tty: Eliminate global symbol tty_ldisc_N_TTY
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...) do { } while (0)
113 #endif
114
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117
118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
119 .c_iflag = ICRNL | IXON,
120 .c_oflag = OPOST | ONLCR,
121 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 ECHOCTL | ECHOKE | IEXTEN,
124 .c_cc = INIT_C_CC,
125 .c_ispeed = 38400,
126 .c_ospeed = 38400,
127 /* .c_line = N_TTY, */
128 };
129
130 EXPORT_SYMBOL(tty_std_termios);
131
132 /* This list gets poked at by procfs and various bits of boot up code. This
133 could do with some rationalisation such as pulling the tty proc function
134 into this file */
135
136 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
137
138 /* Mutex to protect creating and releasing a tty */
139 DEFINE_MUTEX(tty_mutex);
140
141 /* Spinlock to protect the tty->tty_files list */
142 DEFINE_SPINLOCK(tty_files_lock);
143
144 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
145 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
146 ssize_t redirected_tty_write(struct file *, const char __user *,
147 size_t, loff_t *);
148 static unsigned int tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
151 #ifdef CONFIG_COMPAT
152 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153 unsigned long arg);
154 #else
155 #define tty_compat_ioctl NULL
156 #endif
157 static int __tty_fasync(int fd, struct file *filp, int on);
158 static int tty_fasync(int fd, struct file *filp, int on);
159 static void release_tty(struct tty_struct *tty, int idx);
160
161 /**
162 * free_tty_struct - free a disused tty
163 * @tty: tty struct to free
164 *
165 * Free the write buffers, tty queue and tty memory itself.
166 *
167 * Locking: none. Must be called after tty is definitely unused
168 */
169
170 static void free_tty_struct(struct tty_struct *tty)
171 {
172 tty_ldisc_deinit(tty);
173 put_device(tty->dev);
174 kfree(tty->write_buf);
175 tty->magic = 0xDEADDEAD;
176 kfree(tty);
177 }
178
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181 return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
184 int tty_alloc_file(struct file *file)
185 {
186 struct tty_file_private *priv;
187
188 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189 if (!priv)
190 return -ENOMEM;
191
192 file->private_data = priv;
193
194 return 0;
195 }
196
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 struct tty_file_private *priv = file->private_data;
201
202 priv->tty = tty;
203 priv->file = file;
204
205 spin_lock(&tty_files_lock);
206 list_add(&priv->list, &tty->tty_files);
207 spin_unlock(&tty_files_lock);
208 }
209
210 /**
211 * tty_free_file - free file->private_data
212 *
213 * This shall be used only for fail path handling when tty_add_file was not
214 * called yet.
215 */
216 void tty_free_file(struct file *file)
217 {
218 struct tty_file_private *priv = file->private_data;
219
220 file->private_data = NULL;
221 kfree(priv);
222 }
223
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227 struct tty_file_private *priv = file->private_data;
228
229 spin_lock(&tty_files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty_files_lock);
232 tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239 * tty_name - return tty naming
240 * @tty: tty structure
241 *
242 * Convert a tty structure into a name. The name reflects the kernel
243 * naming policy and if udev is in use may not reflect user space
244 *
245 * Locking: none
246 */
247
248 const char *tty_name(const struct tty_struct *tty)
249 {
250 if (!tty) /* Hmm. NULL pointer. That's fun. */
251 return "NULL tty";
252 return tty->name;
253 }
254
255 EXPORT_SYMBOL(tty_name);
256
257 const char *tty_driver_name(const struct tty_struct *tty)
258 {
259 if (!tty || !tty->driver)
260 return "";
261 return tty->driver->name;
262 }
263
264 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
265 const char *routine)
266 {
267 #ifdef TTY_PARANOIA_CHECK
268 if (!tty) {
269 pr_warn("(%d:%d): %s: NULL tty\n",
270 imajor(inode), iminor(inode), routine);
271 return 1;
272 }
273 if (tty->magic != TTY_MAGIC) {
274 pr_warn("(%d:%d): %s: bad magic number\n",
275 imajor(inode), iminor(inode), routine);
276 return 1;
277 }
278 #endif
279 return 0;
280 }
281
282 /* Caller must hold tty_lock */
283 static int check_tty_count(struct tty_struct *tty, const char *routine)
284 {
285 #ifdef CHECK_TTY_COUNT
286 struct list_head *p;
287 int count = 0;
288
289 spin_lock(&tty_files_lock);
290 list_for_each(p, &tty->tty_files) {
291 count++;
292 }
293 spin_unlock(&tty_files_lock);
294 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
295 tty->driver->subtype == PTY_TYPE_SLAVE &&
296 tty->link && tty->link->count)
297 count++;
298 if (tty->count != count) {
299 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
300 routine, tty->count, count);
301 return count;
302 }
303 #endif
304 return 0;
305 }
306
307 /**
308 * get_tty_driver - find device of a tty
309 * @dev_t: device identifier
310 * @index: returns the index of the tty
311 *
312 * This routine returns a tty driver structure, given a device number
313 * and also passes back the index number.
314 *
315 * Locking: caller must hold tty_mutex
316 */
317
318 static struct tty_driver *get_tty_driver(dev_t device, int *index)
319 {
320 struct tty_driver *p;
321
322 list_for_each_entry(p, &tty_drivers, tty_drivers) {
323 dev_t base = MKDEV(p->major, p->minor_start);
324 if (device < base || device >= base + p->num)
325 continue;
326 *index = device - base;
327 return tty_driver_kref_get(p);
328 }
329 return NULL;
330 }
331
332 #ifdef CONFIG_CONSOLE_POLL
333
334 /**
335 * tty_find_polling_driver - find device of a polled tty
336 * @name: name string to match
337 * @line: pointer to resulting tty line nr
338 *
339 * This routine returns a tty driver structure, given a name
340 * and the condition that the tty driver is capable of polled
341 * operation.
342 */
343 struct tty_driver *tty_find_polling_driver(char *name, int *line)
344 {
345 struct tty_driver *p, *res = NULL;
346 int tty_line = 0;
347 int len;
348 char *str, *stp;
349
350 for (str = name; *str; str++)
351 if ((*str >= '0' && *str <= '9') || *str == ',')
352 break;
353 if (!*str)
354 return NULL;
355
356 len = str - name;
357 tty_line = simple_strtoul(str, &str, 10);
358
359 mutex_lock(&tty_mutex);
360 /* Search through the tty devices to look for a match */
361 list_for_each_entry(p, &tty_drivers, tty_drivers) {
362 if (strncmp(name, p->name, len) != 0)
363 continue;
364 stp = str;
365 if (*stp == ',')
366 stp++;
367 if (*stp == '\0')
368 stp = NULL;
369
370 if (tty_line >= 0 && tty_line < p->num && p->ops &&
371 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
372 res = tty_driver_kref_get(p);
373 *line = tty_line;
374 break;
375 }
376 }
377 mutex_unlock(&tty_mutex);
378
379 return res;
380 }
381 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
382 #endif
383
384 /**
385 * tty_check_change - check for POSIX terminal changes
386 * @tty: tty to check
387 *
388 * If we try to write to, or set the state of, a terminal and we're
389 * not in the foreground, send a SIGTTOU. If the signal is blocked or
390 * ignored, go ahead and perform the operation. (POSIX 7.2)
391 *
392 * Locking: ctrl_lock
393 */
394
395 int __tty_check_change(struct tty_struct *tty, int sig)
396 {
397 unsigned long flags;
398 struct pid *pgrp, *tty_pgrp;
399 int ret = 0;
400
401 if (current->signal->tty != tty)
402 return 0;
403
404 rcu_read_lock();
405 pgrp = task_pgrp(current);
406
407 spin_lock_irqsave(&tty->ctrl_lock, flags);
408 tty_pgrp = tty->pgrp;
409 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410
411 if (tty_pgrp && pgrp != tty->pgrp) {
412 if (is_ignored(sig)) {
413 if (sig == SIGTTIN)
414 ret = -EIO;
415 } else if (is_current_pgrp_orphaned())
416 ret = -EIO;
417 else {
418 kill_pgrp(pgrp, sig, 1);
419 set_thread_flag(TIF_SIGPENDING);
420 ret = -ERESTARTSYS;
421 }
422 }
423 rcu_read_unlock();
424
425 if (!tty_pgrp)
426 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
427
428 return ret;
429 }
430
431 int tty_check_change(struct tty_struct *tty)
432 {
433 return __tty_check_change(tty, SIGTTOU);
434 }
435 EXPORT_SYMBOL(tty_check_change);
436
437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
438 size_t count, loff_t *ppos)
439 {
440 return 0;
441 }
442
443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
444 size_t count, loff_t *ppos)
445 {
446 return -EIO;
447 }
448
449 /* No kernel lock held - none needed ;) */
450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
451 {
452 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
453 }
454
455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
456 unsigned long arg)
457 {
458 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460
461 static long hung_up_tty_compat_ioctl(struct file *file,
462 unsigned int cmd, unsigned long arg)
463 {
464 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466
467 static const struct file_operations tty_fops = {
468 .llseek = no_llseek,
469 .read = tty_read,
470 .write = tty_write,
471 .poll = tty_poll,
472 .unlocked_ioctl = tty_ioctl,
473 .compat_ioctl = tty_compat_ioctl,
474 .open = tty_open,
475 .release = tty_release,
476 .fasync = tty_fasync,
477 };
478
479 static const struct file_operations console_fops = {
480 .llseek = no_llseek,
481 .read = tty_read,
482 .write = redirected_tty_write,
483 .poll = tty_poll,
484 .unlocked_ioctl = tty_ioctl,
485 .compat_ioctl = tty_compat_ioctl,
486 .open = tty_open,
487 .release = tty_release,
488 .fasync = tty_fasync,
489 };
490
491 static const struct file_operations hung_up_tty_fops = {
492 .llseek = no_llseek,
493 .read = hung_up_tty_read,
494 .write = hung_up_tty_write,
495 .poll = hung_up_tty_poll,
496 .unlocked_ioctl = hung_up_tty_ioctl,
497 .compat_ioctl = hung_up_tty_compat_ioctl,
498 .release = tty_release,
499 };
500
501 static DEFINE_SPINLOCK(redirect_lock);
502 static struct file *redirect;
503
504
505 void proc_clear_tty(struct task_struct *p)
506 {
507 unsigned long flags;
508 struct tty_struct *tty;
509 spin_lock_irqsave(&p->sighand->siglock, flags);
510 tty = p->signal->tty;
511 p->signal->tty = NULL;
512 spin_unlock_irqrestore(&p->sighand->siglock, flags);
513 tty_kref_put(tty);
514 }
515
516 /**
517 * proc_set_tty - set the controlling terminal
518 *
519 * Only callable by the session leader and only if it does not already have
520 * a controlling terminal.
521 *
522 * Caller must hold: tty_lock()
523 * a readlock on tasklist_lock
524 * sighand lock
525 */
526 static void __proc_set_tty(struct tty_struct *tty)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&tty->ctrl_lock, flags);
531 /*
532 * The session and fg pgrp references will be non-NULL if
533 * tiocsctty() is stealing the controlling tty
534 */
535 put_pid(tty->session);
536 put_pid(tty->pgrp);
537 tty->pgrp = get_pid(task_pgrp(current));
538 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
539 tty->session = get_pid(task_session(current));
540 if (current->signal->tty) {
541 tty_debug(tty, "current tty %s not NULL!!\n",
542 current->signal->tty->name);
543 tty_kref_put(current->signal->tty);
544 }
545 put_pid(current->signal->tty_old_pgrp);
546 current->signal->tty = tty_kref_get(tty);
547 current->signal->tty_old_pgrp = NULL;
548 }
549
550 static void proc_set_tty(struct tty_struct *tty)
551 {
552 spin_lock_irq(&current->sighand->siglock);
553 __proc_set_tty(tty);
554 spin_unlock_irq(&current->sighand->siglock);
555 }
556
557 struct tty_struct *get_current_tty(void)
558 {
559 struct tty_struct *tty;
560 unsigned long flags;
561
562 spin_lock_irqsave(&current->sighand->siglock, flags);
563 tty = tty_kref_get(current->signal->tty);
564 spin_unlock_irqrestore(&current->sighand->siglock, flags);
565 return tty;
566 }
567 EXPORT_SYMBOL_GPL(get_current_tty);
568
569 static void session_clear_tty(struct pid *session)
570 {
571 struct task_struct *p;
572 do_each_pid_task(session, PIDTYPE_SID, p) {
573 proc_clear_tty(p);
574 } while_each_pid_task(session, PIDTYPE_SID, p);
575 }
576
577 /**
578 * tty_wakeup - request more data
579 * @tty: terminal
580 *
581 * Internal and external helper for wakeups of tty. This function
582 * informs the line discipline if present that the driver is ready
583 * to receive more output data.
584 */
585
586 void tty_wakeup(struct tty_struct *tty)
587 {
588 struct tty_ldisc *ld;
589
590 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
591 ld = tty_ldisc_ref(tty);
592 if (ld) {
593 if (ld->ops->write_wakeup)
594 ld->ops->write_wakeup(tty);
595 tty_ldisc_deref(ld);
596 }
597 }
598 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
599 }
600
601 EXPORT_SYMBOL_GPL(tty_wakeup);
602
603 /**
604 * tty_signal_session_leader - sends SIGHUP to session leader
605 * @tty controlling tty
606 * @exit_session if non-zero, signal all foreground group processes
607 *
608 * Send SIGHUP and SIGCONT to the session leader and its process group.
609 * Optionally, signal all processes in the foreground process group.
610 *
611 * Returns the number of processes in the session with this tty
612 * as their controlling terminal. This value is used to drop
613 * tty references for those processes.
614 */
615 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
616 {
617 struct task_struct *p;
618 int refs = 0;
619 struct pid *tty_pgrp = NULL;
620
621 read_lock(&tasklist_lock);
622 if (tty->session) {
623 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
624 spin_lock_irq(&p->sighand->siglock);
625 if (p->signal->tty == tty) {
626 p->signal->tty = NULL;
627 /* We defer the dereferences outside fo
628 the tasklist lock */
629 refs++;
630 }
631 if (!p->signal->leader) {
632 spin_unlock_irq(&p->sighand->siglock);
633 continue;
634 }
635 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
636 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
637 put_pid(p->signal->tty_old_pgrp); /* A noop */
638 spin_lock(&tty->ctrl_lock);
639 tty_pgrp = get_pid(tty->pgrp);
640 if (tty->pgrp)
641 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
642 spin_unlock(&tty->ctrl_lock);
643 spin_unlock_irq(&p->sighand->siglock);
644 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
645 }
646 read_unlock(&tasklist_lock);
647
648 if (tty_pgrp) {
649 if (exit_session)
650 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
651 put_pid(tty_pgrp);
652 }
653
654 return refs;
655 }
656
657 /**
658 * __tty_hangup - actual handler for hangup events
659 * @work: tty device
660 *
661 * This can be called by a "kworker" kernel thread. That is process
662 * synchronous but doesn't hold any locks, so we need to make sure we
663 * have the appropriate locks for what we're doing.
664 *
665 * The hangup event clears any pending redirections onto the hung up
666 * device. It ensures future writes will error and it does the needed
667 * line discipline hangup and signal delivery. The tty object itself
668 * remains intact.
669 *
670 * Locking:
671 * BTM
672 * redirect lock for undoing redirection
673 * file list lock for manipulating list of ttys
674 * tty_ldiscs_lock from called functions
675 * termios_rwsem resetting termios data
676 * tasklist_lock to walk task list for hangup event
677 * ->siglock to protect ->signal/->sighand
678 */
679 static void __tty_hangup(struct tty_struct *tty, int exit_session)
680 {
681 struct file *cons_filp = NULL;
682 struct file *filp, *f = NULL;
683 struct tty_file_private *priv;
684 int closecount = 0, n;
685 int refs;
686
687 if (!tty)
688 return;
689
690
691 spin_lock(&redirect_lock);
692 if (redirect && file_tty(redirect) == tty) {
693 f = redirect;
694 redirect = NULL;
695 }
696 spin_unlock(&redirect_lock);
697
698 tty_lock(tty);
699
700 if (test_bit(TTY_HUPPED, &tty->flags)) {
701 tty_unlock(tty);
702 return;
703 }
704
705 /* inuse_filps is protected by the single tty lock,
706 this really needs to change if we want to flush the
707 workqueue with the lock held */
708 check_tty_count(tty, "tty_hangup");
709
710 spin_lock(&tty_files_lock);
711 /* This breaks for file handles being sent over AF_UNIX sockets ? */
712 list_for_each_entry(priv, &tty->tty_files, list) {
713 filp = priv->file;
714 if (filp->f_op->write == redirected_tty_write)
715 cons_filp = filp;
716 if (filp->f_op->write != tty_write)
717 continue;
718 closecount++;
719 __tty_fasync(-1, filp, 0); /* can't block */
720 filp->f_op = &hung_up_tty_fops;
721 }
722 spin_unlock(&tty_files_lock);
723
724 refs = tty_signal_session_leader(tty, exit_session);
725 /* Account for the p->signal references we killed */
726 while (refs--)
727 tty_kref_put(tty);
728
729 tty_ldisc_hangup(tty, cons_filp != NULL);
730
731 spin_lock_irq(&tty->ctrl_lock);
732 clear_bit(TTY_THROTTLED, &tty->flags);
733 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
734 put_pid(tty->session);
735 put_pid(tty->pgrp);
736 tty->session = NULL;
737 tty->pgrp = NULL;
738 tty->ctrl_status = 0;
739 spin_unlock_irq(&tty->ctrl_lock);
740
741 /*
742 * If one of the devices matches a console pointer, we
743 * cannot just call hangup() because that will cause
744 * tty->count and state->count to go out of sync.
745 * So we just call close() the right number of times.
746 */
747 if (cons_filp) {
748 if (tty->ops->close)
749 for (n = 0; n < closecount; n++)
750 tty->ops->close(tty, cons_filp);
751 } else if (tty->ops->hangup)
752 tty->ops->hangup(tty);
753 /*
754 * We don't want to have driver/ldisc interactions beyond the ones
755 * we did here. The driver layer expects no calls after ->hangup()
756 * from the ldisc side, which is now guaranteed.
757 */
758 set_bit(TTY_HUPPED, &tty->flags);
759 tty_unlock(tty);
760
761 if (f)
762 fput(f);
763 }
764
765 static void do_tty_hangup(struct work_struct *work)
766 {
767 struct tty_struct *tty =
768 container_of(work, struct tty_struct, hangup_work);
769
770 __tty_hangup(tty, 0);
771 }
772
773 /**
774 * tty_hangup - trigger a hangup event
775 * @tty: tty to hangup
776 *
777 * A carrier loss (virtual or otherwise) has occurred on this like
778 * schedule a hangup sequence to run after this event.
779 */
780
781 void tty_hangup(struct tty_struct *tty)
782 {
783 tty_debug_hangup(tty, "hangup\n");
784 schedule_work(&tty->hangup_work);
785 }
786
787 EXPORT_SYMBOL(tty_hangup);
788
789 /**
790 * tty_vhangup - process vhangup
791 * @tty: tty to hangup
792 *
793 * The user has asked via system call for the terminal to be hung up.
794 * We do this synchronously so that when the syscall returns the process
795 * is complete. That guarantee is necessary for security reasons.
796 */
797
798 void tty_vhangup(struct tty_struct *tty)
799 {
800 tty_debug_hangup(tty, "vhangup\n");
801 __tty_hangup(tty, 0);
802 }
803
804 EXPORT_SYMBOL(tty_vhangup);
805
806
807 /**
808 * tty_vhangup_self - process vhangup for own ctty
809 *
810 * Perform a vhangup on the current controlling tty
811 */
812
813 void tty_vhangup_self(void)
814 {
815 struct tty_struct *tty;
816
817 tty = get_current_tty();
818 if (tty) {
819 tty_vhangup(tty);
820 tty_kref_put(tty);
821 }
822 }
823
824 /**
825 * tty_vhangup_session - hangup session leader exit
826 * @tty: tty to hangup
827 *
828 * The session leader is exiting and hanging up its controlling terminal.
829 * Every process in the foreground process group is signalled SIGHUP.
830 *
831 * We do this synchronously so that when the syscall returns the process
832 * is complete. That guarantee is necessary for security reasons.
833 */
834
835 static void tty_vhangup_session(struct tty_struct *tty)
836 {
837 tty_debug_hangup(tty, "session hangup\n");
838 __tty_hangup(tty, 1);
839 }
840
841 /**
842 * tty_hung_up_p - was tty hung up
843 * @filp: file pointer of tty
844 *
845 * Return true if the tty has been subject to a vhangup or a carrier
846 * loss
847 */
848
849 int tty_hung_up_p(struct file *filp)
850 {
851 return (filp->f_op == &hung_up_tty_fops);
852 }
853
854 EXPORT_SYMBOL(tty_hung_up_p);
855
856 /**
857 * disassociate_ctty - disconnect controlling tty
858 * @on_exit: true if exiting so need to "hang up" the session
859 *
860 * This function is typically called only by the session leader, when
861 * it wants to disassociate itself from its controlling tty.
862 *
863 * It performs the following functions:
864 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
865 * (2) Clears the tty from being controlling the session
866 * (3) Clears the controlling tty for all processes in the
867 * session group.
868 *
869 * The argument on_exit is set to 1 if called when a process is
870 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
871 *
872 * Locking:
873 * BTM is taken for hysterical raisins, and held when
874 * called from no_tty().
875 * tty_mutex is taken to protect tty
876 * ->siglock is taken to protect ->signal/->sighand
877 * tasklist_lock is taken to walk process list for sessions
878 * ->siglock is taken to protect ->signal/->sighand
879 */
880
881 void disassociate_ctty(int on_exit)
882 {
883 struct tty_struct *tty;
884
885 if (!current->signal->leader)
886 return;
887
888 tty = get_current_tty();
889 if (tty) {
890 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891 tty_vhangup_session(tty);
892 } else {
893 struct pid *tty_pgrp = tty_get_pgrp(tty);
894 if (tty_pgrp) {
895 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896 if (!on_exit)
897 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898 put_pid(tty_pgrp);
899 }
900 }
901 tty_kref_put(tty);
902
903 } else if (on_exit) {
904 struct pid *old_pgrp;
905 spin_lock_irq(&current->sighand->siglock);
906 old_pgrp = current->signal->tty_old_pgrp;
907 current->signal->tty_old_pgrp = NULL;
908 spin_unlock_irq(&current->sighand->siglock);
909 if (old_pgrp) {
910 kill_pgrp(old_pgrp, SIGHUP, on_exit);
911 kill_pgrp(old_pgrp, SIGCONT, on_exit);
912 put_pid(old_pgrp);
913 }
914 return;
915 }
916
917 spin_lock_irq(&current->sighand->siglock);
918 put_pid(current->signal->tty_old_pgrp);
919 current->signal->tty_old_pgrp = NULL;
920
921 tty = tty_kref_get(current->signal->tty);
922 if (tty) {
923 unsigned long flags;
924 spin_lock_irqsave(&tty->ctrl_lock, flags);
925 put_pid(tty->session);
926 put_pid(tty->pgrp);
927 tty->session = NULL;
928 tty->pgrp = NULL;
929 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930 tty_kref_put(tty);
931 } else
932 tty_debug_hangup(tty, "no current tty\n");
933
934 spin_unlock_irq(&current->sighand->siglock);
935 /* Now clear signal->tty under the lock */
936 read_lock(&tasklist_lock);
937 session_clear_tty(task_session(current));
938 read_unlock(&tasklist_lock);
939 }
940
941 /**
942 *
943 * no_tty - Ensure the current process does not have a controlling tty
944 */
945 void no_tty(void)
946 {
947 /* FIXME: Review locking here. The tty_lock never covered any race
948 between a new association and proc_clear_tty but possible we need
949 to protect against this anyway */
950 struct task_struct *tsk = current;
951 disassociate_ctty(0);
952 proc_clear_tty(tsk);
953 }
954
955
956 /**
957 * stop_tty - propagate flow control
958 * @tty: tty to stop
959 *
960 * Perform flow control to the driver. May be called
961 * on an already stopped device and will not re-call the driver
962 * method.
963 *
964 * This functionality is used by both the line disciplines for
965 * halting incoming flow and by the driver. It may therefore be
966 * called from any context, may be under the tty atomic_write_lock
967 * but not always.
968 *
969 * Locking:
970 * flow_lock
971 */
972
973 void __stop_tty(struct tty_struct *tty)
974 {
975 if (tty->stopped)
976 return;
977 tty->stopped = 1;
978 if (tty->ops->stop)
979 tty->ops->stop(tty);
980 }
981
982 void stop_tty(struct tty_struct *tty)
983 {
984 unsigned long flags;
985
986 spin_lock_irqsave(&tty->flow_lock, flags);
987 __stop_tty(tty);
988 spin_unlock_irqrestore(&tty->flow_lock, flags);
989 }
990 EXPORT_SYMBOL(stop_tty);
991
992 /**
993 * start_tty - propagate flow control
994 * @tty: tty to start
995 *
996 * Start a tty that has been stopped if at all possible. If this
997 * tty was previous stopped and is now being started, the driver
998 * start method is invoked and the line discipline woken.
999 *
1000 * Locking:
1001 * flow_lock
1002 */
1003
1004 void __start_tty(struct tty_struct *tty)
1005 {
1006 if (!tty->stopped || tty->flow_stopped)
1007 return;
1008 tty->stopped = 0;
1009 if (tty->ops->start)
1010 tty->ops->start(tty);
1011 tty_wakeup(tty);
1012 }
1013
1014 void start_tty(struct tty_struct *tty)
1015 {
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&tty->flow_lock, flags);
1019 __start_tty(tty);
1020 spin_unlock_irqrestore(&tty->flow_lock, flags);
1021 }
1022 EXPORT_SYMBOL(start_tty);
1023
1024 static void tty_update_time(struct timespec *time)
1025 {
1026 unsigned long sec = get_seconds();
1027
1028 /*
1029 * We only care if the two values differ in anything other than the
1030 * lower three bits (i.e every 8 seconds). If so, then we can update
1031 * the time of the tty device, otherwise it could be construded as a
1032 * security leak to let userspace know the exact timing of the tty.
1033 */
1034 if ((sec ^ time->tv_sec) & ~7)
1035 time->tv_sec = sec;
1036 }
1037
1038 /**
1039 * tty_read - read method for tty device files
1040 * @file: pointer to tty file
1041 * @buf: user buffer
1042 * @count: size of user buffer
1043 * @ppos: unused
1044 *
1045 * Perform the read system call function on this terminal device. Checks
1046 * for hung up devices before calling the line discipline method.
1047 *
1048 * Locking:
1049 * Locks the line discipline internally while needed. Multiple
1050 * read calls may be outstanding in parallel.
1051 */
1052
1053 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1054 loff_t *ppos)
1055 {
1056 int i;
1057 struct inode *inode = file_inode(file);
1058 struct tty_struct *tty = file_tty(file);
1059 struct tty_ldisc *ld;
1060
1061 if (tty_paranoia_check(tty, inode, "tty_read"))
1062 return -EIO;
1063 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1064 return -EIO;
1065
1066 /* We want to wait for the line discipline to sort out in this
1067 situation */
1068 ld = tty_ldisc_ref_wait(tty);
1069 if (!ld)
1070 return hung_up_tty_read(file, buf, count, ppos);
1071 if (ld->ops->read)
1072 i = ld->ops->read(tty, file, buf, count);
1073 else
1074 i = -EIO;
1075 tty_ldisc_deref(ld);
1076
1077 if (i > 0)
1078 tty_update_time(&inode->i_atime);
1079
1080 return i;
1081 }
1082
1083 static void tty_write_unlock(struct tty_struct *tty)
1084 {
1085 mutex_unlock(&tty->atomic_write_lock);
1086 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1087 }
1088
1089 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1090 {
1091 if (!mutex_trylock(&tty->atomic_write_lock)) {
1092 if (ndelay)
1093 return -EAGAIN;
1094 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1095 return -ERESTARTSYS;
1096 }
1097 return 0;
1098 }
1099
1100 /*
1101 * Split writes up in sane blocksizes to avoid
1102 * denial-of-service type attacks
1103 */
1104 static inline ssize_t do_tty_write(
1105 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1106 struct tty_struct *tty,
1107 struct file *file,
1108 const char __user *buf,
1109 size_t count)
1110 {
1111 ssize_t ret, written = 0;
1112 unsigned int chunk;
1113
1114 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1115 if (ret < 0)
1116 return ret;
1117
1118 /*
1119 * We chunk up writes into a temporary buffer. This
1120 * simplifies low-level drivers immensely, since they
1121 * don't have locking issues and user mode accesses.
1122 *
1123 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1124 * big chunk-size..
1125 *
1126 * The default chunk-size is 2kB, because the NTTY
1127 * layer has problems with bigger chunks. It will
1128 * claim to be able to handle more characters than
1129 * it actually does.
1130 *
1131 * FIXME: This can probably go away now except that 64K chunks
1132 * are too likely to fail unless switched to vmalloc...
1133 */
1134 chunk = 2048;
1135 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1136 chunk = 65536;
1137 if (count < chunk)
1138 chunk = count;
1139
1140 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1141 if (tty->write_cnt < chunk) {
1142 unsigned char *buf_chunk;
1143
1144 if (chunk < 1024)
1145 chunk = 1024;
1146
1147 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1148 if (!buf_chunk) {
1149 ret = -ENOMEM;
1150 goto out;
1151 }
1152 kfree(tty->write_buf);
1153 tty->write_cnt = chunk;
1154 tty->write_buf = buf_chunk;
1155 }
1156
1157 /* Do the write .. */
1158 for (;;) {
1159 size_t size = count;
1160 if (size > chunk)
1161 size = chunk;
1162 ret = -EFAULT;
1163 if (copy_from_user(tty->write_buf, buf, size))
1164 break;
1165 ret = write(tty, file, tty->write_buf, size);
1166 if (ret <= 0)
1167 break;
1168 written += ret;
1169 buf += ret;
1170 count -= ret;
1171 if (!count)
1172 break;
1173 ret = -ERESTARTSYS;
1174 if (signal_pending(current))
1175 break;
1176 cond_resched();
1177 }
1178 if (written) {
1179 tty_update_time(&file_inode(file)->i_mtime);
1180 ret = written;
1181 }
1182 out:
1183 tty_write_unlock(tty);
1184 return ret;
1185 }
1186
1187 /**
1188 * tty_write_message - write a message to a certain tty, not just the console.
1189 * @tty: the destination tty_struct
1190 * @msg: the message to write
1191 *
1192 * This is used for messages that need to be redirected to a specific tty.
1193 * We don't put it into the syslog queue right now maybe in the future if
1194 * really needed.
1195 *
1196 * We must still hold the BTM and test the CLOSING flag for the moment.
1197 */
1198
1199 void tty_write_message(struct tty_struct *tty, char *msg)
1200 {
1201 if (tty) {
1202 mutex_lock(&tty->atomic_write_lock);
1203 tty_lock(tty);
1204 if (tty->ops->write && tty->count > 0)
1205 tty->ops->write(tty, msg, strlen(msg));
1206 tty_unlock(tty);
1207 tty_write_unlock(tty);
1208 }
1209 return;
1210 }
1211
1212
1213 /**
1214 * tty_write - write method for tty device file
1215 * @file: tty file pointer
1216 * @buf: user data to write
1217 * @count: bytes to write
1218 * @ppos: unused
1219 *
1220 * Write data to a tty device via the line discipline.
1221 *
1222 * Locking:
1223 * Locks the line discipline as required
1224 * Writes to the tty driver are serialized by the atomic_write_lock
1225 * and are then processed in chunks to the device. The line discipline
1226 * write method will not be invoked in parallel for each device.
1227 */
1228
1229 static ssize_t tty_write(struct file *file, const char __user *buf,
1230 size_t count, loff_t *ppos)
1231 {
1232 struct tty_struct *tty = file_tty(file);
1233 struct tty_ldisc *ld;
1234 ssize_t ret;
1235
1236 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1237 return -EIO;
1238 if (!tty || !tty->ops->write ||
1239 (test_bit(TTY_IO_ERROR, &tty->flags)))
1240 return -EIO;
1241 /* Short term debug to catch buggy drivers */
1242 if (tty->ops->write_room == NULL)
1243 tty_err(tty, "missing write_room method\n");
1244 ld = tty_ldisc_ref_wait(tty);
1245 if (!ld)
1246 return hung_up_tty_write(file, buf, count, ppos);
1247 if (!ld->ops->write)
1248 ret = -EIO;
1249 else
1250 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1251 tty_ldisc_deref(ld);
1252 return ret;
1253 }
1254
1255 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1256 size_t count, loff_t *ppos)
1257 {
1258 struct file *p = NULL;
1259
1260 spin_lock(&redirect_lock);
1261 if (redirect)
1262 p = get_file(redirect);
1263 spin_unlock(&redirect_lock);
1264
1265 if (p) {
1266 ssize_t res;
1267 res = vfs_write(p, buf, count, &p->f_pos);
1268 fput(p);
1269 return res;
1270 }
1271 return tty_write(file, buf, count, ppos);
1272 }
1273
1274 /**
1275 * tty_send_xchar - send priority character
1276 *
1277 * Send a high priority character to the tty even if stopped
1278 *
1279 * Locking: none for xchar method, write ordering for write method.
1280 */
1281
1282 int tty_send_xchar(struct tty_struct *tty, char ch)
1283 {
1284 int was_stopped = tty->stopped;
1285
1286 if (tty->ops->send_xchar) {
1287 down_read(&tty->termios_rwsem);
1288 tty->ops->send_xchar(tty, ch);
1289 up_read(&tty->termios_rwsem);
1290 return 0;
1291 }
1292
1293 if (tty_write_lock(tty, 0) < 0)
1294 return -ERESTARTSYS;
1295
1296 down_read(&tty->termios_rwsem);
1297 if (was_stopped)
1298 start_tty(tty);
1299 tty->ops->write(tty, &ch, 1);
1300 if (was_stopped)
1301 stop_tty(tty);
1302 up_read(&tty->termios_rwsem);
1303 tty_write_unlock(tty);
1304 return 0;
1305 }
1306
1307 static char ptychar[] = "pqrstuvwxyzabcde";
1308
1309 /**
1310 * pty_line_name - generate name for a pty
1311 * @driver: the tty driver in use
1312 * @index: the minor number
1313 * @p: output buffer of at least 6 bytes
1314 *
1315 * Generate a name from a driver reference and write it to the output
1316 * buffer.
1317 *
1318 * Locking: None
1319 */
1320 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1321 {
1322 int i = index + driver->name_base;
1323 /* ->name is initialized to "ttyp", but "tty" is expected */
1324 sprintf(p, "%s%c%x",
1325 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1326 ptychar[i >> 4 & 0xf], i & 0xf);
1327 }
1328
1329 /**
1330 * tty_line_name - generate name for a tty
1331 * @driver: the tty driver in use
1332 * @index: the minor number
1333 * @p: output buffer of at least 7 bytes
1334 *
1335 * Generate a name from a driver reference and write it to the output
1336 * buffer.
1337 *
1338 * Locking: None
1339 */
1340 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1341 {
1342 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1343 return sprintf(p, "%s", driver->name);
1344 else
1345 return sprintf(p, "%s%d", driver->name,
1346 index + driver->name_base);
1347 }
1348
1349 /**
1350 * tty_driver_lookup_tty() - find an existing tty, if any
1351 * @driver: the driver for the tty
1352 * @idx: the minor number
1353 *
1354 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1355 * driver lookup() method returns an error.
1356 *
1357 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1358 */
1359 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1360 struct inode *inode, int idx)
1361 {
1362 struct tty_struct *tty;
1363
1364 if (driver->ops->lookup)
1365 tty = driver->ops->lookup(driver, inode, idx);
1366 else
1367 tty = driver->ttys[idx];
1368
1369 if (!IS_ERR(tty))
1370 tty_kref_get(tty);
1371 return tty;
1372 }
1373
1374 /**
1375 * tty_init_termios - helper for termios setup
1376 * @tty: the tty to set up
1377 *
1378 * Initialise the termios structures for this tty. Thus runs under
1379 * the tty_mutex currently so we can be relaxed about ordering.
1380 */
1381
1382 void tty_init_termios(struct tty_struct *tty)
1383 {
1384 struct ktermios *tp;
1385 int idx = tty->index;
1386
1387 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1388 tty->termios = tty->driver->init_termios;
1389 else {
1390 /* Check for lazy saved data */
1391 tp = tty->driver->termios[idx];
1392 if (tp != NULL) {
1393 tty->termios = *tp;
1394 tty->termios.c_line = tty->driver->init_termios.c_line;
1395 } else
1396 tty->termios = tty->driver->init_termios;
1397 }
1398 /* Compatibility until drivers always set this */
1399 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1400 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1401 }
1402 EXPORT_SYMBOL_GPL(tty_init_termios);
1403
1404 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1405 {
1406 tty_init_termios(tty);
1407 tty_driver_kref_get(driver);
1408 tty->count++;
1409 driver->ttys[tty->index] = tty;
1410 return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(tty_standard_install);
1413
1414 /**
1415 * tty_driver_install_tty() - install a tty entry in the driver
1416 * @driver: the driver for the tty
1417 * @tty: the tty
1418 *
1419 * Install a tty object into the driver tables. The tty->index field
1420 * will be set by the time this is called. This method is responsible
1421 * for ensuring any need additional structures are allocated and
1422 * configured.
1423 *
1424 * Locking: tty_mutex for now
1425 */
1426 static int tty_driver_install_tty(struct tty_driver *driver,
1427 struct tty_struct *tty)
1428 {
1429 return driver->ops->install ? driver->ops->install(driver, tty) :
1430 tty_standard_install(driver, tty);
1431 }
1432
1433 /**
1434 * tty_driver_remove_tty() - remove a tty from the driver tables
1435 * @driver: the driver for the tty
1436 * @idx: the minor number
1437 *
1438 * Remvoe a tty object from the driver tables. The tty->index field
1439 * will be set by the time this is called.
1440 *
1441 * Locking: tty_mutex for now
1442 */
1443 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1444 {
1445 if (driver->ops->remove)
1446 driver->ops->remove(driver, tty);
1447 else
1448 driver->ttys[tty->index] = NULL;
1449 }
1450
1451 /*
1452 * tty_reopen() - fast re-open of an open tty
1453 * @tty - the tty to open
1454 *
1455 * Return 0 on success, -errno on error.
1456 * Re-opens on master ptys are not allowed and return -EIO.
1457 *
1458 * Locking: Caller must hold tty_lock
1459 */
1460 static int tty_reopen(struct tty_struct *tty)
1461 {
1462 struct tty_driver *driver = tty->driver;
1463
1464 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465 driver->subtype == PTY_TYPE_MASTER)
1466 return -EIO;
1467
1468 if (!tty->count)
1469 return -EAGAIN;
1470
1471 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1472 return -EBUSY;
1473
1474 tty->count++;
1475
1476 if (!tty->ldisc)
1477 return tty_ldisc_reinit(tty, tty->termios.c_line);
1478
1479 return 0;
1480 }
1481
1482 /**
1483 * tty_init_dev - initialise a tty device
1484 * @driver: tty driver we are opening a device on
1485 * @idx: device index
1486 * @ret_tty: returned tty structure
1487 *
1488 * Prepare a tty device. This may not be a "new" clean device but
1489 * could also be an active device. The pty drivers require special
1490 * handling because of this.
1491 *
1492 * Locking:
1493 * The function is called under the tty_mutex, which
1494 * protects us from the tty struct or driver itself going away.
1495 *
1496 * On exit the tty device has the line discipline attached and
1497 * a reference count of 1. If a pair was created for pty/tty use
1498 * and the other was a pty master then it too has a reference count of 1.
1499 *
1500 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1501 * failed open. The new code protects the open with a mutex, so it's
1502 * really quite straightforward. The mutex locking can probably be
1503 * relaxed for the (most common) case of reopening a tty.
1504 */
1505
1506 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1507 {
1508 struct tty_struct *tty;
1509 int retval;
1510
1511 /*
1512 * First time open is complex, especially for PTY devices.
1513 * This code guarantees that either everything succeeds and the
1514 * TTY is ready for operation, or else the table slots are vacated
1515 * and the allocated memory released. (Except that the termios
1516 * and locked termios may be retained.)
1517 */
1518
1519 if (!try_module_get(driver->owner))
1520 return ERR_PTR(-ENODEV);
1521
1522 tty = alloc_tty_struct(driver, idx);
1523 if (!tty) {
1524 retval = -ENOMEM;
1525 goto err_module_put;
1526 }
1527
1528 tty_lock(tty);
1529 retval = tty_driver_install_tty(driver, tty);
1530 if (retval < 0)
1531 goto err_free_tty;
1532
1533 if (!tty->port)
1534 tty->port = driver->ports[idx];
1535
1536 WARN_RATELIMIT(!tty->port,
1537 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1538 __func__, tty->driver->name);
1539
1540 tty->port->itty = tty;
1541
1542 /*
1543 * Structures all installed ... call the ldisc open routines.
1544 * If we fail here just call release_tty to clean up. No need
1545 * to decrement the use counts, as release_tty doesn't care.
1546 */
1547 retval = tty_ldisc_setup(tty, tty->link);
1548 if (retval)
1549 goto err_release_tty;
1550 /* Return the tty locked so that it cannot vanish under the caller */
1551 return tty;
1552
1553 err_free_tty:
1554 tty_unlock(tty);
1555 free_tty_struct(tty);
1556 err_module_put:
1557 module_put(driver->owner);
1558 return ERR_PTR(retval);
1559
1560 /* call the tty release_tty routine to clean out this slot */
1561 err_release_tty:
1562 tty_unlock(tty);
1563 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1564 retval, idx);
1565 release_tty(tty, idx);
1566 return ERR_PTR(retval);
1567 }
1568
1569 static void tty_free_termios(struct tty_struct *tty)
1570 {
1571 struct ktermios *tp;
1572 int idx = tty->index;
1573
1574 /* If the port is going to reset then it has no termios to save */
1575 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1576 return;
1577
1578 /* Stash the termios data */
1579 tp = tty->driver->termios[idx];
1580 if (tp == NULL) {
1581 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1582 if (tp == NULL)
1583 return;
1584 tty->driver->termios[idx] = tp;
1585 }
1586 *tp = tty->termios;
1587 }
1588
1589 /**
1590 * tty_flush_works - flush all works of a tty/pty pair
1591 * @tty: tty device to flush works for (or either end of a pty pair)
1592 *
1593 * Sync flush all works belonging to @tty (and the 'other' tty).
1594 */
1595 static void tty_flush_works(struct tty_struct *tty)
1596 {
1597 flush_work(&tty->SAK_work);
1598 flush_work(&tty->hangup_work);
1599 if (tty->link) {
1600 flush_work(&tty->link->SAK_work);
1601 flush_work(&tty->link->hangup_work);
1602 }
1603 }
1604
1605 /**
1606 * release_one_tty - release tty structure memory
1607 * @kref: kref of tty we are obliterating
1608 *
1609 * Releases memory associated with a tty structure, and clears out the
1610 * driver table slots. This function is called when a device is no longer
1611 * in use. It also gets called when setup of a device fails.
1612 *
1613 * Locking:
1614 * takes the file list lock internally when working on the list
1615 * of ttys that the driver keeps.
1616 *
1617 * This method gets called from a work queue so that the driver private
1618 * cleanup ops can sleep (needed for USB at least)
1619 */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622 struct tty_struct *tty =
1623 container_of(work, struct tty_struct, hangup_work);
1624 struct tty_driver *driver = tty->driver;
1625 struct module *owner = driver->owner;
1626
1627 if (tty->ops->cleanup)
1628 tty->ops->cleanup(tty);
1629
1630 tty->magic = 0;
1631 tty_driver_kref_put(driver);
1632 module_put(owner);
1633
1634 spin_lock(&tty_files_lock);
1635 list_del_init(&tty->tty_files);
1636 spin_unlock(&tty_files_lock);
1637
1638 put_pid(tty->pgrp);
1639 put_pid(tty->session);
1640 free_tty_struct(tty);
1641 }
1642
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646
1647 /* The hangup queue is now free so we can reuse it rather than
1648 waste a chunk of memory for each port */
1649 INIT_WORK(&tty->hangup_work, release_one_tty);
1650 schedule_work(&tty->hangup_work);
1651 }
1652
1653 /**
1654 * tty_kref_put - release a tty kref
1655 * @tty: tty device
1656 *
1657 * Release a reference to a tty device and if need be let the kref
1658 * layer destruct the object for us
1659 */
1660
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663 if (tty)
1664 kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667
1668 /**
1669 * release_tty - release tty structure memory
1670 *
1671 * Release both @tty and a possible linked partner (think pty pair),
1672 * and decrement the refcount of the backing module.
1673 *
1674 * Locking:
1675 * tty_mutex
1676 * takes the file list lock internally when working on the list
1677 * of ttys that the driver keeps.
1678 *
1679 */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682 /* This should always be true but check for the moment */
1683 WARN_ON(tty->index != idx);
1684 WARN_ON(!mutex_is_locked(&tty_mutex));
1685 if (tty->ops->shutdown)
1686 tty->ops->shutdown(tty);
1687 tty_free_termios(tty);
1688 tty_driver_remove_tty(tty->driver, tty);
1689 tty->port->itty = NULL;
1690 if (tty->link)
1691 tty->link->port->itty = NULL;
1692 tty_buffer_cancel_work(tty->port);
1693
1694 tty_kref_put(tty->link);
1695 tty_kref_put(tty);
1696 }
1697
1698 /**
1699 * tty_release_checks - check a tty before real release
1700 * @tty: tty to check
1701 * @o_tty: link of @tty (if any)
1702 * @idx: index of the tty
1703 *
1704 * Performs some paranoid checking before true release of the @tty.
1705 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1706 */
1707 static int tty_release_checks(struct tty_struct *tty, int idx)
1708 {
1709 #ifdef TTY_PARANOIA_CHECK
1710 if (idx < 0 || idx >= tty->driver->num) {
1711 tty_debug(tty, "bad idx %d\n", idx);
1712 return -1;
1713 }
1714
1715 /* not much to check for devpts */
1716 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 return 0;
1718
1719 if (tty != tty->driver->ttys[idx]) {
1720 tty_debug(tty, "bad driver table[%d] = %p\n",
1721 idx, tty->driver->ttys[idx]);
1722 return -1;
1723 }
1724 if (tty->driver->other) {
1725 struct tty_struct *o_tty = tty->link;
1726
1727 if (o_tty != tty->driver->other->ttys[idx]) {
1728 tty_debug(tty, "bad other table[%d] = %p\n",
1729 idx, tty->driver->other->ttys[idx]);
1730 return -1;
1731 }
1732 if (o_tty->link != tty) {
1733 tty_debug(tty, "bad link = %p\n", o_tty->link);
1734 return -1;
1735 }
1736 }
1737 #endif
1738 return 0;
1739 }
1740
1741 /**
1742 * tty_release - vfs callback for close
1743 * @inode: inode of tty
1744 * @filp: file pointer for handle to tty
1745 *
1746 * Called the last time each file handle is closed that references
1747 * this tty. There may however be several such references.
1748 *
1749 * Locking:
1750 * Takes bkl. See tty_release_dev
1751 *
1752 * Even releasing the tty structures is a tricky business.. We have
1753 * to be very careful that the structures are all released at the
1754 * same time, as interrupts might otherwise get the wrong pointers.
1755 *
1756 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757 * lead to double frees or releasing memory still in use.
1758 */
1759
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 struct tty_struct *tty = file_tty(filp);
1763 struct tty_struct *o_tty = NULL;
1764 int do_sleep, final;
1765 int idx;
1766 long timeout = 0;
1767 int once = 1;
1768
1769 if (tty_paranoia_check(tty, inode, __func__))
1770 return 0;
1771
1772 tty_lock(tty);
1773 check_tty_count(tty, __func__);
1774
1775 __tty_fasync(-1, filp, 0);
1776
1777 idx = tty->index;
1778 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779 tty->driver->subtype == PTY_TYPE_MASTER)
1780 o_tty = tty->link;
1781
1782 if (tty_release_checks(tty, idx)) {
1783 tty_unlock(tty);
1784 return 0;
1785 }
1786
1787 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1788
1789 if (tty->ops->close)
1790 tty->ops->close(tty, filp);
1791
1792 /* If tty is pty master, lock the slave pty (stable lock order) */
1793 tty_lock_slave(o_tty);
1794
1795 /*
1796 * Sanity check: if tty->count is going to zero, there shouldn't be
1797 * any waiters on tty->read_wait or tty->write_wait. We test the
1798 * wait queues and kick everyone out _before_ actually starting to
1799 * close. This ensures that we won't block while releasing the tty
1800 * structure.
1801 *
1802 * The test for the o_tty closing is necessary, since the master and
1803 * slave sides may close in any order. If the slave side closes out
1804 * first, its count will be one, since the master side holds an open.
1805 * Thus this test wouldn't be triggered at the time the slave closed,
1806 * so we do it now.
1807 */
1808 while (1) {
1809 do_sleep = 0;
1810
1811 if (tty->count <= 1) {
1812 if (waitqueue_active(&tty->read_wait)) {
1813 wake_up_poll(&tty->read_wait, POLLIN);
1814 do_sleep++;
1815 }
1816 if (waitqueue_active(&tty->write_wait)) {
1817 wake_up_poll(&tty->write_wait, POLLOUT);
1818 do_sleep++;
1819 }
1820 }
1821 if (o_tty && o_tty->count <= 1) {
1822 if (waitqueue_active(&o_tty->read_wait)) {
1823 wake_up_poll(&o_tty->read_wait, POLLIN);
1824 do_sleep++;
1825 }
1826 if (waitqueue_active(&o_tty->write_wait)) {
1827 wake_up_poll(&o_tty->write_wait, POLLOUT);
1828 do_sleep++;
1829 }
1830 }
1831 if (!do_sleep)
1832 break;
1833
1834 if (once) {
1835 once = 0;
1836 tty_warn(tty, "read/write wait queue active!\n");
1837 }
1838 schedule_timeout_killable(timeout);
1839 if (timeout < 120 * HZ)
1840 timeout = 2 * timeout + 1;
1841 else
1842 timeout = MAX_SCHEDULE_TIMEOUT;
1843 }
1844
1845 if (o_tty) {
1846 if (--o_tty->count < 0) {
1847 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1848 o_tty->count = 0;
1849 }
1850 }
1851 if (--tty->count < 0) {
1852 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1853 tty->count = 0;
1854 }
1855
1856 /*
1857 * We've decremented tty->count, so we need to remove this file
1858 * descriptor off the tty->tty_files list; this serves two
1859 * purposes:
1860 * - check_tty_count sees the correct number of file descriptors
1861 * associated with this tty.
1862 * - do_tty_hangup no longer sees this file descriptor as
1863 * something that needs to be handled for hangups.
1864 */
1865 tty_del_file(filp);
1866
1867 /*
1868 * Perform some housekeeping before deciding whether to return.
1869 *
1870 * If _either_ side is closing, make sure there aren't any
1871 * processes that still think tty or o_tty is their controlling
1872 * tty.
1873 */
1874 if (!tty->count) {
1875 read_lock(&tasklist_lock);
1876 session_clear_tty(tty->session);
1877 if (o_tty)
1878 session_clear_tty(o_tty->session);
1879 read_unlock(&tasklist_lock);
1880 }
1881
1882 /* check whether both sides are closing ... */
1883 final = !tty->count && !(o_tty && o_tty->count);
1884
1885 tty_unlock_slave(o_tty);
1886 tty_unlock(tty);
1887
1888 /* At this point, the tty->count == 0 should ensure a dead tty
1889 cannot be re-opened by a racing opener */
1890
1891 if (!final)
1892 return 0;
1893
1894 tty_debug_hangup(tty, "final close\n");
1895 /*
1896 * Ask the line discipline code to release its structures
1897 */
1898 tty_ldisc_release(tty);
1899
1900 /* Wait for pending work before tty destruction commmences */
1901 tty_flush_works(tty);
1902
1903 tty_debug_hangup(tty, "freeing structure\n");
1904 /*
1905 * The release_tty function takes care of the details of clearing
1906 * the slots and preserving the termios structure. The tty_unlock_pair
1907 * should be safe as we keep a kref while the tty is locked (so the
1908 * unlock never unlocks a freed tty).
1909 */
1910 mutex_lock(&tty_mutex);
1911 release_tty(tty, idx);
1912 mutex_unlock(&tty_mutex);
1913
1914 return 0;
1915 }
1916
1917 /**
1918 * tty_open_current_tty - get locked tty of current task
1919 * @device: device number
1920 * @filp: file pointer to tty
1921 * @return: locked tty of the current task iff @device is /dev/tty
1922 *
1923 * Performs a re-open of the current task's controlling tty.
1924 *
1925 * We cannot return driver and index like for the other nodes because
1926 * devpts will not work then. It expects inodes to be from devpts FS.
1927 */
1928 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1929 {
1930 struct tty_struct *tty;
1931 int retval;
1932
1933 if (device != MKDEV(TTYAUX_MAJOR, 0))
1934 return NULL;
1935
1936 tty = get_current_tty();
1937 if (!tty)
1938 return ERR_PTR(-ENXIO);
1939
1940 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1941 /* noctty = 1; */
1942 tty_lock(tty);
1943 tty_kref_put(tty); /* safe to drop the kref now */
1944
1945 retval = tty_reopen(tty);
1946 if (retval < 0) {
1947 tty_unlock(tty);
1948 tty = ERR_PTR(retval);
1949 }
1950 return tty;
1951 }
1952
1953 /**
1954 * tty_lookup_driver - lookup a tty driver for a given device file
1955 * @device: device number
1956 * @filp: file pointer to tty
1957 * @noctty: set if the device should not become a controlling tty
1958 * @index: index for the device in the @return driver
1959 * @return: driver for this inode (with increased refcount)
1960 *
1961 * If @return is not erroneous, the caller is responsible to decrement the
1962 * refcount by tty_driver_kref_put.
1963 *
1964 * Locking: tty_mutex protects get_tty_driver
1965 */
1966 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1967 int *index)
1968 {
1969 struct tty_driver *driver;
1970
1971 switch (device) {
1972 #ifdef CONFIG_VT
1973 case MKDEV(TTY_MAJOR, 0): {
1974 extern struct tty_driver *console_driver;
1975 driver = tty_driver_kref_get(console_driver);
1976 *index = fg_console;
1977 break;
1978 }
1979 #endif
1980 case MKDEV(TTYAUX_MAJOR, 1): {
1981 struct tty_driver *console_driver = console_device(index);
1982 if (console_driver) {
1983 driver = tty_driver_kref_get(console_driver);
1984 if (driver) {
1985 /* Don't let /dev/console block */
1986 filp->f_flags |= O_NONBLOCK;
1987 break;
1988 }
1989 }
1990 return ERR_PTR(-ENODEV);
1991 }
1992 default:
1993 driver = get_tty_driver(device, index);
1994 if (!driver)
1995 return ERR_PTR(-ENODEV);
1996 break;
1997 }
1998 return driver;
1999 }
2000
2001 /**
2002 * tty_open_by_driver - open a tty device
2003 * @device: dev_t of device to open
2004 * @inode: inode of device file
2005 * @filp: file pointer to tty
2006 *
2007 * Performs the driver lookup, checks for a reopen, or otherwise
2008 * performs the first-time tty initialization.
2009 *
2010 * Returns the locked initialized or re-opened &tty_struct
2011 *
2012 * Claims the global tty_mutex to serialize:
2013 * - concurrent first-time tty initialization
2014 * - concurrent tty driver removal w/ lookup
2015 * - concurrent tty removal from driver table
2016 */
2017 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2018 struct file *filp)
2019 {
2020 struct tty_struct *tty;
2021 struct tty_driver *driver = NULL;
2022 int index = -1;
2023 int retval;
2024
2025 mutex_lock(&tty_mutex);
2026 driver = tty_lookup_driver(device, filp, &index);
2027 if (IS_ERR(driver)) {
2028 mutex_unlock(&tty_mutex);
2029 return ERR_CAST(driver);
2030 }
2031
2032 /* check whether we're reopening an existing tty */
2033 tty = tty_driver_lookup_tty(driver, inode, index);
2034 if (IS_ERR(tty)) {
2035 mutex_unlock(&tty_mutex);
2036 goto out;
2037 }
2038
2039 if (tty) {
2040 mutex_unlock(&tty_mutex);
2041 retval = tty_lock_interruptible(tty);
2042 if (retval) {
2043 if (retval == -EINTR)
2044 retval = -ERESTARTSYS;
2045 tty = ERR_PTR(retval);
2046 goto out;
2047 }
2048 /* safe to drop the kref from tty_driver_lookup_tty() */
2049 tty_kref_put(tty);
2050 retval = tty_reopen(tty);
2051 if (retval < 0) {
2052 tty_unlock(tty);
2053 tty = ERR_PTR(retval);
2054 }
2055 } else { /* Returns with the tty_lock held for now */
2056 tty = tty_init_dev(driver, index);
2057 mutex_unlock(&tty_mutex);
2058 }
2059 out:
2060 tty_driver_kref_put(driver);
2061 return tty;
2062 }
2063
2064 /**
2065 * tty_open - open a tty device
2066 * @inode: inode of device file
2067 * @filp: file pointer to tty
2068 *
2069 * tty_open and tty_release keep up the tty count that contains the
2070 * number of opens done on a tty. We cannot use the inode-count, as
2071 * different inodes might point to the same tty.
2072 *
2073 * Open-counting is needed for pty masters, as well as for keeping
2074 * track of serial lines: DTR is dropped when the last close happens.
2075 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2076 *
2077 * The termios state of a pty is reset on first open so that
2078 * settings don't persist across reuse.
2079 *
2080 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2081 * tty->count should protect the rest.
2082 * ->siglock protects ->signal/->sighand
2083 *
2084 * Note: the tty_unlock/lock cases without a ref are only safe due to
2085 * tty_mutex
2086 */
2087
2088 static int tty_open(struct inode *inode, struct file *filp)
2089 {
2090 struct tty_struct *tty;
2091 int noctty, retval;
2092 dev_t device = inode->i_rdev;
2093 unsigned saved_flags = filp->f_flags;
2094
2095 nonseekable_open(inode, filp);
2096
2097 retry_open:
2098 retval = tty_alloc_file(filp);
2099 if (retval)
2100 return -ENOMEM;
2101
2102 tty = tty_open_current_tty(device, filp);
2103 if (!tty)
2104 tty = tty_open_by_driver(device, inode, filp);
2105
2106 if (IS_ERR(tty)) {
2107 tty_free_file(filp);
2108 retval = PTR_ERR(tty);
2109 if (retval != -EAGAIN || signal_pending(current))
2110 return retval;
2111 schedule();
2112 goto retry_open;
2113 }
2114
2115 tty_add_file(tty, filp);
2116
2117 check_tty_count(tty, __func__);
2118 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2119
2120 if (tty->ops->open)
2121 retval = tty->ops->open(tty, filp);
2122 else
2123 retval = -ENODEV;
2124 filp->f_flags = saved_flags;
2125
2126 if (retval) {
2127 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2128
2129 tty_unlock(tty); /* need to call tty_release without BTM */
2130 tty_release(inode, filp);
2131 if (retval != -ERESTARTSYS)
2132 return retval;
2133
2134 if (signal_pending(current))
2135 return retval;
2136
2137 schedule();
2138 /*
2139 * Need to reset f_op in case a hangup happened.
2140 */
2141 if (tty_hung_up_p(filp))
2142 filp->f_op = &tty_fops;
2143 goto retry_open;
2144 }
2145 clear_bit(TTY_HUPPED, &tty->flags);
2146
2147
2148 read_lock(&tasklist_lock);
2149 spin_lock_irq(&current->sighand->siglock);
2150 noctty = (filp->f_flags & O_NOCTTY) ||
2151 device == MKDEV(TTY_MAJOR, 0) ||
2152 device == MKDEV(TTYAUX_MAJOR, 1) ||
2153 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2154 tty->driver->subtype == PTY_TYPE_MASTER);
2155
2156 if (!noctty &&
2157 current->signal->leader &&
2158 !current->signal->tty &&
2159 tty->session == NULL) {
2160 /*
2161 * Don't let a process that only has write access to the tty
2162 * obtain the privileges associated with having a tty as
2163 * controlling terminal (being able to reopen it with full
2164 * access through /dev/tty, being able to perform pushback).
2165 * Many distributions set the group of all ttys to "tty" and
2166 * grant write-only access to all terminals for setgid tty
2167 * binaries, which should not imply full privileges on all ttys.
2168 *
2169 * This could theoretically break old code that performs open()
2170 * on a write-only file descriptor. In that case, it might be
2171 * necessary to also permit this if
2172 * inode_permission(inode, MAY_READ) == 0.
2173 */
2174 if (filp->f_mode & FMODE_READ)
2175 __proc_set_tty(tty);
2176 }
2177 spin_unlock_irq(&current->sighand->siglock);
2178 read_unlock(&tasklist_lock);
2179 tty_unlock(tty);
2180 return 0;
2181 }
2182
2183
2184
2185 /**
2186 * tty_poll - check tty status
2187 * @filp: file being polled
2188 * @wait: poll wait structures to update
2189 *
2190 * Call the line discipline polling method to obtain the poll
2191 * status of the device.
2192 *
2193 * Locking: locks called line discipline but ldisc poll method
2194 * may be re-entered freely by other callers.
2195 */
2196
2197 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2198 {
2199 struct tty_struct *tty = file_tty(filp);
2200 struct tty_ldisc *ld;
2201 int ret = 0;
2202
2203 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2204 return 0;
2205
2206 ld = tty_ldisc_ref_wait(tty);
2207 if (!ld)
2208 return hung_up_tty_poll(filp, wait);
2209 if (ld->ops->poll)
2210 ret = ld->ops->poll(tty, filp, wait);
2211 tty_ldisc_deref(ld);
2212 return ret;
2213 }
2214
2215 static int __tty_fasync(int fd, struct file *filp, int on)
2216 {
2217 struct tty_struct *tty = file_tty(filp);
2218 struct tty_ldisc *ldisc;
2219 unsigned long flags;
2220 int retval = 0;
2221
2222 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2223 goto out;
2224
2225 retval = fasync_helper(fd, filp, on, &tty->fasync);
2226 if (retval <= 0)
2227 goto out;
2228
2229 ldisc = tty_ldisc_ref(tty);
2230 if (ldisc) {
2231 if (ldisc->ops->fasync)
2232 ldisc->ops->fasync(tty, on);
2233 tty_ldisc_deref(ldisc);
2234 }
2235
2236 if (on) {
2237 enum pid_type type;
2238 struct pid *pid;
2239
2240 spin_lock_irqsave(&tty->ctrl_lock, flags);
2241 if (tty->pgrp) {
2242 pid = tty->pgrp;
2243 type = PIDTYPE_PGID;
2244 } else {
2245 pid = task_pid(current);
2246 type = PIDTYPE_PID;
2247 }
2248 get_pid(pid);
2249 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2250 __f_setown(filp, pid, type, 0);
2251 put_pid(pid);
2252 retval = 0;
2253 }
2254 out:
2255 return retval;
2256 }
2257
2258 static int tty_fasync(int fd, struct file *filp, int on)
2259 {
2260 struct tty_struct *tty = file_tty(filp);
2261 int retval;
2262
2263 tty_lock(tty);
2264 retval = __tty_fasync(fd, filp, on);
2265 tty_unlock(tty);
2266
2267 return retval;
2268 }
2269
2270 /**
2271 * tiocsti - fake input character
2272 * @tty: tty to fake input into
2273 * @p: pointer to character
2274 *
2275 * Fake input to a tty device. Does the necessary locking and
2276 * input management.
2277 *
2278 * FIXME: does not honour flow control ??
2279 *
2280 * Locking:
2281 * Called functions take tty_ldiscs_lock
2282 * current->signal->tty check is safe without locks
2283 *
2284 * FIXME: may race normal receive processing
2285 */
2286
2287 static int tiocsti(struct tty_struct *tty, char __user *p)
2288 {
2289 char ch, mbz = 0;
2290 struct tty_ldisc *ld;
2291
2292 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2293 return -EPERM;
2294 if (get_user(ch, p))
2295 return -EFAULT;
2296 tty_audit_tiocsti(tty, ch);
2297 ld = tty_ldisc_ref_wait(tty);
2298 if (!ld)
2299 return -EIO;
2300 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2301 tty_ldisc_deref(ld);
2302 return 0;
2303 }
2304
2305 /**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty; tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2313 * is consistent.
2314 */
2315
2316 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2317 {
2318 int err;
2319
2320 mutex_lock(&tty->winsize_mutex);
2321 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2322 mutex_unlock(&tty->winsize_mutex);
2323
2324 return err ? -EFAULT: 0;
2325 }
2326
2327 /**
2328 * tty_do_resize - resize event
2329 * @tty: tty being resized
2330 * @rows: rows (character)
2331 * @cols: cols (character)
2332 *
2333 * Update the termios variables and send the necessary signals to
2334 * peform a terminal resize correctly
2335 */
2336
2337 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2338 {
2339 struct pid *pgrp;
2340
2341 /* Lock the tty */
2342 mutex_lock(&tty->winsize_mutex);
2343 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2344 goto done;
2345
2346 /* Signal the foreground process group */
2347 pgrp = tty_get_pgrp(tty);
2348 if (pgrp)
2349 kill_pgrp(pgrp, SIGWINCH, 1);
2350 put_pid(pgrp);
2351
2352 tty->winsize = *ws;
2353 done:
2354 mutex_unlock(&tty->winsize_mutex);
2355 return 0;
2356 }
2357 EXPORT_SYMBOL(tty_do_resize);
2358
2359 /**
2360 * tiocswinsz - implement window size set ioctl
2361 * @tty; tty side of tty
2362 * @arg: user buffer for result
2363 *
2364 * Copies the user idea of the window size to the kernel. Traditionally
2365 * this is just advisory information but for the Linux console it
2366 * actually has driver level meaning and triggers a VC resize.
2367 *
2368 * Locking:
2369 * Driver dependent. The default do_resize method takes the
2370 * tty termios mutex and ctrl_lock. The console takes its own lock
2371 * then calls into the default method.
2372 */
2373
2374 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2375 {
2376 struct winsize tmp_ws;
2377 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2378 return -EFAULT;
2379
2380 if (tty->ops->resize)
2381 return tty->ops->resize(tty, &tmp_ws);
2382 else
2383 return tty_do_resize(tty, &tmp_ws);
2384 }
2385
2386 /**
2387 * tioccons - allow admin to move logical console
2388 * @file: the file to become console
2389 *
2390 * Allow the administrator to move the redirected console device
2391 *
2392 * Locking: uses redirect_lock to guard the redirect information
2393 */
2394
2395 static int tioccons(struct file *file)
2396 {
2397 if (!capable(CAP_SYS_ADMIN))
2398 return -EPERM;
2399 if (file->f_op->write == redirected_tty_write) {
2400 struct file *f;
2401 spin_lock(&redirect_lock);
2402 f = redirect;
2403 redirect = NULL;
2404 spin_unlock(&redirect_lock);
2405 if (f)
2406 fput(f);
2407 return 0;
2408 }
2409 spin_lock(&redirect_lock);
2410 if (redirect) {
2411 spin_unlock(&redirect_lock);
2412 return -EBUSY;
2413 }
2414 redirect = get_file(file);
2415 spin_unlock(&redirect_lock);
2416 return 0;
2417 }
2418
2419 /**
2420 * fionbio - non blocking ioctl
2421 * @file: file to set blocking value
2422 * @p: user parameter
2423 *
2424 * Historical tty interfaces had a blocking control ioctl before
2425 * the generic functionality existed. This piece of history is preserved
2426 * in the expected tty API of posix OS's.
2427 *
2428 * Locking: none, the open file handle ensures it won't go away.
2429 */
2430
2431 static int fionbio(struct file *file, int __user *p)
2432 {
2433 int nonblock;
2434
2435 if (get_user(nonblock, p))
2436 return -EFAULT;
2437
2438 spin_lock(&file->f_lock);
2439 if (nonblock)
2440 file->f_flags |= O_NONBLOCK;
2441 else
2442 file->f_flags &= ~O_NONBLOCK;
2443 spin_unlock(&file->f_lock);
2444 return 0;
2445 }
2446
2447 /**
2448 * tiocsctty - set controlling tty
2449 * @tty: tty structure
2450 * @arg: user argument
2451 *
2452 * This ioctl is used to manage job control. It permits a session
2453 * leader to set this tty as the controlling tty for the session.
2454 *
2455 * Locking:
2456 * Takes tty_lock() to serialize proc_set_tty() for this tty
2457 * Takes tasklist_lock internally to walk sessions
2458 * Takes ->siglock() when updating signal->tty
2459 */
2460
2461 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2462 {
2463 int ret = 0;
2464
2465 tty_lock(tty);
2466 read_lock(&tasklist_lock);
2467
2468 if (current->signal->leader && (task_session(current) == tty->session))
2469 goto unlock;
2470
2471 /*
2472 * The process must be a session leader and
2473 * not have a controlling tty already.
2474 */
2475 if (!current->signal->leader || current->signal->tty) {
2476 ret = -EPERM;
2477 goto unlock;
2478 }
2479
2480 if (tty->session) {
2481 /*
2482 * This tty is already the controlling
2483 * tty for another session group!
2484 */
2485 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2486 /*
2487 * Steal it away
2488 */
2489 session_clear_tty(tty->session);
2490 } else {
2491 ret = -EPERM;
2492 goto unlock;
2493 }
2494 }
2495
2496 /* See the comment in tty_open(). */
2497 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2498 ret = -EPERM;
2499 goto unlock;
2500 }
2501
2502 proc_set_tty(tty);
2503 unlock:
2504 read_unlock(&tasklist_lock);
2505 tty_unlock(tty);
2506 return ret;
2507 }
2508
2509 /**
2510 * tty_get_pgrp - return a ref counted pgrp pid
2511 * @tty: tty to read
2512 *
2513 * Returns a refcounted instance of the pid struct for the process
2514 * group controlling the tty.
2515 */
2516
2517 struct pid *tty_get_pgrp(struct tty_struct *tty)
2518 {
2519 unsigned long flags;
2520 struct pid *pgrp;
2521
2522 spin_lock_irqsave(&tty->ctrl_lock, flags);
2523 pgrp = get_pid(tty->pgrp);
2524 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525
2526 return pgrp;
2527 }
2528 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2529
2530 /*
2531 * This checks not only the pgrp, but falls back on the pid if no
2532 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2533 * without this...
2534 *
2535 * The caller must hold rcu lock or the tasklist lock.
2536 */
2537 static struct pid *session_of_pgrp(struct pid *pgrp)
2538 {
2539 struct task_struct *p;
2540 struct pid *sid = NULL;
2541
2542 p = pid_task(pgrp, PIDTYPE_PGID);
2543 if (p == NULL)
2544 p = pid_task(pgrp, PIDTYPE_PID);
2545 if (p != NULL)
2546 sid = task_session(p);
2547
2548 return sid;
2549 }
2550
2551 /**
2552 * tiocgpgrp - get process group
2553 * @tty: tty passed by user
2554 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2555 * @p: returned pid
2556 *
2557 * Obtain the process group of the tty. If there is no process group
2558 * return an error.
2559 *
2560 * Locking: none. Reference to current->signal->tty is safe.
2561 */
2562
2563 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2564 {
2565 struct pid *pid;
2566 int ret;
2567 /*
2568 * (tty == real_tty) is a cheap way of
2569 * testing if the tty is NOT a master pty.
2570 */
2571 if (tty == real_tty && current->signal->tty != real_tty)
2572 return -ENOTTY;
2573 pid = tty_get_pgrp(real_tty);
2574 ret = put_user(pid_vnr(pid), p);
2575 put_pid(pid);
2576 return ret;
2577 }
2578
2579 /**
2580 * tiocspgrp - attempt to set process group
2581 * @tty: tty passed by user
2582 * @real_tty: tty side device matching tty passed by user
2583 * @p: pid pointer
2584 *
2585 * Set the process group of the tty to the session passed. Only
2586 * permitted where the tty session is our session.
2587 *
2588 * Locking: RCU, ctrl lock
2589 */
2590
2591 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2592 {
2593 struct pid *pgrp;
2594 pid_t pgrp_nr;
2595 int retval = tty_check_change(real_tty);
2596
2597 if (retval == -EIO)
2598 return -ENOTTY;
2599 if (retval)
2600 return retval;
2601 if (!current->signal->tty ||
2602 (current->signal->tty != real_tty) ||
2603 (real_tty->session != task_session(current)))
2604 return -ENOTTY;
2605 if (get_user(pgrp_nr, p))
2606 return -EFAULT;
2607 if (pgrp_nr < 0)
2608 return -EINVAL;
2609 rcu_read_lock();
2610 pgrp = find_vpid(pgrp_nr);
2611 retval = -ESRCH;
2612 if (!pgrp)
2613 goto out_unlock;
2614 retval = -EPERM;
2615 if (session_of_pgrp(pgrp) != task_session(current))
2616 goto out_unlock;
2617 retval = 0;
2618 spin_lock_irq(&tty->ctrl_lock);
2619 put_pid(real_tty->pgrp);
2620 real_tty->pgrp = get_pid(pgrp);
2621 spin_unlock_irq(&tty->ctrl_lock);
2622 out_unlock:
2623 rcu_read_unlock();
2624 return retval;
2625 }
2626
2627 /**
2628 * tiocgsid - get session id
2629 * @tty: tty passed by user
2630 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2631 * @p: pointer to returned session id
2632 *
2633 * Obtain the session id of the tty. If there is no session
2634 * return an error.
2635 *
2636 * Locking: none. Reference to current->signal->tty is safe.
2637 */
2638
2639 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2640 {
2641 /*
2642 * (tty == real_tty) is a cheap way of
2643 * testing if the tty is NOT a master pty.
2644 */
2645 if (tty == real_tty && current->signal->tty != real_tty)
2646 return -ENOTTY;
2647 if (!real_tty->session)
2648 return -ENOTTY;
2649 return put_user(pid_vnr(real_tty->session), p);
2650 }
2651
2652 /**
2653 * tiocsetd - set line discipline
2654 * @tty: tty device
2655 * @p: pointer to user data
2656 *
2657 * Set the line discipline according to user request.
2658 *
2659 * Locking: see tty_set_ldisc, this function is just a helper
2660 */
2661
2662 static int tiocsetd(struct tty_struct *tty, int __user *p)
2663 {
2664 int disc;
2665 int ret;
2666
2667 if (get_user(disc, p))
2668 return -EFAULT;
2669
2670 ret = tty_set_ldisc(tty, disc);
2671
2672 return ret;
2673 }
2674
2675 /**
2676 * tiocgetd - get line discipline
2677 * @tty: tty device
2678 * @p: pointer to user data
2679 *
2680 * Retrieves the line discipline id directly from the ldisc.
2681 *
2682 * Locking: waits for ldisc reference (in case the line discipline
2683 * is changing or the tty is being hungup)
2684 */
2685
2686 static int tiocgetd(struct tty_struct *tty, int __user *p)
2687 {
2688 struct tty_ldisc *ld;
2689 int ret;
2690
2691 ld = tty_ldisc_ref_wait(tty);
2692 if (!ld)
2693 return -EIO;
2694 ret = put_user(ld->ops->num, p);
2695 tty_ldisc_deref(ld);
2696 return ret;
2697 }
2698
2699 /**
2700 * send_break - performed time break
2701 * @tty: device to break on
2702 * @duration: timeout in mS
2703 *
2704 * Perform a timed break on hardware that lacks its own driver level
2705 * timed break functionality.
2706 *
2707 * Locking:
2708 * atomic_write_lock serializes
2709 *
2710 */
2711
2712 static int send_break(struct tty_struct *tty, unsigned int duration)
2713 {
2714 int retval;
2715
2716 if (tty->ops->break_ctl == NULL)
2717 return 0;
2718
2719 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2720 retval = tty->ops->break_ctl(tty, duration);
2721 else {
2722 /* Do the work ourselves */
2723 if (tty_write_lock(tty, 0) < 0)
2724 return -EINTR;
2725 retval = tty->ops->break_ctl(tty, -1);
2726 if (retval)
2727 goto out;
2728 if (!signal_pending(current))
2729 msleep_interruptible(duration);
2730 retval = tty->ops->break_ctl(tty, 0);
2731 out:
2732 tty_write_unlock(tty);
2733 if (signal_pending(current))
2734 retval = -EINTR;
2735 }
2736 return retval;
2737 }
2738
2739 /**
2740 * tty_tiocmget - get modem status
2741 * @tty: tty device
2742 * @file: user file pointer
2743 * @p: pointer to result
2744 *
2745 * Obtain the modem status bits from the tty driver if the feature
2746 * is supported. Return -EINVAL if it is not available.
2747 *
2748 * Locking: none (up to the driver)
2749 */
2750
2751 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2752 {
2753 int retval = -EINVAL;
2754
2755 if (tty->ops->tiocmget) {
2756 retval = tty->ops->tiocmget(tty);
2757
2758 if (retval >= 0)
2759 retval = put_user(retval, p);
2760 }
2761 return retval;
2762 }
2763
2764 /**
2765 * tty_tiocmset - set modem status
2766 * @tty: tty device
2767 * @cmd: command - clear bits, set bits or set all
2768 * @p: pointer to desired bits
2769 *
2770 * Set the modem status bits from the tty driver if the feature
2771 * is supported. Return -EINVAL if it is not available.
2772 *
2773 * Locking: none (up to the driver)
2774 */
2775
2776 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2777 unsigned __user *p)
2778 {
2779 int retval;
2780 unsigned int set, clear, val;
2781
2782 if (tty->ops->tiocmset == NULL)
2783 return -EINVAL;
2784
2785 retval = get_user(val, p);
2786 if (retval)
2787 return retval;
2788 set = clear = 0;
2789 switch (cmd) {
2790 case TIOCMBIS:
2791 set = val;
2792 break;
2793 case TIOCMBIC:
2794 clear = val;
2795 break;
2796 case TIOCMSET:
2797 set = val;
2798 clear = ~val;
2799 break;
2800 }
2801 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2802 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2803 return tty->ops->tiocmset(tty, set, clear);
2804 }
2805
2806 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2807 {
2808 int retval = -EINVAL;
2809 struct serial_icounter_struct icount;
2810 memset(&icount, 0, sizeof(icount));
2811 if (tty->ops->get_icount)
2812 retval = tty->ops->get_icount(tty, &icount);
2813 if (retval != 0)
2814 return retval;
2815 if (copy_to_user(arg, &icount, sizeof(icount)))
2816 return -EFAULT;
2817 return 0;
2818 }
2819
2820 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2821 {
2822 static DEFINE_RATELIMIT_STATE(depr_flags,
2823 DEFAULT_RATELIMIT_INTERVAL,
2824 DEFAULT_RATELIMIT_BURST);
2825 char comm[TASK_COMM_LEN];
2826 int flags;
2827
2828 if (get_user(flags, &ss->flags))
2829 return;
2830
2831 flags &= ASYNC_DEPRECATED;
2832
2833 if (flags && __ratelimit(&depr_flags))
2834 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2835 __func__, get_task_comm(comm, current), flags);
2836 }
2837
2838 /*
2839 * if pty, return the slave side (real_tty)
2840 * otherwise, return self
2841 */
2842 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2843 {
2844 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2845 tty->driver->subtype == PTY_TYPE_MASTER)
2846 tty = tty->link;
2847 return tty;
2848 }
2849
2850 /*
2851 * Split this up, as gcc can choke on it otherwise..
2852 */
2853 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2854 {
2855 struct tty_struct *tty = file_tty(file);
2856 struct tty_struct *real_tty;
2857 void __user *p = (void __user *)arg;
2858 int retval;
2859 struct tty_ldisc *ld;
2860
2861 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2862 return -EINVAL;
2863
2864 real_tty = tty_pair_get_tty(tty);
2865
2866 /*
2867 * Factor out some common prep work
2868 */
2869 switch (cmd) {
2870 case TIOCSETD:
2871 case TIOCSBRK:
2872 case TIOCCBRK:
2873 case TCSBRK:
2874 case TCSBRKP:
2875 retval = tty_check_change(tty);
2876 if (retval)
2877 return retval;
2878 if (cmd != TIOCCBRK) {
2879 tty_wait_until_sent(tty, 0);
2880 if (signal_pending(current))
2881 return -EINTR;
2882 }
2883 break;
2884 }
2885
2886 /*
2887 * Now do the stuff.
2888 */
2889 switch (cmd) {
2890 case TIOCSTI:
2891 return tiocsti(tty, p);
2892 case TIOCGWINSZ:
2893 return tiocgwinsz(real_tty, p);
2894 case TIOCSWINSZ:
2895 return tiocswinsz(real_tty, p);
2896 case TIOCCONS:
2897 return real_tty != tty ? -EINVAL : tioccons(file);
2898 case FIONBIO:
2899 return fionbio(file, p);
2900 case TIOCEXCL:
2901 set_bit(TTY_EXCLUSIVE, &tty->flags);
2902 return 0;
2903 case TIOCNXCL:
2904 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2905 return 0;
2906 case TIOCGEXCL:
2907 {
2908 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2909 return put_user(excl, (int __user *)p);
2910 }
2911 case TIOCNOTTY:
2912 if (current->signal->tty != tty)
2913 return -ENOTTY;
2914 no_tty();
2915 return 0;
2916 case TIOCSCTTY:
2917 return tiocsctty(real_tty, file, arg);
2918 case TIOCGPGRP:
2919 return tiocgpgrp(tty, real_tty, p);
2920 case TIOCSPGRP:
2921 return tiocspgrp(tty, real_tty, p);
2922 case TIOCGSID:
2923 return tiocgsid(tty, real_tty, p);
2924 case TIOCGETD:
2925 return tiocgetd(tty, p);
2926 case TIOCSETD:
2927 return tiocsetd(tty, p);
2928 case TIOCVHANGUP:
2929 if (!capable(CAP_SYS_ADMIN))
2930 return -EPERM;
2931 tty_vhangup(tty);
2932 return 0;
2933 case TIOCGDEV:
2934 {
2935 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2936 return put_user(ret, (unsigned int __user *)p);
2937 }
2938 /*
2939 * Break handling
2940 */
2941 case TIOCSBRK: /* Turn break on, unconditionally */
2942 if (tty->ops->break_ctl)
2943 return tty->ops->break_ctl(tty, -1);
2944 return 0;
2945 case TIOCCBRK: /* Turn break off, unconditionally */
2946 if (tty->ops->break_ctl)
2947 return tty->ops->break_ctl(tty, 0);
2948 return 0;
2949 case TCSBRK: /* SVID version: non-zero arg --> no break */
2950 /* non-zero arg means wait for all output data
2951 * to be sent (performed above) but don't send break.
2952 * This is used by the tcdrain() termios function.
2953 */
2954 if (!arg)
2955 return send_break(tty, 250);
2956 return 0;
2957 case TCSBRKP: /* support for POSIX tcsendbreak() */
2958 return send_break(tty, arg ? arg*100 : 250);
2959
2960 case TIOCMGET:
2961 return tty_tiocmget(tty, p);
2962 case TIOCMSET:
2963 case TIOCMBIC:
2964 case TIOCMBIS:
2965 return tty_tiocmset(tty, cmd, p);
2966 case TIOCGICOUNT:
2967 retval = tty_tiocgicount(tty, p);
2968 /* For the moment allow fall through to the old method */
2969 if (retval != -EINVAL)
2970 return retval;
2971 break;
2972 case TCFLSH:
2973 switch (arg) {
2974 case TCIFLUSH:
2975 case TCIOFLUSH:
2976 /* flush tty buffer and allow ldisc to process ioctl */
2977 tty_buffer_flush(tty, NULL);
2978 break;
2979 }
2980 break;
2981 case TIOCSSERIAL:
2982 tty_warn_deprecated_flags(p);
2983 break;
2984 }
2985 if (tty->ops->ioctl) {
2986 retval = tty->ops->ioctl(tty, cmd, arg);
2987 if (retval != -ENOIOCTLCMD)
2988 return retval;
2989 }
2990 ld = tty_ldisc_ref_wait(tty);
2991 if (!ld)
2992 return hung_up_tty_ioctl(file, cmd, arg);
2993 retval = -EINVAL;
2994 if (ld->ops->ioctl) {
2995 retval = ld->ops->ioctl(tty, file, cmd, arg);
2996 if (retval == -ENOIOCTLCMD)
2997 retval = -ENOTTY;
2998 }
2999 tty_ldisc_deref(ld);
3000 return retval;
3001 }
3002
3003 #ifdef CONFIG_COMPAT
3004 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3005 unsigned long arg)
3006 {
3007 struct tty_struct *tty = file_tty(file);
3008 struct tty_ldisc *ld;
3009 int retval = -ENOIOCTLCMD;
3010
3011 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3012 return -EINVAL;
3013
3014 if (tty->ops->compat_ioctl) {
3015 retval = tty->ops->compat_ioctl(tty, cmd, arg);
3016 if (retval != -ENOIOCTLCMD)
3017 return retval;
3018 }
3019
3020 ld = tty_ldisc_ref_wait(tty);
3021 if (!ld)
3022 return hung_up_tty_compat_ioctl(file, cmd, arg);
3023 if (ld->ops->compat_ioctl)
3024 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3025 else
3026 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3027 tty_ldisc_deref(ld);
3028
3029 return retval;
3030 }
3031 #endif
3032
3033 static int this_tty(const void *t, struct file *file, unsigned fd)
3034 {
3035 if (likely(file->f_op->read != tty_read))
3036 return 0;
3037 return file_tty(file) != t ? 0 : fd + 1;
3038 }
3039
3040 /*
3041 * This implements the "Secure Attention Key" --- the idea is to
3042 * prevent trojan horses by killing all processes associated with this
3043 * tty when the user hits the "Secure Attention Key". Required for
3044 * super-paranoid applications --- see the Orange Book for more details.
3045 *
3046 * This code could be nicer; ideally it should send a HUP, wait a few
3047 * seconds, then send a INT, and then a KILL signal. But you then
3048 * have to coordinate with the init process, since all processes associated
3049 * with the current tty must be dead before the new getty is allowed
3050 * to spawn.
3051 *
3052 * Now, if it would be correct ;-/ The current code has a nasty hole -
3053 * it doesn't catch files in flight. We may send the descriptor to ourselves
3054 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3055 *
3056 * Nasty bug: do_SAK is being called in interrupt context. This can
3057 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3058 */
3059 void __do_SAK(struct tty_struct *tty)
3060 {
3061 #ifdef TTY_SOFT_SAK
3062 tty_hangup(tty);
3063 #else
3064 struct task_struct *g, *p;
3065 struct pid *session;
3066 int i;
3067
3068 if (!tty)
3069 return;
3070 session = tty->session;
3071
3072 tty_ldisc_flush(tty);
3073
3074 tty_driver_flush_buffer(tty);
3075
3076 read_lock(&tasklist_lock);
3077 /* Kill the entire session */
3078 do_each_pid_task(session, PIDTYPE_SID, p) {
3079 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3080 task_pid_nr(p), p->comm);
3081 send_sig(SIGKILL, p, 1);
3082 } while_each_pid_task(session, PIDTYPE_SID, p);
3083
3084 /* Now kill any processes that happen to have the tty open */
3085 do_each_thread(g, p) {
3086 if (p->signal->tty == tty) {
3087 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3088 task_pid_nr(p), p->comm);
3089 send_sig(SIGKILL, p, 1);
3090 continue;
3091 }
3092 task_lock(p);
3093 i = iterate_fd(p->files, 0, this_tty, tty);
3094 if (i != 0) {
3095 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3096 task_pid_nr(p), p->comm, i - 1);
3097 force_sig(SIGKILL, p);
3098 }
3099 task_unlock(p);
3100 } while_each_thread(g, p);
3101 read_unlock(&tasklist_lock);
3102 #endif
3103 }
3104
3105 static void do_SAK_work(struct work_struct *work)
3106 {
3107 struct tty_struct *tty =
3108 container_of(work, struct tty_struct, SAK_work);
3109 __do_SAK(tty);
3110 }
3111
3112 /*
3113 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3114 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3115 * the values which we write to it will be identical to the values which it
3116 * already has. --akpm
3117 */
3118 void do_SAK(struct tty_struct *tty)
3119 {
3120 if (!tty)
3121 return;
3122 schedule_work(&tty->SAK_work);
3123 }
3124
3125 EXPORT_SYMBOL(do_SAK);
3126
3127 static int dev_match_devt(struct device *dev, const void *data)
3128 {
3129 const dev_t *devt = data;
3130 return dev->devt == *devt;
3131 }
3132
3133 /* Must put_device() after it's unused! */
3134 static struct device *tty_get_device(struct tty_struct *tty)
3135 {
3136 dev_t devt = tty_devnum(tty);
3137 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3138 }
3139
3140
3141 /**
3142 * alloc_tty_struct
3143 *
3144 * This subroutine allocates and initializes a tty structure.
3145 *
3146 * Locking: none - tty in question is not exposed at this point
3147 */
3148
3149 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3150 {
3151 struct tty_struct *tty;
3152
3153 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3154 if (!tty)
3155 return NULL;
3156
3157 kref_init(&tty->kref);
3158 tty->magic = TTY_MAGIC;
3159 tty_ldisc_init(tty);
3160 tty->session = NULL;
3161 tty->pgrp = NULL;
3162 mutex_init(&tty->legacy_mutex);
3163 mutex_init(&tty->throttle_mutex);
3164 init_rwsem(&tty->termios_rwsem);
3165 mutex_init(&tty->winsize_mutex);
3166 init_ldsem(&tty->ldisc_sem);
3167 init_waitqueue_head(&tty->write_wait);
3168 init_waitqueue_head(&tty->read_wait);
3169 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3170 mutex_init(&tty->atomic_write_lock);
3171 spin_lock_init(&tty->ctrl_lock);
3172 spin_lock_init(&tty->flow_lock);
3173 INIT_LIST_HEAD(&tty->tty_files);
3174 INIT_WORK(&tty->SAK_work, do_SAK_work);
3175
3176 tty->driver = driver;
3177 tty->ops = driver->ops;
3178 tty->index = idx;
3179 tty_line_name(driver, idx, tty->name);
3180 tty->dev = tty_get_device(tty);
3181
3182 return tty;
3183 }
3184
3185 /**
3186 * tty_put_char - write one character to a tty
3187 * @tty: tty
3188 * @ch: character
3189 *
3190 * Write one byte to the tty using the provided put_char method
3191 * if present. Returns the number of characters successfully output.
3192 *
3193 * Note: the specific put_char operation in the driver layer may go
3194 * away soon. Don't call it directly, use this method
3195 */
3196
3197 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3198 {
3199 if (tty->ops->put_char)
3200 return tty->ops->put_char(tty, ch);
3201 return tty->ops->write(tty, &ch, 1);
3202 }
3203 EXPORT_SYMBOL_GPL(tty_put_char);
3204
3205 struct class *tty_class;
3206
3207 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3208 unsigned int index, unsigned int count)
3209 {
3210 int err;
3211
3212 /* init here, since reused cdevs cause crashes */
3213 driver->cdevs[index] = cdev_alloc();
3214 if (!driver->cdevs[index])
3215 return -ENOMEM;
3216 driver->cdevs[index]->ops = &tty_fops;
3217 driver->cdevs[index]->owner = driver->owner;
3218 err = cdev_add(driver->cdevs[index], dev, count);
3219 if (err)
3220 kobject_put(&driver->cdevs[index]->kobj);
3221 return err;
3222 }
3223
3224 /**
3225 * tty_register_device - register a tty device
3226 * @driver: the tty driver that describes the tty device
3227 * @index: the index in the tty driver for this tty device
3228 * @device: a struct device that is associated with this tty device.
3229 * This field is optional, if there is no known struct device
3230 * for this tty device it can be set to NULL safely.
3231 *
3232 * Returns a pointer to the struct device for this tty device
3233 * (or ERR_PTR(-EFOO) on error).
3234 *
3235 * This call is required to be made to register an individual tty device
3236 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3237 * that bit is not set, this function should not be called by a tty
3238 * driver.
3239 *
3240 * Locking: ??
3241 */
3242
3243 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3244 struct device *device)
3245 {
3246 return tty_register_device_attr(driver, index, device, NULL, NULL);
3247 }
3248 EXPORT_SYMBOL(tty_register_device);
3249
3250 static void tty_device_create_release(struct device *dev)
3251 {
3252 dev_dbg(dev, "releasing...\n");
3253 kfree(dev);
3254 }
3255
3256 /**
3257 * tty_register_device_attr - register a tty device
3258 * @driver: the tty driver that describes the tty device
3259 * @index: the index in the tty driver for this tty device
3260 * @device: a struct device that is associated with this tty device.
3261 * This field is optional, if there is no known struct device
3262 * for this tty device it can be set to NULL safely.
3263 * @drvdata: Driver data to be set to device.
3264 * @attr_grp: Attribute group to be set on device.
3265 *
3266 * Returns a pointer to the struct device for this tty device
3267 * (or ERR_PTR(-EFOO) on error).
3268 *
3269 * This call is required to be made to register an individual tty device
3270 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3271 * that bit is not set, this function should not be called by a tty
3272 * driver.
3273 *
3274 * Locking: ??
3275 */
3276 struct device *tty_register_device_attr(struct tty_driver *driver,
3277 unsigned index, struct device *device,
3278 void *drvdata,
3279 const struct attribute_group **attr_grp)
3280 {
3281 char name[64];
3282 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3283 struct device *dev = NULL;
3284 int retval = -ENODEV;
3285 bool cdev = false;
3286
3287 if (index >= driver->num) {
3288 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3289 driver->name, index);
3290 return ERR_PTR(-EINVAL);
3291 }
3292
3293 if (driver->type == TTY_DRIVER_TYPE_PTY)
3294 pty_line_name(driver, index, name);
3295 else
3296 tty_line_name(driver, index, name);
3297
3298 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3299 retval = tty_cdev_add(driver, devt, index, 1);
3300 if (retval)
3301 goto error;
3302 cdev = true;
3303 }
3304
3305 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3306 if (!dev) {
3307 retval = -ENOMEM;
3308 goto error;
3309 }
3310
3311 dev->devt = devt;
3312 dev->class = tty_class;
3313 dev->parent = device;
3314 dev->release = tty_device_create_release;
3315 dev_set_name(dev, "%s", name);
3316 dev->groups = attr_grp;
3317 dev_set_drvdata(dev, drvdata);
3318
3319 retval = device_register(dev);
3320 if (retval)
3321 goto error;
3322
3323 return dev;
3324
3325 error:
3326 put_device(dev);
3327 if (cdev) {
3328 cdev_del(driver->cdevs[index]);
3329 driver->cdevs[index] = NULL;
3330 }
3331 return ERR_PTR(retval);
3332 }
3333 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3334
3335 /**
3336 * tty_unregister_device - unregister a tty device
3337 * @driver: the tty driver that describes the tty device
3338 * @index: the index in the tty driver for this tty device
3339 *
3340 * If a tty device is registered with a call to tty_register_device() then
3341 * this function must be called when the tty device is gone.
3342 *
3343 * Locking: ??
3344 */
3345
3346 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3347 {
3348 device_destroy(tty_class,
3349 MKDEV(driver->major, driver->minor_start) + index);
3350 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3351 cdev_del(driver->cdevs[index]);
3352 driver->cdevs[index] = NULL;
3353 }
3354 }
3355 EXPORT_SYMBOL(tty_unregister_device);
3356
3357 /**
3358 * __tty_alloc_driver -- allocate tty driver
3359 * @lines: count of lines this driver can handle at most
3360 * @owner: module which is repsonsible for this driver
3361 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3362 *
3363 * This should not be called directly, some of the provided macros should be
3364 * used instead. Use IS_ERR and friends on @retval.
3365 */
3366 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3367 unsigned long flags)
3368 {
3369 struct tty_driver *driver;
3370 unsigned int cdevs = 1;
3371 int err;
3372
3373 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3374 return ERR_PTR(-EINVAL);
3375
3376 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3377 if (!driver)
3378 return ERR_PTR(-ENOMEM);
3379
3380 kref_init(&driver->kref);
3381 driver->magic = TTY_DRIVER_MAGIC;
3382 driver->num = lines;
3383 driver->owner = owner;
3384 driver->flags = flags;
3385
3386 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3387 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3388 GFP_KERNEL);
3389 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3390 GFP_KERNEL);
3391 if (!driver->ttys || !driver->termios) {
3392 err = -ENOMEM;
3393 goto err_free_all;
3394 }
3395 }
3396
3397 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3398 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3399 GFP_KERNEL);
3400 if (!driver->ports) {
3401 err = -ENOMEM;
3402 goto err_free_all;
3403 }
3404 cdevs = lines;
3405 }
3406
3407 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3408 if (!driver->cdevs) {
3409 err = -ENOMEM;
3410 goto err_free_all;
3411 }
3412
3413 return driver;
3414 err_free_all:
3415 kfree(driver->ports);
3416 kfree(driver->ttys);
3417 kfree(driver->termios);
3418 kfree(driver->cdevs);
3419 kfree(driver);
3420 return ERR_PTR(err);
3421 }
3422 EXPORT_SYMBOL(__tty_alloc_driver);
3423
3424 static void destruct_tty_driver(struct kref *kref)
3425 {
3426 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3427 int i;
3428 struct ktermios *tp;
3429
3430 if (driver->flags & TTY_DRIVER_INSTALLED) {
3431 /*
3432 * Free the termios and termios_locked structures because
3433 * we don't want to get memory leaks when modular tty
3434 * drivers are removed from the kernel.
3435 */
3436 for (i = 0; i < driver->num; i++) {
3437 tp = driver->termios[i];
3438 if (tp) {
3439 driver->termios[i] = NULL;
3440 kfree(tp);
3441 }
3442 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3443 tty_unregister_device(driver, i);
3444 }
3445 proc_tty_unregister_driver(driver);
3446 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3447 cdev_del(driver->cdevs[0]);
3448 }
3449 kfree(driver->cdevs);
3450 kfree(driver->ports);
3451 kfree(driver->termios);
3452 kfree(driver->ttys);
3453 kfree(driver);
3454 }
3455
3456 void tty_driver_kref_put(struct tty_driver *driver)
3457 {
3458 kref_put(&driver->kref, destruct_tty_driver);
3459 }
3460 EXPORT_SYMBOL(tty_driver_kref_put);
3461
3462 void tty_set_operations(struct tty_driver *driver,
3463 const struct tty_operations *op)
3464 {
3465 driver->ops = op;
3466 };
3467 EXPORT_SYMBOL(tty_set_operations);
3468
3469 void put_tty_driver(struct tty_driver *d)
3470 {
3471 tty_driver_kref_put(d);
3472 }
3473 EXPORT_SYMBOL(put_tty_driver);
3474
3475 /*
3476 * Called by a tty driver to register itself.
3477 */
3478 int tty_register_driver(struct tty_driver *driver)
3479 {
3480 int error;
3481 int i;
3482 dev_t dev;
3483 struct device *d;
3484
3485 if (!driver->major) {
3486 error = alloc_chrdev_region(&dev, driver->minor_start,
3487 driver->num, driver->name);
3488 if (!error) {
3489 driver->major = MAJOR(dev);
3490 driver->minor_start = MINOR(dev);
3491 }
3492 } else {
3493 dev = MKDEV(driver->major, driver->minor_start);
3494 error = register_chrdev_region(dev, driver->num, driver->name);
3495 }
3496 if (error < 0)
3497 goto err;
3498
3499 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3500 error = tty_cdev_add(driver, dev, 0, driver->num);
3501 if (error)
3502 goto err_unreg_char;
3503 }
3504
3505 mutex_lock(&tty_mutex);
3506 list_add(&driver->tty_drivers, &tty_drivers);
3507 mutex_unlock(&tty_mutex);
3508
3509 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3510 for (i = 0; i < driver->num; i++) {
3511 d = tty_register_device(driver, i, NULL);
3512 if (IS_ERR(d)) {
3513 error = PTR_ERR(d);
3514 goto err_unreg_devs;
3515 }
3516 }
3517 }
3518 proc_tty_register_driver(driver);
3519 driver->flags |= TTY_DRIVER_INSTALLED;
3520 return 0;
3521
3522 err_unreg_devs:
3523 for (i--; i >= 0; i--)
3524 tty_unregister_device(driver, i);
3525
3526 mutex_lock(&tty_mutex);
3527 list_del(&driver->tty_drivers);
3528 mutex_unlock(&tty_mutex);
3529
3530 err_unreg_char:
3531 unregister_chrdev_region(dev, driver->num);
3532 err:
3533 return error;
3534 }
3535 EXPORT_SYMBOL(tty_register_driver);
3536
3537 /*
3538 * Called by a tty driver to unregister itself.
3539 */
3540 int tty_unregister_driver(struct tty_driver *driver)
3541 {
3542 #if 0
3543 /* FIXME */
3544 if (driver->refcount)
3545 return -EBUSY;
3546 #endif
3547 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3548 driver->num);
3549 mutex_lock(&tty_mutex);
3550 list_del(&driver->tty_drivers);
3551 mutex_unlock(&tty_mutex);
3552 return 0;
3553 }
3554
3555 EXPORT_SYMBOL(tty_unregister_driver);
3556
3557 dev_t tty_devnum(struct tty_struct *tty)
3558 {
3559 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3560 }
3561 EXPORT_SYMBOL(tty_devnum);
3562
3563 void tty_default_fops(struct file_operations *fops)
3564 {
3565 *fops = tty_fops;
3566 }
3567
3568 /*
3569 * Initialize the console device. This is called *early*, so
3570 * we can't necessarily depend on lots of kernel help here.
3571 * Just do some early initializations, and do the complex setup
3572 * later.
3573 */
3574 void __init console_init(void)
3575 {
3576 initcall_t *call;
3577
3578 /* Setup the default TTY line discipline. */
3579 n_tty_init();
3580
3581 /*
3582 * set up the console device so that later boot sequences can
3583 * inform about problems etc..
3584 */
3585 call = __con_initcall_start;
3586 while (call < __con_initcall_end) {
3587 (*call)();
3588 call++;
3589 }
3590 }
3591
3592 static char *tty_devnode(struct device *dev, umode_t *mode)
3593 {
3594 if (!mode)
3595 return NULL;
3596 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3597 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3598 *mode = 0666;
3599 return NULL;
3600 }
3601
3602 static int __init tty_class_init(void)
3603 {
3604 tty_class = class_create(THIS_MODULE, "tty");
3605 if (IS_ERR(tty_class))
3606 return PTR_ERR(tty_class);
3607 tty_class->devnode = tty_devnode;
3608 return 0;
3609 }
3610
3611 postcore_initcall(tty_class_init);
3612
3613 /* 3/2004 jmc: why do these devices exist? */
3614 static struct cdev tty_cdev, console_cdev;
3615
3616 static ssize_t show_cons_active(struct device *dev,
3617 struct device_attribute *attr, char *buf)
3618 {
3619 struct console *cs[16];
3620 int i = 0;
3621 struct console *c;
3622 ssize_t count = 0;
3623
3624 console_lock();
3625 for_each_console(c) {
3626 if (!c->device)
3627 continue;
3628 if (!c->write)
3629 continue;
3630 if ((c->flags & CON_ENABLED) == 0)
3631 continue;
3632 cs[i++] = c;
3633 if (i >= ARRAY_SIZE(cs))
3634 break;
3635 }
3636 while (i--) {
3637 int index = cs[i]->index;
3638 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3639
3640 /* don't resolve tty0 as some programs depend on it */
3641 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3642 count += tty_line_name(drv, index, buf + count);
3643 else
3644 count += sprintf(buf + count, "%s%d",
3645 cs[i]->name, cs[i]->index);
3646
3647 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3648 }
3649 console_unlock();
3650
3651 return count;
3652 }
3653 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3654
3655 static struct attribute *cons_dev_attrs[] = {
3656 &dev_attr_active.attr,
3657 NULL
3658 };
3659
3660 ATTRIBUTE_GROUPS(cons_dev);
3661
3662 static struct device *consdev;
3663
3664 void console_sysfs_notify(void)
3665 {
3666 if (consdev)
3667 sysfs_notify(&consdev->kobj, NULL, "active");
3668 }
3669
3670 /*
3671 * Ok, now we can initialize the rest of the tty devices and can count
3672 * on memory allocations, interrupts etc..
3673 */
3674 int __init tty_init(void)
3675 {
3676 cdev_init(&tty_cdev, &tty_fops);
3677 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3678 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3679 panic("Couldn't register /dev/tty driver\n");
3680 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3681
3682 cdev_init(&console_cdev, &console_fops);
3683 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3684 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3685 panic("Couldn't register /dev/console driver\n");
3686 consdev = device_create_with_groups(tty_class, NULL,
3687 MKDEV(TTYAUX_MAJOR, 1), NULL,
3688 cons_dev_groups, "console");
3689 if (IS_ERR(consdev))
3690 consdev = NULL;
3691
3692 #ifdef CONFIG_VT
3693 vty_init(&console_fops);
3694 #endif
3695 return 0;
3696 }
3697
This page took 0.126757 seconds and 5 git commands to generate.