iwlwifi: mvm: Disable uAPSD for D3 image
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
539 *
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
542 *
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
546 */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
552
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
562 }
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
566 }
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 }
578 read_unlock(&tasklist_lock);
579
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
584 }
585
586 return refs;
587 }
588
589 /**
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
592 *
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
596 *
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
601 *
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_rwsem resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
610 */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
618
619 if (!tty)
620 return;
621
622
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
627 }
628 spin_unlock(&redirect_lock);
629
630 tty_lock(tty);
631
632 if (test_bit(TTY_HUPPED, &tty->flags)) {
633 tty_unlock(tty);
634 return;
635 }
636
637 /* some functions below drop BTM, so we need this bit */
638 set_bit(TTY_HUPPING, &tty->flags);
639
640 /* inuse_filps is protected by the single tty lock,
641 this really needs to change if we want to flush the
642 workqueue with the lock held */
643 check_tty_count(tty, "tty_hangup");
644
645 spin_lock(&tty_files_lock);
646 /* This breaks for file handles being sent over AF_UNIX sockets ? */
647 list_for_each_entry(priv, &tty->tty_files, list) {
648 filp = priv->file;
649 if (filp->f_op->write == redirected_tty_write)
650 cons_filp = filp;
651 if (filp->f_op->write != tty_write)
652 continue;
653 closecount++;
654 __tty_fasync(-1, filp, 0); /* can't block */
655 filp->f_op = &hung_up_tty_fops;
656 }
657 spin_unlock(&tty_files_lock);
658
659 refs = tty_signal_session_leader(tty, exit_session);
660 /* Account for the p->signal references we killed */
661 while (refs--)
662 tty_kref_put(tty);
663
664 /*
665 * it drops BTM and thus races with reopen
666 * we protect the race by TTY_HUPPING
667 */
668 tty_ldisc_hangup(tty);
669
670 spin_lock_irq(&tty->ctrl_lock);
671 clear_bit(TTY_THROTTLED, &tty->flags);
672 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 put_pid(tty->session);
674 put_pid(tty->pgrp);
675 tty->session = NULL;
676 tty->pgrp = NULL;
677 tty->ctrl_status = 0;
678 spin_unlock_irq(&tty->ctrl_lock);
679
680 /*
681 * If one of the devices matches a console pointer, we
682 * cannot just call hangup() because that will cause
683 * tty->count and state->count to go out of sync.
684 * So we just call close() the right number of times.
685 */
686 if (cons_filp) {
687 if (tty->ops->close)
688 for (n = 0; n < closecount; n++)
689 tty->ops->close(tty, cons_filp);
690 } else if (tty->ops->hangup)
691 (tty->ops->hangup)(tty);
692 /*
693 * We don't want to have driver/ldisc interactions beyond
694 * the ones we did here. The driver layer expects no
695 * calls after ->hangup() from the ldisc side. However we
696 * can't yet guarantee all that.
697 */
698 set_bit(TTY_HUPPED, &tty->flags);
699 clear_bit(TTY_HUPPING, &tty->flags);
700
701 tty_unlock(tty);
702
703 if (f)
704 fput(f);
705 }
706
707 static void do_tty_hangup(struct work_struct *work)
708 {
709 struct tty_struct *tty =
710 container_of(work, struct tty_struct, hangup_work);
711
712 __tty_hangup(tty, 0);
713 }
714
715 /**
716 * tty_hangup - trigger a hangup event
717 * @tty: tty to hangup
718 *
719 * A carrier loss (virtual or otherwise) has occurred on this like
720 * schedule a hangup sequence to run after this event.
721 */
722
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726 char buf[64];
727 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 schedule_work(&tty->hangup_work);
730 }
731
732 EXPORT_SYMBOL(tty_hangup);
733
734 /**
735 * tty_vhangup - process vhangup
736 * @tty: tty to hangup
737 *
738 * The user has asked via system call for the terminal to be hung up.
739 * We do this synchronously so that when the syscall returns the process
740 * is complete. That guarantee is necessary for security reasons.
741 */
742
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746 char buf[64];
747
748 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 __tty_hangup(tty, 0);
751 }
752
753 EXPORT_SYMBOL(tty_vhangup);
754
755
756 /**
757 * tty_vhangup_self - process vhangup for own ctty
758 *
759 * Perform a vhangup on the current controlling tty
760 */
761
762 void tty_vhangup_self(void)
763 {
764 struct tty_struct *tty;
765
766 tty = get_current_tty();
767 if (tty) {
768 tty_vhangup(tty);
769 tty_kref_put(tty);
770 }
771 }
772
773 /**
774 * tty_vhangup_session - hangup session leader exit
775 * @tty: tty to hangup
776 *
777 * The session leader is exiting and hanging up its controlling terminal.
778 * Every process in the foreground process group is signalled SIGHUP.
779 *
780 * We do this synchronously so that when the syscall returns the process
781 * is complete. That guarantee is necessary for security reasons.
782 */
783
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787 char buf[64];
788
789 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 __tty_hangup(tty, 1);
792 }
793
794 /**
795 * tty_hung_up_p - was tty hung up
796 * @filp: file pointer of tty
797 *
798 * Return true if the tty has been subject to a vhangup or a carrier
799 * loss
800 */
801
802 int tty_hung_up_p(struct file *filp)
803 {
804 return (filp->f_op == &hung_up_tty_fops);
805 }
806
807 EXPORT_SYMBOL(tty_hung_up_p);
808
809 static void session_clear_tty(struct pid *session)
810 {
811 struct task_struct *p;
812 do_each_pid_task(session, PIDTYPE_SID, p) {
813 proc_clear_tty(p);
814 } while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816
817 /**
818 * disassociate_ctty - disconnect controlling tty
819 * @on_exit: true if exiting so need to "hang up" the session
820 *
821 * This function is typically called only by the session leader, when
822 * it wants to disassociate itself from its controlling tty.
823 *
824 * It performs the following functions:
825 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
826 * (2) Clears the tty from being controlling the session
827 * (3) Clears the controlling tty for all processes in the
828 * session group.
829 *
830 * The argument on_exit is set to 1 if called when a process is
831 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
832 *
833 * Locking:
834 * BTM is taken for hysterical raisins, and held when
835 * called from no_tty().
836 * tty_mutex is taken to protect tty
837 * ->siglock is taken to protect ->signal/->sighand
838 * tasklist_lock is taken to walk process list for sessions
839 * ->siglock is taken to protect ->signal/->sighand
840 */
841
842 void disassociate_ctty(int on_exit)
843 {
844 struct tty_struct *tty;
845
846 if (!current->signal->leader)
847 return;
848
849 tty = get_current_tty();
850 if (tty) {
851 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 tty_vhangup_session(tty);
853 } else {
854 struct pid *tty_pgrp = tty_get_pgrp(tty);
855 if (tty_pgrp) {
856 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
858 put_pid(tty_pgrp);
859 }
860 }
861 tty_kref_put(tty);
862
863 } else if (on_exit) {
864 struct pid *old_pgrp;
865 spin_lock_irq(&current->sighand->siglock);
866 old_pgrp = current->signal->tty_old_pgrp;
867 current->signal->tty_old_pgrp = NULL;
868 spin_unlock_irq(&current->sighand->siglock);
869 if (old_pgrp) {
870 kill_pgrp(old_pgrp, SIGHUP, on_exit);
871 kill_pgrp(old_pgrp, SIGCONT, on_exit);
872 put_pid(old_pgrp);
873 }
874 return;
875 }
876
877 spin_lock_irq(&current->sighand->siglock);
878 put_pid(current->signal->tty_old_pgrp);
879 current->signal->tty_old_pgrp = NULL;
880 spin_unlock_irq(&current->sighand->siglock);
881
882 tty = get_current_tty();
883 if (tty) {
884 unsigned long flags;
885 spin_lock_irqsave(&tty->ctrl_lock, flags);
886 put_pid(tty->session);
887 put_pid(tty->pgrp);
888 tty->session = NULL;
889 tty->pgrp = NULL;
890 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 tty_kref_put(tty);
892 } else {
893 #ifdef TTY_DEBUG_HANGUP
894 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
895 " = NULL", tty);
896 #endif
897 }
898
899 /* Now clear signal->tty under the lock */
900 read_lock(&tasklist_lock);
901 session_clear_tty(task_session(current));
902 read_unlock(&tasklist_lock);
903 }
904
905 /**
906 *
907 * no_tty - Ensure the current process does not have a controlling tty
908 */
909 void no_tty(void)
910 {
911 /* FIXME: Review locking here. The tty_lock never covered any race
912 between a new association and proc_clear_tty but possible we need
913 to protect against this anyway */
914 struct task_struct *tsk = current;
915 disassociate_ctty(0);
916 proc_clear_tty(tsk);
917 }
918
919
920 /**
921 * stop_tty - propagate flow control
922 * @tty: tty to stop
923 *
924 * Perform flow control to the driver. For PTY/TTY pairs we
925 * must also propagate the TIOCKPKT status. May be called
926 * on an already stopped device and will not re-call the driver
927 * method.
928 *
929 * This functionality is used by both the line disciplines for
930 * halting incoming flow and by the driver. It may therefore be
931 * called from any context, may be under the tty atomic_write_lock
932 * but not always.
933 *
934 * Locking:
935 * Uses the tty control lock internally
936 */
937
938 void stop_tty(struct tty_struct *tty)
939 {
940 unsigned long flags;
941 spin_lock_irqsave(&tty->ctrl_lock, flags);
942 if (tty->stopped) {
943 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
944 return;
945 }
946 tty->stopped = 1;
947 if (tty->link && tty->link->packet) {
948 tty->ctrl_status &= ~TIOCPKT_START;
949 tty->ctrl_status |= TIOCPKT_STOP;
950 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
951 }
952 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
953 if (tty->ops->stop)
954 (tty->ops->stop)(tty);
955 }
956
957 EXPORT_SYMBOL(stop_tty);
958
959 /**
960 * start_tty - propagate flow control
961 * @tty: tty to start
962 *
963 * Start a tty that has been stopped if at all possible. Perform
964 * any necessary wakeups and propagate the TIOCPKT status. If this
965 * is the tty was previous stopped and is being started then the
966 * driver start method is invoked and the line discipline woken.
967 *
968 * Locking:
969 * ctrl_lock
970 */
971
972 void start_tty(struct tty_struct *tty)
973 {
974 unsigned long flags;
975 spin_lock_irqsave(&tty->ctrl_lock, flags);
976 if (!tty->stopped || tty->flow_stopped) {
977 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
978 return;
979 }
980 tty->stopped = 0;
981 if (tty->link && tty->link->packet) {
982 tty->ctrl_status &= ~TIOCPKT_STOP;
983 tty->ctrl_status |= TIOCPKT_START;
984 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
985 }
986 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
987 if (tty->ops->start)
988 (tty->ops->start)(tty);
989 /* If we have a running line discipline it may need kicking */
990 tty_wakeup(tty);
991 }
992
993 EXPORT_SYMBOL(start_tty);
994
995 /* We limit tty time update visibility to every 8 seconds or so. */
996 static void tty_update_time(struct timespec *time)
997 {
998 unsigned long sec = get_seconds() & ~7;
999 if ((long)(sec - time->tv_sec) > 0)
1000 time->tv_sec = sec;
1001 }
1002
1003 /**
1004 * tty_read - read method for tty device files
1005 * @file: pointer to tty file
1006 * @buf: user buffer
1007 * @count: size of user buffer
1008 * @ppos: unused
1009 *
1010 * Perform the read system call function on this terminal device. Checks
1011 * for hung up devices before calling the line discipline method.
1012 *
1013 * Locking:
1014 * Locks the line discipline internally while needed. Multiple
1015 * read calls may be outstanding in parallel.
1016 */
1017
1018 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1019 loff_t *ppos)
1020 {
1021 int i;
1022 struct inode *inode = file_inode(file);
1023 struct tty_struct *tty = file_tty(file);
1024 struct tty_ldisc *ld;
1025
1026 if (tty_paranoia_check(tty, inode, "tty_read"))
1027 return -EIO;
1028 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1029 return -EIO;
1030
1031 /* We want to wait for the line discipline to sort out in this
1032 situation */
1033 ld = tty_ldisc_ref_wait(tty);
1034 if (ld->ops->read)
1035 i = (ld->ops->read)(tty, file, buf, count);
1036 else
1037 i = -EIO;
1038 tty_ldisc_deref(ld);
1039
1040 if (i > 0)
1041 tty_update_time(&inode->i_atime);
1042
1043 return i;
1044 }
1045
1046 void tty_write_unlock(struct tty_struct *tty)
1047 __releases(&tty->atomic_write_lock)
1048 {
1049 mutex_unlock(&tty->atomic_write_lock);
1050 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1051 }
1052
1053 int tty_write_lock(struct tty_struct *tty, int ndelay)
1054 __acquires(&tty->atomic_write_lock)
1055 {
1056 if (!mutex_trylock(&tty->atomic_write_lock)) {
1057 if (ndelay)
1058 return -EAGAIN;
1059 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1060 return -ERESTARTSYS;
1061 }
1062 return 0;
1063 }
1064
1065 /*
1066 * Split writes up in sane blocksizes to avoid
1067 * denial-of-service type attacks
1068 */
1069 static inline ssize_t do_tty_write(
1070 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1071 struct tty_struct *tty,
1072 struct file *file,
1073 const char __user *buf,
1074 size_t count)
1075 {
1076 ssize_t ret, written = 0;
1077 unsigned int chunk;
1078
1079 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1080 if (ret < 0)
1081 return ret;
1082
1083 /*
1084 * We chunk up writes into a temporary buffer. This
1085 * simplifies low-level drivers immensely, since they
1086 * don't have locking issues and user mode accesses.
1087 *
1088 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1089 * big chunk-size..
1090 *
1091 * The default chunk-size is 2kB, because the NTTY
1092 * layer has problems with bigger chunks. It will
1093 * claim to be able to handle more characters than
1094 * it actually does.
1095 *
1096 * FIXME: This can probably go away now except that 64K chunks
1097 * are too likely to fail unless switched to vmalloc...
1098 */
1099 chunk = 2048;
1100 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1101 chunk = 65536;
1102 if (count < chunk)
1103 chunk = count;
1104
1105 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1106 if (tty->write_cnt < chunk) {
1107 unsigned char *buf_chunk;
1108
1109 if (chunk < 1024)
1110 chunk = 1024;
1111
1112 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1113 if (!buf_chunk) {
1114 ret = -ENOMEM;
1115 goto out;
1116 }
1117 kfree(tty->write_buf);
1118 tty->write_cnt = chunk;
1119 tty->write_buf = buf_chunk;
1120 }
1121
1122 /* Do the write .. */
1123 for (;;) {
1124 size_t size = count;
1125 if (size > chunk)
1126 size = chunk;
1127 ret = -EFAULT;
1128 if (copy_from_user(tty->write_buf, buf, size))
1129 break;
1130 ret = write(tty, file, tty->write_buf, size);
1131 if (ret <= 0)
1132 break;
1133 written += ret;
1134 buf += ret;
1135 count -= ret;
1136 if (!count)
1137 break;
1138 ret = -ERESTARTSYS;
1139 if (signal_pending(current))
1140 break;
1141 cond_resched();
1142 }
1143 if (written) {
1144 tty_update_time(&file_inode(file)->i_mtime);
1145 ret = written;
1146 }
1147 out:
1148 tty_write_unlock(tty);
1149 return ret;
1150 }
1151
1152 /**
1153 * tty_write_message - write a message to a certain tty, not just the console.
1154 * @tty: the destination tty_struct
1155 * @msg: the message to write
1156 *
1157 * This is used for messages that need to be redirected to a specific tty.
1158 * We don't put it into the syslog queue right now maybe in the future if
1159 * really needed.
1160 *
1161 * We must still hold the BTM and test the CLOSING flag for the moment.
1162 */
1163
1164 void tty_write_message(struct tty_struct *tty, char *msg)
1165 {
1166 if (tty) {
1167 mutex_lock(&tty->atomic_write_lock);
1168 tty_lock(tty);
1169 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1170 tty_unlock(tty);
1171 tty->ops->write(tty, msg, strlen(msg));
1172 } else
1173 tty_unlock(tty);
1174 tty_write_unlock(tty);
1175 }
1176 return;
1177 }
1178
1179
1180 /**
1181 * tty_write - write method for tty device file
1182 * @file: tty file pointer
1183 * @buf: user data to write
1184 * @count: bytes to write
1185 * @ppos: unused
1186 *
1187 * Write data to a tty device via the line discipline.
1188 *
1189 * Locking:
1190 * Locks the line discipline as required
1191 * Writes to the tty driver are serialized by the atomic_write_lock
1192 * and are then processed in chunks to the device. The line discipline
1193 * write method will not be invoked in parallel for each device.
1194 */
1195
1196 static ssize_t tty_write(struct file *file, const char __user *buf,
1197 size_t count, loff_t *ppos)
1198 {
1199 struct tty_struct *tty = file_tty(file);
1200 struct tty_ldisc *ld;
1201 ssize_t ret;
1202
1203 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1204 return -EIO;
1205 if (!tty || !tty->ops->write ||
1206 (test_bit(TTY_IO_ERROR, &tty->flags)))
1207 return -EIO;
1208 /* Short term debug to catch buggy drivers */
1209 if (tty->ops->write_room == NULL)
1210 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1211 tty->driver->name);
1212 ld = tty_ldisc_ref_wait(tty);
1213 if (!ld->ops->write)
1214 ret = -EIO;
1215 else
1216 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1217 tty_ldisc_deref(ld);
1218 return ret;
1219 }
1220
1221 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1222 size_t count, loff_t *ppos)
1223 {
1224 struct file *p = NULL;
1225
1226 spin_lock(&redirect_lock);
1227 if (redirect)
1228 p = get_file(redirect);
1229 spin_unlock(&redirect_lock);
1230
1231 if (p) {
1232 ssize_t res;
1233 res = vfs_write(p, buf, count, &p->f_pos);
1234 fput(p);
1235 return res;
1236 }
1237 return tty_write(file, buf, count, ppos);
1238 }
1239
1240 static char ptychar[] = "pqrstuvwxyzabcde";
1241
1242 /**
1243 * pty_line_name - generate name for a pty
1244 * @driver: the tty driver in use
1245 * @index: the minor number
1246 * @p: output buffer of at least 6 bytes
1247 *
1248 * Generate a name from a driver reference and write it to the output
1249 * buffer.
1250 *
1251 * Locking: None
1252 */
1253 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1254 {
1255 int i = index + driver->name_base;
1256 /* ->name is initialized to "ttyp", but "tty" is expected */
1257 sprintf(p, "%s%c%x",
1258 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1259 ptychar[i >> 4 & 0xf], i & 0xf);
1260 }
1261
1262 /**
1263 * tty_line_name - generate name for a tty
1264 * @driver: the tty driver in use
1265 * @index: the minor number
1266 * @p: output buffer of at least 7 bytes
1267 *
1268 * Generate a name from a driver reference and write it to the output
1269 * buffer.
1270 *
1271 * Locking: None
1272 */
1273 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1274 {
1275 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1276 strcpy(p, driver->name);
1277 else
1278 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1279 }
1280
1281 /**
1282 * tty_driver_lookup_tty() - find an existing tty, if any
1283 * @driver: the driver for the tty
1284 * @idx: the minor number
1285 *
1286 * Return the tty, if found or ERR_PTR() otherwise.
1287 *
1288 * Locking: tty_mutex must be held. If tty is found, the mutex must
1289 * be held until the 'fast-open' is also done. Will change once we
1290 * have refcounting in the driver and per driver locking
1291 */
1292 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1293 struct inode *inode, int idx)
1294 {
1295 if (driver->ops->lookup)
1296 return driver->ops->lookup(driver, inode, idx);
1297
1298 return driver->ttys[idx];
1299 }
1300
1301 /**
1302 * tty_init_termios - helper for termios setup
1303 * @tty: the tty to set up
1304 *
1305 * Initialise the termios structures for this tty. Thus runs under
1306 * the tty_mutex currently so we can be relaxed about ordering.
1307 */
1308
1309 int tty_init_termios(struct tty_struct *tty)
1310 {
1311 struct ktermios *tp;
1312 int idx = tty->index;
1313
1314 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1315 tty->termios = tty->driver->init_termios;
1316 else {
1317 /* Check for lazy saved data */
1318 tp = tty->driver->termios[idx];
1319 if (tp != NULL)
1320 tty->termios = *tp;
1321 else
1322 tty->termios = tty->driver->init_termios;
1323 }
1324 /* Compatibility until drivers always set this */
1325 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1326 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1327 return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(tty_init_termios);
1330
1331 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1332 {
1333 int ret = tty_init_termios(tty);
1334 if (ret)
1335 return ret;
1336
1337 tty_driver_kref_get(driver);
1338 tty->count++;
1339 driver->ttys[tty->index] = tty;
1340 return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(tty_standard_install);
1343
1344 /**
1345 * tty_driver_install_tty() - install a tty entry in the driver
1346 * @driver: the driver for the tty
1347 * @tty: the tty
1348 *
1349 * Install a tty object into the driver tables. The tty->index field
1350 * will be set by the time this is called. This method is responsible
1351 * for ensuring any need additional structures are allocated and
1352 * configured.
1353 *
1354 * Locking: tty_mutex for now
1355 */
1356 static int tty_driver_install_tty(struct tty_driver *driver,
1357 struct tty_struct *tty)
1358 {
1359 return driver->ops->install ? driver->ops->install(driver, tty) :
1360 tty_standard_install(driver, tty);
1361 }
1362
1363 /**
1364 * tty_driver_remove_tty() - remove a tty from the driver tables
1365 * @driver: the driver for the tty
1366 * @idx: the minor number
1367 *
1368 * Remvoe a tty object from the driver tables. The tty->index field
1369 * will be set by the time this is called.
1370 *
1371 * Locking: tty_mutex for now
1372 */
1373 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1374 {
1375 if (driver->ops->remove)
1376 driver->ops->remove(driver, tty);
1377 else
1378 driver->ttys[tty->index] = NULL;
1379 }
1380
1381 /*
1382 * tty_reopen() - fast re-open of an open tty
1383 * @tty - the tty to open
1384 *
1385 * Return 0 on success, -errno on error.
1386 *
1387 * Locking: tty_mutex must be held from the time the tty was found
1388 * till this open completes.
1389 */
1390 static int tty_reopen(struct tty_struct *tty)
1391 {
1392 struct tty_driver *driver = tty->driver;
1393
1394 if (test_bit(TTY_CLOSING, &tty->flags) ||
1395 test_bit(TTY_HUPPING, &tty->flags))
1396 return -EIO;
1397
1398 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1399 driver->subtype == PTY_TYPE_MASTER) {
1400 /*
1401 * special case for PTY masters: only one open permitted,
1402 * and the slave side open count is incremented as well.
1403 */
1404 if (tty->count)
1405 return -EIO;
1406
1407 tty->link->count++;
1408 }
1409 tty->count++;
1410
1411 WARN_ON(!tty->ldisc);
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * tty_init_dev - initialise a tty device
1418 * @driver: tty driver we are opening a device on
1419 * @idx: device index
1420 * @ret_tty: returned tty structure
1421 *
1422 * Prepare a tty device. This may not be a "new" clean device but
1423 * could also be an active device. The pty drivers require special
1424 * handling because of this.
1425 *
1426 * Locking:
1427 * The function is called under the tty_mutex, which
1428 * protects us from the tty struct or driver itself going away.
1429 *
1430 * On exit the tty device has the line discipline attached and
1431 * a reference count of 1. If a pair was created for pty/tty use
1432 * and the other was a pty master then it too has a reference count of 1.
1433 *
1434 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1435 * failed open. The new code protects the open with a mutex, so it's
1436 * really quite straightforward. The mutex locking can probably be
1437 * relaxed for the (most common) case of reopening a tty.
1438 */
1439
1440 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1441 {
1442 struct tty_struct *tty;
1443 int retval;
1444
1445 /*
1446 * First time open is complex, especially for PTY devices.
1447 * This code guarantees that either everything succeeds and the
1448 * TTY is ready for operation, or else the table slots are vacated
1449 * and the allocated memory released. (Except that the termios
1450 * and locked termios may be retained.)
1451 */
1452
1453 if (!try_module_get(driver->owner))
1454 return ERR_PTR(-ENODEV);
1455
1456 tty = alloc_tty_struct();
1457 if (!tty) {
1458 retval = -ENOMEM;
1459 goto err_module_put;
1460 }
1461 initialize_tty_struct(tty, driver, idx);
1462
1463 tty_lock(tty);
1464 retval = tty_driver_install_tty(driver, tty);
1465 if (retval < 0)
1466 goto err_deinit_tty;
1467
1468 if (!tty->port)
1469 tty->port = driver->ports[idx];
1470
1471 WARN_RATELIMIT(!tty->port,
1472 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1473 __func__, tty->driver->name);
1474
1475 tty->port->itty = tty;
1476
1477 /*
1478 * Structures all installed ... call the ldisc open routines.
1479 * If we fail here just call release_tty to clean up. No need
1480 * to decrement the use counts, as release_tty doesn't care.
1481 */
1482 retval = tty_ldisc_setup(tty, tty->link);
1483 if (retval)
1484 goto err_release_tty;
1485 /* Return the tty locked so that it cannot vanish under the caller */
1486 return tty;
1487
1488 err_deinit_tty:
1489 tty_unlock(tty);
1490 deinitialize_tty_struct(tty);
1491 free_tty_struct(tty);
1492 err_module_put:
1493 module_put(driver->owner);
1494 return ERR_PTR(retval);
1495
1496 /* call the tty release_tty routine to clean out this slot */
1497 err_release_tty:
1498 tty_unlock(tty);
1499 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1500 "clearing slot %d\n", idx);
1501 release_tty(tty, idx);
1502 return ERR_PTR(retval);
1503 }
1504
1505 void tty_free_termios(struct tty_struct *tty)
1506 {
1507 struct ktermios *tp;
1508 int idx = tty->index;
1509
1510 /* If the port is going to reset then it has no termios to save */
1511 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1512 return;
1513
1514 /* Stash the termios data */
1515 tp = tty->driver->termios[idx];
1516 if (tp == NULL) {
1517 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1518 if (tp == NULL) {
1519 pr_warn("tty: no memory to save termios state.\n");
1520 return;
1521 }
1522 tty->driver->termios[idx] = tp;
1523 }
1524 *tp = tty->termios;
1525 }
1526 EXPORT_SYMBOL(tty_free_termios);
1527
1528 /**
1529 * tty_flush_works - flush all works of a tty
1530 * @tty: tty device to flush works for
1531 *
1532 * Sync flush all works belonging to @tty.
1533 */
1534 static void tty_flush_works(struct tty_struct *tty)
1535 {
1536 flush_work(&tty->SAK_work);
1537 flush_work(&tty->hangup_work);
1538 }
1539
1540 /**
1541 * release_one_tty - release tty structure memory
1542 * @kref: kref of tty we are obliterating
1543 *
1544 * Releases memory associated with a tty structure, and clears out the
1545 * driver table slots. This function is called when a device is no longer
1546 * in use. It also gets called when setup of a device fails.
1547 *
1548 * Locking:
1549 * takes the file list lock internally when working on the list
1550 * of ttys that the driver keeps.
1551 *
1552 * This method gets called from a work queue so that the driver private
1553 * cleanup ops can sleep (needed for USB at least)
1554 */
1555 static void release_one_tty(struct work_struct *work)
1556 {
1557 struct tty_struct *tty =
1558 container_of(work, struct tty_struct, hangup_work);
1559 struct tty_driver *driver = tty->driver;
1560
1561 if (tty->ops->cleanup)
1562 tty->ops->cleanup(tty);
1563
1564 tty->magic = 0;
1565 tty_driver_kref_put(driver);
1566 module_put(driver->owner);
1567
1568 spin_lock(&tty_files_lock);
1569 list_del_init(&tty->tty_files);
1570 spin_unlock(&tty_files_lock);
1571
1572 put_pid(tty->pgrp);
1573 put_pid(tty->session);
1574 free_tty_struct(tty);
1575 }
1576
1577 static void queue_release_one_tty(struct kref *kref)
1578 {
1579 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1580
1581 /* The hangup queue is now free so we can reuse it rather than
1582 waste a chunk of memory for each port */
1583 INIT_WORK(&tty->hangup_work, release_one_tty);
1584 schedule_work(&tty->hangup_work);
1585 }
1586
1587 /**
1588 * tty_kref_put - release a tty kref
1589 * @tty: tty device
1590 *
1591 * Release a reference to a tty device and if need be let the kref
1592 * layer destruct the object for us
1593 */
1594
1595 void tty_kref_put(struct tty_struct *tty)
1596 {
1597 if (tty)
1598 kref_put(&tty->kref, queue_release_one_tty);
1599 }
1600 EXPORT_SYMBOL(tty_kref_put);
1601
1602 /**
1603 * release_tty - release tty structure memory
1604 *
1605 * Release both @tty and a possible linked partner (think pty pair),
1606 * and decrement the refcount of the backing module.
1607 *
1608 * Locking:
1609 * tty_mutex
1610 * takes the file list lock internally when working on the list
1611 * of ttys that the driver keeps.
1612 *
1613 */
1614 static void release_tty(struct tty_struct *tty, int idx)
1615 {
1616 /* This should always be true but check for the moment */
1617 WARN_ON(tty->index != idx);
1618 WARN_ON(!mutex_is_locked(&tty_mutex));
1619 if (tty->ops->shutdown)
1620 tty->ops->shutdown(tty);
1621 tty_free_termios(tty);
1622 tty_driver_remove_tty(tty->driver, tty);
1623 tty->port->itty = NULL;
1624 if (tty->link)
1625 tty->link->port->itty = NULL;
1626 cancel_work_sync(&tty->port->buf.work);
1627
1628 if (tty->link)
1629 tty_kref_put(tty->link);
1630 tty_kref_put(tty);
1631 }
1632
1633 /**
1634 * tty_release_checks - check a tty before real release
1635 * @tty: tty to check
1636 * @o_tty: link of @tty (if any)
1637 * @idx: index of the tty
1638 *
1639 * Performs some paranoid checking before true release of the @tty.
1640 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1641 */
1642 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1643 int idx)
1644 {
1645 #ifdef TTY_PARANOIA_CHECK
1646 if (idx < 0 || idx >= tty->driver->num) {
1647 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1648 __func__, tty->name);
1649 return -1;
1650 }
1651
1652 /* not much to check for devpts */
1653 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1654 return 0;
1655
1656 if (tty != tty->driver->ttys[idx]) {
1657 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1658 __func__, idx, tty->name);
1659 return -1;
1660 }
1661 if (tty->driver->other) {
1662 if (o_tty != tty->driver->other->ttys[idx]) {
1663 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1664 __func__, idx, tty->name);
1665 return -1;
1666 }
1667 if (o_tty->link != tty) {
1668 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1669 return -1;
1670 }
1671 }
1672 #endif
1673 return 0;
1674 }
1675
1676 /**
1677 * tty_release - vfs callback for close
1678 * @inode: inode of tty
1679 * @filp: file pointer for handle to tty
1680 *
1681 * Called the last time each file handle is closed that references
1682 * this tty. There may however be several such references.
1683 *
1684 * Locking:
1685 * Takes bkl. See tty_release_dev
1686 *
1687 * Even releasing the tty structures is a tricky business.. We have
1688 * to be very careful that the structures are all released at the
1689 * same time, as interrupts might otherwise get the wrong pointers.
1690 *
1691 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1692 * lead to double frees or releasing memory still in use.
1693 */
1694
1695 int tty_release(struct inode *inode, struct file *filp)
1696 {
1697 struct tty_struct *tty = file_tty(filp);
1698 struct tty_struct *o_tty;
1699 int pty_master, tty_closing, o_tty_closing, do_sleep;
1700 int idx;
1701 char buf[64];
1702
1703 if (tty_paranoia_check(tty, inode, __func__))
1704 return 0;
1705
1706 tty_lock(tty);
1707 check_tty_count(tty, __func__);
1708
1709 __tty_fasync(-1, filp, 0);
1710
1711 idx = tty->index;
1712 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1713 tty->driver->subtype == PTY_TYPE_MASTER);
1714 /* Review: parallel close */
1715 o_tty = tty->link;
1716
1717 if (tty_release_checks(tty, o_tty, idx)) {
1718 tty_unlock(tty);
1719 return 0;
1720 }
1721
1722 #ifdef TTY_DEBUG_HANGUP
1723 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1724 tty_name(tty, buf), tty->count);
1725 #endif
1726
1727 if (tty->ops->close)
1728 tty->ops->close(tty, filp);
1729
1730 tty_unlock(tty);
1731 /*
1732 * Sanity check: if tty->count is going to zero, there shouldn't be
1733 * any waiters on tty->read_wait or tty->write_wait. We test the
1734 * wait queues and kick everyone out _before_ actually starting to
1735 * close. This ensures that we won't block while releasing the tty
1736 * structure.
1737 *
1738 * The test for the o_tty closing is necessary, since the master and
1739 * slave sides may close in any order. If the slave side closes out
1740 * first, its count will be one, since the master side holds an open.
1741 * Thus this test wouldn't be triggered at the time the slave closes,
1742 * so we do it now.
1743 *
1744 * Note that it's possible for the tty to be opened again while we're
1745 * flushing out waiters. By recalculating the closing flags before
1746 * each iteration we avoid any problems.
1747 */
1748 while (1) {
1749 /* Guard against races with tty->count changes elsewhere and
1750 opens on /dev/tty */
1751
1752 mutex_lock(&tty_mutex);
1753 tty_lock_pair(tty, o_tty);
1754 tty_closing = tty->count <= 1;
1755 o_tty_closing = o_tty &&
1756 (o_tty->count <= (pty_master ? 1 : 0));
1757 do_sleep = 0;
1758
1759 if (tty_closing) {
1760 if (waitqueue_active(&tty->read_wait)) {
1761 wake_up_poll(&tty->read_wait, POLLIN);
1762 do_sleep++;
1763 }
1764 if (waitqueue_active(&tty->write_wait)) {
1765 wake_up_poll(&tty->write_wait, POLLOUT);
1766 do_sleep++;
1767 }
1768 }
1769 if (o_tty_closing) {
1770 if (waitqueue_active(&o_tty->read_wait)) {
1771 wake_up_poll(&o_tty->read_wait, POLLIN);
1772 do_sleep++;
1773 }
1774 if (waitqueue_active(&o_tty->write_wait)) {
1775 wake_up_poll(&o_tty->write_wait, POLLOUT);
1776 do_sleep++;
1777 }
1778 }
1779 if (!do_sleep)
1780 break;
1781
1782 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1783 __func__, tty_name(tty, buf));
1784 tty_unlock_pair(tty, o_tty);
1785 mutex_unlock(&tty_mutex);
1786 schedule();
1787 }
1788
1789 /*
1790 * The closing flags are now consistent with the open counts on
1791 * both sides, and we've completed the last operation that could
1792 * block, so it's safe to proceed with closing.
1793 *
1794 * We must *not* drop the tty_mutex until we ensure that a further
1795 * entry into tty_open can not pick up this tty.
1796 */
1797 if (pty_master) {
1798 if (--o_tty->count < 0) {
1799 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1800 __func__, o_tty->count, tty_name(o_tty, buf));
1801 o_tty->count = 0;
1802 }
1803 }
1804 if (--tty->count < 0) {
1805 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1806 __func__, tty->count, tty_name(tty, buf));
1807 tty->count = 0;
1808 }
1809
1810 /*
1811 * We've decremented tty->count, so we need to remove this file
1812 * descriptor off the tty->tty_files list; this serves two
1813 * purposes:
1814 * - check_tty_count sees the correct number of file descriptors
1815 * associated with this tty.
1816 * - do_tty_hangup no longer sees this file descriptor as
1817 * something that needs to be handled for hangups.
1818 */
1819 tty_del_file(filp);
1820
1821 /*
1822 * Perform some housekeeping before deciding whether to return.
1823 *
1824 * Set the TTY_CLOSING flag if this was the last open. In the
1825 * case of a pty we may have to wait around for the other side
1826 * to close, and TTY_CLOSING makes sure we can't be reopened.
1827 */
1828 if (tty_closing)
1829 set_bit(TTY_CLOSING, &tty->flags);
1830 if (o_tty_closing)
1831 set_bit(TTY_CLOSING, &o_tty->flags);
1832
1833 /*
1834 * If _either_ side is closing, make sure there aren't any
1835 * processes that still think tty or o_tty is their controlling
1836 * tty.
1837 */
1838 if (tty_closing || o_tty_closing) {
1839 read_lock(&tasklist_lock);
1840 session_clear_tty(tty->session);
1841 if (o_tty)
1842 session_clear_tty(o_tty->session);
1843 read_unlock(&tasklist_lock);
1844 }
1845
1846 mutex_unlock(&tty_mutex);
1847 tty_unlock_pair(tty, o_tty);
1848 /* At this point the TTY_CLOSING flag should ensure a dead tty
1849 cannot be re-opened by a racing opener */
1850
1851 /* check whether both sides are closing ... */
1852 if (!tty_closing || (o_tty && !o_tty_closing))
1853 return 0;
1854
1855 #ifdef TTY_DEBUG_HANGUP
1856 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1857 #endif
1858 /*
1859 * Ask the line discipline code to release its structures
1860 */
1861 tty_ldisc_release(tty, o_tty);
1862
1863 /* Wait for pending work before tty destruction commmences */
1864 tty_flush_works(tty);
1865 if (o_tty)
1866 tty_flush_works(o_tty);
1867
1868 #ifdef TTY_DEBUG_HANGUP
1869 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1870 #endif
1871 /*
1872 * The release_tty function takes care of the details of clearing
1873 * the slots and preserving the termios structure. The tty_unlock_pair
1874 * should be safe as we keep a kref while the tty is locked (so the
1875 * unlock never unlocks a freed tty).
1876 */
1877 mutex_lock(&tty_mutex);
1878 release_tty(tty, idx);
1879 mutex_unlock(&tty_mutex);
1880
1881 return 0;
1882 }
1883
1884 /**
1885 * tty_open_current_tty - get tty of current task for open
1886 * @device: device number
1887 * @filp: file pointer to tty
1888 * @return: tty of the current task iff @device is /dev/tty
1889 *
1890 * We cannot return driver and index like for the other nodes because
1891 * devpts will not work then. It expects inodes to be from devpts FS.
1892 *
1893 * We need to move to returning a refcounted object from all the lookup
1894 * paths including this one.
1895 */
1896 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1897 {
1898 struct tty_struct *tty;
1899
1900 if (device != MKDEV(TTYAUX_MAJOR, 0))
1901 return NULL;
1902
1903 tty = get_current_tty();
1904 if (!tty)
1905 return ERR_PTR(-ENXIO);
1906
1907 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1908 /* noctty = 1; */
1909 tty_kref_put(tty);
1910 /* FIXME: we put a reference and return a TTY! */
1911 /* This is only safe because the caller holds tty_mutex */
1912 return tty;
1913 }
1914
1915 /**
1916 * tty_lookup_driver - lookup a tty driver for a given device file
1917 * @device: device number
1918 * @filp: file pointer to tty
1919 * @noctty: set if the device should not become a controlling tty
1920 * @index: index for the device in the @return driver
1921 * @return: driver for this inode (with increased refcount)
1922 *
1923 * If @return is not erroneous, the caller is responsible to decrement the
1924 * refcount by tty_driver_kref_put.
1925 *
1926 * Locking: tty_mutex protects get_tty_driver
1927 */
1928 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1929 int *noctty, int *index)
1930 {
1931 struct tty_driver *driver;
1932
1933 switch (device) {
1934 #ifdef CONFIG_VT
1935 case MKDEV(TTY_MAJOR, 0): {
1936 extern struct tty_driver *console_driver;
1937 driver = tty_driver_kref_get(console_driver);
1938 *index = fg_console;
1939 *noctty = 1;
1940 break;
1941 }
1942 #endif
1943 case MKDEV(TTYAUX_MAJOR, 1): {
1944 struct tty_driver *console_driver = console_device(index);
1945 if (console_driver) {
1946 driver = tty_driver_kref_get(console_driver);
1947 if (driver) {
1948 /* Don't let /dev/console block */
1949 filp->f_flags |= O_NONBLOCK;
1950 *noctty = 1;
1951 break;
1952 }
1953 }
1954 return ERR_PTR(-ENODEV);
1955 }
1956 default:
1957 driver = get_tty_driver(device, index);
1958 if (!driver)
1959 return ERR_PTR(-ENODEV);
1960 break;
1961 }
1962 return driver;
1963 }
1964
1965 /**
1966 * tty_open - open a tty device
1967 * @inode: inode of device file
1968 * @filp: file pointer to tty
1969 *
1970 * tty_open and tty_release keep up the tty count that contains the
1971 * number of opens done on a tty. We cannot use the inode-count, as
1972 * different inodes might point to the same tty.
1973 *
1974 * Open-counting is needed for pty masters, as well as for keeping
1975 * track of serial lines: DTR is dropped when the last close happens.
1976 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1977 *
1978 * The termios state of a pty is reset on first open so that
1979 * settings don't persist across reuse.
1980 *
1981 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1982 * tty->count should protect the rest.
1983 * ->siglock protects ->signal/->sighand
1984 *
1985 * Note: the tty_unlock/lock cases without a ref are only safe due to
1986 * tty_mutex
1987 */
1988
1989 static int tty_open(struct inode *inode, struct file *filp)
1990 {
1991 struct tty_struct *tty;
1992 int noctty, retval;
1993 struct tty_driver *driver = NULL;
1994 int index;
1995 dev_t device = inode->i_rdev;
1996 unsigned saved_flags = filp->f_flags;
1997
1998 nonseekable_open(inode, filp);
1999
2000 retry_open:
2001 retval = tty_alloc_file(filp);
2002 if (retval)
2003 return -ENOMEM;
2004
2005 noctty = filp->f_flags & O_NOCTTY;
2006 index = -1;
2007 retval = 0;
2008
2009 mutex_lock(&tty_mutex);
2010 /* This is protected by the tty_mutex */
2011 tty = tty_open_current_tty(device, filp);
2012 if (IS_ERR(tty)) {
2013 retval = PTR_ERR(tty);
2014 goto err_unlock;
2015 } else if (!tty) {
2016 driver = tty_lookup_driver(device, filp, &noctty, &index);
2017 if (IS_ERR(driver)) {
2018 retval = PTR_ERR(driver);
2019 goto err_unlock;
2020 }
2021
2022 /* check whether we're reopening an existing tty */
2023 tty = tty_driver_lookup_tty(driver, inode, index);
2024 if (IS_ERR(tty)) {
2025 retval = PTR_ERR(tty);
2026 goto err_unlock;
2027 }
2028 }
2029
2030 if (tty) {
2031 tty_lock(tty);
2032 retval = tty_reopen(tty);
2033 if (retval < 0) {
2034 tty_unlock(tty);
2035 tty = ERR_PTR(retval);
2036 }
2037 } else /* Returns with the tty_lock held for now */
2038 tty = tty_init_dev(driver, index);
2039
2040 mutex_unlock(&tty_mutex);
2041 if (driver)
2042 tty_driver_kref_put(driver);
2043 if (IS_ERR(tty)) {
2044 retval = PTR_ERR(tty);
2045 goto err_file;
2046 }
2047
2048 tty_add_file(tty, filp);
2049
2050 check_tty_count(tty, __func__);
2051 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2052 tty->driver->subtype == PTY_TYPE_MASTER)
2053 noctty = 1;
2054 #ifdef TTY_DEBUG_HANGUP
2055 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2056 #endif
2057 if (tty->ops->open)
2058 retval = tty->ops->open(tty, filp);
2059 else
2060 retval = -ENODEV;
2061 filp->f_flags = saved_flags;
2062
2063 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2064 !capable(CAP_SYS_ADMIN))
2065 retval = -EBUSY;
2066
2067 if (retval) {
2068 #ifdef TTY_DEBUG_HANGUP
2069 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2070 retval, tty->name);
2071 #endif
2072 tty_unlock(tty); /* need to call tty_release without BTM */
2073 tty_release(inode, filp);
2074 if (retval != -ERESTARTSYS)
2075 return retval;
2076
2077 if (signal_pending(current))
2078 return retval;
2079
2080 schedule();
2081 /*
2082 * Need to reset f_op in case a hangup happened.
2083 */
2084 if (filp->f_op == &hung_up_tty_fops)
2085 filp->f_op = &tty_fops;
2086 goto retry_open;
2087 }
2088 tty_unlock(tty);
2089
2090
2091 mutex_lock(&tty_mutex);
2092 tty_lock(tty);
2093 spin_lock_irq(&current->sighand->siglock);
2094 if (!noctty &&
2095 current->signal->leader &&
2096 !current->signal->tty &&
2097 tty->session == NULL)
2098 __proc_set_tty(current, tty);
2099 spin_unlock_irq(&current->sighand->siglock);
2100 tty_unlock(tty);
2101 mutex_unlock(&tty_mutex);
2102 return 0;
2103 err_unlock:
2104 mutex_unlock(&tty_mutex);
2105 /* after locks to avoid deadlock */
2106 if (!IS_ERR_OR_NULL(driver))
2107 tty_driver_kref_put(driver);
2108 err_file:
2109 tty_free_file(filp);
2110 return retval;
2111 }
2112
2113
2114
2115 /**
2116 * tty_poll - check tty status
2117 * @filp: file being polled
2118 * @wait: poll wait structures to update
2119 *
2120 * Call the line discipline polling method to obtain the poll
2121 * status of the device.
2122 *
2123 * Locking: locks called line discipline but ldisc poll method
2124 * may be re-entered freely by other callers.
2125 */
2126
2127 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2128 {
2129 struct tty_struct *tty = file_tty(filp);
2130 struct tty_ldisc *ld;
2131 int ret = 0;
2132
2133 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2134 return 0;
2135
2136 ld = tty_ldisc_ref_wait(tty);
2137 if (ld->ops->poll)
2138 ret = (ld->ops->poll)(tty, filp, wait);
2139 tty_ldisc_deref(ld);
2140 return ret;
2141 }
2142
2143 static int __tty_fasync(int fd, struct file *filp, int on)
2144 {
2145 struct tty_struct *tty = file_tty(filp);
2146 struct tty_ldisc *ldisc;
2147 unsigned long flags;
2148 int retval = 0;
2149
2150 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2151 goto out;
2152
2153 retval = fasync_helper(fd, filp, on, &tty->fasync);
2154 if (retval <= 0)
2155 goto out;
2156
2157 ldisc = tty_ldisc_ref(tty);
2158 if (ldisc) {
2159 if (ldisc->ops->fasync)
2160 ldisc->ops->fasync(tty, on);
2161 tty_ldisc_deref(ldisc);
2162 }
2163
2164 if (on) {
2165 enum pid_type type;
2166 struct pid *pid;
2167
2168 spin_lock_irqsave(&tty->ctrl_lock, flags);
2169 if (tty->pgrp) {
2170 pid = tty->pgrp;
2171 type = PIDTYPE_PGID;
2172 } else {
2173 pid = task_pid(current);
2174 type = PIDTYPE_PID;
2175 }
2176 get_pid(pid);
2177 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2178 retval = __f_setown(filp, pid, type, 0);
2179 put_pid(pid);
2180 }
2181 out:
2182 return retval;
2183 }
2184
2185 static int tty_fasync(int fd, struct file *filp, int on)
2186 {
2187 struct tty_struct *tty = file_tty(filp);
2188 int retval;
2189
2190 tty_lock(tty);
2191 retval = __tty_fasync(fd, filp, on);
2192 tty_unlock(tty);
2193
2194 return retval;
2195 }
2196
2197 /**
2198 * tiocsti - fake input character
2199 * @tty: tty to fake input into
2200 * @p: pointer to character
2201 *
2202 * Fake input to a tty device. Does the necessary locking and
2203 * input management.
2204 *
2205 * FIXME: does not honour flow control ??
2206 *
2207 * Locking:
2208 * Called functions take tty_ldiscs_lock
2209 * current->signal->tty check is safe without locks
2210 *
2211 * FIXME: may race normal receive processing
2212 */
2213
2214 static int tiocsti(struct tty_struct *tty, char __user *p)
2215 {
2216 char ch, mbz = 0;
2217 struct tty_ldisc *ld;
2218
2219 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2220 return -EPERM;
2221 if (get_user(ch, p))
2222 return -EFAULT;
2223 tty_audit_tiocsti(tty, ch);
2224 ld = tty_ldisc_ref_wait(tty);
2225 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2226 tty_ldisc_deref(ld);
2227 return 0;
2228 }
2229
2230 /**
2231 * tiocgwinsz - implement window query ioctl
2232 * @tty; tty
2233 * @arg: user buffer for result
2234 *
2235 * Copies the kernel idea of the window size into the user buffer.
2236 *
2237 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2238 * is consistent.
2239 */
2240
2241 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2242 {
2243 int err;
2244
2245 mutex_lock(&tty->winsize_mutex);
2246 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2247 mutex_unlock(&tty->winsize_mutex);
2248
2249 return err ? -EFAULT: 0;
2250 }
2251
2252 /**
2253 * tty_do_resize - resize event
2254 * @tty: tty being resized
2255 * @rows: rows (character)
2256 * @cols: cols (character)
2257 *
2258 * Update the termios variables and send the necessary signals to
2259 * peform a terminal resize correctly
2260 */
2261
2262 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2263 {
2264 struct pid *pgrp;
2265 unsigned long flags;
2266
2267 /* Lock the tty */
2268 mutex_lock(&tty->winsize_mutex);
2269 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2270 goto done;
2271 /* Get the PID values and reference them so we can
2272 avoid holding the tty ctrl lock while sending signals */
2273 spin_lock_irqsave(&tty->ctrl_lock, flags);
2274 pgrp = get_pid(tty->pgrp);
2275 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2276
2277 if (pgrp)
2278 kill_pgrp(pgrp, SIGWINCH, 1);
2279 put_pid(pgrp);
2280
2281 tty->winsize = *ws;
2282 done:
2283 mutex_unlock(&tty->winsize_mutex);
2284 return 0;
2285 }
2286 EXPORT_SYMBOL(tty_do_resize);
2287
2288 /**
2289 * tiocswinsz - implement window size set ioctl
2290 * @tty; tty side of tty
2291 * @arg: user buffer for result
2292 *
2293 * Copies the user idea of the window size to the kernel. Traditionally
2294 * this is just advisory information but for the Linux console it
2295 * actually has driver level meaning and triggers a VC resize.
2296 *
2297 * Locking:
2298 * Driver dependent. The default do_resize method takes the
2299 * tty termios mutex and ctrl_lock. The console takes its own lock
2300 * then calls into the default method.
2301 */
2302
2303 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2304 {
2305 struct winsize tmp_ws;
2306 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2307 return -EFAULT;
2308
2309 if (tty->ops->resize)
2310 return tty->ops->resize(tty, &tmp_ws);
2311 else
2312 return tty_do_resize(tty, &tmp_ws);
2313 }
2314
2315 /**
2316 * tioccons - allow admin to move logical console
2317 * @file: the file to become console
2318 *
2319 * Allow the administrator to move the redirected console device
2320 *
2321 * Locking: uses redirect_lock to guard the redirect information
2322 */
2323
2324 static int tioccons(struct file *file)
2325 {
2326 if (!capable(CAP_SYS_ADMIN))
2327 return -EPERM;
2328 if (file->f_op->write == redirected_tty_write) {
2329 struct file *f;
2330 spin_lock(&redirect_lock);
2331 f = redirect;
2332 redirect = NULL;
2333 spin_unlock(&redirect_lock);
2334 if (f)
2335 fput(f);
2336 return 0;
2337 }
2338 spin_lock(&redirect_lock);
2339 if (redirect) {
2340 spin_unlock(&redirect_lock);
2341 return -EBUSY;
2342 }
2343 redirect = get_file(file);
2344 spin_unlock(&redirect_lock);
2345 return 0;
2346 }
2347
2348 /**
2349 * fionbio - non blocking ioctl
2350 * @file: file to set blocking value
2351 * @p: user parameter
2352 *
2353 * Historical tty interfaces had a blocking control ioctl before
2354 * the generic functionality existed. This piece of history is preserved
2355 * in the expected tty API of posix OS's.
2356 *
2357 * Locking: none, the open file handle ensures it won't go away.
2358 */
2359
2360 static int fionbio(struct file *file, int __user *p)
2361 {
2362 int nonblock;
2363
2364 if (get_user(nonblock, p))
2365 return -EFAULT;
2366
2367 spin_lock(&file->f_lock);
2368 if (nonblock)
2369 file->f_flags |= O_NONBLOCK;
2370 else
2371 file->f_flags &= ~O_NONBLOCK;
2372 spin_unlock(&file->f_lock);
2373 return 0;
2374 }
2375
2376 /**
2377 * tiocsctty - set controlling tty
2378 * @tty: tty structure
2379 * @arg: user argument
2380 *
2381 * This ioctl is used to manage job control. It permits a session
2382 * leader to set this tty as the controlling tty for the session.
2383 *
2384 * Locking:
2385 * Takes tty_mutex() to protect tty instance
2386 * Takes tasklist_lock internally to walk sessions
2387 * Takes ->siglock() when updating signal->tty
2388 */
2389
2390 static int tiocsctty(struct tty_struct *tty, int arg)
2391 {
2392 int ret = 0;
2393 if (current->signal->leader && (task_session(current) == tty->session))
2394 return ret;
2395
2396 mutex_lock(&tty_mutex);
2397 /*
2398 * The process must be a session leader and
2399 * not have a controlling tty already.
2400 */
2401 if (!current->signal->leader || current->signal->tty) {
2402 ret = -EPERM;
2403 goto unlock;
2404 }
2405
2406 if (tty->session) {
2407 /*
2408 * This tty is already the controlling
2409 * tty for another session group!
2410 */
2411 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2412 /*
2413 * Steal it away
2414 */
2415 read_lock(&tasklist_lock);
2416 session_clear_tty(tty->session);
2417 read_unlock(&tasklist_lock);
2418 } else {
2419 ret = -EPERM;
2420 goto unlock;
2421 }
2422 }
2423 proc_set_tty(current, tty);
2424 unlock:
2425 mutex_unlock(&tty_mutex);
2426 return ret;
2427 }
2428
2429 /**
2430 * tty_get_pgrp - return a ref counted pgrp pid
2431 * @tty: tty to read
2432 *
2433 * Returns a refcounted instance of the pid struct for the process
2434 * group controlling the tty.
2435 */
2436
2437 struct pid *tty_get_pgrp(struct tty_struct *tty)
2438 {
2439 unsigned long flags;
2440 struct pid *pgrp;
2441
2442 spin_lock_irqsave(&tty->ctrl_lock, flags);
2443 pgrp = get_pid(tty->pgrp);
2444 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2445
2446 return pgrp;
2447 }
2448 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2449
2450 /**
2451 * tiocgpgrp - get process group
2452 * @tty: tty passed by user
2453 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2454 * @p: returned pid
2455 *
2456 * Obtain the process group of the tty. If there is no process group
2457 * return an error.
2458 *
2459 * Locking: none. Reference to current->signal->tty is safe.
2460 */
2461
2462 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2463 {
2464 struct pid *pid;
2465 int ret;
2466 /*
2467 * (tty == real_tty) is a cheap way of
2468 * testing if the tty is NOT a master pty.
2469 */
2470 if (tty == real_tty && current->signal->tty != real_tty)
2471 return -ENOTTY;
2472 pid = tty_get_pgrp(real_tty);
2473 ret = put_user(pid_vnr(pid), p);
2474 put_pid(pid);
2475 return ret;
2476 }
2477
2478 /**
2479 * tiocspgrp - attempt to set process group
2480 * @tty: tty passed by user
2481 * @real_tty: tty side device matching tty passed by user
2482 * @p: pid pointer
2483 *
2484 * Set the process group of the tty to the session passed. Only
2485 * permitted where the tty session is our session.
2486 *
2487 * Locking: RCU, ctrl lock
2488 */
2489
2490 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2491 {
2492 struct pid *pgrp;
2493 pid_t pgrp_nr;
2494 int retval = tty_check_change(real_tty);
2495 unsigned long flags;
2496
2497 if (retval == -EIO)
2498 return -ENOTTY;
2499 if (retval)
2500 return retval;
2501 if (!current->signal->tty ||
2502 (current->signal->tty != real_tty) ||
2503 (real_tty->session != task_session(current)))
2504 return -ENOTTY;
2505 if (get_user(pgrp_nr, p))
2506 return -EFAULT;
2507 if (pgrp_nr < 0)
2508 return -EINVAL;
2509 rcu_read_lock();
2510 pgrp = find_vpid(pgrp_nr);
2511 retval = -ESRCH;
2512 if (!pgrp)
2513 goto out_unlock;
2514 retval = -EPERM;
2515 if (session_of_pgrp(pgrp) != task_session(current))
2516 goto out_unlock;
2517 retval = 0;
2518 spin_lock_irqsave(&tty->ctrl_lock, flags);
2519 put_pid(real_tty->pgrp);
2520 real_tty->pgrp = get_pid(pgrp);
2521 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522 out_unlock:
2523 rcu_read_unlock();
2524 return retval;
2525 }
2526
2527 /**
2528 * tiocgsid - get session id
2529 * @tty: tty passed by user
2530 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2531 * @p: pointer to returned session id
2532 *
2533 * Obtain the session id of the tty. If there is no session
2534 * return an error.
2535 *
2536 * Locking: none. Reference to current->signal->tty is safe.
2537 */
2538
2539 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2540 {
2541 /*
2542 * (tty == real_tty) is a cheap way of
2543 * testing if the tty is NOT a master pty.
2544 */
2545 if (tty == real_tty && current->signal->tty != real_tty)
2546 return -ENOTTY;
2547 if (!real_tty->session)
2548 return -ENOTTY;
2549 return put_user(pid_vnr(real_tty->session), p);
2550 }
2551
2552 /**
2553 * tiocsetd - set line discipline
2554 * @tty: tty device
2555 * @p: pointer to user data
2556 *
2557 * Set the line discipline according to user request.
2558 *
2559 * Locking: see tty_set_ldisc, this function is just a helper
2560 */
2561
2562 static int tiocsetd(struct tty_struct *tty, int __user *p)
2563 {
2564 int ldisc;
2565 int ret;
2566
2567 if (get_user(ldisc, p))
2568 return -EFAULT;
2569
2570 ret = tty_set_ldisc(tty, ldisc);
2571
2572 return ret;
2573 }
2574
2575 /**
2576 * send_break - performed time break
2577 * @tty: device to break on
2578 * @duration: timeout in mS
2579 *
2580 * Perform a timed break on hardware that lacks its own driver level
2581 * timed break functionality.
2582 *
2583 * Locking:
2584 * atomic_write_lock serializes
2585 *
2586 */
2587
2588 static int send_break(struct tty_struct *tty, unsigned int duration)
2589 {
2590 int retval;
2591
2592 if (tty->ops->break_ctl == NULL)
2593 return 0;
2594
2595 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2596 retval = tty->ops->break_ctl(tty, duration);
2597 else {
2598 /* Do the work ourselves */
2599 if (tty_write_lock(tty, 0) < 0)
2600 return -EINTR;
2601 retval = tty->ops->break_ctl(tty, -1);
2602 if (retval)
2603 goto out;
2604 if (!signal_pending(current))
2605 msleep_interruptible(duration);
2606 retval = tty->ops->break_ctl(tty, 0);
2607 out:
2608 tty_write_unlock(tty);
2609 if (signal_pending(current))
2610 retval = -EINTR;
2611 }
2612 return retval;
2613 }
2614
2615 /**
2616 * tty_tiocmget - get modem status
2617 * @tty: tty device
2618 * @file: user file pointer
2619 * @p: pointer to result
2620 *
2621 * Obtain the modem status bits from the tty driver if the feature
2622 * is supported. Return -EINVAL if it is not available.
2623 *
2624 * Locking: none (up to the driver)
2625 */
2626
2627 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2628 {
2629 int retval = -EINVAL;
2630
2631 if (tty->ops->tiocmget) {
2632 retval = tty->ops->tiocmget(tty);
2633
2634 if (retval >= 0)
2635 retval = put_user(retval, p);
2636 }
2637 return retval;
2638 }
2639
2640 /**
2641 * tty_tiocmset - set modem status
2642 * @tty: tty device
2643 * @cmd: command - clear bits, set bits or set all
2644 * @p: pointer to desired bits
2645 *
2646 * Set the modem status bits from the tty driver if the feature
2647 * is supported. Return -EINVAL if it is not available.
2648 *
2649 * Locking: none (up to the driver)
2650 */
2651
2652 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2653 unsigned __user *p)
2654 {
2655 int retval;
2656 unsigned int set, clear, val;
2657
2658 if (tty->ops->tiocmset == NULL)
2659 return -EINVAL;
2660
2661 retval = get_user(val, p);
2662 if (retval)
2663 return retval;
2664 set = clear = 0;
2665 switch (cmd) {
2666 case TIOCMBIS:
2667 set = val;
2668 break;
2669 case TIOCMBIC:
2670 clear = val;
2671 break;
2672 case TIOCMSET:
2673 set = val;
2674 clear = ~val;
2675 break;
2676 }
2677 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2678 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2679 return tty->ops->tiocmset(tty, set, clear);
2680 }
2681
2682 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2683 {
2684 int retval = -EINVAL;
2685 struct serial_icounter_struct icount;
2686 memset(&icount, 0, sizeof(icount));
2687 if (tty->ops->get_icount)
2688 retval = tty->ops->get_icount(tty, &icount);
2689 if (retval != 0)
2690 return retval;
2691 if (copy_to_user(arg, &icount, sizeof(icount)))
2692 return -EFAULT;
2693 return 0;
2694 }
2695
2696 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2697 {
2698 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2699 tty->driver->subtype == PTY_TYPE_MASTER)
2700 tty = tty->link;
2701 return tty;
2702 }
2703 EXPORT_SYMBOL(tty_pair_get_tty);
2704
2705 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2706 {
2707 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2708 tty->driver->subtype == PTY_TYPE_MASTER)
2709 return tty;
2710 return tty->link;
2711 }
2712 EXPORT_SYMBOL(tty_pair_get_pty);
2713
2714 /*
2715 * Split this up, as gcc can choke on it otherwise..
2716 */
2717 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2718 {
2719 struct tty_struct *tty = file_tty(file);
2720 struct tty_struct *real_tty;
2721 void __user *p = (void __user *)arg;
2722 int retval;
2723 struct tty_ldisc *ld;
2724
2725 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2726 return -EINVAL;
2727
2728 real_tty = tty_pair_get_tty(tty);
2729
2730 /*
2731 * Factor out some common prep work
2732 */
2733 switch (cmd) {
2734 case TIOCSETD:
2735 case TIOCSBRK:
2736 case TIOCCBRK:
2737 case TCSBRK:
2738 case TCSBRKP:
2739 retval = tty_check_change(tty);
2740 if (retval)
2741 return retval;
2742 if (cmd != TIOCCBRK) {
2743 tty_wait_until_sent(tty, 0);
2744 if (signal_pending(current))
2745 return -EINTR;
2746 }
2747 break;
2748 }
2749
2750 /*
2751 * Now do the stuff.
2752 */
2753 switch (cmd) {
2754 case TIOCSTI:
2755 return tiocsti(tty, p);
2756 case TIOCGWINSZ:
2757 return tiocgwinsz(real_tty, p);
2758 case TIOCSWINSZ:
2759 return tiocswinsz(real_tty, p);
2760 case TIOCCONS:
2761 return real_tty != tty ? -EINVAL : tioccons(file);
2762 case FIONBIO:
2763 return fionbio(file, p);
2764 case TIOCEXCL:
2765 set_bit(TTY_EXCLUSIVE, &tty->flags);
2766 return 0;
2767 case TIOCNXCL:
2768 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2769 return 0;
2770 case TIOCGEXCL:
2771 {
2772 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2773 return put_user(excl, (int __user *)p);
2774 }
2775 case TIOCNOTTY:
2776 if (current->signal->tty != tty)
2777 return -ENOTTY;
2778 no_tty();
2779 return 0;
2780 case TIOCSCTTY:
2781 return tiocsctty(tty, arg);
2782 case TIOCGPGRP:
2783 return tiocgpgrp(tty, real_tty, p);
2784 case TIOCSPGRP:
2785 return tiocspgrp(tty, real_tty, p);
2786 case TIOCGSID:
2787 return tiocgsid(tty, real_tty, p);
2788 case TIOCGETD:
2789 return put_user(tty->ldisc->ops->num, (int __user *)p);
2790 case TIOCSETD:
2791 return tiocsetd(tty, p);
2792 case TIOCVHANGUP:
2793 if (!capable(CAP_SYS_ADMIN))
2794 return -EPERM;
2795 tty_vhangup(tty);
2796 return 0;
2797 case TIOCGDEV:
2798 {
2799 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2800 return put_user(ret, (unsigned int __user *)p);
2801 }
2802 /*
2803 * Break handling
2804 */
2805 case TIOCSBRK: /* Turn break on, unconditionally */
2806 if (tty->ops->break_ctl)
2807 return tty->ops->break_ctl(tty, -1);
2808 return 0;
2809 case TIOCCBRK: /* Turn break off, unconditionally */
2810 if (tty->ops->break_ctl)
2811 return tty->ops->break_ctl(tty, 0);
2812 return 0;
2813 case TCSBRK: /* SVID version: non-zero arg --> no break */
2814 /* non-zero arg means wait for all output data
2815 * to be sent (performed above) but don't send break.
2816 * This is used by the tcdrain() termios function.
2817 */
2818 if (!arg)
2819 return send_break(tty, 250);
2820 return 0;
2821 case TCSBRKP: /* support for POSIX tcsendbreak() */
2822 return send_break(tty, arg ? arg*100 : 250);
2823
2824 case TIOCMGET:
2825 return tty_tiocmget(tty, p);
2826 case TIOCMSET:
2827 case TIOCMBIC:
2828 case TIOCMBIS:
2829 return tty_tiocmset(tty, cmd, p);
2830 case TIOCGICOUNT:
2831 retval = tty_tiocgicount(tty, p);
2832 /* For the moment allow fall through to the old method */
2833 if (retval != -EINVAL)
2834 return retval;
2835 break;
2836 case TCFLSH:
2837 switch (arg) {
2838 case TCIFLUSH:
2839 case TCIOFLUSH:
2840 /* flush tty buffer and allow ldisc to process ioctl */
2841 tty_buffer_flush(tty);
2842 break;
2843 }
2844 break;
2845 }
2846 if (tty->ops->ioctl) {
2847 retval = (tty->ops->ioctl)(tty, cmd, arg);
2848 if (retval != -ENOIOCTLCMD)
2849 return retval;
2850 }
2851 ld = tty_ldisc_ref_wait(tty);
2852 retval = -EINVAL;
2853 if (ld->ops->ioctl) {
2854 retval = ld->ops->ioctl(tty, file, cmd, arg);
2855 if (retval == -ENOIOCTLCMD)
2856 retval = -ENOTTY;
2857 }
2858 tty_ldisc_deref(ld);
2859 return retval;
2860 }
2861
2862 #ifdef CONFIG_COMPAT
2863 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2864 unsigned long arg)
2865 {
2866 struct tty_struct *tty = file_tty(file);
2867 struct tty_ldisc *ld;
2868 int retval = -ENOIOCTLCMD;
2869
2870 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2871 return -EINVAL;
2872
2873 if (tty->ops->compat_ioctl) {
2874 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2875 if (retval != -ENOIOCTLCMD)
2876 return retval;
2877 }
2878
2879 ld = tty_ldisc_ref_wait(tty);
2880 if (ld->ops->compat_ioctl)
2881 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2882 else
2883 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2884 tty_ldisc_deref(ld);
2885
2886 return retval;
2887 }
2888 #endif
2889
2890 static int this_tty(const void *t, struct file *file, unsigned fd)
2891 {
2892 if (likely(file->f_op->read != tty_read))
2893 return 0;
2894 return file_tty(file) != t ? 0 : fd + 1;
2895 }
2896
2897 /*
2898 * This implements the "Secure Attention Key" --- the idea is to
2899 * prevent trojan horses by killing all processes associated with this
2900 * tty when the user hits the "Secure Attention Key". Required for
2901 * super-paranoid applications --- see the Orange Book for more details.
2902 *
2903 * This code could be nicer; ideally it should send a HUP, wait a few
2904 * seconds, then send a INT, and then a KILL signal. But you then
2905 * have to coordinate with the init process, since all processes associated
2906 * with the current tty must be dead before the new getty is allowed
2907 * to spawn.
2908 *
2909 * Now, if it would be correct ;-/ The current code has a nasty hole -
2910 * it doesn't catch files in flight. We may send the descriptor to ourselves
2911 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2912 *
2913 * Nasty bug: do_SAK is being called in interrupt context. This can
2914 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2915 */
2916 void __do_SAK(struct tty_struct *tty)
2917 {
2918 #ifdef TTY_SOFT_SAK
2919 tty_hangup(tty);
2920 #else
2921 struct task_struct *g, *p;
2922 struct pid *session;
2923 int i;
2924
2925 if (!tty)
2926 return;
2927 session = tty->session;
2928
2929 tty_ldisc_flush(tty);
2930
2931 tty_driver_flush_buffer(tty);
2932
2933 read_lock(&tasklist_lock);
2934 /* Kill the entire session */
2935 do_each_pid_task(session, PIDTYPE_SID, p) {
2936 printk(KERN_NOTICE "SAK: killed process %d"
2937 " (%s): task_session(p)==tty->session\n",
2938 task_pid_nr(p), p->comm);
2939 send_sig(SIGKILL, p, 1);
2940 } while_each_pid_task(session, PIDTYPE_SID, p);
2941 /* Now kill any processes that happen to have the
2942 * tty open.
2943 */
2944 do_each_thread(g, p) {
2945 if (p->signal->tty == tty) {
2946 printk(KERN_NOTICE "SAK: killed process %d"
2947 " (%s): task_session(p)==tty->session\n",
2948 task_pid_nr(p), p->comm);
2949 send_sig(SIGKILL, p, 1);
2950 continue;
2951 }
2952 task_lock(p);
2953 i = iterate_fd(p->files, 0, this_tty, tty);
2954 if (i != 0) {
2955 printk(KERN_NOTICE "SAK: killed process %d"
2956 " (%s): fd#%d opened to the tty\n",
2957 task_pid_nr(p), p->comm, i - 1);
2958 force_sig(SIGKILL, p);
2959 }
2960 task_unlock(p);
2961 } while_each_thread(g, p);
2962 read_unlock(&tasklist_lock);
2963 #endif
2964 }
2965
2966 static void do_SAK_work(struct work_struct *work)
2967 {
2968 struct tty_struct *tty =
2969 container_of(work, struct tty_struct, SAK_work);
2970 __do_SAK(tty);
2971 }
2972
2973 /*
2974 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2975 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2976 * the values which we write to it will be identical to the values which it
2977 * already has. --akpm
2978 */
2979 void do_SAK(struct tty_struct *tty)
2980 {
2981 if (!tty)
2982 return;
2983 schedule_work(&tty->SAK_work);
2984 }
2985
2986 EXPORT_SYMBOL(do_SAK);
2987
2988 static int dev_match_devt(struct device *dev, const void *data)
2989 {
2990 const dev_t *devt = data;
2991 return dev->devt == *devt;
2992 }
2993
2994 /* Must put_device() after it's unused! */
2995 static struct device *tty_get_device(struct tty_struct *tty)
2996 {
2997 dev_t devt = tty_devnum(tty);
2998 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2999 }
3000
3001
3002 /**
3003 * initialize_tty_struct
3004 * @tty: tty to initialize
3005 *
3006 * This subroutine initializes a tty structure that has been newly
3007 * allocated.
3008 *
3009 * Locking: none - tty in question must not be exposed at this point
3010 */
3011
3012 void initialize_tty_struct(struct tty_struct *tty,
3013 struct tty_driver *driver, int idx)
3014 {
3015 memset(tty, 0, sizeof(struct tty_struct));
3016 kref_init(&tty->kref);
3017 tty->magic = TTY_MAGIC;
3018 tty_ldisc_init(tty);
3019 tty->session = NULL;
3020 tty->pgrp = NULL;
3021 mutex_init(&tty->legacy_mutex);
3022 mutex_init(&tty->throttle_mutex);
3023 init_rwsem(&tty->termios_rwsem);
3024 mutex_init(&tty->winsize_mutex);
3025 init_ldsem(&tty->ldisc_sem);
3026 init_waitqueue_head(&tty->write_wait);
3027 init_waitqueue_head(&tty->read_wait);
3028 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3029 mutex_init(&tty->atomic_write_lock);
3030 spin_lock_init(&tty->ctrl_lock);
3031 INIT_LIST_HEAD(&tty->tty_files);
3032 INIT_WORK(&tty->SAK_work, do_SAK_work);
3033
3034 tty->driver = driver;
3035 tty->ops = driver->ops;
3036 tty->index = idx;
3037 tty_line_name(driver, idx, tty->name);
3038 tty->dev = tty_get_device(tty);
3039 }
3040
3041 /**
3042 * deinitialize_tty_struct
3043 * @tty: tty to deinitialize
3044 *
3045 * This subroutine deinitializes a tty structure that has been newly
3046 * allocated but tty_release cannot be called on that yet.
3047 *
3048 * Locking: none - tty in question must not be exposed at this point
3049 */
3050 void deinitialize_tty_struct(struct tty_struct *tty)
3051 {
3052 tty_ldisc_deinit(tty);
3053 }
3054
3055 /**
3056 * tty_put_char - write one character to a tty
3057 * @tty: tty
3058 * @ch: character
3059 *
3060 * Write one byte to the tty using the provided put_char method
3061 * if present. Returns the number of characters successfully output.
3062 *
3063 * Note: the specific put_char operation in the driver layer may go
3064 * away soon. Don't call it directly, use this method
3065 */
3066
3067 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3068 {
3069 if (tty->ops->put_char)
3070 return tty->ops->put_char(tty, ch);
3071 return tty->ops->write(tty, &ch, 1);
3072 }
3073 EXPORT_SYMBOL_GPL(tty_put_char);
3074
3075 struct class *tty_class;
3076
3077 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3078 unsigned int index, unsigned int count)
3079 {
3080 /* init here, since reused cdevs cause crashes */
3081 cdev_init(&driver->cdevs[index], &tty_fops);
3082 driver->cdevs[index].owner = driver->owner;
3083 return cdev_add(&driver->cdevs[index], dev, count);
3084 }
3085
3086 /**
3087 * tty_register_device - register a tty device
3088 * @driver: the tty driver that describes the tty device
3089 * @index: the index in the tty driver for this tty device
3090 * @device: a struct device that is associated with this tty device.
3091 * This field is optional, if there is no known struct device
3092 * for this tty device it can be set to NULL safely.
3093 *
3094 * Returns a pointer to the struct device for this tty device
3095 * (or ERR_PTR(-EFOO) on error).
3096 *
3097 * This call is required to be made to register an individual tty device
3098 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3099 * that bit is not set, this function should not be called by a tty
3100 * driver.
3101 *
3102 * Locking: ??
3103 */
3104
3105 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3106 struct device *device)
3107 {
3108 return tty_register_device_attr(driver, index, device, NULL, NULL);
3109 }
3110 EXPORT_SYMBOL(tty_register_device);
3111
3112 static void tty_device_create_release(struct device *dev)
3113 {
3114 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3115 kfree(dev);
3116 }
3117
3118 /**
3119 * tty_register_device_attr - register a tty device
3120 * @driver: the tty driver that describes the tty device
3121 * @index: the index in the tty driver for this tty device
3122 * @device: a struct device that is associated with this tty device.
3123 * This field is optional, if there is no known struct device
3124 * for this tty device it can be set to NULL safely.
3125 * @drvdata: Driver data to be set to device.
3126 * @attr_grp: Attribute group to be set on device.
3127 *
3128 * Returns a pointer to the struct device for this tty device
3129 * (or ERR_PTR(-EFOO) on error).
3130 *
3131 * This call is required to be made to register an individual tty device
3132 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3133 * that bit is not set, this function should not be called by a tty
3134 * driver.
3135 *
3136 * Locking: ??
3137 */
3138 struct device *tty_register_device_attr(struct tty_driver *driver,
3139 unsigned index, struct device *device,
3140 void *drvdata,
3141 const struct attribute_group **attr_grp)
3142 {
3143 char name[64];
3144 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3145 struct device *dev = NULL;
3146 int retval = -ENODEV;
3147 bool cdev = false;
3148
3149 if (index >= driver->num) {
3150 printk(KERN_ERR "Attempt to register invalid tty line number "
3151 " (%d).\n", index);
3152 return ERR_PTR(-EINVAL);
3153 }
3154
3155 if (driver->type == TTY_DRIVER_TYPE_PTY)
3156 pty_line_name(driver, index, name);
3157 else
3158 tty_line_name(driver, index, name);
3159
3160 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3161 retval = tty_cdev_add(driver, devt, index, 1);
3162 if (retval)
3163 goto error;
3164 cdev = true;
3165 }
3166
3167 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3168 if (!dev) {
3169 retval = -ENOMEM;
3170 goto error;
3171 }
3172
3173 dev->devt = devt;
3174 dev->class = tty_class;
3175 dev->parent = device;
3176 dev->release = tty_device_create_release;
3177 dev_set_name(dev, "%s", name);
3178 dev->groups = attr_grp;
3179 dev_set_drvdata(dev, drvdata);
3180
3181 retval = device_register(dev);
3182 if (retval)
3183 goto error;
3184
3185 return dev;
3186
3187 error:
3188 put_device(dev);
3189 if (cdev)
3190 cdev_del(&driver->cdevs[index]);
3191 return ERR_PTR(retval);
3192 }
3193 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3194
3195 /**
3196 * tty_unregister_device - unregister a tty device
3197 * @driver: the tty driver that describes the tty device
3198 * @index: the index in the tty driver for this tty device
3199 *
3200 * If a tty device is registered with a call to tty_register_device() then
3201 * this function must be called when the tty device is gone.
3202 *
3203 * Locking: ??
3204 */
3205
3206 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3207 {
3208 device_destroy(tty_class,
3209 MKDEV(driver->major, driver->minor_start) + index);
3210 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3211 cdev_del(&driver->cdevs[index]);
3212 }
3213 EXPORT_SYMBOL(tty_unregister_device);
3214
3215 /**
3216 * __tty_alloc_driver -- allocate tty driver
3217 * @lines: count of lines this driver can handle at most
3218 * @owner: module which is repsonsible for this driver
3219 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3220 *
3221 * This should not be called directly, some of the provided macros should be
3222 * used instead. Use IS_ERR and friends on @retval.
3223 */
3224 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3225 unsigned long flags)
3226 {
3227 struct tty_driver *driver;
3228 unsigned int cdevs = 1;
3229 int err;
3230
3231 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3232 return ERR_PTR(-EINVAL);
3233
3234 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3235 if (!driver)
3236 return ERR_PTR(-ENOMEM);
3237
3238 kref_init(&driver->kref);
3239 driver->magic = TTY_DRIVER_MAGIC;
3240 driver->num = lines;
3241 driver->owner = owner;
3242 driver->flags = flags;
3243
3244 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3245 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3246 GFP_KERNEL);
3247 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3248 GFP_KERNEL);
3249 if (!driver->ttys || !driver->termios) {
3250 err = -ENOMEM;
3251 goto err_free_all;
3252 }
3253 }
3254
3255 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3256 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3257 GFP_KERNEL);
3258 if (!driver->ports) {
3259 err = -ENOMEM;
3260 goto err_free_all;
3261 }
3262 cdevs = lines;
3263 }
3264
3265 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3266 if (!driver->cdevs) {
3267 err = -ENOMEM;
3268 goto err_free_all;
3269 }
3270
3271 return driver;
3272 err_free_all:
3273 kfree(driver->ports);
3274 kfree(driver->ttys);
3275 kfree(driver->termios);
3276 kfree(driver);
3277 return ERR_PTR(err);
3278 }
3279 EXPORT_SYMBOL(__tty_alloc_driver);
3280
3281 static void destruct_tty_driver(struct kref *kref)
3282 {
3283 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3284 int i;
3285 struct ktermios *tp;
3286
3287 if (driver->flags & TTY_DRIVER_INSTALLED) {
3288 /*
3289 * Free the termios and termios_locked structures because
3290 * we don't want to get memory leaks when modular tty
3291 * drivers are removed from the kernel.
3292 */
3293 for (i = 0; i < driver->num; i++) {
3294 tp = driver->termios[i];
3295 if (tp) {
3296 driver->termios[i] = NULL;
3297 kfree(tp);
3298 }
3299 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3300 tty_unregister_device(driver, i);
3301 }
3302 proc_tty_unregister_driver(driver);
3303 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3304 cdev_del(&driver->cdevs[0]);
3305 }
3306 kfree(driver->cdevs);
3307 kfree(driver->ports);
3308 kfree(driver->termios);
3309 kfree(driver->ttys);
3310 kfree(driver);
3311 }
3312
3313 void tty_driver_kref_put(struct tty_driver *driver)
3314 {
3315 kref_put(&driver->kref, destruct_tty_driver);
3316 }
3317 EXPORT_SYMBOL(tty_driver_kref_put);
3318
3319 void tty_set_operations(struct tty_driver *driver,
3320 const struct tty_operations *op)
3321 {
3322 driver->ops = op;
3323 };
3324 EXPORT_SYMBOL(tty_set_operations);
3325
3326 void put_tty_driver(struct tty_driver *d)
3327 {
3328 tty_driver_kref_put(d);
3329 }
3330 EXPORT_SYMBOL(put_tty_driver);
3331
3332 /*
3333 * Called by a tty driver to register itself.
3334 */
3335 int tty_register_driver(struct tty_driver *driver)
3336 {
3337 int error;
3338 int i;
3339 dev_t dev;
3340 struct device *d;
3341
3342 if (!driver->major) {
3343 error = alloc_chrdev_region(&dev, driver->minor_start,
3344 driver->num, driver->name);
3345 if (!error) {
3346 driver->major = MAJOR(dev);
3347 driver->minor_start = MINOR(dev);
3348 }
3349 } else {
3350 dev = MKDEV(driver->major, driver->minor_start);
3351 error = register_chrdev_region(dev, driver->num, driver->name);
3352 }
3353 if (error < 0)
3354 goto err;
3355
3356 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3357 error = tty_cdev_add(driver, dev, 0, driver->num);
3358 if (error)
3359 goto err_unreg_char;
3360 }
3361
3362 mutex_lock(&tty_mutex);
3363 list_add(&driver->tty_drivers, &tty_drivers);
3364 mutex_unlock(&tty_mutex);
3365
3366 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3367 for (i = 0; i < driver->num; i++) {
3368 d = tty_register_device(driver, i, NULL);
3369 if (IS_ERR(d)) {
3370 error = PTR_ERR(d);
3371 goto err_unreg_devs;
3372 }
3373 }
3374 }
3375 proc_tty_register_driver(driver);
3376 driver->flags |= TTY_DRIVER_INSTALLED;
3377 return 0;
3378
3379 err_unreg_devs:
3380 for (i--; i >= 0; i--)
3381 tty_unregister_device(driver, i);
3382
3383 mutex_lock(&tty_mutex);
3384 list_del(&driver->tty_drivers);
3385 mutex_unlock(&tty_mutex);
3386
3387 err_unreg_char:
3388 unregister_chrdev_region(dev, driver->num);
3389 err:
3390 return error;
3391 }
3392 EXPORT_SYMBOL(tty_register_driver);
3393
3394 /*
3395 * Called by a tty driver to unregister itself.
3396 */
3397 int tty_unregister_driver(struct tty_driver *driver)
3398 {
3399 #if 0
3400 /* FIXME */
3401 if (driver->refcount)
3402 return -EBUSY;
3403 #endif
3404 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3405 driver->num);
3406 mutex_lock(&tty_mutex);
3407 list_del(&driver->tty_drivers);
3408 mutex_unlock(&tty_mutex);
3409 return 0;
3410 }
3411
3412 EXPORT_SYMBOL(tty_unregister_driver);
3413
3414 dev_t tty_devnum(struct tty_struct *tty)
3415 {
3416 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3417 }
3418 EXPORT_SYMBOL(tty_devnum);
3419
3420 void proc_clear_tty(struct task_struct *p)
3421 {
3422 unsigned long flags;
3423 struct tty_struct *tty;
3424 spin_lock_irqsave(&p->sighand->siglock, flags);
3425 tty = p->signal->tty;
3426 p->signal->tty = NULL;
3427 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3428 tty_kref_put(tty);
3429 }
3430
3431 /* Called under the sighand lock */
3432
3433 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3434 {
3435 if (tty) {
3436 unsigned long flags;
3437 /* We should not have a session or pgrp to put here but.... */
3438 spin_lock_irqsave(&tty->ctrl_lock, flags);
3439 put_pid(tty->session);
3440 put_pid(tty->pgrp);
3441 tty->pgrp = get_pid(task_pgrp(tsk));
3442 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3443 tty->session = get_pid(task_session(tsk));
3444 if (tsk->signal->tty) {
3445 printk(KERN_DEBUG "tty not NULL!!\n");
3446 tty_kref_put(tsk->signal->tty);
3447 }
3448 }
3449 put_pid(tsk->signal->tty_old_pgrp);
3450 tsk->signal->tty = tty_kref_get(tty);
3451 tsk->signal->tty_old_pgrp = NULL;
3452 }
3453
3454 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3455 {
3456 spin_lock_irq(&tsk->sighand->siglock);
3457 __proc_set_tty(tsk, tty);
3458 spin_unlock_irq(&tsk->sighand->siglock);
3459 }
3460
3461 struct tty_struct *get_current_tty(void)
3462 {
3463 struct tty_struct *tty;
3464 unsigned long flags;
3465
3466 spin_lock_irqsave(&current->sighand->siglock, flags);
3467 tty = tty_kref_get(current->signal->tty);
3468 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3469 return tty;
3470 }
3471 EXPORT_SYMBOL_GPL(get_current_tty);
3472
3473 void tty_default_fops(struct file_operations *fops)
3474 {
3475 *fops = tty_fops;
3476 }
3477
3478 /*
3479 * Initialize the console device. This is called *early*, so
3480 * we can't necessarily depend on lots of kernel help here.
3481 * Just do some early initializations, and do the complex setup
3482 * later.
3483 */
3484 void __init console_init(void)
3485 {
3486 initcall_t *call;
3487
3488 /* Setup the default TTY line discipline. */
3489 tty_ldisc_begin();
3490
3491 /*
3492 * set up the console device so that later boot sequences can
3493 * inform about problems etc..
3494 */
3495 call = __con_initcall_start;
3496 while (call < __con_initcall_end) {
3497 (*call)();
3498 call++;
3499 }
3500 }
3501
3502 static char *tty_devnode(struct device *dev, umode_t *mode)
3503 {
3504 if (!mode)
3505 return NULL;
3506 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3507 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3508 *mode = 0666;
3509 return NULL;
3510 }
3511
3512 static int __init tty_class_init(void)
3513 {
3514 tty_class = class_create(THIS_MODULE, "tty");
3515 if (IS_ERR(tty_class))
3516 return PTR_ERR(tty_class);
3517 tty_class->devnode = tty_devnode;
3518 return 0;
3519 }
3520
3521 postcore_initcall(tty_class_init);
3522
3523 /* 3/2004 jmc: why do these devices exist? */
3524 static struct cdev tty_cdev, console_cdev;
3525
3526 static ssize_t show_cons_active(struct device *dev,
3527 struct device_attribute *attr, char *buf)
3528 {
3529 struct console *cs[16];
3530 int i = 0;
3531 struct console *c;
3532 ssize_t count = 0;
3533
3534 console_lock();
3535 for_each_console(c) {
3536 if (!c->device)
3537 continue;
3538 if (!c->write)
3539 continue;
3540 if ((c->flags & CON_ENABLED) == 0)
3541 continue;
3542 cs[i++] = c;
3543 if (i >= ARRAY_SIZE(cs))
3544 break;
3545 }
3546 while (i--)
3547 count += sprintf(buf + count, "%s%d%c",
3548 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3549 console_unlock();
3550
3551 return count;
3552 }
3553 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3554
3555 static struct device *consdev;
3556
3557 void console_sysfs_notify(void)
3558 {
3559 if (consdev)
3560 sysfs_notify(&consdev->kobj, NULL, "active");
3561 }
3562
3563 /*
3564 * Ok, now we can initialize the rest of the tty devices and can count
3565 * on memory allocations, interrupts etc..
3566 */
3567 int __init tty_init(void)
3568 {
3569 cdev_init(&tty_cdev, &tty_fops);
3570 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3571 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3572 panic("Couldn't register /dev/tty driver\n");
3573 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3574
3575 cdev_init(&console_cdev, &console_fops);
3576 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3577 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3578 panic("Couldn't register /dev/console driver\n");
3579 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3580 "console");
3581 if (IS_ERR(consdev))
3582 consdev = NULL;
3583 else
3584 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3585
3586 #ifdef CONFIG_VT
3587 vty_init(&console_fops);
3588 #endif
3589 return 0;
3590 }
3591
This page took 0.17194 seconds and 5 git commands to generate.