) {
1715 struct scatterlist *sg = &s->sg_rx[i];
1716
1717 sg_init_table(sg, 1);
1718 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1719 (int)buf[i] & ~PAGE_MASK);
1720 sg_dma_address(sg) = dma[i];
1721 }
1722
1723 INIT_WORK(&s->work_rx, work_fn_rx);
1724 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1725
1726 sci_submit_rx(s);
1727 }
1728 }
1729
1730 static void sci_free_dma(struct uart_port *port)
1731 {
1732 struct sci_port *s = to_sci_port(port);
1733
1734 if (s->chan_tx)
1735 sci_tx_dma_release(s, false);
1736 if (s->chan_rx)
1737 sci_rx_dma_release(s, false);
1738 }
1739 #else
1740 static inline void sci_request_dma(struct uart_port *port)
1741 {
1742 }
1743
1744 static inline void sci_free_dma(struct uart_port *port)
1745 {
1746 }
1747 #endif
1748
1749 static int sci_startup(struct uart_port *port)
1750 {
1751 struct sci_port *s = to_sci_port(port);
1752 int ret;
1753
1754 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1755
1756 pm_runtime_put_noidle(port->dev);
1757
1758 sci_port_enable(s);
1759
1760 ret = sci_request_irq(s);
1761 if (unlikely(ret < 0))
1762 return ret;
1763
1764 sci_request_dma(port);
1765
1766 sci_start_tx(port);
1767 sci_start_rx(port);
1768
1769 return 0;
1770 }
1771
1772 static void sci_shutdown(struct uart_port *port)
1773 {
1774 struct sci_port *s = to_sci_port(port);
1775
1776 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1777
1778 sci_stop_rx(port);
1779 sci_stop_tx(port);
1780
1781 sci_free_dma(port);
1782 sci_free_irq(s);
1783
1784 sci_port_disable(s);
1785
1786 pm_runtime_get_noresume(port->dev);
1787 }
1788
1789 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1790 unsigned long freq)
1791 {
1792 switch (algo_id) {
1793 case SCBRR_ALGO_1:
1794 return ((freq + 16 * bps) / (16 * bps) - 1);
1795 case SCBRR_ALGO_2:
1796 return ((freq + 16 * bps) / (32 * bps) - 1);
1797 case SCBRR_ALGO_3:
1798 return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1799 case SCBRR_ALGO_4:
1800 return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1801 case SCBRR_ALGO_5:
1802 return (((freq * 1000 / 32) / bps) - 1);
1803 }
1804
1805 /* Warn, but use a safe default */
1806 WARN_ON(1);
1807
1808 return ((freq + 16 * bps) / (32 * bps) - 1);
1809 }
1810
1811 static void sci_reset(struct uart_port *port)
1812 {
1813 struct plat_sci_reg *reg;
1814 unsigned int status;
1815
1816 do {
1817 status = serial_port_in(port, SCxSR);
1818 } while (!(status & SCxSR_TEND(port)));
1819
1820 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
1821
1822 reg = sci_getreg(port, SCFCR);
1823 if (reg->size)
1824 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1825 }
1826
1827 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1828 struct ktermios *old)
1829 {
1830 struct sci_port *s = to_sci_port(port);
1831 struct plat_sci_reg *reg;
1832 unsigned int baud, smr_val, max_baud;
1833 int t = -1;
1834
1835 /*
1836 * earlyprintk comes here early on with port->uartclk set to zero.
1837 * the clock framework is not up and running at this point so here
1838 * we assume that 115200 is the maximum baud rate. please note that
1839 * the baud rate is not programmed during earlyprintk - it is assumed
1840 * that the previous boot loader has enabled required clocks and
1841 * setup the baud rate generator hardware for us already.
1842 */
1843 max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1844
1845 baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1846 if (likely(baud && port->uartclk))
1847 t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1848
1849 sci_port_enable(s);
1850
1851 sci_reset(port);
1852
1853 smr_val = serial_port_in(port, SCSMR) & 3;
1854
1855 if ((termios->c_cflag & CSIZE) == CS7)
1856 smr_val |= 0x40;
1857 if (termios->c_cflag & PARENB)
1858 smr_val |= 0x20;
1859 if (termios->c_cflag & PARODD)
1860 smr_val |= 0x30;
1861 if (termios->c_cflag & CSTOPB)
1862 smr_val |= 0x08;
1863
1864 uart_update_timeout(port, termios->c_cflag, baud);
1865
1866 serial_port_out(port, SCSMR, smr_val);
1867
1868 dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1869 s->cfg->scscr);
1870
1871 if (t > 0) {
1872 if (t >= 256) {
1873 serial_port_out(port, SCSMR, (serial_port_in(port, SCSMR) & ~3) | 1);
1874 t >>= 2;
1875 } else
1876 serial_port_out(port, SCSMR, serial_port_in(port, SCSMR) & ~3);
1877
1878 serial_port_out(port, SCBRR, t);
1879 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1880 }
1881
1882 sci_init_pins(port, termios->c_cflag);
1883
1884 reg = sci_getreg(port, SCFCR);
1885 if (reg->size) {
1886 unsigned short ctrl = serial_port_in(port, SCFCR);
1887
1888 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1889 if (termios->c_cflag & CRTSCTS)
1890 ctrl |= SCFCR_MCE;
1891 else
1892 ctrl &= ~SCFCR_MCE;
1893 }
1894
1895 /*
1896 * As we've done a sci_reset() above, ensure we don't
1897 * interfere with the FIFOs while toggling MCE. As the
1898 * reset values could still be set, simply mask them out.
1899 */
1900 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1901
1902 serial_port_out(port, SCFCR, ctrl);
1903 }
1904
1905 serial_port_out(port, SCSCR, s->cfg->scscr);
1906
1907 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1908 /*
1909 * Calculate delay for 1.5 DMA buffers: see
1910 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1911 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1912 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1913 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1914 * sizes), but it has been found out experimentally, that this is not
1915 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1916 * as a minimum seem to work perfectly.
1917 */
1918 if (s->chan_rx) {
1919 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1920 port->fifosize / 2;
1921 dev_dbg(port->dev,
1922 "DMA Rx t-out %ums, tty t-out %u jiffies\n",
1923 s->rx_timeout * 1000 / HZ, port->timeout);
1924 if (s->rx_timeout < msecs_to_jiffies(20))
1925 s->rx_timeout = msecs_to_jiffies(20);
1926 }
1927 #endif
1928
1929 if ((termios->c_cflag & CREAD) != 0)
1930 sci_start_rx(port);
1931
1932 sci_port_disable(s);
1933 }
1934
1935 static const char *sci_type(struct uart_port *port)
1936 {
1937 switch (port->type) {
1938 case PORT_IRDA:
1939 return "irda";
1940 case PORT_SCI:
1941 return "sci";
1942 case PORT_SCIF:
1943 return "scif";
1944 case PORT_SCIFA:
1945 return "scifa";
1946 case PORT_SCIFB:
1947 return "scifb";
1948 }
1949
1950 return NULL;
1951 }
1952
1953 static inline unsigned long sci_port_size(struct uart_port *port)
1954 {
1955 /*
1956 * Pick an arbitrary size that encapsulates all of the base
1957 * registers by default. This can be optimized later, or derived
1958 * from platform resource data at such a time that ports begin to
1959 * behave more erratically.
1960 */
1961 return 64;
1962 }
1963
1964 static int sci_remap_port(struct uart_port *port)
1965 {
1966 unsigned long size = sci_port_size(port);
1967
1968 /*
1969 * Nothing to do if there's already an established membase.
1970 */
1971 if (port->membase)
1972 return 0;
1973
1974 if (port->flags & UPF_IOREMAP) {
1975 port->membase = ioremap_nocache(port->mapbase, size);
1976 if (unlikely(!port->membase)) {
1977 dev_err(port->dev, "can't remap port#%d\n", port->line);
1978 return -ENXIO;
1979 }
1980 } else {
1981 /*
1982 * For the simple (and majority of) cases where we don't
1983 * need to do any remapping, just cast the cookie
1984 * directly.
1985 */
1986 port->membase = (void __iomem *)port->mapbase;
1987 }
1988
1989 return 0;
1990 }
1991
1992 static void sci_release_port(struct uart_port *port)
1993 {
1994 if (port->flags & UPF_IOREMAP) {
1995 iounmap(port->membase);
1996 port->membase = NULL;
1997 }
1998
1999 release_mem_region(port->mapbase, sci_port_size(port));
2000 }
2001
2002 static int sci_request_port(struct uart_port *port)
2003 {
2004 unsigned long size = sci_port_size(port);
2005 struct resource *res;
2006 int ret;
2007
2008 res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2009 if (unlikely(res == NULL))
2010 return -EBUSY;
2011
2012 ret = sci_remap_port(port);
2013 if (unlikely(ret != 0)) {
2014 release_resource(res);
2015 return ret;
2016 }
2017
2018 return 0;
2019 }
2020
2021 static void sci_config_port(struct uart_port *port, int flags)
2022 {
2023 if (flags & UART_CONFIG_TYPE) {
2024 struct sci_port *sport = to_sci_port(port);
2025
2026 port->type = sport->cfg->type;
2027 sci_request_port(port);
2028 }
2029 }
2030
2031 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2032 {
2033 struct sci_port *s = to_sci_port(port);
2034
2035 if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
2036 return -EINVAL;
2037 if (ser->baud_base < 2400)
2038 /* No paper tape reader for Mitch.. */
2039 return -EINVAL;
2040
2041 return 0;
2042 }
2043
2044 static struct uart_ops sci_uart_ops = {
2045 .tx_empty = sci_tx_empty,
2046 .set_mctrl = sci_set_mctrl,
2047 .get_mctrl = sci_get_mctrl,
2048 .start_tx = sci_start_tx,
2049 .stop_tx = sci_stop_tx,
2050 .stop_rx = sci_stop_rx,
2051 .enable_ms = sci_enable_ms,
2052 .break_ctl = sci_break_ctl,
2053 .startup = sci_startup,
2054 .shutdown = sci_shutdown,
2055 .set_termios = sci_set_termios,
2056 .type = sci_type,
2057 .release_port = sci_release_port,
2058 .request_port = sci_request_port,
2059 .config_port = sci_config_port,
2060 .verify_port = sci_verify_port,
2061 #ifdef CONFIG_CONSOLE_POLL
2062 .poll_get_char = sci_poll_get_char,
2063 .poll_put_char = sci_poll_put_char,
2064 #endif
2065 };
2066
2067 static int __devinit sci_init_single(struct platform_device *dev,
2068 struct sci_port *sci_port,
2069 unsigned int index,
2070 struct plat_sci_port *p)
2071 {
2072 struct uart_port *port = &sci_port->port;
2073 int ret;
2074
2075 sci_port->cfg = p;
2076
2077 port->ops = &sci_uart_ops;
2078 port->iotype = UPIO_MEM;
2079 port->line = index;
2080
2081 switch (p->type) {
2082 case PORT_SCIFB:
2083 port->fifosize = 256;
2084 break;
2085 case PORT_SCIFA:
2086 port->fifosize = 64;
2087 break;
2088 case PORT_SCIF:
2089 port->fifosize = 16;
2090 break;
2091 default:
2092 port->fifosize = 1;
2093 break;
2094 }
2095
2096 if (p->regtype == SCIx_PROBE_REGTYPE) {
2097 ret = sci_probe_regmap(p);
2098 if (unlikely(ret))
2099 return ret;
2100 }
2101
2102 if (dev) {
2103 sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2104 if (IS_ERR(sci_port->iclk)) {
2105 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2106 if (IS_ERR(sci_port->iclk)) {
2107 dev_err(&dev->dev, "can't get iclk\n");
2108 return PTR_ERR(sci_port->iclk);
2109 }
2110 }
2111
2112 /*
2113 * The function clock is optional, ignore it if we can't
2114 * find it.
2115 */
2116 sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2117 if (IS_ERR(sci_port->fclk))
2118 sci_port->fclk = NULL;
2119
2120 port->dev = &dev->dev;
2121
2122 sci_init_gpios(sci_port);
2123
2124 pm_runtime_irq_safe(&dev->dev);
2125 pm_runtime_get_noresume(&dev->dev);
2126 pm_runtime_enable(&dev->dev);
2127 }
2128
2129 sci_port->break_timer.data = (unsigned long)sci_port;
2130 sci_port->break_timer.function = sci_break_timer;
2131 init_timer(&sci_port->break_timer);
2132
2133 /*
2134 * Establish some sensible defaults for the error detection.
2135 */
2136 if (!p->error_mask)
2137 p->error_mask = (p->type == PORT_SCI) ?
2138 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2139
2140 /*
2141 * Establish sensible defaults for the overrun detection, unless
2142 * the part has explicitly disabled support for it.
2143 */
2144 if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2145 if (p->type == PORT_SCI)
2146 p->overrun_bit = 5;
2147 else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2148 p->overrun_bit = 9;
2149 else
2150 p->overrun_bit = 0;
2151
2152 /*
2153 * Make the error mask inclusive of overrun detection, if
2154 * supported.
2155 */
2156 p->error_mask |= (1 << p->overrun_bit);
2157 }
2158
2159 port->mapbase = p->mapbase;
2160 port->type = p->type;
2161 port->flags = p->flags;
2162 port->regshift = p->regshift;
2163
2164 /*
2165 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2166 * for the multi-IRQ ports, which is where we are primarily
2167 * concerned with the shutdown path synchronization.
2168 *
2169 * For the muxed case there's nothing more to do.
2170 */
2171 port->irq = p->irqs[SCIx_RXI_IRQ];
2172 port->irqflags = 0;
2173
2174 port->serial_in = sci_serial_in;
2175 port->serial_out = sci_serial_out;
2176
2177 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2178 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2179 p->dma_slave_tx, p->dma_slave_rx);
2180
2181 return 0;
2182 }
2183
2184 static void sci_cleanup_single(struct sci_port *port)
2185 {
2186 sci_free_gpios(port);
2187
2188 clk_put(port->iclk);
2189 clk_put(port->fclk);
2190
2191 pm_runtime_disable(port->port.dev);
2192 }
2193
2194 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2195 static void serial_console_putchar(struct uart_port *port, int ch)
2196 {
2197 sci_poll_put_char(port, ch);
2198 }
2199
2200 /*
2201 * Print a string to the serial port trying not to disturb
2202 * any possible real use of the port...
2203 */
2204 static void serial_console_write(struct console *co, const char *s,
2205 unsigned count)
2206 {
2207 struct sci_port *sci_port = &sci_ports[co->index];
2208 struct uart_port *port = &sci_port->port;
2209 unsigned short bits;
2210
2211 sci_port_enable(sci_port);
2212
2213 uart_console_write(port, s, count, serial_console_putchar);
2214
2215 /* wait until fifo is empty and last bit has been transmitted */
2216 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2217 while ((serial_port_in(port, SCxSR) & bits) != bits)
2218 cpu_relax();
2219
2220 sci_port_disable(sci_port);
2221 }
2222
2223 static int __devinit serial_console_setup(struct console *co, char *options)
2224 {
2225 struct sci_port *sci_port;
2226 struct uart_port *port;
2227 int baud = 115200;
2228 int bits = 8;
2229 int parity = 'n';
2230 int flow = 'n';
2231 int ret;
2232
2233 /*
2234 * Refuse to handle any bogus ports.
2235 */
2236 if (co->index < 0 || co->index >= SCI_NPORTS)
2237 return -ENODEV;
2238
2239 sci_port = &sci_ports[co->index];
2240 port = &sci_port->port;
2241
2242 /*
2243 * Refuse to handle uninitialized ports.
2244 */
2245 if (!port->ops)
2246 return -ENODEV;
2247
2248 ret = sci_remap_port(port);
2249 if (unlikely(ret != 0))
2250 return ret;
2251
2252 sci_port_enable(sci_port);
2253
2254 if (options)
2255 uart_parse_options(options, &baud, &parity, &bits, &flow);
2256
2257 sci_port_disable(sci_port);
2258
2259 return uart_set_options(port, co, baud, parity, bits, flow);
2260 }
2261
2262 static struct console serial_console = {
2263 .name = "ttySC",
2264 .device = uart_console_device,
2265 .write = serial_console_write,
2266 .setup = serial_console_setup,
2267 .flags = CON_PRINTBUFFER,
2268 .index = -1,
2269 .data = &sci_uart_driver,
2270 };
2271
2272 static struct console early_serial_console = {
2273 .name = "early_ttySC",
2274 .write = serial_console_write,
2275 .flags = CON_PRINTBUFFER,
2276 .index = -1,
2277 };
2278
2279 static char early_serial_buf[32];
2280
2281 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2282 {
2283 struct plat_sci_port *cfg = pdev->dev.platform_data;
2284
2285 if (early_serial_console.data)
2286 return -EEXIST;
2287
2288 early_serial_console.index = pdev->id;
2289
2290 sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2291
2292 serial_console_setup(&early_serial_console, early_serial_buf);
2293
2294 if (!strstr(early_serial_buf, "keep"))
2295 early_serial_console.flags |= CON_BOOT;
2296
2297 register_console(&early_serial_console);
2298 return 0;
2299 }
2300
2301 #define uart_console(port) ((port)->cons->index == (port)->line)
2302
2303 static int sci_runtime_suspend(struct device *dev)
2304 {
2305 struct sci_port *sci_port = dev_get_drvdata(dev);
2306 struct uart_port *port = &sci_port->port;
2307
2308 if (uart_console(port)) {
2309 struct plat_sci_reg *reg;
2310
2311 sci_port->saved_smr = serial_port_in(port, SCSMR);
2312 sci_port->saved_brr = serial_port_in(port, SCBRR);
2313
2314 reg = sci_getreg(port, SCFCR);
2315 if (reg->size)
2316 sci_port->saved_fcr = serial_port_in(port, SCFCR);
2317 else
2318 sci_port->saved_fcr = 0;
2319 }
2320 return 0;
2321 }
2322
2323 static int sci_runtime_resume(struct device *dev)
2324 {
2325 struct sci_port *sci_port = dev_get_drvdata(dev);
2326 struct uart_port *port = &sci_port->port;
2327
2328 if (uart_console(port)) {
2329 sci_reset(port);
2330 serial_port_out(port, SCSMR, sci_port->saved_smr);
2331 serial_port_out(port, SCBRR, sci_port->saved_brr);
2332
2333 if (sci_port->saved_fcr)
2334 serial_port_out(port, SCFCR, sci_port->saved_fcr);
2335
2336 serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2337 }
2338 return 0;
2339 }
2340
2341 #define SCI_CONSOLE (&serial_console)
2342
2343 #else
2344 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2345 {
2346 return -EINVAL;
2347 }
2348
2349 #define SCI_CONSOLE NULL
2350 #define sci_runtime_suspend NULL
2351 #define sci_runtime_resume NULL
2352
2353 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2354
2355 static char banner[] __initdata =
2356 KERN_INFO "SuperH SCI(F) driver initialized\n";
2357
2358 static struct uart_driver sci_uart_driver = {
2359 .owner = THIS_MODULE,
2360 .driver_name = "sci",
2361 .dev_name = "ttySC",
2362 .major = SCI_MAJOR,
2363 .minor = SCI_MINOR_START,
2364 .nr = SCI_NPORTS,
2365 .cons = SCI_CONSOLE,
2366 };
2367
2368 static int sci_remove(struct platform_device *dev)
2369 {
2370 struct sci_port *port = platform_get_drvdata(dev);
2371
2372 cpufreq_unregister_notifier(&port->freq_transition,
2373 CPUFREQ_TRANSITION_NOTIFIER);
2374
2375 uart_remove_one_port(&sci_uart_driver, &port->port);
2376
2377 sci_cleanup_single(port);
2378
2379 return 0;
2380 }
2381
2382 static int __devinit sci_probe_single(struct platform_device *dev,
2383 unsigned int index,
2384 struct plat_sci_port *p,
2385 struct sci_port *sciport)
2386 {
2387 int ret;
2388
2389 /* Sanity check */
2390 if (unlikely(index >= SCI_NPORTS)) {
2391 dev_notice(&dev->dev, "Attempting to register port "
2392 "%d when only %d are available.\n",
2393 index+1, SCI_NPORTS);
2394 dev_notice(&dev->dev, "Consider bumping "
2395 "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2396 return -EINVAL;
2397 }
2398
2399 ret = sci_init_single(dev, sciport, index, p);
2400 if (ret)
2401 return ret;
2402
2403 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2404 if (ret) {
2405 sci_cleanup_single(sciport);
2406 return ret;
2407 }
2408
2409 return 0;
2410 }
2411
2412 static int __devinit sci_probe(struct platform_device *dev)
2413 {
2414 struct plat_sci_port *p = dev->dev.platform_data;
2415 struct sci_port *sp = &sci_ports[dev->id];
2416 int ret;
2417
2418 /*
2419 * If we've come here via earlyprintk initialization, head off to
2420 * the special early probe. We don't have sufficient device state
2421 * to make it beyond this yet.
2422 */
2423 if (is_early_platform_device(dev))
2424 return sci_probe_earlyprintk(dev);
2425
2426 platform_set_drvdata(dev, sp);
2427
2428 ret = sci_probe_single(dev, dev->id, p, sp);
2429 if (ret)
2430 return ret;
2431
2432 sp->freq_transition.notifier_call = sci_notifier;
2433
2434 ret = cpufreq_register_notifier(&sp->freq_transition,
2435 CPUFREQ_TRANSITION_NOTIFIER);
2436 if (unlikely(ret < 0)) {
2437 sci_cleanup_single(sp);
2438 return ret;
2439 }
2440
2441 #ifdef CONFIG_SH_STANDARD_BIOS
2442 sh_bios_gdb_detach();
2443 #endif
2444
2445 return 0;
2446 }
2447
2448 static int sci_suspend(struct device *dev)
2449 {
2450 struct sci_port *sport = dev_get_drvdata(dev);
2451
2452 if (sport)
2453 uart_suspend_port(&sci_uart_driver, &sport->port);
2454
2455 return 0;
2456 }
2457
2458 static int sci_resume(struct device *dev)
2459 {
2460 struct sci_port *sport = dev_get_drvdata(dev);
2461
2462 if (sport)
2463 uart_resume_port(&sci_uart_driver, &sport->port);
2464
2465 return 0;
2466 }
2467
2468 static const struct dev_pm_ops sci_dev_pm_ops = {
2469 .runtime_suspend = sci_runtime_suspend,
2470 .runtime_resume = sci_runtime_resume,
2471 .suspend = sci_suspend,
2472 .resume = sci_resume,
2473 };
2474
2475 static struct platform_driver sci_driver = {
2476 .probe = sci_probe,
2477 .remove = sci_remove,
2478 .driver = {
2479 .name = "sh-sci",
2480 .owner = THIS_MODULE,
2481 .pm = &sci_dev_pm_ops,
2482 },
2483 };
2484
2485 static int __init sci_init(void)
2486 {
2487 int ret;
2488
2489 printk(banner);
2490
2491 ret = uart_register_driver(&sci_uart_driver);
2492 if (likely(ret == 0)) {
2493 ret = platform_driver_register(&sci_driver);
2494 if (unlikely(ret))
2495 uart_unregister_driver(&sci_uart_driver);
2496 }
2497
2498 return ret;
2499 }
2500
2501 static void __exit sci_exit(void)
2502 {
2503 platform_driver_unregister(&sci_driver);
2504 uart_unregister_driver(&sci_uart_driver);
2505 }
2506
2507 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2508 early_platform_init_buffer("earlyprintk", &sci_driver,
2509 early_serial_buf, ARRAY_SIZE(early_serial_buf));
2510 #endif
2511 module_init(sci_init);
2512 module_exit(sci_exit);
2513
2514 MODULE_LICENSE("GPL");
2515 MODULE_ALIAS("platform:sh-sci");
2516 MODULE_AUTHOR("Paul Mundt");
2517 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
This page took 0.12095 seconds and 5 git commands to generate.