Merge remote-tracking branch 'rostedt/tip/perf/urgent-2' into x86-urgent-for-linus
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (tty->dev)
185 put_device(tty->dev);
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
188 tty->magic = 0xDEADDEAD;
189 kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199 struct tty_file_private *priv;
200
201 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202 if (!priv)
203 return -ENOMEM;
204
205 file->private_data = priv;
206
207 return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213 struct tty_file_private *priv = file->private_data;
214
215 priv->tty = tty;
216 priv->file = file;
217
218 spin_lock(&tty_files_lock);
219 list_add(&priv->list, &tty->tty_files);
220 spin_unlock(&tty_files_lock);
221 }
222
223 /**
224 * tty_free_file - free file->private_data
225 *
226 * This shall be used only for fail path handling when tty_add_file was not
227 * called yet.
228 */
229 void tty_free_file(struct file *file)
230 {
231 struct tty_file_private *priv = file->private_data;
232
233 file->private_data = NULL;
234 kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240 struct tty_file_private *priv = file->private_data;
241
242 spin_lock(&tty_files_lock);
243 list_del(&priv->list);
244 spin_unlock(&tty_files_lock);
245 tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252 * tty_name - return tty naming
253 * @tty: tty structure
254 * @buf: buffer for output
255 *
256 * Convert a tty structure into a name. The name reflects the kernel
257 * naming policy and if udev is in use may not reflect user space
258 *
259 * Locking: none
260 */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264 if (!tty) /* Hmm. NULL pointer. That's fun. */
265 strcpy(buf, "NULL tty");
266 else
267 strcpy(buf, tty->name);
268 return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274 const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277 if (!tty) {
278 printk(KERN_WARNING
279 "null TTY for (%d:%d) in %s\n",
280 imajor(inode), iminor(inode), routine);
281 return 1;
282 }
283 if (tty->magic != TTY_MAGIC) {
284 printk(KERN_WARNING
285 "bad magic number for tty struct (%d:%d) in %s\n",
286 imajor(inode), iminor(inode), routine);
287 return 1;
288 }
289 #endif
290 return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296 struct list_head *p;
297 int count = 0;
298
299 spin_lock(&tty_files_lock);
300 list_for_each(p, &tty->tty_files) {
301 count++;
302 }
303 spin_unlock(&tty_files_lock);
304 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305 tty->driver->subtype == PTY_TYPE_SLAVE &&
306 tty->link && tty->link->count)
307 count++;
308 if (tty->count != count) {
309 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310 "!= #fd's(%d) in %s\n",
311 tty->name, tty->count, count, routine);
312 return count;
313 }
314 #endif
315 return 0;
316 }
317
318 /**
319 * get_tty_driver - find device of a tty
320 * @dev_t: device identifier
321 * @index: returns the index of the tty
322 *
323 * This routine returns a tty driver structure, given a device number
324 * and also passes back the index number.
325 *
326 * Locking: caller must hold tty_mutex
327 */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331 struct tty_driver *p;
332
333 list_for_each_entry(p, &tty_drivers, tty_drivers) {
334 dev_t base = MKDEV(p->major, p->minor_start);
335 if (device < base || device >= base + p->num)
336 continue;
337 *index = device - base;
338 return tty_driver_kref_get(p);
339 }
340 return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346 * tty_find_polling_driver - find device of a polled tty
347 * @name: name string to match
348 * @line: pointer to resulting tty line nr
349 *
350 * This routine returns a tty driver structure, given a name
351 * and the condition that the tty driver is capable of polled
352 * operation.
353 */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356 struct tty_driver *p, *res = NULL;
357 int tty_line = 0;
358 int len;
359 char *str, *stp;
360
361 for (str = name; *str; str++)
362 if ((*str >= '0' && *str <= '9') || *str == ',')
363 break;
364 if (!*str)
365 return NULL;
366
367 len = str - name;
368 tty_line = simple_strtoul(str, &str, 10);
369
370 mutex_lock(&tty_mutex);
371 /* Search through the tty devices to look for a match */
372 list_for_each_entry(p, &tty_drivers, tty_drivers) {
373 if (strncmp(name, p->name, len) != 0)
374 continue;
375 stp = str;
376 if (*stp == ',')
377 stp++;
378 if (*stp == '\0')
379 stp = NULL;
380
381 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383 res = tty_driver_kref_get(p);
384 *line = tty_line;
385 break;
386 }
387 }
388 mutex_unlock(&tty_mutex);
389
390 return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396 * tty_check_change - check for POSIX terminal changes
397 * @tty: tty to check
398 *
399 * If we try to write to, or set the state of, a terminal and we're
400 * not in the foreground, send a SIGTTOU. If the signal is blocked or
401 * ignored, go ahead and perform the operation. (POSIX 7.2)
402 *
403 * Locking: ctrl_lock
404 */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408 unsigned long flags;
409 int ret = 0;
410
411 if (current->signal->tty != tty)
412 return 0;
413
414 spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416 if (!tty->pgrp) {
417 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418 goto out_unlock;
419 }
420 if (task_pgrp(current) == tty->pgrp)
421 goto out_unlock;
422 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 if (is_ignored(SIGTTOU))
424 goto out;
425 if (is_current_pgrp_orphaned()) {
426 ret = -EIO;
427 goto out;
428 }
429 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430 set_thread_flag(TIF_SIGPENDING);
431 ret = -ERESTARTSYS;
432 out:
433 return ret;
434 out_unlock:
435 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436 return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 size_t count, loff_t *ppos)
443 {
444 return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 size_t count, loff_t *ppos)
449 {
450 return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 unsigned long arg)
461 {
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 unsigned int cmd, unsigned long arg)
467 {
468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472 .llseek = no_llseek,
473 .read = tty_read,
474 .write = tty_write,
475 .poll = tty_poll,
476 .unlocked_ioctl = tty_ioctl,
477 .compat_ioctl = tty_compat_ioctl,
478 .open = tty_open,
479 .release = tty_release,
480 .fasync = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484 .llseek = no_llseek,
485 .read = tty_read,
486 .write = redirected_tty_write,
487 .poll = tty_poll,
488 .unlocked_ioctl = tty_ioctl,
489 .compat_ioctl = tty_compat_ioctl,
490 .open = tty_open,
491 .release = tty_release,
492 .fasync = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496 .llseek = no_llseek,
497 .read = hung_up_tty_read,
498 .write = hung_up_tty_write,
499 .poll = hung_up_tty_poll,
500 .unlocked_ioctl = hung_up_tty_ioctl,
501 .compat_ioctl = hung_up_tty_compat_ioctl,
502 .release = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509 * tty_wakeup - request more data
510 * @tty: terminal
511 *
512 * Internal and external helper for wakeups of tty. This function
513 * informs the line discipline if present that the driver is ready
514 * to receive more output data.
515 */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519 struct tty_ldisc *ld;
520
521 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522 ld = tty_ldisc_ref(tty);
523 if (ld) {
524 if (ld->ops->write_wakeup)
525 ld->ops->write_wakeup(tty);
526 tty_ldisc_deref(ld);
527 }
528 }
529 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535 * __tty_hangup - actual handler for hangup events
536 * @work: tty device
537 *
538 * This can be called by the "eventd" kernel thread. That is process
539 * synchronous but doesn't hold any locks, so we need to make sure we
540 * have the appropriate locks for what we're doing.
541 *
542 * The hangup event clears any pending redirections onto the hung up
543 * device. It ensures future writes will error and it does the needed
544 * line discipline hangup and signal delivery. The tty object itself
545 * remains intact.
546 *
547 * Locking:
548 * BTM
549 * redirect lock for undoing redirection
550 * file list lock for manipulating list of ttys
551 * tty_ldisc_lock from called functions
552 * termios_mutex resetting termios data
553 * tasklist_lock to walk task list for hangup event
554 * ->siglock to protect ->signal/->sighand
555 */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558 struct file *cons_filp = NULL;
559 struct file *filp, *f = NULL;
560 struct task_struct *p;
561 struct tty_file_private *priv;
562 int closecount = 0, n;
563 unsigned long flags;
564 int refs = 0;
565
566 if (!tty)
567 return;
568
569
570 spin_lock(&redirect_lock);
571 if (redirect && file_tty(redirect) == tty) {
572 f = redirect;
573 redirect = NULL;
574 }
575 spin_unlock(&redirect_lock);
576
577 tty_lock(tty);
578
579 /* some functions below drop BTM, so we need this bit */
580 set_bit(TTY_HUPPING, &tty->flags);
581
582 /* inuse_filps is protected by the single tty lock,
583 this really needs to change if we want to flush the
584 workqueue with the lock held */
585 check_tty_count(tty, "tty_hangup");
586
587 spin_lock(&tty_files_lock);
588 /* This breaks for file handles being sent over AF_UNIX sockets ? */
589 list_for_each_entry(priv, &tty->tty_files, list) {
590 filp = priv->file;
591 if (filp->f_op->write == redirected_tty_write)
592 cons_filp = filp;
593 if (filp->f_op->write != tty_write)
594 continue;
595 closecount++;
596 __tty_fasync(-1, filp, 0); /* can't block */
597 filp->f_op = &hung_up_tty_fops;
598 }
599 spin_unlock(&tty_files_lock);
600
601 /*
602 * it drops BTM and thus races with reopen
603 * we protect the race by TTY_HUPPING
604 */
605 tty_ldisc_hangup(tty);
606
607 read_lock(&tasklist_lock);
608 if (tty->session) {
609 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610 spin_lock_irq(&p->sighand->siglock);
611 if (p->signal->tty == tty) {
612 p->signal->tty = NULL;
613 /* We defer the dereferences outside fo
614 the tasklist lock */
615 refs++;
616 }
617 if (!p->signal->leader) {
618 spin_unlock_irq(&p->sighand->siglock);
619 continue;
620 }
621 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623 put_pid(p->signal->tty_old_pgrp); /* A noop */
624 spin_lock_irqsave(&tty->ctrl_lock, flags);
625 if (tty->pgrp)
626 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628 spin_unlock_irq(&p->sighand->siglock);
629 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 }
631 read_unlock(&tasklist_lock);
632
633 spin_lock_irqsave(&tty->ctrl_lock, flags);
634 clear_bit(TTY_THROTTLED, &tty->flags);
635 clear_bit(TTY_PUSH, &tty->flags);
636 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637 put_pid(tty->session);
638 put_pid(tty->pgrp);
639 tty->session = NULL;
640 tty->pgrp = NULL;
641 tty->ctrl_status = 0;
642 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644 /* Account for the p->signal references we killed */
645 while (refs--)
646 tty_kref_put(tty);
647
648 /*
649 * If one of the devices matches a console pointer, we
650 * cannot just call hangup() because that will cause
651 * tty->count and state->count to go out of sync.
652 * So we just call close() the right number of times.
653 */
654 if (cons_filp) {
655 if (tty->ops->close)
656 for (n = 0; n < closecount; n++)
657 tty->ops->close(tty, cons_filp);
658 } else if (tty->ops->hangup)
659 (tty->ops->hangup)(tty);
660 /*
661 * We don't want to have driver/ldisc interactions beyond
662 * the ones we did here. The driver layer expects no
663 * calls after ->hangup() from the ldisc side. However we
664 * can't yet guarantee all that.
665 */
666 set_bit(TTY_HUPPED, &tty->flags);
667 clear_bit(TTY_HUPPING, &tty->flags);
668 tty_ldisc_enable(tty);
669
670 tty_unlock(tty);
671
672 if (f)
673 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 struct tty_struct *tty =
679 container_of(work, struct tty_struct, hangup_work);
680
681 __tty_hangup(tty);
682 }
683
684 /**
685 * tty_hangup - trigger a hangup event
686 * @tty: tty to hangup
687 *
688 * A carrier loss (virtual or otherwise) has occurred on this like
689 * schedule a hangup sequence to run after this event.
690 */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695 char buf[64];
696 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698 schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704 * tty_vhangup - process vhangup
705 * @tty: tty to hangup
706 *
707 * The user has asked via system call for the terminal to be hung up.
708 * We do this synchronously so that when the syscall returns the process
709 * is complete. That guarantee is necessary for security reasons.
710 */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715 char buf[64];
716
717 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719 __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726 * tty_vhangup_self - process vhangup for own ctty
727 *
728 * Perform a vhangup on the current controlling tty
729 */
730
731 void tty_vhangup_self(void)
732 {
733 struct tty_struct *tty;
734
735 tty = get_current_tty();
736 if (tty) {
737 tty_vhangup(tty);
738 tty_kref_put(tty);
739 }
740 }
741
742 /**
743 * tty_hung_up_p - was tty hung up
744 * @filp: file pointer of tty
745 *
746 * Return true if the tty has been subject to a vhangup or a carrier
747 * loss
748 */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752 return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759 struct task_struct *p;
760 do_each_pid_task(session, PIDTYPE_SID, p) {
761 proc_clear_tty(p);
762 } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766 * disassociate_ctty - disconnect controlling tty
767 * @on_exit: true if exiting so need to "hang up" the session
768 *
769 * This function is typically called only by the session leader, when
770 * it wants to disassociate itself from its controlling tty.
771 *
772 * It performs the following functions:
773 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
774 * (2) Clears the tty from being controlling the session
775 * (3) Clears the controlling tty for all processes in the
776 * session group.
777 *
778 * The argument on_exit is set to 1 if called when a process is
779 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
780 *
781 * Locking:
782 * BTM is taken for hysterical raisins, and held when
783 * called from no_tty().
784 * tty_mutex is taken to protect tty
785 * ->siglock is taken to protect ->signal/->sighand
786 * tasklist_lock is taken to walk process list for sessions
787 * ->siglock is taken to protect ->signal/->sighand
788 */
789
790 void disassociate_ctty(int on_exit)
791 {
792 struct tty_struct *tty;
793
794 if (!current->signal->leader)
795 return;
796
797 tty = get_current_tty();
798 if (tty) {
799 struct pid *tty_pgrp = get_pid(tty->pgrp);
800 if (on_exit) {
801 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802 tty_vhangup(tty);
803 }
804 tty_kref_put(tty);
805 if (tty_pgrp) {
806 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807 if (!on_exit)
808 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809 put_pid(tty_pgrp);
810 }
811 } else if (on_exit) {
812 struct pid *old_pgrp;
813 spin_lock_irq(&current->sighand->siglock);
814 old_pgrp = current->signal->tty_old_pgrp;
815 current->signal->tty_old_pgrp = NULL;
816 spin_unlock_irq(&current->sighand->siglock);
817 if (old_pgrp) {
818 kill_pgrp(old_pgrp, SIGHUP, on_exit);
819 kill_pgrp(old_pgrp, SIGCONT, on_exit);
820 put_pid(old_pgrp);
821 }
822 return;
823 }
824
825 spin_lock_irq(&current->sighand->siglock);
826 put_pid(current->signal->tty_old_pgrp);
827 current->signal->tty_old_pgrp = NULL;
828 spin_unlock_irq(&current->sighand->siglock);
829
830 tty = get_current_tty();
831 if (tty) {
832 unsigned long flags;
833 spin_lock_irqsave(&tty->ctrl_lock, flags);
834 put_pid(tty->session);
835 put_pid(tty->pgrp);
836 tty->session = NULL;
837 tty->pgrp = NULL;
838 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839 tty_kref_put(tty);
840 } else {
841 #ifdef TTY_DEBUG_HANGUP
842 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843 " = NULL", tty);
844 #endif
845 }
846
847 /* Now clear signal->tty under the lock */
848 read_lock(&tasklist_lock);
849 session_clear_tty(task_session(current));
850 read_unlock(&tasklist_lock);
851 }
852
853 /**
854 *
855 * no_tty - Ensure the current process does not have a controlling tty
856 */
857 void no_tty(void)
858 {
859 /* FIXME: Review locking here. The tty_lock never covered any race
860 between a new association and proc_clear_tty but possible we need
861 to protect against this anyway */
862 struct task_struct *tsk = current;
863 disassociate_ctty(0);
864 proc_clear_tty(tsk);
865 }
866
867
868 /**
869 * stop_tty - propagate flow control
870 * @tty: tty to stop
871 *
872 * Perform flow control to the driver. For PTY/TTY pairs we
873 * must also propagate the TIOCKPKT status. May be called
874 * on an already stopped device and will not re-call the driver
875 * method.
876 *
877 * This functionality is used by both the line disciplines for
878 * halting incoming flow and by the driver. It may therefore be
879 * called from any context, may be under the tty atomic_write_lock
880 * but not always.
881 *
882 * Locking:
883 * Uses the tty control lock internally
884 */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888 unsigned long flags;
889 spin_lock_irqsave(&tty->ctrl_lock, flags);
890 if (tty->stopped) {
891 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 return;
893 }
894 tty->stopped = 1;
895 if (tty->link && tty->link->packet) {
896 tty->ctrl_status &= ~TIOCPKT_START;
897 tty->ctrl_status |= TIOCPKT_STOP;
898 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899 }
900 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901 if (tty->ops->stop)
902 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908 * start_tty - propagate flow control
909 * @tty: tty to start
910 *
911 * Start a tty that has been stopped if at all possible. Perform
912 * any necessary wakeups and propagate the TIOCPKT status. If this
913 * is the tty was previous stopped and is being started then the
914 * driver start method is invoked and the line discipline woken.
915 *
916 * Locking:
917 * ctrl_lock
918 */
919
920 void start_tty(struct tty_struct *tty)
921 {
922 unsigned long flags;
923 spin_lock_irqsave(&tty->ctrl_lock, flags);
924 if (!tty->stopped || tty->flow_stopped) {
925 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926 return;
927 }
928 tty->stopped = 0;
929 if (tty->link && tty->link->packet) {
930 tty->ctrl_status &= ~TIOCPKT_STOP;
931 tty->ctrl_status |= TIOCPKT_START;
932 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933 }
934 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935 if (tty->ops->start)
936 (tty->ops->start)(tty);
937 /* If we have a running line discipline it may need kicking */
938 tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /**
944 * tty_read - read method for tty device files
945 * @file: pointer to tty file
946 * @buf: user buffer
947 * @count: size of user buffer
948 * @ppos: unused
949 *
950 * Perform the read system call function on this terminal device. Checks
951 * for hung up devices before calling the line discipline method.
952 *
953 * Locking:
954 * Locks the line discipline internally while needed. Multiple
955 * read calls may be outstanding in parallel.
956 */
957
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959 loff_t *ppos)
960 {
961 int i;
962 struct inode *inode = file->f_path.dentry->d_inode;
963 struct tty_struct *tty = file_tty(file);
964 struct tty_ldisc *ld;
965
966 if (tty_paranoia_check(tty, inode, "tty_read"))
967 return -EIO;
968 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969 return -EIO;
970
971 /* We want to wait for the line discipline to sort out in this
972 situation */
973 ld = tty_ldisc_ref_wait(tty);
974 if (ld->ops->read)
975 i = (ld->ops->read)(tty, file, buf, count);
976 else
977 i = -EIO;
978 tty_ldisc_deref(ld);
979 if (i > 0)
980 inode->i_atime = current_fs_time(inode->i_sb);
981 return i;
982 }
983
984 void tty_write_unlock(struct tty_struct *tty)
985 __releases(&tty->atomic_write_lock)
986 {
987 mutex_unlock(&tty->atomic_write_lock);
988 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992 __acquires(&tty->atomic_write_lock)
993 {
994 if (!mutex_trylock(&tty->atomic_write_lock)) {
995 if (ndelay)
996 return -EAGAIN;
997 if (mutex_lock_interruptible(&tty->atomic_write_lock))
998 return -ERESTARTSYS;
999 }
1000 return 0;
1001 }
1002
1003 /*
1004 * Split writes up in sane blocksizes to avoid
1005 * denial-of-service type attacks
1006 */
1007 static inline ssize_t do_tty_write(
1008 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009 struct tty_struct *tty,
1010 struct file *file,
1011 const char __user *buf,
1012 size_t count)
1013 {
1014 ssize_t ret, written = 0;
1015 unsigned int chunk;
1016
1017 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018 if (ret < 0)
1019 return ret;
1020
1021 /*
1022 * We chunk up writes into a temporary buffer. This
1023 * simplifies low-level drivers immensely, since they
1024 * don't have locking issues and user mode accesses.
1025 *
1026 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027 * big chunk-size..
1028 *
1029 * The default chunk-size is 2kB, because the NTTY
1030 * layer has problems with bigger chunks. It will
1031 * claim to be able to handle more characters than
1032 * it actually does.
1033 *
1034 * FIXME: This can probably go away now except that 64K chunks
1035 * are too likely to fail unless switched to vmalloc...
1036 */
1037 chunk = 2048;
1038 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039 chunk = 65536;
1040 if (count < chunk)
1041 chunk = count;
1042
1043 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044 if (tty->write_cnt < chunk) {
1045 unsigned char *buf_chunk;
1046
1047 if (chunk < 1024)
1048 chunk = 1024;
1049
1050 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051 if (!buf_chunk) {
1052 ret = -ENOMEM;
1053 goto out;
1054 }
1055 kfree(tty->write_buf);
1056 tty->write_cnt = chunk;
1057 tty->write_buf = buf_chunk;
1058 }
1059
1060 /* Do the write .. */
1061 for (;;) {
1062 size_t size = count;
1063 if (size > chunk)
1064 size = chunk;
1065 ret = -EFAULT;
1066 if (copy_from_user(tty->write_buf, buf, size))
1067 break;
1068 ret = write(tty, file, tty->write_buf, size);
1069 if (ret <= 0)
1070 break;
1071 written += ret;
1072 buf += ret;
1073 count -= ret;
1074 if (!count)
1075 break;
1076 ret = -ERESTARTSYS;
1077 if (signal_pending(current))
1078 break;
1079 cond_resched();
1080 }
1081 if (written) {
1082 struct inode *inode = file->f_path.dentry->d_inode;
1083 inode->i_mtime = current_fs_time(inode->i_sb);
1084 ret = written;
1085 }
1086 out:
1087 tty_write_unlock(tty);
1088 return ret;
1089 }
1090
1091 /**
1092 * tty_write_message - write a message to a certain tty, not just the console.
1093 * @tty: the destination tty_struct
1094 * @msg: the message to write
1095 *
1096 * This is used for messages that need to be redirected to a specific tty.
1097 * We don't put it into the syslog queue right now maybe in the future if
1098 * really needed.
1099 *
1100 * We must still hold the BTM and test the CLOSING flag for the moment.
1101 */
1102
1103 void tty_write_message(struct tty_struct *tty, char *msg)
1104 {
1105 if (tty) {
1106 mutex_lock(&tty->atomic_write_lock);
1107 tty_lock(tty);
1108 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1109 tty_unlock(tty);
1110 tty->ops->write(tty, msg, strlen(msg));
1111 } else
1112 tty_unlock(tty);
1113 tty_write_unlock(tty);
1114 }
1115 return;
1116 }
1117
1118
1119 /**
1120 * tty_write - write method for tty device file
1121 * @file: tty file pointer
1122 * @buf: user data to write
1123 * @count: bytes to write
1124 * @ppos: unused
1125 *
1126 * Write data to a tty device via the line discipline.
1127 *
1128 * Locking:
1129 * Locks the line discipline as required
1130 * Writes to the tty driver are serialized by the atomic_write_lock
1131 * and are then processed in chunks to the device. The line discipline
1132 * write method will not be invoked in parallel for each device.
1133 */
1134
1135 static ssize_t tty_write(struct file *file, const char __user *buf,
1136 size_t count, loff_t *ppos)
1137 {
1138 struct inode *inode = file->f_path.dentry->d_inode;
1139 struct tty_struct *tty = file_tty(file);
1140 struct tty_ldisc *ld;
1141 ssize_t ret;
1142
1143 if (tty_paranoia_check(tty, inode, "tty_write"))
1144 return -EIO;
1145 if (!tty || !tty->ops->write ||
1146 (test_bit(TTY_IO_ERROR, &tty->flags)))
1147 return -EIO;
1148 /* Short term debug to catch buggy drivers */
1149 if (tty->ops->write_room == NULL)
1150 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1151 tty->driver->name);
1152 ld = tty_ldisc_ref_wait(tty);
1153 if (!ld->ops->write)
1154 ret = -EIO;
1155 else
1156 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1157 tty_ldisc_deref(ld);
1158 return ret;
1159 }
1160
1161 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1162 size_t count, loff_t *ppos)
1163 {
1164 struct file *p = NULL;
1165
1166 spin_lock(&redirect_lock);
1167 if (redirect) {
1168 get_file(redirect);
1169 p = redirect;
1170 }
1171 spin_unlock(&redirect_lock);
1172
1173 if (p) {
1174 ssize_t res;
1175 res = vfs_write(p, buf, count, &p->f_pos);
1176 fput(p);
1177 return res;
1178 }
1179 return tty_write(file, buf, count, ppos);
1180 }
1181
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183
1184 /**
1185 * pty_line_name - generate name for a pty
1186 * @driver: the tty driver in use
1187 * @index: the minor number
1188 * @p: output buffer of at least 6 bytes
1189 *
1190 * Generate a name from a driver reference and write it to the output
1191 * buffer.
1192 *
1193 * Locking: None
1194 */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197 int i = index + driver->name_base;
1198 /* ->name is initialized to "ttyp", but "tty" is expected */
1199 sprintf(p, "%s%c%x",
1200 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201 ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203
1204 /**
1205 * tty_line_name - generate name for a tty
1206 * @driver: the tty driver in use
1207 * @index: the minor number
1208 * @p: output buffer of at least 7 bytes
1209 *
1210 * Generate a name from a driver reference and write it to the output
1211 * buffer.
1212 *
1213 * Locking: None
1214 */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1218 }
1219
1220 /**
1221 * tty_driver_lookup_tty() - find an existing tty, if any
1222 * @driver: the driver for the tty
1223 * @idx: the minor number
1224 *
1225 * Return the tty, if found or ERR_PTR() otherwise.
1226 *
1227 * Locking: tty_mutex must be held. If tty is found, the mutex must
1228 * be held until the 'fast-open' is also done. Will change once we
1229 * have refcounting in the driver and per driver locking
1230 */
1231 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1232 struct inode *inode, int idx)
1233 {
1234 if (driver->ops->lookup)
1235 return driver->ops->lookup(driver, inode, idx);
1236
1237 return driver->ttys[idx];
1238 }
1239
1240 /**
1241 * tty_init_termios - helper for termios setup
1242 * @tty: the tty to set up
1243 *
1244 * Initialise the termios structures for this tty. Thus runs under
1245 * the tty_mutex currently so we can be relaxed about ordering.
1246 */
1247
1248 int tty_init_termios(struct tty_struct *tty)
1249 {
1250 struct ktermios *tp;
1251 int idx = tty->index;
1252
1253 tp = tty->driver->termios[idx];
1254 if (tp == NULL) {
1255 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1256 if (tp == NULL)
1257 return -ENOMEM;
1258 memcpy(tp, &tty->driver->init_termios,
1259 sizeof(struct ktermios));
1260 tty->driver->termios[idx] = tp;
1261 }
1262 tty->termios = tp;
1263 tty->termios_locked = tp + 1;
1264
1265 /* Compatibility until drivers always set this */
1266 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1267 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1268 return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274 int ret = tty_init_termios(tty);
1275 if (ret)
1276 return ret;
1277
1278 tty_driver_kref_get(driver);
1279 tty->count++;
1280 driver->ttys[tty->index] = tty;
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286 * tty_driver_install_tty() - install a tty entry in the driver
1287 * @driver: the driver for the tty
1288 * @tty: the tty
1289 *
1290 * Install a tty object into the driver tables. The tty->index field
1291 * will be set by the time this is called. This method is responsible
1292 * for ensuring any need additional structures are allocated and
1293 * configured.
1294 *
1295 * Locking: tty_mutex for now
1296 */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298 struct tty_struct *tty)
1299 {
1300 return driver->ops->install ? driver->ops->install(driver, tty) :
1301 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305 * tty_driver_remove_tty() - remove a tty from the driver tables
1306 * @driver: the driver for the tty
1307 * @idx: the minor number
1308 *
1309 * Remvoe a tty object from the driver tables. The tty->index field
1310 * will be set by the time this is called.
1311 *
1312 * Locking: tty_mutex for now
1313 */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316 if (driver->ops->remove)
1317 driver->ops->remove(driver, tty);
1318 else
1319 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323 * tty_reopen() - fast re-open of an open tty
1324 * @tty - the tty to open
1325 *
1326 * Return 0 on success, -errno on error.
1327 *
1328 * Locking: tty_mutex must be held from the time the tty was found
1329 * till this open completes.
1330 */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333 struct tty_driver *driver = tty->driver;
1334
1335 if (test_bit(TTY_CLOSING, &tty->flags) ||
1336 test_bit(TTY_HUPPING, &tty->flags) ||
1337 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338 return -EIO;
1339
1340 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341 driver->subtype == PTY_TYPE_MASTER) {
1342 /*
1343 * special case for PTY masters: only one open permitted,
1344 * and the slave side open count is incremented as well.
1345 */
1346 if (tty->count)
1347 return -EIO;
1348
1349 tty->link->count++;
1350 }
1351 tty->count++;
1352
1353 mutex_lock(&tty->ldisc_mutex);
1354 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355 mutex_unlock(&tty->ldisc_mutex);
1356
1357 return 0;
1358 }
1359
1360 /**
1361 * tty_init_dev - initialise a tty device
1362 * @driver: tty driver we are opening a device on
1363 * @idx: device index
1364 * @ret_tty: returned tty structure
1365 *
1366 * Prepare a tty device. This may not be a "new" clean device but
1367 * could also be an active device. The pty drivers require special
1368 * handling because of this.
1369 *
1370 * Locking:
1371 * The function is called under the tty_mutex, which
1372 * protects us from the tty struct or driver itself going away.
1373 *
1374 * On exit the tty device has the line discipline attached and
1375 * a reference count of 1. If a pair was created for pty/tty use
1376 * and the other was a pty master then it too has a reference count of 1.
1377 *
1378 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379 * failed open. The new code protects the open with a mutex, so it's
1380 * really quite straightforward. The mutex locking can probably be
1381 * relaxed for the (most common) case of reopening a tty.
1382 */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386 struct tty_struct *tty;
1387 int retval;
1388
1389 /*
1390 * First time open is complex, especially for PTY devices.
1391 * This code guarantees that either everything succeeds and the
1392 * TTY is ready for operation, or else the table slots are vacated
1393 * and the allocated memory released. (Except that the termios
1394 * and locked termios may be retained.)
1395 */
1396
1397 if (!try_module_get(driver->owner))
1398 return ERR_PTR(-ENODEV);
1399
1400 tty = alloc_tty_struct();
1401 if (!tty) {
1402 retval = -ENOMEM;
1403 goto err_module_put;
1404 }
1405 initialize_tty_struct(tty, driver, idx);
1406
1407 tty_lock(tty);
1408 retval = tty_driver_install_tty(driver, tty);
1409 if (retval < 0)
1410 goto err_deinit_tty;
1411
1412 /*
1413 * Structures all installed ... call the ldisc open routines.
1414 * If we fail here just call release_tty to clean up. No need
1415 * to decrement the use counts, as release_tty doesn't care.
1416 */
1417 retval = tty_ldisc_setup(tty, tty->link);
1418 if (retval)
1419 goto err_release_tty;
1420 /* Return the tty locked so that it cannot vanish under the caller */
1421 return tty;
1422
1423 err_deinit_tty:
1424 tty_unlock(tty);
1425 deinitialize_tty_struct(tty);
1426 free_tty_struct(tty);
1427 err_module_put:
1428 module_put(driver->owner);
1429 return ERR_PTR(retval);
1430
1431 /* call the tty release_tty routine to clean out this slot */
1432 err_release_tty:
1433 tty_unlock(tty);
1434 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1435 "clearing slot %d\n", idx);
1436 release_tty(tty, idx);
1437 return ERR_PTR(retval);
1438 }
1439
1440 void tty_free_termios(struct tty_struct *tty)
1441 {
1442 struct ktermios *tp;
1443 int idx = tty->index;
1444 /* Kill this flag and push into drivers for locking etc */
1445 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1446 /* FIXME: Locking on ->termios array */
1447 tp = tty->termios;
1448 tty->driver->termios[idx] = NULL;
1449 kfree(tp);
1450 }
1451 }
1452 EXPORT_SYMBOL(tty_free_termios);
1453
1454 void tty_shutdown(struct tty_struct *tty)
1455 {
1456 tty_driver_remove_tty(tty->driver, tty);
1457 tty_free_termios(tty);
1458 }
1459 EXPORT_SYMBOL(tty_shutdown);
1460
1461 /**
1462 * release_one_tty - release tty structure memory
1463 * @kref: kref of tty we are obliterating
1464 *
1465 * Releases memory associated with a tty structure, and clears out the
1466 * driver table slots. This function is called when a device is no longer
1467 * in use. It also gets called when setup of a device fails.
1468 *
1469 * Locking:
1470 * tty_mutex - sometimes only
1471 * takes the file list lock internally when working on the list
1472 * of ttys that the driver keeps.
1473 *
1474 * This method gets called from a work queue so that the driver private
1475 * cleanup ops can sleep (needed for USB at least)
1476 */
1477 static void release_one_tty(struct work_struct *work)
1478 {
1479 struct tty_struct *tty =
1480 container_of(work, struct tty_struct, hangup_work);
1481 struct tty_driver *driver = tty->driver;
1482
1483 if (tty->ops->cleanup)
1484 tty->ops->cleanup(tty);
1485
1486 tty->magic = 0;
1487 tty_driver_kref_put(driver);
1488 module_put(driver->owner);
1489
1490 spin_lock(&tty_files_lock);
1491 list_del_init(&tty->tty_files);
1492 spin_unlock(&tty_files_lock);
1493
1494 put_pid(tty->pgrp);
1495 put_pid(tty->session);
1496 free_tty_struct(tty);
1497 }
1498
1499 static void queue_release_one_tty(struct kref *kref)
1500 {
1501 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1502
1503 if (tty->ops->shutdown)
1504 tty->ops->shutdown(tty);
1505 else
1506 tty_shutdown(tty);
1507
1508 /* The hangup queue is now free so we can reuse it rather than
1509 waste a chunk of memory for each port */
1510 INIT_WORK(&tty->hangup_work, release_one_tty);
1511 schedule_work(&tty->hangup_work);
1512 }
1513
1514 /**
1515 * tty_kref_put - release a tty kref
1516 * @tty: tty device
1517 *
1518 * Release a reference to a tty device and if need be let the kref
1519 * layer destruct the object for us
1520 */
1521
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524 if (tty)
1525 kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528
1529 /**
1530 * release_tty - release tty structure memory
1531 *
1532 * Release both @tty and a possible linked partner (think pty pair),
1533 * and decrement the refcount of the backing module.
1534 *
1535 * Locking:
1536 * tty_mutex - sometimes only
1537 * takes the file list lock internally when working on the list
1538 * of ttys that the driver keeps.
1539 * FIXME: should we require tty_mutex is held here ??
1540 *
1541 */
1542 static void release_tty(struct tty_struct *tty, int idx)
1543 {
1544 /* This should always be true but check for the moment */
1545 WARN_ON(tty->index != idx);
1546
1547 if (tty->link)
1548 tty_kref_put(tty->link);
1549 tty_kref_put(tty);
1550 }
1551
1552 /**
1553 * tty_release_checks - check a tty before real release
1554 * @tty: tty to check
1555 * @o_tty: link of @tty (if any)
1556 * @idx: index of the tty
1557 *
1558 * Performs some paranoid checking before true release of the @tty.
1559 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1560 */
1561 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1562 int idx)
1563 {
1564 #ifdef TTY_PARANOIA_CHECK
1565 if (idx < 0 || idx >= tty->driver->num) {
1566 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1567 __func__, tty->name);
1568 return -1;
1569 }
1570
1571 /* not much to check for devpts */
1572 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1573 return 0;
1574
1575 if (tty != tty->driver->ttys[idx]) {
1576 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1577 __func__, idx, tty->name);
1578 return -1;
1579 }
1580 if (tty->termios != tty->driver->termios[idx]) {
1581 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1582 __func__, idx, tty->name);
1583 return -1;
1584 }
1585 if (tty->driver->other) {
1586 if (o_tty != tty->driver->other->ttys[idx]) {
1587 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1588 __func__, idx, tty->name);
1589 return -1;
1590 }
1591 if (o_tty->termios != tty->driver->other->termios[idx]) {
1592 printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1593 __func__, idx, tty->name);
1594 return -1;
1595 }
1596 if (o_tty->link != tty) {
1597 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1598 return -1;
1599 }
1600 }
1601 #endif
1602 return 0;
1603 }
1604
1605 /**
1606 * tty_release - vfs callback for close
1607 * @inode: inode of tty
1608 * @filp: file pointer for handle to tty
1609 *
1610 * Called the last time each file handle is closed that references
1611 * this tty. There may however be several such references.
1612 *
1613 * Locking:
1614 * Takes bkl. See tty_release_dev
1615 *
1616 * Even releasing the tty structures is a tricky business.. We have
1617 * to be very careful that the structures are all released at the
1618 * same time, as interrupts might otherwise get the wrong pointers.
1619 *
1620 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1621 * lead to double frees or releasing memory still in use.
1622 */
1623
1624 int tty_release(struct inode *inode, struct file *filp)
1625 {
1626 struct tty_struct *tty = file_tty(filp);
1627 struct tty_struct *o_tty;
1628 int pty_master, tty_closing, o_tty_closing, do_sleep;
1629 int devpts;
1630 int idx;
1631 char buf[64];
1632
1633 if (tty_paranoia_check(tty, inode, __func__))
1634 return 0;
1635
1636 tty_lock(tty);
1637 check_tty_count(tty, __func__);
1638
1639 __tty_fasync(-1, filp, 0);
1640
1641 idx = tty->index;
1642 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1643 tty->driver->subtype == PTY_TYPE_MASTER);
1644 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1645 /* Review: parallel close */
1646 o_tty = tty->link;
1647
1648 if (tty_release_checks(tty, o_tty, idx)) {
1649 tty_unlock(tty);
1650 return 0;
1651 }
1652
1653 #ifdef TTY_DEBUG_HANGUP
1654 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1655 tty_name(tty, buf), tty->count);
1656 #endif
1657
1658 if (tty->ops->close)
1659 tty->ops->close(tty, filp);
1660
1661 tty_unlock(tty);
1662 /*
1663 * Sanity check: if tty->count is going to zero, there shouldn't be
1664 * any waiters on tty->read_wait or tty->write_wait. We test the
1665 * wait queues and kick everyone out _before_ actually starting to
1666 * close. This ensures that we won't block while releasing the tty
1667 * structure.
1668 *
1669 * The test for the o_tty closing is necessary, since the master and
1670 * slave sides may close in any order. If the slave side closes out
1671 * first, its count will be one, since the master side holds an open.
1672 * Thus this test wouldn't be triggered at the time the slave closes,
1673 * so we do it now.
1674 *
1675 * Note that it's possible for the tty to be opened again while we're
1676 * flushing out waiters. By recalculating the closing flags before
1677 * each iteration we avoid any problems.
1678 */
1679 while (1) {
1680 /* Guard against races with tty->count changes elsewhere and
1681 opens on /dev/tty */
1682
1683 mutex_lock(&tty_mutex);
1684 tty_lock_pair(tty, o_tty);
1685 tty_closing = tty->count <= 1;
1686 o_tty_closing = o_tty &&
1687 (o_tty->count <= (pty_master ? 1 : 0));
1688 do_sleep = 0;
1689
1690 if (tty_closing) {
1691 if (waitqueue_active(&tty->read_wait)) {
1692 wake_up_poll(&tty->read_wait, POLLIN);
1693 do_sleep++;
1694 }
1695 if (waitqueue_active(&tty->write_wait)) {
1696 wake_up_poll(&tty->write_wait, POLLOUT);
1697 do_sleep++;
1698 }
1699 }
1700 if (o_tty_closing) {
1701 if (waitqueue_active(&o_tty->read_wait)) {
1702 wake_up_poll(&o_tty->read_wait, POLLIN);
1703 do_sleep++;
1704 }
1705 if (waitqueue_active(&o_tty->write_wait)) {
1706 wake_up_poll(&o_tty->write_wait, POLLOUT);
1707 do_sleep++;
1708 }
1709 }
1710 if (!do_sleep)
1711 break;
1712
1713 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1714 __func__, tty_name(tty, buf));
1715 tty_unlock_pair(tty, o_tty);
1716 mutex_unlock(&tty_mutex);
1717 schedule();
1718 }
1719
1720 /*
1721 * The closing flags are now consistent with the open counts on
1722 * both sides, and we've completed the last operation that could
1723 * block, so it's safe to proceed with closing.
1724 */
1725 if (pty_master) {
1726 if (--o_tty->count < 0) {
1727 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1728 __func__, o_tty->count, tty_name(o_tty, buf));
1729 o_tty->count = 0;
1730 }
1731 }
1732 if (--tty->count < 0) {
1733 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1734 __func__, tty->count, tty_name(tty, buf));
1735 tty->count = 0;
1736 }
1737
1738 /*
1739 * We've decremented tty->count, so we need to remove this file
1740 * descriptor off the tty->tty_files list; this serves two
1741 * purposes:
1742 * - check_tty_count sees the correct number of file descriptors
1743 * associated with this tty.
1744 * - do_tty_hangup no longer sees this file descriptor as
1745 * something that needs to be handled for hangups.
1746 */
1747 tty_del_file(filp);
1748
1749 /*
1750 * Perform some housekeeping before deciding whether to return.
1751 *
1752 * Set the TTY_CLOSING flag if this was the last open. In the
1753 * case of a pty we may have to wait around for the other side
1754 * to close, and TTY_CLOSING makes sure we can't be reopened.
1755 */
1756 if (tty_closing)
1757 set_bit(TTY_CLOSING, &tty->flags);
1758 if (o_tty_closing)
1759 set_bit(TTY_CLOSING, &o_tty->flags);
1760
1761 /*
1762 * If _either_ side is closing, make sure there aren't any
1763 * processes that still think tty or o_tty is their controlling
1764 * tty.
1765 */
1766 if (tty_closing || o_tty_closing) {
1767 read_lock(&tasklist_lock);
1768 session_clear_tty(tty->session);
1769 if (o_tty)
1770 session_clear_tty(o_tty->session);
1771 read_unlock(&tasklist_lock);
1772 }
1773
1774 mutex_unlock(&tty_mutex);
1775
1776 /* check whether both sides are closing ... */
1777 if (!tty_closing || (o_tty && !o_tty_closing)) {
1778 tty_unlock_pair(tty, o_tty);
1779 return 0;
1780 }
1781
1782 #ifdef TTY_DEBUG_HANGUP
1783 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1784 #endif
1785 /*
1786 * Ask the line discipline code to release its structures
1787 */
1788 tty_ldisc_release(tty, o_tty);
1789 /*
1790 * The release_tty function takes care of the details of clearing
1791 * the slots and preserving the termios structure. The tty_unlock_pair
1792 * should be safe as we keep a kref while the tty is locked (so the
1793 * unlock never unlocks a freed tty).
1794 */
1795 release_tty(tty, idx);
1796 tty_unlock_pair(tty, o_tty);
1797
1798 /* Make this pty number available for reallocation */
1799 if (devpts)
1800 devpts_kill_index(inode, idx);
1801 return 0;
1802 }
1803
1804 /**
1805 * tty_open_current_tty - get tty of current task for open
1806 * @device: device number
1807 * @filp: file pointer to tty
1808 * @return: tty of the current task iff @device is /dev/tty
1809 *
1810 * We cannot return driver and index like for the other nodes because
1811 * devpts will not work then. It expects inodes to be from devpts FS.
1812 *
1813 * We need to move to returning a refcounted object from all the lookup
1814 * paths including this one.
1815 */
1816 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1817 {
1818 struct tty_struct *tty;
1819
1820 if (device != MKDEV(TTYAUX_MAJOR, 0))
1821 return NULL;
1822
1823 tty = get_current_tty();
1824 if (!tty)
1825 return ERR_PTR(-ENXIO);
1826
1827 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1828 /* noctty = 1; */
1829 tty_kref_put(tty);
1830 /* FIXME: we put a reference and return a TTY! */
1831 /* This is only safe because the caller holds tty_mutex */
1832 return tty;
1833 }
1834
1835 /**
1836 * tty_lookup_driver - lookup a tty driver for a given device file
1837 * @device: device number
1838 * @filp: file pointer to tty
1839 * @noctty: set if the device should not become a controlling tty
1840 * @index: index for the device in the @return driver
1841 * @return: driver for this inode (with increased refcount)
1842 *
1843 * If @return is not erroneous, the caller is responsible to decrement the
1844 * refcount by tty_driver_kref_put.
1845 *
1846 * Locking: tty_mutex protects get_tty_driver
1847 */
1848 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1849 int *noctty, int *index)
1850 {
1851 struct tty_driver *driver;
1852
1853 switch (device) {
1854 #ifdef CONFIG_VT
1855 case MKDEV(TTY_MAJOR, 0): {
1856 extern struct tty_driver *console_driver;
1857 driver = tty_driver_kref_get(console_driver);
1858 *index = fg_console;
1859 *noctty = 1;
1860 break;
1861 }
1862 #endif
1863 case MKDEV(TTYAUX_MAJOR, 1): {
1864 struct tty_driver *console_driver = console_device(index);
1865 if (console_driver) {
1866 driver = tty_driver_kref_get(console_driver);
1867 if (driver) {
1868 /* Don't let /dev/console block */
1869 filp->f_flags |= O_NONBLOCK;
1870 *noctty = 1;
1871 break;
1872 }
1873 }
1874 return ERR_PTR(-ENODEV);
1875 }
1876 default:
1877 driver = get_tty_driver(device, index);
1878 if (!driver)
1879 return ERR_PTR(-ENODEV);
1880 break;
1881 }
1882 return driver;
1883 }
1884
1885 /**
1886 * tty_open - open a tty device
1887 * @inode: inode of device file
1888 * @filp: file pointer to tty
1889 *
1890 * tty_open and tty_release keep up the tty count that contains the
1891 * number of opens done on a tty. We cannot use the inode-count, as
1892 * different inodes might point to the same tty.
1893 *
1894 * Open-counting is needed for pty masters, as well as for keeping
1895 * track of serial lines: DTR is dropped when the last close happens.
1896 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1897 *
1898 * The termios state of a pty is reset on first open so that
1899 * settings don't persist across reuse.
1900 *
1901 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902 * tty->count should protect the rest.
1903 * ->siglock protects ->signal/->sighand
1904 *
1905 * Note: the tty_unlock/lock cases without a ref are only safe due to
1906 * tty_mutex
1907 */
1908
1909 static int tty_open(struct inode *inode, struct file *filp)
1910 {
1911 struct tty_struct *tty;
1912 int noctty, retval;
1913 struct tty_driver *driver = NULL;
1914 int index;
1915 dev_t device = inode->i_rdev;
1916 unsigned saved_flags = filp->f_flags;
1917
1918 nonseekable_open(inode, filp);
1919
1920 retry_open:
1921 retval = tty_alloc_file(filp);
1922 if (retval)
1923 return -ENOMEM;
1924
1925 noctty = filp->f_flags & O_NOCTTY;
1926 index = -1;
1927 retval = 0;
1928
1929 mutex_lock(&tty_mutex);
1930 /* This is protected by the tty_mutex */
1931 tty = tty_open_current_tty(device, filp);
1932 if (IS_ERR(tty)) {
1933 retval = PTR_ERR(tty);
1934 goto err_unlock;
1935 } else if (!tty) {
1936 driver = tty_lookup_driver(device, filp, &noctty, &index);
1937 if (IS_ERR(driver)) {
1938 retval = PTR_ERR(driver);
1939 goto err_unlock;
1940 }
1941
1942 /* check whether we're reopening an existing tty */
1943 tty = tty_driver_lookup_tty(driver, inode, index);
1944 if (IS_ERR(tty)) {
1945 retval = PTR_ERR(tty);
1946 goto err_unlock;
1947 }
1948 }
1949
1950 if (tty) {
1951 tty_lock(tty);
1952 retval = tty_reopen(tty);
1953 if (retval < 0) {
1954 tty_unlock(tty);
1955 tty = ERR_PTR(retval);
1956 }
1957 } else /* Returns with the tty_lock held for now */
1958 tty = tty_init_dev(driver, index);
1959
1960 mutex_unlock(&tty_mutex);
1961 if (driver)
1962 tty_driver_kref_put(driver);
1963 if (IS_ERR(tty)) {
1964 retval = PTR_ERR(tty);
1965 goto err_file;
1966 }
1967
1968 tty_add_file(tty, filp);
1969
1970 check_tty_count(tty, __func__);
1971 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1972 tty->driver->subtype == PTY_TYPE_MASTER)
1973 noctty = 1;
1974 #ifdef TTY_DEBUG_HANGUP
1975 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1976 #endif
1977 if (tty->ops->open)
1978 retval = tty->ops->open(tty, filp);
1979 else
1980 retval = -ENODEV;
1981 filp->f_flags = saved_flags;
1982
1983 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1984 !capable(CAP_SYS_ADMIN))
1985 retval = -EBUSY;
1986
1987 if (retval) {
1988 #ifdef TTY_DEBUG_HANGUP
1989 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1990 retval, tty->name);
1991 #endif
1992 tty_unlock(tty); /* need to call tty_release without BTM */
1993 tty_release(inode, filp);
1994 if (retval != -ERESTARTSYS)
1995 return retval;
1996
1997 if (signal_pending(current))
1998 return retval;
1999
2000 schedule();
2001 /*
2002 * Need to reset f_op in case a hangup happened.
2003 */
2004 if (filp->f_op == &hung_up_tty_fops)
2005 filp->f_op = &tty_fops;
2006 goto retry_open;
2007 }
2008 tty_unlock(tty);
2009
2010
2011 mutex_lock(&tty_mutex);
2012 tty_lock(tty);
2013 spin_lock_irq(&current->sighand->siglock);
2014 if (!noctty &&
2015 current->signal->leader &&
2016 !current->signal->tty &&
2017 tty->session == NULL)
2018 __proc_set_tty(current, tty);
2019 spin_unlock_irq(&current->sighand->siglock);
2020 tty_unlock(tty);
2021 mutex_unlock(&tty_mutex);
2022 return 0;
2023 err_unlock:
2024 mutex_unlock(&tty_mutex);
2025 /* after locks to avoid deadlock */
2026 if (!IS_ERR_OR_NULL(driver))
2027 tty_driver_kref_put(driver);
2028 err_file:
2029 tty_free_file(filp);
2030 return retval;
2031 }
2032
2033
2034
2035 /**
2036 * tty_poll - check tty status
2037 * @filp: file being polled
2038 * @wait: poll wait structures to update
2039 *
2040 * Call the line discipline polling method to obtain the poll
2041 * status of the device.
2042 *
2043 * Locking: locks called line discipline but ldisc poll method
2044 * may be re-entered freely by other callers.
2045 */
2046
2047 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2048 {
2049 struct tty_struct *tty = file_tty(filp);
2050 struct tty_ldisc *ld;
2051 int ret = 0;
2052
2053 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2054 return 0;
2055
2056 ld = tty_ldisc_ref_wait(tty);
2057 if (ld->ops->poll)
2058 ret = (ld->ops->poll)(tty, filp, wait);
2059 tty_ldisc_deref(ld);
2060 return ret;
2061 }
2062
2063 static int __tty_fasync(int fd, struct file *filp, int on)
2064 {
2065 struct tty_struct *tty = file_tty(filp);
2066 unsigned long flags;
2067 int retval = 0;
2068
2069 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2070 goto out;
2071
2072 retval = fasync_helper(fd, filp, on, &tty->fasync);
2073 if (retval <= 0)
2074 goto out;
2075
2076 if (on) {
2077 enum pid_type type;
2078 struct pid *pid;
2079 if (!waitqueue_active(&tty->read_wait))
2080 tty->minimum_to_wake = 1;
2081 spin_lock_irqsave(&tty->ctrl_lock, flags);
2082 if (tty->pgrp) {
2083 pid = tty->pgrp;
2084 type = PIDTYPE_PGID;
2085 } else {
2086 pid = task_pid(current);
2087 type = PIDTYPE_PID;
2088 }
2089 get_pid(pid);
2090 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2091 retval = __f_setown(filp, pid, type, 0);
2092 put_pid(pid);
2093 if (retval)
2094 goto out;
2095 } else {
2096 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2097 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2098 }
2099 retval = 0;
2100 out:
2101 return retval;
2102 }
2103
2104 static int tty_fasync(int fd, struct file *filp, int on)
2105 {
2106 struct tty_struct *tty = file_tty(filp);
2107 int retval;
2108
2109 tty_lock(tty);
2110 retval = __tty_fasync(fd, filp, on);
2111 tty_unlock(tty);
2112
2113 return retval;
2114 }
2115
2116 /**
2117 * tiocsti - fake input character
2118 * @tty: tty to fake input into
2119 * @p: pointer to character
2120 *
2121 * Fake input to a tty device. Does the necessary locking and
2122 * input management.
2123 *
2124 * FIXME: does not honour flow control ??
2125 *
2126 * Locking:
2127 * Called functions take tty_ldisc_lock
2128 * current->signal->tty check is safe without locks
2129 *
2130 * FIXME: may race normal receive processing
2131 */
2132
2133 static int tiocsti(struct tty_struct *tty, char __user *p)
2134 {
2135 char ch, mbz = 0;
2136 struct tty_ldisc *ld;
2137
2138 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2139 return -EPERM;
2140 if (get_user(ch, p))
2141 return -EFAULT;
2142 tty_audit_tiocsti(tty, ch);
2143 ld = tty_ldisc_ref_wait(tty);
2144 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2145 tty_ldisc_deref(ld);
2146 return 0;
2147 }
2148
2149 /**
2150 * tiocgwinsz - implement window query ioctl
2151 * @tty; tty
2152 * @arg: user buffer for result
2153 *
2154 * Copies the kernel idea of the window size into the user buffer.
2155 *
2156 * Locking: tty->termios_mutex is taken to ensure the winsize data
2157 * is consistent.
2158 */
2159
2160 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2161 {
2162 int err;
2163
2164 mutex_lock(&tty->termios_mutex);
2165 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2166 mutex_unlock(&tty->termios_mutex);
2167
2168 return err ? -EFAULT: 0;
2169 }
2170
2171 /**
2172 * tty_do_resize - resize event
2173 * @tty: tty being resized
2174 * @rows: rows (character)
2175 * @cols: cols (character)
2176 *
2177 * Update the termios variables and send the necessary signals to
2178 * peform a terminal resize correctly
2179 */
2180
2181 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2182 {
2183 struct pid *pgrp;
2184 unsigned long flags;
2185
2186 /* Lock the tty */
2187 mutex_lock(&tty->termios_mutex);
2188 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2189 goto done;
2190 /* Get the PID values and reference them so we can
2191 avoid holding the tty ctrl lock while sending signals */
2192 spin_lock_irqsave(&tty->ctrl_lock, flags);
2193 pgrp = get_pid(tty->pgrp);
2194 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2195
2196 if (pgrp)
2197 kill_pgrp(pgrp, SIGWINCH, 1);
2198 put_pid(pgrp);
2199
2200 tty->winsize = *ws;
2201 done:
2202 mutex_unlock(&tty->termios_mutex);
2203 return 0;
2204 }
2205
2206 /**
2207 * tiocswinsz - implement window size set ioctl
2208 * @tty; tty side of tty
2209 * @arg: user buffer for result
2210 *
2211 * Copies the user idea of the window size to the kernel. Traditionally
2212 * this is just advisory information but for the Linux console it
2213 * actually has driver level meaning and triggers a VC resize.
2214 *
2215 * Locking:
2216 * Driver dependent. The default do_resize method takes the
2217 * tty termios mutex and ctrl_lock. The console takes its own lock
2218 * then calls into the default method.
2219 */
2220
2221 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2222 {
2223 struct winsize tmp_ws;
2224 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2225 return -EFAULT;
2226
2227 if (tty->ops->resize)
2228 return tty->ops->resize(tty, &tmp_ws);
2229 else
2230 return tty_do_resize(tty, &tmp_ws);
2231 }
2232
2233 /**
2234 * tioccons - allow admin to move logical console
2235 * @file: the file to become console
2236 *
2237 * Allow the administrator to move the redirected console device
2238 *
2239 * Locking: uses redirect_lock to guard the redirect information
2240 */
2241
2242 static int tioccons(struct file *file)
2243 {
2244 if (!capable(CAP_SYS_ADMIN))
2245 return -EPERM;
2246 if (file->f_op->write == redirected_tty_write) {
2247 struct file *f;
2248 spin_lock(&redirect_lock);
2249 f = redirect;
2250 redirect = NULL;
2251 spin_unlock(&redirect_lock);
2252 if (f)
2253 fput(f);
2254 return 0;
2255 }
2256 spin_lock(&redirect_lock);
2257 if (redirect) {
2258 spin_unlock(&redirect_lock);
2259 return -EBUSY;
2260 }
2261 get_file(file);
2262 redirect = file;
2263 spin_unlock(&redirect_lock);
2264 return 0;
2265 }
2266
2267 /**
2268 * fionbio - non blocking ioctl
2269 * @file: file to set blocking value
2270 * @p: user parameter
2271 *
2272 * Historical tty interfaces had a blocking control ioctl before
2273 * the generic functionality existed. This piece of history is preserved
2274 * in the expected tty API of posix OS's.
2275 *
2276 * Locking: none, the open file handle ensures it won't go away.
2277 */
2278
2279 static int fionbio(struct file *file, int __user *p)
2280 {
2281 int nonblock;
2282
2283 if (get_user(nonblock, p))
2284 return -EFAULT;
2285
2286 spin_lock(&file->f_lock);
2287 if (nonblock)
2288 file->f_flags |= O_NONBLOCK;
2289 else
2290 file->f_flags &= ~O_NONBLOCK;
2291 spin_unlock(&file->f_lock);
2292 return 0;
2293 }
2294
2295 /**
2296 * tiocsctty - set controlling tty
2297 * @tty: tty structure
2298 * @arg: user argument
2299 *
2300 * This ioctl is used to manage job control. It permits a session
2301 * leader to set this tty as the controlling tty for the session.
2302 *
2303 * Locking:
2304 * Takes tty_mutex() to protect tty instance
2305 * Takes tasklist_lock internally to walk sessions
2306 * Takes ->siglock() when updating signal->tty
2307 */
2308
2309 static int tiocsctty(struct tty_struct *tty, int arg)
2310 {
2311 int ret = 0;
2312 if (current->signal->leader && (task_session(current) == tty->session))
2313 return ret;
2314
2315 mutex_lock(&tty_mutex);
2316 /*
2317 * The process must be a session leader and
2318 * not have a controlling tty already.
2319 */
2320 if (!current->signal->leader || current->signal->tty) {
2321 ret = -EPERM;
2322 goto unlock;
2323 }
2324
2325 if (tty->session) {
2326 /*
2327 * This tty is already the controlling
2328 * tty for another session group!
2329 */
2330 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2331 /*
2332 * Steal it away
2333 */
2334 read_lock(&tasklist_lock);
2335 session_clear_tty(tty->session);
2336 read_unlock(&tasklist_lock);
2337 } else {
2338 ret = -EPERM;
2339 goto unlock;
2340 }
2341 }
2342 proc_set_tty(current, tty);
2343 unlock:
2344 mutex_unlock(&tty_mutex);
2345 return ret;
2346 }
2347
2348 /**
2349 * tty_get_pgrp - return a ref counted pgrp pid
2350 * @tty: tty to read
2351 *
2352 * Returns a refcounted instance of the pid struct for the process
2353 * group controlling the tty.
2354 */
2355
2356 struct pid *tty_get_pgrp(struct tty_struct *tty)
2357 {
2358 unsigned long flags;
2359 struct pid *pgrp;
2360
2361 spin_lock_irqsave(&tty->ctrl_lock, flags);
2362 pgrp = get_pid(tty->pgrp);
2363 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2364
2365 return pgrp;
2366 }
2367 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2368
2369 /**
2370 * tiocgpgrp - get process group
2371 * @tty: tty passed by user
2372 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2373 * @p: returned pid
2374 *
2375 * Obtain the process group of the tty. If there is no process group
2376 * return an error.
2377 *
2378 * Locking: none. Reference to current->signal->tty is safe.
2379 */
2380
2381 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2382 {
2383 struct pid *pid;
2384 int ret;
2385 /*
2386 * (tty == real_tty) is a cheap way of
2387 * testing if the tty is NOT a master pty.
2388 */
2389 if (tty == real_tty && current->signal->tty != real_tty)
2390 return -ENOTTY;
2391 pid = tty_get_pgrp(real_tty);
2392 ret = put_user(pid_vnr(pid), p);
2393 put_pid(pid);
2394 return ret;
2395 }
2396
2397 /**
2398 * tiocspgrp - attempt to set process group
2399 * @tty: tty passed by user
2400 * @real_tty: tty side device matching tty passed by user
2401 * @p: pid pointer
2402 *
2403 * Set the process group of the tty to the session passed. Only
2404 * permitted where the tty session is our session.
2405 *
2406 * Locking: RCU, ctrl lock
2407 */
2408
2409 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2410 {
2411 struct pid *pgrp;
2412 pid_t pgrp_nr;
2413 int retval = tty_check_change(real_tty);
2414 unsigned long flags;
2415
2416 if (retval == -EIO)
2417 return -ENOTTY;
2418 if (retval)
2419 return retval;
2420 if (!current->signal->tty ||
2421 (current->signal->tty != real_tty) ||
2422 (real_tty->session != task_session(current)))
2423 return -ENOTTY;
2424 if (get_user(pgrp_nr, p))
2425 return -EFAULT;
2426 if (pgrp_nr < 0)
2427 return -EINVAL;
2428 rcu_read_lock();
2429 pgrp = find_vpid(pgrp_nr);
2430 retval = -ESRCH;
2431 if (!pgrp)
2432 goto out_unlock;
2433 retval = -EPERM;
2434 if (session_of_pgrp(pgrp) != task_session(current))
2435 goto out_unlock;
2436 retval = 0;
2437 spin_lock_irqsave(&tty->ctrl_lock, flags);
2438 put_pid(real_tty->pgrp);
2439 real_tty->pgrp = get_pid(pgrp);
2440 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2441 out_unlock:
2442 rcu_read_unlock();
2443 return retval;
2444 }
2445
2446 /**
2447 * tiocgsid - get session id
2448 * @tty: tty passed by user
2449 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2450 * @p: pointer to returned session id
2451 *
2452 * Obtain the session id of the tty. If there is no session
2453 * return an error.
2454 *
2455 * Locking: none. Reference to current->signal->tty is safe.
2456 */
2457
2458 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2459 {
2460 /*
2461 * (tty == real_tty) is a cheap way of
2462 * testing if the tty is NOT a master pty.
2463 */
2464 if (tty == real_tty && current->signal->tty != real_tty)
2465 return -ENOTTY;
2466 if (!real_tty->session)
2467 return -ENOTTY;
2468 return put_user(pid_vnr(real_tty->session), p);
2469 }
2470
2471 /**
2472 * tiocsetd - set line discipline
2473 * @tty: tty device
2474 * @p: pointer to user data
2475 *
2476 * Set the line discipline according to user request.
2477 *
2478 * Locking: see tty_set_ldisc, this function is just a helper
2479 */
2480
2481 static int tiocsetd(struct tty_struct *tty, int __user *p)
2482 {
2483 int ldisc;
2484 int ret;
2485
2486 if (get_user(ldisc, p))
2487 return -EFAULT;
2488
2489 ret = tty_set_ldisc(tty, ldisc);
2490
2491 return ret;
2492 }
2493
2494 /**
2495 * send_break - performed time break
2496 * @tty: device to break on
2497 * @duration: timeout in mS
2498 *
2499 * Perform a timed break on hardware that lacks its own driver level
2500 * timed break functionality.
2501 *
2502 * Locking:
2503 * atomic_write_lock serializes
2504 *
2505 */
2506
2507 static int send_break(struct tty_struct *tty, unsigned int duration)
2508 {
2509 int retval;
2510
2511 if (tty->ops->break_ctl == NULL)
2512 return 0;
2513
2514 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2515 retval = tty->ops->break_ctl(tty, duration);
2516 else {
2517 /* Do the work ourselves */
2518 if (tty_write_lock(tty, 0) < 0)
2519 return -EINTR;
2520 retval = tty->ops->break_ctl(tty, -1);
2521 if (retval)
2522 goto out;
2523 if (!signal_pending(current))
2524 msleep_interruptible(duration);
2525 retval = tty->ops->break_ctl(tty, 0);
2526 out:
2527 tty_write_unlock(tty);
2528 if (signal_pending(current))
2529 retval = -EINTR;
2530 }
2531 return retval;
2532 }
2533
2534 /**
2535 * tty_tiocmget - get modem status
2536 * @tty: tty device
2537 * @file: user file pointer
2538 * @p: pointer to result
2539 *
2540 * Obtain the modem status bits from the tty driver if the feature
2541 * is supported. Return -EINVAL if it is not available.
2542 *
2543 * Locking: none (up to the driver)
2544 */
2545
2546 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2547 {
2548 int retval = -EINVAL;
2549
2550 if (tty->ops->tiocmget) {
2551 retval = tty->ops->tiocmget(tty);
2552
2553 if (retval >= 0)
2554 retval = put_user(retval, p);
2555 }
2556 return retval;
2557 }
2558
2559 /**
2560 * tty_tiocmset - set modem status
2561 * @tty: tty device
2562 * @cmd: command - clear bits, set bits or set all
2563 * @p: pointer to desired bits
2564 *
2565 * Set the modem status bits from the tty driver if the feature
2566 * is supported. Return -EINVAL if it is not available.
2567 *
2568 * Locking: none (up to the driver)
2569 */
2570
2571 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2572 unsigned __user *p)
2573 {
2574 int retval;
2575 unsigned int set, clear, val;
2576
2577 if (tty->ops->tiocmset == NULL)
2578 return -EINVAL;
2579
2580 retval = get_user(val, p);
2581 if (retval)
2582 return retval;
2583 set = clear = 0;
2584 switch (cmd) {
2585 case TIOCMBIS:
2586 set = val;
2587 break;
2588 case TIOCMBIC:
2589 clear = val;
2590 break;
2591 case TIOCMSET:
2592 set = val;
2593 clear = ~val;
2594 break;
2595 }
2596 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2598 return tty->ops->tiocmset(tty, set, clear);
2599 }
2600
2601 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2602 {
2603 int retval = -EINVAL;
2604 struct serial_icounter_struct icount;
2605 memset(&icount, 0, sizeof(icount));
2606 if (tty->ops->get_icount)
2607 retval = tty->ops->get_icount(tty, &icount);
2608 if (retval != 0)
2609 return retval;
2610 if (copy_to_user(arg, &icount, sizeof(icount)))
2611 return -EFAULT;
2612 return 0;
2613 }
2614
2615 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2616 {
2617 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2618 tty->driver->subtype == PTY_TYPE_MASTER)
2619 tty = tty->link;
2620 return tty;
2621 }
2622 EXPORT_SYMBOL(tty_pair_get_tty);
2623
2624 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2625 {
2626 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2627 tty->driver->subtype == PTY_TYPE_MASTER)
2628 return tty;
2629 return tty->link;
2630 }
2631 EXPORT_SYMBOL(tty_pair_get_pty);
2632
2633 /*
2634 * Split this up, as gcc can choke on it otherwise..
2635 */
2636 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2637 {
2638 struct tty_struct *tty = file_tty(file);
2639 struct tty_struct *real_tty;
2640 void __user *p = (void __user *)arg;
2641 int retval;
2642 struct tty_ldisc *ld;
2643 struct inode *inode = file->f_dentry->d_inode;
2644
2645 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2646 return -EINVAL;
2647
2648 real_tty = tty_pair_get_tty(tty);
2649
2650 /*
2651 * Factor out some common prep work
2652 */
2653 switch (cmd) {
2654 case TIOCSETD:
2655 case TIOCSBRK:
2656 case TIOCCBRK:
2657 case TCSBRK:
2658 case TCSBRKP:
2659 retval = tty_check_change(tty);
2660 if (retval)
2661 return retval;
2662 if (cmd != TIOCCBRK) {
2663 tty_wait_until_sent(tty, 0);
2664 if (signal_pending(current))
2665 return -EINTR;
2666 }
2667 break;
2668 }
2669
2670 /*
2671 * Now do the stuff.
2672 */
2673 switch (cmd) {
2674 case TIOCSTI:
2675 return tiocsti(tty, p);
2676 case TIOCGWINSZ:
2677 return tiocgwinsz(real_tty, p);
2678 case TIOCSWINSZ:
2679 return tiocswinsz(real_tty, p);
2680 case TIOCCONS:
2681 return real_tty != tty ? -EINVAL : tioccons(file);
2682 case FIONBIO:
2683 return fionbio(file, p);
2684 case TIOCEXCL:
2685 set_bit(TTY_EXCLUSIVE, &tty->flags);
2686 return 0;
2687 case TIOCNXCL:
2688 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2689 return 0;
2690 case TIOCNOTTY:
2691 if (current->signal->tty != tty)
2692 return -ENOTTY;
2693 no_tty();
2694 return 0;
2695 case TIOCSCTTY:
2696 return tiocsctty(tty, arg);
2697 case TIOCGPGRP:
2698 return tiocgpgrp(tty, real_tty, p);
2699 case TIOCSPGRP:
2700 return tiocspgrp(tty, real_tty, p);
2701 case TIOCGSID:
2702 return tiocgsid(tty, real_tty, p);
2703 case TIOCGETD:
2704 return put_user(tty->ldisc->ops->num, (int __user *)p);
2705 case TIOCSETD:
2706 return tiocsetd(tty, p);
2707 case TIOCVHANGUP:
2708 if (!capable(CAP_SYS_ADMIN))
2709 return -EPERM;
2710 tty_vhangup(tty);
2711 return 0;
2712 case TIOCGDEV:
2713 {
2714 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2715 return put_user(ret, (unsigned int __user *)p);
2716 }
2717 /*
2718 * Break handling
2719 */
2720 case TIOCSBRK: /* Turn break on, unconditionally */
2721 if (tty->ops->break_ctl)
2722 return tty->ops->break_ctl(tty, -1);
2723 return 0;
2724 case TIOCCBRK: /* Turn break off, unconditionally */
2725 if (tty->ops->break_ctl)
2726 return tty->ops->break_ctl(tty, 0);
2727 return 0;
2728 case TCSBRK: /* SVID version: non-zero arg --> no break */
2729 /* non-zero arg means wait for all output data
2730 * to be sent (performed above) but don't send break.
2731 * This is used by the tcdrain() termios function.
2732 */
2733 if (!arg)
2734 return send_break(tty, 250);
2735 return 0;
2736 case TCSBRKP: /* support for POSIX tcsendbreak() */
2737 return send_break(tty, arg ? arg*100 : 250);
2738
2739 case TIOCMGET:
2740 return tty_tiocmget(tty, p);
2741 case TIOCMSET:
2742 case TIOCMBIC:
2743 case TIOCMBIS:
2744 return tty_tiocmset(tty, cmd, p);
2745 case TIOCGICOUNT:
2746 retval = tty_tiocgicount(tty, p);
2747 /* For the moment allow fall through to the old method */
2748 if (retval != -EINVAL)
2749 return retval;
2750 break;
2751 case TCFLSH:
2752 switch (arg) {
2753 case TCIFLUSH:
2754 case TCIOFLUSH:
2755 /* flush tty buffer and allow ldisc to process ioctl */
2756 tty_buffer_flush(tty);
2757 break;
2758 }
2759 break;
2760 }
2761 if (tty->ops->ioctl) {
2762 retval = (tty->ops->ioctl)(tty, cmd, arg);
2763 if (retval != -ENOIOCTLCMD)
2764 return retval;
2765 }
2766 ld = tty_ldisc_ref_wait(tty);
2767 retval = -EINVAL;
2768 if (ld->ops->ioctl) {
2769 retval = ld->ops->ioctl(tty, file, cmd, arg);
2770 if (retval == -ENOIOCTLCMD)
2771 retval = -EINVAL;
2772 }
2773 tty_ldisc_deref(ld);
2774 return retval;
2775 }
2776
2777 #ifdef CONFIG_COMPAT
2778 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2779 unsigned long arg)
2780 {
2781 struct inode *inode = file->f_dentry->d_inode;
2782 struct tty_struct *tty = file_tty(file);
2783 struct tty_ldisc *ld;
2784 int retval = -ENOIOCTLCMD;
2785
2786 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2787 return -EINVAL;
2788
2789 if (tty->ops->compat_ioctl) {
2790 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2791 if (retval != -ENOIOCTLCMD)
2792 return retval;
2793 }
2794
2795 ld = tty_ldisc_ref_wait(tty);
2796 if (ld->ops->compat_ioctl)
2797 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2798 else
2799 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2800 tty_ldisc_deref(ld);
2801
2802 return retval;
2803 }
2804 #endif
2805
2806 /*
2807 * This implements the "Secure Attention Key" --- the idea is to
2808 * prevent trojan horses by killing all processes associated with this
2809 * tty when the user hits the "Secure Attention Key". Required for
2810 * super-paranoid applications --- see the Orange Book for more details.
2811 *
2812 * This code could be nicer; ideally it should send a HUP, wait a few
2813 * seconds, then send a INT, and then a KILL signal. But you then
2814 * have to coordinate with the init process, since all processes associated
2815 * with the current tty must be dead before the new getty is allowed
2816 * to spawn.
2817 *
2818 * Now, if it would be correct ;-/ The current code has a nasty hole -
2819 * it doesn't catch files in flight. We may send the descriptor to ourselves
2820 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2821 *
2822 * Nasty bug: do_SAK is being called in interrupt context. This can
2823 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2824 */
2825 void __do_SAK(struct tty_struct *tty)
2826 {
2827 #ifdef TTY_SOFT_SAK
2828 tty_hangup(tty);
2829 #else
2830 struct task_struct *g, *p;
2831 struct pid *session;
2832 int i;
2833 struct file *filp;
2834 struct fdtable *fdt;
2835
2836 if (!tty)
2837 return;
2838 session = tty->session;
2839
2840 tty_ldisc_flush(tty);
2841
2842 tty_driver_flush_buffer(tty);
2843
2844 read_lock(&tasklist_lock);
2845 /* Kill the entire session */
2846 do_each_pid_task(session, PIDTYPE_SID, p) {
2847 printk(KERN_NOTICE "SAK: killed process %d"
2848 " (%s): task_session(p)==tty->session\n",
2849 task_pid_nr(p), p->comm);
2850 send_sig(SIGKILL, p, 1);
2851 } while_each_pid_task(session, PIDTYPE_SID, p);
2852 /* Now kill any processes that happen to have the
2853 * tty open.
2854 */
2855 do_each_thread(g, p) {
2856 if (p->signal->tty == tty) {
2857 printk(KERN_NOTICE "SAK: killed process %d"
2858 " (%s): task_session(p)==tty->session\n",
2859 task_pid_nr(p), p->comm);
2860 send_sig(SIGKILL, p, 1);
2861 continue;
2862 }
2863 task_lock(p);
2864 if (p->files) {
2865 /*
2866 * We don't take a ref to the file, so we must
2867 * hold ->file_lock instead.
2868 */
2869 spin_lock(&p->files->file_lock);
2870 fdt = files_fdtable(p->files);
2871 for (i = 0; i < fdt->max_fds; i++) {
2872 filp = fcheck_files(p->files, i);
2873 if (!filp)
2874 continue;
2875 if (filp->f_op->read == tty_read &&
2876 file_tty(filp) == tty) {
2877 printk(KERN_NOTICE "SAK: killed process %d"
2878 " (%s): fd#%d opened to the tty\n",
2879 task_pid_nr(p), p->comm, i);
2880 force_sig(SIGKILL, p);
2881 break;
2882 }
2883 }
2884 spin_unlock(&p->files->file_lock);
2885 }
2886 task_unlock(p);
2887 } while_each_thread(g, p);
2888 read_unlock(&tasklist_lock);
2889 #endif
2890 }
2891
2892 static void do_SAK_work(struct work_struct *work)
2893 {
2894 struct tty_struct *tty =
2895 container_of(work, struct tty_struct, SAK_work);
2896 __do_SAK(tty);
2897 }
2898
2899 /*
2900 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2901 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2902 * the values which we write to it will be identical to the values which it
2903 * already has. --akpm
2904 */
2905 void do_SAK(struct tty_struct *tty)
2906 {
2907 if (!tty)
2908 return;
2909 schedule_work(&tty->SAK_work);
2910 }
2911
2912 EXPORT_SYMBOL(do_SAK);
2913
2914 static int dev_match_devt(struct device *dev, void *data)
2915 {
2916 dev_t *devt = data;
2917 return dev->devt == *devt;
2918 }
2919
2920 /* Must put_device() after it's unused! */
2921 static struct device *tty_get_device(struct tty_struct *tty)
2922 {
2923 dev_t devt = tty_devnum(tty);
2924 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2925 }
2926
2927
2928 /**
2929 * initialize_tty_struct
2930 * @tty: tty to initialize
2931 *
2932 * This subroutine initializes a tty structure that has been newly
2933 * allocated.
2934 *
2935 * Locking: none - tty in question must not be exposed at this point
2936 */
2937
2938 void initialize_tty_struct(struct tty_struct *tty,
2939 struct tty_driver *driver, int idx)
2940 {
2941 memset(tty, 0, sizeof(struct tty_struct));
2942 kref_init(&tty->kref);
2943 tty->magic = TTY_MAGIC;
2944 tty_ldisc_init(tty);
2945 tty->session = NULL;
2946 tty->pgrp = NULL;
2947 tty->overrun_time = jiffies;
2948 tty_buffer_init(tty);
2949 mutex_init(&tty->legacy_mutex);
2950 mutex_init(&tty->termios_mutex);
2951 mutex_init(&tty->ldisc_mutex);
2952 init_waitqueue_head(&tty->write_wait);
2953 init_waitqueue_head(&tty->read_wait);
2954 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2955 mutex_init(&tty->atomic_read_lock);
2956 mutex_init(&tty->atomic_write_lock);
2957 mutex_init(&tty->output_lock);
2958 mutex_init(&tty->echo_lock);
2959 spin_lock_init(&tty->read_lock);
2960 spin_lock_init(&tty->ctrl_lock);
2961 INIT_LIST_HEAD(&tty->tty_files);
2962 INIT_WORK(&tty->SAK_work, do_SAK_work);
2963
2964 tty->driver = driver;
2965 tty->ops = driver->ops;
2966 tty->index = idx;
2967 tty_line_name(driver, idx, tty->name);
2968 tty->dev = tty_get_device(tty);
2969 }
2970
2971 /**
2972 * deinitialize_tty_struct
2973 * @tty: tty to deinitialize
2974 *
2975 * This subroutine deinitializes a tty structure that has been newly
2976 * allocated but tty_release cannot be called on that yet.
2977 *
2978 * Locking: none - tty in question must not be exposed at this point
2979 */
2980 void deinitialize_tty_struct(struct tty_struct *tty)
2981 {
2982 tty_ldisc_deinit(tty);
2983 }
2984
2985 /**
2986 * tty_put_char - write one character to a tty
2987 * @tty: tty
2988 * @ch: character
2989 *
2990 * Write one byte to the tty using the provided put_char method
2991 * if present. Returns the number of characters successfully output.
2992 *
2993 * Note: the specific put_char operation in the driver layer may go
2994 * away soon. Don't call it directly, use this method
2995 */
2996
2997 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2998 {
2999 if (tty->ops->put_char)
3000 return tty->ops->put_char(tty, ch);
3001 return tty->ops->write(tty, &ch, 1);
3002 }
3003 EXPORT_SYMBOL_GPL(tty_put_char);
3004
3005 struct class *tty_class;
3006
3007 /**
3008 * tty_register_device - register a tty device
3009 * @driver: the tty driver that describes the tty device
3010 * @index: the index in the tty driver for this tty device
3011 * @device: a struct device that is associated with this tty device.
3012 * This field is optional, if there is no known struct device
3013 * for this tty device it can be set to NULL safely.
3014 *
3015 * Returns a pointer to the struct device for this tty device
3016 * (or ERR_PTR(-EFOO) on error).
3017 *
3018 * This call is required to be made to register an individual tty device
3019 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3020 * that bit is not set, this function should not be called by a tty
3021 * driver.
3022 *
3023 * Locking: ??
3024 */
3025
3026 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3027 struct device *device)
3028 {
3029 char name[64];
3030 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3031
3032 if (index >= driver->num) {
3033 printk(KERN_ERR "Attempt to register invalid tty line number "
3034 " (%d).\n", index);
3035 return ERR_PTR(-EINVAL);
3036 }
3037
3038 if (driver->type == TTY_DRIVER_TYPE_PTY)
3039 pty_line_name(driver, index, name);
3040 else
3041 tty_line_name(driver, index, name);
3042
3043 return device_create(tty_class, device, dev, NULL, name);
3044 }
3045 EXPORT_SYMBOL(tty_register_device);
3046
3047 /**
3048 * tty_unregister_device - unregister a tty device
3049 * @driver: the tty driver that describes the tty device
3050 * @index: the index in the tty driver for this tty device
3051 *
3052 * If a tty device is registered with a call to tty_register_device() then
3053 * this function must be called when the tty device is gone.
3054 *
3055 * Locking: ??
3056 */
3057
3058 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3059 {
3060 device_destroy(tty_class,
3061 MKDEV(driver->major, driver->minor_start) + index);
3062 }
3063 EXPORT_SYMBOL(tty_unregister_device);
3064
3065 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3066 {
3067 struct tty_driver *driver;
3068
3069 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3070 if (driver) {
3071 kref_init(&driver->kref);
3072 driver->magic = TTY_DRIVER_MAGIC;
3073 driver->num = lines;
3074 driver->owner = owner;
3075 /* later we'll move allocation of tables here */
3076 }
3077 return driver;
3078 }
3079 EXPORT_SYMBOL(__alloc_tty_driver);
3080
3081 static void destruct_tty_driver(struct kref *kref)
3082 {
3083 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3084 int i;
3085 struct ktermios *tp;
3086 void *p;
3087
3088 if (driver->flags & TTY_DRIVER_INSTALLED) {
3089 /*
3090 * Free the termios and termios_locked structures because
3091 * we don't want to get memory leaks when modular tty
3092 * drivers are removed from the kernel.
3093 */
3094 for (i = 0; i < driver->num; i++) {
3095 tp = driver->termios[i];
3096 if (tp) {
3097 driver->termios[i] = NULL;
3098 kfree(tp);
3099 }
3100 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3101 tty_unregister_device(driver, i);
3102 }
3103 p = driver->ttys;
3104 proc_tty_unregister_driver(driver);
3105 driver->ttys = NULL;
3106 driver->termios = NULL;
3107 kfree(p);
3108 cdev_del(&driver->cdev);
3109 }
3110 kfree(driver);
3111 }
3112
3113 void tty_driver_kref_put(struct tty_driver *driver)
3114 {
3115 kref_put(&driver->kref, destruct_tty_driver);
3116 }
3117 EXPORT_SYMBOL(tty_driver_kref_put);
3118
3119 void tty_set_operations(struct tty_driver *driver,
3120 const struct tty_operations *op)
3121 {
3122 driver->ops = op;
3123 };
3124 EXPORT_SYMBOL(tty_set_operations);
3125
3126 void put_tty_driver(struct tty_driver *d)
3127 {
3128 tty_driver_kref_put(d);
3129 }
3130 EXPORT_SYMBOL(put_tty_driver);
3131
3132 /*
3133 * Called by a tty driver to register itself.
3134 */
3135 int tty_register_driver(struct tty_driver *driver)
3136 {
3137 int error;
3138 int i;
3139 dev_t dev;
3140 void **p = NULL;
3141 struct device *d;
3142
3143 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3144 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3145 if (!p)
3146 return -ENOMEM;
3147 }
3148
3149 if (!driver->major) {
3150 error = alloc_chrdev_region(&dev, driver->minor_start,
3151 driver->num, driver->name);
3152 if (!error) {
3153 driver->major = MAJOR(dev);
3154 driver->minor_start = MINOR(dev);
3155 }
3156 } else {
3157 dev = MKDEV(driver->major, driver->minor_start);
3158 error = register_chrdev_region(dev, driver->num, driver->name);
3159 }
3160 if (error < 0) {
3161 kfree(p);
3162 return error;
3163 }
3164
3165 if (p) {
3166 driver->ttys = (struct tty_struct **)p;
3167 driver->termios = (struct ktermios **)(p + driver->num);
3168 } else {
3169 driver->ttys = NULL;
3170 driver->termios = NULL;
3171 }
3172
3173 cdev_init(&driver->cdev, &tty_fops);
3174 driver->cdev.owner = driver->owner;
3175 error = cdev_add(&driver->cdev, dev, driver->num);
3176 if (error) {
3177 unregister_chrdev_region(dev, driver->num);
3178 driver->ttys = NULL;
3179 driver->termios = NULL;
3180 kfree(p);
3181 return error;
3182 }
3183
3184 mutex_lock(&tty_mutex);
3185 list_add(&driver->tty_drivers, &tty_drivers);
3186 mutex_unlock(&tty_mutex);
3187
3188 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3189 for (i = 0; i < driver->num; i++) {
3190 d = tty_register_device(driver, i, NULL);
3191 if (IS_ERR(d)) {
3192 error = PTR_ERR(d);
3193 goto err;
3194 }
3195 }
3196 }
3197 proc_tty_register_driver(driver);
3198 driver->flags |= TTY_DRIVER_INSTALLED;
3199 return 0;
3200
3201 err:
3202 for (i--; i >= 0; i--)
3203 tty_unregister_device(driver, i);
3204
3205 mutex_lock(&tty_mutex);
3206 list_del(&driver->tty_drivers);
3207 mutex_unlock(&tty_mutex);
3208
3209 unregister_chrdev_region(dev, driver->num);
3210 driver->ttys = NULL;
3211 driver->termios = NULL;
3212 kfree(p);
3213 return error;
3214 }
3215
3216 EXPORT_SYMBOL(tty_register_driver);
3217
3218 /*
3219 * Called by a tty driver to unregister itself.
3220 */
3221 int tty_unregister_driver(struct tty_driver *driver)
3222 {
3223 #if 0
3224 /* FIXME */
3225 if (driver->refcount)
3226 return -EBUSY;
3227 #endif
3228 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3229 driver->num);
3230 mutex_lock(&tty_mutex);
3231 list_del(&driver->tty_drivers);
3232 mutex_unlock(&tty_mutex);
3233 return 0;
3234 }
3235
3236 EXPORT_SYMBOL(tty_unregister_driver);
3237
3238 dev_t tty_devnum(struct tty_struct *tty)
3239 {
3240 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3241 }
3242 EXPORT_SYMBOL(tty_devnum);
3243
3244 void proc_clear_tty(struct task_struct *p)
3245 {
3246 unsigned long flags;
3247 struct tty_struct *tty;
3248 spin_lock_irqsave(&p->sighand->siglock, flags);
3249 tty = p->signal->tty;
3250 p->signal->tty = NULL;
3251 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3252 tty_kref_put(tty);
3253 }
3254
3255 /* Called under the sighand lock */
3256
3257 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3258 {
3259 if (tty) {
3260 unsigned long flags;
3261 /* We should not have a session or pgrp to put here but.... */
3262 spin_lock_irqsave(&tty->ctrl_lock, flags);
3263 put_pid(tty->session);
3264 put_pid(tty->pgrp);
3265 tty->pgrp = get_pid(task_pgrp(tsk));
3266 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3267 tty->session = get_pid(task_session(tsk));
3268 if (tsk->signal->tty) {
3269 printk(KERN_DEBUG "tty not NULL!!\n");
3270 tty_kref_put(tsk->signal->tty);
3271 }
3272 }
3273 put_pid(tsk->signal->tty_old_pgrp);
3274 tsk->signal->tty = tty_kref_get(tty);
3275 tsk->signal->tty_old_pgrp = NULL;
3276 }
3277
3278 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3279 {
3280 spin_lock_irq(&tsk->sighand->siglock);
3281 __proc_set_tty(tsk, tty);
3282 spin_unlock_irq(&tsk->sighand->siglock);
3283 }
3284
3285 struct tty_struct *get_current_tty(void)
3286 {
3287 struct tty_struct *tty;
3288 unsigned long flags;
3289
3290 spin_lock_irqsave(&current->sighand->siglock, flags);
3291 tty = tty_kref_get(current->signal->tty);
3292 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3293 return tty;
3294 }
3295 EXPORT_SYMBOL_GPL(get_current_tty);
3296
3297 void tty_default_fops(struct file_operations *fops)
3298 {
3299 *fops = tty_fops;
3300 }
3301
3302 /*
3303 * Initialize the console device. This is called *early*, so
3304 * we can't necessarily depend on lots of kernel help here.
3305 * Just do some early initializations, and do the complex setup
3306 * later.
3307 */
3308 void __init console_init(void)
3309 {
3310 initcall_t *call;
3311
3312 /* Setup the default TTY line discipline. */
3313 tty_ldisc_begin();
3314
3315 /*
3316 * set up the console device so that later boot sequences can
3317 * inform about problems etc..
3318 */
3319 call = __con_initcall_start;
3320 while (call < __con_initcall_end) {
3321 (*call)();
3322 call++;
3323 }
3324 }
3325
3326 static char *tty_devnode(struct device *dev, umode_t *mode)
3327 {
3328 if (!mode)
3329 return NULL;
3330 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3331 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3332 *mode = 0666;
3333 return NULL;
3334 }
3335
3336 static int __init tty_class_init(void)
3337 {
3338 tty_class = class_create(THIS_MODULE, "tty");
3339 if (IS_ERR(tty_class))
3340 return PTR_ERR(tty_class);
3341 tty_class->devnode = tty_devnode;
3342 return 0;
3343 }
3344
3345 postcore_initcall(tty_class_init);
3346
3347 /* 3/2004 jmc: why do these devices exist? */
3348 static struct cdev tty_cdev, console_cdev;
3349
3350 static ssize_t show_cons_active(struct device *dev,
3351 struct device_attribute *attr, char *buf)
3352 {
3353 struct console *cs[16];
3354 int i = 0;
3355 struct console *c;
3356 ssize_t count = 0;
3357
3358 console_lock();
3359 for_each_console(c) {
3360 if (!c->device)
3361 continue;
3362 if (!c->write)
3363 continue;
3364 if ((c->flags & CON_ENABLED) == 0)
3365 continue;
3366 cs[i++] = c;
3367 if (i >= ARRAY_SIZE(cs))
3368 break;
3369 }
3370 while (i--)
3371 count += sprintf(buf + count, "%s%d%c",
3372 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3373 console_unlock();
3374
3375 return count;
3376 }
3377 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3378
3379 static struct device *consdev;
3380
3381 void console_sysfs_notify(void)
3382 {
3383 if (consdev)
3384 sysfs_notify(&consdev->kobj, NULL, "active");
3385 }
3386
3387 /*
3388 * Ok, now we can initialize the rest of the tty devices and can count
3389 * on memory allocations, interrupts etc..
3390 */
3391 int __init tty_init(void)
3392 {
3393 cdev_init(&tty_cdev, &tty_fops);
3394 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3395 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3396 panic("Couldn't register /dev/tty driver\n");
3397 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3398
3399 cdev_init(&console_cdev, &console_fops);
3400 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3401 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3402 panic("Couldn't register /dev/console driver\n");
3403 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3404 "console");
3405 if (IS_ERR(consdev))
3406 consdev = NULL;
3407 else
3408 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3409
3410 #ifdef CONFIG_VT
3411 vty_init(&console_fops);
3412 #endif
3413 return 0;
3414 }
3415
This page took 0.152862 seconds and 5 git commands to generate.