tty: Convert SAK messages to tty_notice()
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...) do { } while (0)
113 #endif
114
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117
118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
119 .c_iflag = ICRNL | IXON,
120 .c_oflag = OPOST | ONLCR,
121 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 ECHOCTL | ECHOKE | IEXTEN,
124 .c_cc = INIT_C_CC,
125 .c_ispeed = 38400,
126 .c_ospeed = 38400
127 };
128
129 EXPORT_SYMBOL(tty_std_termios);
130
131 /* This list gets poked at by procfs and various bits of boot up code. This
132 could do with some rationalisation such as pulling the tty proc function
133 into this file */
134
135 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
136
137 /* Mutex to protect creating and releasing a tty. This is shared with
138 vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161
162 /**
163 * free_tty_struct - free a disused tty
164 * @tty: tty struct to free
165 *
166 * Free the write buffers, tty queue and tty memory itself.
167 *
168 * Locking: none. Must be called after tty is definitely unused
169 */
170
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 if (!tty)
174 return;
175 put_device(tty->dev);
176 kfree(tty->write_buf);
177 tty->magic = 0xDEADDEAD;
178 kfree(tty);
179 }
180
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 return ((struct tty_file_private *)file->private_data)->tty;
184 }
185
186 int tty_alloc_file(struct file *file)
187 {
188 struct tty_file_private *priv;
189
190 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 if (!priv)
192 return -ENOMEM;
193
194 file->private_data = priv;
195
196 return 0;
197 }
198
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 struct tty_file_private *priv = file->private_data;
203
204 priv->tty = tty;
205 priv->file = file;
206
207 spin_lock(&tty_files_lock);
208 list_add(&priv->list, &tty->tty_files);
209 spin_unlock(&tty_files_lock);
210 }
211
212 /**
213 * tty_free_file - free file->private_data
214 *
215 * This shall be used only for fail path handling when tty_add_file was not
216 * called yet.
217 */
218 void tty_free_file(struct file *file)
219 {
220 struct tty_file_private *priv = file->private_data;
221
222 file->private_data = NULL;
223 kfree(priv);
224 }
225
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 struct tty_file_private *priv = file->private_data;
230
231 spin_lock(&tty_files_lock);
232 list_del(&priv->list);
233 spin_unlock(&tty_files_lock);
234 tty_free_file(file);
235 }
236
237
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239
240 /**
241 * tty_name - return tty naming
242 * @tty: tty structure
243 *
244 * Convert a tty structure into a name. The name reflects the kernel
245 * naming policy and if udev is in use may not reflect user space
246 *
247 * Locking: none
248 */
249
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 if (!tty) /* Hmm. NULL pointer. That's fun. */
253 return "NULL tty";
254 return tty->name;
255 }
256
257 EXPORT_SYMBOL(tty_name);
258
259 const char *tty_driver_name(const struct tty_struct *tty)
260 {
261 if (!tty || !tty->driver)
262 return "";
263 return tty->driver->name;
264 }
265
266 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
267 const char *routine)
268 {
269 #ifdef TTY_PARANOIA_CHECK
270 if (!tty) {
271 printk(KERN_WARNING
272 "null TTY for (%d:%d) in %s\n",
273 imajor(inode), iminor(inode), routine);
274 return 1;
275 }
276 if (tty->magic != TTY_MAGIC) {
277 printk(KERN_WARNING
278 "bad magic number for tty struct (%d:%d) in %s\n",
279 imajor(inode), iminor(inode), routine);
280 return 1;
281 }
282 #endif
283 return 0;
284 }
285
286 /* Caller must hold tty_lock */
287 static int check_tty_count(struct tty_struct *tty, const char *routine)
288 {
289 #ifdef CHECK_TTY_COUNT
290 struct list_head *p;
291 int count = 0;
292
293 spin_lock(&tty_files_lock);
294 list_for_each(p, &tty->tty_files) {
295 count++;
296 }
297 spin_unlock(&tty_files_lock);
298 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
299 tty->driver->subtype == PTY_TYPE_SLAVE &&
300 tty->link && tty->link->count)
301 count++;
302 if (tty->count != count) {
303 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
304 routine, tty->count, count);
305 return count;
306 }
307 #endif
308 return 0;
309 }
310
311 /**
312 * get_tty_driver - find device of a tty
313 * @dev_t: device identifier
314 * @index: returns the index of the tty
315 *
316 * This routine returns a tty driver structure, given a device number
317 * and also passes back the index number.
318 *
319 * Locking: caller must hold tty_mutex
320 */
321
322 static struct tty_driver *get_tty_driver(dev_t device, int *index)
323 {
324 struct tty_driver *p;
325
326 list_for_each_entry(p, &tty_drivers, tty_drivers) {
327 dev_t base = MKDEV(p->major, p->minor_start);
328 if (device < base || device >= base + p->num)
329 continue;
330 *index = device - base;
331 return tty_driver_kref_get(p);
332 }
333 return NULL;
334 }
335
336 #ifdef CONFIG_CONSOLE_POLL
337
338 /**
339 * tty_find_polling_driver - find device of a polled tty
340 * @name: name string to match
341 * @line: pointer to resulting tty line nr
342 *
343 * This routine returns a tty driver structure, given a name
344 * and the condition that the tty driver is capable of polled
345 * operation.
346 */
347 struct tty_driver *tty_find_polling_driver(char *name, int *line)
348 {
349 struct tty_driver *p, *res = NULL;
350 int tty_line = 0;
351 int len;
352 char *str, *stp;
353
354 for (str = name; *str; str++)
355 if ((*str >= '0' && *str <= '9') || *str == ',')
356 break;
357 if (!*str)
358 return NULL;
359
360 len = str - name;
361 tty_line = simple_strtoul(str, &str, 10);
362
363 mutex_lock(&tty_mutex);
364 /* Search through the tty devices to look for a match */
365 list_for_each_entry(p, &tty_drivers, tty_drivers) {
366 if (strncmp(name, p->name, len) != 0)
367 continue;
368 stp = str;
369 if (*stp == ',')
370 stp++;
371 if (*stp == '\0')
372 stp = NULL;
373
374 if (tty_line >= 0 && tty_line < p->num && p->ops &&
375 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
376 res = tty_driver_kref_get(p);
377 *line = tty_line;
378 break;
379 }
380 }
381 mutex_unlock(&tty_mutex);
382
383 return res;
384 }
385 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
386 #endif
387
388 /**
389 * tty_check_change - check for POSIX terminal changes
390 * @tty: tty to check
391 *
392 * If we try to write to, or set the state of, a terminal and we're
393 * not in the foreground, send a SIGTTOU. If the signal is blocked or
394 * ignored, go ahead and perform the operation. (POSIX 7.2)
395 *
396 * Locking: ctrl_lock
397 */
398
399 int __tty_check_change(struct tty_struct *tty, int sig)
400 {
401 unsigned long flags;
402 struct pid *pgrp, *tty_pgrp;
403 int ret = 0;
404
405 if (current->signal->tty != tty)
406 return 0;
407
408 rcu_read_lock();
409 pgrp = task_pgrp(current);
410
411 spin_lock_irqsave(&tty->ctrl_lock, flags);
412 tty_pgrp = tty->pgrp;
413 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414
415 if (tty_pgrp && pgrp != tty->pgrp) {
416 if (is_ignored(sig)) {
417 if (sig == SIGTTIN)
418 ret = -EIO;
419 } else if (is_current_pgrp_orphaned())
420 ret = -EIO;
421 else {
422 kill_pgrp(pgrp, sig, 1);
423 set_thread_flag(TIF_SIGPENDING);
424 ret = -ERESTARTSYS;
425 }
426 }
427 rcu_read_unlock();
428
429 if (!tty_pgrp)
430 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
431
432 return ret;
433 }
434
435 int tty_check_change(struct tty_struct *tty)
436 {
437 return __tty_check_change(tty, SIGTTOU);
438 }
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 size_t count, loff_t *ppos)
443 {
444 return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 size_t count, loff_t *ppos)
449 {
450 return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 unsigned long arg)
461 {
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 unsigned int cmd, unsigned long arg)
467 {
468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472 .llseek = no_llseek,
473 .read = tty_read,
474 .write = tty_write,
475 .poll = tty_poll,
476 .unlocked_ioctl = tty_ioctl,
477 .compat_ioctl = tty_compat_ioctl,
478 .open = tty_open,
479 .release = tty_release,
480 .fasync = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484 .llseek = no_llseek,
485 .read = tty_read,
486 .write = redirected_tty_write,
487 .poll = tty_poll,
488 .unlocked_ioctl = tty_ioctl,
489 .compat_ioctl = tty_compat_ioctl,
490 .open = tty_open,
491 .release = tty_release,
492 .fasync = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496 .llseek = no_llseek,
497 .read = hung_up_tty_read,
498 .write = hung_up_tty_write,
499 .poll = hung_up_tty_poll,
500 .unlocked_ioctl = hung_up_tty_ioctl,
501 .compat_ioctl = hung_up_tty_compat_ioctl,
502 .release = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508
509 void proc_clear_tty(struct task_struct *p)
510 {
511 unsigned long flags;
512 struct tty_struct *tty;
513 spin_lock_irqsave(&p->sighand->siglock, flags);
514 tty = p->signal->tty;
515 p->signal->tty = NULL;
516 spin_unlock_irqrestore(&p->sighand->siglock, flags);
517 tty_kref_put(tty);
518 }
519
520 /**
521 * proc_set_tty - set the controlling terminal
522 *
523 * Only callable by the session leader and only if it does not already have
524 * a controlling terminal.
525 *
526 * Caller must hold: tty_lock()
527 * a readlock on tasklist_lock
528 * sighand lock
529 */
530 static void __proc_set_tty(struct tty_struct *tty)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&tty->ctrl_lock, flags);
535 /*
536 * The session and fg pgrp references will be non-NULL if
537 * tiocsctty() is stealing the controlling tty
538 */
539 put_pid(tty->session);
540 put_pid(tty->pgrp);
541 tty->pgrp = get_pid(task_pgrp(current));
542 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
543 tty->session = get_pid(task_session(current));
544 if (current->signal->tty) {
545 tty_debug(tty, "current tty %s not NULL!!\n",
546 current->signal->tty->name);
547 tty_kref_put(current->signal->tty);
548 }
549 put_pid(current->signal->tty_old_pgrp);
550 current->signal->tty = tty_kref_get(tty);
551 current->signal->tty_old_pgrp = NULL;
552 }
553
554 static void proc_set_tty(struct tty_struct *tty)
555 {
556 spin_lock_irq(&current->sighand->siglock);
557 __proc_set_tty(tty);
558 spin_unlock_irq(&current->sighand->siglock);
559 }
560
561 struct tty_struct *get_current_tty(void)
562 {
563 struct tty_struct *tty;
564 unsigned long flags;
565
566 spin_lock_irqsave(&current->sighand->siglock, flags);
567 tty = tty_kref_get(current->signal->tty);
568 spin_unlock_irqrestore(&current->sighand->siglock, flags);
569 return tty;
570 }
571 EXPORT_SYMBOL_GPL(get_current_tty);
572
573 static void session_clear_tty(struct pid *session)
574 {
575 struct task_struct *p;
576 do_each_pid_task(session, PIDTYPE_SID, p) {
577 proc_clear_tty(p);
578 } while_each_pid_task(session, PIDTYPE_SID, p);
579 }
580
581 /**
582 * tty_wakeup - request more data
583 * @tty: terminal
584 *
585 * Internal and external helper for wakeups of tty. This function
586 * informs the line discipline if present that the driver is ready
587 * to receive more output data.
588 */
589
590 void tty_wakeup(struct tty_struct *tty)
591 {
592 struct tty_ldisc *ld;
593
594 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
595 ld = tty_ldisc_ref(tty);
596 if (ld) {
597 if (ld->ops->write_wakeup)
598 ld->ops->write_wakeup(tty);
599 tty_ldisc_deref(ld);
600 }
601 }
602 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
603 }
604
605 EXPORT_SYMBOL_GPL(tty_wakeup);
606
607 /**
608 * tty_signal_session_leader - sends SIGHUP to session leader
609 * @tty controlling tty
610 * @exit_session if non-zero, signal all foreground group processes
611 *
612 * Send SIGHUP and SIGCONT to the session leader and its process group.
613 * Optionally, signal all processes in the foreground process group.
614 *
615 * Returns the number of processes in the session with this tty
616 * as their controlling terminal. This value is used to drop
617 * tty references for those processes.
618 */
619 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
620 {
621 struct task_struct *p;
622 int refs = 0;
623 struct pid *tty_pgrp = NULL;
624
625 read_lock(&tasklist_lock);
626 if (tty->session) {
627 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
628 spin_lock_irq(&p->sighand->siglock);
629 if (p->signal->tty == tty) {
630 p->signal->tty = NULL;
631 /* We defer the dereferences outside fo
632 the tasklist lock */
633 refs++;
634 }
635 if (!p->signal->leader) {
636 spin_unlock_irq(&p->sighand->siglock);
637 continue;
638 }
639 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
640 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
641 put_pid(p->signal->tty_old_pgrp); /* A noop */
642 spin_lock(&tty->ctrl_lock);
643 tty_pgrp = get_pid(tty->pgrp);
644 if (tty->pgrp)
645 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
646 spin_unlock(&tty->ctrl_lock);
647 spin_unlock_irq(&p->sighand->siglock);
648 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
649 }
650 read_unlock(&tasklist_lock);
651
652 if (tty_pgrp) {
653 if (exit_session)
654 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
655 put_pid(tty_pgrp);
656 }
657
658 return refs;
659 }
660
661 /**
662 * __tty_hangup - actual handler for hangup events
663 * @work: tty device
664 *
665 * This can be called by a "kworker" kernel thread. That is process
666 * synchronous but doesn't hold any locks, so we need to make sure we
667 * have the appropriate locks for what we're doing.
668 *
669 * The hangup event clears any pending redirections onto the hung up
670 * device. It ensures future writes will error and it does the needed
671 * line discipline hangup and signal delivery. The tty object itself
672 * remains intact.
673 *
674 * Locking:
675 * BTM
676 * redirect lock for undoing redirection
677 * file list lock for manipulating list of ttys
678 * tty_ldiscs_lock from called functions
679 * termios_rwsem resetting termios data
680 * tasklist_lock to walk task list for hangup event
681 * ->siglock to protect ->signal/->sighand
682 */
683 static void __tty_hangup(struct tty_struct *tty, int exit_session)
684 {
685 struct file *cons_filp = NULL;
686 struct file *filp, *f = NULL;
687 struct tty_file_private *priv;
688 int closecount = 0, n;
689 int refs;
690
691 if (!tty)
692 return;
693
694
695 spin_lock(&redirect_lock);
696 if (redirect && file_tty(redirect) == tty) {
697 f = redirect;
698 redirect = NULL;
699 }
700 spin_unlock(&redirect_lock);
701
702 tty_lock(tty);
703
704 if (test_bit(TTY_HUPPED, &tty->flags)) {
705 tty_unlock(tty);
706 return;
707 }
708
709 /* inuse_filps is protected by the single tty lock,
710 this really needs to change if we want to flush the
711 workqueue with the lock held */
712 check_tty_count(tty, "tty_hangup");
713
714 spin_lock(&tty_files_lock);
715 /* This breaks for file handles being sent over AF_UNIX sockets ? */
716 list_for_each_entry(priv, &tty->tty_files, list) {
717 filp = priv->file;
718 if (filp->f_op->write == redirected_tty_write)
719 cons_filp = filp;
720 if (filp->f_op->write != tty_write)
721 continue;
722 closecount++;
723 __tty_fasync(-1, filp, 0); /* can't block */
724 filp->f_op = &hung_up_tty_fops;
725 }
726 spin_unlock(&tty_files_lock);
727
728 refs = tty_signal_session_leader(tty, exit_session);
729 /* Account for the p->signal references we killed */
730 while (refs--)
731 tty_kref_put(tty);
732
733 tty_ldisc_hangup(tty);
734
735 spin_lock_irq(&tty->ctrl_lock);
736 clear_bit(TTY_THROTTLED, &tty->flags);
737 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
738 put_pid(tty->session);
739 put_pid(tty->pgrp);
740 tty->session = NULL;
741 tty->pgrp = NULL;
742 tty->ctrl_status = 0;
743 spin_unlock_irq(&tty->ctrl_lock);
744
745 /*
746 * If one of the devices matches a console pointer, we
747 * cannot just call hangup() because that will cause
748 * tty->count and state->count to go out of sync.
749 * So we just call close() the right number of times.
750 */
751 if (cons_filp) {
752 if (tty->ops->close)
753 for (n = 0; n < closecount; n++)
754 tty->ops->close(tty, cons_filp);
755 } else if (tty->ops->hangup)
756 tty->ops->hangup(tty);
757 /*
758 * We don't want to have driver/ldisc interactions beyond
759 * the ones we did here. The driver layer expects no
760 * calls after ->hangup() from the ldisc side. However we
761 * can't yet guarantee all that.
762 */
763 set_bit(TTY_HUPPED, &tty->flags);
764 tty_unlock(tty);
765
766 if (f)
767 fput(f);
768 }
769
770 static void do_tty_hangup(struct work_struct *work)
771 {
772 struct tty_struct *tty =
773 container_of(work, struct tty_struct, hangup_work);
774
775 __tty_hangup(tty, 0);
776 }
777
778 /**
779 * tty_hangup - trigger a hangup event
780 * @tty: tty to hangup
781 *
782 * A carrier loss (virtual or otherwise) has occurred on this like
783 * schedule a hangup sequence to run after this event.
784 */
785
786 void tty_hangup(struct tty_struct *tty)
787 {
788 tty_debug_hangup(tty, "\n");
789 schedule_work(&tty->hangup_work);
790 }
791
792 EXPORT_SYMBOL(tty_hangup);
793
794 /**
795 * tty_vhangup - process vhangup
796 * @tty: tty to hangup
797 *
798 * The user has asked via system call for the terminal to be hung up.
799 * We do this synchronously so that when the syscall returns the process
800 * is complete. That guarantee is necessary for security reasons.
801 */
802
803 void tty_vhangup(struct tty_struct *tty)
804 {
805 tty_debug_hangup(tty, "\n");
806 __tty_hangup(tty, 0);
807 }
808
809 EXPORT_SYMBOL(tty_vhangup);
810
811
812 /**
813 * tty_vhangup_self - process vhangup for own ctty
814 *
815 * Perform a vhangup on the current controlling tty
816 */
817
818 void tty_vhangup_self(void)
819 {
820 struct tty_struct *tty;
821
822 tty = get_current_tty();
823 if (tty) {
824 tty_vhangup(tty);
825 tty_kref_put(tty);
826 }
827 }
828
829 /**
830 * tty_vhangup_session - hangup session leader exit
831 * @tty: tty to hangup
832 *
833 * The session leader is exiting and hanging up its controlling terminal.
834 * Every process in the foreground process group is signalled SIGHUP.
835 *
836 * We do this synchronously so that when the syscall returns the process
837 * is complete. That guarantee is necessary for security reasons.
838 */
839
840 static void tty_vhangup_session(struct tty_struct *tty)
841 {
842 tty_debug_hangup(tty, "\n");
843 __tty_hangup(tty, 1);
844 }
845
846 /**
847 * tty_hung_up_p - was tty hung up
848 * @filp: file pointer of tty
849 *
850 * Return true if the tty has been subject to a vhangup or a carrier
851 * loss
852 */
853
854 int tty_hung_up_p(struct file *filp)
855 {
856 return (filp->f_op == &hung_up_tty_fops);
857 }
858
859 EXPORT_SYMBOL(tty_hung_up_p);
860
861 /**
862 * disassociate_ctty - disconnect controlling tty
863 * @on_exit: true if exiting so need to "hang up" the session
864 *
865 * This function is typically called only by the session leader, when
866 * it wants to disassociate itself from its controlling tty.
867 *
868 * It performs the following functions:
869 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
870 * (2) Clears the tty from being controlling the session
871 * (3) Clears the controlling tty for all processes in the
872 * session group.
873 *
874 * The argument on_exit is set to 1 if called when a process is
875 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
876 *
877 * Locking:
878 * BTM is taken for hysterical raisins, and held when
879 * called from no_tty().
880 * tty_mutex is taken to protect tty
881 * ->siglock is taken to protect ->signal/->sighand
882 * tasklist_lock is taken to walk process list for sessions
883 * ->siglock is taken to protect ->signal/->sighand
884 */
885
886 void disassociate_ctty(int on_exit)
887 {
888 struct tty_struct *tty;
889
890 if (!current->signal->leader)
891 return;
892
893 tty = get_current_tty();
894 if (tty) {
895 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
896 tty_vhangup_session(tty);
897 } else {
898 struct pid *tty_pgrp = tty_get_pgrp(tty);
899 if (tty_pgrp) {
900 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
901 if (!on_exit)
902 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
903 put_pid(tty_pgrp);
904 }
905 }
906 tty_kref_put(tty);
907
908 } else if (on_exit) {
909 struct pid *old_pgrp;
910 spin_lock_irq(&current->sighand->siglock);
911 old_pgrp = current->signal->tty_old_pgrp;
912 current->signal->tty_old_pgrp = NULL;
913 spin_unlock_irq(&current->sighand->siglock);
914 if (old_pgrp) {
915 kill_pgrp(old_pgrp, SIGHUP, on_exit);
916 kill_pgrp(old_pgrp, SIGCONT, on_exit);
917 put_pid(old_pgrp);
918 }
919 return;
920 }
921
922 spin_lock_irq(&current->sighand->siglock);
923 put_pid(current->signal->tty_old_pgrp);
924 current->signal->tty_old_pgrp = NULL;
925
926 tty = tty_kref_get(current->signal->tty);
927 if (tty) {
928 unsigned long flags;
929 spin_lock_irqsave(&tty->ctrl_lock, flags);
930 put_pid(tty->session);
931 put_pid(tty->pgrp);
932 tty->session = NULL;
933 tty->pgrp = NULL;
934 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935 tty_kref_put(tty);
936 } else
937 tty_debug_hangup(tty, "no current tty\n");
938
939 spin_unlock_irq(&current->sighand->siglock);
940 /* Now clear signal->tty under the lock */
941 read_lock(&tasklist_lock);
942 session_clear_tty(task_session(current));
943 read_unlock(&tasklist_lock);
944 }
945
946 /**
947 *
948 * no_tty - Ensure the current process does not have a controlling tty
949 */
950 void no_tty(void)
951 {
952 /* FIXME: Review locking here. The tty_lock never covered any race
953 between a new association and proc_clear_tty but possible we need
954 to protect against this anyway */
955 struct task_struct *tsk = current;
956 disassociate_ctty(0);
957 proc_clear_tty(tsk);
958 }
959
960
961 /**
962 * stop_tty - propagate flow control
963 * @tty: tty to stop
964 *
965 * Perform flow control to the driver. May be called
966 * on an already stopped device and will not re-call the driver
967 * method.
968 *
969 * This functionality is used by both the line disciplines for
970 * halting incoming flow and by the driver. It may therefore be
971 * called from any context, may be under the tty atomic_write_lock
972 * but not always.
973 *
974 * Locking:
975 * flow_lock
976 */
977
978 void __stop_tty(struct tty_struct *tty)
979 {
980 if (tty->stopped)
981 return;
982 tty->stopped = 1;
983 if (tty->ops->stop)
984 tty->ops->stop(tty);
985 }
986
987 void stop_tty(struct tty_struct *tty)
988 {
989 unsigned long flags;
990
991 spin_lock_irqsave(&tty->flow_lock, flags);
992 __stop_tty(tty);
993 spin_unlock_irqrestore(&tty->flow_lock, flags);
994 }
995 EXPORT_SYMBOL(stop_tty);
996
997 /**
998 * start_tty - propagate flow control
999 * @tty: tty to start
1000 *
1001 * Start a tty that has been stopped if at all possible. If this
1002 * tty was previous stopped and is now being started, the driver
1003 * start method is invoked and the line discipline woken.
1004 *
1005 * Locking:
1006 * flow_lock
1007 */
1008
1009 void __start_tty(struct tty_struct *tty)
1010 {
1011 if (!tty->stopped || tty->flow_stopped)
1012 return;
1013 tty->stopped = 0;
1014 if (tty->ops->start)
1015 tty->ops->start(tty);
1016 tty_wakeup(tty);
1017 }
1018
1019 void start_tty(struct tty_struct *tty)
1020 {
1021 unsigned long flags;
1022
1023 spin_lock_irqsave(&tty->flow_lock, flags);
1024 __start_tty(tty);
1025 spin_unlock_irqrestore(&tty->flow_lock, flags);
1026 }
1027 EXPORT_SYMBOL(start_tty);
1028
1029 static void tty_update_time(struct timespec *time)
1030 {
1031 unsigned long sec = get_seconds();
1032
1033 /*
1034 * We only care if the two values differ in anything other than the
1035 * lower three bits (i.e every 8 seconds). If so, then we can update
1036 * the time of the tty device, otherwise it could be construded as a
1037 * security leak to let userspace know the exact timing of the tty.
1038 */
1039 if ((sec ^ time->tv_sec) & ~7)
1040 time->tv_sec = sec;
1041 }
1042
1043 /**
1044 * tty_read - read method for tty device files
1045 * @file: pointer to tty file
1046 * @buf: user buffer
1047 * @count: size of user buffer
1048 * @ppos: unused
1049 *
1050 * Perform the read system call function on this terminal device. Checks
1051 * for hung up devices before calling the line discipline method.
1052 *
1053 * Locking:
1054 * Locks the line discipline internally while needed. Multiple
1055 * read calls may be outstanding in parallel.
1056 */
1057
1058 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1059 loff_t *ppos)
1060 {
1061 int i;
1062 struct inode *inode = file_inode(file);
1063 struct tty_struct *tty = file_tty(file);
1064 struct tty_ldisc *ld;
1065
1066 if (tty_paranoia_check(tty, inode, "tty_read"))
1067 return -EIO;
1068 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1069 return -EIO;
1070
1071 /* We want to wait for the line discipline to sort out in this
1072 situation */
1073 ld = tty_ldisc_ref_wait(tty);
1074 if (ld->ops->read)
1075 i = ld->ops->read(tty, file, buf, count);
1076 else
1077 i = -EIO;
1078 tty_ldisc_deref(ld);
1079
1080 if (i > 0)
1081 tty_update_time(&inode->i_atime);
1082
1083 return i;
1084 }
1085
1086 static void tty_write_unlock(struct tty_struct *tty)
1087 {
1088 mutex_unlock(&tty->atomic_write_lock);
1089 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1090 }
1091
1092 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1093 {
1094 if (!mutex_trylock(&tty->atomic_write_lock)) {
1095 if (ndelay)
1096 return -EAGAIN;
1097 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1098 return -ERESTARTSYS;
1099 }
1100 return 0;
1101 }
1102
1103 /*
1104 * Split writes up in sane blocksizes to avoid
1105 * denial-of-service type attacks
1106 */
1107 static inline ssize_t do_tty_write(
1108 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1109 struct tty_struct *tty,
1110 struct file *file,
1111 const char __user *buf,
1112 size_t count)
1113 {
1114 ssize_t ret, written = 0;
1115 unsigned int chunk;
1116
1117 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1118 if (ret < 0)
1119 return ret;
1120
1121 /*
1122 * We chunk up writes into a temporary buffer. This
1123 * simplifies low-level drivers immensely, since they
1124 * don't have locking issues and user mode accesses.
1125 *
1126 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1127 * big chunk-size..
1128 *
1129 * The default chunk-size is 2kB, because the NTTY
1130 * layer has problems with bigger chunks. It will
1131 * claim to be able to handle more characters than
1132 * it actually does.
1133 *
1134 * FIXME: This can probably go away now except that 64K chunks
1135 * are too likely to fail unless switched to vmalloc...
1136 */
1137 chunk = 2048;
1138 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1139 chunk = 65536;
1140 if (count < chunk)
1141 chunk = count;
1142
1143 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1144 if (tty->write_cnt < chunk) {
1145 unsigned char *buf_chunk;
1146
1147 if (chunk < 1024)
1148 chunk = 1024;
1149
1150 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1151 if (!buf_chunk) {
1152 ret = -ENOMEM;
1153 goto out;
1154 }
1155 kfree(tty->write_buf);
1156 tty->write_cnt = chunk;
1157 tty->write_buf = buf_chunk;
1158 }
1159
1160 /* Do the write .. */
1161 for (;;) {
1162 size_t size = count;
1163 if (size > chunk)
1164 size = chunk;
1165 ret = -EFAULT;
1166 if (copy_from_user(tty->write_buf, buf, size))
1167 break;
1168 ret = write(tty, file, tty->write_buf, size);
1169 if (ret <= 0)
1170 break;
1171 written += ret;
1172 buf += ret;
1173 count -= ret;
1174 if (!count)
1175 break;
1176 ret = -ERESTARTSYS;
1177 if (signal_pending(current))
1178 break;
1179 cond_resched();
1180 }
1181 if (written) {
1182 tty_update_time(&file_inode(file)->i_mtime);
1183 ret = written;
1184 }
1185 out:
1186 tty_write_unlock(tty);
1187 return ret;
1188 }
1189
1190 /**
1191 * tty_write_message - write a message to a certain tty, not just the console.
1192 * @tty: the destination tty_struct
1193 * @msg: the message to write
1194 *
1195 * This is used for messages that need to be redirected to a specific tty.
1196 * We don't put it into the syslog queue right now maybe in the future if
1197 * really needed.
1198 *
1199 * We must still hold the BTM and test the CLOSING flag for the moment.
1200 */
1201
1202 void tty_write_message(struct tty_struct *tty, char *msg)
1203 {
1204 if (tty) {
1205 mutex_lock(&tty->atomic_write_lock);
1206 tty_lock(tty);
1207 if (tty->ops->write && tty->count > 0)
1208 tty->ops->write(tty, msg, strlen(msg));
1209 tty_unlock(tty);
1210 tty_write_unlock(tty);
1211 }
1212 return;
1213 }
1214
1215
1216 /**
1217 * tty_write - write method for tty device file
1218 * @file: tty file pointer
1219 * @buf: user data to write
1220 * @count: bytes to write
1221 * @ppos: unused
1222 *
1223 * Write data to a tty device via the line discipline.
1224 *
1225 * Locking:
1226 * Locks the line discipline as required
1227 * Writes to the tty driver are serialized by the atomic_write_lock
1228 * and are then processed in chunks to the device. The line discipline
1229 * write method will not be invoked in parallel for each device.
1230 */
1231
1232 static ssize_t tty_write(struct file *file, const char __user *buf,
1233 size_t count, loff_t *ppos)
1234 {
1235 struct tty_struct *tty = file_tty(file);
1236 struct tty_ldisc *ld;
1237 ssize_t ret;
1238
1239 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1240 return -EIO;
1241 if (!tty || !tty->ops->write ||
1242 (test_bit(TTY_IO_ERROR, &tty->flags)))
1243 return -EIO;
1244 /* Short term debug to catch buggy drivers */
1245 if (tty->ops->write_room == NULL)
1246 tty_err(tty, "missing write_room method\n");
1247 ld = tty_ldisc_ref_wait(tty);
1248 if (!ld->ops->write)
1249 ret = -EIO;
1250 else
1251 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1252 tty_ldisc_deref(ld);
1253 return ret;
1254 }
1255
1256 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1257 size_t count, loff_t *ppos)
1258 {
1259 struct file *p = NULL;
1260
1261 spin_lock(&redirect_lock);
1262 if (redirect)
1263 p = get_file(redirect);
1264 spin_unlock(&redirect_lock);
1265
1266 if (p) {
1267 ssize_t res;
1268 res = vfs_write(p, buf, count, &p->f_pos);
1269 fput(p);
1270 return res;
1271 }
1272 return tty_write(file, buf, count, ppos);
1273 }
1274
1275 /**
1276 * tty_send_xchar - send priority character
1277 *
1278 * Send a high priority character to the tty even if stopped
1279 *
1280 * Locking: none for xchar method, write ordering for write method.
1281 */
1282
1283 int tty_send_xchar(struct tty_struct *tty, char ch)
1284 {
1285 int was_stopped = tty->stopped;
1286
1287 if (tty->ops->send_xchar) {
1288 down_read(&tty->termios_rwsem);
1289 tty->ops->send_xchar(tty, ch);
1290 up_read(&tty->termios_rwsem);
1291 return 0;
1292 }
1293
1294 if (tty_write_lock(tty, 0) < 0)
1295 return -ERESTARTSYS;
1296
1297 down_read(&tty->termios_rwsem);
1298 if (was_stopped)
1299 start_tty(tty);
1300 tty->ops->write(tty, &ch, 1);
1301 if (was_stopped)
1302 stop_tty(tty);
1303 up_read(&tty->termios_rwsem);
1304 tty_write_unlock(tty);
1305 return 0;
1306 }
1307
1308 static char ptychar[] = "pqrstuvwxyzabcde";
1309
1310 /**
1311 * pty_line_name - generate name for a pty
1312 * @driver: the tty driver in use
1313 * @index: the minor number
1314 * @p: output buffer of at least 6 bytes
1315 *
1316 * Generate a name from a driver reference and write it to the output
1317 * buffer.
1318 *
1319 * Locking: None
1320 */
1321 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1322 {
1323 int i = index + driver->name_base;
1324 /* ->name is initialized to "ttyp", but "tty" is expected */
1325 sprintf(p, "%s%c%x",
1326 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1327 ptychar[i >> 4 & 0xf], i & 0xf);
1328 }
1329
1330 /**
1331 * tty_line_name - generate name for a tty
1332 * @driver: the tty driver in use
1333 * @index: the minor number
1334 * @p: output buffer of at least 7 bytes
1335 *
1336 * Generate a name from a driver reference and write it to the output
1337 * buffer.
1338 *
1339 * Locking: None
1340 */
1341 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1342 {
1343 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1344 return sprintf(p, "%s", driver->name);
1345 else
1346 return sprintf(p, "%s%d", driver->name,
1347 index + driver->name_base);
1348 }
1349
1350 /**
1351 * tty_driver_lookup_tty() - find an existing tty, if any
1352 * @driver: the driver for the tty
1353 * @idx: the minor number
1354 *
1355 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1356 * driver lookup() method returns an error.
1357 *
1358 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1359 */
1360 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1361 struct inode *inode, int idx)
1362 {
1363 struct tty_struct *tty;
1364
1365 if (driver->ops->lookup)
1366 tty = driver->ops->lookup(driver, inode, idx);
1367 else
1368 tty = driver->ttys[idx];
1369
1370 if (!IS_ERR(tty))
1371 tty_kref_get(tty);
1372 return tty;
1373 }
1374
1375 /**
1376 * tty_init_termios - helper for termios setup
1377 * @tty: the tty to set up
1378 *
1379 * Initialise the termios structures for this tty. Thus runs under
1380 * the tty_mutex currently so we can be relaxed about ordering.
1381 */
1382
1383 int tty_init_termios(struct tty_struct *tty)
1384 {
1385 struct ktermios *tp;
1386 int idx = tty->index;
1387
1388 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1389 tty->termios = tty->driver->init_termios;
1390 else {
1391 /* Check for lazy saved data */
1392 tp = tty->driver->termios[idx];
1393 if (tp != NULL)
1394 tty->termios = *tp;
1395 else
1396 tty->termios = tty->driver->init_termios;
1397 }
1398 /* Compatibility until drivers always set this */
1399 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1400 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1401 return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(tty_init_termios);
1404
1405 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1406 {
1407 int ret = tty_init_termios(tty);
1408 if (ret)
1409 return ret;
1410
1411 tty_driver_kref_get(driver);
1412 tty->count++;
1413 driver->ttys[tty->index] = tty;
1414 return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(tty_standard_install);
1417
1418 /**
1419 * tty_driver_install_tty() - install a tty entry in the driver
1420 * @driver: the driver for the tty
1421 * @tty: the tty
1422 *
1423 * Install a tty object into the driver tables. The tty->index field
1424 * will be set by the time this is called. This method is responsible
1425 * for ensuring any need additional structures are allocated and
1426 * configured.
1427 *
1428 * Locking: tty_mutex for now
1429 */
1430 static int tty_driver_install_tty(struct tty_driver *driver,
1431 struct tty_struct *tty)
1432 {
1433 return driver->ops->install ? driver->ops->install(driver, tty) :
1434 tty_standard_install(driver, tty);
1435 }
1436
1437 /**
1438 * tty_driver_remove_tty() - remove a tty from the driver tables
1439 * @driver: the driver for the tty
1440 * @idx: the minor number
1441 *
1442 * Remvoe a tty object from the driver tables. The tty->index field
1443 * will be set by the time this is called.
1444 *
1445 * Locking: tty_mutex for now
1446 */
1447 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1448 {
1449 if (driver->ops->remove)
1450 driver->ops->remove(driver, tty);
1451 else
1452 driver->ttys[tty->index] = NULL;
1453 }
1454
1455 /*
1456 * tty_reopen() - fast re-open of an open tty
1457 * @tty - the tty to open
1458 *
1459 * Return 0 on success, -errno on error.
1460 * Re-opens on master ptys are not allowed and return -EIO.
1461 *
1462 * Locking: Caller must hold tty_lock
1463 */
1464 static int tty_reopen(struct tty_struct *tty)
1465 {
1466 struct tty_driver *driver = tty->driver;
1467
1468 if (!tty->count)
1469 return -EIO;
1470
1471 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1472 driver->subtype == PTY_TYPE_MASTER)
1473 return -EIO;
1474
1475 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1476 return -EBUSY;
1477
1478 tty->count++;
1479
1480 WARN_ON(!tty->ldisc);
1481
1482 return 0;
1483 }
1484
1485 /**
1486 * tty_init_dev - initialise a tty device
1487 * @driver: tty driver we are opening a device on
1488 * @idx: device index
1489 * @ret_tty: returned tty structure
1490 *
1491 * Prepare a tty device. This may not be a "new" clean device but
1492 * could also be an active device. The pty drivers require special
1493 * handling because of this.
1494 *
1495 * Locking:
1496 * The function is called under the tty_mutex, which
1497 * protects us from the tty struct or driver itself going away.
1498 *
1499 * On exit the tty device has the line discipline attached and
1500 * a reference count of 1. If a pair was created for pty/tty use
1501 * and the other was a pty master then it too has a reference count of 1.
1502 *
1503 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1504 * failed open. The new code protects the open with a mutex, so it's
1505 * really quite straightforward. The mutex locking can probably be
1506 * relaxed for the (most common) case of reopening a tty.
1507 */
1508
1509 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1510 {
1511 struct tty_struct *tty;
1512 int retval;
1513
1514 /*
1515 * First time open is complex, especially for PTY devices.
1516 * This code guarantees that either everything succeeds and the
1517 * TTY is ready for operation, or else the table slots are vacated
1518 * and the allocated memory released. (Except that the termios
1519 * and locked termios may be retained.)
1520 */
1521
1522 if (!try_module_get(driver->owner))
1523 return ERR_PTR(-ENODEV);
1524
1525 tty = alloc_tty_struct(driver, idx);
1526 if (!tty) {
1527 retval = -ENOMEM;
1528 goto err_module_put;
1529 }
1530
1531 tty_lock(tty);
1532 retval = tty_driver_install_tty(driver, tty);
1533 if (retval < 0)
1534 goto err_deinit_tty;
1535
1536 if (!tty->port)
1537 tty->port = driver->ports[idx];
1538
1539 WARN_RATELIMIT(!tty->port,
1540 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1541 __func__, tty->driver->name);
1542
1543 tty->port->itty = tty;
1544
1545 /*
1546 * Structures all installed ... call the ldisc open routines.
1547 * If we fail here just call release_tty to clean up. No need
1548 * to decrement the use counts, as release_tty doesn't care.
1549 */
1550 retval = tty_ldisc_setup(tty, tty->link);
1551 if (retval)
1552 goto err_release_tty;
1553 /* Return the tty locked so that it cannot vanish under the caller */
1554 return tty;
1555
1556 err_deinit_tty:
1557 tty_unlock(tty);
1558 deinitialize_tty_struct(tty);
1559 free_tty_struct(tty);
1560 err_module_put:
1561 module_put(driver->owner);
1562 return ERR_PTR(retval);
1563
1564 /* call the tty release_tty routine to clean out this slot */
1565 err_release_tty:
1566 tty_unlock(tty);
1567 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1568 retval, idx);
1569 release_tty(tty, idx);
1570 return ERR_PTR(retval);
1571 }
1572
1573 void tty_free_termios(struct tty_struct *tty)
1574 {
1575 struct ktermios *tp;
1576 int idx = tty->index;
1577
1578 /* If the port is going to reset then it has no termios to save */
1579 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1580 return;
1581
1582 /* Stash the termios data */
1583 tp = tty->driver->termios[idx];
1584 if (tp == NULL) {
1585 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1586 if (tp == NULL)
1587 return;
1588 tty->driver->termios[idx] = tp;
1589 }
1590 *tp = tty->termios;
1591 }
1592 EXPORT_SYMBOL(tty_free_termios);
1593
1594 /**
1595 * tty_flush_works - flush all works of a tty/pty pair
1596 * @tty: tty device to flush works for (or either end of a pty pair)
1597 *
1598 * Sync flush all works belonging to @tty (and the 'other' tty).
1599 */
1600 static void tty_flush_works(struct tty_struct *tty)
1601 {
1602 flush_work(&tty->SAK_work);
1603 flush_work(&tty->hangup_work);
1604 if (tty->link) {
1605 flush_work(&tty->link->SAK_work);
1606 flush_work(&tty->link->hangup_work);
1607 }
1608 }
1609
1610 /**
1611 * release_one_tty - release tty structure memory
1612 * @kref: kref of tty we are obliterating
1613 *
1614 * Releases memory associated with a tty structure, and clears out the
1615 * driver table slots. This function is called when a device is no longer
1616 * in use. It also gets called when setup of a device fails.
1617 *
1618 * Locking:
1619 * takes the file list lock internally when working on the list
1620 * of ttys that the driver keeps.
1621 *
1622 * This method gets called from a work queue so that the driver private
1623 * cleanup ops can sleep (needed for USB at least)
1624 */
1625 static void release_one_tty(struct work_struct *work)
1626 {
1627 struct tty_struct *tty =
1628 container_of(work, struct tty_struct, hangup_work);
1629 struct tty_driver *driver = tty->driver;
1630 struct module *owner = driver->owner;
1631
1632 if (tty->ops->cleanup)
1633 tty->ops->cleanup(tty);
1634
1635 tty->magic = 0;
1636 tty_driver_kref_put(driver);
1637 module_put(owner);
1638
1639 spin_lock(&tty_files_lock);
1640 list_del_init(&tty->tty_files);
1641 spin_unlock(&tty_files_lock);
1642
1643 put_pid(tty->pgrp);
1644 put_pid(tty->session);
1645 free_tty_struct(tty);
1646 }
1647
1648 static void queue_release_one_tty(struct kref *kref)
1649 {
1650 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1651
1652 /* The hangup queue is now free so we can reuse it rather than
1653 waste a chunk of memory for each port */
1654 INIT_WORK(&tty->hangup_work, release_one_tty);
1655 schedule_work(&tty->hangup_work);
1656 }
1657
1658 /**
1659 * tty_kref_put - release a tty kref
1660 * @tty: tty device
1661 *
1662 * Release a reference to a tty device and if need be let the kref
1663 * layer destruct the object for us
1664 */
1665
1666 void tty_kref_put(struct tty_struct *tty)
1667 {
1668 if (tty)
1669 kref_put(&tty->kref, queue_release_one_tty);
1670 }
1671 EXPORT_SYMBOL(tty_kref_put);
1672
1673 /**
1674 * release_tty - release tty structure memory
1675 *
1676 * Release both @tty and a possible linked partner (think pty pair),
1677 * and decrement the refcount of the backing module.
1678 *
1679 * Locking:
1680 * tty_mutex
1681 * takes the file list lock internally when working on the list
1682 * of ttys that the driver keeps.
1683 *
1684 */
1685 static void release_tty(struct tty_struct *tty, int idx)
1686 {
1687 /* This should always be true but check for the moment */
1688 WARN_ON(tty->index != idx);
1689 WARN_ON(!mutex_is_locked(&tty_mutex));
1690 if (tty->ops->shutdown)
1691 tty->ops->shutdown(tty);
1692 tty_free_termios(tty);
1693 tty_driver_remove_tty(tty->driver, tty);
1694 tty->port->itty = NULL;
1695 if (tty->link)
1696 tty->link->port->itty = NULL;
1697 tty_buffer_cancel_work(tty->port);
1698
1699 tty_kref_put(tty->link);
1700 tty_kref_put(tty);
1701 }
1702
1703 /**
1704 * tty_release_checks - check a tty before real release
1705 * @tty: tty to check
1706 * @o_tty: link of @tty (if any)
1707 * @idx: index of the tty
1708 *
1709 * Performs some paranoid checking before true release of the @tty.
1710 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1711 */
1712 static int tty_release_checks(struct tty_struct *tty, int idx)
1713 {
1714 #ifdef TTY_PARANOIA_CHECK
1715 if (idx < 0 || idx >= tty->driver->num) {
1716 tty_debug(tty, "bad idx %d\n", idx);
1717 return -1;
1718 }
1719
1720 /* not much to check for devpts */
1721 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1722 return 0;
1723
1724 if (tty != tty->driver->ttys[idx]) {
1725 tty_debug(tty, "bad driver table[%d] = %p\n",
1726 idx, tty->driver->ttys[idx]);
1727 return -1;
1728 }
1729 if (tty->driver->other) {
1730 struct tty_struct *o_tty = tty->link;
1731
1732 if (o_tty != tty->driver->other->ttys[idx]) {
1733 tty_debug(tty, "bad other table[%d] = %p\n",
1734 idx, tty->driver->other->ttys[idx]);
1735 return -1;
1736 }
1737 if (o_tty->link != tty) {
1738 tty_debug(tty, "bad link = %p\n", o_tty->link);
1739 return -1;
1740 }
1741 }
1742 #endif
1743 return 0;
1744 }
1745
1746 /**
1747 * tty_release - vfs callback for close
1748 * @inode: inode of tty
1749 * @filp: file pointer for handle to tty
1750 *
1751 * Called the last time each file handle is closed that references
1752 * this tty. There may however be several such references.
1753 *
1754 * Locking:
1755 * Takes bkl. See tty_release_dev
1756 *
1757 * Even releasing the tty structures is a tricky business.. We have
1758 * to be very careful that the structures are all released at the
1759 * same time, as interrupts might otherwise get the wrong pointers.
1760 *
1761 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1762 * lead to double frees or releasing memory still in use.
1763 */
1764
1765 int tty_release(struct inode *inode, struct file *filp)
1766 {
1767 struct tty_struct *tty = file_tty(filp);
1768 struct tty_struct *o_tty = NULL;
1769 int do_sleep, final;
1770 int idx;
1771 long timeout = 0;
1772 int once = 1;
1773
1774 if (tty_paranoia_check(tty, inode, __func__))
1775 return 0;
1776
1777 tty_lock(tty);
1778 check_tty_count(tty, __func__);
1779
1780 __tty_fasync(-1, filp, 0);
1781
1782 idx = tty->index;
1783 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1784 tty->driver->subtype == PTY_TYPE_MASTER)
1785 o_tty = tty->link;
1786
1787 if (tty_release_checks(tty, idx)) {
1788 tty_unlock(tty);
1789 return 0;
1790 }
1791
1792 tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1793
1794 if (tty->ops->close)
1795 tty->ops->close(tty, filp);
1796
1797 /* If tty is pty master, lock the slave pty (stable lock order) */
1798 tty_lock_slave(o_tty);
1799
1800 /*
1801 * Sanity check: if tty->count is going to zero, there shouldn't be
1802 * any waiters on tty->read_wait or tty->write_wait. We test the
1803 * wait queues and kick everyone out _before_ actually starting to
1804 * close. This ensures that we won't block while releasing the tty
1805 * structure.
1806 *
1807 * The test for the o_tty closing is necessary, since the master and
1808 * slave sides may close in any order. If the slave side closes out
1809 * first, its count will be one, since the master side holds an open.
1810 * Thus this test wouldn't be triggered at the time the slave closed,
1811 * so we do it now.
1812 */
1813 while (1) {
1814 do_sleep = 0;
1815
1816 if (tty->count <= 1) {
1817 if (waitqueue_active(&tty->read_wait)) {
1818 wake_up_poll(&tty->read_wait, POLLIN);
1819 do_sleep++;
1820 }
1821 if (waitqueue_active(&tty->write_wait)) {
1822 wake_up_poll(&tty->write_wait, POLLOUT);
1823 do_sleep++;
1824 }
1825 }
1826 if (o_tty && o_tty->count <= 1) {
1827 if (waitqueue_active(&o_tty->read_wait)) {
1828 wake_up_poll(&o_tty->read_wait, POLLIN);
1829 do_sleep++;
1830 }
1831 if (waitqueue_active(&o_tty->write_wait)) {
1832 wake_up_poll(&o_tty->write_wait, POLLOUT);
1833 do_sleep++;
1834 }
1835 }
1836 if (!do_sleep)
1837 break;
1838
1839 if (once) {
1840 once = 0;
1841 tty_warn(tty, "read/write wait queue active!\n");
1842 }
1843 schedule_timeout_killable(timeout);
1844 if (timeout < 120 * HZ)
1845 timeout = 2 * timeout + 1;
1846 else
1847 timeout = MAX_SCHEDULE_TIMEOUT;
1848 }
1849
1850 if (o_tty) {
1851 if (--o_tty->count < 0) {
1852 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1853 o_tty->count = 0;
1854 }
1855 }
1856 if (--tty->count < 0) {
1857 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1858 tty->count = 0;
1859 }
1860
1861 /*
1862 * We've decremented tty->count, so we need to remove this file
1863 * descriptor off the tty->tty_files list; this serves two
1864 * purposes:
1865 * - check_tty_count sees the correct number of file descriptors
1866 * associated with this tty.
1867 * - do_tty_hangup no longer sees this file descriptor as
1868 * something that needs to be handled for hangups.
1869 */
1870 tty_del_file(filp);
1871
1872 /*
1873 * Perform some housekeeping before deciding whether to return.
1874 *
1875 * If _either_ side is closing, make sure there aren't any
1876 * processes that still think tty or o_tty is their controlling
1877 * tty.
1878 */
1879 if (!tty->count) {
1880 read_lock(&tasklist_lock);
1881 session_clear_tty(tty->session);
1882 if (o_tty)
1883 session_clear_tty(o_tty->session);
1884 read_unlock(&tasklist_lock);
1885 }
1886
1887 /* check whether both sides are closing ... */
1888 final = !tty->count && !(o_tty && o_tty->count);
1889
1890 tty_unlock_slave(o_tty);
1891 tty_unlock(tty);
1892
1893 /* At this point, the tty->count == 0 should ensure a dead tty
1894 cannot be re-opened by a racing opener */
1895
1896 if (!final)
1897 return 0;
1898
1899 tty_debug_hangup(tty, "final close\n");
1900 /*
1901 * Ask the line discipline code to release its structures
1902 */
1903 tty_ldisc_release(tty);
1904
1905 /* Wait for pending work before tty destruction commmences */
1906 tty_flush_works(tty);
1907
1908 tty_debug_hangup(tty, "freeing structure...\n");
1909 /*
1910 * The release_tty function takes care of the details of clearing
1911 * the slots and preserving the termios structure. The tty_unlock_pair
1912 * should be safe as we keep a kref while the tty is locked (so the
1913 * unlock never unlocks a freed tty).
1914 */
1915 mutex_lock(&tty_mutex);
1916 release_tty(tty, idx);
1917 mutex_unlock(&tty_mutex);
1918
1919 return 0;
1920 }
1921
1922 /**
1923 * tty_open_current_tty - get locked tty of current task
1924 * @device: device number
1925 * @filp: file pointer to tty
1926 * @return: locked tty of the current task iff @device is /dev/tty
1927 *
1928 * Performs a re-open of the current task's controlling tty.
1929 *
1930 * We cannot return driver and index like for the other nodes because
1931 * devpts will not work then. It expects inodes to be from devpts FS.
1932 */
1933 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1934 {
1935 struct tty_struct *tty;
1936 int retval;
1937
1938 if (device != MKDEV(TTYAUX_MAJOR, 0))
1939 return NULL;
1940
1941 tty = get_current_tty();
1942 if (!tty)
1943 return ERR_PTR(-ENXIO);
1944
1945 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1946 /* noctty = 1; */
1947 tty_lock(tty);
1948 tty_kref_put(tty); /* safe to drop the kref now */
1949
1950 retval = tty_reopen(tty);
1951 if (retval < 0) {
1952 tty_unlock(tty);
1953 tty = ERR_PTR(retval);
1954 }
1955 return tty;
1956 }
1957
1958 /**
1959 * tty_lookup_driver - lookup a tty driver for a given device file
1960 * @device: device number
1961 * @filp: file pointer to tty
1962 * @noctty: set if the device should not become a controlling tty
1963 * @index: index for the device in the @return driver
1964 * @return: driver for this inode (with increased refcount)
1965 *
1966 * If @return is not erroneous, the caller is responsible to decrement the
1967 * refcount by tty_driver_kref_put.
1968 *
1969 * Locking: tty_mutex protects get_tty_driver
1970 */
1971 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972 int *noctty, int *index)
1973 {
1974 struct tty_driver *driver;
1975
1976 switch (device) {
1977 #ifdef CONFIG_VT
1978 case MKDEV(TTY_MAJOR, 0): {
1979 extern struct tty_driver *console_driver;
1980 driver = tty_driver_kref_get(console_driver);
1981 *index = fg_console;
1982 *noctty = 1;
1983 break;
1984 }
1985 #endif
1986 case MKDEV(TTYAUX_MAJOR, 1): {
1987 struct tty_driver *console_driver = console_device(index);
1988 if (console_driver) {
1989 driver = tty_driver_kref_get(console_driver);
1990 if (driver) {
1991 /* Don't let /dev/console block */
1992 filp->f_flags |= O_NONBLOCK;
1993 *noctty = 1;
1994 break;
1995 }
1996 }
1997 return ERR_PTR(-ENODEV);
1998 }
1999 default:
2000 driver = get_tty_driver(device, index);
2001 if (!driver)
2002 return ERR_PTR(-ENODEV);
2003 break;
2004 }
2005 return driver;
2006 }
2007
2008 /**
2009 * tty_open - open a tty device
2010 * @inode: inode of device file
2011 * @filp: file pointer to tty
2012 *
2013 * tty_open and tty_release keep up the tty count that contains the
2014 * number of opens done on a tty. We cannot use the inode-count, as
2015 * different inodes might point to the same tty.
2016 *
2017 * Open-counting is needed for pty masters, as well as for keeping
2018 * track of serial lines: DTR is dropped when the last close happens.
2019 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2020 *
2021 * The termios state of a pty is reset on first open so that
2022 * settings don't persist across reuse.
2023 *
2024 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2025 * tty->count should protect the rest.
2026 * ->siglock protects ->signal/->sighand
2027 *
2028 * Note: the tty_unlock/lock cases without a ref are only safe due to
2029 * tty_mutex
2030 */
2031
2032 static int tty_open(struct inode *inode, struct file *filp)
2033 {
2034 struct tty_struct *tty;
2035 int noctty, retval;
2036 struct tty_driver *driver = NULL;
2037 int index;
2038 dev_t device = inode->i_rdev;
2039 unsigned saved_flags = filp->f_flags;
2040
2041 nonseekable_open(inode, filp);
2042
2043 retry_open:
2044 retval = tty_alloc_file(filp);
2045 if (retval)
2046 return -ENOMEM;
2047
2048 noctty = filp->f_flags & O_NOCTTY;
2049 index = -1;
2050 retval = 0;
2051
2052 tty = tty_open_current_tty(device, filp);
2053 if (!tty) {
2054 mutex_lock(&tty_mutex);
2055 driver = tty_lookup_driver(device, filp, &noctty, &index);
2056 if (IS_ERR(driver)) {
2057 retval = PTR_ERR(driver);
2058 goto err_unlock;
2059 }
2060
2061 /* check whether we're reopening an existing tty */
2062 tty = tty_driver_lookup_tty(driver, inode, index);
2063 if (IS_ERR(tty)) {
2064 retval = PTR_ERR(tty);
2065 goto err_unlock;
2066 }
2067
2068 if (tty) {
2069 mutex_unlock(&tty_mutex);
2070 tty_lock(tty);
2071 /* safe to drop the kref from tty_driver_lookup_tty() */
2072 tty_kref_put(tty);
2073 retval = tty_reopen(tty);
2074 if (retval < 0) {
2075 tty_unlock(tty);
2076 tty = ERR_PTR(retval);
2077 }
2078 } else { /* Returns with the tty_lock held for now */
2079 tty = tty_init_dev(driver, index);
2080 mutex_unlock(&tty_mutex);
2081 }
2082
2083 tty_driver_kref_put(driver);
2084 }
2085
2086 if (IS_ERR(tty)) {
2087 retval = PTR_ERR(tty);
2088 goto err_file;
2089 }
2090
2091 tty_add_file(tty, filp);
2092
2093 check_tty_count(tty, __func__);
2094 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2095 tty->driver->subtype == PTY_TYPE_MASTER)
2096 noctty = 1;
2097
2098 tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2099
2100 if (tty->ops->open)
2101 retval = tty->ops->open(tty, filp);
2102 else
2103 retval = -ENODEV;
2104 filp->f_flags = saved_flags;
2105
2106 if (retval) {
2107 tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2108
2109 tty_unlock(tty); /* need to call tty_release without BTM */
2110 tty_release(inode, filp);
2111 if (retval != -ERESTARTSYS)
2112 return retval;
2113
2114 if (signal_pending(current))
2115 return retval;
2116
2117 schedule();
2118 /*
2119 * Need to reset f_op in case a hangup happened.
2120 */
2121 if (tty_hung_up_p(filp))
2122 filp->f_op = &tty_fops;
2123 goto retry_open;
2124 }
2125 clear_bit(TTY_HUPPED, &tty->flags);
2126
2127
2128 read_lock(&tasklist_lock);
2129 spin_lock_irq(&current->sighand->siglock);
2130 if (!noctty &&
2131 current->signal->leader &&
2132 !current->signal->tty &&
2133 tty->session == NULL) {
2134 /*
2135 * Don't let a process that only has write access to the tty
2136 * obtain the privileges associated with having a tty as
2137 * controlling terminal (being able to reopen it with full
2138 * access through /dev/tty, being able to perform pushback).
2139 * Many distributions set the group of all ttys to "tty" and
2140 * grant write-only access to all terminals for setgid tty
2141 * binaries, which should not imply full privileges on all ttys.
2142 *
2143 * This could theoretically break old code that performs open()
2144 * on a write-only file descriptor. In that case, it might be
2145 * necessary to also permit this if
2146 * inode_permission(inode, MAY_READ) == 0.
2147 */
2148 if (filp->f_mode & FMODE_READ)
2149 __proc_set_tty(tty);
2150 }
2151 spin_unlock_irq(&current->sighand->siglock);
2152 read_unlock(&tasklist_lock);
2153 tty_unlock(tty);
2154 return 0;
2155 err_unlock:
2156 mutex_unlock(&tty_mutex);
2157 /* after locks to avoid deadlock */
2158 if (!IS_ERR_OR_NULL(driver))
2159 tty_driver_kref_put(driver);
2160 err_file:
2161 tty_free_file(filp);
2162 return retval;
2163 }
2164
2165
2166
2167 /**
2168 * tty_poll - check tty status
2169 * @filp: file being polled
2170 * @wait: poll wait structures to update
2171 *
2172 * Call the line discipline polling method to obtain the poll
2173 * status of the device.
2174 *
2175 * Locking: locks called line discipline but ldisc poll method
2176 * may be re-entered freely by other callers.
2177 */
2178
2179 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2180 {
2181 struct tty_struct *tty = file_tty(filp);
2182 struct tty_ldisc *ld;
2183 int ret = 0;
2184
2185 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2186 return 0;
2187
2188 ld = tty_ldisc_ref_wait(tty);
2189 if (ld->ops->poll)
2190 ret = ld->ops->poll(tty, filp, wait);
2191 tty_ldisc_deref(ld);
2192 return ret;
2193 }
2194
2195 static int __tty_fasync(int fd, struct file *filp, int on)
2196 {
2197 struct tty_struct *tty = file_tty(filp);
2198 struct tty_ldisc *ldisc;
2199 unsigned long flags;
2200 int retval = 0;
2201
2202 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2203 goto out;
2204
2205 retval = fasync_helper(fd, filp, on, &tty->fasync);
2206 if (retval <= 0)
2207 goto out;
2208
2209 ldisc = tty_ldisc_ref(tty);
2210 if (ldisc) {
2211 if (ldisc->ops->fasync)
2212 ldisc->ops->fasync(tty, on);
2213 tty_ldisc_deref(ldisc);
2214 }
2215
2216 if (on) {
2217 enum pid_type type;
2218 struct pid *pid;
2219
2220 spin_lock_irqsave(&tty->ctrl_lock, flags);
2221 if (tty->pgrp) {
2222 pid = tty->pgrp;
2223 type = PIDTYPE_PGID;
2224 } else {
2225 pid = task_pid(current);
2226 type = PIDTYPE_PID;
2227 }
2228 get_pid(pid);
2229 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2230 __f_setown(filp, pid, type, 0);
2231 put_pid(pid);
2232 retval = 0;
2233 }
2234 out:
2235 return retval;
2236 }
2237
2238 static int tty_fasync(int fd, struct file *filp, int on)
2239 {
2240 struct tty_struct *tty = file_tty(filp);
2241 int retval;
2242
2243 tty_lock(tty);
2244 retval = __tty_fasync(fd, filp, on);
2245 tty_unlock(tty);
2246
2247 return retval;
2248 }
2249
2250 /**
2251 * tiocsti - fake input character
2252 * @tty: tty to fake input into
2253 * @p: pointer to character
2254 *
2255 * Fake input to a tty device. Does the necessary locking and
2256 * input management.
2257 *
2258 * FIXME: does not honour flow control ??
2259 *
2260 * Locking:
2261 * Called functions take tty_ldiscs_lock
2262 * current->signal->tty check is safe without locks
2263 *
2264 * FIXME: may race normal receive processing
2265 */
2266
2267 static int tiocsti(struct tty_struct *tty, char __user *p)
2268 {
2269 char ch, mbz = 0;
2270 struct tty_ldisc *ld;
2271
2272 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2273 return -EPERM;
2274 if (get_user(ch, p))
2275 return -EFAULT;
2276 tty_audit_tiocsti(tty, ch);
2277 ld = tty_ldisc_ref_wait(tty);
2278 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2279 tty_ldisc_deref(ld);
2280 return 0;
2281 }
2282
2283 /**
2284 * tiocgwinsz - implement window query ioctl
2285 * @tty; tty
2286 * @arg: user buffer for result
2287 *
2288 * Copies the kernel idea of the window size into the user buffer.
2289 *
2290 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2291 * is consistent.
2292 */
2293
2294 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2295 {
2296 int err;
2297
2298 mutex_lock(&tty->winsize_mutex);
2299 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2300 mutex_unlock(&tty->winsize_mutex);
2301
2302 return err ? -EFAULT: 0;
2303 }
2304
2305 /**
2306 * tty_do_resize - resize event
2307 * @tty: tty being resized
2308 * @rows: rows (character)
2309 * @cols: cols (character)
2310 *
2311 * Update the termios variables and send the necessary signals to
2312 * peform a terminal resize correctly
2313 */
2314
2315 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2316 {
2317 struct pid *pgrp;
2318
2319 /* Lock the tty */
2320 mutex_lock(&tty->winsize_mutex);
2321 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2322 goto done;
2323
2324 /* Signal the foreground process group */
2325 pgrp = tty_get_pgrp(tty);
2326 if (pgrp)
2327 kill_pgrp(pgrp, SIGWINCH, 1);
2328 put_pid(pgrp);
2329
2330 tty->winsize = *ws;
2331 done:
2332 mutex_unlock(&tty->winsize_mutex);
2333 return 0;
2334 }
2335 EXPORT_SYMBOL(tty_do_resize);
2336
2337 /**
2338 * tiocswinsz - implement window size set ioctl
2339 * @tty; tty side of tty
2340 * @arg: user buffer for result
2341 *
2342 * Copies the user idea of the window size to the kernel. Traditionally
2343 * this is just advisory information but for the Linux console it
2344 * actually has driver level meaning and triggers a VC resize.
2345 *
2346 * Locking:
2347 * Driver dependent. The default do_resize method takes the
2348 * tty termios mutex and ctrl_lock. The console takes its own lock
2349 * then calls into the default method.
2350 */
2351
2352 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2353 {
2354 struct winsize tmp_ws;
2355 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2356 return -EFAULT;
2357
2358 if (tty->ops->resize)
2359 return tty->ops->resize(tty, &tmp_ws);
2360 else
2361 return tty_do_resize(tty, &tmp_ws);
2362 }
2363
2364 /**
2365 * tioccons - allow admin to move logical console
2366 * @file: the file to become console
2367 *
2368 * Allow the administrator to move the redirected console device
2369 *
2370 * Locking: uses redirect_lock to guard the redirect information
2371 */
2372
2373 static int tioccons(struct file *file)
2374 {
2375 if (!capable(CAP_SYS_ADMIN))
2376 return -EPERM;
2377 if (file->f_op->write == redirected_tty_write) {
2378 struct file *f;
2379 spin_lock(&redirect_lock);
2380 f = redirect;
2381 redirect = NULL;
2382 spin_unlock(&redirect_lock);
2383 if (f)
2384 fput(f);
2385 return 0;
2386 }
2387 spin_lock(&redirect_lock);
2388 if (redirect) {
2389 spin_unlock(&redirect_lock);
2390 return -EBUSY;
2391 }
2392 redirect = get_file(file);
2393 spin_unlock(&redirect_lock);
2394 return 0;
2395 }
2396
2397 /**
2398 * fionbio - non blocking ioctl
2399 * @file: file to set blocking value
2400 * @p: user parameter
2401 *
2402 * Historical tty interfaces had a blocking control ioctl before
2403 * the generic functionality existed. This piece of history is preserved
2404 * in the expected tty API of posix OS's.
2405 *
2406 * Locking: none, the open file handle ensures it won't go away.
2407 */
2408
2409 static int fionbio(struct file *file, int __user *p)
2410 {
2411 int nonblock;
2412
2413 if (get_user(nonblock, p))
2414 return -EFAULT;
2415
2416 spin_lock(&file->f_lock);
2417 if (nonblock)
2418 file->f_flags |= O_NONBLOCK;
2419 else
2420 file->f_flags &= ~O_NONBLOCK;
2421 spin_unlock(&file->f_lock);
2422 return 0;
2423 }
2424
2425 /**
2426 * tiocsctty - set controlling tty
2427 * @tty: tty structure
2428 * @arg: user argument
2429 *
2430 * This ioctl is used to manage job control. It permits a session
2431 * leader to set this tty as the controlling tty for the session.
2432 *
2433 * Locking:
2434 * Takes tty_lock() to serialize proc_set_tty() for this tty
2435 * Takes tasklist_lock internally to walk sessions
2436 * Takes ->siglock() when updating signal->tty
2437 */
2438
2439 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2440 {
2441 int ret = 0;
2442
2443 tty_lock(tty);
2444 read_lock(&tasklist_lock);
2445
2446 if (current->signal->leader && (task_session(current) == tty->session))
2447 goto unlock;
2448
2449 /*
2450 * The process must be a session leader and
2451 * not have a controlling tty already.
2452 */
2453 if (!current->signal->leader || current->signal->tty) {
2454 ret = -EPERM;
2455 goto unlock;
2456 }
2457
2458 if (tty->session) {
2459 /*
2460 * This tty is already the controlling
2461 * tty for another session group!
2462 */
2463 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2464 /*
2465 * Steal it away
2466 */
2467 session_clear_tty(tty->session);
2468 } else {
2469 ret = -EPERM;
2470 goto unlock;
2471 }
2472 }
2473
2474 /* See the comment in tty_open(). */
2475 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2476 ret = -EPERM;
2477 goto unlock;
2478 }
2479
2480 proc_set_tty(tty);
2481 unlock:
2482 read_unlock(&tasklist_lock);
2483 tty_unlock(tty);
2484 return ret;
2485 }
2486
2487 /**
2488 * tty_get_pgrp - return a ref counted pgrp pid
2489 * @tty: tty to read
2490 *
2491 * Returns a refcounted instance of the pid struct for the process
2492 * group controlling the tty.
2493 */
2494
2495 struct pid *tty_get_pgrp(struct tty_struct *tty)
2496 {
2497 unsigned long flags;
2498 struct pid *pgrp;
2499
2500 spin_lock_irqsave(&tty->ctrl_lock, flags);
2501 pgrp = get_pid(tty->pgrp);
2502 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2503
2504 return pgrp;
2505 }
2506 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2507
2508 /*
2509 * This checks not only the pgrp, but falls back on the pid if no
2510 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2511 * without this...
2512 *
2513 * The caller must hold rcu lock or the tasklist lock.
2514 */
2515 static struct pid *session_of_pgrp(struct pid *pgrp)
2516 {
2517 struct task_struct *p;
2518 struct pid *sid = NULL;
2519
2520 p = pid_task(pgrp, PIDTYPE_PGID);
2521 if (p == NULL)
2522 p = pid_task(pgrp, PIDTYPE_PID);
2523 if (p != NULL)
2524 sid = task_session(p);
2525
2526 return sid;
2527 }
2528
2529 /**
2530 * tiocgpgrp - get process group
2531 * @tty: tty passed by user
2532 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2533 * @p: returned pid
2534 *
2535 * Obtain the process group of the tty. If there is no process group
2536 * return an error.
2537 *
2538 * Locking: none. Reference to current->signal->tty is safe.
2539 */
2540
2541 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2542 {
2543 struct pid *pid;
2544 int ret;
2545 /*
2546 * (tty == real_tty) is a cheap way of
2547 * testing if the tty is NOT a master pty.
2548 */
2549 if (tty == real_tty && current->signal->tty != real_tty)
2550 return -ENOTTY;
2551 pid = tty_get_pgrp(real_tty);
2552 ret = put_user(pid_vnr(pid), p);
2553 put_pid(pid);
2554 return ret;
2555 }
2556
2557 /**
2558 * tiocspgrp - attempt to set process group
2559 * @tty: tty passed by user
2560 * @real_tty: tty side device matching tty passed by user
2561 * @p: pid pointer
2562 *
2563 * Set the process group of the tty to the session passed. Only
2564 * permitted where the tty session is our session.
2565 *
2566 * Locking: RCU, ctrl lock
2567 */
2568
2569 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2570 {
2571 struct pid *pgrp;
2572 pid_t pgrp_nr;
2573 int retval = tty_check_change(real_tty);
2574
2575 if (retval == -EIO)
2576 return -ENOTTY;
2577 if (retval)
2578 return retval;
2579 if (!current->signal->tty ||
2580 (current->signal->tty != real_tty) ||
2581 (real_tty->session != task_session(current)))
2582 return -ENOTTY;
2583 if (get_user(pgrp_nr, p))
2584 return -EFAULT;
2585 if (pgrp_nr < 0)
2586 return -EINVAL;
2587 rcu_read_lock();
2588 pgrp = find_vpid(pgrp_nr);
2589 retval = -ESRCH;
2590 if (!pgrp)
2591 goto out_unlock;
2592 retval = -EPERM;
2593 if (session_of_pgrp(pgrp) != task_session(current))
2594 goto out_unlock;
2595 retval = 0;
2596 spin_lock_irq(&tty->ctrl_lock);
2597 put_pid(real_tty->pgrp);
2598 real_tty->pgrp = get_pid(pgrp);
2599 spin_unlock_irq(&tty->ctrl_lock);
2600 out_unlock:
2601 rcu_read_unlock();
2602 return retval;
2603 }
2604
2605 /**
2606 * tiocgsid - get session id
2607 * @tty: tty passed by user
2608 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2609 * @p: pointer to returned session id
2610 *
2611 * Obtain the session id of the tty. If there is no session
2612 * return an error.
2613 *
2614 * Locking: none. Reference to current->signal->tty is safe.
2615 */
2616
2617 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2618 {
2619 /*
2620 * (tty == real_tty) is a cheap way of
2621 * testing if the tty is NOT a master pty.
2622 */
2623 if (tty == real_tty && current->signal->tty != real_tty)
2624 return -ENOTTY;
2625 if (!real_tty->session)
2626 return -ENOTTY;
2627 return put_user(pid_vnr(real_tty->session), p);
2628 }
2629
2630 /**
2631 * tiocsetd - set line discipline
2632 * @tty: tty device
2633 * @p: pointer to user data
2634 *
2635 * Set the line discipline according to user request.
2636 *
2637 * Locking: see tty_set_ldisc, this function is just a helper
2638 */
2639
2640 static int tiocsetd(struct tty_struct *tty, int __user *p)
2641 {
2642 int ldisc;
2643 int ret;
2644
2645 if (get_user(ldisc, p))
2646 return -EFAULT;
2647
2648 ret = tty_set_ldisc(tty, ldisc);
2649
2650 return ret;
2651 }
2652
2653 /**
2654 * send_break - performed time break
2655 * @tty: device to break on
2656 * @duration: timeout in mS
2657 *
2658 * Perform a timed break on hardware that lacks its own driver level
2659 * timed break functionality.
2660 *
2661 * Locking:
2662 * atomic_write_lock serializes
2663 *
2664 */
2665
2666 static int send_break(struct tty_struct *tty, unsigned int duration)
2667 {
2668 int retval;
2669
2670 if (tty->ops->break_ctl == NULL)
2671 return 0;
2672
2673 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2674 retval = tty->ops->break_ctl(tty, duration);
2675 else {
2676 /* Do the work ourselves */
2677 if (tty_write_lock(tty, 0) < 0)
2678 return -EINTR;
2679 retval = tty->ops->break_ctl(tty, -1);
2680 if (retval)
2681 goto out;
2682 if (!signal_pending(current))
2683 msleep_interruptible(duration);
2684 retval = tty->ops->break_ctl(tty, 0);
2685 out:
2686 tty_write_unlock(tty);
2687 if (signal_pending(current))
2688 retval = -EINTR;
2689 }
2690 return retval;
2691 }
2692
2693 /**
2694 * tty_tiocmget - get modem status
2695 * @tty: tty device
2696 * @file: user file pointer
2697 * @p: pointer to result
2698 *
2699 * Obtain the modem status bits from the tty driver if the feature
2700 * is supported. Return -EINVAL if it is not available.
2701 *
2702 * Locking: none (up to the driver)
2703 */
2704
2705 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2706 {
2707 int retval = -EINVAL;
2708
2709 if (tty->ops->tiocmget) {
2710 retval = tty->ops->tiocmget(tty);
2711
2712 if (retval >= 0)
2713 retval = put_user(retval, p);
2714 }
2715 return retval;
2716 }
2717
2718 /**
2719 * tty_tiocmset - set modem status
2720 * @tty: tty device
2721 * @cmd: command - clear bits, set bits or set all
2722 * @p: pointer to desired bits
2723 *
2724 * Set the modem status bits from the tty driver if the feature
2725 * is supported. Return -EINVAL if it is not available.
2726 *
2727 * Locking: none (up to the driver)
2728 */
2729
2730 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2731 unsigned __user *p)
2732 {
2733 int retval;
2734 unsigned int set, clear, val;
2735
2736 if (tty->ops->tiocmset == NULL)
2737 return -EINVAL;
2738
2739 retval = get_user(val, p);
2740 if (retval)
2741 return retval;
2742 set = clear = 0;
2743 switch (cmd) {
2744 case TIOCMBIS:
2745 set = val;
2746 break;
2747 case TIOCMBIC:
2748 clear = val;
2749 break;
2750 case TIOCMSET:
2751 set = val;
2752 clear = ~val;
2753 break;
2754 }
2755 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2756 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2757 return tty->ops->tiocmset(tty, set, clear);
2758 }
2759
2760 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2761 {
2762 int retval = -EINVAL;
2763 struct serial_icounter_struct icount;
2764 memset(&icount, 0, sizeof(icount));
2765 if (tty->ops->get_icount)
2766 retval = tty->ops->get_icount(tty, &icount);
2767 if (retval != 0)
2768 return retval;
2769 if (copy_to_user(arg, &icount, sizeof(icount)))
2770 return -EFAULT;
2771 return 0;
2772 }
2773
2774 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2775 {
2776 static DEFINE_RATELIMIT_STATE(depr_flags,
2777 DEFAULT_RATELIMIT_INTERVAL,
2778 DEFAULT_RATELIMIT_BURST);
2779 char comm[TASK_COMM_LEN];
2780 int flags;
2781
2782 if (get_user(flags, &ss->flags))
2783 return;
2784
2785 flags &= ASYNC_DEPRECATED;
2786
2787 if (flags && __ratelimit(&depr_flags))
2788 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2789 __func__, get_task_comm(comm, current), flags);
2790 }
2791
2792 /*
2793 * if pty, return the slave side (real_tty)
2794 * otherwise, return self
2795 */
2796 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2797 {
2798 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2799 tty->driver->subtype == PTY_TYPE_MASTER)
2800 tty = tty->link;
2801 return tty;
2802 }
2803
2804 /*
2805 * Split this up, as gcc can choke on it otherwise..
2806 */
2807 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2808 {
2809 struct tty_struct *tty = file_tty(file);
2810 struct tty_struct *real_tty;
2811 void __user *p = (void __user *)arg;
2812 int retval;
2813 struct tty_ldisc *ld;
2814
2815 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2816 return -EINVAL;
2817
2818 real_tty = tty_pair_get_tty(tty);
2819
2820 /*
2821 * Factor out some common prep work
2822 */
2823 switch (cmd) {
2824 case TIOCSETD:
2825 case TIOCSBRK:
2826 case TIOCCBRK:
2827 case TCSBRK:
2828 case TCSBRKP:
2829 retval = tty_check_change(tty);
2830 if (retval)
2831 return retval;
2832 if (cmd != TIOCCBRK) {
2833 tty_wait_until_sent(tty, 0);
2834 if (signal_pending(current))
2835 return -EINTR;
2836 }
2837 break;
2838 }
2839
2840 /*
2841 * Now do the stuff.
2842 */
2843 switch (cmd) {
2844 case TIOCSTI:
2845 return tiocsti(tty, p);
2846 case TIOCGWINSZ:
2847 return tiocgwinsz(real_tty, p);
2848 case TIOCSWINSZ:
2849 return tiocswinsz(real_tty, p);
2850 case TIOCCONS:
2851 return real_tty != tty ? -EINVAL : tioccons(file);
2852 case FIONBIO:
2853 return fionbio(file, p);
2854 case TIOCEXCL:
2855 set_bit(TTY_EXCLUSIVE, &tty->flags);
2856 return 0;
2857 case TIOCNXCL:
2858 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2859 return 0;
2860 case TIOCGEXCL:
2861 {
2862 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2863 return put_user(excl, (int __user *)p);
2864 }
2865 case TIOCNOTTY:
2866 if (current->signal->tty != tty)
2867 return -ENOTTY;
2868 no_tty();
2869 return 0;
2870 case TIOCSCTTY:
2871 return tiocsctty(tty, file, arg);
2872 case TIOCGPGRP:
2873 return tiocgpgrp(tty, real_tty, p);
2874 case TIOCSPGRP:
2875 return tiocspgrp(tty, real_tty, p);
2876 case TIOCGSID:
2877 return tiocgsid(tty, real_tty, p);
2878 case TIOCGETD:
2879 return put_user(tty->ldisc->ops->num, (int __user *)p);
2880 case TIOCSETD:
2881 return tiocsetd(tty, p);
2882 case TIOCVHANGUP:
2883 if (!capable(CAP_SYS_ADMIN))
2884 return -EPERM;
2885 tty_vhangup(tty);
2886 return 0;
2887 case TIOCGDEV:
2888 {
2889 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2890 return put_user(ret, (unsigned int __user *)p);
2891 }
2892 /*
2893 * Break handling
2894 */
2895 case TIOCSBRK: /* Turn break on, unconditionally */
2896 if (tty->ops->break_ctl)
2897 return tty->ops->break_ctl(tty, -1);
2898 return 0;
2899 case TIOCCBRK: /* Turn break off, unconditionally */
2900 if (tty->ops->break_ctl)
2901 return tty->ops->break_ctl(tty, 0);
2902 return 0;
2903 case TCSBRK: /* SVID version: non-zero arg --> no break */
2904 /* non-zero arg means wait for all output data
2905 * to be sent (performed above) but don't send break.
2906 * This is used by the tcdrain() termios function.
2907 */
2908 if (!arg)
2909 return send_break(tty, 250);
2910 return 0;
2911 case TCSBRKP: /* support for POSIX tcsendbreak() */
2912 return send_break(tty, arg ? arg*100 : 250);
2913
2914 case TIOCMGET:
2915 return tty_tiocmget(tty, p);
2916 case TIOCMSET:
2917 case TIOCMBIC:
2918 case TIOCMBIS:
2919 return tty_tiocmset(tty, cmd, p);
2920 case TIOCGICOUNT:
2921 retval = tty_tiocgicount(tty, p);
2922 /* For the moment allow fall through to the old method */
2923 if (retval != -EINVAL)
2924 return retval;
2925 break;
2926 case TCFLSH:
2927 switch (arg) {
2928 case TCIFLUSH:
2929 case TCIOFLUSH:
2930 /* flush tty buffer and allow ldisc to process ioctl */
2931 tty_buffer_flush(tty, NULL);
2932 break;
2933 }
2934 break;
2935 case TIOCSSERIAL:
2936 tty_warn_deprecated_flags(p);
2937 break;
2938 }
2939 if (tty->ops->ioctl) {
2940 retval = tty->ops->ioctl(tty, cmd, arg);
2941 if (retval != -ENOIOCTLCMD)
2942 return retval;
2943 }
2944 ld = tty_ldisc_ref_wait(tty);
2945 retval = -EINVAL;
2946 if (ld->ops->ioctl) {
2947 retval = ld->ops->ioctl(tty, file, cmd, arg);
2948 if (retval == -ENOIOCTLCMD)
2949 retval = -ENOTTY;
2950 }
2951 tty_ldisc_deref(ld);
2952 return retval;
2953 }
2954
2955 #ifdef CONFIG_COMPAT
2956 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2957 unsigned long arg)
2958 {
2959 struct tty_struct *tty = file_tty(file);
2960 struct tty_ldisc *ld;
2961 int retval = -ENOIOCTLCMD;
2962
2963 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2964 return -EINVAL;
2965
2966 if (tty->ops->compat_ioctl) {
2967 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2968 if (retval != -ENOIOCTLCMD)
2969 return retval;
2970 }
2971
2972 ld = tty_ldisc_ref_wait(tty);
2973 if (ld->ops->compat_ioctl)
2974 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2975 else
2976 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2977 tty_ldisc_deref(ld);
2978
2979 return retval;
2980 }
2981 #endif
2982
2983 static int this_tty(const void *t, struct file *file, unsigned fd)
2984 {
2985 if (likely(file->f_op->read != tty_read))
2986 return 0;
2987 return file_tty(file) != t ? 0 : fd + 1;
2988 }
2989
2990 /*
2991 * This implements the "Secure Attention Key" --- the idea is to
2992 * prevent trojan horses by killing all processes associated with this
2993 * tty when the user hits the "Secure Attention Key". Required for
2994 * super-paranoid applications --- see the Orange Book for more details.
2995 *
2996 * This code could be nicer; ideally it should send a HUP, wait a few
2997 * seconds, then send a INT, and then a KILL signal. But you then
2998 * have to coordinate with the init process, since all processes associated
2999 * with the current tty must be dead before the new getty is allowed
3000 * to spawn.
3001 *
3002 * Now, if it would be correct ;-/ The current code has a nasty hole -
3003 * it doesn't catch files in flight. We may send the descriptor to ourselves
3004 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3005 *
3006 * Nasty bug: do_SAK is being called in interrupt context. This can
3007 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3008 */
3009 void __do_SAK(struct tty_struct *tty)
3010 {
3011 #ifdef TTY_SOFT_SAK
3012 tty_hangup(tty);
3013 #else
3014 struct task_struct *g, *p;
3015 struct pid *session;
3016 int i;
3017
3018 if (!tty)
3019 return;
3020 session = tty->session;
3021
3022 tty_ldisc_flush(tty);
3023
3024 tty_driver_flush_buffer(tty);
3025
3026 read_lock(&tasklist_lock);
3027 /* Kill the entire session */
3028 do_each_pid_task(session, PIDTYPE_SID, p) {
3029 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3030 task_pid_nr(p), p->comm);
3031 send_sig(SIGKILL, p, 1);
3032 } while_each_pid_task(session, PIDTYPE_SID, p);
3033
3034 /* Now kill any processes that happen to have the tty open */
3035 do_each_thread(g, p) {
3036 if (p->signal->tty == tty) {
3037 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3038 task_pid_nr(p), p->comm);
3039 send_sig(SIGKILL, p, 1);
3040 continue;
3041 }
3042 task_lock(p);
3043 i = iterate_fd(p->files, 0, this_tty, tty);
3044 if (i != 0) {
3045 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3046 task_pid_nr(p), p->comm, i - 1);
3047 force_sig(SIGKILL, p);
3048 }
3049 task_unlock(p);
3050 } while_each_thread(g, p);
3051 read_unlock(&tasklist_lock);
3052 #endif
3053 }
3054
3055 static void do_SAK_work(struct work_struct *work)
3056 {
3057 struct tty_struct *tty =
3058 container_of(work, struct tty_struct, SAK_work);
3059 __do_SAK(tty);
3060 }
3061
3062 /*
3063 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3064 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3065 * the values which we write to it will be identical to the values which it
3066 * already has. --akpm
3067 */
3068 void do_SAK(struct tty_struct *tty)
3069 {
3070 if (!tty)
3071 return;
3072 schedule_work(&tty->SAK_work);
3073 }
3074
3075 EXPORT_SYMBOL(do_SAK);
3076
3077 static int dev_match_devt(struct device *dev, const void *data)
3078 {
3079 const dev_t *devt = data;
3080 return dev->devt == *devt;
3081 }
3082
3083 /* Must put_device() after it's unused! */
3084 static struct device *tty_get_device(struct tty_struct *tty)
3085 {
3086 dev_t devt = tty_devnum(tty);
3087 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3088 }
3089
3090
3091 /**
3092 * alloc_tty_struct
3093 *
3094 * This subroutine allocates and initializes a tty structure.
3095 *
3096 * Locking: none - tty in question is not exposed at this point
3097 */
3098
3099 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3100 {
3101 struct tty_struct *tty;
3102
3103 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3104 if (!tty)
3105 return NULL;
3106
3107 kref_init(&tty->kref);
3108 tty->magic = TTY_MAGIC;
3109 tty_ldisc_init(tty);
3110 tty->session = NULL;
3111 tty->pgrp = NULL;
3112 mutex_init(&tty->legacy_mutex);
3113 mutex_init(&tty->throttle_mutex);
3114 init_rwsem(&tty->termios_rwsem);
3115 mutex_init(&tty->winsize_mutex);
3116 init_ldsem(&tty->ldisc_sem);
3117 init_waitqueue_head(&tty->write_wait);
3118 init_waitqueue_head(&tty->read_wait);
3119 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3120 mutex_init(&tty->atomic_write_lock);
3121 spin_lock_init(&tty->ctrl_lock);
3122 spin_lock_init(&tty->flow_lock);
3123 INIT_LIST_HEAD(&tty->tty_files);
3124 INIT_WORK(&tty->SAK_work, do_SAK_work);
3125
3126 tty->driver = driver;
3127 tty->ops = driver->ops;
3128 tty->index = idx;
3129 tty_line_name(driver, idx, tty->name);
3130 tty->dev = tty_get_device(tty);
3131
3132 return tty;
3133 }
3134
3135 /**
3136 * deinitialize_tty_struct
3137 * @tty: tty to deinitialize
3138 *
3139 * This subroutine deinitializes a tty structure that has been newly
3140 * allocated but tty_release cannot be called on that yet.
3141 *
3142 * Locking: none - tty in question must not be exposed at this point
3143 */
3144 void deinitialize_tty_struct(struct tty_struct *tty)
3145 {
3146 tty_ldisc_deinit(tty);
3147 }
3148
3149 /**
3150 * tty_put_char - write one character to a tty
3151 * @tty: tty
3152 * @ch: character
3153 *
3154 * Write one byte to the tty using the provided put_char method
3155 * if present. Returns the number of characters successfully output.
3156 *
3157 * Note: the specific put_char operation in the driver layer may go
3158 * away soon. Don't call it directly, use this method
3159 */
3160
3161 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3162 {
3163 if (tty->ops->put_char)
3164 return tty->ops->put_char(tty, ch);
3165 return tty->ops->write(tty, &ch, 1);
3166 }
3167 EXPORT_SYMBOL_GPL(tty_put_char);
3168
3169 struct class *tty_class;
3170
3171 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3172 unsigned int index, unsigned int count)
3173 {
3174 int err;
3175
3176 /* init here, since reused cdevs cause crashes */
3177 driver->cdevs[index] = cdev_alloc();
3178 if (!driver->cdevs[index])
3179 return -ENOMEM;
3180 driver->cdevs[index]->ops = &tty_fops;
3181 driver->cdevs[index]->owner = driver->owner;
3182 err = cdev_add(driver->cdevs[index], dev, count);
3183 if (err)
3184 kobject_put(&driver->cdevs[index]->kobj);
3185 return err;
3186 }
3187
3188 /**
3189 * tty_register_device - register a tty device
3190 * @driver: the tty driver that describes the tty device
3191 * @index: the index in the tty driver for this tty device
3192 * @device: a struct device that is associated with this tty device.
3193 * This field is optional, if there is no known struct device
3194 * for this tty device it can be set to NULL safely.
3195 *
3196 * Returns a pointer to the struct device for this tty device
3197 * (or ERR_PTR(-EFOO) on error).
3198 *
3199 * This call is required to be made to register an individual tty device
3200 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3201 * that bit is not set, this function should not be called by a tty
3202 * driver.
3203 *
3204 * Locking: ??
3205 */
3206
3207 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208 struct device *device)
3209 {
3210 return tty_register_device_attr(driver, index, device, NULL, NULL);
3211 }
3212 EXPORT_SYMBOL(tty_register_device);
3213
3214 static void tty_device_create_release(struct device *dev)
3215 {
3216 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3217 kfree(dev);
3218 }
3219
3220 /**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 * This field is optional, if there is no known struct device
3226 * for this tty device it can be set to NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * Returns a pointer to the struct device for this tty device
3231 * (or ERR_PTR(-EFOO) on error).
3232 *
3233 * This call is required to be made to register an individual tty device
3234 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3235 * that bit is not set, this function should not be called by a tty
3236 * driver.
3237 *
3238 * Locking: ??
3239 */
3240 struct device *tty_register_device_attr(struct tty_driver *driver,
3241 unsigned index, struct device *device,
3242 void *drvdata,
3243 const struct attribute_group **attr_grp)
3244 {
3245 char name[64];
3246 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3247 struct device *dev = NULL;
3248 int retval = -ENODEV;
3249 bool cdev = false;
3250
3251 if (index >= driver->num) {
3252 printk(KERN_ERR "Attempt to register invalid tty line number "
3253 " (%d).\n", index);
3254 return ERR_PTR(-EINVAL);
3255 }
3256
3257 if (driver->type == TTY_DRIVER_TYPE_PTY)
3258 pty_line_name(driver, index, name);
3259 else
3260 tty_line_name(driver, index, name);
3261
3262 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3263 retval = tty_cdev_add(driver, devt, index, 1);
3264 if (retval)
3265 goto error;
3266 cdev = true;
3267 }
3268
3269 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3270 if (!dev) {
3271 retval = -ENOMEM;
3272 goto error;
3273 }
3274
3275 dev->devt = devt;
3276 dev->class = tty_class;
3277 dev->parent = device;
3278 dev->release = tty_device_create_release;
3279 dev_set_name(dev, "%s", name);
3280 dev->groups = attr_grp;
3281 dev_set_drvdata(dev, drvdata);
3282
3283 retval = device_register(dev);
3284 if (retval)
3285 goto error;
3286
3287 return dev;
3288
3289 error:
3290 put_device(dev);
3291 if (cdev) {
3292 cdev_del(driver->cdevs[index]);
3293 driver->cdevs[index] = NULL;
3294 }
3295 return ERR_PTR(retval);
3296 }
3297 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3298
3299 /**
3300 * tty_unregister_device - unregister a tty device
3301 * @driver: the tty driver that describes the tty device
3302 * @index: the index in the tty driver for this tty device
3303 *
3304 * If a tty device is registered with a call to tty_register_device() then
3305 * this function must be called when the tty device is gone.
3306 *
3307 * Locking: ??
3308 */
3309
3310 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3311 {
3312 device_destroy(tty_class,
3313 MKDEV(driver->major, driver->minor_start) + index);
3314 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3315 cdev_del(driver->cdevs[index]);
3316 driver->cdevs[index] = NULL;
3317 }
3318 }
3319 EXPORT_SYMBOL(tty_unregister_device);
3320
3321 /**
3322 * __tty_alloc_driver -- allocate tty driver
3323 * @lines: count of lines this driver can handle at most
3324 * @owner: module which is repsonsible for this driver
3325 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3326 *
3327 * This should not be called directly, some of the provided macros should be
3328 * used instead. Use IS_ERR and friends on @retval.
3329 */
3330 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3331 unsigned long flags)
3332 {
3333 struct tty_driver *driver;
3334 unsigned int cdevs = 1;
3335 int err;
3336
3337 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3338 return ERR_PTR(-EINVAL);
3339
3340 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3341 if (!driver)
3342 return ERR_PTR(-ENOMEM);
3343
3344 kref_init(&driver->kref);
3345 driver->magic = TTY_DRIVER_MAGIC;
3346 driver->num = lines;
3347 driver->owner = owner;
3348 driver->flags = flags;
3349
3350 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3351 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3352 GFP_KERNEL);
3353 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3354 GFP_KERNEL);
3355 if (!driver->ttys || !driver->termios) {
3356 err = -ENOMEM;
3357 goto err_free_all;
3358 }
3359 }
3360
3361 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3362 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3363 GFP_KERNEL);
3364 if (!driver->ports) {
3365 err = -ENOMEM;
3366 goto err_free_all;
3367 }
3368 cdevs = lines;
3369 }
3370
3371 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3372 if (!driver->cdevs) {
3373 err = -ENOMEM;
3374 goto err_free_all;
3375 }
3376
3377 return driver;
3378 err_free_all:
3379 kfree(driver->ports);
3380 kfree(driver->ttys);
3381 kfree(driver->termios);
3382 kfree(driver->cdevs);
3383 kfree(driver);
3384 return ERR_PTR(err);
3385 }
3386 EXPORT_SYMBOL(__tty_alloc_driver);
3387
3388 static void destruct_tty_driver(struct kref *kref)
3389 {
3390 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3391 int i;
3392 struct ktermios *tp;
3393
3394 if (driver->flags & TTY_DRIVER_INSTALLED) {
3395 /*
3396 * Free the termios and termios_locked structures because
3397 * we don't want to get memory leaks when modular tty
3398 * drivers are removed from the kernel.
3399 */
3400 for (i = 0; i < driver->num; i++) {
3401 tp = driver->termios[i];
3402 if (tp) {
3403 driver->termios[i] = NULL;
3404 kfree(tp);
3405 }
3406 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3407 tty_unregister_device(driver, i);
3408 }
3409 proc_tty_unregister_driver(driver);
3410 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3411 cdev_del(driver->cdevs[0]);
3412 }
3413 kfree(driver->cdevs);
3414 kfree(driver->ports);
3415 kfree(driver->termios);
3416 kfree(driver->ttys);
3417 kfree(driver);
3418 }
3419
3420 void tty_driver_kref_put(struct tty_driver *driver)
3421 {
3422 kref_put(&driver->kref, destruct_tty_driver);
3423 }
3424 EXPORT_SYMBOL(tty_driver_kref_put);
3425
3426 void tty_set_operations(struct tty_driver *driver,
3427 const struct tty_operations *op)
3428 {
3429 driver->ops = op;
3430 };
3431 EXPORT_SYMBOL(tty_set_operations);
3432
3433 void put_tty_driver(struct tty_driver *d)
3434 {
3435 tty_driver_kref_put(d);
3436 }
3437 EXPORT_SYMBOL(put_tty_driver);
3438
3439 /*
3440 * Called by a tty driver to register itself.
3441 */
3442 int tty_register_driver(struct tty_driver *driver)
3443 {
3444 int error;
3445 int i;
3446 dev_t dev;
3447 struct device *d;
3448
3449 if (!driver->major) {
3450 error = alloc_chrdev_region(&dev, driver->minor_start,
3451 driver->num, driver->name);
3452 if (!error) {
3453 driver->major = MAJOR(dev);
3454 driver->minor_start = MINOR(dev);
3455 }
3456 } else {
3457 dev = MKDEV(driver->major, driver->minor_start);
3458 error = register_chrdev_region(dev, driver->num, driver->name);
3459 }
3460 if (error < 0)
3461 goto err;
3462
3463 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3464 error = tty_cdev_add(driver, dev, 0, driver->num);
3465 if (error)
3466 goto err_unreg_char;
3467 }
3468
3469 mutex_lock(&tty_mutex);
3470 list_add(&driver->tty_drivers, &tty_drivers);
3471 mutex_unlock(&tty_mutex);
3472
3473 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3474 for (i = 0; i < driver->num; i++) {
3475 d = tty_register_device(driver, i, NULL);
3476 if (IS_ERR(d)) {
3477 error = PTR_ERR(d);
3478 goto err_unreg_devs;
3479 }
3480 }
3481 }
3482 proc_tty_register_driver(driver);
3483 driver->flags |= TTY_DRIVER_INSTALLED;
3484 return 0;
3485
3486 err_unreg_devs:
3487 for (i--; i >= 0; i--)
3488 tty_unregister_device(driver, i);
3489
3490 mutex_lock(&tty_mutex);
3491 list_del(&driver->tty_drivers);
3492 mutex_unlock(&tty_mutex);
3493
3494 err_unreg_char:
3495 unregister_chrdev_region(dev, driver->num);
3496 err:
3497 return error;
3498 }
3499 EXPORT_SYMBOL(tty_register_driver);
3500
3501 /*
3502 * Called by a tty driver to unregister itself.
3503 */
3504 int tty_unregister_driver(struct tty_driver *driver)
3505 {
3506 #if 0
3507 /* FIXME */
3508 if (driver->refcount)
3509 return -EBUSY;
3510 #endif
3511 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3512 driver->num);
3513 mutex_lock(&tty_mutex);
3514 list_del(&driver->tty_drivers);
3515 mutex_unlock(&tty_mutex);
3516 return 0;
3517 }
3518
3519 EXPORT_SYMBOL(tty_unregister_driver);
3520
3521 dev_t tty_devnum(struct tty_struct *tty)
3522 {
3523 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3524 }
3525 EXPORT_SYMBOL(tty_devnum);
3526
3527 void tty_default_fops(struct file_operations *fops)
3528 {
3529 *fops = tty_fops;
3530 }
3531
3532 /*
3533 * Initialize the console device. This is called *early*, so
3534 * we can't necessarily depend on lots of kernel help here.
3535 * Just do some early initializations, and do the complex setup
3536 * later.
3537 */
3538 void __init console_init(void)
3539 {
3540 initcall_t *call;
3541
3542 /* Setup the default TTY line discipline. */
3543 tty_ldisc_begin();
3544
3545 /*
3546 * set up the console device so that later boot sequences can
3547 * inform about problems etc..
3548 */
3549 call = __con_initcall_start;
3550 while (call < __con_initcall_end) {
3551 (*call)();
3552 call++;
3553 }
3554 }
3555
3556 static char *tty_devnode(struct device *dev, umode_t *mode)
3557 {
3558 if (!mode)
3559 return NULL;
3560 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3561 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3562 *mode = 0666;
3563 return NULL;
3564 }
3565
3566 static int __init tty_class_init(void)
3567 {
3568 tty_class = class_create(THIS_MODULE, "tty");
3569 if (IS_ERR(tty_class))
3570 return PTR_ERR(tty_class);
3571 tty_class->devnode = tty_devnode;
3572 return 0;
3573 }
3574
3575 postcore_initcall(tty_class_init);
3576
3577 /* 3/2004 jmc: why do these devices exist? */
3578 static struct cdev tty_cdev, console_cdev;
3579
3580 static ssize_t show_cons_active(struct device *dev,
3581 struct device_attribute *attr, char *buf)
3582 {
3583 struct console *cs[16];
3584 int i = 0;
3585 struct console *c;
3586 ssize_t count = 0;
3587
3588 console_lock();
3589 for_each_console(c) {
3590 if (!c->device)
3591 continue;
3592 if (!c->write)
3593 continue;
3594 if ((c->flags & CON_ENABLED) == 0)
3595 continue;
3596 cs[i++] = c;
3597 if (i >= ARRAY_SIZE(cs))
3598 break;
3599 }
3600 while (i--) {
3601 int index = cs[i]->index;
3602 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3603
3604 /* don't resolve tty0 as some programs depend on it */
3605 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3606 count += tty_line_name(drv, index, buf + count);
3607 else
3608 count += sprintf(buf + count, "%s%d",
3609 cs[i]->name, cs[i]->index);
3610
3611 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3612 }
3613 console_unlock();
3614
3615 return count;
3616 }
3617 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3618
3619 static struct attribute *cons_dev_attrs[] = {
3620 &dev_attr_active.attr,
3621 NULL
3622 };
3623
3624 ATTRIBUTE_GROUPS(cons_dev);
3625
3626 static struct device *consdev;
3627
3628 void console_sysfs_notify(void)
3629 {
3630 if (consdev)
3631 sysfs_notify(&consdev->kobj, NULL, "active");
3632 }
3633
3634 /*
3635 * Ok, now we can initialize the rest of the tty devices and can count
3636 * on memory allocations, interrupts etc..
3637 */
3638 int __init tty_init(void)
3639 {
3640 cdev_init(&tty_cdev, &tty_fops);
3641 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3642 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3643 panic("Couldn't register /dev/tty driver\n");
3644 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3645
3646 cdev_init(&console_cdev, &console_fops);
3647 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3648 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3649 panic("Couldn't register /dev/console driver\n");
3650 consdev = device_create_with_groups(tty_class, NULL,
3651 MKDEV(TTYAUX_MAJOR, 1), NULL,
3652 cons_dev_groups, "console");
3653 if (IS_ERR(consdev))
3654 consdev = NULL;
3655
3656 #ifdef CONFIG_VT
3657 vty_init(&console_fops);
3658 #endif
3659 return 0;
3660 }
3661
This page took 0.482082 seconds and 6 git commands to generate.