tty: remove use of __devinit
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * __tty_hangup - actual handler for hangup events
537 * @work: tty device
538 *
539 * This can be called by the "eventd" kernel thread. That is process
540 * synchronous but doesn't hold any locks, so we need to make sure we
541 * have the appropriate locks for what we're doing.
542 *
543 * The hangup event clears any pending redirections onto the hung up
544 * device. It ensures future writes will error and it does the needed
545 * line discipline hangup and signal delivery. The tty object itself
546 * remains intact.
547 *
548 * Locking:
549 * BTM
550 * redirect lock for undoing redirection
551 * file list lock for manipulating list of ttys
552 * tty_ldisc_lock from called functions
553 * termios_mutex resetting termios data
554 * tasklist_lock to walk task list for hangup event
555 * ->siglock to protect ->signal/->sighand
556 */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559 struct file *cons_filp = NULL;
560 struct file *filp, *f = NULL;
561 struct task_struct *p;
562 struct tty_file_private *priv;
563 int closecount = 0, n;
564 unsigned long flags;
565 int refs = 0;
566
567 if (!tty)
568 return;
569
570
571 spin_lock(&redirect_lock);
572 if (redirect && file_tty(redirect) == tty) {
573 f = redirect;
574 redirect = NULL;
575 }
576 spin_unlock(&redirect_lock);
577
578 tty_lock(tty);
579
580 /* some functions below drop BTM, so we need this bit */
581 set_bit(TTY_HUPPING, &tty->flags);
582
583 /* inuse_filps is protected by the single tty lock,
584 this really needs to change if we want to flush the
585 workqueue with the lock held */
586 check_tty_count(tty, "tty_hangup");
587
588 spin_lock(&tty_files_lock);
589 /* This breaks for file handles being sent over AF_UNIX sockets ? */
590 list_for_each_entry(priv, &tty->tty_files, list) {
591 filp = priv->file;
592 if (filp->f_op->write == redirected_tty_write)
593 cons_filp = filp;
594 if (filp->f_op->write != tty_write)
595 continue;
596 closecount++;
597 __tty_fasync(-1, filp, 0); /* can't block */
598 filp->f_op = &hung_up_tty_fops;
599 }
600 spin_unlock(&tty_files_lock);
601
602 /*
603 * it drops BTM and thus races with reopen
604 * we protect the race by TTY_HUPPING
605 */
606 tty_ldisc_hangup(tty);
607
608 read_lock(&tasklist_lock);
609 if (tty->session) {
610 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611 spin_lock_irq(&p->sighand->siglock);
612 if (p->signal->tty == tty) {
613 p->signal->tty = NULL;
614 /* We defer the dereferences outside fo
615 the tasklist lock */
616 refs++;
617 }
618 if (!p->signal->leader) {
619 spin_unlock_irq(&p->sighand->siglock);
620 continue;
621 }
622 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624 put_pid(p->signal->tty_old_pgrp); /* A noop */
625 spin_lock_irqsave(&tty->ctrl_lock, flags);
626 if (tty->pgrp)
627 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629 spin_unlock_irq(&p->sighand->siglock);
630 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
631 }
632 read_unlock(&tasklist_lock);
633
634 spin_lock_irqsave(&tty->ctrl_lock, flags);
635 clear_bit(TTY_THROTTLED, &tty->flags);
636 clear_bit(TTY_PUSH, &tty->flags);
637 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638 put_pid(tty->session);
639 put_pid(tty->pgrp);
640 tty->session = NULL;
641 tty->pgrp = NULL;
642 tty->ctrl_status = 0;
643 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644
645 /* Account for the p->signal references we killed */
646 while (refs--)
647 tty_kref_put(tty);
648
649 /*
650 * If one of the devices matches a console pointer, we
651 * cannot just call hangup() because that will cause
652 * tty->count and state->count to go out of sync.
653 * So we just call close() the right number of times.
654 */
655 if (cons_filp) {
656 if (tty->ops->close)
657 for (n = 0; n < closecount; n++)
658 tty->ops->close(tty, cons_filp);
659 } else if (tty->ops->hangup)
660 (tty->ops->hangup)(tty);
661 /*
662 * We don't want to have driver/ldisc interactions beyond
663 * the ones we did here. The driver layer expects no
664 * calls after ->hangup() from the ldisc side. However we
665 * can't yet guarantee all that.
666 */
667 set_bit(TTY_HUPPED, &tty->flags);
668 clear_bit(TTY_HUPPING, &tty->flags);
669 tty_ldisc_enable(tty);
670
671 tty_unlock(tty);
672
673 if (f)
674 fput(f);
675 }
676
677 static void do_tty_hangup(struct work_struct *work)
678 {
679 struct tty_struct *tty =
680 container_of(work, struct tty_struct, hangup_work);
681
682 __tty_hangup(tty);
683 }
684
685 /**
686 * tty_hangup - trigger a hangup event
687 * @tty: tty to hangup
688 *
689 * A carrier loss (virtual or otherwise) has occurred on this like
690 * schedule a hangup sequence to run after this event.
691 */
692
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696 char buf[64];
697 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699 schedule_work(&tty->hangup_work);
700 }
701
702 EXPORT_SYMBOL(tty_hangup);
703
704 /**
705 * tty_vhangup - process vhangup
706 * @tty: tty to hangup
707 *
708 * The user has asked via system call for the terminal to be hung up.
709 * We do this synchronously so that when the syscall returns the process
710 * is complete. That guarantee is necessary for security reasons.
711 */
712
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716 char buf[64];
717
718 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720 __tty_hangup(tty);
721 }
722
723 EXPORT_SYMBOL(tty_vhangup);
724
725
726 /**
727 * tty_vhangup_self - process vhangup for own ctty
728 *
729 * Perform a vhangup on the current controlling tty
730 */
731
732 void tty_vhangup_self(void)
733 {
734 struct tty_struct *tty;
735
736 tty = get_current_tty();
737 if (tty) {
738 tty_vhangup(tty);
739 tty_kref_put(tty);
740 }
741 }
742
743 /**
744 * tty_hung_up_p - was tty hung up
745 * @filp: file pointer of tty
746 *
747 * Return true if the tty has been subject to a vhangup or a carrier
748 * loss
749 */
750
751 int tty_hung_up_p(struct file *filp)
752 {
753 return (filp->f_op == &hung_up_tty_fops);
754 }
755
756 EXPORT_SYMBOL(tty_hung_up_p);
757
758 static void session_clear_tty(struct pid *session)
759 {
760 struct task_struct *p;
761 do_each_pid_task(session, PIDTYPE_SID, p) {
762 proc_clear_tty(p);
763 } while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765
766 /**
767 * disassociate_ctty - disconnect controlling tty
768 * @on_exit: true if exiting so need to "hang up" the session
769 *
770 * This function is typically called only by the session leader, when
771 * it wants to disassociate itself from its controlling tty.
772 *
773 * It performs the following functions:
774 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
775 * (2) Clears the tty from being controlling the session
776 * (3) Clears the controlling tty for all processes in the
777 * session group.
778 *
779 * The argument on_exit is set to 1 if called when a process is
780 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
781 *
782 * Locking:
783 * BTM is taken for hysterical raisins, and held when
784 * called from no_tty().
785 * tty_mutex is taken to protect tty
786 * ->siglock is taken to protect ->signal/->sighand
787 * tasklist_lock is taken to walk process list for sessions
788 * ->siglock is taken to protect ->signal/->sighand
789 */
790
791 void disassociate_ctty(int on_exit)
792 {
793 struct tty_struct *tty;
794
795 if (!current->signal->leader)
796 return;
797
798 tty = get_current_tty();
799 if (tty) {
800 struct pid *tty_pgrp = get_pid(tty->pgrp);
801 if (on_exit) {
802 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803 tty_vhangup(tty);
804 }
805 tty_kref_put(tty);
806 if (tty_pgrp) {
807 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808 if (!on_exit)
809 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810 put_pid(tty_pgrp);
811 }
812 } else if (on_exit) {
813 struct pid *old_pgrp;
814 spin_lock_irq(&current->sighand->siglock);
815 old_pgrp = current->signal->tty_old_pgrp;
816 current->signal->tty_old_pgrp = NULL;
817 spin_unlock_irq(&current->sighand->siglock);
818 if (old_pgrp) {
819 kill_pgrp(old_pgrp, SIGHUP, on_exit);
820 kill_pgrp(old_pgrp, SIGCONT, on_exit);
821 put_pid(old_pgrp);
822 }
823 return;
824 }
825
826 spin_lock_irq(&current->sighand->siglock);
827 put_pid(current->signal->tty_old_pgrp);
828 current->signal->tty_old_pgrp = NULL;
829 spin_unlock_irq(&current->sighand->siglock);
830
831 tty = get_current_tty();
832 if (tty) {
833 unsigned long flags;
834 spin_lock_irqsave(&tty->ctrl_lock, flags);
835 put_pid(tty->session);
836 put_pid(tty->pgrp);
837 tty->session = NULL;
838 tty->pgrp = NULL;
839 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840 tty_kref_put(tty);
841 } else {
842 #ifdef TTY_DEBUG_HANGUP
843 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844 " = NULL", tty);
845 #endif
846 }
847
848 /* Now clear signal->tty under the lock */
849 read_lock(&tasklist_lock);
850 session_clear_tty(task_session(current));
851 read_unlock(&tasklist_lock);
852 }
853
854 /**
855 *
856 * no_tty - Ensure the current process does not have a controlling tty
857 */
858 void no_tty(void)
859 {
860 /* FIXME: Review locking here. The tty_lock never covered any race
861 between a new association and proc_clear_tty but possible we need
862 to protect against this anyway */
863 struct task_struct *tsk = current;
864 disassociate_ctty(0);
865 proc_clear_tty(tsk);
866 }
867
868
869 /**
870 * stop_tty - propagate flow control
871 * @tty: tty to stop
872 *
873 * Perform flow control to the driver. For PTY/TTY pairs we
874 * must also propagate the TIOCKPKT status. May be called
875 * on an already stopped device and will not re-call the driver
876 * method.
877 *
878 * This functionality is used by both the line disciplines for
879 * halting incoming flow and by the driver. It may therefore be
880 * called from any context, may be under the tty atomic_write_lock
881 * but not always.
882 *
883 * Locking:
884 * Uses the tty control lock internally
885 */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889 unsigned long flags;
890 spin_lock_irqsave(&tty->ctrl_lock, flags);
891 if (tty->stopped) {
892 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893 return;
894 }
895 tty->stopped = 1;
896 if (tty->link && tty->link->packet) {
897 tty->ctrl_status &= ~TIOCPKT_START;
898 tty->ctrl_status |= TIOCPKT_STOP;
899 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900 }
901 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902 if (tty->ops->stop)
903 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909 * start_tty - propagate flow control
910 * @tty: tty to start
911 *
912 * Start a tty that has been stopped if at all possible. Perform
913 * any necessary wakeups and propagate the TIOCPKT status. If this
914 * is the tty was previous stopped and is being started then the
915 * driver start method is invoked and the line discipline woken.
916 *
917 * Locking:
918 * ctrl_lock
919 */
920
921 void start_tty(struct tty_struct *tty)
922 {
923 unsigned long flags;
924 spin_lock_irqsave(&tty->ctrl_lock, flags);
925 if (!tty->stopped || tty->flow_stopped) {
926 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927 return;
928 }
929 tty->stopped = 0;
930 if (tty->link && tty->link->packet) {
931 tty->ctrl_status &= ~TIOCPKT_STOP;
932 tty->ctrl_status |= TIOCPKT_START;
933 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934 }
935 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936 if (tty->ops->start)
937 (tty->ops->start)(tty);
938 /* If we have a running line discipline it may need kicking */
939 tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 /**
945 * tty_read - read method for tty device files
946 * @file: pointer to tty file
947 * @buf: user buffer
948 * @count: size of user buffer
949 * @ppos: unused
950 *
951 * Perform the read system call function on this terminal device. Checks
952 * for hung up devices before calling the line discipline method.
953 *
954 * Locking:
955 * Locks the line discipline internally while needed. Multiple
956 * read calls may be outstanding in parallel.
957 */
958
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960 loff_t *ppos)
961 {
962 int i;
963 struct inode *inode = file->f_path.dentry->d_inode;
964 struct tty_struct *tty = file_tty(file);
965 struct tty_ldisc *ld;
966
967 if (tty_paranoia_check(tty, inode, "tty_read"))
968 return -EIO;
969 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
970 return -EIO;
971
972 /* We want to wait for the line discipline to sort out in this
973 situation */
974 ld = tty_ldisc_ref_wait(tty);
975 if (ld->ops->read)
976 i = (ld->ops->read)(tty, file, buf, count);
977 else
978 i = -EIO;
979 tty_ldisc_deref(ld);
980 if (i > 0)
981 inode->i_atime = current_fs_time(inode->i_sb);
982 return i;
983 }
984
985 void tty_write_unlock(struct tty_struct *tty)
986 __releases(&tty->atomic_write_lock)
987 {
988 mutex_unlock(&tty->atomic_write_lock);
989 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
990 }
991
992 int tty_write_lock(struct tty_struct *tty, int ndelay)
993 __acquires(&tty->atomic_write_lock)
994 {
995 if (!mutex_trylock(&tty->atomic_write_lock)) {
996 if (ndelay)
997 return -EAGAIN;
998 if (mutex_lock_interruptible(&tty->atomic_write_lock))
999 return -ERESTARTSYS;
1000 }
1001 return 0;
1002 }
1003
1004 /*
1005 * Split writes up in sane blocksizes to avoid
1006 * denial-of-service type attacks
1007 */
1008 static inline ssize_t do_tty_write(
1009 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1010 struct tty_struct *tty,
1011 struct file *file,
1012 const char __user *buf,
1013 size_t count)
1014 {
1015 ssize_t ret, written = 0;
1016 unsigned int chunk;
1017
1018 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1019 if (ret < 0)
1020 return ret;
1021
1022 /*
1023 * We chunk up writes into a temporary buffer. This
1024 * simplifies low-level drivers immensely, since they
1025 * don't have locking issues and user mode accesses.
1026 *
1027 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1028 * big chunk-size..
1029 *
1030 * The default chunk-size is 2kB, because the NTTY
1031 * layer has problems with bigger chunks. It will
1032 * claim to be able to handle more characters than
1033 * it actually does.
1034 *
1035 * FIXME: This can probably go away now except that 64K chunks
1036 * are too likely to fail unless switched to vmalloc...
1037 */
1038 chunk = 2048;
1039 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1040 chunk = 65536;
1041 if (count < chunk)
1042 chunk = count;
1043
1044 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1045 if (tty->write_cnt < chunk) {
1046 unsigned char *buf_chunk;
1047
1048 if (chunk < 1024)
1049 chunk = 1024;
1050
1051 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1052 if (!buf_chunk) {
1053 ret = -ENOMEM;
1054 goto out;
1055 }
1056 kfree(tty->write_buf);
1057 tty->write_cnt = chunk;
1058 tty->write_buf = buf_chunk;
1059 }
1060
1061 /* Do the write .. */
1062 for (;;) {
1063 size_t size = count;
1064 if (size > chunk)
1065 size = chunk;
1066 ret = -EFAULT;
1067 if (copy_from_user(tty->write_buf, buf, size))
1068 break;
1069 ret = write(tty, file, tty->write_buf, size);
1070 if (ret <= 0)
1071 break;
1072 written += ret;
1073 buf += ret;
1074 count -= ret;
1075 if (!count)
1076 break;
1077 ret = -ERESTARTSYS;
1078 if (signal_pending(current))
1079 break;
1080 cond_resched();
1081 }
1082 if (written) {
1083 struct inode *inode = file->f_path.dentry->d_inode;
1084 inode->i_mtime = current_fs_time(inode->i_sb);
1085 ret = written;
1086 }
1087 out:
1088 tty_write_unlock(tty);
1089 return ret;
1090 }
1091
1092 /**
1093 * tty_write_message - write a message to a certain tty, not just the console.
1094 * @tty: the destination tty_struct
1095 * @msg: the message to write
1096 *
1097 * This is used for messages that need to be redirected to a specific tty.
1098 * We don't put it into the syslog queue right now maybe in the future if
1099 * really needed.
1100 *
1101 * We must still hold the BTM and test the CLOSING flag for the moment.
1102 */
1103
1104 void tty_write_message(struct tty_struct *tty, char *msg)
1105 {
1106 if (tty) {
1107 mutex_lock(&tty->atomic_write_lock);
1108 tty_lock(tty);
1109 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1110 tty_unlock(tty);
1111 tty->ops->write(tty, msg, strlen(msg));
1112 } else
1113 tty_unlock(tty);
1114 tty_write_unlock(tty);
1115 }
1116 return;
1117 }
1118
1119
1120 /**
1121 * tty_write - write method for tty device file
1122 * @file: tty file pointer
1123 * @buf: user data to write
1124 * @count: bytes to write
1125 * @ppos: unused
1126 *
1127 * Write data to a tty device via the line discipline.
1128 *
1129 * Locking:
1130 * Locks the line discipline as required
1131 * Writes to the tty driver are serialized by the atomic_write_lock
1132 * and are then processed in chunks to the device. The line discipline
1133 * write method will not be invoked in parallel for each device.
1134 */
1135
1136 static ssize_t tty_write(struct file *file, const char __user *buf,
1137 size_t count, loff_t *ppos)
1138 {
1139 struct inode *inode = file->f_path.dentry->d_inode;
1140 struct tty_struct *tty = file_tty(file);
1141 struct tty_ldisc *ld;
1142 ssize_t ret;
1143
1144 if (tty_paranoia_check(tty, inode, "tty_write"))
1145 return -EIO;
1146 if (!tty || !tty->ops->write ||
1147 (test_bit(TTY_IO_ERROR, &tty->flags)))
1148 return -EIO;
1149 /* Short term debug to catch buggy drivers */
1150 if (tty->ops->write_room == NULL)
1151 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1152 tty->driver->name);
1153 ld = tty_ldisc_ref_wait(tty);
1154 if (!ld->ops->write)
1155 ret = -EIO;
1156 else
1157 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1158 tty_ldisc_deref(ld);
1159 return ret;
1160 }
1161
1162 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1163 size_t count, loff_t *ppos)
1164 {
1165 struct file *p = NULL;
1166
1167 spin_lock(&redirect_lock);
1168 if (redirect)
1169 p = get_file(redirect);
1170 spin_unlock(&redirect_lock);
1171
1172 if (p) {
1173 ssize_t res;
1174 res = vfs_write(p, buf, count, &p->f_pos);
1175 fput(p);
1176 return res;
1177 }
1178 return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184 * pty_line_name - generate name for a pty
1185 * @driver: the tty driver in use
1186 * @index: the minor number
1187 * @p: output buffer of at least 6 bytes
1188 *
1189 * Generate a name from a driver reference and write it to the output
1190 * buffer.
1191 *
1192 * Locking: None
1193 */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196 int i = index + driver->name_base;
1197 /* ->name is initialized to "ttyp", but "tty" is expected */
1198 sprintf(p, "%s%c%x",
1199 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204 * tty_line_name - generate name for a tty
1205 * @driver: the tty driver in use
1206 * @index: the minor number
1207 * @p: output buffer of at least 7 bytes
1208 *
1209 * Generate a name from a driver reference and write it to the output
1210 * buffer.
1211 *
1212 * Locking: None
1213 */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1217 strcpy(p, driver->name);
1218 else
1219 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1220 }
1221
1222 /**
1223 * tty_driver_lookup_tty() - find an existing tty, if any
1224 * @driver: the driver for the tty
1225 * @idx: the minor number
1226 *
1227 * Return the tty, if found or ERR_PTR() otherwise.
1228 *
1229 * Locking: tty_mutex must be held. If tty is found, the mutex must
1230 * be held until the 'fast-open' is also done. Will change once we
1231 * have refcounting in the driver and per driver locking
1232 */
1233 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1234 struct inode *inode, int idx)
1235 {
1236 if (driver->ops->lookup)
1237 return driver->ops->lookup(driver, inode, idx);
1238
1239 return driver->ttys[idx];
1240 }
1241
1242 /**
1243 * tty_init_termios - helper for termios setup
1244 * @tty: the tty to set up
1245 *
1246 * Initialise the termios structures for this tty. Thus runs under
1247 * the tty_mutex currently so we can be relaxed about ordering.
1248 */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252 struct ktermios *tp;
1253 int idx = tty->index;
1254
1255 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256 tty->termios = tty->driver->init_termios;
1257 else {
1258 /* Check for lazy saved data */
1259 tp = tty->driver->termios[idx];
1260 if (tp != NULL)
1261 tty->termios = *tp;
1262 else
1263 tty->termios = tty->driver->init_termios;
1264 }
1265 /* Compatibility until drivers always set this */
1266 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1267 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1268 return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274 int ret = tty_init_termios(tty);
1275 if (ret)
1276 return ret;
1277
1278 tty_driver_kref_get(driver);
1279 tty->count++;
1280 driver->ttys[tty->index] = tty;
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286 * tty_driver_install_tty() - install a tty entry in the driver
1287 * @driver: the driver for the tty
1288 * @tty: the tty
1289 *
1290 * Install a tty object into the driver tables. The tty->index field
1291 * will be set by the time this is called. This method is responsible
1292 * for ensuring any need additional structures are allocated and
1293 * configured.
1294 *
1295 * Locking: tty_mutex for now
1296 */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298 struct tty_struct *tty)
1299 {
1300 return driver->ops->install ? driver->ops->install(driver, tty) :
1301 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305 * tty_driver_remove_tty() - remove a tty from the driver tables
1306 * @driver: the driver for the tty
1307 * @idx: the minor number
1308 *
1309 * Remvoe a tty object from the driver tables. The tty->index field
1310 * will be set by the time this is called.
1311 *
1312 * Locking: tty_mutex for now
1313 */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316 if (driver->ops->remove)
1317 driver->ops->remove(driver, tty);
1318 else
1319 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323 * tty_reopen() - fast re-open of an open tty
1324 * @tty - the tty to open
1325 *
1326 * Return 0 on success, -errno on error.
1327 *
1328 * Locking: tty_mutex must be held from the time the tty was found
1329 * till this open completes.
1330 */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333 struct tty_driver *driver = tty->driver;
1334
1335 if (test_bit(TTY_CLOSING, &tty->flags) ||
1336 test_bit(TTY_HUPPING, &tty->flags) ||
1337 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338 return -EIO;
1339
1340 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341 driver->subtype == PTY_TYPE_MASTER) {
1342 /*
1343 * special case for PTY masters: only one open permitted,
1344 * and the slave side open count is incremented as well.
1345 */
1346 if (tty->count)
1347 return -EIO;
1348
1349 tty->link->count++;
1350 }
1351 tty->count++;
1352
1353 mutex_lock(&tty->ldisc_mutex);
1354 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355 mutex_unlock(&tty->ldisc_mutex);
1356
1357 return 0;
1358 }
1359
1360 /**
1361 * tty_init_dev - initialise a tty device
1362 * @driver: tty driver we are opening a device on
1363 * @idx: device index
1364 * @ret_tty: returned tty structure
1365 *
1366 * Prepare a tty device. This may not be a "new" clean device but
1367 * could also be an active device. The pty drivers require special
1368 * handling because of this.
1369 *
1370 * Locking:
1371 * The function is called under the tty_mutex, which
1372 * protects us from the tty struct or driver itself going away.
1373 *
1374 * On exit the tty device has the line discipline attached and
1375 * a reference count of 1. If a pair was created for pty/tty use
1376 * and the other was a pty master then it too has a reference count of 1.
1377 *
1378 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379 * failed open. The new code protects the open with a mutex, so it's
1380 * really quite straightforward. The mutex locking can probably be
1381 * relaxed for the (most common) case of reopening a tty.
1382 */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386 struct tty_struct *tty;
1387 int retval;
1388
1389 /*
1390 * First time open is complex, especially for PTY devices.
1391 * This code guarantees that either everything succeeds and the
1392 * TTY is ready for operation, or else the table slots are vacated
1393 * and the allocated memory released. (Except that the termios
1394 * and locked termios may be retained.)
1395 */
1396
1397 if (!try_module_get(driver->owner))
1398 return ERR_PTR(-ENODEV);
1399
1400 tty = alloc_tty_struct();
1401 if (!tty) {
1402 retval = -ENOMEM;
1403 goto err_module_put;
1404 }
1405 initialize_tty_struct(tty, driver, idx);
1406
1407 tty_lock(tty);
1408 retval = tty_driver_install_tty(driver, tty);
1409 if (retval < 0)
1410 goto err_deinit_tty;
1411
1412 if (!tty->port)
1413 tty->port = driver->ports[idx];
1414
1415 WARN_RATELIMIT(!tty->port,
1416 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1417 __func__, tty->driver->name);
1418
1419 tty->port->itty = tty;
1420
1421 /*
1422 * Structures all installed ... call the ldisc open routines.
1423 * If we fail here just call release_tty to clean up. No need
1424 * to decrement the use counts, as release_tty doesn't care.
1425 */
1426 retval = tty_ldisc_setup(tty, tty->link);
1427 if (retval)
1428 goto err_release_tty;
1429 /* Return the tty locked so that it cannot vanish under the caller */
1430 return tty;
1431
1432 err_deinit_tty:
1433 tty_unlock(tty);
1434 deinitialize_tty_struct(tty);
1435 free_tty_struct(tty);
1436 err_module_put:
1437 module_put(driver->owner);
1438 return ERR_PTR(retval);
1439
1440 /* call the tty release_tty routine to clean out this slot */
1441 err_release_tty:
1442 tty_unlock(tty);
1443 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1444 "clearing slot %d\n", idx);
1445 release_tty(tty, idx);
1446 return ERR_PTR(retval);
1447 }
1448
1449 void tty_free_termios(struct tty_struct *tty)
1450 {
1451 struct ktermios *tp;
1452 int idx = tty->index;
1453
1454 /* If the port is going to reset then it has no termios to save */
1455 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1456 return;
1457
1458 /* Stash the termios data */
1459 tp = tty->driver->termios[idx];
1460 if (tp == NULL) {
1461 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1462 if (tp == NULL) {
1463 pr_warn("tty: no memory to save termios state.\n");
1464 return;
1465 }
1466 tty->driver->termios[idx] = tp;
1467 }
1468 *tp = tty->termios;
1469 }
1470 EXPORT_SYMBOL(tty_free_termios);
1471
1472
1473 /**
1474 * release_one_tty - release tty structure memory
1475 * @kref: kref of tty we are obliterating
1476 *
1477 * Releases memory associated with a tty structure, and clears out the
1478 * driver table slots. This function is called when a device is no longer
1479 * in use. It also gets called when setup of a device fails.
1480 *
1481 * Locking:
1482 * takes the file list lock internally when working on the list
1483 * of ttys that the driver keeps.
1484 *
1485 * This method gets called from a work queue so that the driver private
1486 * cleanup ops can sleep (needed for USB at least)
1487 */
1488 static void release_one_tty(struct work_struct *work)
1489 {
1490 struct tty_struct *tty =
1491 container_of(work, struct tty_struct, hangup_work);
1492 struct tty_driver *driver = tty->driver;
1493
1494 if (tty->ops->cleanup)
1495 tty->ops->cleanup(tty);
1496
1497 tty->magic = 0;
1498 tty_driver_kref_put(driver);
1499 module_put(driver->owner);
1500
1501 spin_lock(&tty_files_lock);
1502 list_del_init(&tty->tty_files);
1503 spin_unlock(&tty_files_lock);
1504
1505 put_pid(tty->pgrp);
1506 put_pid(tty->session);
1507 free_tty_struct(tty);
1508 }
1509
1510 static void queue_release_one_tty(struct kref *kref)
1511 {
1512 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1513
1514 /* The hangup queue is now free so we can reuse it rather than
1515 waste a chunk of memory for each port */
1516 INIT_WORK(&tty->hangup_work, release_one_tty);
1517 schedule_work(&tty->hangup_work);
1518 }
1519
1520 /**
1521 * tty_kref_put - release a tty kref
1522 * @tty: tty device
1523 *
1524 * Release a reference to a tty device and if need be let the kref
1525 * layer destruct the object for us
1526 */
1527
1528 void tty_kref_put(struct tty_struct *tty)
1529 {
1530 if (tty)
1531 kref_put(&tty->kref, queue_release_one_tty);
1532 }
1533 EXPORT_SYMBOL(tty_kref_put);
1534
1535 /**
1536 * release_tty - release tty structure memory
1537 *
1538 * Release both @tty and a possible linked partner (think pty pair),
1539 * and decrement the refcount of the backing module.
1540 *
1541 * Locking:
1542 * tty_mutex
1543 * takes the file list lock internally when working on the list
1544 * of ttys that the driver keeps.
1545 *
1546 */
1547 static void release_tty(struct tty_struct *tty, int idx)
1548 {
1549 /* This should always be true but check for the moment */
1550 WARN_ON(tty->index != idx);
1551 WARN_ON(!mutex_is_locked(&tty_mutex));
1552 if (tty->ops->shutdown)
1553 tty->ops->shutdown(tty);
1554 tty_free_termios(tty);
1555 tty_driver_remove_tty(tty->driver, tty);
1556 tty->port->itty = NULL;
1557
1558 if (tty->link)
1559 tty_kref_put(tty->link);
1560 tty_kref_put(tty);
1561 }
1562
1563 /**
1564 * tty_release_checks - check a tty before real release
1565 * @tty: tty to check
1566 * @o_tty: link of @tty (if any)
1567 * @idx: index of the tty
1568 *
1569 * Performs some paranoid checking before true release of the @tty.
1570 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1571 */
1572 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1573 int idx)
1574 {
1575 #ifdef TTY_PARANOIA_CHECK
1576 if (idx < 0 || idx >= tty->driver->num) {
1577 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1578 __func__, tty->name);
1579 return -1;
1580 }
1581
1582 /* not much to check for devpts */
1583 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1584 return 0;
1585
1586 if (tty != tty->driver->ttys[idx]) {
1587 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1588 __func__, idx, tty->name);
1589 return -1;
1590 }
1591 if (tty->driver->other) {
1592 if (o_tty != tty->driver->other->ttys[idx]) {
1593 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1594 __func__, idx, tty->name);
1595 return -1;
1596 }
1597 if (o_tty->link != tty) {
1598 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1599 return -1;
1600 }
1601 }
1602 #endif
1603 return 0;
1604 }
1605
1606 /**
1607 * tty_release - vfs callback for close
1608 * @inode: inode of tty
1609 * @filp: file pointer for handle to tty
1610 *
1611 * Called the last time each file handle is closed that references
1612 * this tty. There may however be several such references.
1613 *
1614 * Locking:
1615 * Takes bkl. See tty_release_dev
1616 *
1617 * Even releasing the tty structures is a tricky business.. We have
1618 * to be very careful that the structures are all released at the
1619 * same time, as interrupts might otherwise get the wrong pointers.
1620 *
1621 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1622 * lead to double frees or releasing memory still in use.
1623 */
1624
1625 int tty_release(struct inode *inode, struct file *filp)
1626 {
1627 struct tty_struct *tty = file_tty(filp);
1628 struct tty_struct *o_tty;
1629 int pty_master, tty_closing, o_tty_closing, do_sleep;
1630 int idx;
1631 char buf[64];
1632
1633 if (tty_paranoia_check(tty, inode, __func__))
1634 return 0;
1635
1636 tty_lock(tty);
1637 check_tty_count(tty, __func__);
1638
1639 __tty_fasync(-1, filp, 0);
1640
1641 idx = tty->index;
1642 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1643 tty->driver->subtype == PTY_TYPE_MASTER);
1644 /* Review: parallel close */
1645 o_tty = tty->link;
1646
1647 if (tty_release_checks(tty, o_tty, idx)) {
1648 tty_unlock(tty);
1649 return 0;
1650 }
1651
1652 #ifdef TTY_DEBUG_HANGUP
1653 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1654 tty_name(tty, buf), tty->count);
1655 #endif
1656
1657 if (tty->ops->close)
1658 tty->ops->close(tty, filp);
1659
1660 tty_unlock(tty);
1661 /*
1662 * Sanity check: if tty->count is going to zero, there shouldn't be
1663 * any waiters on tty->read_wait or tty->write_wait. We test the
1664 * wait queues and kick everyone out _before_ actually starting to
1665 * close. This ensures that we won't block while releasing the tty
1666 * structure.
1667 *
1668 * The test for the o_tty closing is necessary, since the master and
1669 * slave sides may close in any order. If the slave side closes out
1670 * first, its count will be one, since the master side holds an open.
1671 * Thus this test wouldn't be triggered at the time the slave closes,
1672 * so we do it now.
1673 *
1674 * Note that it's possible for the tty to be opened again while we're
1675 * flushing out waiters. By recalculating the closing flags before
1676 * each iteration we avoid any problems.
1677 */
1678 while (1) {
1679 /* Guard against races with tty->count changes elsewhere and
1680 opens on /dev/tty */
1681
1682 mutex_lock(&tty_mutex);
1683 tty_lock_pair(tty, o_tty);
1684 tty_closing = tty->count <= 1;
1685 o_tty_closing = o_tty &&
1686 (o_tty->count <= (pty_master ? 1 : 0));
1687 do_sleep = 0;
1688
1689 if (tty_closing) {
1690 if (waitqueue_active(&tty->read_wait)) {
1691 wake_up_poll(&tty->read_wait, POLLIN);
1692 do_sleep++;
1693 }
1694 if (waitqueue_active(&tty->write_wait)) {
1695 wake_up_poll(&tty->write_wait, POLLOUT);
1696 do_sleep++;
1697 }
1698 }
1699 if (o_tty_closing) {
1700 if (waitqueue_active(&o_tty->read_wait)) {
1701 wake_up_poll(&o_tty->read_wait, POLLIN);
1702 do_sleep++;
1703 }
1704 if (waitqueue_active(&o_tty->write_wait)) {
1705 wake_up_poll(&o_tty->write_wait, POLLOUT);
1706 do_sleep++;
1707 }
1708 }
1709 if (!do_sleep)
1710 break;
1711
1712 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1713 __func__, tty_name(tty, buf));
1714 tty_unlock_pair(tty, o_tty);
1715 mutex_unlock(&tty_mutex);
1716 schedule();
1717 }
1718
1719 /*
1720 * The closing flags are now consistent with the open counts on
1721 * both sides, and we've completed the last operation that could
1722 * block, so it's safe to proceed with closing.
1723 *
1724 * We must *not* drop the tty_mutex until we ensure that a further
1725 * entry into tty_open can not pick up this tty.
1726 */
1727 if (pty_master) {
1728 if (--o_tty->count < 0) {
1729 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1730 __func__, o_tty->count, tty_name(o_tty, buf));
1731 o_tty->count = 0;
1732 }
1733 }
1734 if (--tty->count < 0) {
1735 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1736 __func__, tty->count, tty_name(tty, buf));
1737 tty->count = 0;
1738 }
1739
1740 /*
1741 * We've decremented tty->count, so we need to remove this file
1742 * descriptor off the tty->tty_files list; this serves two
1743 * purposes:
1744 * - check_tty_count sees the correct number of file descriptors
1745 * associated with this tty.
1746 * - do_tty_hangup no longer sees this file descriptor as
1747 * something that needs to be handled for hangups.
1748 */
1749 tty_del_file(filp);
1750
1751 /*
1752 * Perform some housekeeping before deciding whether to return.
1753 *
1754 * Set the TTY_CLOSING flag if this was the last open. In the
1755 * case of a pty we may have to wait around for the other side
1756 * to close, and TTY_CLOSING makes sure we can't be reopened.
1757 */
1758 if (tty_closing)
1759 set_bit(TTY_CLOSING, &tty->flags);
1760 if (o_tty_closing)
1761 set_bit(TTY_CLOSING, &o_tty->flags);
1762
1763 /*
1764 * If _either_ side is closing, make sure there aren't any
1765 * processes that still think tty or o_tty is their controlling
1766 * tty.
1767 */
1768 if (tty_closing || o_tty_closing) {
1769 read_lock(&tasklist_lock);
1770 session_clear_tty(tty->session);
1771 if (o_tty)
1772 session_clear_tty(o_tty->session);
1773 read_unlock(&tasklist_lock);
1774 }
1775
1776 mutex_unlock(&tty_mutex);
1777 tty_unlock_pair(tty, o_tty);
1778 /* At this point the TTY_CLOSING flag should ensure a dead tty
1779 cannot be re-opened by a racing opener */
1780
1781 /* check whether both sides are closing ... */
1782 if (!tty_closing || (o_tty && !o_tty_closing))
1783 return 0;
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1787 #endif
1788 /*
1789 * Ask the line discipline code to release its structures
1790 */
1791 tty_ldisc_release(tty, o_tty);
1792 /*
1793 * The release_tty function takes care of the details of clearing
1794 * the slots and preserving the termios structure. The tty_unlock_pair
1795 * should be safe as we keep a kref while the tty is locked (so the
1796 * unlock never unlocks a freed tty).
1797 */
1798 mutex_lock(&tty_mutex);
1799 release_tty(tty, idx);
1800 mutex_unlock(&tty_mutex);
1801
1802 return 0;
1803 }
1804
1805 /**
1806 * tty_open_current_tty - get tty of current task for open
1807 * @device: device number
1808 * @filp: file pointer to tty
1809 * @return: tty of the current task iff @device is /dev/tty
1810 *
1811 * We cannot return driver and index like for the other nodes because
1812 * devpts will not work then. It expects inodes to be from devpts FS.
1813 *
1814 * We need to move to returning a refcounted object from all the lookup
1815 * paths including this one.
1816 */
1817 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1818 {
1819 struct tty_struct *tty;
1820
1821 if (device != MKDEV(TTYAUX_MAJOR, 0))
1822 return NULL;
1823
1824 tty = get_current_tty();
1825 if (!tty)
1826 return ERR_PTR(-ENXIO);
1827
1828 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1829 /* noctty = 1; */
1830 tty_kref_put(tty);
1831 /* FIXME: we put a reference and return a TTY! */
1832 /* This is only safe because the caller holds tty_mutex */
1833 return tty;
1834 }
1835
1836 /**
1837 * tty_lookup_driver - lookup a tty driver for a given device file
1838 * @device: device number
1839 * @filp: file pointer to tty
1840 * @noctty: set if the device should not become a controlling tty
1841 * @index: index for the device in the @return driver
1842 * @return: driver for this inode (with increased refcount)
1843 *
1844 * If @return is not erroneous, the caller is responsible to decrement the
1845 * refcount by tty_driver_kref_put.
1846 *
1847 * Locking: tty_mutex protects get_tty_driver
1848 */
1849 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1850 int *noctty, int *index)
1851 {
1852 struct tty_driver *driver;
1853
1854 switch (device) {
1855 #ifdef CONFIG_VT
1856 case MKDEV(TTY_MAJOR, 0): {
1857 extern struct tty_driver *console_driver;
1858 driver = tty_driver_kref_get(console_driver);
1859 *index = fg_console;
1860 *noctty = 1;
1861 break;
1862 }
1863 #endif
1864 case MKDEV(TTYAUX_MAJOR, 1): {
1865 struct tty_driver *console_driver = console_device(index);
1866 if (console_driver) {
1867 driver = tty_driver_kref_get(console_driver);
1868 if (driver) {
1869 /* Don't let /dev/console block */
1870 filp->f_flags |= O_NONBLOCK;
1871 *noctty = 1;
1872 break;
1873 }
1874 }
1875 return ERR_PTR(-ENODEV);
1876 }
1877 default:
1878 driver = get_tty_driver(device, index);
1879 if (!driver)
1880 return ERR_PTR(-ENODEV);
1881 break;
1882 }
1883 return driver;
1884 }
1885
1886 /**
1887 * tty_open - open a tty device
1888 * @inode: inode of device file
1889 * @filp: file pointer to tty
1890 *
1891 * tty_open and tty_release keep up the tty count that contains the
1892 * number of opens done on a tty. We cannot use the inode-count, as
1893 * different inodes might point to the same tty.
1894 *
1895 * Open-counting is needed for pty masters, as well as for keeping
1896 * track of serial lines: DTR is dropped when the last close happens.
1897 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1898 *
1899 * The termios state of a pty is reset on first open so that
1900 * settings don't persist across reuse.
1901 *
1902 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1903 * tty->count should protect the rest.
1904 * ->siglock protects ->signal/->sighand
1905 *
1906 * Note: the tty_unlock/lock cases without a ref are only safe due to
1907 * tty_mutex
1908 */
1909
1910 static int tty_open(struct inode *inode, struct file *filp)
1911 {
1912 struct tty_struct *tty;
1913 int noctty, retval;
1914 struct tty_driver *driver = NULL;
1915 int index;
1916 dev_t device = inode->i_rdev;
1917 unsigned saved_flags = filp->f_flags;
1918
1919 nonseekable_open(inode, filp);
1920
1921 retry_open:
1922 retval = tty_alloc_file(filp);
1923 if (retval)
1924 return -ENOMEM;
1925
1926 noctty = filp->f_flags & O_NOCTTY;
1927 index = -1;
1928 retval = 0;
1929
1930 mutex_lock(&tty_mutex);
1931 /* This is protected by the tty_mutex */
1932 tty = tty_open_current_tty(device, filp);
1933 if (IS_ERR(tty)) {
1934 retval = PTR_ERR(tty);
1935 goto err_unlock;
1936 } else if (!tty) {
1937 driver = tty_lookup_driver(device, filp, &noctty, &index);
1938 if (IS_ERR(driver)) {
1939 retval = PTR_ERR(driver);
1940 goto err_unlock;
1941 }
1942
1943 /* check whether we're reopening an existing tty */
1944 tty = tty_driver_lookup_tty(driver, inode, index);
1945 if (IS_ERR(tty)) {
1946 retval = PTR_ERR(tty);
1947 goto err_unlock;
1948 }
1949 }
1950
1951 if (tty) {
1952 tty_lock(tty);
1953 retval = tty_reopen(tty);
1954 if (retval < 0) {
1955 tty_unlock(tty);
1956 tty = ERR_PTR(retval);
1957 }
1958 } else /* Returns with the tty_lock held for now */
1959 tty = tty_init_dev(driver, index);
1960
1961 mutex_unlock(&tty_mutex);
1962 if (driver)
1963 tty_driver_kref_put(driver);
1964 if (IS_ERR(tty)) {
1965 retval = PTR_ERR(tty);
1966 goto err_file;
1967 }
1968
1969 tty_add_file(tty, filp);
1970
1971 check_tty_count(tty, __func__);
1972 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1973 tty->driver->subtype == PTY_TYPE_MASTER)
1974 noctty = 1;
1975 #ifdef TTY_DEBUG_HANGUP
1976 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1977 #endif
1978 if (tty->ops->open)
1979 retval = tty->ops->open(tty, filp);
1980 else
1981 retval = -ENODEV;
1982 filp->f_flags = saved_flags;
1983
1984 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1985 !capable(CAP_SYS_ADMIN))
1986 retval = -EBUSY;
1987
1988 if (retval) {
1989 #ifdef TTY_DEBUG_HANGUP
1990 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1991 retval, tty->name);
1992 #endif
1993 tty_unlock(tty); /* need to call tty_release without BTM */
1994 tty_release(inode, filp);
1995 if (retval != -ERESTARTSYS)
1996 return retval;
1997
1998 if (signal_pending(current))
1999 return retval;
2000
2001 schedule();
2002 /*
2003 * Need to reset f_op in case a hangup happened.
2004 */
2005 if (filp->f_op == &hung_up_tty_fops)
2006 filp->f_op = &tty_fops;
2007 goto retry_open;
2008 }
2009 tty_unlock(tty);
2010
2011
2012 mutex_lock(&tty_mutex);
2013 tty_lock(tty);
2014 spin_lock_irq(&current->sighand->siglock);
2015 if (!noctty &&
2016 current->signal->leader &&
2017 !current->signal->tty &&
2018 tty->session == NULL)
2019 __proc_set_tty(current, tty);
2020 spin_unlock_irq(&current->sighand->siglock);
2021 tty_unlock(tty);
2022 mutex_unlock(&tty_mutex);
2023 return 0;
2024 err_unlock:
2025 mutex_unlock(&tty_mutex);
2026 /* after locks to avoid deadlock */
2027 if (!IS_ERR_OR_NULL(driver))
2028 tty_driver_kref_put(driver);
2029 err_file:
2030 tty_free_file(filp);
2031 return retval;
2032 }
2033
2034
2035
2036 /**
2037 * tty_poll - check tty status
2038 * @filp: file being polled
2039 * @wait: poll wait structures to update
2040 *
2041 * Call the line discipline polling method to obtain the poll
2042 * status of the device.
2043 *
2044 * Locking: locks called line discipline but ldisc poll method
2045 * may be re-entered freely by other callers.
2046 */
2047
2048 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2049 {
2050 struct tty_struct *tty = file_tty(filp);
2051 struct tty_ldisc *ld;
2052 int ret = 0;
2053
2054 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2055 return 0;
2056
2057 ld = tty_ldisc_ref_wait(tty);
2058 if (ld->ops->poll)
2059 ret = (ld->ops->poll)(tty, filp, wait);
2060 tty_ldisc_deref(ld);
2061 return ret;
2062 }
2063
2064 static int __tty_fasync(int fd, struct file *filp, int on)
2065 {
2066 struct tty_struct *tty = file_tty(filp);
2067 unsigned long flags;
2068 int retval = 0;
2069
2070 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2071 goto out;
2072
2073 retval = fasync_helper(fd, filp, on, &tty->fasync);
2074 if (retval <= 0)
2075 goto out;
2076
2077 if (on) {
2078 enum pid_type type;
2079 struct pid *pid;
2080 if (!waitqueue_active(&tty->read_wait))
2081 tty->minimum_to_wake = 1;
2082 spin_lock_irqsave(&tty->ctrl_lock, flags);
2083 if (tty->pgrp) {
2084 pid = tty->pgrp;
2085 type = PIDTYPE_PGID;
2086 } else {
2087 pid = task_pid(current);
2088 type = PIDTYPE_PID;
2089 }
2090 get_pid(pid);
2091 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2092 retval = __f_setown(filp, pid, type, 0);
2093 put_pid(pid);
2094 if (retval)
2095 goto out;
2096 } else {
2097 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2098 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2099 }
2100 retval = 0;
2101 out:
2102 return retval;
2103 }
2104
2105 static int tty_fasync(int fd, struct file *filp, int on)
2106 {
2107 struct tty_struct *tty = file_tty(filp);
2108 int retval;
2109
2110 tty_lock(tty);
2111 retval = __tty_fasync(fd, filp, on);
2112 tty_unlock(tty);
2113
2114 return retval;
2115 }
2116
2117 /**
2118 * tiocsti - fake input character
2119 * @tty: tty to fake input into
2120 * @p: pointer to character
2121 *
2122 * Fake input to a tty device. Does the necessary locking and
2123 * input management.
2124 *
2125 * FIXME: does not honour flow control ??
2126 *
2127 * Locking:
2128 * Called functions take tty_ldisc_lock
2129 * current->signal->tty check is safe without locks
2130 *
2131 * FIXME: may race normal receive processing
2132 */
2133
2134 static int tiocsti(struct tty_struct *tty, char __user *p)
2135 {
2136 char ch, mbz = 0;
2137 struct tty_ldisc *ld;
2138
2139 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2140 return -EPERM;
2141 if (get_user(ch, p))
2142 return -EFAULT;
2143 tty_audit_tiocsti(tty, ch);
2144 ld = tty_ldisc_ref_wait(tty);
2145 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2146 tty_ldisc_deref(ld);
2147 return 0;
2148 }
2149
2150 /**
2151 * tiocgwinsz - implement window query ioctl
2152 * @tty; tty
2153 * @arg: user buffer for result
2154 *
2155 * Copies the kernel idea of the window size into the user buffer.
2156 *
2157 * Locking: tty->termios_mutex is taken to ensure the winsize data
2158 * is consistent.
2159 */
2160
2161 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2162 {
2163 int err;
2164
2165 mutex_lock(&tty->termios_mutex);
2166 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2167 mutex_unlock(&tty->termios_mutex);
2168
2169 return err ? -EFAULT: 0;
2170 }
2171
2172 /**
2173 * tty_do_resize - resize event
2174 * @tty: tty being resized
2175 * @rows: rows (character)
2176 * @cols: cols (character)
2177 *
2178 * Update the termios variables and send the necessary signals to
2179 * peform a terminal resize correctly
2180 */
2181
2182 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2183 {
2184 struct pid *pgrp;
2185 unsigned long flags;
2186
2187 /* Lock the tty */
2188 mutex_lock(&tty->termios_mutex);
2189 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2190 goto done;
2191 /* Get the PID values and reference them so we can
2192 avoid holding the tty ctrl lock while sending signals */
2193 spin_lock_irqsave(&tty->ctrl_lock, flags);
2194 pgrp = get_pid(tty->pgrp);
2195 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2196
2197 if (pgrp)
2198 kill_pgrp(pgrp, SIGWINCH, 1);
2199 put_pid(pgrp);
2200
2201 tty->winsize = *ws;
2202 done:
2203 mutex_unlock(&tty->termios_mutex);
2204 return 0;
2205 }
2206
2207 /**
2208 * tiocswinsz - implement window size set ioctl
2209 * @tty; tty side of tty
2210 * @arg: user buffer for result
2211 *
2212 * Copies the user idea of the window size to the kernel. Traditionally
2213 * this is just advisory information but for the Linux console it
2214 * actually has driver level meaning and triggers a VC resize.
2215 *
2216 * Locking:
2217 * Driver dependent. The default do_resize method takes the
2218 * tty termios mutex and ctrl_lock. The console takes its own lock
2219 * then calls into the default method.
2220 */
2221
2222 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2223 {
2224 struct winsize tmp_ws;
2225 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2226 return -EFAULT;
2227
2228 if (tty->ops->resize)
2229 return tty->ops->resize(tty, &tmp_ws);
2230 else
2231 return tty_do_resize(tty, &tmp_ws);
2232 }
2233
2234 /**
2235 * tioccons - allow admin to move logical console
2236 * @file: the file to become console
2237 *
2238 * Allow the administrator to move the redirected console device
2239 *
2240 * Locking: uses redirect_lock to guard the redirect information
2241 */
2242
2243 static int tioccons(struct file *file)
2244 {
2245 if (!capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2247 if (file->f_op->write == redirected_tty_write) {
2248 struct file *f;
2249 spin_lock(&redirect_lock);
2250 f = redirect;
2251 redirect = NULL;
2252 spin_unlock(&redirect_lock);
2253 if (f)
2254 fput(f);
2255 return 0;
2256 }
2257 spin_lock(&redirect_lock);
2258 if (redirect) {
2259 spin_unlock(&redirect_lock);
2260 return -EBUSY;
2261 }
2262 redirect = get_file(file);
2263 spin_unlock(&redirect_lock);
2264 return 0;
2265 }
2266
2267 /**
2268 * fionbio - non blocking ioctl
2269 * @file: file to set blocking value
2270 * @p: user parameter
2271 *
2272 * Historical tty interfaces had a blocking control ioctl before
2273 * the generic functionality existed. This piece of history is preserved
2274 * in the expected tty API of posix OS's.
2275 *
2276 * Locking: none, the open file handle ensures it won't go away.
2277 */
2278
2279 static int fionbio(struct file *file, int __user *p)
2280 {
2281 int nonblock;
2282
2283 if (get_user(nonblock, p))
2284 return -EFAULT;
2285
2286 spin_lock(&file->f_lock);
2287 if (nonblock)
2288 file->f_flags |= O_NONBLOCK;
2289 else
2290 file->f_flags &= ~O_NONBLOCK;
2291 spin_unlock(&file->f_lock);
2292 return 0;
2293 }
2294
2295 /**
2296 * tiocsctty - set controlling tty
2297 * @tty: tty structure
2298 * @arg: user argument
2299 *
2300 * This ioctl is used to manage job control. It permits a session
2301 * leader to set this tty as the controlling tty for the session.
2302 *
2303 * Locking:
2304 * Takes tty_mutex() to protect tty instance
2305 * Takes tasklist_lock internally to walk sessions
2306 * Takes ->siglock() when updating signal->tty
2307 */
2308
2309 static int tiocsctty(struct tty_struct *tty, int arg)
2310 {
2311 int ret = 0;
2312 if (current->signal->leader && (task_session(current) == tty->session))
2313 return ret;
2314
2315 mutex_lock(&tty_mutex);
2316 /*
2317 * The process must be a session leader and
2318 * not have a controlling tty already.
2319 */
2320 if (!current->signal->leader || current->signal->tty) {
2321 ret = -EPERM;
2322 goto unlock;
2323 }
2324
2325 if (tty->session) {
2326 /*
2327 * This tty is already the controlling
2328 * tty for another session group!
2329 */
2330 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2331 /*
2332 * Steal it away
2333 */
2334 read_lock(&tasklist_lock);
2335 session_clear_tty(tty->session);
2336 read_unlock(&tasklist_lock);
2337 } else {
2338 ret = -EPERM;
2339 goto unlock;
2340 }
2341 }
2342 proc_set_tty(current, tty);
2343 unlock:
2344 mutex_unlock(&tty_mutex);
2345 return ret;
2346 }
2347
2348 /**
2349 * tty_get_pgrp - return a ref counted pgrp pid
2350 * @tty: tty to read
2351 *
2352 * Returns a refcounted instance of the pid struct for the process
2353 * group controlling the tty.
2354 */
2355
2356 struct pid *tty_get_pgrp(struct tty_struct *tty)
2357 {
2358 unsigned long flags;
2359 struct pid *pgrp;
2360
2361 spin_lock_irqsave(&tty->ctrl_lock, flags);
2362 pgrp = get_pid(tty->pgrp);
2363 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2364
2365 return pgrp;
2366 }
2367 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2368
2369 /**
2370 * tiocgpgrp - get process group
2371 * @tty: tty passed by user
2372 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2373 * @p: returned pid
2374 *
2375 * Obtain the process group of the tty. If there is no process group
2376 * return an error.
2377 *
2378 * Locking: none. Reference to current->signal->tty is safe.
2379 */
2380
2381 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2382 {
2383 struct pid *pid;
2384 int ret;
2385 /*
2386 * (tty == real_tty) is a cheap way of
2387 * testing if the tty is NOT a master pty.
2388 */
2389 if (tty == real_tty && current->signal->tty != real_tty)
2390 return -ENOTTY;
2391 pid = tty_get_pgrp(real_tty);
2392 ret = put_user(pid_vnr(pid), p);
2393 put_pid(pid);
2394 return ret;
2395 }
2396
2397 /**
2398 * tiocspgrp - attempt to set process group
2399 * @tty: tty passed by user
2400 * @real_tty: tty side device matching tty passed by user
2401 * @p: pid pointer
2402 *
2403 * Set the process group of the tty to the session passed. Only
2404 * permitted where the tty session is our session.
2405 *
2406 * Locking: RCU, ctrl lock
2407 */
2408
2409 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2410 {
2411 struct pid *pgrp;
2412 pid_t pgrp_nr;
2413 int retval = tty_check_change(real_tty);
2414 unsigned long flags;
2415
2416 if (retval == -EIO)
2417 return -ENOTTY;
2418 if (retval)
2419 return retval;
2420 if (!current->signal->tty ||
2421 (current->signal->tty != real_tty) ||
2422 (real_tty->session != task_session(current)))
2423 return -ENOTTY;
2424 if (get_user(pgrp_nr, p))
2425 return -EFAULT;
2426 if (pgrp_nr < 0)
2427 return -EINVAL;
2428 rcu_read_lock();
2429 pgrp = find_vpid(pgrp_nr);
2430 retval = -ESRCH;
2431 if (!pgrp)
2432 goto out_unlock;
2433 retval = -EPERM;
2434 if (session_of_pgrp(pgrp) != task_session(current))
2435 goto out_unlock;
2436 retval = 0;
2437 spin_lock_irqsave(&tty->ctrl_lock, flags);
2438 put_pid(real_tty->pgrp);
2439 real_tty->pgrp = get_pid(pgrp);
2440 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2441 out_unlock:
2442 rcu_read_unlock();
2443 return retval;
2444 }
2445
2446 /**
2447 * tiocgsid - get session id
2448 * @tty: tty passed by user
2449 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2450 * @p: pointer to returned session id
2451 *
2452 * Obtain the session id of the tty. If there is no session
2453 * return an error.
2454 *
2455 * Locking: none. Reference to current->signal->tty is safe.
2456 */
2457
2458 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2459 {
2460 /*
2461 * (tty == real_tty) is a cheap way of
2462 * testing if the tty is NOT a master pty.
2463 */
2464 if (tty == real_tty && current->signal->tty != real_tty)
2465 return -ENOTTY;
2466 if (!real_tty->session)
2467 return -ENOTTY;
2468 return put_user(pid_vnr(real_tty->session), p);
2469 }
2470
2471 /**
2472 * tiocsetd - set line discipline
2473 * @tty: tty device
2474 * @p: pointer to user data
2475 *
2476 * Set the line discipline according to user request.
2477 *
2478 * Locking: see tty_set_ldisc, this function is just a helper
2479 */
2480
2481 static int tiocsetd(struct tty_struct *tty, int __user *p)
2482 {
2483 int ldisc;
2484 int ret;
2485
2486 if (get_user(ldisc, p))
2487 return -EFAULT;
2488
2489 ret = tty_set_ldisc(tty, ldisc);
2490
2491 return ret;
2492 }
2493
2494 /**
2495 * send_break - performed time break
2496 * @tty: device to break on
2497 * @duration: timeout in mS
2498 *
2499 * Perform a timed break on hardware that lacks its own driver level
2500 * timed break functionality.
2501 *
2502 * Locking:
2503 * atomic_write_lock serializes
2504 *
2505 */
2506
2507 static int send_break(struct tty_struct *tty, unsigned int duration)
2508 {
2509 int retval;
2510
2511 if (tty->ops->break_ctl == NULL)
2512 return 0;
2513
2514 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2515 retval = tty->ops->break_ctl(tty, duration);
2516 else {
2517 /* Do the work ourselves */
2518 if (tty_write_lock(tty, 0) < 0)
2519 return -EINTR;
2520 retval = tty->ops->break_ctl(tty, -1);
2521 if (retval)
2522 goto out;
2523 if (!signal_pending(current))
2524 msleep_interruptible(duration);
2525 retval = tty->ops->break_ctl(tty, 0);
2526 out:
2527 tty_write_unlock(tty);
2528 if (signal_pending(current))
2529 retval = -EINTR;
2530 }
2531 return retval;
2532 }
2533
2534 /**
2535 * tty_tiocmget - get modem status
2536 * @tty: tty device
2537 * @file: user file pointer
2538 * @p: pointer to result
2539 *
2540 * Obtain the modem status bits from the tty driver if the feature
2541 * is supported. Return -EINVAL if it is not available.
2542 *
2543 * Locking: none (up to the driver)
2544 */
2545
2546 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2547 {
2548 int retval = -EINVAL;
2549
2550 if (tty->ops->tiocmget) {
2551 retval = tty->ops->tiocmget(tty);
2552
2553 if (retval >= 0)
2554 retval = put_user(retval, p);
2555 }
2556 return retval;
2557 }
2558
2559 /**
2560 * tty_tiocmset - set modem status
2561 * @tty: tty device
2562 * @cmd: command - clear bits, set bits or set all
2563 * @p: pointer to desired bits
2564 *
2565 * Set the modem status bits from the tty driver if the feature
2566 * is supported. Return -EINVAL if it is not available.
2567 *
2568 * Locking: none (up to the driver)
2569 */
2570
2571 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2572 unsigned __user *p)
2573 {
2574 int retval;
2575 unsigned int set, clear, val;
2576
2577 if (tty->ops->tiocmset == NULL)
2578 return -EINVAL;
2579
2580 retval = get_user(val, p);
2581 if (retval)
2582 return retval;
2583 set = clear = 0;
2584 switch (cmd) {
2585 case TIOCMBIS:
2586 set = val;
2587 break;
2588 case TIOCMBIC:
2589 clear = val;
2590 break;
2591 case TIOCMSET:
2592 set = val;
2593 clear = ~val;
2594 break;
2595 }
2596 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2598 return tty->ops->tiocmset(tty, set, clear);
2599 }
2600
2601 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2602 {
2603 int retval = -EINVAL;
2604 struct serial_icounter_struct icount;
2605 memset(&icount, 0, sizeof(icount));
2606 if (tty->ops->get_icount)
2607 retval = tty->ops->get_icount(tty, &icount);
2608 if (retval != 0)
2609 return retval;
2610 if (copy_to_user(arg, &icount, sizeof(icount)))
2611 return -EFAULT;
2612 return 0;
2613 }
2614
2615 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2616 {
2617 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2618 tty->driver->subtype == PTY_TYPE_MASTER)
2619 tty = tty->link;
2620 return tty;
2621 }
2622 EXPORT_SYMBOL(tty_pair_get_tty);
2623
2624 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2625 {
2626 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2627 tty->driver->subtype == PTY_TYPE_MASTER)
2628 return tty;
2629 return tty->link;
2630 }
2631 EXPORT_SYMBOL(tty_pair_get_pty);
2632
2633 /*
2634 * Split this up, as gcc can choke on it otherwise..
2635 */
2636 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2637 {
2638 struct tty_struct *tty = file_tty(file);
2639 struct tty_struct *real_tty;
2640 void __user *p = (void __user *)arg;
2641 int retval;
2642 struct tty_ldisc *ld;
2643 struct inode *inode = file->f_dentry->d_inode;
2644
2645 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2646 return -EINVAL;
2647
2648 real_tty = tty_pair_get_tty(tty);
2649
2650 /*
2651 * Factor out some common prep work
2652 */
2653 switch (cmd) {
2654 case TIOCSETD:
2655 case TIOCSBRK:
2656 case TIOCCBRK:
2657 case TCSBRK:
2658 case TCSBRKP:
2659 retval = tty_check_change(tty);
2660 if (retval)
2661 return retval;
2662 if (cmd != TIOCCBRK) {
2663 tty_wait_until_sent(tty, 0);
2664 if (signal_pending(current))
2665 return -EINTR;
2666 }
2667 break;
2668 }
2669
2670 /*
2671 * Now do the stuff.
2672 */
2673 switch (cmd) {
2674 case TIOCSTI:
2675 return tiocsti(tty, p);
2676 case TIOCGWINSZ:
2677 return tiocgwinsz(real_tty, p);
2678 case TIOCSWINSZ:
2679 return tiocswinsz(real_tty, p);
2680 case TIOCCONS:
2681 return real_tty != tty ? -EINVAL : tioccons(file);
2682 case FIONBIO:
2683 return fionbio(file, p);
2684 case TIOCEXCL:
2685 set_bit(TTY_EXCLUSIVE, &tty->flags);
2686 return 0;
2687 case TIOCNXCL:
2688 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2689 return 0;
2690 case TIOCGEXCL:
2691 {
2692 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2693 return put_user(excl, (int __user *)p);
2694 }
2695 case TIOCNOTTY:
2696 if (current->signal->tty != tty)
2697 return -ENOTTY;
2698 no_tty();
2699 return 0;
2700 case TIOCSCTTY:
2701 return tiocsctty(tty, arg);
2702 case TIOCGPGRP:
2703 return tiocgpgrp(tty, real_tty, p);
2704 case TIOCSPGRP:
2705 return tiocspgrp(tty, real_tty, p);
2706 case TIOCGSID:
2707 return tiocgsid(tty, real_tty, p);
2708 case TIOCGETD:
2709 return put_user(tty->ldisc->ops->num, (int __user *)p);
2710 case TIOCSETD:
2711 return tiocsetd(tty, p);
2712 case TIOCVHANGUP:
2713 if (!capable(CAP_SYS_ADMIN))
2714 return -EPERM;
2715 tty_vhangup(tty);
2716 return 0;
2717 case TIOCGDEV:
2718 {
2719 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2720 return put_user(ret, (unsigned int __user *)p);
2721 }
2722 /*
2723 * Break handling
2724 */
2725 case TIOCSBRK: /* Turn break on, unconditionally */
2726 if (tty->ops->break_ctl)
2727 return tty->ops->break_ctl(tty, -1);
2728 return 0;
2729 case TIOCCBRK: /* Turn break off, unconditionally */
2730 if (tty->ops->break_ctl)
2731 return tty->ops->break_ctl(tty, 0);
2732 return 0;
2733 case TCSBRK: /* SVID version: non-zero arg --> no break */
2734 /* non-zero arg means wait for all output data
2735 * to be sent (performed above) but don't send break.
2736 * This is used by the tcdrain() termios function.
2737 */
2738 if (!arg)
2739 return send_break(tty, 250);
2740 return 0;
2741 case TCSBRKP: /* support for POSIX tcsendbreak() */
2742 return send_break(tty, arg ? arg*100 : 250);
2743
2744 case TIOCMGET:
2745 return tty_tiocmget(tty, p);
2746 case TIOCMSET:
2747 case TIOCMBIC:
2748 case TIOCMBIS:
2749 return tty_tiocmset(tty, cmd, p);
2750 case TIOCGICOUNT:
2751 retval = tty_tiocgicount(tty, p);
2752 /* For the moment allow fall through to the old method */
2753 if (retval != -EINVAL)
2754 return retval;
2755 break;
2756 case TCFLSH:
2757 switch (arg) {
2758 case TCIFLUSH:
2759 case TCIOFLUSH:
2760 /* flush tty buffer and allow ldisc to process ioctl */
2761 tty_buffer_flush(tty);
2762 break;
2763 }
2764 break;
2765 }
2766 if (tty->ops->ioctl) {
2767 retval = (tty->ops->ioctl)(tty, cmd, arg);
2768 if (retval != -ENOIOCTLCMD)
2769 return retval;
2770 }
2771 ld = tty_ldisc_ref_wait(tty);
2772 retval = -EINVAL;
2773 if (ld->ops->ioctl) {
2774 retval = ld->ops->ioctl(tty, file, cmd, arg);
2775 if (retval == -ENOIOCTLCMD)
2776 retval = -ENOTTY;
2777 }
2778 tty_ldisc_deref(ld);
2779 return retval;
2780 }
2781
2782 #ifdef CONFIG_COMPAT
2783 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2784 unsigned long arg)
2785 {
2786 struct inode *inode = file->f_dentry->d_inode;
2787 struct tty_struct *tty = file_tty(file);
2788 struct tty_ldisc *ld;
2789 int retval = -ENOIOCTLCMD;
2790
2791 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2792 return -EINVAL;
2793
2794 if (tty->ops->compat_ioctl) {
2795 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2796 if (retval != -ENOIOCTLCMD)
2797 return retval;
2798 }
2799
2800 ld = tty_ldisc_ref_wait(tty);
2801 if (ld->ops->compat_ioctl)
2802 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2803 else
2804 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2805 tty_ldisc_deref(ld);
2806
2807 return retval;
2808 }
2809 #endif
2810
2811 static int this_tty(const void *t, struct file *file, unsigned fd)
2812 {
2813 if (likely(file->f_op->read != tty_read))
2814 return 0;
2815 return file_tty(file) != t ? 0 : fd + 1;
2816 }
2817
2818 /*
2819 * This implements the "Secure Attention Key" --- the idea is to
2820 * prevent trojan horses by killing all processes associated with this
2821 * tty when the user hits the "Secure Attention Key". Required for
2822 * super-paranoid applications --- see the Orange Book for more details.
2823 *
2824 * This code could be nicer; ideally it should send a HUP, wait a few
2825 * seconds, then send a INT, and then a KILL signal. But you then
2826 * have to coordinate with the init process, since all processes associated
2827 * with the current tty must be dead before the new getty is allowed
2828 * to spawn.
2829 *
2830 * Now, if it would be correct ;-/ The current code has a nasty hole -
2831 * it doesn't catch files in flight. We may send the descriptor to ourselves
2832 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2833 *
2834 * Nasty bug: do_SAK is being called in interrupt context. This can
2835 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2836 */
2837 void __do_SAK(struct tty_struct *tty)
2838 {
2839 #ifdef TTY_SOFT_SAK
2840 tty_hangup(tty);
2841 #else
2842 struct task_struct *g, *p;
2843 struct pid *session;
2844 int i;
2845
2846 if (!tty)
2847 return;
2848 session = tty->session;
2849
2850 tty_ldisc_flush(tty);
2851
2852 tty_driver_flush_buffer(tty);
2853
2854 read_lock(&tasklist_lock);
2855 /* Kill the entire session */
2856 do_each_pid_task(session, PIDTYPE_SID, p) {
2857 printk(KERN_NOTICE "SAK: killed process %d"
2858 " (%s): task_session(p)==tty->session\n",
2859 task_pid_nr(p), p->comm);
2860 send_sig(SIGKILL, p, 1);
2861 } while_each_pid_task(session, PIDTYPE_SID, p);
2862 /* Now kill any processes that happen to have the
2863 * tty open.
2864 */
2865 do_each_thread(g, p) {
2866 if (p->signal->tty == tty) {
2867 printk(KERN_NOTICE "SAK: killed process %d"
2868 " (%s): task_session(p)==tty->session\n",
2869 task_pid_nr(p), p->comm);
2870 send_sig(SIGKILL, p, 1);
2871 continue;
2872 }
2873 task_lock(p);
2874 i = iterate_fd(p->files, 0, this_tty, tty);
2875 if (i != 0) {
2876 printk(KERN_NOTICE "SAK: killed process %d"
2877 " (%s): fd#%d opened to the tty\n",
2878 task_pid_nr(p), p->comm, i - 1);
2879 force_sig(SIGKILL, p);
2880 }
2881 task_unlock(p);
2882 } while_each_thread(g, p);
2883 read_unlock(&tasklist_lock);
2884 #endif
2885 }
2886
2887 static void do_SAK_work(struct work_struct *work)
2888 {
2889 struct tty_struct *tty =
2890 container_of(work, struct tty_struct, SAK_work);
2891 __do_SAK(tty);
2892 }
2893
2894 /*
2895 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2896 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2897 * the values which we write to it will be identical to the values which it
2898 * already has. --akpm
2899 */
2900 void do_SAK(struct tty_struct *tty)
2901 {
2902 if (!tty)
2903 return;
2904 schedule_work(&tty->SAK_work);
2905 }
2906
2907 EXPORT_SYMBOL(do_SAK);
2908
2909 static int dev_match_devt(struct device *dev, void *data)
2910 {
2911 dev_t *devt = data;
2912 return dev->devt == *devt;
2913 }
2914
2915 /* Must put_device() after it's unused! */
2916 static struct device *tty_get_device(struct tty_struct *tty)
2917 {
2918 dev_t devt = tty_devnum(tty);
2919 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2920 }
2921
2922
2923 /**
2924 * initialize_tty_struct
2925 * @tty: tty to initialize
2926 *
2927 * This subroutine initializes a tty structure that has been newly
2928 * allocated.
2929 *
2930 * Locking: none - tty in question must not be exposed at this point
2931 */
2932
2933 void initialize_tty_struct(struct tty_struct *tty,
2934 struct tty_driver *driver, int idx)
2935 {
2936 memset(tty, 0, sizeof(struct tty_struct));
2937 kref_init(&tty->kref);
2938 tty->magic = TTY_MAGIC;
2939 tty_ldisc_init(tty);
2940 tty->session = NULL;
2941 tty->pgrp = NULL;
2942 mutex_init(&tty->legacy_mutex);
2943 mutex_init(&tty->termios_mutex);
2944 mutex_init(&tty->ldisc_mutex);
2945 init_waitqueue_head(&tty->write_wait);
2946 init_waitqueue_head(&tty->read_wait);
2947 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2948 mutex_init(&tty->atomic_write_lock);
2949 spin_lock_init(&tty->ctrl_lock);
2950 INIT_LIST_HEAD(&tty->tty_files);
2951 INIT_WORK(&tty->SAK_work, do_SAK_work);
2952
2953 tty->driver = driver;
2954 tty->ops = driver->ops;
2955 tty->index = idx;
2956 tty_line_name(driver, idx, tty->name);
2957 tty->dev = tty_get_device(tty);
2958 }
2959
2960 /**
2961 * deinitialize_tty_struct
2962 * @tty: tty to deinitialize
2963 *
2964 * This subroutine deinitializes a tty structure that has been newly
2965 * allocated but tty_release cannot be called on that yet.
2966 *
2967 * Locking: none - tty in question must not be exposed at this point
2968 */
2969 void deinitialize_tty_struct(struct tty_struct *tty)
2970 {
2971 tty_ldisc_deinit(tty);
2972 }
2973
2974 /**
2975 * tty_put_char - write one character to a tty
2976 * @tty: tty
2977 * @ch: character
2978 *
2979 * Write one byte to the tty using the provided put_char method
2980 * if present. Returns the number of characters successfully output.
2981 *
2982 * Note: the specific put_char operation in the driver layer may go
2983 * away soon. Don't call it directly, use this method
2984 */
2985
2986 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2987 {
2988 if (tty->ops->put_char)
2989 return tty->ops->put_char(tty, ch);
2990 return tty->ops->write(tty, &ch, 1);
2991 }
2992 EXPORT_SYMBOL_GPL(tty_put_char);
2993
2994 struct class *tty_class;
2995
2996 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2997 unsigned int index, unsigned int count)
2998 {
2999 /* init here, since reused cdevs cause crashes */
3000 cdev_init(&driver->cdevs[index], &tty_fops);
3001 driver->cdevs[index].owner = driver->owner;
3002 return cdev_add(&driver->cdevs[index], dev, count);
3003 }
3004
3005 /**
3006 * tty_register_device - register a tty device
3007 * @driver: the tty driver that describes the tty device
3008 * @index: the index in the tty driver for this tty device
3009 * @device: a struct device that is associated with this tty device.
3010 * This field is optional, if there is no known struct device
3011 * for this tty device it can be set to NULL safely.
3012 *
3013 * Returns a pointer to the struct device for this tty device
3014 * (or ERR_PTR(-EFOO) on error).
3015 *
3016 * This call is required to be made to register an individual tty device
3017 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3018 * that bit is not set, this function should not be called by a tty
3019 * driver.
3020 *
3021 * Locking: ??
3022 */
3023
3024 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3025 struct device *device)
3026 {
3027 return tty_register_device_attr(driver, index, device, NULL, NULL);
3028 }
3029 EXPORT_SYMBOL(tty_register_device);
3030
3031 static void tty_device_create_release(struct device *dev)
3032 {
3033 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3034 kfree(dev);
3035 }
3036
3037 /**
3038 * tty_register_device_attr - register a tty device
3039 * @driver: the tty driver that describes the tty device
3040 * @index: the index in the tty driver for this tty device
3041 * @device: a struct device that is associated with this tty device.
3042 * This field is optional, if there is no known struct device
3043 * for this tty device it can be set to NULL safely.
3044 * @drvdata: Driver data to be set to device.
3045 * @attr_grp: Attribute group to be set on device.
3046 *
3047 * Returns a pointer to the struct device for this tty device
3048 * (or ERR_PTR(-EFOO) on error).
3049 *
3050 * This call is required to be made to register an individual tty device
3051 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3052 * that bit is not set, this function should not be called by a tty
3053 * driver.
3054 *
3055 * Locking: ??
3056 */
3057 struct device *tty_register_device_attr(struct tty_driver *driver,
3058 unsigned index, struct device *device,
3059 void *drvdata,
3060 const struct attribute_group **attr_grp)
3061 {
3062 char name[64];
3063 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3064 struct device *dev = NULL;
3065 int retval = -ENODEV;
3066 bool cdev = false;
3067
3068 if (index >= driver->num) {
3069 printk(KERN_ERR "Attempt to register invalid tty line number "
3070 " (%d).\n", index);
3071 return ERR_PTR(-EINVAL);
3072 }
3073
3074 if (driver->type == TTY_DRIVER_TYPE_PTY)
3075 pty_line_name(driver, index, name);
3076 else
3077 tty_line_name(driver, index, name);
3078
3079 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3080 retval = tty_cdev_add(driver, devt, index, 1);
3081 if (retval)
3082 goto error;
3083 cdev = true;
3084 }
3085
3086 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3087 if (!dev) {
3088 retval = -ENOMEM;
3089 goto error;
3090 }
3091
3092 dev->devt = devt;
3093 dev->class = tty_class;
3094 dev->parent = device;
3095 dev->release = tty_device_create_release;
3096 dev_set_name(dev, "%s", name);
3097 dev->groups = attr_grp;
3098 dev_set_drvdata(dev, drvdata);
3099
3100 retval = device_register(dev);
3101 if (retval)
3102 goto error;
3103
3104 return dev;
3105
3106 error:
3107 put_device(dev);
3108 if (cdev)
3109 cdev_del(&driver->cdevs[index]);
3110 return ERR_PTR(retval);
3111 }
3112 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3113
3114 /**
3115 * tty_unregister_device - unregister a tty device
3116 * @driver: the tty driver that describes the tty device
3117 * @index: the index in the tty driver for this tty device
3118 *
3119 * If a tty device is registered with a call to tty_register_device() then
3120 * this function must be called when the tty device is gone.
3121 *
3122 * Locking: ??
3123 */
3124
3125 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3126 {
3127 device_destroy(tty_class,
3128 MKDEV(driver->major, driver->minor_start) + index);
3129 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3130 cdev_del(&driver->cdevs[index]);
3131 }
3132 EXPORT_SYMBOL(tty_unregister_device);
3133
3134 /**
3135 * __tty_alloc_driver -- allocate tty driver
3136 * @lines: count of lines this driver can handle at most
3137 * @owner: module which is repsonsible for this driver
3138 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3139 *
3140 * This should not be called directly, some of the provided macros should be
3141 * used instead. Use IS_ERR and friends on @retval.
3142 */
3143 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3144 unsigned long flags)
3145 {
3146 struct tty_driver *driver;
3147 unsigned int cdevs = 1;
3148 int err;
3149
3150 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3151 return ERR_PTR(-EINVAL);
3152
3153 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3154 if (!driver)
3155 return ERR_PTR(-ENOMEM);
3156
3157 kref_init(&driver->kref);
3158 driver->magic = TTY_DRIVER_MAGIC;
3159 driver->num = lines;
3160 driver->owner = owner;
3161 driver->flags = flags;
3162
3163 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3164 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3165 GFP_KERNEL);
3166 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3167 GFP_KERNEL);
3168 if (!driver->ttys || !driver->termios) {
3169 err = -ENOMEM;
3170 goto err_free_all;
3171 }
3172 }
3173
3174 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3175 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3176 GFP_KERNEL);
3177 if (!driver->ports) {
3178 err = -ENOMEM;
3179 goto err_free_all;
3180 }
3181 cdevs = lines;
3182 }
3183
3184 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3185 if (!driver->cdevs) {
3186 err = -ENOMEM;
3187 goto err_free_all;
3188 }
3189
3190 return driver;
3191 err_free_all:
3192 kfree(driver->ports);
3193 kfree(driver->ttys);
3194 kfree(driver->termios);
3195 kfree(driver);
3196 return ERR_PTR(err);
3197 }
3198 EXPORT_SYMBOL(__tty_alloc_driver);
3199
3200 static void destruct_tty_driver(struct kref *kref)
3201 {
3202 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3203 int i;
3204 struct ktermios *tp;
3205
3206 if (driver->flags & TTY_DRIVER_INSTALLED) {
3207 /*
3208 * Free the termios and termios_locked structures because
3209 * we don't want to get memory leaks when modular tty
3210 * drivers are removed from the kernel.
3211 */
3212 for (i = 0; i < driver->num; i++) {
3213 tp = driver->termios[i];
3214 if (tp) {
3215 driver->termios[i] = NULL;
3216 kfree(tp);
3217 }
3218 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3219 tty_unregister_device(driver, i);
3220 }
3221 proc_tty_unregister_driver(driver);
3222 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3223 cdev_del(&driver->cdevs[0]);
3224 }
3225 kfree(driver->cdevs);
3226 kfree(driver->ports);
3227 kfree(driver->termios);
3228 kfree(driver->ttys);
3229 kfree(driver);
3230 }
3231
3232 void tty_driver_kref_put(struct tty_driver *driver)
3233 {
3234 kref_put(&driver->kref, destruct_tty_driver);
3235 }
3236 EXPORT_SYMBOL(tty_driver_kref_put);
3237
3238 void tty_set_operations(struct tty_driver *driver,
3239 const struct tty_operations *op)
3240 {
3241 driver->ops = op;
3242 };
3243 EXPORT_SYMBOL(tty_set_operations);
3244
3245 void put_tty_driver(struct tty_driver *d)
3246 {
3247 tty_driver_kref_put(d);
3248 }
3249 EXPORT_SYMBOL(put_tty_driver);
3250
3251 /*
3252 * Called by a tty driver to register itself.
3253 */
3254 int tty_register_driver(struct tty_driver *driver)
3255 {
3256 int error;
3257 int i;
3258 dev_t dev;
3259 struct device *d;
3260
3261 if (!driver->major) {
3262 error = alloc_chrdev_region(&dev, driver->minor_start,
3263 driver->num, driver->name);
3264 if (!error) {
3265 driver->major = MAJOR(dev);
3266 driver->minor_start = MINOR(dev);
3267 }
3268 } else {
3269 dev = MKDEV(driver->major, driver->minor_start);
3270 error = register_chrdev_region(dev, driver->num, driver->name);
3271 }
3272 if (error < 0)
3273 goto err;
3274
3275 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3276 error = tty_cdev_add(driver, dev, 0, driver->num);
3277 if (error)
3278 goto err_unreg_char;
3279 }
3280
3281 mutex_lock(&tty_mutex);
3282 list_add(&driver->tty_drivers, &tty_drivers);
3283 mutex_unlock(&tty_mutex);
3284
3285 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3286 for (i = 0; i < driver->num; i++) {
3287 d = tty_register_device(driver, i, NULL);
3288 if (IS_ERR(d)) {
3289 error = PTR_ERR(d);
3290 goto err_unreg_devs;
3291 }
3292 }
3293 }
3294 proc_tty_register_driver(driver);
3295 driver->flags |= TTY_DRIVER_INSTALLED;
3296 return 0;
3297
3298 err_unreg_devs:
3299 for (i--; i >= 0; i--)
3300 tty_unregister_device(driver, i);
3301
3302 mutex_lock(&tty_mutex);
3303 list_del(&driver->tty_drivers);
3304 mutex_unlock(&tty_mutex);
3305
3306 err_unreg_char:
3307 unregister_chrdev_region(dev, driver->num);
3308 err:
3309 return error;
3310 }
3311 EXPORT_SYMBOL(tty_register_driver);
3312
3313 /*
3314 * Called by a tty driver to unregister itself.
3315 */
3316 int tty_unregister_driver(struct tty_driver *driver)
3317 {
3318 #if 0
3319 /* FIXME */
3320 if (driver->refcount)
3321 return -EBUSY;
3322 #endif
3323 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3324 driver->num);
3325 mutex_lock(&tty_mutex);
3326 list_del(&driver->tty_drivers);
3327 mutex_unlock(&tty_mutex);
3328 return 0;
3329 }
3330
3331 EXPORT_SYMBOL(tty_unregister_driver);
3332
3333 dev_t tty_devnum(struct tty_struct *tty)
3334 {
3335 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3336 }
3337 EXPORT_SYMBOL(tty_devnum);
3338
3339 void proc_clear_tty(struct task_struct *p)
3340 {
3341 unsigned long flags;
3342 struct tty_struct *tty;
3343 spin_lock_irqsave(&p->sighand->siglock, flags);
3344 tty = p->signal->tty;
3345 p->signal->tty = NULL;
3346 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3347 tty_kref_put(tty);
3348 }
3349
3350 /* Called under the sighand lock */
3351
3352 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3353 {
3354 if (tty) {
3355 unsigned long flags;
3356 /* We should not have a session or pgrp to put here but.... */
3357 spin_lock_irqsave(&tty->ctrl_lock, flags);
3358 put_pid(tty->session);
3359 put_pid(tty->pgrp);
3360 tty->pgrp = get_pid(task_pgrp(tsk));
3361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3362 tty->session = get_pid(task_session(tsk));
3363 if (tsk->signal->tty) {
3364 printk(KERN_DEBUG "tty not NULL!!\n");
3365 tty_kref_put(tsk->signal->tty);
3366 }
3367 }
3368 put_pid(tsk->signal->tty_old_pgrp);
3369 tsk->signal->tty = tty_kref_get(tty);
3370 tsk->signal->tty_old_pgrp = NULL;
3371 }
3372
3373 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3374 {
3375 spin_lock_irq(&tsk->sighand->siglock);
3376 __proc_set_tty(tsk, tty);
3377 spin_unlock_irq(&tsk->sighand->siglock);
3378 }
3379
3380 struct tty_struct *get_current_tty(void)
3381 {
3382 struct tty_struct *tty;
3383 unsigned long flags;
3384
3385 spin_lock_irqsave(&current->sighand->siglock, flags);
3386 tty = tty_kref_get(current->signal->tty);
3387 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3388 return tty;
3389 }
3390 EXPORT_SYMBOL_GPL(get_current_tty);
3391
3392 void tty_default_fops(struct file_operations *fops)
3393 {
3394 *fops = tty_fops;
3395 }
3396
3397 /*
3398 * Initialize the console device. This is called *early*, so
3399 * we can't necessarily depend on lots of kernel help here.
3400 * Just do some early initializations, and do the complex setup
3401 * later.
3402 */
3403 void __init console_init(void)
3404 {
3405 initcall_t *call;
3406
3407 /* Setup the default TTY line discipline. */
3408 tty_ldisc_begin();
3409
3410 /*
3411 * set up the console device so that later boot sequences can
3412 * inform about problems etc..
3413 */
3414 call = __con_initcall_start;
3415 while (call < __con_initcall_end) {
3416 (*call)();
3417 call++;
3418 }
3419 }
3420
3421 static char *tty_devnode(struct device *dev, umode_t *mode)
3422 {
3423 if (!mode)
3424 return NULL;
3425 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3426 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3427 *mode = 0666;
3428 return NULL;
3429 }
3430
3431 static int __init tty_class_init(void)
3432 {
3433 tty_class = class_create(THIS_MODULE, "tty");
3434 if (IS_ERR(tty_class))
3435 return PTR_ERR(tty_class);
3436 tty_class->devnode = tty_devnode;
3437 return 0;
3438 }
3439
3440 postcore_initcall(tty_class_init);
3441
3442 /* 3/2004 jmc: why do these devices exist? */
3443 static struct cdev tty_cdev, console_cdev;
3444
3445 static ssize_t show_cons_active(struct device *dev,
3446 struct device_attribute *attr, char *buf)
3447 {
3448 struct console *cs[16];
3449 int i = 0;
3450 struct console *c;
3451 ssize_t count = 0;
3452
3453 console_lock();
3454 for_each_console(c) {
3455 if (!c->device)
3456 continue;
3457 if (!c->write)
3458 continue;
3459 if ((c->flags & CON_ENABLED) == 0)
3460 continue;
3461 cs[i++] = c;
3462 if (i >= ARRAY_SIZE(cs))
3463 break;
3464 }
3465 while (i--)
3466 count += sprintf(buf + count, "%s%d%c",
3467 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3468 console_unlock();
3469
3470 return count;
3471 }
3472 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3473
3474 static struct device *consdev;
3475
3476 void console_sysfs_notify(void)
3477 {
3478 if (consdev)
3479 sysfs_notify(&consdev->kobj, NULL, "active");
3480 }
3481
3482 /*
3483 * Ok, now we can initialize the rest of the tty devices and can count
3484 * on memory allocations, interrupts etc..
3485 */
3486 int __init tty_init(void)
3487 {
3488 cdev_init(&tty_cdev, &tty_fops);
3489 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3490 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3491 panic("Couldn't register /dev/tty driver\n");
3492 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3493
3494 cdev_init(&console_cdev, &console_fops);
3495 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3496 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3497 panic("Couldn't register /dev/console driver\n");
3498 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3499 "console");
3500 if (IS_ERR(consdev))
3501 consdev = NULL;
3502 else
3503 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3504
3505 #ifdef CONFIG_VT
3506 vty_init(&console_fops);
3507 #endif
3508 return 0;
3509 }
3510
This page took 0.141918 seconds and 5 git commands to generate.