TTY: move allocations to tty_alloc_driver
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty_buffer_free_all(tty);
190 tty->magic = 0xDEADDEAD;
191 kfree(tty);
192 }
193
194 static inline struct tty_struct *file_tty(struct file *file)
195 {
196 return ((struct tty_file_private *)file->private_data)->tty;
197 }
198
199 int tty_alloc_file(struct file *file)
200 {
201 struct tty_file_private *priv;
202
203 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204 if (!priv)
205 return -ENOMEM;
206
207 file->private_data = priv;
208
209 return 0;
210 }
211
212 /* Associate a new file with the tty structure */
213 void tty_add_file(struct tty_struct *tty, struct file *file)
214 {
215 struct tty_file_private *priv = file->private_data;
216
217 priv->tty = tty;
218 priv->file = file;
219
220 spin_lock(&tty_files_lock);
221 list_add(&priv->list, &tty->tty_files);
222 spin_unlock(&tty_files_lock);
223 }
224
225 /**
226 * tty_free_file - free file->private_data
227 *
228 * This shall be used only for fail path handling when tty_add_file was not
229 * called yet.
230 */
231 void tty_free_file(struct file *file)
232 {
233 struct tty_file_private *priv = file->private_data;
234
235 file->private_data = NULL;
236 kfree(priv);
237 }
238
239 /* Delete file from its tty */
240 void tty_del_file(struct file *file)
241 {
242 struct tty_file_private *priv = file->private_data;
243
244 spin_lock(&tty_files_lock);
245 list_del(&priv->list);
246 spin_unlock(&tty_files_lock);
247 tty_free_file(file);
248 }
249
250
251 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
252
253 /**
254 * tty_name - return tty naming
255 * @tty: tty structure
256 * @buf: buffer for output
257 *
258 * Convert a tty structure into a name. The name reflects the kernel
259 * naming policy and if udev is in use may not reflect user space
260 *
261 * Locking: none
262 */
263
264 char *tty_name(struct tty_struct *tty, char *buf)
265 {
266 if (!tty) /* Hmm. NULL pointer. That's fun. */
267 strcpy(buf, "NULL tty");
268 else
269 strcpy(buf, tty->name);
270 return buf;
271 }
272
273 EXPORT_SYMBOL(tty_name);
274
275 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
276 const char *routine)
277 {
278 #ifdef TTY_PARANOIA_CHECK
279 if (!tty) {
280 printk(KERN_WARNING
281 "null TTY for (%d:%d) in %s\n",
282 imajor(inode), iminor(inode), routine);
283 return 1;
284 }
285 if (tty->magic != TTY_MAGIC) {
286 printk(KERN_WARNING
287 "bad magic number for tty struct (%d:%d) in %s\n",
288 imajor(inode), iminor(inode), routine);
289 return 1;
290 }
291 #endif
292 return 0;
293 }
294
295 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 {
297 #ifdef CHECK_TTY_COUNT
298 struct list_head *p;
299 int count = 0;
300
301 spin_lock(&tty_files_lock);
302 list_for_each(p, &tty->tty_files) {
303 count++;
304 }
305 spin_unlock(&tty_files_lock);
306 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
307 tty->driver->subtype == PTY_TYPE_SLAVE &&
308 tty->link && tty->link->count)
309 count++;
310 if (tty->count != count) {
311 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
312 "!= #fd's(%d) in %s\n",
313 tty->name, tty->count, count, routine);
314 return count;
315 }
316 #endif
317 return 0;
318 }
319
320 /**
321 * get_tty_driver - find device of a tty
322 * @dev_t: device identifier
323 * @index: returns the index of the tty
324 *
325 * This routine returns a tty driver structure, given a device number
326 * and also passes back the index number.
327 *
328 * Locking: caller must hold tty_mutex
329 */
330
331 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 {
333 struct tty_driver *p;
334
335 list_for_each_entry(p, &tty_drivers, tty_drivers) {
336 dev_t base = MKDEV(p->major, p->minor_start);
337 if (device < base || device >= base + p->num)
338 continue;
339 *index = device - base;
340 return tty_driver_kref_get(p);
341 }
342 return NULL;
343 }
344
345 #ifdef CONFIG_CONSOLE_POLL
346
347 /**
348 * tty_find_polling_driver - find device of a polled tty
349 * @name: name string to match
350 * @line: pointer to resulting tty line nr
351 *
352 * This routine returns a tty driver structure, given a name
353 * and the condition that the tty driver is capable of polled
354 * operation.
355 */
356 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 {
358 struct tty_driver *p, *res = NULL;
359 int tty_line = 0;
360 int len;
361 char *str, *stp;
362
363 for (str = name; *str; str++)
364 if ((*str >= '0' && *str <= '9') || *str == ',')
365 break;
366 if (!*str)
367 return NULL;
368
369 len = str - name;
370 tty_line = simple_strtoul(str, &str, 10);
371
372 mutex_lock(&tty_mutex);
373 /* Search through the tty devices to look for a match */
374 list_for_each_entry(p, &tty_drivers, tty_drivers) {
375 if (strncmp(name, p->name, len) != 0)
376 continue;
377 stp = str;
378 if (*stp == ',')
379 stp++;
380 if (*stp == '\0')
381 stp = NULL;
382
383 if (tty_line >= 0 && tty_line < p->num && p->ops &&
384 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
385 res = tty_driver_kref_get(p);
386 *line = tty_line;
387 break;
388 }
389 }
390 mutex_unlock(&tty_mutex);
391
392 return res;
393 }
394 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
395 #endif
396
397 /**
398 * tty_check_change - check for POSIX terminal changes
399 * @tty: tty to check
400 *
401 * If we try to write to, or set the state of, a terminal and we're
402 * not in the foreground, send a SIGTTOU. If the signal is blocked or
403 * ignored, go ahead and perform the operation. (POSIX 7.2)
404 *
405 * Locking: ctrl_lock
406 */
407
408 int tty_check_change(struct tty_struct *tty)
409 {
410 unsigned long flags;
411 int ret = 0;
412
413 if (current->signal->tty != tty)
414 return 0;
415
416 spin_lock_irqsave(&tty->ctrl_lock, flags);
417
418 if (!tty->pgrp) {
419 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
420 goto out_unlock;
421 }
422 if (task_pgrp(current) == tty->pgrp)
423 goto out_unlock;
424 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
425 if (is_ignored(SIGTTOU))
426 goto out;
427 if (is_current_pgrp_orphaned()) {
428 ret = -EIO;
429 goto out;
430 }
431 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
432 set_thread_flag(TIF_SIGPENDING);
433 ret = -ERESTARTSYS;
434 out:
435 return ret;
436 out_unlock:
437 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
438 return ret;
439 }
440
441 EXPORT_SYMBOL(tty_check_change);
442
443 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
444 size_t count, loff_t *ppos)
445 {
446 return 0;
447 }
448
449 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
450 size_t count, loff_t *ppos)
451 {
452 return -EIO;
453 }
454
455 /* No kernel lock held - none needed ;) */
456 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 {
458 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
459 }
460
461 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
462 unsigned long arg)
463 {
464 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466
467 static long hung_up_tty_compat_ioctl(struct file *file,
468 unsigned int cmd, unsigned long arg)
469 {
470 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
471 }
472
473 static const struct file_operations tty_fops = {
474 .llseek = no_llseek,
475 .read = tty_read,
476 .write = tty_write,
477 .poll = tty_poll,
478 .unlocked_ioctl = tty_ioctl,
479 .compat_ioctl = tty_compat_ioctl,
480 .open = tty_open,
481 .release = tty_release,
482 .fasync = tty_fasync,
483 };
484
485 static const struct file_operations console_fops = {
486 .llseek = no_llseek,
487 .read = tty_read,
488 .write = redirected_tty_write,
489 .poll = tty_poll,
490 .unlocked_ioctl = tty_ioctl,
491 .compat_ioctl = tty_compat_ioctl,
492 .open = tty_open,
493 .release = tty_release,
494 .fasync = tty_fasync,
495 };
496
497 static const struct file_operations hung_up_tty_fops = {
498 .llseek = no_llseek,
499 .read = hung_up_tty_read,
500 .write = hung_up_tty_write,
501 .poll = hung_up_tty_poll,
502 .unlocked_ioctl = hung_up_tty_ioctl,
503 .compat_ioctl = hung_up_tty_compat_ioctl,
504 .release = tty_release,
505 };
506
507 static DEFINE_SPINLOCK(redirect_lock);
508 static struct file *redirect;
509
510 /**
511 * tty_wakeup - request more data
512 * @tty: terminal
513 *
514 * Internal and external helper for wakeups of tty. This function
515 * informs the line discipline if present that the driver is ready
516 * to receive more output data.
517 */
518
519 void tty_wakeup(struct tty_struct *tty)
520 {
521 struct tty_ldisc *ld;
522
523 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
524 ld = tty_ldisc_ref(tty);
525 if (ld) {
526 if (ld->ops->write_wakeup)
527 ld->ops->write_wakeup(tty);
528 tty_ldisc_deref(ld);
529 }
530 }
531 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
532 }
533
534 EXPORT_SYMBOL_GPL(tty_wakeup);
535
536 /**
537 * __tty_hangup - actual handler for hangup events
538 * @work: tty device
539 *
540 * This can be called by the "eventd" kernel thread. That is process
541 * synchronous but doesn't hold any locks, so we need to make sure we
542 * have the appropriate locks for what we're doing.
543 *
544 * The hangup event clears any pending redirections onto the hung up
545 * device. It ensures future writes will error and it does the needed
546 * line discipline hangup and signal delivery. The tty object itself
547 * remains intact.
548 *
549 * Locking:
550 * BTM
551 * redirect lock for undoing redirection
552 * file list lock for manipulating list of ttys
553 * tty_ldisc_lock from called functions
554 * termios_mutex resetting termios data
555 * tasklist_lock to walk task list for hangup event
556 * ->siglock to protect ->signal/->sighand
557 */
558 void __tty_hangup(struct tty_struct *tty)
559 {
560 struct file *cons_filp = NULL;
561 struct file *filp, *f = NULL;
562 struct task_struct *p;
563 struct tty_file_private *priv;
564 int closecount = 0, n;
565 unsigned long flags;
566 int refs = 0;
567
568 if (!tty)
569 return;
570
571
572 spin_lock(&redirect_lock);
573 if (redirect && file_tty(redirect) == tty) {
574 f = redirect;
575 redirect = NULL;
576 }
577 spin_unlock(&redirect_lock);
578
579 tty_lock(tty);
580
581 /* some functions below drop BTM, so we need this bit */
582 set_bit(TTY_HUPPING, &tty->flags);
583
584 /* inuse_filps is protected by the single tty lock,
585 this really needs to change if we want to flush the
586 workqueue with the lock held */
587 check_tty_count(tty, "tty_hangup");
588
589 spin_lock(&tty_files_lock);
590 /* This breaks for file handles being sent over AF_UNIX sockets ? */
591 list_for_each_entry(priv, &tty->tty_files, list) {
592 filp = priv->file;
593 if (filp->f_op->write == redirected_tty_write)
594 cons_filp = filp;
595 if (filp->f_op->write != tty_write)
596 continue;
597 closecount++;
598 __tty_fasync(-1, filp, 0); /* can't block */
599 filp->f_op = &hung_up_tty_fops;
600 }
601 spin_unlock(&tty_files_lock);
602
603 /*
604 * it drops BTM and thus races with reopen
605 * we protect the race by TTY_HUPPING
606 */
607 tty_ldisc_hangup(tty);
608
609 read_lock(&tasklist_lock);
610 if (tty->session) {
611 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 spin_lock_irq(&p->sighand->siglock);
613 if (p->signal->tty == tty) {
614 p->signal->tty = NULL;
615 /* We defer the dereferences outside fo
616 the tasklist lock */
617 refs++;
618 }
619 if (!p->signal->leader) {
620 spin_unlock_irq(&p->sighand->siglock);
621 continue;
622 }
623 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 put_pid(p->signal->tty_old_pgrp); /* A noop */
626 spin_lock_irqsave(&tty->ctrl_lock, flags);
627 if (tty->pgrp)
628 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
629 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
630 spin_unlock_irq(&p->sighand->siglock);
631 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
632 }
633 read_unlock(&tasklist_lock);
634
635 spin_lock_irqsave(&tty->ctrl_lock, flags);
636 clear_bit(TTY_THROTTLED, &tty->flags);
637 clear_bit(TTY_PUSH, &tty->flags);
638 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
639 put_pid(tty->session);
640 put_pid(tty->pgrp);
641 tty->session = NULL;
642 tty->pgrp = NULL;
643 tty->ctrl_status = 0;
644 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
645
646 /* Account for the p->signal references we killed */
647 while (refs--)
648 tty_kref_put(tty);
649
650 /*
651 * If one of the devices matches a console pointer, we
652 * cannot just call hangup() because that will cause
653 * tty->count and state->count to go out of sync.
654 * So we just call close() the right number of times.
655 */
656 if (cons_filp) {
657 if (tty->ops->close)
658 for (n = 0; n < closecount; n++)
659 tty->ops->close(tty, cons_filp);
660 } else if (tty->ops->hangup)
661 (tty->ops->hangup)(tty);
662 /*
663 * We don't want to have driver/ldisc interactions beyond
664 * the ones we did here. The driver layer expects no
665 * calls after ->hangup() from the ldisc side. However we
666 * can't yet guarantee all that.
667 */
668 set_bit(TTY_HUPPED, &tty->flags);
669 clear_bit(TTY_HUPPING, &tty->flags);
670 tty_ldisc_enable(tty);
671
672 tty_unlock(tty);
673
674 if (f)
675 fput(f);
676 }
677
678 static void do_tty_hangup(struct work_struct *work)
679 {
680 struct tty_struct *tty =
681 container_of(work, struct tty_struct, hangup_work);
682
683 __tty_hangup(tty);
684 }
685
686 /**
687 * tty_hangup - trigger a hangup event
688 * @tty: tty to hangup
689 *
690 * A carrier loss (virtual or otherwise) has occurred on this like
691 * schedule a hangup sequence to run after this event.
692 */
693
694 void tty_hangup(struct tty_struct *tty)
695 {
696 #ifdef TTY_DEBUG_HANGUP
697 char buf[64];
698 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
699 #endif
700 schedule_work(&tty->hangup_work);
701 }
702
703 EXPORT_SYMBOL(tty_hangup);
704
705 /**
706 * tty_vhangup - process vhangup
707 * @tty: tty to hangup
708 *
709 * The user has asked via system call for the terminal to be hung up.
710 * We do this synchronously so that when the syscall returns the process
711 * is complete. That guarantee is necessary for security reasons.
712 */
713
714 void tty_vhangup(struct tty_struct *tty)
715 {
716 #ifdef TTY_DEBUG_HANGUP
717 char buf[64];
718
719 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
720 #endif
721 __tty_hangup(tty);
722 }
723
724 EXPORT_SYMBOL(tty_vhangup);
725
726
727 /**
728 * tty_vhangup_self - process vhangup for own ctty
729 *
730 * Perform a vhangup on the current controlling tty
731 */
732
733 void tty_vhangup_self(void)
734 {
735 struct tty_struct *tty;
736
737 tty = get_current_tty();
738 if (tty) {
739 tty_vhangup(tty);
740 tty_kref_put(tty);
741 }
742 }
743
744 /**
745 * tty_hung_up_p - was tty hung up
746 * @filp: file pointer of tty
747 *
748 * Return true if the tty has been subject to a vhangup or a carrier
749 * loss
750 */
751
752 int tty_hung_up_p(struct file *filp)
753 {
754 return (filp->f_op == &hung_up_tty_fops);
755 }
756
757 EXPORT_SYMBOL(tty_hung_up_p);
758
759 static void session_clear_tty(struct pid *session)
760 {
761 struct task_struct *p;
762 do_each_pid_task(session, PIDTYPE_SID, p) {
763 proc_clear_tty(p);
764 } while_each_pid_task(session, PIDTYPE_SID, p);
765 }
766
767 /**
768 * disassociate_ctty - disconnect controlling tty
769 * @on_exit: true if exiting so need to "hang up" the session
770 *
771 * This function is typically called only by the session leader, when
772 * it wants to disassociate itself from its controlling tty.
773 *
774 * It performs the following functions:
775 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
776 * (2) Clears the tty from being controlling the session
777 * (3) Clears the controlling tty for all processes in the
778 * session group.
779 *
780 * The argument on_exit is set to 1 if called when a process is
781 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
782 *
783 * Locking:
784 * BTM is taken for hysterical raisins, and held when
785 * called from no_tty().
786 * tty_mutex is taken to protect tty
787 * ->siglock is taken to protect ->signal/->sighand
788 * tasklist_lock is taken to walk process list for sessions
789 * ->siglock is taken to protect ->signal/->sighand
790 */
791
792 void disassociate_ctty(int on_exit)
793 {
794 struct tty_struct *tty;
795
796 if (!current->signal->leader)
797 return;
798
799 tty = get_current_tty();
800 if (tty) {
801 struct pid *tty_pgrp = get_pid(tty->pgrp);
802 if (on_exit) {
803 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
804 tty_vhangup(tty);
805 }
806 tty_kref_put(tty);
807 if (tty_pgrp) {
808 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
809 if (!on_exit)
810 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
811 put_pid(tty_pgrp);
812 }
813 } else if (on_exit) {
814 struct pid *old_pgrp;
815 spin_lock_irq(&current->sighand->siglock);
816 old_pgrp = current->signal->tty_old_pgrp;
817 current->signal->tty_old_pgrp = NULL;
818 spin_unlock_irq(&current->sighand->siglock);
819 if (old_pgrp) {
820 kill_pgrp(old_pgrp, SIGHUP, on_exit);
821 kill_pgrp(old_pgrp, SIGCONT, on_exit);
822 put_pid(old_pgrp);
823 }
824 return;
825 }
826
827 spin_lock_irq(&current->sighand->siglock);
828 put_pid(current->signal->tty_old_pgrp);
829 current->signal->tty_old_pgrp = NULL;
830 spin_unlock_irq(&current->sighand->siglock);
831
832 tty = get_current_tty();
833 if (tty) {
834 unsigned long flags;
835 spin_lock_irqsave(&tty->ctrl_lock, flags);
836 put_pid(tty->session);
837 put_pid(tty->pgrp);
838 tty->session = NULL;
839 tty->pgrp = NULL;
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 tty_kref_put(tty);
842 } else {
843 #ifdef TTY_DEBUG_HANGUP
844 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
845 " = NULL", tty);
846 #endif
847 }
848
849 /* Now clear signal->tty under the lock */
850 read_lock(&tasklist_lock);
851 session_clear_tty(task_session(current));
852 read_unlock(&tasklist_lock);
853 }
854
855 /**
856 *
857 * no_tty - Ensure the current process does not have a controlling tty
858 */
859 void no_tty(void)
860 {
861 /* FIXME: Review locking here. The tty_lock never covered any race
862 between a new association and proc_clear_tty but possible we need
863 to protect against this anyway */
864 struct task_struct *tsk = current;
865 disassociate_ctty(0);
866 proc_clear_tty(tsk);
867 }
868
869
870 /**
871 * stop_tty - propagate flow control
872 * @tty: tty to stop
873 *
874 * Perform flow control to the driver. For PTY/TTY pairs we
875 * must also propagate the TIOCKPKT status. May be called
876 * on an already stopped device and will not re-call the driver
877 * method.
878 *
879 * This functionality is used by both the line disciplines for
880 * halting incoming flow and by the driver. It may therefore be
881 * called from any context, may be under the tty atomic_write_lock
882 * but not always.
883 *
884 * Locking:
885 * Uses the tty control lock internally
886 */
887
888 void stop_tty(struct tty_struct *tty)
889 {
890 unsigned long flags;
891 spin_lock_irqsave(&tty->ctrl_lock, flags);
892 if (tty->stopped) {
893 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
894 return;
895 }
896 tty->stopped = 1;
897 if (tty->link && tty->link->packet) {
898 tty->ctrl_status &= ~TIOCPKT_START;
899 tty->ctrl_status |= TIOCPKT_STOP;
900 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
901 }
902 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
903 if (tty->ops->stop)
904 (tty->ops->stop)(tty);
905 }
906
907 EXPORT_SYMBOL(stop_tty);
908
909 /**
910 * start_tty - propagate flow control
911 * @tty: tty to start
912 *
913 * Start a tty that has been stopped if at all possible. Perform
914 * any necessary wakeups and propagate the TIOCPKT status. If this
915 * is the tty was previous stopped and is being started then the
916 * driver start method is invoked and the line discipline woken.
917 *
918 * Locking:
919 * ctrl_lock
920 */
921
922 void start_tty(struct tty_struct *tty)
923 {
924 unsigned long flags;
925 spin_lock_irqsave(&tty->ctrl_lock, flags);
926 if (!tty->stopped || tty->flow_stopped) {
927 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
928 return;
929 }
930 tty->stopped = 0;
931 if (tty->link && tty->link->packet) {
932 tty->ctrl_status &= ~TIOCPKT_STOP;
933 tty->ctrl_status |= TIOCPKT_START;
934 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
935 }
936 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
937 if (tty->ops->start)
938 (tty->ops->start)(tty);
939 /* If we have a running line discipline it may need kicking */
940 tty_wakeup(tty);
941 }
942
943 EXPORT_SYMBOL(start_tty);
944
945 /**
946 * tty_read - read method for tty device files
947 * @file: pointer to tty file
948 * @buf: user buffer
949 * @count: size of user buffer
950 * @ppos: unused
951 *
952 * Perform the read system call function on this terminal device. Checks
953 * for hung up devices before calling the line discipline method.
954 *
955 * Locking:
956 * Locks the line discipline internally while needed. Multiple
957 * read calls may be outstanding in parallel.
958 */
959
960 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
961 loff_t *ppos)
962 {
963 int i;
964 struct inode *inode = file->f_path.dentry->d_inode;
965 struct tty_struct *tty = file_tty(file);
966 struct tty_ldisc *ld;
967
968 if (tty_paranoia_check(tty, inode, "tty_read"))
969 return -EIO;
970 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
971 return -EIO;
972
973 /* We want to wait for the line discipline to sort out in this
974 situation */
975 ld = tty_ldisc_ref_wait(tty);
976 if (ld->ops->read)
977 i = (ld->ops->read)(tty, file, buf, count);
978 else
979 i = -EIO;
980 tty_ldisc_deref(ld);
981 if (i > 0)
982 inode->i_atime = current_fs_time(inode->i_sb);
983 return i;
984 }
985
986 void tty_write_unlock(struct tty_struct *tty)
987 __releases(&tty->atomic_write_lock)
988 {
989 mutex_unlock(&tty->atomic_write_lock);
990 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
991 }
992
993 int tty_write_lock(struct tty_struct *tty, int ndelay)
994 __acquires(&tty->atomic_write_lock)
995 {
996 if (!mutex_trylock(&tty->atomic_write_lock)) {
997 if (ndelay)
998 return -EAGAIN;
999 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1000 return -ERESTARTSYS;
1001 }
1002 return 0;
1003 }
1004
1005 /*
1006 * Split writes up in sane blocksizes to avoid
1007 * denial-of-service type attacks
1008 */
1009 static inline ssize_t do_tty_write(
1010 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1011 struct tty_struct *tty,
1012 struct file *file,
1013 const char __user *buf,
1014 size_t count)
1015 {
1016 ssize_t ret, written = 0;
1017 unsigned int chunk;
1018
1019 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1020 if (ret < 0)
1021 return ret;
1022
1023 /*
1024 * We chunk up writes into a temporary buffer. This
1025 * simplifies low-level drivers immensely, since they
1026 * don't have locking issues and user mode accesses.
1027 *
1028 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1029 * big chunk-size..
1030 *
1031 * The default chunk-size is 2kB, because the NTTY
1032 * layer has problems with bigger chunks. It will
1033 * claim to be able to handle more characters than
1034 * it actually does.
1035 *
1036 * FIXME: This can probably go away now except that 64K chunks
1037 * are too likely to fail unless switched to vmalloc...
1038 */
1039 chunk = 2048;
1040 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1041 chunk = 65536;
1042 if (count < chunk)
1043 chunk = count;
1044
1045 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1046 if (tty->write_cnt < chunk) {
1047 unsigned char *buf_chunk;
1048
1049 if (chunk < 1024)
1050 chunk = 1024;
1051
1052 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1053 if (!buf_chunk) {
1054 ret = -ENOMEM;
1055 goto out;
1056 }
1057 kfree(tty->write_buf);
1058 tty->write_cnt = chunk;
1059 tty->write_buf = buf_chunk;
1060 }
1061
1062 /* Do the write .. */
1063 for (;;) {
1064 size_t size = count;
1065 if (size > chunk)
1066 size = chunk;
1067 ret = -EFAULT;
1068 if (copy_from_user(tty->write_buf, buf, size))
1069 break;
1070 ret = write(tty, file, tty->write_buf, size);
1071 if (ret <= 0)
1072 break;
1073 written += ret;
1074 buf += ret;
1075 count -= ret;
1076 if (!count)
1077 break;
1078 ret = -ERESTARTSYS;
1079 if (signal_pending(current))
1080 break;
1081 cond_resched();
1082 }
1083 if (written) {
1084 struct inode *inode = file->f_path.dentry->d_inode;
1085 inode->i_mtime = current_fs_time(inode->i_sb);
1086 ret = written;
1087 }
1088 out:
1089 tty_write_unlock(tty);
1090 return ret;
1091 }
1092
1093 /**
1094 * tty_write_message - write a message to a certain tty, not just the console.
1095 * @tty: the destination tty_struct
1096 * @msg: the message to write
1097 *
1098 * This is used for messages that need to be redirected to a specific tty.
1099 * We don't put it into the syslog queue right now maybe in the future if
1100 * really needed.
1101 *
1102 * We must still hold the BTM and test the CLOSING flag for the moment.
1103 */
1104
1105 void tty_write_message(struct tty_struct *tty, char *msg)
1106 {
1107 if (tty) {
1108 mutex_lock(&tty->atomic_write_lock);
1109 tty_lock(tty);
1110 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1111 tty_unlock(tty);
1112 tty->ops->write(tty, msg, strlen(msg));
1113 } else
1114 tty_unlock(tty);
1115 tty_write_unlock(tty);
1116 }
1117 return;
1118 }
1119
1120
1121 /**
1122 * tty_write - write method for tty device file
1123 * @file: tty file pointer
1124 * @buf: user data to write
1125 * @count: bytes to write
1126 * @ppos: unused
1127 *
1128 * Write data to a tty device via the line discipline.
1129 *
1130 * Locking:
1131 * Locks the line discipline as required
1132 * Writes to the tty driver are serialized by the atomic_write_lock
1133 * and are then processed in chunks to the device. The line discipline
1134 * write method will not be invoked in parallel for each device.
1135 */
1136
1137 static ssize_t tty_write(struct file *file, const char __user *buf,
1138 size_t count, loff_t *ppos)
1139 {
1140 struct inode *inode = file->f_path.dentry->d_inode;
1141 struct tty_struct *tty = file_tty(file);
1142 struct tty_ldisc *ld;
1143 ssize_t ret;
1144
1145 if (tty_paranoia_check(tty, inode, "tty_write"))
1146 return -EIO;
1147 if (!tty || !tty->ops->write ||
1148 (test_bit(TTY_IO_ERROR, &tty->flags)))
1149 return -EIO;
1150 /* Short term debug to catch buggy drivers */
1151 if (tty->ops->write_room == NULL)
1152 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1153 tty->driver->name);
1154 ld = tty_ldisc_ref_wait(tty);
1155 if (!ld->ops->write)
1156 ret = -EIO;
1157 else
1158 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1159 tty_ldisc_deref(ld);
1160 return ret;
1161 }
1162
1163 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1164 size_t count, loff_t *ppos)
1165 {
1166 struct file *p = NULL;
1167
1168 spin_lock(&redirect_lock);
1169 if (redirect) {
1170 get_file(redirect);
1171 p = redirect;
1172 }
1173 spin_unlock(&redirect_lock);
1174
1175 if (p) {
1176 ssize_t res;
1177 res = vfs_write(p, buf, count, &p->f_pos);
1178 fput(p);
1179 return res;
1180 }
1181 return tty_write(file, buf, count, ppos);
1182 }
1183
1184 static char ptychar[] = "pqrstuvwxyzabcde";
1185
1186 /**
1187 * pty_line_name - generate name for a pty
1188 * @driver: the tty driver in use
1189 * @index: the minor number
1190 * @p: output buffer of at least 6 bytes
1191 *
1192 * Generate a name from a driver reference and write it to the output
1193 * buffer.
1194 *
1195 * Locking: None
1196 */
1197 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1198 {
1199 int i = index + driver->name_base;
1200 /* ->name is initialized to "ttyp", but "tty" is expected */
1201 sprintf(p, "%s%c%x",
1202 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1203 ptychar[i >> 4 & 0xf], i & 0xf);
1204 }
1205
1206 /**
1207 * tty_line_name - generate name for a tty
1208 * @driver: the tty driver in use
1209 * @index: the minor number
1210 * @p: output buffer of at least 7 bytes
1211 *
1212 * Generate a name from a driver reference and write it to the output
1213 * buffer.
1214 *
1215 * Locking: None
1216 */
1217 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1218 {
1219 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1220 }
1221
1222 /**
1223 * tty_driver_lookup_tty() - find an existing tty, if any
1224 * @driver: the driver for the tty
1225 * @idx: the minor number
1226 *
1227 * Return the tty, if found or ERR_PTR() otherwise.
1228 *
1229 * Locking: tty_mutex must be held. If tty is found, the mutex must
1230 * be held until the 'fast-open' is also done. Will change once we
1231 * have refcounting in the driver and per driver locking
1232 */
1233 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1234 struct inode *inode, int idx)
1235 {
1236 if (driver->ops->lookup)
1237 return driver->ops->lookup(driver, inode, idx);
1238
1239 return driver->ttys[idx];
1240 }
1241
1242 /**
1243 * tty_init_termios - helper for termios setup
1244 * @tty: the tty to set up
1245 *
1246 * Initialise the termios structures for this tty. Thus runs under
1247 * the tty_mutex currently so we can be relaxed about ordering.
1248 */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252 struct ktermios *tp;
1253 int idx = tty->index;
1254
1255 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256 tty->termios = tty->driver->init_termios;
1257 else {
1258 /* Check for lazy saved data */
1259 tp = tty->driver->termios[idx];
1260 if (tp != NULL)
1261 tty->termios = *tp;
1262 else
1263 tty->termios = tty->driver->init_termios;
1264 }
1265 /* Compatibility until drivers always set this */
1266 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1267 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1268 return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274 int ret = tty_init_termios(tty);
1275 if (ret)
1276 return ret;
1277
1278 tty_driver_kref_get(driver);
1279 tty->count++;
1280 driver->ttys[tty->index] = tty;
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286 * tty_driver_install_tty() - install a tty entry in the driver
1287 * @driver: the driver for the tty
1288 * @tty: the tty
1289 *
1290 * Install a tty object into the driver tables. The tty->index field
1291 * will be set by the time this is called. This method is responsible
1292 * for ensuring any need additional structures are allocated and
1293 * configured.
1294 *
1295 * Locking: tty_mutex for now
1296 */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298 struct tty_struct *tty)
1299 {
1300 return driver->ops->install ? driver->ops->install(driver, tty) :
1301 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305 * tty_driver_remove_tty() - remove a tty from the driver tables
1306 * @driver: the driver for the tty
1307 * @idx: the minor number
1308 *
1309 * Remvoe a tty object from the driver tables. The tty->index field
1310 * will be set by the time this is called.
1311 *
1312 * Locking: tty_mutex for now
1313 */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316 if (driver->ops->remove)
1317 driver->ops->remove(driver, tty);
1318 else
1319 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323 * tty_reopen() - fast re-open of an open tty
1324 * @tty - the tty to open
1325 *
1326 * Return 0 on success, -errno on error.
1327 *
1328 * Locking: tty_mutex must be held from the time the tty was found
1329 * till this open completes.
1330 */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333 struct tty_driver *driver = tty->driver;
1334
1335 if (test_bit(TTY_CLOSING, &tty->flags) ||
1336 test_bit(TTY_HUPPING, &tty->flags) ||
1337 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338 return -EIO;
1339
1340 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341 driver->subtype == PTY_TYPE_MASTER) {
1342 /*
1343 * special case for PTY masters: only one open permitted,
1344 * and the slave side open count is incremented as well.
1345 */
1346 if (tty->count)
1347 return -EIO;
1348
1349 tty->link->count++;
1350 }
1351 tty->count++;
1352
1353 mutex_lock(&tty->ldisc_mutex);
1354 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355 mutex_unlock(&tty->ldisc_mutex);
1356
1357 return 0;
1358 }
1359
1360 /**
1361 * tty_init_dev - initialise a tty device
1362 * @driver: tty driver we are opening a device on
1363 * @idx: device index
1364 * @ret_tty: returned tty structure
1365 *
1366 * Prepare a tty device. This may not be a "new" clean device but
1367 * could also be an active device. The pty drivers require special
1368 * handling because of this.
1369 *
1370 * Locking:
1371 * The function is called under the tty_mutex, which
1372 * protects us from the tty struct or driver itself going away.
1373 *
1374 * On exit the tty device has the line discipline attached and
1375 * a reference count of 1. If a pair was created for pty/tty use
1376 * and the other was a pty master then it too has a reference count of 1.
1377 *
1378 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379 * failed open. The new code protects the open with a mutex, so it's
1380 * really quite straightforward. The mutex locking can probably be
1381 * relaxed for the (most common) case of reopening a tty.
1382 */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386 struct tty_struct *tty;
1387 int retval;
1388
1389 /*
1390 * First time open is complex, especially for PTY devices.
1391 * This code guarantees that either everything succeeds and the
1392 * TTY is ready for operation, or else the table slots are vacated
1393 * and the allocated memory released. (Except that the termios
1394 * and locked termios may be retained.)
1395 */
1396
1397 if (!try_module_get(driver->owner))
1398 return ERR_PTR(-ENODEV);
1399
1400 tty = alloc_tty_struct();
1401 if (!tty) {
1402 retval = -ENOMEM;
1403 goto err_module_put;
1404 }
1405 initialize_tty_struct(tty, driver, idx);
1406
1407 tty_lock(tty);
1408 retval = tty_driver_install_tty(driver, tty);
1409 if (retval < 0)
1410 goto err_deinit_tty;
1411
1412 if (!tty->port)
1413 tty->port = driver->ports[idx];
1414
1415 /*
1416 * Structures all installed ... call the ldisc open routines.
1417 * If we fail here just call release_tty to clean up. No need
1418 * to decrement the use counts, as release_tty doesn't care.
1419 */
1420 retval = tty_ldisc_setup(tty, tty->link);
1421 if (retval)
1422 goto err_release_tty;
1423 /* Return the tty locked so that it cannot vanish under the caller */
1424 return tty;
1425
1426 err_deinit_tty:
1427 tty_unlock(tty);
1428 deinitialize_tty_struct(tty);
1429 free_tty_struct(tty);
1430 err_module_put:
1431 module_put(driver->owner);
1432 return ERR_PTR(retval);
1433
1434 /* call the tty release_tty routine to clean out this slot */
1435 err_release_tty:
1436 tty_unlock(tty);
1437 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1438 "clearing slot %d\n", idx);
1439 release_tty(tty, idx);
1440 return ERR_PTR(retval);
1441 }
1442
1443 void tty_free_termios(struct tty_struct *tty)
1444 {
1445 struct ktermios *tp;
1446 int idx = tty->index;
1447
1448 /* If the port is going to reset then it has no termios to save */
1449 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1450 return;
1451
1452 /* Stash the termios data */
1453 tp = tty->driver->termios[idx];
1454 if (tp == NULL) {
1455 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1456 if (tp == NULL) {
1457 pr_warn("tty: no memory to save termios state.\n");
1458 return;
1459 }
1460 tty->driver->termios[idx] = tp;
1461 }
1462 *tp = tty->termios;
1463 }
1464 EXPORT_SYMBOL(tty_free_termios);
1465
1466
1467 /**
1468 * release_one_tty - release tty structure memory
1469 * @kref: kref of tty we are obliterating
1470 *
1471 * Releases memory associated with a tty structure, and clears out the
1472 * driver table slots. This function is called when a device is no longer
1473 * in use. It also gets called when setup of a device fails.
1474 *
1475 * Locking:
1476 * takes the file list lock internally when working on the list
1477 * of ttys that the driver keeps.
1478 *
1479 * This method gets called from a work queue so that the driver private
1480 * cleanup ops can sleep (needed for USB at least)
1481 */
1482 static void release_one_tty(struct work_struct *work)
1483 {
1484 struct tty_struct *tty =
1485 container_of(work, struct tty_struct, hangup_work);
1486 struct tty_driver *driver = tty->driver;
1487
1488 if (tty->ops->cleanup)
1489 tty->ops->cleanup(tty);
1490
1491 tty->magic = 0;
1492 tty_driver_kref_put(driver);
1493 module_put(driver->owner);
1494
1495 spin_lock(&tty_files_lock);
1496 list_del_init(&tty->tty_files);
1497 spin_unlock(&tty_files_lock);
1498
1499 put_pid(tty->pgrp);
1500 put_pid(tty->session);
1501 free_tty_struct(tty);
1502 }
1503
1504 static void queue_release_one_tty(struct kref *kref)
1505 {
1506 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1507
1508 /* The hangup queue is now free so we can reuse it rather than
1509 waste a chunk of memory for each port */
1510 INIT_WORK(&tty->hangup_work, release_one_tty);
1511 schedule_work(&tty->hangup_work);
1512 }
1513
1514 /**
1515 * tty_kref_put - release a tty kref
1516 * @tty: tty device
1517 *
1518 * Release a reference to a tty device and if need be let the kref
1519 * layer destruct the object for us
1520 */
1521
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524 if (tty)
1525 kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528
1529 /**
1530 * release_tty - release tty structure memory
1531 *
1532 * Release both @tty and a possible linked partner (think pty pair),
1533 * and decrement the refcount of the backing module.
1534 *
1535 * Locking:
1536 * tty_mutex
1537 * takes the file list lock internally when working on the list
1538 * of ttys that the driver keeps.
1539 *
1540 */
1541 static void release_tty(struct tty_struct *tty, int idx)
1542 {
1543 /* This should always be true but check for the moment */
1544 WARN_ON(tty->index != idx);
1545 WARN_ON(!mutex_is_locked(&tty_mutex));
1546 if (tty->ops->shutdown)
1547 tty->ops->shutdown(tty);
1548 tty_free_termios(tty);
1549 tty_driver_remove_tty(tty->driver, tty);
1550
1551 if (tty->link)
1552 tty_kref_put(tty->link);
1553 tty_kref_put(tty);
1554 }
1555
1556 /**
1557 * tty_release_checks - check a tty before real release
1558 * @tty: tty to check
1559 * @o_tty: link of @tty (if any)
1560 * @idx: index of the tty
1561 *
1562 * Performs some paranoid checking before true release of the @tty.
1563 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1564 */
1565 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1566 int idx)
1567 {
1568 #ifdef TTY_PARANOIA_CHECK
1569 if (idx < 0 || idx >= tty->driver->num) {
1570 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1571 __func__, tty->name);
1572 return -1;
1573 }
1574
1575 /* not much to check for devpts */
1576 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1577 return 0;
1578
1579 if (tty != tty->driver->ttys[idx]) {
1580 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1581 __func__, idx, tty->name);
1582 return -1;
1583 }
1584 if (tty->driver->other) {
1585 if (o_tty != tty->driver->other->ttys[idx]) {
1586 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1587 __func__, idx, tty->name);
1588 return -1;
1589 }
1590 if (o_tty->link != tty) {
1591 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1592 return -1;
1593 }
1594 }
1595 #endif
1596 return 0;
1597 }
1598
1599 /**
1600 * tty_release - vfs callback for close
1601 * @inode: inode of tty
1602 * @filp: file pointer for handle to tty
1603 *
1604 * Called the last time each file handle is closed that references
1605 * this tty. There may however be several such references.
1606 *
1607 * Locking:
1608 * Takes bkl. See tty_release_dev
1609 *
1610 * Even releasing the tty structures is a tricky business.. We have
1611 * to be very careful that the structures are all released at the
1612 * same time, as interrupts might otherwise get the wrong pointers.
1613 *
1614 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1615 * lead to double frees or releasing memory still in use.
1616 */
1617
1618 int tty_release(struct inode *inode, struct file *filp)
1619 {
1620 struct tty_struct *tty = file_tty(filp);
1621 struct tty_struct *o_tty;
1622 int pty_master, tty_closing, o_tty_closing, do_sleep;
1623 int devpts;
1624 int idx;
1625 char buf[64];
1626
1627 if (tty_paranoia_check(tty, inode, __func__))
1628 return 0;
1629
1630 tty_lock(tty);
1631 check_tty_count(tty, __func__);
1632
1633 __tty_fasync(-1, filp, 0);
1634
1635 idx = tty->index;
1636 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1637 tty->driver->subtype == PTY_TYPE_MASTER);
1638 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1639 /* Review: parallel close */
1640 o_tty = tty->link;
1641
1642 if (tty_release_checks(tty, o_tty, idx)) {
1643 tty_unlock(tty);
1644 return 0;
1645 }
1646
1647 #ifdef TTY_DEBUG_HANGUP
1648 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649 tty_name(tty, buf), tty->count);
1650 #endif
1651
1652 if (tty->ops->close)
1653 tty->ops->close(tty, filp);
1654
1655 tty_unlock(tty);
1656 /*
1657 * Sanity check: if tty->count is going to zero, there shouldn't be
1658 * any waiters on tty->read_wait or tty->write_wait. We test the
1659 * wait queues and kick everyone out _before_ actually starting to
1660 * close. This ensures that we won't block while releasing the tty
1661 * structure.
1662 *
1663 * The test for the o_tty closing is necessary, since the master and
1664 * slave sides may close in any order. If the slave side closes out
1665 * first, its count will be one, since the master side holds an open.
1666 * Thus this test wouldn't be triggered at the time the slave closes,
1667 * so we do it now.
1668 *
1669 * Note that it's possible for the tty to be opened again while we're
1670 * flushing out waiters. By recalculating the closing flags before
1671 * each iteration we avoid any problems.
1672 */
1673 while (1) {
1674 /* Guard against races with tty->count changes elsewhere and
1675 opens on /dev/tty */
1676
1677 mutex_lock(&tty_mutex);
1678 tty_lock_pair(tty, o_tty);
1679 tty_closing = tty->count <= 1;
1680 o_tty_closing = o_tty &&
1681 (o_tty->count <= (pty_master ? 1 : 0));
1682 do_sleep = 0;
1683
1684 if (tty_closing) {
1685 if (waitqueue_active(&tty->read_wait)) {
1686 wake_up_poll(&tty->read_wait, POLLIN);
1687 do_sleep++;
1688 }
1689 if (waitqueue_active(&tty->write_wait)) {
1690 wake_up_poll(&tty->write_wait, POLLOUT);
1691 do_sleep++;
1692 }
1693 }
1694 if (o_tty_closing) {
1695 if (waitqueue_active(&o_tty->read_wait)) {
1696 wake_up_poll(&o_tty->read_wait, POLLIN);
1697 do_sleep++;
1698 }
1699 if (waitqueue_active(&o_tty->write_wait)) {
1700 wake_up_poll(&o_tty->write_wait, POLLOUT);
1701 do_sleep++;
1702 }
1703 }
1704 if (!do_sleep)
1705 break;
1706
1707 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708 __func__, tty_name(tty, buf));
1709 tty_unlock_pair(tty, o_tty);
1710 mutex_unlock(&tty_mutex);
1711 schedule();
1712 }
1713
1714 /*
1715 * The closing flags are now consistent with the open counts on
1716 * both sides, and we've completed the last operation that could
1717 * block, so it's safe to proceed with closing.
1718 *
1719 * We must *not* drop the tty_mutex until we ensure that a further
1720 * entry into tty_open can not pick up this tty.
1721 */
1722 if (pty_master) {
1723 if (--o_tty->count < 0) {
1724 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1725 __func__, o_tty->count, tty_name(o_tty, buf));
1726 o_tty->count = 0;
1727 }
1728 }
1729 if (--tty->count < 0) {
1730 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1731 __func__, tty->count, tty_name(tty, buf));
1732 tty->count = 0;
1733 }
1734
1735 /*
1736 * We've decremented tty->count, so we need to remove this file
1737 * descriptor off the tty->tty_files list; this serves two
1738 * purposes:
1739 * - check_tty_count sees the correct number of file descriptors
1740 * associated with this tty.
1741 * - do_tty_hangup no longer sees this file descriptor as
1742 * something that needs to be handled for hangups.
1743 */
1744 tty_del_file(filp);
1745
1746 /*
1747 * Perform some housekeeping before deciding whether to return.
1748 *
1749 * Set the TTY_CLOSING flag if this was the last open. In the
1750 * case of a pty we may have to wait around for the other side
1751 * to close, and TTY_CLOSING makes sure we can't be reopened.
1752 */
1753 if (tty_closing)
1754 set_bit(TTY_CLOSING, &tty->flags);
1755 if (o_tty_closing)
1756 set_bit(TTY_CLOSING, &o_tty->flags);
1757
1758 /*
1759 * If _either_ side is closing, make sure there aren't any
1760 * processes that still think tty or o_tty is their controlling
1761 * tty.
1762 */
1763 if (tty_closing || o_tty_closing) {
1764 read_lock(&tasklist_lock);
1765 session_clear_tty(tty->session);
1766 if (o_tty)
1767 session_clear_tty(o_tty->session);
1768 read_unlock(&tasklist_lock);
1769 }
1770
1771 mutex_unlock(&tty_mutex);
1772 tty_unlock_pair(tty, o_tty);
1773 /* At this point the TTY_CLOSING flag should ensure a dead tty
1774 cannot be re-opened by a racing opener */
1775
1776 /* check whether both sides are closing ... */
1777 if (!tty_closing || (o_tty && !o_tty_closing))
1778 return 0;
1779
1780 #ifdef TTY_DEBUG_HANGUP
1781 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1782 #endif
1783 /*
1784 * Ask the line discipline code to release its structures
1785 */
1786 tty_ldisc_release(tty, o_tty);
1787 /*
1788 * The release_tty function takes care of the details of clearing
1789 * the slots and preserving the termios structure. The tty_unlock_pair
1790 * should be safe as we keep a kref while the tty is locked (so the
1791 * unlock never unlocks a freed tty).
1792 */
1793 mutex_lock(&tty_mutex);
1794 release_tty(tty, idx);
1795 mutex_unlock(&tty_mutex);
1796
1797 /* Make this pty number available for reallocation */
1798 if (devpts)
1799 devpts_kill_index(inode, idx);
1800 return 0;
1801 }
1802
1803 /**
1804 * tty_open_current_tty - get tty of current task for open
1805 * @device: device number
1806 * @filp: file pointer to tty
1807 * @return: tty of the current task iff @device is /dev/tty
1808 *
1809 * We cannot return driver and index like for the other nodes because
1810 * devpts will not work then. It expects inodes to be from devpts FS.
1811 *
1812 * We need to move to returning a refcounted object from all the lookup
1813 * paths including this one.
1814 */
1815 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1816 {
1817 struct tty_struct *tty;
1818
1819 if (device != MKDEV(TTYAUX_MAJOR, 0))
1820 return NULL;
1821
1822 tty = get_current_tty();
1823 if (!tty)
1824 return ERR_PTR(-ENXIO);
1825
1826 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1827 /* noctty = 1; */
1828 tty_kref_put(tty);
1829 /* FIXME: we put a reference and return a TTY! */
1830 /* This is only safe because the caller holds tty_mutex */
1831 return tty;
1832 }
1833
1834 /**
1835 * tty_lookup_driver - lookup a tty driver for a given device file
1836 * @device: device number
1837 * @filp: file pointer to tty
1838 * @noctty: set if the device should not become a controlling tty
1839 * @index: index for the device in the @return driver
1840 * @return: driver for this inode (with increased refcount)
1841 *
1842 * If @return is not erroneous, the caller is responsible to decrement the
1843 * refcount by tty_driver_kref_put.
1844 *
1845 * Locking: tty_mutex protects get_tty_driver
1846 */
1847 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1848 int *noctty, int *index)
1849 {
1850 struct tty_driver *driver;
1851
1852 switch (device) {
1853 #ifdef CONFIG_VT
1854 case MKDEV(TTY_MAJOR, 0): {
1855 extern struct tty_driver *console_driver;
1856 driver = tty_driver_kref_get(console_driver);
1857 *index = fg_console;
1858 *noctty = 1;
1859 break;
1860 }
1861 #endif
1862 case MKDEV(TTYAUX_MAJOR, 1): {
1863 struct tty_driver *console_driver = console_device(index);
1864 if (console_driver) {
1865 driver = tty_driver_kref_get(console_driver);
1866 if (driver) {
1867 /* Don't let /dev/console block */
1868 filp->f_flags |= O_NONBLOCK;
1869 *noctty = 1;
1870 break;
1871 }
1872 }
1873 return ERR_PTR(-ENODEV);
1874 }
1875 default:
1876 driver = get_tty_driver(device, index);
1877 if (!driver)
1878 return ERR_PTR(-ENODEV);
1879 break;
1880 }
1881 return driver;
1882 }
1883
1884 /**
1885 * tty_open - open a tty device
1886 * @inode: inode of device file
1887 * @filp: file pointer to tty
1888 *
1889 * tty_open and tty_release keep up the tty count that contains the
1890 * number of opens done on a tty. We cannot use the inode-count, as
1891 * different inodes might point to the same tty.
1892 *
1893 * Open-counting is needed for pty masters, as well as for keeping
1894 * track of serial lines: DTR is dropped when the last close happens.
1895 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1896 *
1897 * The termios state of a pty is reset on first open so that
1898 * settings don't persist across reuse.
1899 *
1900 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1901 * tty->count should protect the rest.
1902 * ->siglock protects ->signal/->sighand
1903 *
1904 * Note: the tty_unlock/lock cases without a ref are only safe due to
1905 * tty_mutex
1906 */
1907
1908 static int tty_open(struct inode *inode, struct file *filp)
1909 {
1910 struct tty_struct *tty;
1911 int noctty, retval;
1912 struct tty_driver *driver = NULL;
1913 int index;
1914 dev_t device = inode->i_rdev;
1915 unsigned saved_flags = filp->f_flags;
1916
1917 nonseekable_open(inode, filp);
1918
1919 retry_open:
1920 retval = tty_alloc_file(filp);
1921 if (retval)
1922 return -ENOMEM;
1923
1924 noctty = filp->f_flags & O_NOCTTY;
1925 index = -1;
1926 retval = 0;
1927
1928 mutex_lock(&tty_mutex);
1929 /* This is protected by the tty_mutex */
1930 tty = tty_open_current_tty(device, filp);
1931 if (IS_ERR(tty)) {
1932 retval = PTR_ERR(tty);
1933 goto err_unlock;
1934 } else if (!tty) {
1935 driver = tty_lookup_driver(device, filp, &noctty, &index);
1936 if (IS_ERR(driver)) {
1937 retval = PTR_ERR(driver);
1938 goto err_unlock;
1939 }
1940
1941 /* check whether we're reopening an existing tty */
1942 tty = tty_driver_lookup_tty(driver, inode, index);
1943 if (IS_ERR(tty)) {
1944 retval = PTR_ERR(tty);
1945 goto err_unlock;
1946 }
1947 }
1948
1949 if (tty) {
1950 tty_lock(tty);
1951 retval = tty_reopen(tty);
1952 if (retval < 0) {
1953 tty_unlock(tty);
1954 tty = ERR_PTR(retval);
1955 }
1956 } else /* Returns with the tty_lock held for now */
1957 tty = tty_init_dev(driver, index);
1958
1959 mutex_unlock(&tty_mutex);
1960 if (driver)
1961 tty_driver_kref_put(driver);
1962 if (IS_ERR(tty)) {
1963 retval = PTR_ERR(tty);
1964 goto err_file;
1965 }
1966
1967 tty_add_file(tty, filp);
1968
1969 check_tty_count(tty, __func__);
1970 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1971 tty->driver->subtype == PTY_TYPE_MASTER)
1972 noctty = 1;
1973 #ifdef TTY_DEBUG_HANGUP
1974 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1975 #endif
1976 if (tty->ops->open)
1977 retval = tty->ops->open(tty, filp);
1978 else
1979 retval = -ENODEV;
1980 filp->f_flags = saved_flags;
1981
1982 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1983 !capable(CAP_SYS_ADMIN))
1984 retval = -EBUSY;
1985
1986 if (retval) {
1987 #ifdef TTY_DEBUG_HANGUP
1988 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1989 retval, tty->name);
1990 #endif
1991 tty_unlock(tty); /* need to call tty_release without BTM */
1992 tty_release(inode, filp);
1993 if (retval != -ERESTARTSYS)
1994 return retval;
1995
1996 if (signal_pending(current))
1997 return retval;
1998
1999 schedule();
2000 /*
2001 * Need to reset f_op in case a hangup happened.
2002 */
2003 if (filp->f_op == &hung_up_tty_fops)
2004 filp->f_op = &tty_fops;
2005 goto retry_open;
2006 }
2007 tty_unlock(tty);
2008
2009
2010 mutex_lock(&tty_mutex);
2011 tty_lock(tty);
2012 spin_lock_irq(&current->sighand->siglock);
2013 if (!noctty &&
2014 current->signal->leader &&
2015 !current->signal->tty &&
2016 tty->session == NULL)
2017 __proc_set_tty(current, tty);
2018 spin_unlock_irq(&current->sighand->siglock);
2019 tty_unlock(tty);
2020 mutex_unlock(&tty_mutex);
2021 return 0;
2022 err_unlock:
2023 mutex_unlock(&tty_mutex);
2024 /* after locks to avoid deadlock */
2025 if (!IS_ERR_OR_NULL(driver))
2026 tty_driver_kref_put(driver);
2027 err_file:
2028 tty_free_file(filp);
2029 return retval;
2030 }
2031
2032
2033
2034 /**
2035 * tty_poll - check tty status
2036 * @filp: file being polled
2037 * @wait: poll wait structures to update
2038 *
2039 * Call the line discipline polling method to obtain the poll
2040 * status of the device.
2041 *
2042 * Locking: locks called line discipline but ldisc poll method
2043 * may be re-entered freely by other callers.
2044 */
2045
2046 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2047 {
2048 struct tty_struct *tty = file_tty(filp);
2049 struct tty_ldisc *ld;
2050 int ret = 0;
2051
2052 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2053 return 0;
2054
2055 ld = tty_ldisc_ref_wait(tty);
2056 if (ld->ops->poll)
2057 ret = (ld->ops->poll)(tty, filp, wait);
2058 tty_ldisc_deref(ld);
2059 return ret;
2060 }
2061
2062 static int __tty_fasync(int fd, struct file *filp, int on)
2063 {
2064 struct tty_struct *tty = file_tty(filp);
2065 unsigned long flags;
2066 int retval = 0;
2067
2068 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069 goto out;
2070
2071 retval = fasync_helper(fd, filp, on, &tty->fasync);
2072 if (retval <= 0)
2073 goto out;
2074
2075 if (on) {
2076 enum pid_type type;
2077 struct pid *pid;
2078 if (!waitqueue_active(&tty->read_wait))
2079 tty->minimum_to_wake = 1;
2080 spin_lock_irqsave(&tty->ctrl_lock, flags);
2081 if (tty->pgrp) {
2082 pid = tty->pgrp;
2083 type = PIDTYPE_PGID;
2084 } else {
2085 pid = task_pid(current);
2086 type = PIDTYPE_PID;
2087 }
2088 get_pid(pid);
2089 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2090 retval = __f_setown(filp, pid, type, 0);
2091 put_pid(pid);
2092 if (retval)
2093 goto out;
2094 } else {
2095 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2096 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2097 }
2098 retval = 0;
2099 out:
2100 return retval;
2101 }
2102
2103 static int tty_fasync(int fd, struct file *filp, int on)
2104 {
2105 struct tty_struct *tty = file_tty(filp);
2106 int retval;
2107
2108 tty_lock(tty);
2109 retval = __tty_fasync(fd, filp, on);
2110 tty_unlock(tty);
2111
2112 return retval;
2113 }
2114
2115 /**
2116 * tiocsti - fake input character
2117 * @tty: tty to fake input into
2118 * @p: pointer to character
2119 *
2120 * Fake input to a tty device. Does the necessary locking and
2121 * input management.
2122 *
2123 * FIXME: does not honour flow control ??
2124 *
2125 * Locking:
2126 * Called functions take tty_ldisc_lock
2127 * current->signal->tty check is safe without locks
2128 *
2129 * FIXME: may race normal receive processing
2130 */
2131
2132 static int tiocsti(struct tty_struct *tty, char __user *p)
2133 {
2134 char ch, mbz = 0;
2135 struct tty_ldisc *ld;
2136
2137 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139 if (get_user(ch, p))
2140 return -EFAULT;
2141 tty_audit_tiocsti(tty, ch);
2142 ld = tty_ldisc_ref_wait(tty);
2143 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2144 tty_ldisc_deref(ld);
2145 return 0;
2146 }
2147
2148 /**
2149 * tiocgwinsz - implement window query ioctl
2150 * @tty; tty
2151 * @arg: user buffer for result
2152 *
2153 * Copies the kernel idea of the window size into the user buffer.
2154 *
2155 * Locking: tty->termios_mutex is taken to ensure the winsize data
2156 * is consistent.
2157 */
2158
2159 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2160 {
2161 int err;
2162
2163 mutex_lock(&tty->termios_mutex);
2164 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2165 mutex_unlock(&tty->termios_mutex);
2166
2167 return err ? -EFAULT: 0;
2168 }
2169
2170 /**
2171 * tty_do_resize - resize event
2172 * @tty: tty being resized
2173 * @rows: rows (character)
2174 * @cols: cols (character)
2175 *
2176 * Update the termios variables and send the necessary signals to
2177 * peform a terminal resize correctly
2178 */
2179
2180 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2181 {
2182 struct pid *pgrp;
2183 unsigned long flags;
2184
2185 /* Lock the tty */
2186 mutex_lock(&tty->termios_mutex);
2187 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2188 goto done;
2189 /* Get the PID values and reference them so we can
2190 avoid holding the tty ctrl lock while sending signals */
2191 spin_lock_irqsave(&tty->ctrl_lock, flags);
2192 pgrp = get_pid(tty->pgrp);
2193 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2194
2195 if (pgrp)
2196 kill_pgrp(pgrp, SIGWINCH, 1);
2197 put_pid(pgrp);
2198
2199 tty->winsize = *ws;
2200 done:
2201 mutex_unlock(&tty->termios_mutex);
2202 return 0;
2203 }
2204
2205 /**
2206 * tiocswinsz - implement window size set ioctl
2207 * @tty; tty side of tty
2208 * @arg: user buffer for result
2209 *
2210 * Copies the user idea of the window size to the kernel. Traditionally
2211 * this is just advisory information but for the Linux console it
2212 * actually has driver level meaning and triggers a VC resize.
2213 *
2214 * Locking:
2215 * Driver dependent. The default do_resize method takes the
2216 * tty termios mutex and ctrl_lock. The console takes its own lock
2217 * then calls into the default method.
2218 */
2219
2220 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2221 {
2222 struct winsize tmp_ws;
2223 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2224 return -EFAULT;
2225
2226 if (tty->ops->resize)
2227 return tty->ops->resize(tty, &tmp_ws);
2228 else
2229 return tty_do_resize(tty, &tmp_ws);
2230 }
2231
2232 /**
2233 * tioccons - allow admin to move logical console
2234 * @file: the file to become console
2235 *
2236 * Allow the administrator to move the redirected console device
2237 *
2238 * Locking: uses redirect_lock to guard the redirect information
2239 */
2240
2241 static int tioccons(struct file *file)
2242 {
2243 if (!capable(CAP_SYS_ADMIN))
2244 return -EPERM;
2245 if (file->f_op->write == redirected_tty_write) {
2246 struct file *f;
2247 spin_lock(&redirect_lock);
2248 f = redirect;
2249 redirect = NULL;
2250 spin_unlock(&redirect_lock);
2251 if (f)
2252 fput(f);
2253 return 0;
2254 }
2255 spin_lock(&redirect_lock);
2256 if (redirect) {
2257 spin_unlock(&redirect_lock);
2258 return -EBUSY;
2259 }
2260 get_file(file);
2261 redirect = file;
2262 spin_unlock(&redirect_lock);
2263 return 0;
2264 }
2265
2266 /**
2267 * fionbio - non blocking ioctl
2268 * @file: file to set blocking value
2269 * @p: user parameter
2270 *
2271 * Historical tty interfaces had a blocking control ioctl before
2272 * the generic functionality existed. This piece of history is preserved
2273 * in the expected tty API of posix OS's.
2274 *
2275 * Locking: none, the open file handle ensures it won't go away.
2276 */
2277
2278 static int fionbio(struct file *file, int __user *p)
2279 {
2280 int nonblock;
2281
2282 if (get_user(nonblock, p))
2283 return -EFAULT;
2284
2285 spin_lock(&file->f_lock);
2286 if (nonblock)
2287 file->f_flags |= O_NONBLOCK;
2288 else
2289 file->f_flags &= ~O_NONBLOCK;
2290 spin_unlock(&file->f_lock);
2291 return 0;
2292 }
2293
2294 /**
2295 * tiocsctty - set controlling tty
2296 * @tty: tty structure
2297 * @arg: user argument
2298 *
2299 * This ioctl is used to manage job control. It permits a session
2300 * leader to set this tty as the controlling tty for the session.
2301 *
2302 * Locking:
2303 * Takes tty_mutex() to protect tty instance
2304 * Takes tasklist_lock internally to walk sessions
2305 * Takes ->siglock() when updating signal->tty
2306 */
2307
2308 static int tiocsctty(struct tty_struct *tty, int arg)
2309 {
2310 int ret = 0;
2311 if (current->signal->leader && (task_session(current) == tty->session))
2312 return ret;
2313
2314 mutex_lock(&tty_mutex);
2315 /*
2316 * The process must be a session leader and
2317 * not have a controlling tty already.
2318 */
2319 if (!current->signal->leader || current->signal->tty) {
2320 ret = -EPERM;
2321 goto unlock;
2322 }
2323
2324 if (tty->session) {
2325 /*
2326 * This tty is already the controlling
2327 * tty for another session group!
2328 */
2329 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2330 /*
2331 * Steal it away
2332 */
2333 read_lock(&tasklist_lock);
2334 session_clear_tty(tty->session);
2335 read_unlock(&tasklist_lock);
2336 } else {
2337 ret = -EPERM;
2338 goto unlock;
2339 }
2340 }
2341 proc_set_tty(current, tty);
2342 unlock:
2343 mutex_unlock(&tty_mutex);
2344 return ret;
2345 }
2346
2347 /**
2348 * tty_get_pgrp - return a ref counted pgrp pid
2349 * @tty: tty to read
2350 *
2351 * Returns a refcounted instance of the pid struct for the process
2352 * group controlling the tty.
2353 */
2354
2355 struct pid *tty_get_pgrp(struct tty_struct *tty)
2356 {
2357 unsigned long flags;
2358 struct pid *pgrp;
2359
2360 spin_lock_irqsave(&tty->ctrl_lock, flags);
2361 pgrp = get_pid(tty->pgrp);
2362 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363
2364 return pgrp;
2365 }
2366 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2367
2368 /**
2369 * tiocgpgrp - get process group
2370 * @tty: tty passed by user
2371 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2372 * @p: returned pid
2373 *
2374 * Obtain the process group of the tty. If there is no process group
2375 * return an error.
2376 *
2377 * Locking: none. Reference to current->signal->tty is safe.
2378 */
2379
2380 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2381 {
2382 struct pid *pid;
2383 int ret;
2384 /*
2385 * (tty == real_tty) is a cheap way of
2386 * testing if the tty is NOT a master pty.
2387 */
2388 if (tty == real_tty && current->signal->tty != real_tty)
2389 return -ENOTTY;
2390 pid = tty_get_pgrp(real_tty);
2391 ret = put_user(pid_vnr(pid), p);
2392 put_pid(pid);
2393 return ret;
2394 }
2395
2396 /**
2397 * tiocspgrp - attempt to set process group
2398 * @tty: tty passed by user
2399 * @real_tty: tty side device matching tty passed by user
2400 * @p: pid pointer
2401 *
2402 * Set the process group of the tty to the session passed. Only
2403 * permitted where the tty session is our session.
2404 *
2405 * Locking: RCU, ctrl lock
2406 */
2407
2408 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2409 {
2410 struct pid *pgrp;
2411 pid_t pgrp_nr;
2412 int retval = tty_check_change(real_tty);
2413 unsigned long flags;
2414
2415 if (retval == -EIO)
2416 return -ENOTTY;
2417 if (retval)
2418 return retval;
2419 if (!current->signal->tty ||
2420 (current->signal->tty != real_tty) ||
2421 (real_tty->session != task_session(current)))
2422 return -ENOTTY;
2423 if (get_user(pgrp_nr, p))
2424 return -EFAULT;
2425 if (pgrp_nr < 0)
2426 return -EINVAL;
2427 rcu_read_lock();
2428 pgrp = find_vpid(pgrp_nr);
2429 retval = -ESRCH;
2430 if (!pgrp)
2431 goto out_unlock;
2432 retval = -EPERM;
2433 if (session_of_pgrp(pgrp) != task_session(current))
2434 goto out_unlock;
2435 retval = 0;
2436 spin_lock_irqsave(&tty->ctrl_lock, flags);
2437 put_pid(real_tty->pgrp);
2438 real_tty->pgrp = get_pid(pgrp);
2439 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2440 out_unlock:
2441 rcu_read_unlock();
2442 return retval;
2443 }
2444
2445 /**
2446 * tiocgsid - get session id
2447 * @tty: tty passed by user
2448 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2449 * @p: pointer to returned session id
2450 *
2451 * Obtain the session id of the tty. If there is no session
2452 * return an error.
2453 *
2454 * Locking: none. Reference to current->signal->tty is safe.
2455 */
2456
2457 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2458 {
2459 /*
2460 * (tty == real_tty) is a cheap way of
2461 * testing if the tty is NOT a master pty.
2462 */
2463 if (tty == real_tty && current->signal->tty != real_tty)
2464 return -ENOTTY;
2465 if (!real_tty->session)
2466 return -ENOTTY;
2467 return put_user(pid_vnr(real_tty->session), p);
2468 }
2469
2470 /**
2471 * tiocsetd - set line discipline
2472 * @tty: tty device
2473 * @p: pointer to user data
2474 *
2475 * Set the line discipline according to user request.
2476 *
2477 * Locking: see tty_set_ldisc, this function is just a helper
2478 */
2479
2480 static int tiocsetd(struct tty_struct *tty, int __user *p)
2481 {
2482 int ldisc;
2483 int ret;
2484
2485 if (get_user(ldisc, p))
2486 return -EFAULT;
2487
2488 ret = tty_set_ldisc(tty, ldisc);
2489
2490 return ret;
2491 }
2492
2493 /**
2494 * send_break - performed time break
2495 * @tty: device to break on
2496 * @duration: timeout in mS
2497 *
2498 * Perform a timed break on hardware that lacks its own driver level
2499 * timed break functionality.
2500 *
2501 * Locking:
2502 * atomic_write_lock serializes
2503 *
2504 */
2505
2506 static int send_break(struct tty_struct *tty, unsigned int duration)
2507 {
2508 int retval;
2509
2510 if (tty->ops->break_ctl == NULL)
2511 return 0;
2512
2513 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2514 retval = tty->ops->break_ctl(tty, duration);
2515 else {
2516 /* Do the work ourselves */
2517 if (tty_write_lock(tty, 0) < 0)
2518 return -EINTR;
2519 retval = tty->ops->break_ctl(tty, -1);
2520 if (retval)
2521 goto out;
2522 if (!signal_pending(current))
2523 msleep_interruptible(duration);
2524 retval = tty->ops->break_ctl(tty, 0);
2525 out:
2526 tty_write_unlock(tty);
2527 if (signal_pending(current))
2528 retval = -EINTR;
2529 }
2530 return retval;
2531 }
2532
2533 /**
2534 * tty_tiocmget - get modem status
2535 * @tty: tty device
2536 * @file: user file pointer
2537 * @p: pointer to result
2538 *
2539 * Obtain the modem status bits from the tty driver if the feature
2540 * is supported. Return -EINVAL if it is not available.
2541 *
2542 * Locking: none (up to the driver)
2543 */
2544
2545 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2546 {
2547 int retval = -EINVAL;
2548
2549 if (tty->ops->tiocmget) {
2550 retval = tty->ops->tiocmget(tty);
2551
2552 if (retval >= 0)
2553 retval = put_user(retval, p);
2554 }
2555 return retval;
2556 }
2557
2558 /**
2559 * tty_tiocmset - set modem status
2560 * @tty: tty device
2561 * @cmd: command - clear bits, set bits or set all
2562 * @p: pointer to desired bits
2563 *
2564 * Set the modem status bits from the tty driver if the feature
2565 * is supported. Return -EINVAL if it is not available.
2566 *
2567 * Locking: none (up to the driver)
2568 */
2569
2570 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2571 unsigned __user *p)
2572 {
2573 int retval;
2574 unsigned int set, clear, val;
2575
2576 if (tty->ops->tiocmset == NULL)
2577 return -EINVAL;
2578
2579 retval = get_user(val, p);
2580 if (retval)
2581 return retval;
2582 set = clear = 0;
2583 switch (cmd) {
2584 case TIOCMBIS:
2585 set = val;
2586 break;
2587 case TIOCMBIC:
2588 clear = val;
2589 break;
2590 case TIOCMSET:
2591 set = val;
2592 clear = ~val;
2593 break;
2594 }
2595 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2596 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597 return tty->ops->tiocmset(tty, set, clear);
2598 }
2599
2600 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2601 {
2602 int retval = -EINVAL;
2603 struct serial_icounter_struct icount;
2604 memset(&icount, 0, sizeof(icount));
2605 if (tty->ops->get_icount)
2606 retval = tty->ops->get_icount(tty, &icount);
2607 if (retval != 0)
2608 return retval;
2609 if (copy_to_user(arg, &icount, sizeof(icount)))
2610 return -EFAULT;
2611 return 0;
2612 }
2613
2614 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2615 {
2616 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2617 tty->driver->subtype == PTY_TYPE_MASTER)
2618 tty = tty->link;
2619 return tty;
2620 }
2621 EXPORT_SYMBOL(tty_pair_get_tty);
2622
2623 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2624 {
2625 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2626 tty->driver->subtype == PTY_TYPE_MASTER)
2627 return tty;
2628 return tty->link;
2629 }
2630 EXPORT_SYMBOL(tty_pair_get_pty);
2631
2632 /*
2633 * Split this up, as gcc can choke on it otherwise..
2634 */
2635 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2636 {
2637 struct tty_struct *tty = file_tty(file);
2638 struct tty_struct *real_tty;
2639 void __user *p = (void __user *)arg;
2640 int retval;
2641 struct tty_ldisc *ld;
2642 struct inode *inode = file->f_dentry->d_inode;
2643
2644 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2645 return -EINVAL;
2646
2647 real_tty = tty_pair_get_tty(tty);
2648
2649 /*
2650 * Factor out some common prep work
2651 */
2652 switch (cmd) {
2653 case TIOCSETD:
2654 case TIOCSBRK:
2655 case TIOCCBRK:
2656 case TCSBRK:
2657 case TCSBRKP:
2658 retval = tty_check_change(tty);
2659 if (retval)
2660 return retval;
2661 if (cmd != TIOCCBRK) {
2662 tty_wait_until_sent(tty, 0);
2663 if (signal_pending(current))
2664 return -EINTR;
2665 }
2666 break;
2667 }
2668
2669 /*
2670 * Now do the stuff.
2671 */
2672 switch (cmd) {
2673 case TIOCSTI:
2674 return tiocsti(tty, p);
2675 case TIOCGWINSZ:
2676 return tiocgwinsz(real_tty, p);
2677 case TIOCSWINSZ:
2678 return tiocswinsz(real_tty, p);
2679 case TIOCCONS:
2680 return real_tty != tty ? -EINVAL : tioccons(file);
2681 case FIONBIO:
2682 return fionbio(file, p);
2683 case TIOCEXCL:
2684 set_bit(TTY_EXCLUSIVE, &tty->flags);
2685 return 0;
2686 case TIOCNXCL:
2687 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2688 return 0;
2689 case TIOCNOTTY:
2690 if (current->signal->tty != tty)
2691 return -ENOTTY;
2692 no_tty();
2693 return 0;
2694 case TIOCSCTTY:
2695 return tiocsctty(tty, arg);
2696 case TIOCGPGRP:
2697 return tiocgpgrp(tty, real_tty, p);
2698 case TIOCSPGRP:
2699 return tiocspgrp(tty, real_tty, p);
2700 case TIOCGSID:
2701 return tiocgsid(tty, real_tty, p);
2702 case TIOCGETD:
2703 return put_user(tty->ldisc->ops->num, (int __user *)p);
2704 case TIOCSETD:
2705 return tiocsetd(tty, p);
2706 case TIOCVHANGUP:
2707 if (!capable(CAP_SYS_ADMIN))
2708 return -EPERM;
2709 tty_vhangup(tty);
2710 return 0;
2711 case TIOCGDEV:
2712 {
2713 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2714 return put_user(ret, (unsigned int __user *)p);
2715 }
2716 /*
2717 * Break handling
2718 */
2719 case TIOCSBRK: /* Turn break on, unconditionally */
2720 if (tty->ops->break_ctl)
2721 return tty->ops->break_ctl(tty, -1);
2722 return 0;
2723 case TIOCCBRK: /* Turn break off, unconditionally */
2724 if (tty->ops->break_ctl)
2725 return tty->ops->break_ctl(tty, 0);
2726 return 0;
2727 case TCSBRK: /* SVID version: non-zero arg --> no break */
2728 /* non-zero arg means wait for all output data
2729 * to be sent (performed above) but don't send break.
2730 * This is used by the tcdrain() termios function.
2731 */
2732 if (!arg)
2733 return send_break(tty, 250);
2734 return 0;
2735 case TCSBRKP: /* support for POSIX tcsendbreak() */
2736 return send_break(tty, arg ? arg*100 : 250);
2737
2738 case TIOCMGET:
2739 return tty_tiocmget(tty, p);
2740 case TIOCMSET:
2741 case TIOCMBIC:
2742 case TIOCMBIS:
2743 return tty_tiocmset(tty, cmd, p);
2744 case TIOCGICOUNT:
2745 retval = tty_tiocgicount(tty, p);
2746 /* For the moment allow fall through to the old method */
2747 if (retval != -EINVAL)
2748 return retval;
2749 break;
2750 case TCFLSH:
2751 switch (arg) {
2752 case TCIFLUSH:
2753 case TCIOFLUSH:
2754 /* flush tty buffer and allow ldisc to process ioctl */
2755 tty_buffer_flush(tty);
2756 break;
2757 }
2758 break;
2759 }
2760 if (tty->ops->ioctl) {
2761 retval = (tty->ops->ioctl)(tty, cmd, arg);
2762 if (retval != -ENOIOCTLCMD)
2763 return retval;
2764 }
2765 ld = tty_ldisc_ref_wait(tty);
2766 retval = -EINVAL;
2767 if (ld->ops->ioctl) {
2768 retval = ld->ops->ioctl(tty, file, cmd, arg);
2769 if (retval == -ENOIOCTLCMD)
2770 retval = -EINVAL;
2771 }
2772 tty_ldisc_deref(ld);
2773 return retval;
2774 }
2775
2776 #ifdef CONFIG_COMPAT
2777 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2778 unsigned long arg)
2779 {
2780 struct inode *inode = file->f_dentry->d_inode;
2781 struct tty_struct *tty = file_tty(file);
2782 struct tty_ldisc *ld;
2783 int retval = -ENOIOCTLCMD;
2784
2785 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2786 return -EINVAL;
2787
2788 if (tty->ops->compat_ioctl) {
2789 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2790 if (retval != -ENOIOCTLCMD)
2791 return retval;
2792 }
2793
2794 ld = tty_ldisc_ref_wait(tty);
2795 if (ld->ops->compat_ioctl)
2796 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2797 else
2798 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2799 tty_ldisc_deref(ld);
2800
2801 return retval;
2802 }
2803 #endif
2804
2805 /*
2806 * This implements the "Secure Attention Key" --- the idea is to
2807 * prevent trojan horses by killing all processes associated with this
2808 * tty when the user hits the "Secure Attention Key". Required for
2809 * super-paranoid applications --- see the Orange Book for more details.
2810 *
2811 * This code could be nicer; ideally it should send a HUP, wait a few
2812 * seconds, then send a INT, and then a KILL signal. But you then
2813 * have to coordinate with the init process, since all processes associated
2814 * with the current tty must be dead before the new getty is allowed
2815 * to spawn.
2816 *
2817 * Now, if it would be correct ;-/ The current code has a nasty hole -
2818 * it doesn't catch files in flight. We may send the descriptor to ourselves
2819 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2820 *
2821 * Nasty bug: do_SAK is being called in interrupt context. This can
2822 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2823 */
2824 void __do_SAK(struct tty_struct *tty)
2825 {
2826 #ifdef TTY_SOFT_SAK
2827 tty_hangup(tty);
2828 #else
2829 struct task_struct *g, *p;
2830 struct pid *session;
2831 int i;
2832 struct file *filp;
2833 struct fdtable *fdt;
2834
2835 if (!tty)
2836 return;
2837 session = tty->session;
2838
2839 tty_ldisc_flush(tty);
2840
2841 tty_driver_flush_buffer(tty);
2842
2843 read_lock(&tasklist_lock);
2844 /* Kill the entire session */
2845 do_each_pid_task(session, PIDTYPE_SID, p) {
2846 printk(KERN_NOTICE "SAK: killed process %d"
2847 " (%s): task_session(p)==tty->session\n",
2848 task_pid_nr(p), p->comm);
2849 send_sig(SIGKILL, p, 1);
2850 } while_each_pid_task(session, PIDTYPE_SID, p);
2851 /* Now kill any processes that happen to have the
2852 * tty open.
2853 */
2854 do_each_thread(g, p) {
2855 if (p->signal->tty == tty) {
2856 printk(KERN_NOTICE "SAK: killed process %d"
2857 " (%s): task_session(p)==tty->session\n",
2858 task_pid_nr(p), p->comm);
2859 send_sig(SIGKILL, p, 1);
2860 continue;
2861 }
2862 task_lock(p);
2863 if (p->files) {
2864 /*
2865 * We don't take a ref to the file, so we must
2866 * hold ->file_lock instead.
2867 */
2868 spin_lock(&p->files->file_lock);
2869 fdt = files_fdtable(p->files);
2870 for (i = 0; i < fdt->max_fds; i++) {
2871 filp = fcheck_files(p->files, i);
2872 if (!filp)
2873 continue;
2874 if (filp->f_op->read == tty_read &&
2875 file_tty(filp) == tty) {
2876 printk(KERN_NOTICE "SAK: killed process %d"
2877 " (%s): fd#%d opened to the tty\n",
2878 task_pid_nr(p), p->comm, i);
2879 force_sig(SIGKILL, p);
2880 break;
2881 }
2882 }
2883 spin_unlock(&p->files->file_lock);
2884 }
2885 task_unlock(p);
2886 } while_each_thread(g, p);
2887 read_unlock(&tasklist_lock);
2888 #endif
2889 }
2890
2891 static void do_SAK_work(struct work_struct *work)
2892 {
2893 struct tty_struct *tty =
2894 container_of(work, struct tty_struct, SAK_work);
2895 __do_SAK(tty);
2896 }
2897
2898 /*
2899 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2900 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2901 * the values which we write to it will be identical to the values which it
2902 * already has. --akpm
2903 */
2904 void do_SAK(struct tty_struct *tty)
2905 {
2906 if (!tty)
2907 return;
2908 schedule_work(&tty->SAK_work);
2909 }
2910
2911 EXPORT_SYMBOL(do_SAK);
2912
2913 static int dev_match_devt(struct device *dev, void *data)
2914 {
2915 dev_t *devt = data;
2916 return dev->devt == *devt;
2917 }
2918
2919 /* Must put_device() after it's unused! */
2920 static struct device *tty_get_device(struct tty_struct *tty)
2921 {
2922 dev_t devt = tty_devnum(tty);
2923 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2924 }
2925
2926
2927 /**
2928 * initialize_tty_struct
2929 * @tty: tty to initialize
2930 *
2931 * This subroutine initializes a tty structure that has been newly
2932 * allocated.
2933 *
2934 * Locking: none - tty in question must not be exposed at this point
2935 */
2936
2937 void initialize_tty_struct(struct tty_struct *tty,
2938 struct tty_driver *driver, int idx)
2939 {
2940 memset(tty, 0, sizeof(struct tty_struct));
2941 kref_init(&tty->kref);
2942 tty->magic = TTY_MAGIC;
2943 tty_ldisc_init(tty);
2944 tty->session = NULL;
2945 tty->pgrp = NULL;
2946 tty->overrun_time = jiffies;
2947 tty_buffer_init(tty);
2948 mutex_init(&tty->legacy_mutex);
2949 mutex_init(&tty->termios_mutex);
2950 mutex_init(&tty->ldisc_mutex);
2951 init_waitqueue_head(&tty->write_wait);
2952 init_waitqueue_head(&tty->read_wait);
2953 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2954 mutex_init(&tty->atomic_read_lock);
2955 mutex_init(&tty->atomic_write_lock);
2956 mutex_init(&tty->output_lock);
2957 mutex_init(&tty->echo_lock);
2958 spin_lock_init(&tty->read_lock);
2959 spin_lock_init(&tty->ctrl_lock);
2960 INIT_LIST_HEAD(&tty->tty_files);
2961 INIT_WORK(&tty->SAK_work, do_SAK_work);
2962
2963 tty->driver = driver;
2964 tty->ops = driver->ops;
2965 tty->index = idx;
2966 tty_line_name(driver, idx, tty->name);
2967 tty->dev = tty_get_device(tty);
2968 }
2969
2970 /**
2971 * deinitialize_tty_struct
2972 * @tty: tty to deinitialize
2973 *
2974 * This subroutine deinitializes a tty structure that has been newly
2975 * allocated but tty_release cannot be called on that yet.
2976 *
2977 * Locking: none - tty in question must not be exposed at this point
2978 */
2979 void deinitialize_tty_struct(struct tty_struct *tty)
2980 {
2981 tty_ldisc_deinit(tty);
2982 }
2983
2984 /**
2985 * tty_put_char - write one character to a tty
2986 * @tty: tty
2987 * @ch: character
2988 *
2989 * Write one byte to the tty using the provided put_char method
2990 * if present. Returns the number of characters successfully output.
2991 *
2992 * Note: the specific put_char operation in the driver layer may go
2993 * away soon. Don't call it directly, use this method
2994 */
2995
2996 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2997 {
2998 if (tty->ops->put_char)
2999 return tty->ops->put_char(tty, ch);
3000 return tty->ops->write(tty, &ch, 1);
3001 }
3002 EXPORT_SYMBOL_GPL(tty_put_char);
3003
3004 struct class *tty_class;
3005
3006 /**
3007 * tty_register_device - register a tty device
3008 * @driver: the tty driver that describes the tty device
3009 * @index: the index in the tty driver for this tty device
3010 * @device: a struct device that is associated with this tty device.
3011 * This field is optional, if there is no known struct device
3012 * for this tty device it can be set to NULL safely.
3013 *
3014 * Returns a pointer to the struct device for this tty device
3015 * (or ERR_PTR(-EFOO) on error).
3016 *
3017 * This call is required to be made to register an individual tty device
3018 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3019 * that bit is not set, this function should not be called by a tty
3020 * driver.
3021 *
3022 * Locking: ??
3023 */
3024
3025 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3026 struct device *device)
3027 {
3028 char name[64];
3029 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3030
3031 if (index >= driver->num) {
3032 printk(KERN_ERR "Attempt to register invalid tty line number "
3033 " (%d).\n", index);
3034 return ERR_PTR(-EINVAL);
3035 }
3036
3037 if (driver->type == TTY_DRIVER_TYPE_PTY)
3038 pty_line_name(driver, index, name);
3039 else
3040 tty_line_name(driver, index, name);
3041
3042 return device_create(tty_class, device, dev, NULL, name);
3043 }
3044 EXPORT_SYMBOL(tty_register_device);
3045
3046 /**
3047 * tty_unregister_device - unregister a tty device
3048 * @driver: the tty driver that describes the tty device
3049 * @index: the index in the tty driver for this tty device
3050 *
3051 * If a tty device is registered with a call to tty_register_device() then
3052 * this function must be called when the tty device is gone.
3053 *
3054 * Locking: ??
3055 */
3056
3057 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3058 {
3059 device_destroy(tty_class,
3060 MKDEV(driver->major, driver->minor_start) + index);
3061 }
3062 EXPORT_SYMBOL(tty_unregister_device);
3063
3064 /**
3065 * __tty_alloc_driver -- allocate tty driver
3066 * @lines: count of lines this driver can handle at most
3067 * @owner: module which is repsonsible for this driver
3068 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3069 *
3070 * This should not be called directly, some of the provided macros should be
3071 * used instead. Use IS_ERR and friends on @retval.
3072 */
3073 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3074 unsigned long flags)
3075 {
3076 struct tty_driver *driver;
3077 int err;
3078
3079 if (!lines)
3080 return ERR_PTR(-EINVAL);
3081
3082 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3083 if (!driver)
3084 return ERR_PTR(-ENOMEM);
3085
3086 kref_init(&driver->kref);
3087 driver->magic = TTY_DRIVER_MAGIC;
3088 driver->num = lines;
3089 driver->owner = owner;
3090 driver->flags = flags;
3091
3092 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3093 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3094 GFP_KERNEL);
3095 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3096 GFP_KERNEL);
3097 if (!driver->ttys || !driver->termios) {
3098 err = -ENOMEM;
3099 goto err_free_all;
3100 }
3101 }
3102
3103 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3104 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3105 GFP_KERNEL);
3106 if (!driver->ports) {
3107 err = -ENOMEM;
3108 goto err_free_all;
3109 }
3110 }
3111
3112 return driver;
3113 err_free_all:
3114 kfree(driver->ports);
3115 kfree(driver->ttys);
3116 kfree(driver->termios);
3117 kfree(driver);
3118 return ERR_PTR(err);
3119 }
3120 EXPORT_SYMBOL(__tty_alloc_driver);
3121
3122 static void destruct_tty_driver(struct kref *kref)
3123 {
3124 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3125 int i;
3126 struct ktermios *tp;
3127
3128 if (driver->flags & TTY_DRIVER_INSTALLED) {
3129 /*
3130 * Free the termios and termios_locked structures because
3131 * we don't want to get memory leaks when modular tty
3132 * drivers are removed from the kernel.
3133 */
3134 for (i = 0; i < driver->num; i++) {
3135 tp = driver->termios[i];
3136 if (tp) {
3137 driver->termios[i] = NULL;
3138 kfree(tp);
3139 }
3140 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3141 tty_unregister_device(driver, i);
3142 }
3143 proc_tty_unregister_driver(driver);
3144 cdev_del(&driver->cdev);
3145 }
3146 kfree(driver->ports);
3147 kfree(driver->termios);
3148 kfree(driver->ttys);
3149 kfree(driver);
3150 }
3151
3152 void tty_driver_kref_put(struct tty_driver *driver)
3153 {
3154 kref_put(&driver->kref, destruct_tty_driver);
3155 }
3156 EXPORT_SYMBOL(tty_driver_kref_put);
3157
3158 void tty_set_operations(struct tty_driver *driver,
3159 const struct tty_operations *op)
3160 {
3161 driver->ops = op;
3162 };
3163 EXPORT_SYMBOL(tty_set_operations);
3164
3165 void put_tty_driver(struct tty_driver *d)
3166 {
3167 tty_driver_kref_put(d);
3168 }
3169 EXPORT_SYMBOL(put_tty_driver);
3170
3171 /*
3172 * Called by a tty driver to register itself.
3173 */
3174 int tty_register_driver(struct tty_driver *driver)
3175 {
3176 int error;
3177 int i;
3178 dev_t dev;
3179 struct device *d;
3180
3181 if (!driver->major) {
3182 error = alloc_chrdev_region(&dev, driver->minor_start,
3183 driver->num, driver->name);
3184 if (!error) {
3185 driver->major = MAJOR(dev);
3186 driver->minor_start = MINOR(dev);
3187 }
3188 } else {
3189 dev = MKDEV(driver->major, driver->minor_start);
3190 error = register_chrdev_region(dev, driver->num, driver->name);
3191 }
3192 if (error < 0)
3193 goto err;
3194
3195 cdev_init(&driver->cdev, &tty_fops);
3196 driver->cdev.owner = driver->owner;
3197 error = cdev_add(&driver->cdev, dev, driver->num);
3198 if (error)
3199 goto err_unreg_char;
3200
3201 mutex_lock(&tty_mutex);
3202 list_add(&driver->tty_drivers, &tty_drivers);
3203 mutex_unlock(&tty_mutex);
3204
3205 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3206 for (i = 0; i < driver->num; i++) {
3207 d = tty_register_device(driver, i, NULL);
3208 if (IS_ERR(d)) {
3209 error = PTR_ERR(d);
3210 goto err_unreg_devs;
3211 }
3212 }
3213 }
3214 proc_tty_register_driver(driver);
3215 driver->flags |= TTY_DRIVER_INSTALLED;
3216 return 0;
3217
3218 err_unreg_devs:
3219 for (i--; i >= 0; i--)
3220 tty_unregister_device(driver, i);
3221
3222 mutex_lock(&tty_mutex);
3223 list_del(&driver->tty_drivers);
3224 mutex_unlock(&tty_mutex);
3225
3226 err_unreg_char:
3227 unregister_chrdev_region(dev, driver->num);
3228 err:
3229 return error;
3230 }
3231 EXPORT_SYMBOL(tty_register_driver);
3232
3233 /*
3234 * Called by a tty driver to unregister itself.
3235 */
3236 int tty_unregister_driver(struct tty_driver *driver)
3237 {
3238 #if 0
3239 /* FIXME */
3240 if (driver->refcount)
3241 return -EBUSY;
3242 #endif
3243 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3244 driver->num);
3245 mutex_lock(&tty_mutex);
3246 list_del(&driver->tty_drivers);
3247 mutex_unlock(&tty_mutex);
3248 return 0;
3249 }
3250
3251 EXPORT_SYMBOL(tty_unregister_driver);
3252
3253 dev_t tty_devnum(struct tty_struct *tty)
3254 {
3255 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3256 }
3257 EXPORT_SYMBOL(tty_devnum);
3258
3259 void proc_clear_tty(struct task_struct *p)
3260 {
3261 unsigned long flags;
3262 struct tty_struct *tty;
3263 spin_lock_irqsave(&p->sighand->siglock, flags);
3264 tty = p->signal->tty;
3265 p->signal->tty = NULL;
3266 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3267 tty_kref_put(tty);
3268 }
3269
3270 /* Called under the sighand lock */
3271
3272 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3273 {
3274 if (tty) {
3275 unsigned long flags;
3276 /* We should not have a session or pgrp to put here but.... */
3277 spin_lock_irqsave(&tty->ctrl_lock, flags);
3278 put_pid(tty->session);
3279 put_pid(tty->pgrp);
3280 tty->pgrp = get_pid(task_pgrp(tsk));
3281 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3282 tty->session = get_pid(task_session(tsk));
3283 if (tsk->signal->tty) {
3284 printk(KERN_DEBUG "tty not NULL!!\n");
3285 tty_kref_put(tsk->signal->tty);
3286 }
3287 }
3288 put_pid(tsk->signal->tty_old_pgrp);
3289 tsk->signal->tty = tty_kref_get(tty);
3290 tsk->signal->tty_old_pgrp = NULL;
3291 }
3292
3293 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3294 {
3295 spin_lock_irq(&tsk->sighand->siglock);
3296 __proc_set_tty(tsk, tty);
3297 spin_unlock_irq(&tsk->sighand->siglock);
3298 }
3299
3300 struct tty_struct *get_current_tty(void)
3301 {
3302 struct tty_struct *tty;
3303 unsigned long flags;
3304
3305 spin_lock_irqsave(&current->sighand->siglock, flags);
3306 tty = tty_kref_get(current->signal->tty);
3307 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3308 return tty;
3309 }
3310 EXPORT_SYMBOL_GPL(get_current_tty);
3311
3312 void tty_default_fops(struct file_operations *fops)
3313 {
3314 *fops = tty_fops;
3315 }
3316
3317 /*
3318 * Initialize the console device. This is called *early*, so
3319 * we can't necessarily depend on lots of kernel help here.
3320 * Just do some early initializations, and do the complex setup
3321 * later.
3322 */
3323 void __init console_init(void)
3324 {
3325 initcall_t *call;
3326
3327 /* Setup the default TTY line discipline. */
3328 tty_ldisc_begin();
3329
3330 /*
3331 * set up the console device so that later boot sequences can
3332 * inform about problems etc..
3333 */
3334 call = __con_initcall_start;
3335 while (call < __con_initcall_end) {
3336 (*call)();
3337 call++;
3338 }
3339 }
3340
3341 static char *tty_devnode(struct device *dev, umode_t *mode)
3342 {
3343 if (!mode)
3344 return NULL;
3345 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3346 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3347 *mode = 0666;
3348 return NULL;
3349 }
3350
3351 static int __init tty_class_init(void)
3352 {
3353 tty_class = class_create(THIS_MODULE, "tty");
3354 if (IS_ERR(tty_class))
3355 return PTR_ERR(tty_class);
3356 tty_class->devnode = tty_devnode;
3357 return 0;
3358 }
3359
3360 postcore_initcall(tty_class_init);
3361
3362 /* 3/2004 jmc: why do these devices exist? */
3363 static struct cdev tty_cdev, console_cdev;
3364
3365 static ssize_t show_cons_active(struct device *dev,
3366 struct device_attribute *attr, char *buf)
3367 {
3368 struct console *cs[16];
3369 int i = 0;
3370 struct console *c;
3371 ssize_t count = 0;
3372
3373 console_lock();
3374 for_each_console(c) {
3375 if (!c->device)
3376 continue;
3377 if (!c->write)
3378 continue;
3379 if ((c->flags & CON_ENABLED) == 0)
3380 continue;
3381 cs[i++] = c;
3382 if (i >= ARRAY_SIZE(cs))
3383 break;
3384 }
3385 while (i--)
3386 count += sprintf(buf + count, "%s%d%c",
3387 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3388 console_unlock();
3389
3390 return count;
3391 }
3392 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3393
3394 static struct device *consdev;
3395
3396 void console_sysfs_notify(void)
3397 {
3398 if (consdev)
3399 sysfs_notify(&consdev->kobj, NULL, "active");
3400 }
3401
3402 /*
3403 * Ok, now we can initialize the rest of the tty devices and can count
3404 * on memory allocations, interrupts etc..
3405 */
3406 int __init tty_init(void)
3407 {
3408 cdev_init(&tty_cdev, &tty_fops);
3409 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3410 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3411 panic("Couldn't register /dev/tty driver\n");
3412 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3413
3414 cdev_init(&console_cdev, &console_fops);
3415 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3416 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3417 panic("Couldn't register /dev/console driver\n");
3418 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3419 "console");
3420 if (IS_ERR(consdev))
3421 consdev = NULL;
3422 else
3423 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3424
3425 #ifdef CONFIG_VT
3426 vty_init(&console_fops);
3427 #endif
3428 return 0;
3429 }
3430
This page took 0.128228 seconds and 6 git commands to generate.