tty: Move session_of_pgrp() and make static
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158 * free_tty_struct - free a disused tty
159 * @tty: tty struct to free
160 *
161 * Free the write buffers, tty queue and tty memory itself.
162 *
163 * Locking: none. Must be called after tty is definitely unused
164 */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 if (!tty)
169 return;
170 if (tty->dev)
171 put_device(tty->dev);
172 kfree(tty->write_buf);
173 tty->magic = 0xDEADDEAD;
174 kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184 struct tty_file_private *priv;
185
186 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(&tty_files_lock);
204 list_add(&priv->list, &tty->tty_files);
205 spin_unlock(&tty_files_lock);
206 }
207
208 /**
209 * tty_free_file - free file->private_data
210 *
211 * This shall be used only for fail path handling when tty_add_file was not
212 * called yet.
213 */
214 void tty_free_file(struct file *file)
215 {
216 struct tty_file_private *priv = file->private_data;
217
218 file->private_data = NULL;
219 kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 struct tty_file_private *priv = file->private_data;
226
227 spin_lock(&tty_files_lock);
228 list_del(&priv->list);
229 spin_unlock(&tty_files_lock);
230 tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237 * tty_name - return tty naming
238 * @tty: tty structure
239 * @buf: buffer for output
240 *
241 * Convert a tty structure into a name. The name reflects the kernel
242 * naming policy and if udev is in use may not reflect user space
243 *
244 * Locking: none
245 */
246
247 char *tty_name(struct tty_struct *tty, char *buf)
248 {
249 if (!tty) /* Hmm. NULL pointer. That's fun. */
250 strcpy(buf, "NULL tty");
251 else
252 strcpy(buf, tty->name);
253 return buf;
254 }
255
256 EXPORT_SYMBOL(tty_name);
257
258 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259 const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262 if (!tty) {
263 printk(KERN_WARNING
264 "null TTY for (%d:%d) in %s\n",
265 imajor(inode), iminor(inode), routine);
266 return 1;
267 }
268 if (tty->magic != TTY_MAGIC) {
269 printk(KERN_WARNING
270 "bad magic number for tty struct (%d:%d) in %s\n",
271 imajor(inode), iminor(inode), routine);
272 return 1;
273 }
274 #endif
275 return 0;
276 }
277
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 struct list_head *p;
282 int count = 0;
283
284 spin_lock(&tty_files_lock);
285 list_for_each(p, &tty->tty_files) {
286 count++;
287 }
288 spin_unlock(&tty_files_lock);
289 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 tty->driver->subtype == PTY_TYPE_SLAVE &&
291 tty->link && tty->link->count)
292 count++;
293 if (tty->count != count) {
294 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295 "!= #fd's(%d) in %s\n",
296 tty->name, tty->count, count, routine);
297 return count;
298 }
299 #endif
300 return 0;
301 }
302
303 /**
304 * get_tty_driver - find device of a tty
305 * @dev_t: device identifier
306 * @index: returns the index of the tty
307 *
308 * This routine returns a tty driver structure, given a device number
309 * and also passes back the index number.
310 *
311 * Locking: caller must hold tty_mutex
312 */
313
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 struct tty_driver *p;
317
318 list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 dev_t base = MKDEV(p->major, p->minor_start);
320 if (device < base || device >= base + p->num)
321 continue;
322 *index = device - base;
323 return tty_driver_kref_get(p);
324 }
325 return NULL;
326 }
327
328 #ifdef CONFIG_CONSOLE_POLL
329
330 /**
331 * tty_find_polling_driver - find device of a polled tty
332 * @name: name string to match
333 * @line: pointer to resulting tty line nr
334 *
335 * This routine returns a tty driver structure, given a name
336 * and the condition that the tty driver is capable of polled
337 * operation.
338 */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 struct tty_driver *p, *res = NULL;
342 int tty_line = 0;
343 int len;
344 char *str, *stp;
345
346 for (str = name; *str; str++)
347 if ((*str >= '0' && *str <= '9') || *str == ',')
348 break;
349 if (!*str)
350 return NULL;
351
352 len = str - name;
353 tty_line = simple_strtoul(str, &str, 10);
354
355 mutex_lock(&tty_mutex);
356 /* Search through the tty devices to look for a match */
357 list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 if (strncmp(name, p->name, len) != 0)
359 continue;
360 stp = str;
361 if (*stp == ',')
362 stp++;
363 if (*stp == '\0')
364 stp = NULL;
365
366 if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 res = tty_driver_kref_get(p);
369 *line = tty_line;
370 break;
371 }
372 }
373 mutex_unlock(&tty_mutex);
374
375 return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379
380 /**
381 * tty_check_change - check for POSIX terminal changes
382 * @tty: tty to check
383 *
384 * If we try to write to, or set the state of, a terminal and we're
385 * not in the foreground, send a SIGTTOU. If the signal is blocked or
386 * ignored, go ahead and perform the operation. (POSIX 7.2)
387 *
388 * Locking: ctrl_lock
389 */
390
391 int tty_check_change(struct tty_struct *tty)
392 {
393 unsigned long flags;
394 int ret = 0;
395
396 if (current->signal->tty != tty)
397 return 0;
398
399 spin_lock_irqsave(&tty->ctrl_lock, flags);
400
401 if (!tty->pgrp) {
402 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403 goto out_unlock;
404 }
405 if (task_pgrp(current) == tty->pgrp)
406 goto out_unlock;
407 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 if (is_ignored(SIGTTOU))
409 goto out;
410 if (is_current_pgrp_orphaned()) {
411 ret = -EIO;
412 goto out;
413 }
414 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415 set_thread_flag(TIF_SIGPENDING);
416 ret = -ERESTARTSYS;
417 out:
418 return ret;
419 out_unlock:
420 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421 return ret;
422 }
423
424 EXPORT_SYMBOL(tty_check_change);
425
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427 size_t count, loff_t *ppos)
428 {
429 return 0;
430 }
431
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433 size_t count, loff_t *ppos)
434 {
435 return -EIO;
436 }
437
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445 unsigned long arg)
446 {
447 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449
450 static long hung_up_tty_compat_ioctl(struct file *file,
451 unsigned int cmd, unsigned long arg)
452 {
453 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static const struct file_operations tty_fops = {
457 .llseek = no_llseek,
458 .read = tty_read,
459 .write = tty_write,
460 .poll = tty_poll,
461 .unlocked_ioctl = tty_ioctl,
462 .compat_ioctl = tty_compat_ioctl,
463 .open = tty_open,
464 .release = tty_release,
465 .fasync = tty_fasync,
466 };
467
468 static const struct file_operations console_fops = {
469 .llseek = no_llseek,
470 .read = tty_read,
471 .write = redirected_tty_write,
472 .poll = tty_poll,
473 .unlocked_ioctl = tty_ioctl,
474 .compat_ioctl = tty_compat_ioctl,
475 .open = tty_open,
476 .release = tty_release,
477 .fasync = tty_fasync,
478 };
479
480 static const struct file_operations hung_up_tty_fops = {
481 .llseek = no_llseek,
482 .read = hung_up_tty_read,
483 .write = hung_up_tty_write,
484 .poll = hung_up_tty_poll,
485 .unlocked_ioctl = hung_up_tty_ioctl,
486 .compat_ioctl = hung_up_tty_compat_ioctl,
487 .release = tty_release,
488 };
489
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492
493
494 void proc_clear_tty(struct task_struct *p)
495 {
496 unsigned long flags;
497 struct tty_struct *tty;
498 spin_lock_irqsave(&p->sighand->siglock, flags);
499 tty = p->signal->tty;
500 p->signal->tty = NULL;
501 spin_unlock_irqrestore(&p->sighand->siglock, flags);
502 tty_kref_put(tty);
503 }
504
505 /**
506 * proc_set_tty - set the controlling terminal
507 *
508 * Only callable by the session leader and only if it does not already have
509 * a controlling terminal.
510 *
511 * Caller must hold: a readlock on tasklist_lock
512 * sighand lock
513 */
514 static void __proc_set_tty(struct tty_struct *tty)
515 {
516 unsigned long flags;
517
518 /* We should not have a session or pgrp to put here but.... */
519 spin_lock_irqsave(&tty->ctrl_lock, flags);
520 put_pid(tty->session);
521 put_pid(tty->pgrp);
522 tty->pgrp = get_pid(task_pgrp(current));
523 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
524 tty->session = get_pid(task_session(current));
525 if (current->signal->tty) {
526 printk(KERN_DEBUG "tty not NULL!!\n");
527 tty_kref_put(current->signal->tty);
528 }
529 put_pid(current->signal->tty_old_pgrp);
530 current->signal->tty = tty_kref_get(tty);
531 current->signal->tty_old_pgrp = NULL;
532 }
533
534 static void proc_set_tty(struct tty_struct *tty)
535 {
536 spin_lock_irq(&current->sighand->siglock);
537 __proc_set_tty(tty);
538 spin_unlock_irq(&current->sighand->siglock);
539 }
540
541 struct tty_struct *get_current_tty(void)
542 {
543 struct tty_struct *tty;
544 unsigned long flags;
545
546 spin_lock_irqsave(&current->sighand->siglock, flags);
547 tty = tty_kref_get(current->signal->tty);
548 spin_unlock_irqrestore(&current->sighand->siglock, flags);
549 return tty;
550 }
551 EXPORT_SYMBOL_GPL(get_current_tty);
552
553 static void session_clear_tty(struct pid *session)
554 {
555 struct task_struct *p;
556 do_each_pid_task(session, PIDTYPE_SID, p) {
557 proc_clear_tty(p);
558 } while_each_pid_task(session, PIDTYPE_SID, p);
559 }
560
561 /**
562 * tty_wakeup - request more data
563 * @tty: terminal
564 *
565 * Internal and external helper for wakeups of tty. This function
566 * informs the line discipline if present that the driver is ready
567 * to receive more output data.
568 */
569
570 void tty_wakeup(struct tty_struct *tty)
571 {
572 struct tty_ldisc *ld;
573
574 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
575 ld = tty_ldisc_ref(tty);
576 if (ld) {
577 if (ld->ops->write_wakeup)
578 ld->ops->write_wakeup(tty);
579 tty_ldisc_deref(ld);
580 }
581 }
582 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
583 }
584
585 EXPORT_SYMBOL_GPL(tty_wakeup);
586
587 /**
588 * tty_signal_session_leader - sends SIGHUP to session leader
589 * @tty controlling tty
590 * @exit_session if non-zero, signal all foreground group processes
591 *
592 * Send SIGHUP and SIGCONT to the session leader and its process group.
593 * Optionally, signal all processes in the foreground process group.
594 *
595 * Returns the number of processes in the session with this tty
596 * as their controlling terminal. This value is used to drop
597 * tty references for those processes.
598 */
599 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
600 {
601 struct task_struct *p;
602 int refs = 0;
603 struct pid *tty_pgrp = NULL;
604
605 read_lock(&tasklist_lock);
606 if (tty->session) {
607 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
608 spin_lock_irq(&p->sighand->siglock);
609 if (p->signal->tty == tty) {
610 p->signal->tty = NULL;
611 /* We defer the dereferences outside fo
612 the tasklist lock */
613 refs++;
614 }
615 if (!p->signal->leader) {
616 spin_unlock_irq(&p->sighand->siglock);
617 continue;
618 }
619 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
620 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
621 put_pid(p->signal->tty_old_pgrp); /* A noop */
622 spin_lock(&tty->ctrl_lock);
623 tty_pgrp = get_pid(tty->pgrp);
624 if (tty->pgrp)
625 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 spin_unlock(&tty->ctrl_lock);
627 spin_unlock_irq(&p->sighand->siglock);
628 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629 }
630 read_unlock(&tasklist_lock);
631
632 if (tty_pgrp) {
633 if (exit_session)
634 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
635 put_pid(tty_pgrp);
636 }
637
638 return refs;
639 }
640
641 /**
642 * __tty_hangup - actual handler for hangup events
643 * @work: tty device
644 *
645 * This can be called by a "kworker" kernel thread. That is process
646 * synchronous but doesn't hold any locks, so we need to make sure we
647 * have the appropriate locks for what we're doing.
648 *
649 * The hangup event clears any pending redirections onto the hung up
650 * device. It ensures future writes will error and it does the needed
651 * line discipline hangup and signal delivery. The tty object itself
652 * remains intact.
653 *
654 * Locking:
655 * BTM
656 * redirect lock for undoing redirection
657 * file list lock for manipulating list of ttys
658 * tty_ldiscs_lock from called functions
659 * termios_rwsem resetting termios data
660 * tasklist_lock to walk task list for hangup event
661 * ->siglock to protect ->signal/->sighand
662 */
663 static void __tty_hangup(struct tty_struct *tty, int exit_session)
664 {
665 struct file *cons_filp = NULL;
666 struct file *filp, *f = NULL;
667 struct tty_file_private *priv;
668 int closecount = 0, n;
669 int refs;
670
671 if (!tty)
672 return;
673
674
675 spin_lock(&redirect_lock);
676 if (redirect && file_tty(redirect) == tty) {
677 f = redirect;
678 redirect = NULL;
679 }
680 spin_unlock(&redirect_lock);
681
682 tty_lock(tty);
683
684 if (test_bit(TTY_HUPPED, &tty->flags)) {
685 tty_unlock(tty);
686 return;
687 }
688
689 /* some functions below drop BTM, so we need this bit */
690 set_bit(TTY_HUPPING, &tty->flags);
691
692 /* inuse_filps is protected by the single tty lock,
693 this really needs to change if we want to flush the
694 workqueue with the lock held */
695 check_tty_count(tty, "tty_hangup");
696
697 spin_lock(&tty_files_lock);
698 /* This breaks for file handles being sent over AF_UNIX sockets ? */
699 list_for_each_entry(priv, &tty->tty_files, list) {
700 filp = priv->file;
701 if (filp->f_op->write == redirected_tty_write)
702 cons_filp = filp;
703 if (filp->f_op->write != tty_write)
704 continue;
705 closecount++;
706 __tty_fasync(-1, filp, 0); /* can't block */
707 filp->f_op = &hung_up_tty_fops;
708 }
709 spin_unlock(&tty_files_lock);
710
711 refs = tty_signal_session_leader(tty, exit_session);
712 /* Account for the p->signal references we killed */
713 while (refs--)
714 tty_kref_put(tty);
715
716 /*
717 * it drops BTM and thus races with reopen
718 * we protect the race by TTY_HUPPING
719 */
720 tty_ldisc_hangup(tty);
721
722 spin_lock_irq(&tty->ctrl_lock);
723 clear_bit(TTY_THROTTLED, &tty->flags);
724 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
725 put_pid(tty->session);
726 put_pid(tty->pgrp);
727 tty->session = NULL;
728 tty->pgrp = NULL;
729 tty->ctrl_status = 0;
730 spin_unlock_irq(&tty->ctrl_lock);
731
732 /*
733 * If one of the devices matches a console pointer, we
734 * cannot just call hangup() because that will cause
735 * tty->count and state->count to go out of sync.
736 * So we just call close() the right number of times.
737 */
738 if (cons_filp) {
739 if (tty->ops->close)
740 for (n = 0; n < closecount; n++)
741 tty->ops->close(tty, cons_filp);
742 } else if (tty->ops->hangup)
743 tty->ops->hangup(tty);
744 /*
745 * We don't want to have driver/ldisc interactions beyond
746 * the ones we did here. The driver layer expects no
747 * calls after ->hangup() from the ldisc side. However we
748 * can't yet guarantee all that.
749 */
750 set_bit(TTY_HUPPED, &tty->flags);
751 clear_bit(TTY_HUPPING, &tty->flags);
752
753 tty_unlock(tty);
754
755 if (f)
756 fput(f);
757 }
758
759 static void do_tty_hangup(struct work_struct *work)
760 {
761 struct tty_struct *tty =
762 container_of(work, struct tty_struct, hangup_work);
763
764 __tty_hangup(tty, 0);
765 }
766
767 /**
768 * tty_hangup - trigger a hangup event
769 * @tty: tty to hangup
770 *
771 * A carrier loss (virtual or otherwise) has occurred on this like
772 * schedule a hangup sequence to run after this event.
773 */
774
775 void tty_hangup(struct tty_struct *tty)
776 {
777 #ifdef TTY_DEBUG_HANGUP
778 char buf[64];
779 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
780 #endif
781 schedule_work(&tty->hangup_work);
782 }
783
784 EXPORT_SYMBOL(tty_hangup);
785
786 /**
787 * tty_vhangup - process vhangup
788 * @tty: tty to hangup
789 *
790 * The user has asked via system call for the terminal to be hung up.
791 * We do this synchronously so that when the syscall returns the process
792 * is complete. That guarantee is necessary for security reasons.
793 */
794
795 void tty_vhangup(struct tty_struct *tty)
796 {
797 #ifdef TTY_DEBUG_HANGUP
798 char buf[64];
799
800 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
801 #endif
802 __tty_hangup(tty, 0);
803 }
804
805 EXPORT_SYMBOL(tty_vhangup);
806
807
808 /**
809 * tty_vhangup_self - process vhangup for own ctty
810 *
811 * Perform a vhangup on the current controlling tty
812 */
813
814 void tty_vhangup_self(void)
815 {
816 struct tty_struct *tty;
817
818 tty = get_current_tty();
819 if (tty) {
820 tty_vhangup(tty);
821 tty_kref_put(tty);
822 }
823 }
824
825 /**
826 * tty_vhangup_session - hangup session leader exit
827 * @tty: tty to hangup
828 *
829 * The session leader is exiting and hanging up its controlling terminal.
830 * Every process in the foreground process group is signalled SIGHUP.
831 *
832 * We do this synchronously so that when the syscall returns the process
833 * is complete. That guarantee is necessary for security reasons.
834 */
835
836 static void tty_vhangup_session(struct tty_struct *tty)
837 {
838 #ifdef TTY_DEBUG_HANGUP
839 char buf[64];
840
841 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
842 #endif
843 __tty_hangup(tty, 1);
844 }
845
846 /**
847 * tty_hung_up_p - was tty hung up
848 * @filp: file pointer of tty
849 *
850 * Return true if the tty has been subject to a vhangup or a carrier
851 * loss
852 */
853
854 int tty_hung_up_p(struct file *filp)
855 {
856 return (filp->f_op == &hung_up_tty_fops);
857 }
858
859 EXPORT_SYMBOL(tty_hung_up_p);
860
861 /**
862 * disassociate_ctty - disconnect controlling tty
863 * @on_exit: true if exiting so need to "hang up" the session
864 *
865 * This function is typically called only by the session leader, when
866 * it wants to disassociate itself from its controlling tty.
867 *
868 * It performs the following functions:
869 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
870 * (2) Clears the tty from being controlling the session
871 * (3) Clears the controlling tty for all processes in the
872 * session group.
873 *
874 * The argument on_exit is set to 1 if called when a process is
875 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
876 *
877 * Locking:
878 * BTM is taken for hysterical raisins, and held when
879 * called from no_tty().
880 * tty_mutex is taken to protect tty
881 * ->siglock is taken to protect ->signal/->sighand
882 * tasklist_lock is taken to walk process list for sessions
883 * ->siglock is taken to protect ->signal/->sighand
884 */
885
886 void disassociate_ctty(int on_exit)
887 {
888 struct tty_struct *tty;
889
890 if (!current->signal->leader)
891 return;
892
893 tty = get_current_tty();
894 if (tty) {
895 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
896 tty_vhangup_session(tty);
897 } else {
898 struct pid *tty_pgrp = tty_get_pgrp(tty);
899 if (tty_pgrp) {
900 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
901 if (!on_exit)
902 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
903 put_pid(tty_pgrp);
904 }
905 }
906 tty_kref_put(tty);
907
908 } else if (on_exit) {
909 struct pid *old_pgrp;
910 spin_lock_irq(&current->sighand->siglock);
911 old_pgrp = current->signal->tty_old_pgrp;
912 current->signal->tty_old_pgrp = NULL;
913 spin_unlock_irq(&current->sighand->siglock);
914 if (old_pgrp) {
915 kill_pgrp(old_pgrp, SIGHUP, on_exit);
916 kill_pgrp(old_pgrp, SIGCONT, on_exit);
917 put_pid(old_pgrp);
918 }
919 return;
920 }
921
922 spin_lock_irq(&current->sighand->siglock);
923 put_pid(current->signal->tty_old_pgrp);
924 current->signal->tty_old_pgrp = NULL;
925
926 tty = tty_kref_get(current->signal->tty);
927 if (tty) {
928 unsigned long flags;
929 spin_lock_irqsave(&tty->ctrl_lock, flags);
930 put_pid(tty->session);
931 put_pid(tty->pgrp);
932 tty->session = NULL;
933 tty->pgrp = NULL;
934 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935 tty_kref_put(tty);
936 } else {
937 #ifdef TTY_DEBUG_HANGUP
938 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
939 " = NULL", tty);
940 #endif
941 }
942
943 spin_unlock_irq(&current->sighand->siglock);
944 /* Now clear signal->tty under the lock */
945 read_lock(&tasklist_lock);
946 session_clear_tty(task_session(current));
947 read_unlock(&tasklist_lock);
948 }
949
950 /**
951 *
952 * no_tty - Ensure the current process does not have a controlling tty
953 */
954 void no_tty(void)
955 {
956 /* FIXME: Review locking here. The tty_lock never covered any race
957 between a new association and proc_clear_tty but possible we need
958 to protect against this anyway */
959 struct task_struct *tsk = current;
960 disassociate_ctty(0);
961 proc_clear_tty(tsk);
962 }
963
964
965 /**
966 * stop_tty - propagate flow control
967 * @tty: tty to stop
968 *
969 * Perform flow control to the driver. May be called
970 * on an already stopped device and will not re-call the driver
971 * method.
972 *
973 * This functionality is used by both the line disciplines for
974 * halting incoming flow and by the driver. It may therefore be
975 * called from any context, may be under the tty atomic_write_lock
976 * but not always.
977 *
978 * Locking:
979 * flow_lock
980 */
981
982 void __stop_tty(struct tty_struct *tty)
983 {
984 if (tty->stopped)
985 return;
986 tty->stopped = 1;
987 if (tty->ops->stop)
988 (tty->ops->stop)(tty);
989 }
990
991 void stop_tty(struct tty_struct *tty)
992 {
993 unsigned long flags;
994
995 spin_lock_irqsave(&tty->flow_lock, flags);
996 __stop_tty(tty);
997 spin_unlock_irqrestore(&tty->flow_lock, flags);
998 }
999 EXPORT_SYMBOL(stop_tty);
1000
1001 /**
1002 * start_tty - propagate flow control
1003 * @tty: tty to start
1004 *
1005 * Start a tty that has been stopped if at all possible. If this
1006 * tty was previous stopped and is now being started, the driver
1007 * start method is invoked and the line discipline woken.
1008 *
1009 * Locking:
1010 * flow_lock
1011 */
1012
1013 void __start_tty(struct tty_struct *tty)
1014 {
1015 if (!tty->stopped || tty->flow_stopped)
1016 return;
1017 tty->stopped = 0;
1018 if (tty->ops->start)
1019 (tty->ops->start)(tty);
1020 tty_wakeup(tty);
1021 }
1022
1023 void start_tty(struct tty_struct *tty)
1024 {
1025 unsigned long flags;
1026
1027 spin_lock_irqsave(&tty->flow_lock, flags);
1028 __start_tty(tty);
1029 spin_unlock_irqrestore(&tty->flow_lock, flags);
1030 }
1031 EXPORT_SYMBOL(start_tty);
1032
1033 /* We limit tty time update visibility to every 8 seconds or so. */
1034 static void tty_update_time(struct timespec *time)
1035 {
1036 unsigned long sec = get_seconds() & ~7;
1037 if ((long)(sec - time->tv_sec) > 0)
1038 time->tv_sec = sec;
1039 }
1040
1041 /**
1042 * tty_read - read method for tty device files
1043 * @file: pointer to tty file
1044 * @buf: user buffer
1045 * @count: size of user buffer
1046 * @ppos: unused
1047 *
1048 * Perform the read system call function on this terminal device. Checks
1049 * for hung up devices before calling the line discipline method.
1050 *
1051 * Locking:
1052 * Locks the line discipline internally while needed. Multiple
1053 * read calls may be outstanding in parallel.
1054 */
1055
1056 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1057 loff_t *ppos)
1058 {
1059 int i;
1060 struct inode *inode = file_inode(file);
1061 struct tty_struct *tty = file_tty(file);
1062 struct tty_ldisc *ld;
1063
1064 if (tty_paranoia_check(tty, inode, "tty_read"))
1065 return -EIO;
1066 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1067 return -EIO;
1068
1069 /* We want to wait for the line discipline to sort out in this
1070 situation */
1071 ld = tty_ldisc_ref_wait(tty);
1072 if (ld->ops->read)
1073 i = (ld->ops->read)(tty, file, buf, count);
1074 else
1075 i = -EIO;
1076 tty_ldisc_deref(ld);
1077
1078 if (i > 0)
1079 tty_update_time(&inode->i_atime);
1080
1081 return i;
1082 }
1083
1084 static void tty_write_unlock(struct tty_struct *tty)
1085 {
1086 mutex_unlock(&tty->atomic_write_lock);
1087 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1088 }
1089
1090 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1091 {
1092 if (!mutex_trylock(&tty->atomic_write_lock)) {
1093 if (ndelay)
1094 return -EAGAIN;
1095 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1096 return -ERESTARTSYS;
1097 }
1098 return 0;
1099 }
1100
1101 /*
1102 * Split writes up in sane blocksizes to avoid
1103 * denial-of-service type attacks
1104 */
1105 static inline ssize_t do_tty_write(
1106 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1107 struct tty_struct *tty,
1108 struct file *file,
1109 const char __user *buf,
1110 size_t count)
1111 {
1112 ssize_t ret, written = 0;
1113 unsigned int chunk;
1114
1115 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1116 if (ret < 0)
1117 return ret;
1118
1119 /*
1120 * We chunk up writes into a temporary buffer. This
1121 * simplifies low-level drivers immensely, since they
1122 * don't have locking issues and user mode accesses.
1123 *
1124 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1125 * big chunk-size..
1126 *
1127 * The default chunk-size is 2kB, because the NTTY
1128 * layer has problems with bigger chunks. It will
1129 * claim to be able to handle more characters than
1130 * it actually does.
1131 *
1132 * FIXME: This can probably go away now except that 64K chunks
1133 * are too likely to fail unless switched to vmalloc...
1134 */
1135 chunk = 2048;
1136 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1137 chunk = 65536;
1138 if (count < chunk)
1139 chunk = count;
1140
1141 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1142 if (tty->write_cnt < chunk) {
1143 unsigned char *buf_chunk;
1144
1145 if (chunk < 1024)
1146 chunk = 1024;
1147
1148 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1149 if (!buf_chunk) {
1150 ret = -ENOMEM;
1151 goto out;
1152 }
1153 kfree(tty->write_buf);
1154 tty->write_cnt = chunk;
1155 tty->write_buf = buf_chunk;
1156 }
1157
1158 /* Do the write .. */
1159 for (;;) {
1160 size_t size = count;
1161 if (size > chunk)
1162 size = chunk;
1163 ret = -EFAULT;
1164 if (copy_from_user(tty->write_buf, buf, size))
1165 break;
1166 ret = write(tty, file, tty->write_buf, size);
1167 if (ret <= 0)
1168 break;
1169 written += ret;
1170 buf += ret;
1171 count -= ret;
1172 if (!count)
1173 break;
1174 ret = -ERESTARTSYS;
1175 if (signal_pending(current))
1176 break;
1177 cond_resched();
1178 }
1179 if (written) {
1180 tty_update_time(&file_inode(file)->i_mtime);
1181 ret = written;
1182 }
1183 out:
1184 tty_write_unlock(tty);
1185 return ret;
1186 }
1187
1188 /**
1189 * tty_write_message - write a message to a certain tty, not just the console.
1190 * @tty: the destination tty_struct
1191 * @msg: the message to write
1192 *
1193 * This is used for messages that need to be redirected to a specific tty.
1194 * We don't put it into the syslog queue right now maybe in the future if
1195 * really needed.
1196 *
1197 * We must still hold the BTM and test the CLOSING flag for the moment.
1198 */
1199
1200 void tty_write_message(struct tty_struct *tty, char *msg)
1201 {
1202 if (tty) {
1203 mutex_lock(&tty->atomic_write_lock);
1204 tty_lock(tty);
1205 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1206 tty_unlock(tty);
1207 tty->ops->write(tty, msg, strlen(msg));
1208 } else
1209 tty_unlock(tty);
1210 tty_write_unlock(tty);
1211 }
1212 return;
1213 }
1214
1215
1216 /**
1217 * tty_write - write method for tty device file
1218 * @file: tty file pointer
1219 * @buf: user data to write
1220 * @count: bytes to write
1221 * @ppos: unused
1222 *
1223 * Write data to a tty device via the line discipline.
1224 *
1225 * Locking:
1226 * Locks the line discipline as required
1227 * Writes to the tty driver are serialized by the atomic_write_lock
1228 * and are then processed in chunks to the device. The line discipline
1229 * write method will not be invoked in parallel for each device.
1230 */
1231
1232 static ssize_t tty_write(struct file *file, const char __user *buf,
1233 size_t count, loff_t *ppos)
1234 {
1235 struct tty_struct *tty = file_tty(file);
1236 struct tty_ldisc *ld;
1237 ssize_t ret;
1238
1239 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1240 return -EIO;
1241 if (!tty || !tty->ops->write ||
1242 (test_bit(TTY_IO_ERROR, &tty->flags)))
1243 return -EIO;
1244 /* Short term debug to catch buggy drivers */
1245 if (tty->ops->write_room == NULL)
1246 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1247 tty->driver->name);
1248 ld = tty_ldisc_ref_wait(tty);
1249 if (!ld->ops->write)
1250 ret = -EIO;
1251 else
1252 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1253 tty_ldisc_deref(ld);
1254 return ret;
1255 }
1256
1257 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1258 size_t count, loff_t *ppos)
1259 {
1260 struct file *p = NULL;
1261
1262 spin_lock(&redirect_lock);
1263 if (redirect)
1264 p = get_file(redirect);
1265 spin_unlock(&redirect_lock);
1266
1267 if (p) {
1268 ssize_t res;
1269 res = vfs_write(p, buf, count, &p->f_pos);
1270 fput(p);
1271 return res;
1272 }
1273 return tty_write(file, buf, count, ppos);
1274 }
1275
1276 /**
1277 * tty_send_xchar - send priority character
1278 *
1279 * Send a high priority character to the tty even if stopped
1280 *
1281 * Locking: none for xchar method, write ordering for write method.
1282 */
1283
1284 int tty_send_xchar(struct tty_struct *tty, char ch)
1285 {
1286 int was_stopped = tty->stopped;
1287
1288 if (tty->ops->send_xchar) {
1289 tty->ops->send_xchar(tty, ch);
1290 return 0;
1291 }
1292
1293 if (tty_write_lock(tty, 0) < 0)
1294 return -ERESTARTSYS;
1295
1296 if (was_stopped)
1297 start_tty(tty);
1298 tty->ops->write(tty, &ch, 1);
1299 if (was_stopped)
1300 stop_tty(tty);
1301 tty_write_unlock(tty);
1302 return 0;
1303 }
1304
1305 static char ptychar[] = "pqrstuvwxyzabcde";
1306
1307 /**
1308 * pty_line_name - generate name for a pty
1309 * @driver: the tty driver in use
1310 * @index: the minor number
1311 * @p: output buffer of at least 6 bytes
1312 *
1313 * Generate a name from a driver reference and write it to the output
1314 * buffer.
1315 *
1316 * Locking: None
1317 */
1318 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1319 {
1320 int i = index + driver->name_base;
1321 /* ->name is initialized to "ttyp", but "tty" is expected */
1322 sprintf(p, "%s%c%x",
1323 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1324 ptychar[i >> 4 & 0xf], i & 0xf);
1325 }
1326
1327 /**
1328 * tty_line_name - generate name for a tty
1329 * @driver: the tty driver in use
1330 * @index: the minor number
1331 * @p: output buffer of at least 7 bytes
1332 *
1333 * Generate a name from a driver reference and write it to the output
1334 * buffer.
1335 *
1336 * Locking: None
1337 */
1338 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1339 {
1340 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1341 return sprintf(p, "%s", driver->name);
1342 else
1343 return sprintf(p, "%s%d", driver->name,
1344 index + driver->name_base);
1345 }
1346
1347 /**
1348 * tty_driver_lookup_tty() - find an existing tty, if any
1349 * @driver: the driver for the tty
1350 * @idx: the minor number
1351 *
1352 * Return the tty, if found or ERR_PTR() otherwise.
1353 *
1354 * Locking: tty_mutex must be held. If tty is found, the mutex must
1355 * be held until the 'fast-open' is also done. Will change once we
1356 * have refcounting in the driver and per driver locking
1357 */
1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1359 struct inode *inode, int idx)
1360 {
1361 if (driver->ops->lookup)
1362 return driver->ops->lookup(driver, inode, idx);
1363
1364 return driver->ttys[idx];
1365 }
1366
1367 /**
1368 * tty_init_termios - helper for termios setup
1369 * @tty: the tty to set up
1370 *
1371 * Initialise the termios structures for this tty. Thus runs under
1372 * the tty_mutex currently so we can be relaxed about ordering.
1373 */
1374
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377 struct ktermios *tp;
1378 int idx = tty->index;
1379
1380 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381 tty->termios = tty->driver->init_termios;
1382 else {
1383 /* Check for lazy saved data */
1384 tp = tty->driver->termios[idx];
1385 if (tp != NULL)
1386 tty->termios = *tp;
1387 else
1388 tty->termios = tty->driver->init_termios;
1389 }
1390 /* Compatibility until drivers always set this */
1391 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393 return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399 int ret = tty_init_termios(tty);
1400 if (ret)
1401 return ret;
1402
1403 tty_driver_kref_get(driver);
1404 tty->count++;
1405 driver->ttys[tty->index] = tty;
1406 return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409
1410 /**
1411 * tty_driver_install_tty() - install a tty entry in the driver
1412 * @driver: the driver for the tty
1413 * @tty: the tty
1414 *
1415 * Install a tty object into the driver tables. The tty->index field
1416 * will be set by the time this is called. This method is responsible
1417 * for ensuring any need additional structures are allocated and
1418 * configured.
1419 *
1420 * Locking: tty_mutex for now
1421 */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423 struct tty_struct *tty)
1424 {
1425 return driver->ops->install ? driver->ops->install(driver, tty) :
1426 tty_standard_install(driver, tty);
1427 }
1428
1429 /**
1430 * tty_driver_remove_tty() - remove a tty from the driver tables
1431 * @driver: the driver for the tty
1432 * @idx: the minor number
1433 *
1434 * Remvoe a tty object from the driver tables. The tty->index field
1435 * will be set by the time this is called.
1436 *
1437 * Locking: tty_mutex for now
1438 */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441 if (driver->ops->remove)
1442 driver->ops->remove(driver, tty);
1443 else
1444 driver->ttys[tty->index] = NULL;
1445 }
1446
1447 /*
1448 * tty_reopen() - fast re-open of an open tty
1449 * @tty - the tty to open
1450 *
1451 * Return 0 on success, -errno on error.
1452 *
1453 * Locking: tty_mutex must be held from the time the tty was found
1454 * till this open completes.
1455 */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458 struct tty_driver *driver = tty->driver;
1459
1460 if (test_bit(TTY_CLOSING, &tty->flags) ||
1461 test_bit(TTY_HUPPING, &tty->flags))
1462 return -EIO;
1463
1464 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465 driver->subtype == PTY_TYPE_MASTER) {
1466 /*
1467 * special case for PTY masters: only one open permitted,
1468 * and the slave side open count is incremented as well.
1469 */
1470 if (tty->count)
1471 return -EIO;
1472
1473 tty->link->count++;
1474 }
1475 tty->count++;
1476
1477 WARN_ON(!tty->ldisc);
1478
1479 return 0;
1480 }
1481
1482 /**
1483 * tty_init_dev - initialise a tty device
1484 * @driver: tty driver we are opening a device on
1485 * @idx: device index
1486 * @ret_tty: returned tty structure
1487 *
1488 * Prepare a tty device. This may not be a "new" clean device but
1489 * could also be an active device. The pty drivers require special
1490 * handling because of this.
1491 *
1492 * Locking:
1493 * The function is called under the tty_mutex, which
1494 * protects us from the tty struct or driver itself going away.
1495 *
1496 * On exit the tty device has the line discipline attached and
1497 * a reference count of 1. If a pair was created for pty/tty use
1498 * and the other was a pty master then it too has a reference count of 1.
1499 *
1500 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1501 * failed open. The new code protects the open with a mutex, so it's
1502 * really quite straightforward. The mutex locking can probably be
1503 * relaxed for the (most common) case of reopening a tty.
1504 */
1505
1506 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1507 {
1508 struct tty_struct *tty;
1509 int retval;
1510
1511 /*
1512 * First time open is complex, especially for PTY devices.
1513 * This code guarantees that either everything succeeds and the
1514 * TTY is ready for operation, or else the table slots are vacated
1515 * and the allocated memory released. (Except that the termios
1516 * and locked termios may be retained.)
1517 */
1518
1519 if (!try_module_get(driver->owner))
1520 return ERR_PTR(-ENODEV);
1521
1522 tty = alloc_tty_struct(driver, idx);
1523 if (!tty) {
1524 retval = -ENOMEM;
1525 goto err_module_put;
1526 }
1527
1528 tty_lock(tty);
1529 retval = tty_driver_install_tty(driver, tty);
1530 if (retval < 0)
1531 goto err_deinit_tty;
1532
1533 if (!tty->port)
1534 tty->port = driver->ports[idx];
1535
1536 WARN_RATELIMIT(!tty->port,
1537 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1538 __func__, tty->driver->name);
1539
1540 tty->port->itty = tty;
1541
1542 /*
1543 * Structures all installed ... call the ldisc open routines.
1544 * If we fail here just call release_tty to clean up. No need
1545 * to decrement the use counts, as release_tty doesn't care.
1546 */
1547 retval = tty_ldisc_setup(tty, tty->link);
1548 if (retval)
1549 goto err_release_tty;
1550 /* Return the tty locked so that it cannot vanish under the caller */
1551 return tty;
1552
1553 err_deinit_tty:
1554 tty_unlock(tty);
1555 deinitialize_tty_struct(tty);
1556 free_tty_struct(tty);
1557 err_module_put:
1558 module_put(driver->owner);
1559 return ERR_PTR(retval);
1560
1561 /* call the tty release_tty routine to clean out this slot */
1562 err_release_tty:
1563 tty_unlock(tty);
1564 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1565 "clearing slot %d\n", idx);
1566 release_tty(tty, idx);
1567 return ERR_PTR(retval);
1568 }
1569
1570 void tty_free_termios(struct tty_struct *tty)
1571 {
1572 struct ktermios *tp;
1573 int idx = tty->index;
1574
1575 /* If the port is going to reset then it has no termios to save */
1576 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1577 return;
1578
1579 /* Stash the termios data */
1580 tp = tty->driver->termios[idx];
1581 if (tp == NULL) {
1582 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1583 if (tp == NULL) {
1584 pr_warn("tty: no memory to save termios state.\n");
1585 return;
1586 }
1587 tty->driver->termios[idx] = tp;
1588 }
1589 *tp = tty->termios;
1590 }
1591 EXPORT_SYMBOL(tty_free_termios);
1592
1593 /**
1594 * tty_flush_works - flush all works of a tty
1595 * @tty: tty device to flush works for
1596 *
1597 * Sync flush all works belonging to @tty.
1598 */
1599 static void tty_flush_works(struct tty_struct *tty)
1600 {
1601 flush_work(&tty->SAK_work);
1602 flush_work(&tty->hangup_work);
1603 }
1604
1605 /**
1606 * release_one_tty - release tty structure memory
1607 * @kref: kref of tty we are obliterating
1608 *
1609 * Releases memory associated with a tty structure, and clears out the
1610 * driver table slots. This function is called when a device is no longer
1611 * in use. It also gets called when setup of a device fails.
1612 *
1613 * Locking:
1614 * takes the file list lock internally when working on the list
1615 * of ttys that the driver keeps.
1616 *
1617 * This method gets called from a work queue so that the driver private
1618 * cleanup ops can sleep (needed for USB at least)
1619 */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622 struct tty_struct *tty =
1623 container_of(work, struct tty_struct, hangup_work);
1624 struct tty_driver *driver = tty->driver;
1625 struct module *owner = driver->owner;
1626
1627 if (tty->ops->cleanup)
1628 tty->ops->cleanup(tty);
1629
1630 tty->magic = 0;
1631 tty_driver_kref_put(driver);
1632 module_put(owner);
1633
1634 spin_lock(&tty_files_lock);
1635 list_del_init(&tty->tty_files);
1636 spin_unlock(&tty_files_lock);
1637
1638 put_pid(tty->pgrp);
1639 put_pid(tty->session);
1640 free_tty_struct(tty);
1641 }
1642
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646
1647 /* The hangup queue is now free so we can reuse it rather than
1648 waste a chunk of memory for each port */
1649 INIT_WORK(&tty->hangup_work, release_one_tty);
1650 schedule_work(&tty->hangup_work);
1651 }
1652
1653 /**
1654 * tty_kref_put - release a tty kref
1655 * @tty: tty device
1656 *
1657 * Release a reference to a tty device and if need be let the kref
1658 * layer destruct the object for us
1659 */
1660
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663 if (tty)
1664 kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667
1668 /**
1669 * release_tty - release tty structure memory
1670 *
1671 * Release both @tty and a possible linked partner (think pty pair),
1672 * and decrement the refcount of the backing module.
1673 *
1674 * Locking:
1675 * tty_mutex
1676 * takes the file list lock internally when working on the list
1677 * of ttys that the driver keeps.
1678 *
1679 */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682 /* This should always be true but check for the moment */
1683 WARN_ON(tty->index != idx);
1684 WARN_ON(!mutex_is_locked(&tty_mutex));
1685 if (tty->ops->shutdown)
1686 tty->ops->shutdown(tty);
1687 tty_free_termios(tty);
1688 tty_driver_remove_tty(tty->driver, tty);
1689 tty->port->itty = NULL;
1690 if (tty->link)
1691 tty->link->port->itty = NULL;
1692 cancel_work_sync(&tty->port->buf.work);
1693
1694 if (tty->link)
1695 tty_kref_put(tty->link);
1696 tty_kref_put(tty);
1697 }
1698
1699 /**
1700 * tty_release_checks - check a tty before real release
1701 * @tty: tty to check
1702 * @o_tty: link of @tty (if any)
1703 * @idx: index of the tty
1704 *
1705 * Performs some paranoid checking before true release of the @tty.
1706 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1707 */
1708 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1709 int idx)
1710 {
1711 #ifdef TTY_PARANOIA_CHECK
1712 if (idx < 0 || idx >= tty->driver->num) {
1713 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1714 __func__, tty->name);
1715 return -1;
1716 }
1717
1718 /* not much to check for devpts */
1719 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1720 return 0;
1721
1722 if (tty != tty->driver->ttys[idx]) {
1723 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1724 __func__, idx, tty->name);
1725 return -1;
1726 }
1727 if (tty->driver->other) {
1728 if (o_tty != tty->driver->other->ttys[idx]) {
1729 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1730 __func__, idx, tty->name);
1731 return -1;
1732 }
1733 if (o_tty->link != tty) {
1734 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1735 return -1;
1736 }
1737 }
1738 #endif
1739 return 0;
1740 }
1741
1742 /**
1743 * tty_release - vfs callback for close
1744 * @inode: inode of tty
1745 * @filp: file pointer for handle to tty
1746 *
1747 * Called the last time each file handle is closed that references
1748 * this tty. There may however be several such references.
1749 *
1750 * Locking:
1751 * Takes bkl. See tty_release_dev
1752 *
1753 * Even releasing the tty structures is a tricky business.. We have
1754 * to be very careful that the structures are all released at the
1755 * same time, as interrupts might otherwise get the wrong pointers.
1756 *
1757 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1758 * lead to double frees or releasing memory still in use.
1759 */
1760
1761 int tty_release(struct inode *inode, struct file *filp)
1762 {
1763 struct tty_struct *tty = file_tty(filp);
1764 struct tty_struct *o_tty;
1765 int pty_master, tty_closing, o_tty_closing, do_sleep;
1766 int idx;
1767 char buf[64];
1768
1769 if (tty_paranoia_check(tty, inode, __func__))
1770 return 0;
1771
1772 tty_lock(tty);
1773 check_tty_count(tty, __func__);
1774
1775 __tty_fasync(-1, filp, 0);
1776
1777 idx = tty->index;
1778 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779 tty->driver->subtype == PTY_TYPE_MASTER);
1780 /* Review: parallel close */
1781 o_tty = tty->link;
1782
1783 if (tty_release_checks(tty, o_tty, idx)) {
1784 tty_unlock(tty);
1785 return 0;
1786 }
1787
1788 #ifdef TTY_DEBUG_HANGUP
1789 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1790 tty_name(tty, buf), tty->count);
1791 #endif
1792
1793 if (tty->ops->close)
1794 tty->ops->close(tty, filp);
1795
1796 tty_unlock(tty);
1797 /*
1798 * Sanity check: if tty->count is going to zero, there shouldn't be
1799 * any waiters on tty->read_wait or tty->write_wait. We test the
1800 * wait queues and kick everyone out _before_ actually starting to
1801 * close. This ensures that we won't block while releasing the tty
1802 * structure.
1803 *
1804 * The test for the o_tty closing is necessary, since the master and
1805 * slave sides may close in any order. If the slave side closes out
1806 * first, its count will be one, since the master side holds an open.
1807 * Thus this test wouldn't be triggered at the time the slave closes,
1808 * so we do it now.
1809 *
1810 * Note that it's possible for the tty to be opened again while we're
1811 * flushing out waiters. By recalculating the closing flags before
1812 * each iteration we avoid any problems.
1813 */
1814 while (1) {
1815 /* Guard against races with tty->count changes elsewhere and
1816 opens on /dev/tty */
1817
1818 mutex_lock(&tty_mutex);
1819 tty_lock_pair(tty, o_tty);
1820 tty_closing = tty->count <= 1;
1821 o_tty_closing = o_tty &&
1822 (o_tty->count <= (pty_master ? 1 : 0));
1823 do_sleep = 0;
1824
1825 if (tty_closing) {
1826 if (waitqueue_active(&tty->read_wait)) {
1827 wake_up_poll(&tty->read_wait, POLLIN);
1828 do_sleep++;
1829 }
1830 if (waitqueue_active(&tty->write_wait)) {
1831 wake_up_poll(&tty->write_wait, POLLOUT);
1832 do_sleep++;
1833 }
1834 }
1835 if (o_tty_closing) {
1836 if (waitqueue_active(&o_tty->read_wait)) {
1837 wake_up_poll(&o_tty->read_wait, POLLIN);
1838 do_sleep++;
1839 }
1840 if (waitqueue_active(&o_tty->write_wait)) {
1841 wake_up_poll(&o_tty->write_wait, POLLOUT);
1842 do_sleep++;
1843 }
1844 }
1845 if (!do_sleep)
1846 break;
1847
1848 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1849 __func__, tty_name(tty, buf));
1850 tty_unlock_pair(tty, o_tty);
1851 mutex_unlock(&tty_mutex);
1852 schedule();
1853 }
1854
1855 /*
1856 * The closing flags are now consistent with the open counts on
1857 * both sides, and we've completed the last operation that could
1858 * block, so it's safe to proceed with closing.
1859 *
1860 * We must *not* drop the tty_mutex until we ensure that a further
1861 * entry into tty_open can not pick up this tty.
1862 */
1863 if (pty_master) {
1864 if (--o_tty->count < 0) {
1865 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1866 __func__, o_tty->count, tty_name(o_tty, buf));
1867 o_tty->count = 0;
1868 }
1869 }
1870 if (--tty->count < 0) {
1871 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1872 __func__, tty->count, tty_name(tty, buf));
1873 tty->count = 0;
1874 }
1875
1876 /*
1877 * We've decremented tty->count, so we need to remove this file
1878 * descriptor off the tty->tty_files list; this serves two
1879 * purposes:
1880 * - check_tty_count sees the correct number of file descriptors
1881 * associated with this tty.
1882 * - do_tty_hangup no longer sees this file descriptor as
1883 * something that needs to be handled for hangups.
1884 */
1885 tty_del_file(filp);
1886
1887 /*
1888 * Perform some housekeeping before deciding whether to return.
1889 *
1890 * Set the TTY_CLOSING flag if this was the last open. In the
1891 * case of a pty we may have to wait around for the other side
1892 * to close, and TTY_CLOSING makes sure we can't be reopened.
1893 */
1894 if (tty_closing)
1895 set_bit(TTY_CLOSING, &tty->flags);
1896 if (o_tty_closing)
1897 set_bit(TTY_CLOSING, &o_tty->flags);
1898
1899 /*
1900 * If _either_ side is closing, make sure there aren't any
1901 * processes that still think tty or o_tty is their controlling
1902 * tty.
1903 */
1904 if (tty_closing || o_tty_closing) {
1905 read_lock(&tasklist_lock);
1906 session_clear_tty(tty->session);
1907 if (o_tty)
1908 session_clear_tty(o_tty->session);
1909 read_unlock(&tasklist_lock);
1910 }
1911
1912 mutex_unlock(&tty_mutex);
1913 tty_unlock_pair(tty, o_tty);
1914 /* At this point the TTY_CLOSING flag should ensure a dead tty
1915 cannot be re-opened by a racing opener */
1916
1917 /* check whether both sides are closing ... */
1918 if (!tty_closing || (o_tty && !o_tty_closing))
1919 return 0;
1920
1921 #ifdef TTY_DEBUG_HANGUP
1922 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1923 #endif
1924 /*
1925 * Ask the line discipline code to release its structures
1926 */
1927 tty_ldisc_release(tty, o_tty);
1928
1929 /* Wait for pending work before tty destruction commmences */
1930 tty_flush_works(tty);
1931 if (o_tty)
1932 tty_flush_works(o_tty);
1933
1934 #ifdef TTY_DEBUG_HANGUP
1935 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1936 #endif
1937 /*
1938 * The release_tty function takes care of the details of clearing
1939 * the slots and preserving the termios structure. The tty_unlock_pair
1940 * should be safe as we keep a kref while the tty is locked (so the
1941 * unlock never unlocks a freed tty).
1942 */
1943 mutex_lock(&tty_mutex);
1944 release_tty(tty, idx);
1945 mutex_unlock(&tty_mutex);
1946
1947 return 0;
1948 }
1949
1950 /**
1951 * tty_open_current_tty - get tty of current task for open
1952 * @device: device number
1953 * @filp: file pointer to tty
1954 * @return: tty of the current task iff @device is /dev/tty
1955 *
1956 * We cannot return driver and index like for the other nodes because
1957 * devpts will not work then. It expects inodes to be from devpts FS.
1958 *
1959 * We need to move to returning a refcounted object from all the lookup
1960 * paths including this one.
1961 */
1962 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1963 {
1964 struct tty_struct *tty;
1965
1966 if (device != MKDEV(TTYAUX_MAJOR, 0))
1967 return NULL;
1968
1969 tty = get_current_tty();
1970 if (!tty)
1971 return ERR_PTR(-ENXIO);
1972
1973 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1974 /* noctty = 1; */
1975 tty_kref_put(tty);
1976 /* FIXME: we put a reference and return a TTY! */
1977 /* This is only safe because the caller holds tty_mutex */
1978 return tty;
1979 }
1980
1981 /**
1982 * tty_lookup_driver - lookup a tty driver for a given device file
1983 * @device: device number
1984 * @filp: file pointer to tty
1985 * @noctty: set if the device should not become a controlling tty
1986 * @index: index for the device in the @return driver
1987 * @return: driver for this inode (with increased refcount)
1988 *
1989 * If @return is not erroneous, the caller is responsible to decrement the
1990 * refcount by tty_driver_kref_put.
1991 *
1992 * Locking: tty_mutex protects get_tty_driver
1993 */
1994 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1995 int *noctty, int *index)
1996 {
1997 struct tty_driver *driver;
1998
1999 switch (device) {
2000 #ifdef CONFIG_VT
2001 case MKDEV(TTY_MAJOR, 0): {
2002 extern struct tty_driver *console_driver;
2003 driver = tty_driver_kref_get(console_driver);
2004 *index = fg_console;
2005 *noctty = 1;
2006 break;
2007 }
2008 #endif
2009 case MKDEV(TTYAUX_MAJOR, 1): {
2010 struct tty_driver *console_driver = console_device(index);
2011 if (console_driver) {
2012 driver = tty_driver_kref_get(console_driver);
2013 if (driver) {
2014 /* Don't let /dev/console block */
2015 filp->f_flags |= O_NONBLOCK;
2016 *noctty = 1;
2017 break;
2018 }
2019 }
2020 return ERR_PTR(-ENODEV);
2021 }
2022 default:
2023 driver = get_tty_driver(device, index);
2024 if (!driver)
2025 return ERR_PTR(-ENODEV);
2026 break;
2027 }
2028 return driver;
2029 }
2030
2031 /**
2032 * tty_open - open a tty device
2033 * @inode: inode of device file
2034 * @filp: file pointer to tty
2035 *
2036 * tty_open and tty_release keep up the tty count that contains the
2037 * number of opens done on a tty. We cannot use the inode-count, as
2038 * different inodes might point to the same tty.
2039 *
2040 * Open-counting is needed for pty masters, as well as for keeping
2041 * track of serial lines: DTR is dropped when the last close happens.
2042 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2043 *
2044 * The termios state of a pty is reset on first open so that
2045 * settings don't persist across reuse.
2046 *
2047 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2048 * tty->count should protect the rest.
2049 * ->siglock protects ->signal/->sighand
2050 *
2051 * Note: the tty_unlock/lock cases without a ref are only safe due to
2052 * tty_mutex
2053 */
2054
2055 static int tty_open(struct inode *inode, struct file *filp)
2056 {
2057 struct tty_struct *tty;
2058 int noctty, retval;
2059 struct tty_driver *driver = NULL;
2060 int index;
2061 dev_t device = inode->i_rdev;
2062 unsigned saved_flags = filp->f_flags;
2063
2064 nonseekable_open(inode, filp);
2065
2066 retry_open:
2067 retval = tty_alloc_file(filp);
2068 if (retval)
2069 return -ENOMEM;
2070
2071 noctty = filp->f_flags & O_NOCTTY;
2072 index = -1;
2073 retval = 0;
2074
2075 mutex_lock(&tty_mutex);
2076 /* This is protected by the tty_mutex */
2077 tty = tty_open_current_tty(device, filp);
2078 if (IS_ERR(tty)) {
2079 retval = PTR_ERR(tty);
2080 goto err_unlock;
2081 } else if (!tty) {
2082 driver = tty_lookup_driver(device, filp, &noctty, &index);
2083 if (IS_ERR(driver)) {
2084 retval = PTR_ERR(driver);
2085 goto err_unlock;
2086 }
2087
2088 /* check whether we're reopening an existing tty */
2089 tty = tty_driver_lookup_tty(driver, inode, index);
2090 if (IS_ERR(tty)) {
2091 retval = PTR_ERR(tty);
2092 goto err_unlock;
2093 }
2094 }
2095
2096 if (tty) {
2097 tty_lock(tty);
2098 retval = tty_reopen(tty);
2099 if (retval < 0) {
2100 tty_unlock(tty);
2101 tty = ERR_PTR(retval);
2102 }
2103 } else /* Returns with the tty_lock held for now */
2104 tty = tty_init_dev(driver, index);
2105
2106 mutex_unlock(&tty_mutex);
2107 if (driver)
2108 tty_driver_kref_put(driver);
2109 if (IS_ERR(tty)) {
2110 retval = PTR_ERR(tty);
2111 goto err_file;
2112 }
2113
2114 tty_add_file(tty, filp);
2115
2116 check_tty_count(tty, __func__);
2117 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2118 tty->driver->subtype == PTY_TYPE_MASTER)
2119 noctty = 1;
2120 #ifdef TTY_DEBUG_HANGUP
2121 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2122 #endif
2123 if (tty->ops->open)
2124 retval = tty->ops->open(tty, filp);
2125 else
2126 retval = -ENODEV;
2127 filp->f_flags = saved_flags;
2128
2129 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2130 !capable(CAP_SYS_ADMIN))
2131 retval = -EBUSY;
2132
2133 if (retval) {
2134 #ifdef TTY_DEBUG_HANGUP
2135 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2136 retval, tty->name);
2137 #endif
2138 tty_unlock(tty); /* need to call tty_release without BTM */
2139 tty_release(inode, filp);
2140 if (retval != -ERESTARTSYS)
2141 return retval;
2142
2143 if (signal_pending(current))
2144 return retval;
2145
2146 schedule();
2147 /*
2148 * Need to reset f_op in case a hangup happened.
2149 */
2150 if (filp->f_op == &hung_up_tty_fops)
2151 filp->f_op = &tty_fops;
2152 goto retry_open;
2153 }
2154 clear_bit(TTY_HUPPED, &tty->flags);
2155 tty_unlock(tty);
2156
2157
2158 mutex_lock(&tty_mutex);
2159 tty_lock(tty);
2160 read_lock(&tasklist_lock);
2161 spin_lock_irq(&current->sighand->siglock);
2162 if (!noctty &&
2163 current->signal->leader &&
2164 !current->signal->tty &&
2165 tty->session == NULL)
2166 __proc_set_tty(tty);
2167 spin_unlock_irq(&current->sighand->siglock);
2168 read_unlock(&tasklist_lock);
2169 tty_unlock(tty);
2170 mutex_unlock(&tty_mutex);
2171 return 0;
2172 err_unlock:
2173 mutex_unlock(&tty_mutex);
2174 /* after locks to avoid deadlock */
2175 if (!IS_ERR_OR_NULL(driver))
2176 tty_driver_kref_put(driver);
2177 err_file:
2178 tty_free_file(filp);
2179 return retval;
2180 }
2181
2182
2183
2184 /**
2185 * tty_poll - check tty status
2186 * @filp: file being polled
2187 * @wait: poll wait structures to update
2188 *
2189 * Call the line discipline polling method to obtain the poll
2190 * status of the device.
2191 *
2192 * Locking: locks called line discipline but ldisc poll method
2193 * may be re-entered freely by other callers.
2194 */
2195
2196 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2197 {
2198 struct tty_struct *tty = file_tty(filp);
2199 struct tty_ldisc *ld;
2200 int ret = 0;
2201
2202 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2203 return 0;
2204
2205 ld = tty_ldisc_ref_wait(tty);
2206 if (ld->ops->poll)
2207 ret = (ld->ops->poll)(tty, filp, wait);
2208 tty_ldisc_deref(ld);
2209 return ret;
2210 }
2211
2212 static int __tty_fasync(int fd, struct file *filp, int on)
2213 {
2214 struct tty_struct *tty = file_tty(filp);
2215 struct tty_ldisc *ldisc;
2216 unsigned long flags;
2217 int retval = 0;
2218
2219 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2220 goto out;
2221
2222 retval = fasync_helper(fd, filp, on, &tty->fasync);
2223 if (retval <= 0)
2224 goto out;
2225
2226 ldisc = tty_ldisc_ref(tty);
2227 if (ldisc) {
2228 if (ldisc->ops->fasync)
2229 ldisc->ops->fasync(tty, on);
2230 tty_ldisc_deref(ldisc);
2231 }
2232
2233 if (on) {
2234 enum pid_type type;
2235 struct pid *pid;
2236
2237 spin_lock_irqsave(&tty->ctrl_lock, flags);
2238 if (tty->pgrp) {
2239 pid = tty->pgrp;
2240 type = PIDTYPE_PGID;
2241 } else {
2242 pid = task_pid(current);
2243 type = PIDTYPE_PID;
2244 }
2245 get_pid(pid);
2246 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2247 __f_setown(filp, pid, type, 0);
2248 put_pid(pid);
2249 retval = 0;
2250 }
2251 out:
2252 return retval;
2253 }
2254
2255 static int tty_fasync(int fd, struct file *filp, int on)
2256 {
2257 struct tty_struct *tty = file_tty(filp);
2258 int retval;
2259
2260 tty_lock(tty);
2261 retval = __tty_fasync(fd, filp, on);
2262 tty_unlock(tty);
2263
2264 return retval;
2265 }
2266
2267 /**
2268 * tiocsti - fake input character
2269 * @tty: tty to fake input into
2270 * @p: pointer to character
2271 *
2272 * Fake input to a tty device. Does the necessary locking and
2273 * input management.
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 * Called functions take tty_ldiscs_lock
2279 * current->signal->tty check is safe without locks
2280 *
2281 * FIXME: may race normal receive processing
2282 */
2283
2284 static int tiocsti(struct tty_struct *tty, char __user *p)
2285 {
2286 char ch, mbz = 0;
2287 struct tty_ldisc *ld;
2288
2289 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290 return -EPERM;
2291 if (get_user(ch, p))
2292 return -EFAULT;
2293 tty_audit_tiocsti(tty, ch);
2294 ld = tty_ldisc_ref_wait(tty);
2295 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2296 tty_ldisc_deref(ld);
2297 return 0;
2298 }
2299
2300 /**
2301 * tiocgwinsz - implement window query ioctl
2302 * @tty; tty
2303 * @arg: user buffer for result
2304 *
2305 * Copies the kernel idea of the window size into the user buffer.
2306 *
2307 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2308 * is consistent.
2309 */
2310
2311 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2312 {
2313 int err;
2314
2315 mutex_lock(&tty->winsize_mutex);
2316 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2317 mutex_unlock(&tty->winsize_mutex);
2318
2319 return err ? -EFAULT: 0;
2320 }
2321
2322 /**
2323 * tty_do_resize - resize event
2324 * @tty: tty being resized
2325 * @rows: rows (character)
2326 * @cols: cols (character)
2327 *
2328 * Update the termios variables and send the necessary signals to
2329 * peform a terminal resize correctly
2330 */
2331
2332 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2333 {
2334 struct pid *pgrp;
2335
2336 /* Lock the tty */
2337 mutex_lock(&tty->winsize_mutex);
2338 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2339 goto done;
2340
2341 /* Signal the foreground process group */
2342 pgrp = tty_get_pgrp(tty);
2343 if (pgrp)
2344 kill_pgrp(pgrp, SIGWINCH, 1);
2345 put_pid(pgrp);
2346
2347 tty->winsize = *ws;
2348 done:
2349 mutex_unlock(&tty->winsize_mutex);
2350 return 0;
2351 }
2352 EXPORT_SYMBOL(tty_do_resize);
2353
2354 /**
2355 * tiocswinsz - implement window size set ioctl
2356 * @tty; tty side of tty
2357 * @arg: user buffer for result
2358 *
2359 * Copies the user idea of the window size to the kernel. Traditionally
2360 * this is just advisory information but for the Linux console it
2361 * actually has driver level meaning and triggers a VC resize.
2362 *
2363 * Locking:
2364 * Driver dependent. The default do_resize method takes the
2365 * tty termios mutex and ctrl_lock. The console takes its own lock
2366 * then calls into the default method.
2367 */
2368
2369 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2370 {
2371 struct winsize tmp_ws;
2372 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2373 return -EFAULT;
2374
2375 if (tty->ops->resize)
2376 return tty->ops->resize(tty, &tmp_ws);
2377 else
2378 return tty_do_resize(tty, &tmp_ws);
2379 }
2380
2381 /**
2382 * tioccons - allow admin to move logical console
2383 * @file: the file to become console
2384 *
2385 * Allow the administrator to move the redirected console device
2386 *
2387 * Locking: uses redirect_lock to guard the redirect information
2388 */
2389
2390 static int tioccons(struct file *file)
2391 {
2392 if (!capable(CAP_SYS_ADMIN))
2393 return -EPERM;
2394 if (file->f_op->write == redirected_tty_write) {
2395 struct file *f;
2396 spin_lock(&redirect_lock);
2397 f = redirect;
2398 redirect = NULL;
2399 spin_unlock(&redirect_lock);
2400 if (f)
2401 fput(f);
2402 return 0;
2403 }
2404 spin_lock(&redirect_lock);
2405 if (redirect) {
2406 spin_unlock(&redirect_lock);
2407 return -EBUSY;
2408 }
2409 redirect = get_file(file);
2410 spin_unlock(&redirect_lock);
2411 return 0;
2412 }
2413
2414 /**
2415 * fionbio - non blocking ioctl
2416 * @file: file to set blocking value
2417 * @p: user parameter
2418 *
2419 * Historical tty interfaces had a blocking control ioctl before
2420 * the generic functionality existed. This piece of history is preserved
2421 * in the expected tty API of posix OS's.
2422 *
2423 * Locking: none, the open file handle ensures it won't go away.
2424 */
2425
2426 static int fionbio(struct file *file, int __user *p)
2427 {
2428 int nonblock;
2429
2430 if (get_user(nonblock, p))
2431 return -EFAULT;
2432
2433 spin_lock(&file->f_lock);
2434 if (nonblock)
2435 file->f_flags |= O_NONBLOCK;
2436 else
2437 file->f_flags &= ~O_NONBLOCK;
2438 spin_unlock(&file->f_lock);
2439 return 0;
2440 }
2441
2442 /**
2443 * tiocsctty - set controlling tty
2444 * @tty: tty structure
2445 * @arg: user argument
2446 *
2447 * This ioctl is used to manage job control. It permits a session
2448 * leader to set this tty as the controlling tty for the session.
2449 *
2450 * Locking:
2451 * Takes tty_mutex() to protect tty instance
2452 * Takes tasklist_lock internally to walk sessions
2453 * Takes ->siglock() when updating signal->tty
2454 */
2455
2456 static int tiocsctty(struct tty_struct *tty, int arg)
2457 {
2458 int ret = 0;
2459
2460 mutex_lock(&tty_mutex);
2461 read_lock(&tasklist_lock);
2462
2463 if (current->signal->leader && (task_session(current) == tty->session))
2464 goto unlock;
2465
2466 /*
2467 * The process must be a session leader and
2468 * not have a controlling tty already.
2469 */
2470 if (!current->signal->leader || current->signal->tty) {
2471 ret = -EPERM;
2472 goto unlock;
2473 }
2474
2475 if (tty->session) {
2476 /*
2477 * This tty is already the controlling
2478 * tty for another session group!
2479 */
2480 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2481 /*
2482 * Steal it away
2483 */
2484 session_clear_tty(tty->session);
2485 } else {
2486 ret = -EPERM;
2487 goto unlock;
2488 }
2489 }
2490 proc_set_tty(tty);
2491 unlock:
2492 read_unlock(&tasklist_lock);
2493 mutex_unlock(&tty_mutex);
2494 return ret;
2495 }
2496
2497 /**
2498 * tty_get_pgrp - return a ref counted pgrp pid
2499 * @tty: tty to read
2500 *
2501 * Returns a refcounted instance of the pid struct for the process
2502 * group controlling the tty.
2503 */
2504
2505 struct pid *tty_get_pgrp(struct tty_struct *tty)
2506 {
2507 unsigned long flags;
2508 struct pid *pgrp;
2509
2510 spin_lock_irqsave(&tty->ctrl_lock, flags);
2511 pgrp = get_pid(tty->pgrp);
2512 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2513
2514 return pgrp;
2515 }
2516 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2517
2518 /*
2519 * This checks not only the pgrp, but falls back on the pid if no
2520 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2521 * without this...
2522 *
2523 * The caller must hold rcu lock or the tasklist lock.
2524 */
2525 static struct pid *session_of_pgrp(struct pid *pgrp)
2526 {
2527 struct task_struct *p;
2528 struct pid *sid = NULL;
2529
2530 p = pid_task(pgrp, PIDTYPE_PGID);
2531 if (p == NULL)
2532 p = pid_task(pgrp, PIDTYPE_PID);
2533 if (p != NULL)
2534 sid = task_session(p);
2535
2536 return sid;
2537 }
2538
2539 /**
2540 * tiocgpgrp - get process group
2541 * @tty: tty passed by user
2542 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2543 * @p: returned pid
2544 *
2545 * Obtain the process group of the tty. If there is no process group
2546 * return an error.
2547 *
2548 * Locking: none. Reference to current->signal->tty is safe.
2549 */
2550
2551 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2552 {
2553 struct pid *pid;
2554 int ret;
2555 /*
2556 * (tty == real_tty) is a cheap way of
2557 * testing if the tty is NOT a master pty.
2558 */
2559 if (tty == real_tty && current->signal->tty != real_tty)
2560 return -ENOTTY;
2561 pid = tty_get_pgrp(real_tty);
2562 ret = put_user(pid_vnr(pid), p);
2563 put_pid(pid);
2564 return ret;
2565 }
2566
2567 /**
2568 * tiocspgrp - attempt to set process group
2569 * @tty: tty passed by user
2570 * @real_tty: tty side device matching tty passed by user
2571 * @p: pid pointer
2572 *
2573 * Set the process group of the tty to the session passed. Only
2574 * permitted where the tty session is our session.
2575 *
2576 * Locking: RCU, ctrl lock
2577 */
2578
2579 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2580 {
2581 struct pid *pgrp;
2582 pid_t pgrp_nr;
2583 int retval = tty_check_change(real_tty);
2584 unsigned long flags;
2585
2586 if (retval == -EIO)
2587 return -ENOTTY;
2588 if (retval)
2589 return retval;
2590 if (!current->signal->tty ||
2591 (current->signal->tty != real_tty) ||
2592 (real_tty->session != task_session(current)))
2593 return -ENOTTY;
2594 if (get_user(pgrp_nr, p))
2595 return -EFAULT;
2596 if (pgrp_nr < 0)
2597 return -EINVAL;
2598 rcu_read_lock();
2599 pgrp = find_vpid(pgrp_nr);
2600 retval = -ESRCH;
2601 if (!pgrp)
2602 goto out_unlock;
2603 retval = -EPERM;
2604 if (session_of_pgrp(pgrp) != task_session(current))
2605 goto out_unlock;
2606 retval = 0;
2607 spin_lock_irqsave(&tty->ctrl_lock, flags);
2608 put_pid(real_tty->pgrp);
2609 real_tty->pgrp = get_pid(pgrp);
2610 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2611 out_unlock:
2612 rcu_read_unlock();
2613 return retval;
2614 }
2615
2616 /**
2617 * tiocgsid - get session id
2618 * @tty: tty passed by user
2619 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2620 * @p: pointer to returned session id
2621 *
2622 * Obtain the session id of the tty. If there is no session
2623 * return an error.
2624 *
2625 * Locking: none. Reference to current->signal->tty is safe.
2626 */
2627
2628 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2629 {
2630 /*
2631 * (tty == real_tty) is a cheap way of
2632 * testing if the tty is NOT a master pty.
2633 */
2634 if (tty == real_tty && current->signal->tty != real_tty)
2635 return -ENOTTY;
2636 if (!real_tty->session)
2637 return -ENOTTY;
2638 return put_user(pid_vnr(real_tty->session), p);
2639 }
2640
2641 /**
2642 * tiocsetd - set line discipline
2643 * @tty: tty device
2644 * @p: pointer to user data
2645 *
2646 * Set the line discipline according to user request.
2647 *
2648 * Locking: see tty_set_ldisc, this function is just a helper
2649 */
2650
2651 static int tiocsetd(struct tty_struct *tty, int __user *p)
2652 {
2653 int ldisc;
2654 int ret;
2655
2656 if (get_user(ldisc, p))
2657 return -EFAULT;
2658
2659 ret = tty_set_ldisc(tty, ldisc);
2660
2661 return ret;
2662 }
2663
2664 /**
2665 * send_break - performed time break
2666 * @tty: device to break on
2667 * @duration: timeout in mS
2668 *
2669 * Perform a timed break on hardware that lacks its own driver level
2670 * timed break functionality.
2671 *
2672 * Locking:
2673 * atomic_write_lock serializes
2674 *
2675 */
2676
2677 static int send_break(struct tty_struct *tty, unsigned int duration)
2678 {
2679 int retval;
2680
2681 if (tty->ops->break_ctl == NULL)
2682 return 0;
2683
2684 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2685 retval = tty->ops->break_ctl(tty, duration);
2686 else {
2687 /* Do the work ourselves */
2688 if (tty_write_lock(tty, 0) < 0)
2689 return -EINTR;
2690 retval = tty->ops->break_ctl(tty, -1);
2691 if (retval)
2692 goto out;
2693 if (!signal_pending(current))
2694 msleep_interruptible(duration);
2695 retval = tty->ops->break_ctl(tty, 0);
2696 out:
2697 tty_write_unlock(tty);
2698 if (signal_pending(current))
2699 retval = -EINTR;
2700 }
2701 return retval;
2702 }
2703
2704 /**
2705 * tty_tiocmget - get modem status
2706 * @tty: tty device
2707 * @file: user file pointer
2708 * @p: pointer to result
2709 *
2710 * Obtain the modem status bits from the tty driver if the feature
2711 * is supported. Return -EINVAL if it is not available.
2712 *
2713 * Locking: none (up to the driver)
2714 */
2715
2716 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2717 {
2718 int retval = -EINVAL;
2719
2720 if (tty->ops->tiocmget) {
2721 retval = tty->ops->tiocmget(tty);
2722
2723 if (retval >= 0)
2724 retval = put_user(retval, p);
2725 }
2726 return retval;
2727 }
2728
2729 /**
2730 * tty_tiocmset - set modem status
2731 * @tty: tty device
2732 * @cmd: command - clear bits, set bits or set all
2733 * @p: pointer to desired bits
2734 *
2735 * Set the modem status bits from the tty driver if the feature
2736 * is supported. Return -EINVAL if it is not available.
2737 *
2738 * Locking: none (up to the driver)
2739 */
2740
2741 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2742 unsigned __user *p)
2743 {
2744 int retval;
2745 unsigned int set, clear, val;
2746
2747 if (tty->ops->tiocmset == NULL)
2748 return -EINVAL;
2749
2750 retval = get_user(val, p);
2751 if (retval)
2752 return retval;
2753 set = clear = 0;
2754 switch (cmd) {
2755 case TIOCMBIS:
2756 set = val;
2757 break;
2758 case TIOCMBIC:
2759 clear = val;
2760 break;
2761 case TIOCMSET:
2762 set = val;
2763 clear = ~val;
2764 break;
2765 }
2766 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2767 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2768 return tty->ops->tiocmset(tty, set, clear);
2769 }
2770
2771 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2772 {
2773 int retval = -EINVAL;
2774 struct serial_icounter_struct icount;
2775 memset(&icount, 0, sizeof(icount));
2776 if (tty->ops->get_icount)
2777 retval = tty->ops->get_icount(tty, &icount);
2778 if (retval != 0)
2779 return retval;
2780 if (copy_to_user(arg, &icount, sizeof(icount)))
2781 return -EFAULT;
2782 return 0;
2783 }
2784
2785 /*
2786 * if pty, return the slave side (real_tty)
2787 * otherwise, return self
2788 */
2789 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2790 {
2791 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2792 tty->driver->subtype == PTY_TYPE_MASTER)
2793 tty = tty->link;
2794 return tty;
2795 }
2796
2797 /*
2798 * Split this up, as gcc can choke on it otherwise..
2799 */
2800 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2801 {
2802 struct tty_struct *tty = file_tty(file);
2803 struct tty_struct *real_tty;
2804 void __user *p = (void __user *)arg;
2805 int retval;
2806 struct tty_ldisc *ld;
2807
2808 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2809 return -EINVAL;
2810
2811 real_tty = tty_pair_get_tty(tty);
2812
2813 /*
2814 * Factor out some common prep work
2815 */
2816 switch (cmd) {
2817 case TIOCSETD:
2818 case TIOCSBRK:
2819 case TIOCCBRK:
2820 case TCSBRK:
2821 case TCSBRKP:
2822 retval = tty_check_change(tty);
2823 if (retval)
2824 return retval;
2825 if (cmd != TIOCCBRK) {
2826 tty_wait_until_sent(tty, 0);
2827 if (signal_pending(current))
2828 return -EINTR;
2829 }
2830 break;
2831 }
2832
2833 /*
2834 * Now do the stuff.
2835 */
2836 switch (cmd) {
2837 case TIOCSTI:
2838 return tiocsti(tty, p);
2839 case TIOCGWINSZ:
2840 return tiocgwinsz(real_tty, p);
2841 case TIOCSWINSZ:
2842 return tiocswinsz(real_tty, p);
2843 case TIOCCONS:
2844 return real_tty != tty ? -EINVAL : tioccons(file);
2845 case FIONBIO:
2846 return fionbio(file, p);
2847 case TIOCEXCL:
2848 set_bit(TTY_EXCLUSIVE, &tty->flags);
2849 return 0;
2850 case TIOCNXCL:
2851 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2852 return 0;
2853 case TIOCGEXCL:
2854 {
2855 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2856 return put_user(excl, (int __user *)p);
2857 }
2858 case TIOCNOTTY:
2859 if (current->signal->tty != tty)
2860 return -ENOTTY;
2861 no_tty();
2862 return 0;
2863 case TIOCSCTTY:
2864 return tiocsctty(tty, arg);
2865 case TIOCGPGRP:
2866 return tiocgpgrp(tty, real_tty, p);
2867 case TIOCSPGRP:
2868 return tiocspgrp(tty, real_tty, p);
2869 case TIOCGSID:
2870 return tiocgsid(tty, real_tty, p);
2871 case TIOCGETD:
2872 return put_user(tty->ldisc->ops->num, (int __user *)p);
2873 case TIOCSETD:
2874 return tiocsetd(tty, p);
2875 case TIOCVHANGUP:
2876 if (!capable(CAP_SYS_ADMIN))
2877 return -EPERM;
2878 tty_vhangup(tty);
2879 return 0;
2880 case TIOCGDEV:
2881 {
2882 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2883 return put_user(ret, (unsigned int __user *)p);
2884 }
2885 /*
2886 * Break handling
2887 */
2888 case TIOCSBRK: /* Turn break on, unconditionally */
2889 if (tty->ops->break_ctl)
2890 return tty->ops->break_ctl(tty, -1);
2891 return 0;
2892 case TIOCCBRK: /* Turn break off, unconditionally */
2893 if (tty->ops->break_ctl)
2894 return tty->ops->break_ctl(tty, 0);
2895 return 0;
2896 case TCSBRK: /* SVID version: non-zero arg --> no break */
2897 /* non-zero arg means wait for all output data
2898 * to be sent (performed above) but don't send break.
2899 * This is used by the tcdrain() termios function.
2900 */
2901 if (!arg)
2902 return send_break(tty, 250);
2903 return 0;
2904 case TCSBRKP: /* support for POSIX tcsendbreak() */
2905 return send_break(tty, arg ? arg*100 : 250);
2906
2907 case TIOCMGET:
2908 return tty_tiocmget(tty, p);
2909 case TIOCMSET:
2910 case TIOCMBIC:
2911 case TIOCMBIS:
2912 return tty_tiocmset(tty, cmd, p);
2913 case TIOCGICOUNT:
2914 retval = tty_tiocgicount(tty, p);
2915 /* For the moment allow fall through to the old method */
2916 if (retval != -EINVAL)
2917 return retval;
2918 break;
2919 case TCFLSH:
2920 switch (arg) {
2921 case TCIFLUSH:
2922 case TCIOFLUSH:
2923 /* flush tty buffer and allow ldisc to process ioctl */
2924 tty_buffer_flush(tty);
2925 break;
2926 }
2927 break;
2928 }
2929 if (tty->ops->ioctl) {
2930 retval = (tty->ops->ioctl)(tty, cmd, arg);
2931 if (retval != -ENOIOCTLCMD)
2932 return retval;
2933 }
2934 ld = tty_ldisc_ref_wait(tty);
2935 retval = -EINVAL;
2936 if (ld->ops->ioctl) {
2937 retval = ld->ops->ioctl(tty, file, cmd, arg);
2938 if (retval == -ENOIOCTLCMD)
2939 retval = -ENOTTY;
2940 }
2941 tty_ldisc_deref(ld);
2942 return retval;
2943 }
2944
2945 #ifdef CONFIG_COMPAT
2946 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2947 unsigned long arg)
2948 {
2949 struct tty_struct *tty = file_tty(file);
2950 struct tty_ldisc *ld;
2951 int retval = -ENOIOCTLCMD;
2952
2953 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2954 return -EINVAL;
2955
2956 if (tty->ops->compat_ioctl) {
2957 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2958 if (retval != -ENOIOCTLCMD)
2959 return retval;
2960 }
2961
2962 ld = tty_ldisc_ref_wait(tty);
2963 if (ld->ops->compat_ioctl)
2964 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2965 else
2966 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2967 tty_ldisc_deref(ld);
2968
2969 return retval;
2970 }
2971 #endif
2972
2973 static int this_tty(const void *t, struct file *file, unsigned fd)
2974 {
2975 if (likely(file->f_op->read != tty_read))
2976 return 0;
2977 return file_tty(file) != t ? 0 : fd + 1;
2978 }
2979
2980 /*
2981 * This implements the "Secure Attention Key" --- the idea is to
2982 * prevent trojan horses by killing all processes associated with this
2983 * tty when the user hits the "Secure Attention Key". Required for
2984 * super-paranoid applications --- see the Orange Book for more details.
2985 *
2986 * This code could be nicer; ideally it should send a HUP, wait a few
2987 * seconds, then send a INT, and then a KILL signal. But you then
2988 * have to coordinate with the init process, since all processes associated
2989 * with the current tty must be dead before the new getty is allowed
2990 * to spawn.
2991 *
2992 * Now, if it would be correct ;-/ The current code has a nasty hole -
2993 * it doesn't catch files in flight. We may send the descriptor to ourselves
2994 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2995 *
2996 * Nasty bug: do_SAK is being called in interrupt context. This can
2997 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2998 */
2999 void __do_SAK(struct tty_struct *tty)
3000 {
3001 #ifdef TTY_SOFT_SAK
3002 tty_hangup(tty);
3003 #else
3004 struct task_struct *g, *p;
3005 struct pid *session;
3006 int i;
3007
3008 if (!tty)
3009 return;
3010 session = tty->session;
3011
3012 tty_ldisc_flush(tty);
3013
3014 tty_driver_flush_buffer(tty);
3015
3016 read_lock(&tasklist_lock);
3017 /* Kill the entire session */
3018 do_each_pid_task(session, PIDTYPE_SID, p) {
3019 printk(KERN_NOTICE "SAK: killed process %d"
3020 " (%s): task_session(p)==tty->session\n",
3021 task_pid_nr(p), p->comm);
3022 send_sig(SIGKILL, p, 1);
3023 } while_each_pid_task(session, PIDTYPE_SID, p);
3024 /* Now kill any processes that happen to have the
3025 * tty open.
3026 */
3027 do_each_thread(g, p) {
3028 if (p->signal->tty == tty) {
3029 printk(KERN_NOTICE "SAK: killed process %d"
3030 " (%s): task_session(p)==tty->session\n",
3031 task_pid_nr(p), p->comm);
3032 send_sig(SIGKILL, p, 1);
3033 continue;
3034 }
3035 task_lock(p);
3036 i = iterate_fd(p->files, 0, this_tty, tty);
3037 if (i != 0) {
3038 printk(KERN_NOTICE "SAK: killed process %d"
3039 " (%s): fd#%d opened to the tty\n",
3040 task_pid_nr(p), p->comm, i - 1);
3041 force_sig(SIGKILL, p);
3042 }
3043 task_unlock(p);
3044 } while_each_thread(g, p);
3045 read_unlock(&tasklist_lock);
3046 #endif
3047 }
3048
3049 static void do_SAK_work(struct work_struct *work)
3050 {
3051 struct tty_struct *tty =
3052 container_of(work, struct tty_struct, SAK_work);
3053 __do_SAK(tty);
3054 }
3055
3056 /*
3057 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3058 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3059 * the values which we write to it will be identical to the values which it
3060 * already has. --akpm
3061 */
3062 void do_SAK(struct tty_struct *tty)
3063 {
3064 if (!tty)
3065 return;
3066 schedule_work(&tty->SAK_work);
3067 }
3068
3069 EXPORT_SYMBOL(do_SAK);
3070
3071 static int dev_match_devt(struct device *dev, const void *data)
3072 {
3073 const dev_t *devt = data;
3074 return dev->devt == *devt;
3075 }
3076
3077 /* Must put_device() after it's unused! */
3078 static struct device *tty_get_device(struct tty_struct *tty)
3079 {
3080 dev_t devt = tty_devnum(tty);
3081 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3082 }
3083
3084
3085 /**
3086 * alloc_tty_struct
3087 *
3088 * This subroutine allocates and initializes a tty structure.
3089 *
3090 * Locking: none - tty in question is not exposed at this point
3091 */
3092
3093 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3094 {
3095 struct tty_struct *tty;
3096
3097 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3098 if (!tty)
3099 return NULL;
3100
3101 kref_init(&tty->kref);
3102 tty->magic = TTY_MAGIC;
3103 tty_ldisc_init(tty);
3104 tty->session = NULL;
3105 tty->pgrp = NULL;
3106 mutex_init(&tty->legacy_mutex);
3107 mutex_init(&tty->throttle_mutex);
3108 init_rwsem(&tty->termios_rwsem);
3109 mutex_init(&tty->winsize_mutex);
3110 init_ldsem(&tty->ldisc_sem);
3111 init_waitqueue_head(&tty->write_wait);
3112 init_waitqueue_head(&tty->read_wait);
3113 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3114 mutex_init(&tty->atomic_write_lock);
3115 spin_lock_init(&tty->ctrl_lock);
3116 spin_lock_init(&tty->flow_lock);
3117 INIT_LIST_HEAD(&tty->tty_files);
3118 INIT_WORK(&tty->SAK_work, do_SAK_work);
3119
3120 tty->driver = driver;
3121 tty->ops = driver->ops;
3122 tty->index = idx;
3123 tty_line_name(driver, idx, tty->name);
3124 tty->dev = tty_get_device(tty);
3125
3126 return tty;
3127 }
3128
3129 /**
3130 * deinitialize_tty_struct
3131 * @tty: tty to deinitialize
3132 *
3133 * This subroutine deinitializes a tty structure that has been newly
3134 * allocated but tty_release cannot be called on that yet.
3135 *
3136 * Locking: none - tty in question must not be exposed at this point
3137 */
3138 void deinitialize_tty_struct(struct tty_struct *tty)
3139 {
3140 tty_ldisc_deinit(tty);
3141 }
3142
3143 /**
3144 * tty_put_char - write one character to a tty
3145 * @tty: tty
3146 * @ch: character
3147 *
3148 * Write one byte to the tty using the provided put_char method
3149 * if present. Returns the number of characters successfully output.
3150 *
3151 * Note: the specific put_char operation in the driver layer may go
3152 * away soon. Don't call it directly, use this method
3153 */
3154
3155 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3156 {
3157 if (tty->ops->put_char)
3158 return tty->ops->put_char(tty, ch);
3159 return tty->ops->write(tty, &ch, 1);
3160 }
3161 EXPORT_SYMBOL_GPL(tty_put_char);
3162
3163 struct class *tty_class;
3164
3165 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3166 unsigned int index, unsigned int count)
3167 {
3168 /* init here, since reused cdevs cause crashes */
3169 cdev_init(&driver->cdevs[index], &tty_fops);
3170 driver->cdevs[index].owner = driver->owner;
3171 return cdev_add(&driver->cdevs[index], dev, count);
3172 }
3173
3174 /**
3175 * tty_register_device - register a tty device
3176 * @driver: the tty driver that describes the tty device
3177 * @index: the index in the tty driver for this tty device
3178 * @device: a struct device that is associated with this tty device.
3179 * This field is optional, if there is no known struct device
3180 * for this tty device it can be set to NULL safely.
3181 *
3182 * Returns a pointer to the struct device for this tty device
3183 * (or ERR_PTR(-EFOO) on error).
3184 *
3185 * This call is required to be made to register an individual tty device
3186 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3187 * that bit is not set, this function should not be called by a tty
3188 * driver.
3189 *
3190 * Locking: ??
3191 */
3192
3193 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3194 struct device *device)
3195 {
3196 return tty_register_device_attr(driver, index, device, NULL, NULL);
3197 }
3198 EXPORT_SYMBOL(tty_register_device);
3199
3200 static void tty_device_create_release(struct device *dev)
3201 {
3202 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3203 kfree(dev);
3204 }
3205
3206 /**
3207 * tty_register_device_attr - register a tty device
3208 * @driver: the tty driver that describes the tty device
3209 * @index: the index in the tty driver for this tty device
3210 * @device: a struct device that is associated with this tty device.
3211 * This field is optional, if there is no known struct device
3212 * for this tty device it can be set to NULL safely.
3213 * @drvdata: Driver data to be set to device.
3214 * @attr_grp: Attribute group to be set on device.
3215 *
3216 * Returns a pointer to the struct device for this tty device
3217 * (or ERR_PTR(-EFOO) on error).
3218 *
3219 * This call is required to be made to register an individual tty device
3220 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3221 * that bit is not set, this function should not be called by a tty
3222 * driver.
3223 *
3224 * Locking: ??
3225 */
3226 struct device *tty_register_device_attr(struct tty_driver *driver,
3227 unsigned index, struct device *device,
3228 void *drvdata,
3229 const struct attribute_group **attr_grp)
3230 {
3231 char name[64];
3232 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3233 struct device *dev = NULL;
3234 int retval = -ENODEV;
3235 bool cdev = false;
3236
3237 if (index >= driver->num) {
3238 printk(KERN_ERR "Attempt to register invalid tty line number "
3239 " (%d).\n", index);
3240 return ERR_PTR(-EINVAL);
3241 }
3242
3243 if (driver->type == TTY_DRIVER_TYPE_PTY)
3244 pty_line_name(driver, index, name);
3245 else
3246 tty_line_name(driver, index, name);
3247
3248 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3249 retval = tty_cdev_add(driver, devt, index, 1);
3250 if (retval)
3251 goto error;
3252 cdev = true;
3253 }
3254
3255 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3256 if (!dev) {
3257 retval = -ENOMEM;
3258 goto error;
3259 }
3260
3261 dev->devt = devt;
3262 dev->class = tty_class;
3263 dev->parent = device;
3264 dev->release = tty_device_create_release;
3265 dev_set_name(dev, "%s", name);
3266 dev->groups = attr_grp;
3267 dev_set_drvdata(dev, drvdata);
3268
3269 retval = device_register(dev);
3270 if (retval)
3271 goto error;
3272
3273 return dev;
3274
3275 error:
3276 put_device(dev);
3277 if (cdev)
3278 cdev_del(&driver->cdevs[index]);
3279 return ERR_PTR(retval);
3280 }
3281 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3282
3283 /**
3284 * tty_unregister_device - unregister a tty device
3285 * @driver: the tty driver that describes the tty device
3286 * @index: the index in the tty driver for this tty device
3287 *
3288 * If a tty device is registered with a call to tty_register_device() then
3289 * this function must be called when the tty device is gone.
3290 *
3291 * Locking: ??
3292 */
3293
3294 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3295 {
3296 device_destroy(tty_class,
3297 MKDEV(driver->major, driver->minor_start) + index);
3298 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3299 cdev_del(&driver->cdevs[index]);
3300 }
3301 EXPORT_SYMBOL(tty_unregister_device);
3302
3303 /**
3304 * __tty_alloc_driver -- allocate tty driver
3305 * @lines: count of lines this driver can handle at most
3306 * @owner: module which is repsonsible for this driver
3307 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3308 *
3309 * This should not be called directly, some of the provided macros should be
3310 * used instead. Use IS_ERR and friends on @retval.
3311 */
3312 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3313 unsigned long flags)
3314 {
3315 struct tty_driver *driver;
3316 unsigned int cdevs = 1;
3317 int err;
3318
3319 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3320 return ERR_PTR(-EINVAL);
3321
3322 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3323 if (!driver)
3324 return ERR_PTR(-ENOMEM);
3325
3326 kref_init(&driver->kref);
3327 driver->magic = TTY_DRIVER_MAGIC;
3328 driver->num = lines;
3329 driver->owner = owner;
3330 driver->flags = flags;
3331
3332 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3333 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3334 GFP_KERNEL);
3335 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3336 GFP_KERNEL);
3337 if (!driver->ttys || !driver->termios) {
3338 err = -ENOMEM;
3339 goto err_free_all;
3340 }
3341 }
3342
3343 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3344 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3345 GFP_KERNEL);
3346 if (!driver->ports) {
3347 err = -ENOMEM;
3348 goto err_free_all;
3349 }
3350 cdevs = lines;
3351 }
3352
3353 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3354 if (!driver->cdevs) {
3355 err = -ENOMEM;
3356 goto err_free_all;
3357 }
3358
3359 return driver;
3360 err_free_all:
3361 kfree(driver->ports);
3362 kfree(driver->ttys);
3363 kfree(driver->termios);
3364 kfree(driver);
3365 return ERR_PTR(err);
3366 }
3367 EXPORT_SYMBOL(__tty_alloc_driver);
3368
3369 static void destruct_tty_driver(struct kref *kref)
3370 {
3371 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3372 int i;
3373 struct ktermios *tp;
3374
3375 if (driver->flags & TTY_DRIVER_INSTALLED) {
3376 /*
3377 * Free the termios and termios_locked structures because
3378 * we don't want to get memory leaks when modular tty
3379 * drivers are removed from the kernel.
3380 */
3381 for (i = 0; i < driver->num; i++) {
3382 tp = driver->termios[i];
3383 if (tp) {
3384 driver->termios[i] = NULL;
3385 kfree(tp);
3386 }
3387 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3388 tty_unregister_device(driver, i);
3389 }
3390 proc_tty_unregister_driver(driver);
3391 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3392 cdev_del(&driver->cdevs[0]);
3393 }
3394 kfree(driver->cdevs);
3395 kfree(driver->ports);
3396 kfree(driver->termios);
3397 kfree(driver->ttys);
3398 kfree(driver);
3399 }
3400
3401 void tty_driver_kref_put(struct tty_driver *driver)
3402 {
3403 kref_put(&driver->kref, destruct_tty_driver);
3404 }
3405 EXPORT_SYMBOL(tty_driver_kref_put);
3406
3407 void tty_set_operations(struct tty_driver *driver,
3408 const struct tty_operations *op)
3409 {
3410 driver->ops = op;
3411 };
3412 EXPORT_SYMBOL(tty_set_operations);
3413
3414 void put_tty_driver(struct tty_driver *d)
3415 {
3416 tty_driver_kref_put(d);
3417 }
3418 EXPORT_SYMBOL(put_tty_driver);
3419
3420 /*
3421 * Called by a tty driver to register itself.
3422 */
3423 int tty_register_driver(struct tty_driver *driver)
3424 {
3425 int error;
3426 int i;
3427 dev_t dev;
3428 struct device *d;
3429
3430 if (!driver->major) {
3431 error = alloc_chrdev_region(&dev, driver->minor_start,
3432 driver->num, driver->name);
3433 if (!error) {
3434 driver->major = MAJOR(dev);
3435 driver->minor_start = MINOR(dev);
3436 }
3437 } else {
3438 dev = MKDEV(driver->major, driver->minor_start);
3439 error = register_chrdev_region(dev, driver->num, driver->name);
3440 }
3441 if (error < 0)
3442 goto err;
3443
3444 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3445 error = tty_cdev_add(driver, dev, 0, driver->num);
3446 if (error)
3447 goto err_unreg_char;
3448 }
3449
3450 mutex_lock(&tty_mutex);
3451 list_add(&driver->tty_drivers, &tty_drivers);
3452 mutex_unlock(&tty_mutex);
3453
3454 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3455 for (i = 0; i < driver->num; i++) {
3456 d = tty_register_device(driver, i, NULL);
3457 if (IS_ERR(d)) {
3458 error = PTR_ERR(d);
3459 goto err_unreg_devs;
3460 }
3461 }
3462 }
3463 proc_tty_register_driver(driver);
3464 driver->flags |= TTY_DRIVER_INSTALLED;
3465 return 0;
3466
3467 err_unreg_devs:
3468 for (i--; i >= 0; i--)
3469 tty_unregister_device(driver, i);
3470
3471 mutex_lock(&tty_mutex);
3472 list_del(&driver->tty_drivers);
3473 mutex_unlock(&tty_mutex);
3474
3475 err_unreg_char:
3476 unregister_chrdev_region(dev, driver->num);
3477 err:
3478 return error;
3479 }
3480 EXPORT_SYMBOL(tty_register_driver);
3481
3482 /*
3483 * Called by a tty driver to unregister itself.
3484 */
3485 int tty_unregister_driver(struct tty_driver *driver)
3486 {
3487 #if 0
3488 /* FIXME */
3489 if (driver->refcount)
3490 return -EBUSY;
3491 #endif
3492 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3493 driver->num);
3494 mutex_lock(&tty_mutex);
3495 list_del(&driver->tty_drivers);
3496 mutex_unlock(&tty_mutex);
3497 return 0;
3498 }
3499
3500 EXPORT_SYMBOL(tty_unregister_driver);
3501
3502 dev_t tty_devnum(struct tty_struct *tty)
3503 {
3504 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3505 }
3506 EXPORT_SYMBOL(tty_devnum);
3507
3508 void tty_default_fops(struct file_operations *fops)
3509 {
3510 *fops = tty_fops;
3511 }
3512
3513 /*
3514 * Initialize the console device. This is called *early*, so
3515 * we can't necessarily depend on lots of kernel help here.
3516 * Just do some early initializations, and do the complex setup
3517 * later.
3518 */
3519 void __init console_init(void)
3520 {
3521 initcall_t *call;
3522
3523 /* Setup the default TTY line discipline. */
3524 tty_ldisc_begin();
3525
3526 /*
3527 * set up the console device so that later boot sequences can
3528 * inform about problems etc..
3529 */
3530 call = __con_initcall_start;
3531 while (call < __con_initcall_end) {
3532 (*call)();
3533 call++;
3534 }
3535 }
3536
3537 static char *tty_devnode(struct device *dev, umode_t *mode)
3538 {
3539 if (!mode)
3540 return NULL;
3541 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3542 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3543 *mode = 0666;
3544 return NULL;
3545 }
3546
3547 static int __init tty_class_init(void)
3548 {
3549 tty_class = class_create(THIS_MODULE, "tty");
3550 if (IS_ERR(tty_class))
3551 return PTR_ERR(tty_class);
3552 tty_class->devnode = tty_devnode;
3553 return 0;
3554 }
3555
3556 postcore_initcall(tty_class_init);
3557
3558 /* 3/2004 jmc: why do these devices exist? */
3559 static struct cdev tty_cdev, console_cdev;
3560
3561 static ssize_t show_cons_active(struct device *dev,
3562 struct device_attribute *attr, char *buf)
3563 {
3564 struct console *cs[16];
3565 int i = 0;
3566 struct console *c;
3567 ssize_t count = 0;
3568
3569 console_lock();
3570 for_each_console(c) {
3571 if (!c->device)
3572 continue;
3573 if (!c->write)
3574 continue;
3575 if ((c->flags & CON_ENABLED) == 0)
3576 continue;
3577 cs[i++] = c;
3578 if (i >= ARRAY_SIZE(cs))
3579 break;
3580 }
3581 while (i--) {
3582 int index = cs[i]->index;
3583 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3584
3585 /* don't resolve tty0 as some programs depend on it */
3586 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3587 count += tty_line_name(drv, index, buf + count);
3588 else
3589 count += sprintf(buf + count, "%s%d",
3590 cs[i]->name, cs[i]->index);
3591
3592 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3593 }
3594 console_unlock();
3595
3596 return count;
3597 }
3598 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3599
3600 static struct device *consdev;
3601
3602 void console_sysfs_notify(void)
3603 {
3604 if (consdev)
3605 sysfs_notify(&consdev->kobj, NULL, "active");
3606 }
3607
3608 /*
3609 * Ok, now we can initialize the rest of the tty devices and can count
3610 * on memory allocations, interrupts etc..
3611 */
3612 int __init tty_init(void)
3613 {
3614 cdev_init(&tty_cdev, &tty_fops);
3615 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3616 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3617 panic("Couldn't register /dev/tty driver\n");
3618 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3619
3620 cdev_init(&console_cdev, &console_fops);
3621 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3622 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3623 panic("Couldn't register /dev/console driver\n");
3624 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3625 "console");
3626 if (IS_ERR(consdev))
3627 consdev = NULL;
3628 else
3629 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3630
3631 #ifdef CONFIG_VT
3632 vty_init(&console_fops);
3633 #endif
3634 return 0;
3635 }
3636
This page took 0.10568 seconds and 5 git commands to generate.