more file_inode() open-coded instances
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * __tty_hangup - actual handler for hangup events
537 * @work: tty device
538 *
539 * This can be called by a "kworker" kernel thread. That is process
540 * synchronous but doesn't hold any locks, so we need to make sure we
541 * have the appropriate locks for what we're doing.
542 *
543 * The hangup event clears any pending redirections onto the hung up
544 * device. It ensures future writes will error and it does the needed
545 * line discipline hangup and signal delivery. The tty object itself
546 * remains intact.
547 *
548 * Locking:
549 * BTM
550 * redirect lock for undoing redirection
551 * file list lock for manipulating list of ttys
552 * tty_ldisc_lock from called functions
553 * termios_mutex resetting termios data
554 * tasklist_lock to walk task list for hangup event
555 * ->siglock to protect ->signal/->sighand
556 */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559 struct file *cons_filp = NULL;
560 struct file *filp, *f = NULL;
561 struct task_struct *p;
562 struct tty_file_private *priv;
563 int closecount = 0, n;
564 unsigned long flags;
565 int refs = 0;
566
567 if (!tty)
568 return;
569
570
571 spin_lock(&redirect_lock);
572 if (redirect && file_tty(redirect) == tty) {
573 f = redirect;
574 redirect = NULL;
575 }
576 spin_unlock(&redirect_lock);
577
578 tty_lock(tty);
579
580 /* some functions below drop BTM, so we need this bit */
581 set_bit(TTY_HUPPING, &tty->flags);
582
583 /* inuse_filps is protected by the single tty lock,
584 this really needs to change if we want to flush the
585 workqueue with the lock held */
586 check_tty_count(tty, "tty_hangup");
587
588 spin_lock(&tty_files_lock);
589 /* This breaks for file handles being sent over AF_UNIX sockets ? */
590 list_for_each_entry(priv, &tty->tty_files, list) {
591 filp = priv->file;
592 if (filp->f_op->write == redirected_tty_write)
593 cons_filp = filp;
594 if (filp->f_op->write != tty_write)
595 continue;
596 closecount++;
597 __tty_fasync(-1, filp, 0); /* can't block */
598 filp->f_op = &hung_up_tty_fops;
599 }
600 spin_unlock(&tty_files_lock);
601
602 /*
603 * it drops BTM and thus races with reopen
604 * we protect the race by TTY_HUPPING
605 */
606 tty_ldisc_hangup(tty);
607
608 read_lock(&tasklist_lock);
609 if (tty->session) {
610 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611 spin_lock_irq(&p->sighand->siglock);
612 if (p->signal->tty == tty) {
613 p->signal->tty = NULL;
614 /* We defer the dereferences outside fo
615 the tasklist lock */
616 refs++;
617 }
618 if (!p->signal->leader) {
619 spin_unlock_irq(&p->sighand->siglock);
620 continue;
621 }
622 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624 put_pid(p->signal->tty_old_pgrp); /* A noop */
625 spin_lock_irqsave(&tty->ctrl_lock, flags);
626 if (tty->pgrp)
627 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629 spin_unlock_irq(&p->sighand->siglock);
630 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
631 }
632 read_unlock(&tasklist_lock);
633
634 spin_lock_irqsave(&tty->ctrl_lock, flags);
635 clear_bit(TTY_THROTTLED, &tty->flags);
636 clear_bit(TTY_PUSH, &tty->flags);
637 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638 put_pid(tty->session);
639 put_pid(tty->pgrp);
640 tty->session = NULL;
641 tty->pgrp = NULL;
642 tty->ctrl_status = 0;
643 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644
645 /* Account for the p->signal references we killed */
646 while (refs--)
647 tty_kref_put(tty);
648
649 /*
650 * If one of the devices matches a console pointer, we
651 * cannot just call hangup() because that will cause
652 * tty->count and state->count to go out of sync.
653 * So we just call close() the right number of times.
654 */
655 if (cons_filp) {
656 if (tty->ops->close)
657 for (n = 0; n < closecount; n++)
658 tty->ops->close(tty, cons_filp);
659 } else if (tty->ops->hangup)
660 (tty->ops->hangup)(tty);
661 /*
662 * We don't want to have driver/ldisc interactions beyond
663 * the ones we did here. The driver layer expects no
664 * calls after ->hangup() from the ldisc side. However we
665 * can't yet guarantee all that.
666 */
667 set_bit(TTY_HUPPED, &tty->flags);
668 clear_bit(TTY_HUPPING, &tty->flags);
669 tty_ldisc_enable(tty);
670
671 tty_unlock(tty);
672
673 if (f)
674 fput(f);
675 }
676
677 static void do_tty_hangup(struct work_struct *work)
678 {
679 struct tty_struct *tty =
680 container_of(work, struct tty_struct, hangup_work);
681
682 __tty_hangup(tty);
683 }
684
685 /**
686 * tty_hangup - trigger a hangup event
687 * @tty: tty to hangup
688 *
689 * A carrier loss (virtual or otherwise) has occurred on this like
690 * schedule a hangup sequence to run after this event.
691 */
692
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696 char buf[64];
697 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699 schedule_work(&tty->hangup_work);
700 }
701
702 EXPORT_SYMBOL(tty_hangup);
703
704 /**
705 * tty_vhangup - process vhangup
706 * @tty: tty to hangup
707 *
708 * The user has asked via system call for the terminal to be hung up.
709 * We do this synchronously so that when the syscall returns the process
710 * is complete. That guarantee is necessary for security reasons.
711 */
712
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716 char buf[64];
717
718 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720 __tty_hangup(tty);
721 }
722
723 EXPORT_SYMBOL(tty_vhangup);
724
725
726 /**
727 * tty_vhangup_self - process vhangup for own ctty
728 *
729 * Perform a vhangup on the current controlling tty
730 */
731
732 void tty_vhangup_self(void)
733 {
734 struct tty_struct *tty;
735
736 tty = get_current_tty();
737 if (tty) {
738 tty_vhangup(tty);
739 tty_kref_put(tty);
740 }
741 }
742
743 /**
744 * tty_hung_up_p - was tty hung up
745 * @filp: file pointer of tty
746 *
747 * Return true if the tty has been subject to a vhangup or a carrier
748 * loss
749 */
750
751 int tty_hung_up_p(struct file *filp)
752 {
753 return (filp->f_op == &hung_up_tty_fops);
754 }
755
756 EXPORT_SYMBOL(tty_hung_up_p);
757
758 static void session_clear_tty(struct pid *session)
759 {
760 struct task_struct *p;
761 do_each_pid_task(session, PIDTYPE_SID, p) {
762 proc_clear_tty(p);
763 } while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765
766 /**
767 * disassociate_ctty - disconnect controlling tty
768 * @on_exit: true if exiting so need to "hang up" the session
769 *
770 * This function is typically called only by the session leader, when
771 * it wants to disassociate itself from its controlling tty.
772 *
773 * It performs the following functions:
774 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
775 * (2) Clears the tty from being controlling the session
776 * (3) Clears the controlling tty for all processes in the
777 * session group.
778 *
779 * The argument on_exit is set to 1 if called when a process is
780 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
781 *
782 * Locking:
783 * BTM is taken for hysterical raisins, and held when
784 * called from no_tty().
785 * tty_mutex is taken to protect tty
786 * ->siglock is taken to protect ->signal/->sighand
787 * tasklist_lock is taken to walk process list for sessions
788 * ->siglock is taken to protect ->signal/->sighand
789 */
790
791 void disassociate_ctty(int on_exit)
792 {
793 struct tty_struct *tty;
794
795 if (!current->signal->leader)
796 return;
797
798 tty = get_current_tty();
799 if (tty) {
800 struct pid *tty_pgrp = get_pid(tty->pgrp);
801 if (on_exit) {
802 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803 tty_vhangup(tty);
804 }
805 tty_kref_put(tty);
806 if (tty_pgrp) {
807 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808 if (!on_exit)
809 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810 put_pid(tty_pgrp);
811 }
812 } else if (on_exit) {
813 struct pid *old_pgrp;
814 spin_lock_irq(&current->sighand->siglock);
815 old_pgrp = current->signal->tty_old_pgrp;
816 current->signal->tty_old_pgrp = NULL;
817 spin_unlock_irq(&current->sighand->siglock);
818 if (old_pgrp) {
819 kill_pgrp(old_pgrp, SIGHUP, on_exit);
820 kill_pgrp(old_pgrp, SIGCONT, on_exit);
821 put_pid(old_pgrp);
822 }
823 return;
824 }
825
826 spin_lock_irq(&current->sighand->siglock);
827 put_pid(current->signal->tty_old_pgrp);
828 current->signal->tty_old_pgrp = NULL;
829 spin_unlock_irq(&current->sighand->siglock);
830
831 tty = get_current_tty();
832 if (tty) {
833 unsigned long flags;
834 spin_lock_irqsave(&tty->ctrl_lock, flags);
835 put_pid(tty->session);
836 put_pid(tty->pgrp);
837 tty->session = NULL;
838 tty->pgrp = NULL;
839 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840 tty_kref_put(tty);
841 } else {
842 #ifdef TTY_DEBUG_HANGUP
843 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844 " = NULL", tty);
845 #endif
846 }
847
848 /* Now clear signal->tty under the lock */
849 read_lock(&tasklist_lock);
850 session_clear_tty(task_session(current));
851 read_unlock(&tasklist_lock);
852 }
853
854 /**
855 *
856 * no_tty - Ensure the current process does not have a controlling tty
857 */
858 void no_tty(void)
859 {
860 /* FIXME: Review locking here. The tty_lock never covered any race
861 between a new association and proc_clear_tty but possible we need
862 to protect against this anyway */
863 struct task_struct *tsk = current;
864 disassociate_ctty(0);
865 proc_clear_tty(tsk);
866 }
867
868
869 /**
870 * stop_tty - propagate flow control
871 * @tty: tty to stop
872 *
873 * Perform flow control to the driver. For PTY/TTY pairs we
874 * must also propagate the TIOCKPKT status. May be called
875 * on an already stopped device and will not re-call the driver
876 * method.
877 *
878 * This functionality is used by both the line disciplines for
879 * halting incoming flow and by the driver. It may therefore be
880 * called from any context, may be under the tty atomic_write_lock
881 * but not always.
882 *
883 * Locking:
884 * Uses the tty control lock internally
885 */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889 unsigned long flags;
890 spin_lock_irqsave(&tty->ctrl_lock, flags);
891 if (tty->stopped) {
892 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893 return;
894 }
895 tty->stopped = 1;
896 if (tty->link && tty->link->packet) {
897 tty->ctrl_status &= ~TIOCPKT_START;
898 tty->ctrl_status |= TIOCPKT_STOP;
899 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900 }
901 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902 if (tty->ops->stop)
903 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909 * start_tty - propagate flow control
910 * @tty: tty to start
911 *
912 * Start a tty that has been stopped if at all possible. Perform
913 * any necessary wakeups and propagate the TIOCPKT status. If this
914 * is the tty was previous stopped and is being started then the
915 * driver start method is invoked and the line discipline woken.
916 *
917 * Locking:
918 * ctrl_lock
919 */
920
921 void start_tty(struct tty_struct *tty)
922 {
923 unsigned long flags;
924 spin_lock_irqsave(&tty->ctrl_lock, flags);
925 if (!tty->stopped || tty->flow_stopped) {
926 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927 return;
928 }
929 tty->stopped = 0;
930 if (tty->link && tty->link->packet) {
931 tty->ctrl_status &= ~TIOCPKT_STOP;
932 tty->ctrl_status |= TIOCPKT_START;
933 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934 }
935 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936 if (tty->ops->start)
937 (tty->ops->start)(tty);
938 /* If we have a running line discipline it may need kicking */
939 tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 /**
945 * tty_read - read method for tty device files
946 * @file: pointer to tty file
947 * @buf: user buffer
948 * @count: size of user buffer
949 * @ppos: unused
950 *
951 * Perform the read system call function on this terminal device. Checks
952 * for hung up devices before calling the line discipline method.
953 *
954 * Locking:
955 * Locks the line discipline internally while needed. Multiple
956 * read calls may be outstanding in parallel.
957 */
958
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960 loff_t *ppos)
961 {
962 int i;
963 struct tty_struct *tty = file_tty(file);
964 struct tty_ldisc *ld;
965
966 if (tty_paranoia_check(tty, file_inode(file), "tty_read"))
967 return -EIO;
968 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969 return -EIO;
970
971 /* We want to wait for the line discipline to sort out in this
972 situation */
973 ld = tty_ldisc_ref_wait(tty);
974 if (ld->ops->read)
975 i = (ld->ops->read)(tty, file, buf, count);
976 else
977 i = -EIO;
978 tty_ldisc_deref(ld);
979
980 return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984 __releases(&tty->atomic_write_lock)
985 {
986 mutex_unlock(&tty->atomic_write_lock);
987 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991 __acquires(&tty->atomic_write_lock)
992 {
993 if (!mutex_trylock(&tty->atomic_write_lock)) {
994 if (ndelay)
995 return -EAGAIN;
996 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 return -ERESTARTSYS;
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006 static inline ssize_t do_tty_write(
1007 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 struct tty_struct *tty,
1009 struct file *file,
1010 const char __user *buf,
1011 size_t count)
1012 {
1013 ssize_t ret, written = 0;
1014 unsigned int chunk;
1015
1016 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 if (ret < 0)
1018 return ret;
1019
1020 /*
1021 * We chunk up writes into a temporary buffer. This
1022 * simplifies low-level drivers immensely, since they
1023 * don't have locking issues and user mode accesses.
1024 *
1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 * big chunk-size..
1027 *
1028 * The default chunk-size is 2kB, because the NTTY
1029 * layer has problems with bigger chunks. It will
1030 * claim to be able to handle more characters than
1031 * it actually does.
1032 *
1033 * FIXME: This can probably go away now except that 64K chunks
1034 * are too likely to fail unless switched to vmalloc...
1035 */
1036 chunk = 2048;
1037 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 chunk = 65536;
1039 if (count < chunk)
1040 chunk = count;
1041
1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 if (tty->write_cnt < chunk) {
1044 unsigned char *buf_chunk;
1045
1046 if (chunk < 1024)
1047 chunk = 1024;
1048
1049 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 if (!buf_chunk) {
1051 ret = -ENOMEM;
1052 goto out;
1053 }
1054 kfree(tty->write_buf);
1055 tty->write_cnt = chunk;
1056 tty->write_buf = buf_chunk;
1057 }
1058
1059 /* Do the write .. */
1060 for (;;) {
1061 size_t size = count;
1062 if (size > chunk)
1063 size = chunk;
1064 ret = -EFAULT;
1065 if (copy_from_user(tty->write_buf, buf, size))
1066 break;
1067 ret = write(tty, file, tty->write_buf, size);
1068 if (ret <= 0)
1069 break;
1070 written += ret;
1071 buf += ret;
1072 count -= ret;
1073 if (!count)
1074 break;
1075 ret = -ERESTARTSYS;
1076 if (signal_pending(current))
1077 break;
1078 cond_resched();
1079 }
1080 if (written)
1081 ret = written;
1082 out:
1083 tty_write_unlock(tty);
1084 return ret;
1085 }
1086
1087 /**
1088 * tty_write_message - write a message to a certain tty, not just the console.
1089 * @tty: the destination tty_struct
1090 * @msg: the message to write
1091 *
1092 * This is used for messages that need to be redirected to a specific tty.
1093 * We don't put it into the syslog queue right now maybe in the future if
1094 * really needed.
1095 *
1096 * We must still hold the BTM and test the CLOSING flag for the moment.
1097 */
1098
1099 void tty_write_message(struct tty_struct *tty, char *msg)
1100 {
1101 if (tty) {
1102 mutex_lock(&tty->atomic_write_lock);
1103 tty_lock(tty);
1104 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1105 tty_unlock(tty);
1106 tty->ops->write(tty, msg, strlen(msg));
1107 } else
1108 tty_unlock(tty);
1109 tty_write_unlock(tty);
1110 }
1111 return;
1112 }
1113
1114
1115 /**
1116 * tty_write - write method for tty device file
1117 * @file: tty file pointer
1118 * @buf: user data to write
1119 * @count: bytes to write
1120 * @ppos: unused
1121 *
1122 * Write data to a tty device via the line discipline.
1123 *
1124 * Locking:
1125 * Locks the line discipline as required
1126 * Writes to the tty driver are serialized by the atomic_write_lock
1127 * and are then processed in chunks to the device. The line discipline
1128 * write method will not be invoked in parallel for each device.
1129 */
1130
1131 static ssize_t tty_write(struct file *file, const char __user *buf,
1132 size_t count, loff_t *ppos)
1133 {
1134 struct tty_struct *tty = file_tty(file);
1135 struct tty_ldisc *ld;
1136 ssize_t ret;
1137
1138 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1139 return -EIO;
1140 if (!tty || !tty->ops->write ||
1141 (test_bit(TTY_IO_ERROR, &tty->flags)))
1142 return -EIO;
1143 /* Short term debug to catch buggy drivers */
1144 if (tty->ops->write_room == NULL)
1145 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1146 tty->driver->name);
1147 ld = tty_ldisc_ref_wait(tty);
1148 if (!ld->ops->write)
1149 ret = -EIO;
1150 else
1151 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1152 tty_ldisc_deref(ld);
1153 return ret;
1154 }
1155
1156 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1157 size_t count, loff_t *ppos)
1158 {
1159 struct file *p = NULL;
1160
1161 spin_lock(&redirect_lock);
1162 if (redirect)
1163 p = get_file(redirect);
1164 spin_unlock(&redirect_lock);
1165
1166 if (p) {
1167 ssize_t res;
1168 res = vfs_write(p, buf, count, &p->f_pos);
1169 fput(p);
1170 return res;
1171 }
1172 return tty_write(file, buf, count, ppos);
1173 }
1174
1175 static char ptychar[] = "pqrstuvwxyzabcde";
1176
1177 /**
1178 * pty_line_name - generate name for a pty
1179 * @driver: the tty driver in use
1180 * @index: the minor number
1181 * @p: output buffer of at least 6 bytes
1182 *
1183 * Generate a name from a driver reference and write it to the output
1184 * buffer.
1185 *
1186 * Locking: None
1187 */
1188 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189 {
1190 int i = index + driver->name_base;
1191 /* ->name is initialized to "ttyp", but "tty" is expected */
1192 sprintf(p, "%s%c%x",
1193 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1194 ptychar[i >> 4 & 0xf], i & 0xf);
1195 }
1196
1197 /**
1198 * tty_line_name - generate name for a tty
1199 * @driver: the tty driver in use
1200 * @index: the minor number
1201 * @p: output buffer of at least 7 bytes
1202 *
1203 * Generate a name from a driver reference and write it to the output
1204 * buffer.
1205 *
1206 * Locking: None
1207 */
1208 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1209 {
1210 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1211 strcpy(p, driver->name);
1212 else
1213 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1214 }
1215
1216 /**
1217 * tty_driver_lookup_tty() - find an existing tty, if any
1218 * @driver: the driver for the tty
1219 * @idx: the minor number
1220 *
1221 * Return the tty, if found or ERR_PTR() otherwise.
1222 *
1223 * Locking: tty_mutex must be held. If tty is found, the mutex must
1224 * be held until the 'fast-open' is also done. Will change once we
1225 * have refcounting in the driver and per driver locking
1226 */
1227 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1228 struct inode *inode, int idx)
1229 {
1230 if (driver->ops->lookup)
1231 return driver->ops->lookup(driver, inode, idx);
1232
1233 return driver->ttys[idx];
1234 }
1235
1236 /**
1237 * tty_init_termios - helper for termios setup
1238 * @tty: the tty to set up
1239 *
1240 * Initialise the termios structures for this tty. Thus runs under
1241 * the tty_mutex currently so we can be relaxed about ordering.
1242 */
1243
1244 int tty_init_termios(struct tty_struct *tty)
1245 {
1246 struct ktermios *tp;
1247 int idx = tty->index;
1248
1249 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1250 tty->termios = tty->driver->init_termios;
1251 else {
1252 /* Check for lazy saved data */
1253 tp = tty->driver->termios[idx];
1254 if (tp != NULL)
1255 tty->termios = *tp;
1256 else
1257 tty->termios = tty->driver->init_termios;
1258 }
1259 /* Compatibility until drivers always set this */
1260 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1261 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1262 return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(tty_init_termios);
1265
1266 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1267 {
1268 int ret = tty_init_termios(tty);
1269 if (ret)
1270 return ret;
1271
1272 tty_driver_kref_get(driver);
1273 tty->count++;
1274 driver->ttys[tty->index] = tty;
1275 return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(tty_standard_install);
1278
1279 /**
1280 * tty_driver_install_tty() - install a tty entry in the driver
1281 * @driver: the driver for the tty
1282 * @tty: the tty
1283 *
1284 * Install a tty object into the driver tables. The tty->index field
1285 * will be set by the time this is called. This method is responsible
1286 * for ensuring any need additional structures are allocated and
1287 * configured.
1288 *
1289 * Locking: tty_mutex for now
1290 */
1291 static int tty_driver_install_tty(struct tty_driver *driver,
1292 struct tty_struct *tty)
1293 {
1294 return driver->ops->install ? driver->ops->install(driver, tty) :
1295 tty_standard_install(driver, tty);
1296 }
1297
1298 /**
1299 * tty_driver_remove_tty() - remove a tty from the driver tables
1300 * @driver: the driver for the tty
1301 * @idx: the minor number
1302 *
1303 * Remvoe a tty object from the driver tables. The tty->index field
1304 * will be set by the time this is called.
1305 *
1306 * Locking: tty_mutex for now
1307 */
1308 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1309 {
1310 if (driver->ops->remove)
1311 driver->ops->remove(driver, tty);
1312 else
1313 driver->ttys[tty->index] = NULL;
1314 }
1315
1316 /*
1317 * tty_reopen() - fast re-open of an open tty
1318 * @tty - the tty to open
1319 *
1320 * Return 0 on success, -errno on error.
1321 *
1322 * Locking: tty_mutex must be held from the time the tty was found
1323 * till this open completes.
1324 */
1325 static int tty_reopen(struct tty_struct *tty)
1326 {
1327 struct tty_driver *driver = tty->driver;
1328
1329 if (test_bit(TTY_CLOSING, &tty->flags) ||
1330 test_bit(TTY_HUPPING, &tty->flags) ||
1331 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1332 return -EIO;
1333
1334 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1335 driver->subtype == PTY_TYPE_MASTER) {
1336 /*
1337 * special case for PTY masters: only one open permitted,
1338 * and the slave side open count is incremented as well.
1339 */
1340 if (tty->count)
1341 return -EIO;
1342
1343 tty->link->count++;
1344 }
1345 tty->count++;
1346
1347 mutex_lock(&tty->ldisc_mutex);
1348 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1349 mutex_unlock(&tty->ldisc_mutex);
1350
1351 return 0;
1352 }
1353
1354 /**
1355 * tty_init_dev - initialise a tty device
1356 * @driver: tty driver we are opening a device on
1357 * @idx: device index
1358 * @ret_tty: returned tty structure
1359 *
1360 * Prepare a tty device. This may not be a "new" clean device but
1361 * could also be an active device. The pty drivers require special
1362 * handling because of this.
1363 *
1364 * Locking:
1365 * The function is called under the tty_mutex, which
1366 * protects us from the tty struct or driver itself going away.
1367 *
1368 * On exit the tty device has the line discipline attached and
1369 * a reference count of 1. If a pair was created for pty/tty use
1370 * and the other was a pty master then it too has a reference count of 1.
1371 *
1372 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1373 * failed open. The new code protects the open with a mutex, so it's
1374 * really quite straightforward. The mutex locking can probably be
1375 * relaxed for the (most common) case of reopening a tty.
1376 */
1377
1378 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1379 {
1380 struct tty_struct *tty;
1381 int retval;
1382
1383 /*
1384 * First time open is complex, especially for PTY devices.
1385 * This code guarantees that either everything succeeds and the
1386 * TTY is ready for operation, or else the table slots are vacated
1387 * and the allocated memory released. (Except that the termios
1388 * and locked termios may be retained.)
1389 */
1390
1391 if (!try_module_get(driver->owner))
1392 return ERR_PTR(-ENODEV);
1393
1394 tty = alloc_tty_struct();
1395 if (!tty) {
1396 retval = -ENOMEM;
1397 goto err_module_put;
1398 }
1399 initialize_tty_struct(tty, driver, idx);
1400
1401 tty_lock(tty);
1402 retval = tty_driver_install_tty(driver, tty);
1403 if (retval < 0)
1404 goto err_deinit_tty;
1405
1406 if (!tty->port)
1407 tty->port = driver->ports[idx];
1408
1409 WARN_RATELIMIT(!tty->port,
1410 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1411 __func__, tty->driver->name);
1412
1413 tty->port->itty = tty;
1414
1415 /*
1416 * Structures all installed ... call the ldisc open routines.
1417 * If we fail here just call release_tty to clean up. No need
1418 * to decrement the use counts, as release_tty doesn't care.
1419 */
1420 retval = tty_ldisc_setup(tty, tty->link);
1421 if (retval)
1422 goto err_release_tty;
1423 /* Return the tty locked so that it cannot vanish under the caller */
1424 return tty;
1425
1426 err_deinit_tty:
1427 tty_unlock(tty);
1428 deinitialize_tty_struct(tty);
1429 free_tty_struct(tty);
1430 err_module_put:
1431 module_put(driver->owner);
1432 return ERR_PTR(retval);
1433
1434 /* call the tty release_tty routine to clean out this slot */
1435 err_release_tty:
1436 tty_unlock(tty);
1437 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1438 "clearing slot %d\n", idx);
1439 release_tty(tty, idx);
1440 return ERR_PTR(retval);
1441 }
1442
1443 void tty_free_termios(struct tty_struct *tty)
1444 {
1445 struct ktermios *tp;
1446 int idx = tty->index;
1447
1448 /* If the port is going to reset then it has no termios to save */
1449 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1450 return;
1451
1452 /* Stash the termios data */
1453 tp = tty->driver->termios[idx];
1454 if (tp == NULL) {
1455 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1456 if (tp == NULL) {
1457 pr_warn("tty: no memory to save termios state.\n");
1458 return;
1459 }
1460 tty->driver->termios[idx] = tp;
1461 }
1462 *tp = tty->termios;
1463 }
1464 EXPORT_SYMBOL(tty_free_termios);
1465
1466
1467 /**
1468 * release_one_tty - release tty structure memory
1469 * @kref: kref of tty we are obliterating
1470 *
1471 * Releases memory associated with a tty structure, and clears out the
1472 * driver table slots. This function is called when a device is no longer
1473 * in use. It also gets called when setup of a device fails.
1474 *
1475 * Locking:
1476 * takes the file list lock internally when working on the list
1477 * of ttys that the driver keeps.
1478 *
1479 * This method gets called from a work queue so that the driver private
1480 * cleanup ops can sleep (needed for USB at least)
1481 */
1482 static void release_one_tty(struct work_struct *work)
1483 {
1484 struct tty_struct *tty =
1485 container_of(work, struct tty_struct, hangup_work);
1486 struct tty_driver *driver = tty->driver;
1487
1488 if (tty->ops->cleanup)
1489 tty->ops->cleanup(tty);
1490
1491 tty->magic = 0;
1492 tty_driver_kref_put(driver);
1493 module_put(driver->owner);
1494
1495 spin_lock(&tty_files_lock);
1496 list_del_init(&tty->tty_files);
1497 spin_unlock(&tty_files_lock);
1498
1499 put_pid(tty->pgrp);
1500 put_pid(tty->session);
1501 free_tty_struct(tty);
1502 }
1503
1504 static void queue_release_one_tty(struct kref *kref)
1505 {
1506 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1507
1508 /* The hangup queue is now free so we can reuse it rather than
1509 waste a chunk of memory for each port */
1510 INIT_WORK(&tty->hangup_work, release_one_tty);
1511 schedule_work(&tty->hangup_work);
1512 }
1513
1514 /**
1515 * tty_kref_put - release a tty kref
1516 * @tty: tty device
1517 *
1518 * Release a reference to a tty device and if need be let the kref
1519 * layer destruct the object for us
1520 */
1521
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524 if (tty)
1525 kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528
1529 /**
1530 * release_tty - release tty structure memory
1531 *
1532 * Release both @tty and a possible linked partner (think pty pair),
1533 * and decrement the refcount of the backing module.
1534 *
1535 * Locking:
1536 * tty_mutex
1537 * takes the file list lock internally when working on the list
1538 * of ttys that the driver keeps.
1539 *
1540 */
1541 static void release_tty(struct tty_struct *tty, int idx)
1542 {
1543 /* This should always be true but check for the moment */
1544 WARN_ON(tty->index != idx);
1545 WARN_ON(!mutex_is_locked(&tty_mutex));
1546 if (tty->ops->shutdown)
1547 tty->ops->shutdown(tty);
1548 tty_free_termios(tty);
1549 tty_driver_remove_tty(tty->driver, tty);
1550 tty->port->itty = NULL;
1551
1552 if (tty->link)
1553 tty_kref_put(tty->link);
1554 tty_kref_put(tty);
1555 }
1556
1557 /**
1558 * tty_release_checks - check a tty before real release
1559 * @tty: tty to check
1560 * @o_tty: link of @tty (if any)
1561 * @idx: index of the tty
1562 *
1563 * Performs some paranoid checking before true release of the @tty.
1564 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1565 */
1566 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1567 int idx)
1568 {
1569 #ifdef TTY_PARANOIA_CHECK
1570 if (idx < 0 || idx >= tty->driver->num) {
1571 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1572 __func__, tty->name);
1573 return -1;
1574 }
1575
1576 /* not much to check for devpts */
1577 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1578 return 0;
1579
1580 if (tty != tty->driver->ttys[idx]) {
1581 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1582 __func__, idx, tty->name);
1583 return -1;
1584 }
1585 if (tty->driver->other) {
1586 if (o_tty != tty->driver->other->ttys[idx]) {
1587 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1588 __func__, idx, tty->name);
1589 return -1;
1590 }
1591 if (o_tty->link != tty) {
1592 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593 return -1;
1594 }
1595 }
1596 #endif
1597 return 0;
1598 }
1599
1600 /**
1601 * tty_release - vfs callback for close
1602 * @inode: inode of tty
1603 * @filp: file pointer for handle to tty
1604 *
1605 * Called the last time each file handle is closed that references
1606 * this tty. There may however be several such references.
1607 *
1608 * Locking:
1609 * Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619 int tty_release(struct inode *inode, struct file *filp)
1620 {
1621 struct tty_struct *tty = file_tty(filp);
1622 struct tty_struct *o_tty;
1623 int pty_master, tty_closing, o_tty_closing, do_sleep;
1624 int idx;
1625 char buf[64];
1626
1627 if (tty_paranoia_check(tty, inode, __func__))
1628 return 0;
1629
1630 tty_lock(tty);
1631 check_tty_count(tty, __func__);
1632
1633 __tty_fasync(-1, filp, 0);
1634
1635 idx = tty->index;
1636 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1637 tty->driver->subtype == PTY_TYPE_MASTER);
1638 /* Review: parallel close */
1639 o_tty = tty->link;
1640
1641 if (tty_release_checks(tty, o_tty, idx)) {
1642 tty_unlock(tty);
1643 return 0;
1644 }
1645
1646 #ifdef TTY_DEBUG_HANGUP
1647 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1648 tty_name(tty, buf), tty->count);
1649 #endif
1650
1651 if (tty->ops->close)
1652 tty->ops->close(tty, filp);
1653
1654 tty_unlock(tty);
1655 /*
1656 * Sanity check: if tty->count is going to zero, there shouldn't be
1657 * any waiters on tty->read_wait or tty->write_wait. We test the
1658 * wait queues and kick everyone out _before_ actually starting to
1659 * close. This ensures that we won't block while releasing the tty
1660 * structure.
1661 *
1662 * The test for the o_tty closing is necessary, since the master and
1663 * slave sides may close in any order. If the slave side closes out
1664 * first, its count will be one, since the master side holds an open.
1665 * Thus this test wouldn't be triggered at the time the slave closes,
1666 * so we do it now.
1667 *
1668 * Note that it's possible for the tty to be opened again while we're
1669 * flushing out waiters. By recalculating the closing flags before
1670 * each iteration we avoid any problems.
1671 */
1672 while (1) {
1673 /* Guard against races with tty->count changes elsewhere and
1674 opens on /dev/tty */
1675
1676 mutex_lock(&tty_mutex);
1677 tty_lock_pair(tty, o_tty);
1678 tty_closing = tty->count <= 1;
1679 o_tty_closing = o_tty &&
1680 (o_tty->count <= (pty_master ? 1 : 0));
1681 do_sleep = 0;
1682
1683 if (tty_closing) {
1684 if (waitqueue_active(&tty->read_wait)) {
1685 wake_up_poll(&tty->read_wait, POLLIN);
1686 do_sleep++;
1687 }
1688 if (waitqueue_active(&tty->write_wait)) {
1689 wake_up_poll(&tty->write_wait, POLLOUT);
1690 do_sleep++;
1691 }
1692 }
1693 if (o_tty_closing) {
1694 if (waitqueue_active(&o_tty->read_wait)) {
1695 wake_up_poll(&o_tty->read_wait, POLLIN);
1696 do_sleep++;
1697 }
1698 if (waitqueue_active(&o_tty->write_wait)) {
1699 wake_up_poll(&o_tty->write_wait, POLLOUT);
1700 do_sleep++;
1701 }
1702 }
1703 if (!do_sleep)
1704 break;
1705
1706 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1707 __func__, tty_name(tty, buf));
1708 tty_unlock_pair(tty, o_tty);
1709 mutex_unlock(&tty_mutex);
1710 schedule();
1711 }
1712
1713 /*
1714 * The closing flags are now consistent with the open counts on
1715 * both sides, and we've completed the last operation that could
1716 * block, so it's safe to proceed with closing.
1717 *
1718 * We must *not* drop the tty_mutex until we ensure that a further
1719 * entry into tty_open can not pick up this tty.
1720 */
1721 if (pty_master) {
1722 if (--o_tty->count < 0) {
1723 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1724 __func__, o_tty->count, tty_name(o_tty, buf));
1725 o_tty->count = 0;
1726 }
1727 }
1728 if (--tty->count < 0) {
1729 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1730 __func__, tty->count, tty_name(tty, buf));
1731 tty->count = 0;
1732 }
1733
1734 /*
1735 * We've decremented tty->count, so we need to remove this file
1736 * descriptor off the tty->tty_files list; this serves two
1737 * purposes:
1738 * - check_tty_count sees the correct number of file descriptors
1739 * associated with this tty.
1740 * - do_tty_hangup no longer sees this file descriptor as
1741 * something that needs to be handled for hangups.
1742 */
1743 tty_del_file(filp);
1744
1745 /*
1746 * Perform some housekeeping before deciding whether to return.
1747 *
1748 * Set the TTY_CLOSING flag if this was the last open. In the
1749 * case of a pty we may have to wait around for the other side
1750 * to close, and TTY_CLOSING makes sure we can't be reopened.
1751 */
1752 if (tty_closing)
1753 set_bit(TTY_CLOSING, &tty->flags);
1754 if (o_tty_closing)
1755 set_bit(TTY_CLOSING, &o_tty->flags);
1756
1757 /*
1758 * If _either_ side is closing, make sure there aren't any
1759 * processes that still think tty or o_tty is their controlling
1760 * tty.
1761 */
1762 if (tty_closing || o_tty_closing) {
1763 read_lock(&tasklist_lock);
1764 session_clear_tty(tty->session);
1765 if (o_tty)
1766 session_clear_tty(o_tty->session);
1767 read_unlock(&tasklist_lock);
1768 }
1769
1770 mutex_unlock(&tty_mutex);
1771 tty_unlock_pair(tty, o_tty);
1772 /* At this point the TTY_CLOSING flag should ensure a dead tty
1773 cannot be re-opened by a racing opener */
1774
1775 /* check whether both sides are closing ... */
1776 if (!tty_closing || (o_tty && !o_tty_closing))
1777 return 0;
1778
1779 #ifdef TTY_DEBUG_HANGUP
1780 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1781 #endif
1782 /*
1783 * Ask the line discipline code to release its structures
1784 */
1785 tty_ldisc_release(tty, o_tty);
1786 /*
1787 * The release_tty function takes care of the details of clearing
1788 * the slots and preserving the termios structure. The tty_unlock_pair
1789 * should be safe as we keep a kref while the tty is locked (so the
1790 * unlock never unlocks a freed tty).
1791 */
1792 mutex_lock(&tty_mutex);
1793 release_tty(tty, idx);
1794 mutex_unlock(&tty_mutex);
1795
1796 return 0;
1797 }
1798
1799 /**
1800 * tty_open_current_tty - get tty of current task for open
1801 * @device: device number
1802 * @filp: file pointer to tty
1803 * @return: tty of the current task iff @device is /dev/tty
1804 *
1805 * We cannot return driver and index like for the other nodes because
1806 * devpts will not work then. It expects inodes to be from devpts FS.
1807 *
1808 * We need to move to returning a refcounted object from all the lookup
1809 * paths including this one.
1810 */
1811 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1812 {
1813 struct tty_struct *tty;
1814
1815 if (device != MKDEV(TTYAUX_MAJOR, 0))
1816 return NULL;
1817
1818 tty = get_current_tty();
1819 if (!tty)
1820 return ERR_PTR(-ENXIO);
1821
1822 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1823 /* noctty = 1; */
1824 tty_kref_put(tty);
1825 /* FIXME: we put a reference and return a TTY! */
1826 /* This is only safe because the caller holds tty_mutex */
1827 return tty;
1828 }
1829
1830 /**
1831 * tty_lookup_driver - lookup a tty driver for a given device file
1832 * @device: device number
1833 * @filp: file pointer to tty
1834 * @noctty: set if the device should not become a controlling tty
1835 * @index: index for the device in the @return driver
1836 * @return: driver for this inode (with increased refcount)
1837 *
1838 * If @return is not erroneous, the caller is responsible to decrement the
1839 * refcount by tty_driver_kref_put.
1840 *
1841 * Locking: tty_mutex protects get_tty_driver
1842 */
1843 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1844 int *noctty, int *index)
1845 {
1846 struct tty_driver *driver;
1847
1848 switch (device) {
1849 #ifdef CONFIG_VT
1850 case MKDEV(TTY_MAJOR, 0): {
1851 extern struct tty_driver *console_driver;
1852 driver = tty_driver_kref_get(console_driver);
1853 *index = fg_console;
1854 *noctty = 1;
1855 break;
1856 }
1857 #endif
1858 case MKDEV(TTYAUX_MAJOR, 1): {
1859 struct tty_driver *console_driver = console_device(index);
1860 if (console_driver) {
1861 driver = tty_driver_kref_get(console_driver);
1862 if (driver) {
1863 /* Don't let /dev/console block */
1864 filp->f_flags |= O_NONBLOCK;
1865 *noctty = 1;
1866 break;
1867 }
1868 }
1869 return ERR_PTR(-ENODEV);
1870 }
1871 default:
1872 driver = get_tty_driver(device, index);
1873 if (!driver)
1874 return ERR_PTR(-ENODEV);
1875 break;
1876 }
1877 return driver;
1878 }
1879
1880 /**
1881 * tty_open - open a tty device
1882 * @inode: inode of device file
1883 * @filp: file pointer to tty
1884 *
1885 * tty_open and tty_release keep up the tty count that contains the
1886 * number of opens done on a tty. We cannot use the inode-count, as
1887 * different inodes might point to the same tty.
1888 *
1889 * Open-counting is needed for pty masters, as well as for keeping
1890 * track of serial lines: DTR is dropped when the last close happens.
1891 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1892 *
1893 * The termios state of a pty is reset on first open so that
1894 * settings don't persist across reuse.
1895 *
1896 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1897 * tty->count should protect the rest.
1898 * ->siglock protects ->signal/->sighand
1899 *
1900 * Note: the tty_unlock/lock cases without a ref are only safe due to
1901 * tty_mutex
1902 */
1903
1904 static int tty_open(struct inode *inode, struct file *filp)
1905 {
1906 struct tty_struct *tty;
1907 int noctty, retval;
1908 struct tty_driver *driver = NULL;
1909 int index;
1910 dev_t device = inode->i_rdev;
1911 unsigned saved_flags = filp->f_flags;
1912
1913 nonseekable_open(inode, filp);
1914
1915 retry_open:
1916 retval = tty_alloc_file(filp);
1917 if (retval)
1918 return -ENOMEM;
1919
1920 noctty = filp->f_flags & O_NOCTTY;
1921 index = -1;
1922 retval = 0;
1923
1924 mutex_lock(&tty_mutex);
1925 /* This is protected by the tty_mutex */
1926 tty = tty_open_current_tty(device, filp);
1927 if (IS_ERR(tty)) {
1928 retval = PTR_ERR(tty);
1929 goto err_unlock;
1930 } else if (!tty) {
1931 driver = tty_lookup_driver(device, filp, &noctty, &index);
1932 if (IS_ERR(driver)) {
1933 retval = PTR_ERR(driver);
1934 goto err_unlock;
1935 }
1936
1937 /* check whether we're reopening an existing tty */
1938 tty = tty_driver_lookup_tty(driver, inode, index);
1939 if (IS_ERR(tty)) {
1940 retval = PTR_ERR(tty);
1941 goto err_unlock;
1942 }
1943 }
1944
1945 if (tty) {
1946 tty_lock(tty);
1947 retval = tty_reopen(tty);
1948 if (retval < 0) {
1949 tty_unlock(tty);
1950 tty = ERR_PTR(retval);
1951 }
1952 } else /* Returns with the tty_lock held for now */
1953 tty = tty_init_dev(driver, index);
1954
1955 mutex_unlock(&tty_mutex);
1956 if (driver)
1957 tty_driver_kref_put(driver);
1958 if (IS_ERR(tty)) {
1959 retval = PTR_ERR(tty);
1960 goto err_file;
1961 }
1962
1963 tty_add_file(tty, filp);
1964
1965 check_tty_count(tty, __func__);
1966 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1967 tty->driver->subtype == PTY_TYPE_MASTER)
1968 noctty = 1;
1969 #ifdef TTY_DEBUG_HANGUP
1970 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1971 #endif
1972 if (tty->ops->open)
1973 retval = tty->ops->open(tty, filp);
1974 else
1975 retval = -ENODEV;
1976 filp->f_flags = saved_flags;
1977
1978 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1979 !capable(CAP_SYS_ADMIN))
1980 retval = -EBUSY;
1981
1982 if (retval) {
1983 #ifdef TTY_DEBUG_HANGUP
1984 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1985 retval, tty->name);
1986 #endif
1987 tty_unlock(tty); /* need to call tty_release without BTM */
1988 tty_release(inode, filp);
1989 if (retval != -ERESTARTSYS)
1990 return retval;
1991
1992 if (signal_pending(current))
1993 return retval;
1994
1995 schedule();
1996 /*
1997 * Need to reset f_op in case a hangup happened.
1998 */
1999 if (filp->f_op == &hung_up_tty_fops)
2000 filp->f_op = &tty_fops;
2001 goto retry_open;
2002 }
2003 tty_unlock(tty);
2004
2005
2006 mutex_lock(&tty_mutex);
2007 tty_lock(tty);
2008 spin_lock_irq(&current->sighand->siglock);
2009 if (!noctty &&
2010 current->signal->leader &&
2011 !current->signal->tty &&
2012 tty->session == NULL)
2013 __proc_set_tty(current, tty);
2014 spin_unlock_irq(&current->sighand->siglock);
2015 tty_unlock(tty);
2016 mutex_unlock(&tty_mutex);
2017 return 0;
2018 err_unlock:
2019 mutex_unlock(&tty_mutex);
2020 /* after locks to avoid deadlock */
2021 if (!IS_ERR_OR_NULL(driver))
2022 tty_driver_kref_put(driver);
2023 err_file:
2024 tty_free_file(filp);
2025 return retval;
2026 }
2027
2028
2029
2030 /**
2031 * tty_poll - check tty status
2032 * @filp: file being polled
2033 * @wait: poll wait structures to update
2034 *
2035 * Call the line discipline polling method to obtain the poll
2036 * status of the device.
2037 *
2038 * Locking: locks called line discipline but ldisc poll method
2039 * may be re-entered freely by other callers.
2040 */
2041
2042 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2043 {
2044 struct tty_struct *tty = file_tty(filp);
2045 struct tty_ldisc *ld;
2046 int ret = 0;
2047
2048 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2049 return 0;
2050
2051 ld = tty_ldisc_ref_wait(tty);
2052 if (ld->ops->poll)
2053 ret = (ld->ops->poll)(tty, filp, wait);
2054 tty_ldisc_deref(ld);
2055 return ret;
2056 }
2057
2058 static int __tty_fasync(int fd, struct file *filp, int on)
2059 {
2060 struct tty_struct *tty = file_tty(filp);
2061 unsigned long flags;
2062 int retval = 0;
2063
2064 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2065 goto out;
2066
2067 retval = fasync_helper(fd, filp, on, &tty->fasync);
2068 if (retval <= 0)
2069 goto out;
2070
2071 if (on) {
2072 enum pid_type type;
2073 struct pid *pid;
2074 if (!waitqueue_active(&tty->read_wait))
2075 tty->minimum_to_wake = 1;
2076 spin_lock_irqsave(&tty->ctrl_lock, flags);
2077 if (tty->pgrp) {
2078 pid = tty->pgrp;
2079 type = PIDTYPE_PGID;
2080 } else {
2081 pid = task_pid(current);
2082 type = PIDTYPE_PID;
2083 }
2084 get_pid(pid);
2085 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2086 retval = __f_setown(filp, pid, type, 0);
2087 put_pid(pid);
2088 if (retval)
2089 goto out;
2090 } else {
2091 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2092 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2093 }
2094 retval = 0;
2095 out:
2096 return retval;
2097 }
2098
2099 static int tty_fasync(int fd, struct file *filp, int on)
2100 {
2101 struct tty_struct *tty = file_tty(filp);
2102 int retval;
2103
2104 tty_lock(tty);
2105 retval = __tty_fasync(fd, filp, on);
2106 tty_unlock(tty);
2107
2108 return retval;
2109 }
2110
2111 /**
2112 * tiocsti - fake input character
2113 * @tty: tty to fake input into
2114 * @p: pointer to character
2115 *
2116 * Fake input to a tty device. Does the necessary locking and
2117 * input management.
2118 *
2119 * FIXME: does not honour flow control ??
2120 *
2121 * Locking:
2122 * Called functions take tty_ldisc_lock
2123 * current->signal->tty check is safe without locks
2124 *
2125 * FIXME: may race normal receive processing
2126 */
2127
2128 static int tiocsti(struct tty_struct *tty, char __user *p)
2129 {
2130 char ch, mbz = 0;
2131 struct tty_ldisc *ld;
2132
2133 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2134 return -EPERM;
2135 if (get_user(ch, p))
2136 return -EFAULT;
2137 tty_audit_tiocsti(tty, ch);
2138 ld = tty_ldisc_ref_wait(tty);
2139 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2140 tty_ldisc_deref(ld);
2141 return 0;
2142 }
2143
2144 /**
2145 * tiocgwinsz - implement window query ioctl
2146 * @tty; tty
2147 * @arg: user buffer for result
2148 *
2149 * Copies the kernel idea of the window size into the user buffer.
2150 *
2151 * Locking: tty->termios_mutex is taken to ensure the winsize data
2152 * is consistent.
2153 */
2154
2155 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2156 {
2157 int err;
2158
2159 mutex_lock(&tty->termios_mutex);
2160 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2161 mutex_unlock(&tty->termios_mutex);
2162
2163 return err ? -EFAULT: 0;
2164 }
2165
2166 /**
2167 * tty_do_resize - resize event
2168 * @tty: tty being resized
2169 * @rows: rows (character)
2170 * @cols: cols (character)
2171 *
2172 * Update the termios variables and send the necessary signals to
2173 * peform a terminal resize correctly
2174 */
2175
2176 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2177 {
2178 struct pid *pgrp;
2179 unsigned long flags;
2180
2181 /* Lock the tty */
2182 mutex_lock(&tty->termios_mutex);
2183 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2184 goto done;
2185 /* Get the PID values and reference them so we can
2186 avoid holding the tty ctrl lock while sending signals */
2187 spin_lock_irqsave(&tty->ctrl_lock, flags);
2188 pgrp = get_pid(tty->pgrp);
2189 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2190
2191 if (pgrp)
2192 kill_pgrp(pgrp, SIGWINCH, 1);
2193 put_pid(pgrp);
2194
2195 tty->winsize = *ws;
2196 done:
2197 mutex_unlock(&tty->termios_mutex);
2198 return 0;
2199 }
2200 EXPORT_SYMBOL(tty_do_resize);
2201
2202 /**
2203 * tiocswinsz - implement window size set ioctl
2204 * @tty; tty side of tty
2205 * @arg: user buffer for result
2206 *
2207 * Copies the user idea of the window size to the kernel. Traditionally
2208 * this is just advisory information but for the Linux console it
2209 * actually has driver level meaning and triggers a VC resize.
2210 *
2211 * Locking:
2212 * Driver dependent. The default do_resize method takes the
2213 * tty termios mutex and ctrl_lock. The console takes its own lock
2214 * then calls into the default method.
2215 */
2216
2217 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2218 {
2219 struct winsize tmp_ws;
2220 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2221 return -EFAULT;
2222
2223 if (tty->ops->resize)
2224 return tty->ops->resize(tty, &tmp_ws);
2225 else
2226 return tty_do_resize(tty, &tmp_ws);
2227 }
2228
2229 /**
2230 * tioccons - allow admin to move logical console
2231 * @file: the file to become console
2232 *
2233 * Allow the administrator to move the redirected console device
2234 *
2235 * Locking: uses redirect_lock to guard the redirect information
2236 */
2237
2238 static int tioccons(struct file *file)
2239 {
2240 if (!capable(CAP_SYS_ADMIN))
2241 return -EPERM;
2242 if (file->f_op->write == redirected_tty_write) {
2243 struct file *f;
2244 spin_lock(&redirect_lock);
2245 f = redirect;
2246 redirect = NULL;
2247 spin_unlock(&redirect_lock);
2248 if (f)
2249 fput(f);
2250 return 0;
2251 }
2252 spin_lock(&redirect_lock);
2253 if (redirect) {
2254 spin_unlock(&redirect_lock);
2255 return -EBUSY;
2256 }
2257 redirect = get_file(file);
2258 spin_unlock(&redirect_lock);
2259 return 0;
2260 }
2261
2262 /**
2263 * fionbio - non blocking ioctl
2264 * @file: file to set blocking value
2265 * @p: user parameter
2266 *
2267 * Historical tty interfaces had a blocking control ioctl before
2268 * the generic functionality existed. This piece of history is preserved
2269 * in the expected tty API of posix OS's.
2270 *
2271 * Locking: none, the open file handle ensures it won't go away.
2272 */
2273
2274 static int fionbio(struct file *file, int __user *p)
2275 {
2276 int nonblock;
2277
2278 if (get_user(nonblock, p))
2279 return -EFAULT;
2280
2281 spin_lock(&file->f_lock);
2282 if (nonblock)
2283 file->f_flags |= O_NONBLOCK;
2284 else
2285 file->f_flags &= ~O_NONBLOCK;
2286 spin_unlock(&file->f_lock);
2287 return 0;
2288 }
2289
2290 /**
2291 * tiocsctty - set controlling tty
2292 * @tty: tty structure
2293 * @arg: user argument
2294 *
2295 * This ioctl is used to manage job control. It permits a session
2296 * leader to set this tty as the controlling tty for the session.
2297 *
2298 * Locking:
2299 * Takes tty_mutex() to protect tty instance
2300 * Takes tasklist_lock internally to walk sessions
2301 * Takes ->siglock() when updating signal->tty
2302 */
2303
2304 static int tiocsctty(struct tty_struct *tty, int arg)
2305 {
2306 int ret = 0;
2307 if (current->signal->leader && (task_session(current) == tty->session))
2308 return ret;
2309
2310 mutex_lock(&tty_mutex);
2311 /*
2312 * The process must be a session leader and
2313 * not have a controlling tty already.
2314 */
2315 if (!current->signal->leader || current->signal->tty) {
2316 ret = -EPERM;
2317 goto unlock;
2318 }
2319
2320 if (tty->session) {
2321 /*
2322 * This tty is already the controlling
2323 * tty for another session group!
2324 */
2325 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2326 /*
2327 * Steal it away
2328 */
2329 read_lock(&tasklist_lock);
2330 session_clear_tty(tty->session);
2331 read_unlock(&tasklist_lock);
2332 } else {
2333 ret = -EPERM;
2334 goto unlock;
2335 }
2336 }
2337 proc_set_tty(current, tty);
2338 unlock:
2339 mutex_unlock(&tty_mutex);
2340 return ret;
2341 }
2342
2343 /**
2344 * tty_get_pgrp - return a ref counted pgrp pid
2345 * @tty: tty to read
2346 *
2347 * Returns a refcounted instance of the pid struct for the process
2348 * group controlling the tty.
2349 */
2350
2351 struct pid *tty_get_pgrp(struct tty_struct *tty)
2352 {
2353 unsigned long flags;
2354 struct pid *pgrp;
2355
2356 spin_lock_irqsave(&tty->ctrl_lock, flags);
2357 pgrp = get_pid(tty->pgrp);
2358 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2359
2360 return pgrp;
2361 }
2362 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2363
2364 /**
2365 * tiocgpgrp - get process group
2366 * @tty: tty passed by user
2367 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2368 * @p: returned pid
2369 *
2370 * Obtain the process group of the tty. If there is no process group
2371 * return an error.
2372 *
2373 * Locking: none. Reference to current->signal->tty is safe.
2374 */
2375
2376 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2377 {
2378 struct pid *pid;
2379 int ret;
2380 /*
2381 * (tty == real_tty) is a cheap way of
2382 * testing if the tty is NOT a master pty.
2383 */
2384 if (tty == real_tty && current->signal->tty != real_tty)
2385 return -ENOTTY;
2386 pid = tty_get_pgrp(real_tty);
2387 ret = put_user(pid_vnr(pid), p);
2388 put_pid(pid);
2389 return ret;
2390 }
2391
2392 /**
2393 * tiocspgrp - attempt to set process group
2394 * @tty: tty passed by user
2395 * @real_tty: tty side device matching tty passed by user
2396 * @p: pid pointer
2397 *
2398 * Set the process group of the tty to the session passed. Only
2399 * permitted where the tty session is our session.
2400 *
2401 * Locking: RCU, ctrl lock
2402 */
2403
2404 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2405 {
2406 struct pid *pgrp;
2407 pid_t pgrp_nr;
2408 int retval = tty_check_change(real_tty);
2409 unsigned long flags;
2410
2411 if (retval == -EIO)
2412 return -ENOTTY;
2413 if (retval)
2414 return retval;
2415 if (!current->signal->tty ||
2416 (current->signal->tty != real_tty) ||
2417 (real_tty->session != task_session(current)))
2418 return -ENOTTY;
2419 if (get_user(pgrp_nr, p))
2420 return -EFAULT;
2421 if (pgrp_nr < 0)
2422 return -EINVAL;
2423 rcu_read_lock();
2424 pgrp = find_vpid(pgrp_nr);
2425 retval = -ESRCH;
2426 if (!pgrp)
2427 goto out_unlock;
2428 retval = -EPERM;
2429 if (session_of_pgrp(pgrp) != task_session(current))
2430 goto out_unlock;
2431 retval = 0;
2432 spin_lock_irqsave(&tty->ctrl_lock, flags);
2433 put_pid(real_tty->pgrp);
2434 real_tty->pgrp = get_pid(pgrp);
2435 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2436 out_unlock:
2437 rcu_read_unlock();
2438 return retval;
2439 }
2440
2441 /**
2442 * tiocgsid - get session id
2443 * @tty: tty passed by user
2444 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2445 * @p: pointer to returned session id
2446 *
2447 * Obtain the session id of the tty. If there is no session
2448 * return an error.
2449 *
2450 * Locking: none. Reference to current->signal->tty is safe.
2451 */
2452
2453 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2454 {
2455 /*
2456 * (tty == real_tty) is a cheap way of
2457 * testing if the tty is NOT a master pty.
2458 */
2459 if (tty == real_tty && current->signal->tty != real_tty)
2460 return -ENOTTY;
2461 if (!real_tty->session)
2462 return -ENOTTY;
2463 return put_user(pid_vnr(real_tty->session), p);
2464 }
2465
2466 /**
2467 * tiocsetd - set line discipline
2468 * @tty: tty device
2469 * @p: pointer to user data
2470 *
2471 * Set the line discipline according to user request.
2472 *
2473 * Locking: see tty_set_ldisc, this function is just a helper
2474 */
2475
2476 static int tiocsetd(struct tty_struct *tty, int __user *p)
2477 {
2478 int ldisc;
2479 int ret;
2480
2481 if (get_user(ldisc, p))
2482 return -EFAULT;
2483
2484 ret = tty_set_ldisc(tty, ldisc);
2485
2486 return ret;
2487 }
2488
2489 /**
2490 * send_break - performed time break
2491 * @tty: device to break on
2492 * @duration: timeout in mS
2493 *
2494 * Perform a timed break on hardware that lacks its own driver level
2495 * timed break functionality.
2496 *
2497 * Locking:
2498 * atomic_write_lock serializes
2499 *
2500 */
2501
2502 static int send_break(struct tty_struct *tty, unsigned int duration)
2503 {
2504 int retval;
2505
2506 if (tty->ops->break_ctl == NULL)
2507 return 0;
2508
2509 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2510 retval = tty->ops->break_ctl(tty, duration);
2511 else {
2512 /* Do the work ourselves */
2513 if (tty_write_lock(tty, 0) < 0)
2514 return -EINTR;
2515 retval = tty->ops->break_ctl(tty, -1);
2516 if (retval)
2517 goto out;
2518 if (!signal_pending(current))
2519 msleep_interruptible(duration);
2520 retval = tty->ops->break_ctl(tty, 0);
2521 out:
2522 tty_write_unlock(tty);
2523 if (signal_pending(current))
2524 retval = -EINTR;
2525 }
2526 return retval;
2527 }
2528
2529 /**
2530 * tty_tiocmget - get modem status
2531 * @tty: tty device
2532 * @file: user file pointer
2533 * @p: pointer to result
2534 *
2535 * Obtain the modem status bits from the tty driver if the feature
2536 * is supported. Return -EINVAL if it is not available.
2537 *
2538 * Locking: none (up to the driver)
2539 */
2540
2541 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2542 {
2543 int retval = -EINVAL;
2544
2545 if (tty->ops->tiocmget) {
2546 retval = tty->ops->tiocmget(tty);
2547
2548 if (retval >= 0)
2549 retval = put_user(retval, p);
2550 }
2551 return retval;
2552 }
2553
2554 /**
2555 * tty_tiocmset - set modem status
2556 * @tty: tty device
2557 * @cmd: command - clear bits, set bits or set all
2558 * @p: pointer to desired bits
2559 *
2560 * Set the modem status bits from the tty driver if the feature
2561 * is supported. Return -EINVAL if it is not available.
2562 *
2563 * Locking: none (up to the driver)
2564 */
2565
2566 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2567 unsigned __user *p)
2568 {
2569 int retval;
2570 unsigned int set, clear, val;
2571
2572 if (tty->ops->tiocmset == NULL)
2573 return -EINVAL;
2574
2575 retval = get_user(val, p);
2576 if (retval)
2577 return retval;
2578 set = clear = 0;
2579 switch (cmd) {
2580 case TIOCMBIS:
2581 set = val;
2582 break;
2583 case TIOCMBIC:
2584 clear = val;
2585 break;
2586 case TIOCMSET:
2587 set = val;
2588 clear = ~val;
2589 break;
2590 }
2591 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2592 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2593 return tty->ops->tiocmset(tty, set, clear);
2594 }
2595
2596 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2597 {
2598 int retval = -EINVAL;
2599 struct serial_icounter_struct icount;
2600 memset(&icount, 0, sizeof(icount));
2601 if (tty->ops->get_icount)
2602 retval = tty->ops->get_icount(tty, &icount);
2603 if (retval != 0)
2604 return retval;
2605 if (copy_to_user(arg, &icount, sizeof(icount)))
2606 return -EFAULT;
2607 return 0;
2608 }
2609
2610 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2611 {
2612 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2613 tty->driver->subtype == PTY_TYPE_MASTER)
2614 tty = tty->link;
2615 return tty;
2616 }
2617 EXPORT_SYMBOL(tty_pair_get_tty);
2618
2619 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2620 {
2621 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2622 tty->driver->subtype == PTY_TYPE_MASTER)
2623 return tty;
2624 return tty->link;
2625 }
2626 EXPORT_SYMBOL(tty_pair_get_pty);
2627
2628 /*
2629 * Split this up, as gcc can choke on it otherwise..
2630 */
2631 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2632 {
2633 struct tty_struct *tty = file_tty(file);
2634 struct tty_struct *real_tty;
2635 void __user *p = (void __user *)arg;
2636 int retval;
2637 struct tty_ldisc *ld;
2638
2639 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2640 return -EINVAL;
2641
2642 real_tty = tty_pair_get_tty(tty);
2643
2644 /*
2645 * Factor out some common prep work
2646 */
2647 switch (cmd) {
2648 case TIOCSETD:
2649 case TIOCSBRK:
2650 case TIOCCBRK:
2651 case TCSBRK:
2652 case TCSBRKP:
2653 retval = tty_check_change(tty);
2654 if (retval)
2655 return retval;
2656 if (cmd != TIOCCBRK) {
2657 tty_wait_until_sent(tty, 0);
2658 if (signal_pending(current))
2659 return -EINTR;
2660 }
2661 break;
2662 }
2663
2664 /*
2665 * Now do the stuff.
2666 */
2667 switch (cmd) {
2668 case TIOCSTI:
2669 return tiocsti(tty, p);
2670 case TIOCGWINSZ:
2671 return tiocgwinsz(real_tty, p);
2672 case TIOCSWINSZ:
2673 return tiocswinsz(real_tty, p);
2674 case TIOCCONS:
2675 return real_tty != tty ? -EINVAL : tioccons(file);
2676 case FIONBIO:
2677 return fionbio(file, p);
2678 case TIOCEXCL:
2679 set_bit(TTY_EXCLUSIVE, &tty->flags);
2680 return 0;
2681 case TIOCNXCL:
2682 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2683 return 0;
2684 case TIOCGEXCL:
2685 {
2686 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2687 return put_user(excl, (int __user *)p);
2688 }
2689 case TIOCNOTTY:
2690 if (current->signal->tty != tty)
2691 return -ENOTTY;
2692 no_tty();
2693 return 0;
2694 case TIOCSCTTY:
2695 return tiocsctty(tty, arg);
2696 case TIOCGPGRP:
2697 return tiocgpgrp(tty, real_tty, p);
2698 case TIOCSPGRP:
2699 return tiocspgrp(tty, real_tty, p);
2700 case TIOCGSID:
2701 return tiocgsid(tty, real_tty, p);
2702 case TIOCGETD:
2703 return put_user(tty->ldisc->ops->num, (int __user *)p);
2704 case TIOCSETD:
2705 return tiocsetd(tty, p);
2706 case TIOCVHANGUP:
2707 if (!capable(CAP_SYS_ADMIN))
2708 return -EPERM;
2709 tty_vhangup(tty);
2710 return 0;
2711 case TIOCGDEV:
2712 {
2713 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2714 return put_user(ret, (unsigned int __user *)p);
2715 }
2716 /*
2717 * Break handling
2718 */
2719 case TIOCSBRK: /* Turn break on, unconditionally */
2720 if (tty->ops->break_ctl)
2721 return tty->ops->break_ctl(tty, -1);
2722 return 0;
2723 case TIOCCBRK: /* Turn break off, unconditionally */
2724 if (tty->ops->break_ctl)
2725 return tty->ops->break_ctl(tty, 0);
2726 return 0;
2727 case TCSBRK: /* SVID version: non-zero arg --> no break */
2728 /* non-zero arg means wait for all output data
2729 * to be sent (performed above) but don't send break.
2730 * This is used by the tcdrain() termios function.
2731 */
2732 if (!arg)
2733 return send_break(tty, 250);
2734 return 0;
2735 case TCSBRKP: /* support for POSIX tcsendbreak() */
2736 return send_break(tty, arg ? arg*100 : 250);
2737
2738 case TIOCMGET:
2739 return tty_tiocmget(tty, p);
2740 case TIOCMSET:
2741 case TIOCMBIC:
2742 case TIOCMBIS:
2743 return tty_tiocmset(tty, cmd, p);
2744 case TIOCGICOUNT:
2745 retval = tty_tiocgicount(tty, p);
2746 /* For the moment allow fall through to the old method */
2747 if (retval != -EINVAL)
2748 return retval;
2749 break;
2750 case TCFLSH:
2751 switch (arg) {
2752 case TCIFLUSH:
2753 case TCIOFLUSH:
2754 /* flush tty buffer and allow ldisc to process ioctl */
2755 tty_buffer_flush(tty);
2756 break;
2757 }
2758 break;
2759 }
2760 if (tty->ops->ioctl) {
2761 retval = (tty->ops->ioctl)(tty, cmd, arg);
2762 if (retval != -ENOIOCTLCMD)
2763 return retval;
2764 }
2765 ld = tty_ldisc_ref_wait(tty);
2766 retval = -EINVAL;
2767 if (ld->ops->ioctl) {
2768 retval = ld->ops->ioctl(tty, file, cmd, arg);
2769 if (retval == -ENOIOCTLCMD)
2770 retval = -ENOTTY;
2771 }
2772 tty_ldisc_deref(ld);
2773 return retval;
2774 }
2775
2776 #ifdef CONFIG_COMPAT
2777 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2778 unsigned long arg)
2779 {
2780 struct tty_struct *tty = file_tty(file);
2781 struct tty_ldisc *ld;
2782 int retval = -ENOIOCTLCMD;
2783
2784 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2785 return -EINVAL;
2786
2787 if (tty->ops->compat_ioctl) {
2788 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2789 if (retval != -ENOIOCTLCMD)
2790 return retval;
2791 }
2792
2793 ld = tty_ldisc_ref_wait(tty);
2794 if (ld->ops->compat_ioctl)
2795 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2796 else
2797 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2798 tty_ldisc_deref(ld);
2799
2800 return retval;
2801 }
2802 #endif
2803
2804 static int this_tty(const void *t, struct file *file, unsigned fd)
2805 {
2806 if (likely(file->f_op->read != tty_read))
2807 return 0;
2808 return file_tty(file) != t ? 0 : fd + 1;
2809 }
2810
2811 /*
2812 * This implements the "Secure Attention Key" --- the idea is to
2813 * prevent trojan horses by killing all processes associated with this
2814 * tty when the user hits the "Secure Attention Key". Required for
2815 * super-paranoid applications --- see the Orange Book for more details.
2816 *
2817 * This code could be nicer; ideally it should send a HUP, wait a few
2818 * seconds, then send a INT, and then a KILL signal. But you then
2819 * have to coordinate with the init process, since all processes associated
2820 * with the current tty must be dead before the new getty is allowed
2821 * to spawn.
2822 *
2823 * Now, if it would be correct ;-/ The current code has a nasty hole -
2824 * it doesn't catch files in flight. We may send the descriptor to ourselves
2825 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2826 *
2827 * Nasty bug: do_SAK is being called in interrupt context. This can
2828 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2829 */
2830 void __do_SAK(struct tty_struct *tty)
2831 {
2832 #ifdef TTY_SOFT_SAK
2833 tty_hangup(tty);
2834 #else
2835 struct task_struct *g, *p;
2836 struct pid *session;
2837 int i;
2838
2839 if (!tty)
2840 return;
2841 session = tty->session;
2842
2843 tty_ldisc_flush(tty);
2844
2845 tty_driver_flush_buffer(tty);
2846
2847 read_lock(&tasklist_lock);
2848 /* Kill the entire session */
2849 do_each_pid_task(session, PIDTYPE_SID, p) {
2850 printk(KERN_NOTICE "SAK: killed process %d"
2851 " (%s): task_session(p)==tty->session\n",
2852 task_pid_nr(p), p->comm);
2853 send_sig(SIGKILL, p, 1);
2854 } while_each_pid_task(session, PIDTYPE_SID, p);
2855 /* Now kill any processes that happen to have the
2856 * tty open.
2857 */
2858 do_each_thread(g, p) {
2859 if (p->signal->tty == tty) {
2860 printk(KERN_NOTICE "SAK: killed process %d"
2861 " (%s): task_session(p)==tty->session\n",
2862 task_pid_nr(p), p->comm);
2863 send_sig(SIGKILL, p, 1);
2864 continue;
2865 }
2866 task_lock(p);
2867 i = iterate_fd(p->files, 0, this_tty, tty);
2868 if (i != 0) {
2869 printk(KERN_NOTICE "SAK: killed process %d"
2870 " (%s): fd#%d opened to the tty\n",
2871 task_pid_nr(p), p->comm, i - 1);
2872 force_sig(SIGKILL, p);
2873 }
2874 task_unlock(p);
2875 } while_each_thread(g, p);
2876 read_unlock(&tasklist_lock);
2877 #endif
2878 }
2879
2880 static void do_SAK_work(struct work_struct *work)
2881 {
2882 struct tty_struct *tty =
2883 container_of(work, struct tty_struct, SAK_work);
2884 __do_SAK(tty);
2885 }
2886
2887 /*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893 void do_SAK(struct tty_struct *tty)
2894 {
2895 if (!tty)
2896 return;
2897 schedule_work(&tty->SAK_work);
2898 }
2899
2900 EXPORT_SYMBOL(do_SAK);
2901
2902 static int dev_match_devt(struct device *dev, const void *data)
2903 {
2904 const dev_t *devt = data;
2905 return dev->devt == *devt;
2906 }
2907
2908 /* Must put_device() after it's unused! */
2909 static struct device *tty_get_device(struct tty_struct *tty)
2910 {
2911 dev_t devt = tty_devnum(tty);
2912 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913 }
2914
2915
2916 /**
2917 * initialize_tty_struct
2918 * @tty: tty to initialize
2919 *
2920 * This subroutine initializes a tty structure that has been newly
2921 * allocated.
2922 *
2923 * Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926 void initialize_tty_struct(struct tty_struct *tty,
2927 struct tty_driver *driver, int idx)
2928 {
2929 memset(tty, 0, sizeof(struct tty_struct));
2930 kref_init(&tty->kref);
2931 tty->magic = TTY_MAGIC;
2932 tty_ldisc_init(tty);
2933 tty->session = NULL;
2934 tty->pgrp = NULL;
2935 mutex_init(&tty->legacy_mutex);
2936 mutex_init(&tty->termios_mutex);
2937 mutex_init(&tty->ldisc_mutex);
2938 init_waitqueue_head(&tty->write_wait);
2939 init_waitqueue_head(&tty->read_wait);
2940 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2941 mutex_init(&tty->atomic_write_lock);
2942 spin_lock_init(&tty->ctrl_lock);
2943 INIT_LIST_HEAD(&tty->tty_files);
2944 INIT_WORK(&tty->SAK_work, do_SAK_work);
2945
2946 tty->driver = driver;
2947 tty->ops = driver->ops;
2948 tty->index = idx;
2949 tty_line_name(driver, idx, tty->name);
2950 tty->dev = tty_get_device(tty);
2951 }
2952
2953 /**
2954 * deinitialize_tty_struct
2955 * @tty: tty to deinitialize
2956 *
2957 * This subroutine deinitializes a tty structure that has been newly
2958 * allocated but tty_release cannot be called on that yet.
2959 *
2960 * Locking: none - tty in question must not be exposed at this point
2961 */
2962 void deinitialize_tty_struct(struct tty_struct *tty)
2963 {
2964 tty_ldisc_deinit(tty);
2965 }
2966
2967 /**
2968 * tty_put_char - write one character to a tty
2969 * @tty: tty
2970 * @ch: character
2971 *
2972 * Write one byte to the tty using the provided put_char method
2973 * if present. Returns the number of characters successfully output.
2974 *
2975 * Note: the specific put_char operation in the driver layer may go
2976 * away soon. Don't call it directly, use this method
2977 */
2978
2979 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2980 {
2981 if (tty->ops->put_char)
2982 return tty->ops->put_char(tty, ch);
2983 return tty->ops->write(tty, &ch, 1);
2984 }
2985 EXPORT_SYMBOL_GPL(tty_put_char);
2986
2987 struct class *tty_class;
2988
2989 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2990 unsigned int index, unsigned int count)
2991 {
2992 /* init here, since reused cdevs cause crashes */
2993 cdev_init(&driver->cdevs[index], &tty_fops);
2994 driver->cdevs[index].owner = driver->owner;
2995 return cdev_add(&driver->cdevs[index], dev, count);
2996 }
2997
2998 /**
2999 * tty_register_device - register a tty device
3000 * @driver: the tty driver that describes the tty device
3001 * @index: the index in the tty driver for this tty device
3002 * @device: a struct device that is associated with this tty device.
3003 * This field is optional, if there is no known struct device
3004 * for this tty device it can be set to NULL safely.
3005 *
3006 * Returns a pointer to the struct device for this tty device
3007 * (or ERR_PTR(-EFOO) on error).
3008 *
3009 * This call is required to be made to register an individual tty device
3010 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3011 * that bit is not set, this function should not be called by a tty
3012 * driver.
3013 *
3014 * Locking: ??
3015 */
3016
3017 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3018 struct device *device)
3019 {
3020 return tty_register_device_attr(driver, index, device, NULL, NULL);
3021 }
3022 EXPORT_SYMBOL(tty_register_device);
3023
3024 static void tty_device_create_release(struct device *dev)
3025 {
3026 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3027 kfree(dev);
3028 }
3029
3030 /**
3031 * tty_register_device_attr - register a tty device
3032 * @driver: the tty driver that describes the tty device
3033 * @index: the index in the tty driver for this tty device
3034 * @device: a struct device that is associated with this tty device.
3035 * This field is optional, if there is no known struct device
3036 * for this tty device it can be set to NULL safely.
3037 * @drvdata: Driver data to be set to device.
3038 * @attr_grp: Attribute group to be set on device.
3039 *
3040 * Returns a pointer to the struct device for this tty device
3041 * (or ERR_PTR(-EFOO) on error).
3042 *
3043 * This call is required to be made to register an individual tty device
3044 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3045 * that bit is not set, this function should not be called by a tty
3046 * driver.
3047 *
3048 * Locking: ??
3049 */
3050 struct device *tty_register_device_attr(struct tty_driver *driver,
3051 unsigned index, struct device *device,
3052 void *drvdata,
3053 const struct attribute_group **attr_grp)
3054 {
3055 char name[64];
3056 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3057 struct device *dev = NULL;
3058 int retval = -ENODEV;
3059 bool cdev = false;
3060
3061 if (index >= driver->num) {
3062 printk(KERN_ERR "Attempt to register invalid tty line number "
3063 " (%d).\n", index);
3064 return ERR_PTR(-EINVAL);
3065 }
3066
3067 if (driver->type == TTY_DRIVER_TYPE_PTY)
3068 pty_line_name(driver, index, name);
3069 else
3070 tty_line_name(driver, index, name);
3071
3072 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073 retval = tty_cdev_add(driver, devt, index, 1);
3074 if (retval)
3075 goto error;
3076 cdev = true;
3077 }
3078
3079 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3080 if (!dev) {
3081 retval = -ENOMEM;
3082 goto error;
3083 }
3084
3085 dev->devt = devt;
3086 dev->class = tty_class;
3087 dev->parent = device;
3088 dev->release = tty_device_create_release;
3089 dev_set_name(dev, "%s", name);
3090 dev->groups = attr_grp;
3091 dev_set_drvdata(dev, drvdata);
3092
3093 retval = device_register(dev);
3094 if (retval)
3095 goto error;
3096
3097 return dev;
3098
3099 error:
3100 put_device(dev);
3101 if (cdev)
3102 cdev_del(&driver->cdevs[index]);
3103 return ERR_PTR(retval);
3104 }
3105 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3106
3107 /**
3108 * tty_unregister_device - unregister a tty device
3109 * @driver: the tty driver that describes the tty device
3110 * @index: the index in the tty driver for this tty device
3111 *
3112 * If a tty device is registered with a call to tty_register_device() then
3113 * this function must be called when the tty device is gone.
3114 *
3115 * Locking: ??
3116 */
3117
3118 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3119 {
3120 device_destroy(tty_class,
3121 MKDEV(driver->major, driver->minor_start) + index);
3122 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3123 cdev_del(&driver->cdevs[index]);
3124 }
3125 EXPORT_SYMBOL(tty_unregister_device);
3126
3127 /**
3128 * __tty_alloc_driver -- allocate tty driver
3129 * @lines: count of lines this driver can handle at most
3130 * @owner: module which is repsonsible for this driver
3131 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3132 *
3133 * This should not be called directly, some of the provided macros should be
3134 * used instead. Use IS_ERR and friends on @retval.
3135 */
3136 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3137 unsigned long flags)
3138 {
3139 struct tty_driver *driver;
3140 unsigned int cdevs = 1;
3141 int err;
3142
3143 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3144 return ERR_PTR(-EINVAL);
3145
3146 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3147 if (!driver)
3148 return ERR_PTR(-ENOMEM);
3149
3150 kref_init(&driver->kref);
3151 driver->magic = TTY_DRIVER_MAGIC;
3152 driver->num = lines;
3153 driver->owner = owner;
3154 driver->flags = flags;
3155
3156 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3157 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3158 GFP_KERNEL);
3159 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3160 GFP_KERNEL);
3161 if (!driver->ttys || !driver->termios) {
3162 err = -ENOMEM;
3163 goto err_free_all;
3164 }
3165 }
3166
3167 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3168 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3169 GFP_KERNEL);
3170 if (!driver->ports) {
3171 err = -ENOMEM;
3172 goto err_free_all;
3173 }
3174 cdevs = lines;
3175 }
3176
3177 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3178 if (!driver->cdevs) {
3179 err = -ENOMEM;
3180 goto err_free_all;
3181 }
3182
3183 return driver;
3184 err_free_all:
3185 kfree(driver->ports);
3186 kfree(driver->ttys);
3187 kfree(driver->termios);
3188 kfree(driver);
3189 return ERR_PTR(err);
3190 }
3191 EXPORT_SYMBOL(__tty_alloc_driver);
3192
3193 static void destruct_tty_driver(struct kref *kref)
3194 {
3195 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3196 int i;
3197 struct ktermios *tp;
3198
3199 if (driver->flags & TTY_DRIVER_INSTALLED) {
3200 /*
3201 * Free the termios and termios_locked structures because
3202 * we don't want to get memory leaks when modular tty
3203 * drivers are removed from the kernel.
3204 */
3205 for (i = 0; i < driver->num; i++) {
3206 tp = driver->termios[i];
3207 if (tp) {
3208 driver->termios[i] = NULL;
3209 kfree(tp);
3210 }
3211 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3212 tty_unregister_device(driver, i);
3213 }
3214 proc_tty_unregister_driver(driver);
3215 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3216 cdev_del(&driver->cdevs[0]);
3217 }
3218 kfree(driver->cdevs);
3219 kfree(driver->ports);
3220 kfree(driver->termios);
3221 kfree(driver->ttys);
3222 kfree(driver);
3223 }
3224
3225 void tty_driver_kref_put(struct tty_driver *driver)
3226 {
3227 kref_put(&driver->kref, destruct_tty_driver);
3228 }
3229 EXPORT_SYMBOL(tty_driver_kref_put);
3230
3231 void tty_set_operations(struct tty_driver *driver,
3232 const struct tty_operations *op)
3233 {
3234 driver->ops = op;
3235 };
3236 EXPORT_SYMBOL(tty_set_operations);
3237
3238 void put_tty_driver(struct tty_driver *d)
3239 {
3240 tty_driver_kref_put(d);
3241 }
3242 EXPORT_SYMBOL(put_tty_driver);
3243
3244 /*
3245 * Called by a tty driver to register itself.
3246 */
3247 int tty_register_driver(struct tty_driver *driver)
3248 {
3249 int error;
3250 int i;
3251 dev_t dev;
3252 struct device *d;
3253
3254 if (!driver->major) {
3255 error = alloc_chrdev_region(&dev, driver->minor_start,
3256 driver->num, driver->name);
3257 if (!error) {
3258 driver->major = MAJOR(dev);
3259 driver->minor_start = MINOR(dev);
3260 }
3261 } else {
3262 dev = MKDEV(driver->major, driver->minor_start);
3263 error = register_chrdev_region(dev, driver->num, driver->name);
3264 }
3265 if (error < 0)
3266 goto err;
3267
3268 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3269 error = tty_cdev_add(driver, dev, 0, driver->num);
3270 if (error)
3271 goto err_unreg_char;
3272 }
3273
3274 mutex_lock(&tty_mutex);
3275 list_add(&driver->tty_drivers, &tty_drivers);
3276 mutex_unlock(&tty_mutex);
3277
3278 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3279 for (i = 0; i < driver->num; i++) {
3280 d = tty_register_device(driver, i, NULL);
3281 if (IS_ERR(d)) {
3282 error = PTR_ERR(d);
3283 goto err_unreg_devs;
3284 }
3285 }
3286 }
3287 proc_tty_register_driver(driver);
3288 driver->flags |= TTY_DRIVER_INSTALLED;
3289 return 0;
3290
3291 err_unreg_devs:
3292 for (i--; i >= 0; i--)
3293 tty_unregister_device(driver, i);
3294
3295 mutex_lock(&tty_mutex);
3296 list_del(&driver->tty_drivers);
3297 mutex_unlock(&tty_mutex);
3298
3299 err_unreg_char:
3300 unregister_chrdev_region(dev, driver->num);
3301 err:
3302 return error;
3303 }
3304 EXPORT_SYMBOL(tty_register_driver);
3305
3306 /*
3307 * Called by a tty driver to unregister itself.
3308 */
3309 int tty_unregister_driver(struct tty_driver *driver)
3310 {
3311 #if 0
3312 /* FIXME */
3313 if (driver->refcount)
3314 return -EBUSY;
3315 #endif
3316 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3317 driver->num);
3318 mutex_lock(&tty_mutex);
3319 list_del(&driver->tty_drivers);
3320 mutex_unlock(&tty_mutex);
3321 return 0;
3322 }
3323
3324 EXPORT_SYMBOL(tty_unregister_driver);
3325
3326 dev_t tty_devnum(struct tty_struct *tty)
3327 {
3328 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3329 }
3330 EXPORT_SYMBOL(tty_devnum);
3331
3332 void proc_clear_tty(struct task_struct *p)
3333 {
3334 unsigned long flags;
3335 struct tty_struct *tty;
3336 spin_lock_irqsave(&p->sighand->siglock, flags);
3337 tty = p->signal->tty;
3338 p->signal->tty = NULL;
3339 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3340 tty_kref_put(tty);
3341 }
3342
3343 /* Called under the sighand lock */
3344
3345 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3346 {
3347 if (tty) {
3348 unsigned long flags;
3349 /* We should not have a session or pgrp to put here but.... */
3350 spin_lock_irqsave(&tty->ctrl_lock, flags);
3351 put_pid(tty->session);
3352 put_pid(tty->pgrp);
3353 tty->pgrp = get_pid(task_pgrp(tsk));
3354 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3355 tty->session = get_pid(task_session(tsk));
3356 if (tsk->signal->tty) {
3357 printk(KERN_DEBUG "tty not NULL!!\n");
3358 tty_kref_put(tsk->signal->tty);
3359 }
3360 }
3361 put_pid(tsk->signal->tty_old_pgrp);
3362 tsk->signal->tty = tty_kref_get(tty);
3363 tsk->signal->tty_old_pgrp = NULL;
3364 }
3365
3366 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3367 {
3368 spin_lock_irq(&tsk->sighand->siglock);
3369 __proc_set_tty(tsk, tty);
3370 spin_unlock_irq(&tsk->sighand->siglock);
3371 }
3372
3373 struct tty_struct *get_current_tty(void)
3374 {
3375 struct tty_struct *tty;
3376 unsigned long flags;
3377
3378 spin_lock_irqsave(&current->sighand->siglock, flags);
3379 tty = tty_kref_get(current->signal->tty);
3380 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3381 return tty;
3382 }
3383 EXPORT_SYMBOL_GPL(get_current_tty);
3384
3385 void tty_default_fops(struct file_operations *fops)
3386 {
3387 *fops = tty_fops;
3388 }
3389
3390 /*
3391 * Initialize the console device. This is called *early*, so
3392 * we can't necessarily depend on lots of kernel help here.
3393 * Just do some early initializations, and do the complex setup
3394 * later.
3395 */
3396 void __init console_init(void)
3397 {
3398 initcall_t *call;
3399
3400 /* Setup the default TTY line discipline. */
3401 tty_ldisc_begin();
3402
3403 /*
3404 * set up the console device so that later boot sequences can
3405 * inform about problems etc..
3406 */
3407 call = __con_initcall_start;
3408 while (call < __con_initcall_end) {
3409 (*call)();
3410 call++;
3411 }
3412 }
3413
3414 static char *tty_devnode(struct device *dev, umode_t *mode)
3415 {
3416 if (!mode)
3417 return NULL;
3418 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3419 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3420 *mode = 0666;
3421 return NULL;
3422 }
3423
3424 static int __init tty_class_init(void)
3425 {
3426 tty_class = class_create(THIS_MODULE, "tty");
3427 if (IS_ERR(tty_class))
3428 return PTR_ERR(tty_class);
3429 tty_class->devnode = tty_devnode;
3430 return 0;
3431 }
3432
3433 postcore_initcall(tty_class_init);
3434
3435 /* 3/2004 jmc: why do these devices exist? */
3436 static struct cdev tty_cdev, console_cdev;
3437
3438 static ssize_t show_cons_active(struct device *dev,
3439 struct device_attribute *attr, char *buf)
3440 {
3441 struct console *cs[16];
3442 int i = 0;
3443 struct console *c;
3444 ssize_t count = 0;
3445
3446 console_lock();
3447 for_each_console(c) {
3448 if (!c->device)
3449 continue;
3450 if (!c->write)
3451 continue;
3452 if ((c->flags & CON_ENABLED) == 0)
3453 continue;
3454 cs[i++] = c;
3455 if (i >= ARRAY_SIZE(cs))
3456 break;
3457 }
3458 while (i--)
3459 count += sprintf(buf + count, "%s%d%c",
3460 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3461 console_unlock();
3462
3463 return count;
3464 }
3465 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3466
3467 static struct device *consdev;
3468
3469 void console_sysfs_notify(void)
3470 {
3471 if (consdev)
3472 sysfs_notify(&consdev->kobj, NULL, "active");
3473 }
3474
3475 /*
3476 * Ok, now we can initialize the rest of the tty devices and can count
3477 * on memory allocations, interrupts etc..
3478 */
3479 int __init tty_init(void)
3480 {
3481 cdev_init(&tty_cdev, &tty_fops);
3482 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3483 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3484 panic("Couldn't register /dev/tty driver\n");
3485 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3486
3487 cdev_init(&console_cdev, &console_fops);
3488 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3489 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3490 panic("Couldn't register /dev/console driver\n");
3491 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3492 "console");
3493 if (IS_ERR(consdev))
3494 consdev = NULL;
3495 else
3496 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3497
3498 #ifdef CONFIG_VT
3499 vty_init(&console_fops);
3500 #endif
3501 return 0;
3502 }
3503
This page took 0.104171 seconds and 5 git commands to generate.