s390/appldata: restore missing init_virt_timer()
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/usb.h>
46 #include <linux/usb/hcd.h>
47 #include <linux/usb/phy.h>
48
49 #include "usb.h"
50
51
52 /*-------------------------------------------------------------------------*/
53
54 /*
55 * USB Host Controller Driver framework
56 *
57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
58 * HCD-specific behaviors/bugs.
59 *
60 * This does error checks, tracks devices and urbs, and delegates to a
61 * "hc_driver" only for code (and data) that really needs to know about
62 * hardware differences. That includes root hub registers, i/o queues,
63 * and so on ... but as little else as possible.
64 *
65 * Shared code includes most of the "root hub" code (these are emulated,
66 * though each HC's hardware works differently) and PCI glue, plus request
67 * tracking overhead. The HCD code should only block on spinlocks or on
68 * hardware handshaking; blocking on software events (such as other kernel
69 * threads releasing resources, or completing actions) is all generic.
70 *
71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
73 * only by the hub driver ... and that neither should be seen or used by
74 * usb client device drivers.
75 *
76 * Contributors of ideas or unattributed patches include: David Brownell,
77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
78 *
79 * HISTORY:
80 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
81 * associated cleanup. "usb_hcd" still != "usb_bus".
82 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
83 */
84
85 /*-------------------------------------------------------------------------*/
86
87 /* Keep track of which host controller drivers are loaded */
88 unsigned long usb_hcds_loaded;
89 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
90
91 /* host controllers we manage */
92 LIST_HEAD (usb_bus_list);
93 EXPORT_SYMBOL_GPL (usb_bus_list);
94
95 /* used when allocating bus numbers */
96 #define USB_MAXBUS 64
97 static DECLARE_BITMAP(busmap, USB_MAXBUS);
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123 * Sharable chunks of root hub code.
124 */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149 };
150
151 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
152 static const u8 usb25_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172 /* usb 2.0 root hub device descriptor */
173 static const u8 usb2_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 0x01, /* __u8 bDescriptorType; Device */
176 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
177
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
182
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
186
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
191 };
192
193 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
194
195 /* usb 1.1 root hub device descriptor */
196 static const u8 usb11_rh_dev_descriptor[18] = {
197 0x12, /* __u8 bLength; */
198 0x01, /* __u8 bDescriptorType; Device */
199 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
200
201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
202 0x00, /* __u8 bDeviceSubClass; */
203 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
205
206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
207 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
209
210 0x03, /* __u8 iManufacturer; */
211 0x02, /* __u8 iProduct; */
212 0x01, /* __u8 iSerialNumber; */
213 0x01 /* __u8 bNumConfigurations; */
214 };
215
216
217 /*-------------------------------------------------------------------------*/
218
219 /* Configuration descriptors for our root hubs */
220
221 static const u8 fs_rh_config_descriptor[] = {
222
223 /* one configuration */
224 0x09, /* __u8 bLength; */
225 0x02, /* __u8 bDescriptorType; Configuration */
226 0x19, 0x00, /* __le16 wTotalLength; */
227 0x01, /* __u8 bNumInterfaces; (1) */
228 0x01, /* __u8 bConfigurationValue; */
229 0x00, /* __u8 iConfiguration; */
230 0xc0, /* __u8 bmAttributes;
231 Bit 7: must be set,
232 6: Self-powered,
233 5: Remote wakeup,
234 4..0: resvd */
235 0x00, /* __u8 MaxPower; */
236
237 /* USB 1.1:
238 * USB 2.0, single TT organization (mandatory):
239 * one interface, protocol 0
240 *
241 * USB 2.0, multiple TT organization (optional):
242 * two interfaces, protocols 1 (like single TT)
243 * and 2 (multiple TT mode) ... config is
244 * sometimes settable
245 * NOT IMPLEMENTED
246 */
247
248 /* one interface */
249 0x09, /* __u8 if_bLength; */
250 0x04, /* __u8 if_bDescriptorType; Interface */
251 0x00, /* __u8 if_bInterfaceNumber; */
252 0x00, /* __u8 if_bAlternateSetting; */
253 0x01, /* __u8 if_bNumEndpoints; */
254 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
255 0x00, /* __u8 if_bInterfaceSubClass; */
256 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
257 0x00, /* __u8 if_iInterface; */
258
259 /* one endpoint (status change endpoint) */
260 0x07, /* __u8 ep_bLength; */
261 0x05, /* __u8 ep_bDescriptorType; Endpoint */
262 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
263 0x03, /* __u8 ep_bmAttributes; Interrupt */
264 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
265 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
266 };
267
268 static const u8 hs_rh_config_descriptor[] = {
269
270 /* one configuration */
271 0x09, /* __u8 bLength; */
272 0x02, /* __u8 bDescriptorType; Configuration */
273 0x19, 0x00, /* __le16 wTotalLength; */
274 0x01, /* __u8 bNumInterfaces; (1) */
275 0x01, /* __u8 bConfigurationValue; */
276 0x00, /* __u8 iConfiguration; */
277 0xc0, /* __u8 bmAttributes;
278 Bit 7: must be set,
279 6: Self-powered,
280 5: Remote wakeup,
281 4..0: resvd */
282 0x00, /* __u8 MaxPower; */
283
284 /* USB 1.1:
285 * USB 2.0, single TT organization (mandatory):
286 * one interface, protocol 0
287 *
288 * USB 2.0, multiple TT organization (optional):
289 * two interfaces, protocols 1 (like single TT)
290 * and 2 (multiple TT mode) ... config is
291 * sometimes settable
292 * NOT IMPLEMENTED
293 */
294
295 /* one interface */
296 0x09, /* __u8 if_bLength; */
297 0x04, /* __u8 if_bDescriptorType; Interface */
298 0x00, /* __u8 if_bInterfaceNumber; */
299 0x00, /* __u8 if_bAlternateSetting; */
300 0x01, /* __u8 if_bNumEndpoints; */
301 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
302 0x00, /* __u8 if_bInterfaceSubClass; */
303 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
304 0x00, /* __u8 if_iInterface; */
305
306 /* one endpoint (status change endpoint) */
307 0x07, /* __u8 ep_bLength; */
308 0x05, /* __u8 ep_bDescriptorType; Endpoint */
309 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
310 0x03, /* __u8 ep_bmAttributes; Interrupt */
311 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
312 * see hub.c:hub_configure() for details. */
313 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
314 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
315 };
316
317 static const u8 ss_rh_config_descriptor[] = {
318 /* one configuration */
319 0x09, /* __u8 bLength; */
320 0x02, /* __u8 bDescriptorType; Configuration */
321 0x1f, 0x00, /* __le16 wTotalLength; */
322 0x01, /* __u8 bNumInterfaces; (1) */
323 0x01, /* __u8 bConfigurationValue; */
324 0x00, /* __u8 iConfiguration; */
325 0xc0, /* __u8 bmAttributes;
326 Bit 7: must be set,
327 6: Self-powered,
328 5: Remote wakeup,
329 4..0: resvd */
330 0x00, /* __u8 MaxPower; */
331
332 /* one interface */
333 0x09, /* __u8 if_bLength; */
334 0x04, /* __u8 if_bDescriptorType; Interface */
335 0x00, /* __u8 if_bInterfaceNumber; */
336 0x00, /* __u8 if_bAlternateSetting; */
337 0x01, /* __u8 if_bNumEndpoints; */
338 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
339 0x00, /* __u8 if_bInterfaceSubClass; */
340 0x00, /* __u8 if_bInterfaceProtocol; */
341 0x00, /* __u8 if_iInterface; */
342
343 /* one endpoint (status change endpoint) */
344 0x07, /* __u8 ep_bLength; */
345 0x05, /* __u8 ep_bDescriptorType; Endpoint */
346 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
347 0x03, /* __u8 ep_bmAttributes; Interrupt */
348 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
349 * see hub.c:hub_configure() for details. */
350 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
351 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
352
353 /* one SuperSpeed endpoint companion descriptor */
354 0x06, /* __u8 ss_bLength */
355 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
356 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
357 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
358 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
359 };
360
361 /* authorized_default behaviour:
362 * -1 is authorized for all devices except wireless (old behaviour)
363 * 0 is unauthorized for all devices
364 * 1 is authorized for all devices
365 */
366 static int authorized_default = -1;
367 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
368 MODULE_PARM_DESC(authorized_default,
369 "Default USB device authorization: 0 is not authorized, 1 is "
370 "authorized, -1 is authorized except for wireless USB (default, "
371 "old behaviour");
372 /*-------------------------------------------------------------------------*/
373
374 /**
375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
378 * @len: Length (in bytes; may be odd) of descriptor buffer.
379 *
380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
381 * whichever is less.
382 *
383 * Note:
384 * USB String descriptors can contain at most 126 characters; input
385 * strings longer than that are truncated.
386 */
387 static unsigned
388 ascii2desc(char const *s, u8 *buf, unsigned len)
389 {
390 unsigned n, t = 2 + 2*strlen(s);
391
392 if (t > 254)
393 t = 254; /* Longest possible UTF string descriptor */
394 if (len > t)
395 len = t;
396
397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
398
399 n = len;
400 while (n--) {
401 *buf++ = t;
402 if (!n--)
403 break;
404 *buf++ = t >> 8;
405 t = (unsigned char)*s++;
406 }
407 return len;
408 }
409
410 /**
411 * rh_string() - provides string descriptors for root hub
412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
413 * @hcd: the host controller for this root hub
414 * @data: buffer for output packet
415 * @len: length of the provided buffer
416 *
417 * Produces either a manufacturer, product or serial number string for the
418 * virtual root hub device.
419 *
420 * Return: The number of bytes filled in: the length of the descriptor or
421 * of the provided buffer, whichever is less.
422 */
423 static unsigned
424 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
425 {
426 char buf[100];
427 char const *s;
428 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
429
430 /* language ids */
431 switch (id) {
432 case 0:
433 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
434 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
435 if (len > 4)
436 len = 4;
437 memcpy(data, langids, len);
438 return len;
439 case 1:
440 /* Serial number */
441 s = hcd->self.bus_name;
442 break;
443 case 2:
444 /* Product name */
445 s = hcd->product_desc;
446 break;
447 case 3:
448 /* Manufacturer */
449 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
450 init_utsname()->release, hcd->driver->description);
451 s = buf;
452 break;
453 default:
454 /* Can't happen; caller guarantees it */
455 return 0;
456 }
457
458 return ascii2desc(s, data, len);
459 }
460
461
462 /* Root hub control transfers execute synchronously */
463 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
464 {
465 struct usb_ctrlrequest *cmd;
466 u16 typeReq, wValue, wIndex, wLength;
467 u8 *ubuf = urb->transfer_buffer;
468 unsigned len = 0;
469 int status;
470 u8 patch_wakeup = 0;
471 u8 patch_protocol = 0;
472 u16 tbuf_size;
473 u8 *tbuf = NULL;
474 const u8 *bufp;
475
476 might_sleep();
477
478 spin_lock_irq(&hcd_root_hub_lock);
479 status = usb_hcd_link_urb_to_ep(hcd, urb);
480 spin_unlock_irq(&hcd_root_hub_lock);
481 if (status)
482 return status;
483 urb->hcpriv = hcd; /* Indicate it's queued */
484
485 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
486 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
487 wValue = le16_to_cpu (cmd->wValue);
488 wIndex = le16_to_cpu (cmd->wIndex);
489 wLength = le16_to_cpu (cmd->wLength);
490
491 if (wLength > urb->transfer_buffer_length)
492 goto error;
493
494 /*
495 * tbuf should be at least as big as the
496 * USB hub descriptor.
497 */
498 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
499 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
500 if (!tbuf)
501 return -ENOMEM;
502
503 bufp = tbuf;
504
505
506 urb->actual_length = 0;
507 switch (typeReq) {
508
509 /* DEVICE REQUESTS */
510
511 /* The root hub's remote wakeup enable bit is implemented using
512 * driver model wakeup flags. If this system supports wakeup
513 * through USB, userspace may change the default "allow wakeup"
514 * policy through sysfs or these calls.
515 *
516 * Most root hubs support wakeup from downstream devices, for
517 * runtime power management (disabling USB clocks and reducing
518 * VBUS power usage). However, not all of them do so; silicon,
519 * board, and BIOS bugs here are not uncommon, so these can't
520 * be treated quite like external hubs.
521 *
522 * Likewise, not all root hubs will pass wakeup events upstream,
523 * to wake up the whole system. So don't assume root hub and
524 * controller capabilities are identical.
525 */
526
527 case DeviceRequest | USB_REQ_GET_STATUS:
528 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
529 << USB_DEVICE_REMOTE_WAKEUP)
530 | (1 << USB_DEVICE_SELF_POWERED);
531 tbuf[1] = 0;
532 len = 2;
533 break;
534 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
535 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
536 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
537 else
538 goto error;
539 break;
540 case DeviceOutRequest | USB_REQ_SET_FEATURE:
541 if (device_can_wakeup(&hcd->self.root_hub->dev)
542 && wValue == USB_DEVICE_REMOTE_WAKEUP)
543 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
544 else
545 goto error;
546 break;
547 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
548 tbuf[0] = 1;
549 len = 1;
550 /* FALLTHROUGH */
551 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
552 break;
553 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
554 switch (wValue & 0xff00) {
555 case USB_DT_DEVICE << 8:
556 switch (hcd->speed) {
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB25:
561 bufp = usb25_rh_dev_descriptor;
562 break;
563 case HCD_USB2:
564 bufp = usb2_rh_dev_descriptor;
565 break;
566 case HCD_USB11:
567 bufp = usb11_rh_dev_descriptor;
568 break;
569 default:
570 goto error;
571 }
572 len = 18;
573 if (hcd->has_tt)
574 patch_protocol = 1;
575 break;
576 case USB_DT_CONFIG << 8:
577 switch (hcd->speed) {
578 case HCD_USB3:
579 bufp = ss_rh_config_descriptor;
580 len = sizeof ss_rh_config_descriptor;
581 break;
582 case HCD_USB25:
583 case HCD_USB2:
584 bufp = hs_rh_config_descriptor;
585 len = sizeof hs_rh_config_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = fs_rh_config_descriptor;
589 len = sizeof fs_rh_config_descriptor;
590 break;
591 default:
592 goto error;
593 }
594 if (device_can_wakeup(&hcd->self.root_hub->dev))
595 patch_wakeup = 1;
596 break;
597 case USB_DT_STRING << 8:
598 if ((wValue & 0xff) < 4)
599 urb->actual_length = rh_string(wValue & 0xff,
600 hcd, ubuf, wLength);
601 else /* unsupported IDs --> "protocol stall" */
602 goto error;
603 break;
604 case USB_DT_BOS << 8:
605 goto nongeneric;
606 default:
607 goto error;
608 }
609 break;
610 case DeviceRequest | USB_REQ_GET_INTERFACE:
611 tbuf[0] = 0;
612 len = 1;
613 /* FALLTHROUGH */
614 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
615 break;
616 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
617 /* wValue == urb->dev->devaddr */
618 dev_dbg (hcd->self.controller, "root hub device address %d\n",
619 wValue);
620 break;
621
622 /* INTERFACE REQUESTS (no defined feature/status flags) */
623
624 /* ENDPOINT REQUESTS */
625
626 case EndpointRequest | USB_REQ_GET_STATUS:
627 /* ENDPOINT_HALT flag */
628 tbuf[0] = 0;
629 tbuf[1] = 0;
630 len = 2;
631 /* FALLTHROUGH */
632 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
633 case EndpointOutRequest | USB_REQ_SET_FEATURE:
634 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
635 break;
636
637 /* CLASS REQUESTS (and errors) */
638
639 default:
640 nongeneric:
641 /* non-generic request */
642 switch (typeReq) {
643 case GetHubStatus:
644 case GetPortStatus:
645 len = 4;
646 break;
647 case GetHubDescriptor:
648 len = sizeof (struct usb_hub_descriptor);
649 break;
650 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
651 /* len is returned by hub_control */
652 break;
653 }
654 status = hcd->driver->hub_control (hcd,
655 typeReq, wValue, wIndex,
656 tbuf, wLength);
657
658 if (typeReq == GetHubDescriptor)
659 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
660 (struct usb_hub_descriptor *)tbuf);
661 break;
662 error:
663 /* "protocol stall" on error */
664 status = -EPIPE;
665 }
666
667 if (status < 0) {
668 len = 0;
669 if (status != -EPIPE) {
670 dev_dbg (hcd->self.controller,
671 "CTRL: TypeReq=0x%x val=0x%x "
672 "idx=0x%x len=%d ==> %d\n",
673 typeReq, wValue, wIndex,
674 wLength, status);
675 }
676 } else if (status > 0) {
677 /* hub_control may return the length of data copied. */
678 len = status;
679 status = 0;
680 }
681 if (len) {
682 if (urb->transfer_buffer_length < len)
683 len = urb->transfer_buffer_length;
684 urb->actual_length = len;
685 /* always USB_DIR_IN, toward host */
686 memcpy (ubuf, bufp, len);
687
688 /* report whether RH hardware supports remote wakeup */
689 if (patch_wakeup &&
690 len > offsetof (struct usb_config_descriptor,
691 bmAttributes))
692 ((struct usb_config_descriptor *)ubuf)->bmAttributes
693 |= USB_CONFIG_ATT_WAKEUP;
694
695 /* report whether RH hardware has an integrated TT */
696 if (patch_protocol &&
697 len > offsetof(struct usb_device_descriptor,
698 bDeviceProtocol))
699 ((struct usb_device_descriptor *) ubuf)->
700 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
701 }
702
703 kfree(tbuf);
704
705 /* any errors get returned through the urb completion */
706 spin_lock_irq(&hcd_root_hub_lock);
707 usb_hcd_unlink_urb_from_ep(hcd, urb);
708 usb_hcd_giveback_urb(hcd, urb, status);
709 spin_unlock_irq(&hcd_root_hub_lock);
710 return 0;
711 }
712
713 /*-------------------------------------------------------------------------*/
714
715 /*
716 * Root Hub interrupt transfers are polled using a timer if the
717 * driver requests it; otherwise the driver is responsible for
718 * calling usb_hcd_poll_rh_status() when an event occurs.
719 *
720 * Completions are called in_interrupt(), but they may or may not
721 * be in_irq().
722 */
723 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
724 {
725 struct urb *urb;
726 int length;
727 unsigned long flags;
728 char buffer[6]; /* Any root hubs with > 31 ports? */
729
730 if (unlikely(!hcd->rh_pollable))
731 return;
732 if (!hcd->uses_new_polling && !hcd->status_urb)
733 return;
734
735 length = hcd->driver->hub_status_data(hcd, buffer);
736 if (length > 0) {
737
738 /* try to complete the status urb */
739 spin_lock_irqsave(&hcd_root_hub_lock, flags);
740 urb = hcd->status_urb;
741 if (urb) {
742 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
743 hcd->status_urb = NULL;
744 urb->actual_length = length;
745 memcpy(urb->transfer_buffer, buffer, length);
746
747 usb_hcd_unlink_urb_from_ep(hcd, urb);
748 usb_hcd_giveback_urb(hcd, urb, 0);
749 } else {
750 length = 0;
751 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
752 }
753 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
754 }
755
756 /* The USB 2.0 spec says 256 ms. This is close enough and won't
757 * exceed that limit if HZ is 100. The math is more clunky than
758 * maybe expected, this is to make sure that all timers for USB devices
759 * fire at the same time to give the CPU a break in between */
760 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
761 (length == 0 && hcd->status_urb != NULL))
762 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
763 }
764 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
765
766 /* timer callback */
767 static void rh_timer_func (unsigned long _hcd)
768 {
769 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
770 }
771
772 /*-------------------------------------------------------------------------*/
773
774 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
775 {
776 int retval;
777 unsigned long flags;
778 unsigned len = 1 + (urb->dev->maxchild / 8);
779
780 spin_lock_irqsave (&hcd_root_hub_lock, flags);
781 if (hcd->status_urb || urb->transfer_buffer_length < len) {
782 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
783 retval = -EINVAL;
784 goto done;
785 }
786
787 retval = usb_hcd_link_urb_to_ep(hcd, urb);
788 if (retval)
789 goto done;
790
791 hcd->status_urb = urb;
792 urb->hcpriv = hcd; /* indicate it's queued */
793 if (!hcd->uses_new_polling)
794 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795
796 /* If a status change has already occurred, report it ASAP */
797 else if (HCD_POLL_PENDING(hcd))
798 mod_timer(&hcd->rh_timer, jiffies);
799 retval = 0;
800 done:
801 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
802 return retval;
803 }
804
805 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
806 {
807 if (usb_endpoint_xfer_int(&urb->ep->desc))
808 return rh_queue_status (hcd, urb);
809 if (usb_endpoint_xfer_control(&urb->ep->desc))
810 return rh_call_control (hcd, urb);
811 return -EINVAL;
812 }
813
814 /*-------------------------------------------------------------------------*/
815
816 /* Unlinks of root-hub control URBs are legal, but they don't do anything
817 * since these URBs always execute synchronously.
818 */
819 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
820 {
821 unsigned long flags;
822 int rc;
823
824 spin_lock_irqsave(&hcd_root_hub_lock, flags);
825 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
826 if (rc)
827 goto done;
828
829 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
830 ; /* Do nothing */
831
832 } else { /* Status URB */
833 if (!hcd->uses_new_polling)
834 del_timer (&hcd->rh_timer);
835 if (urb == hcd->status_urb) {
836 hcd->status_urb = NULL;
837 usb_hcd_unlink_urb_from_ep(hcd, urb);
838 usb_hcd_giveback_urb(hcd, urb, status);
839 }
840 }
841 done:
842 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
843 return rc;
844 }
845
846
847
848 /*
849 * Show & store the current value of authorized_default
850 */
851 static ssize_t authorized_default_show(struct device *dev,
852 struct device_attribute *attr, char *buf)
853 {
854 struct usb_device *rh_usb_dev = to_usb_device(dev);
855 struct usb_bus *usb_bus = rh_usb_dev->bus;
856 struct usb_hcd *usb_hcd;
857
858 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
859 return -ENODEV;
860 usb_hcd = bus_to_hcd(usb_bus);
861 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
862 }
863
864 static ssize_t authorized_default_store(struct device *dev,
865 struct device_attribute *attr,
866 const char *buf, size_t size)
867 {
868 ssize_t result;
869 unsigned val;
870 struct usb_device *rh_usb_dev = to_usb_device(dev);
871 struct usb_bus *usb_bus = rh_usb_dev->bus;
872 struct usb_hcd *usb_hcd;
873
874 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
875 return -ENODEV;
876 usb_hcd = bus_to_hcd(usb_bus);
877 result = sscanf(buf, "%u\n", &val);
878 if (result == 1) {
879 usb_hcd->authorized_default = val ? 1 : 0;
880 result = size;
881 } else {
882 result = -EINVAL;
883 }
884 return result;
885 }
886 static DEVICE_ATTR_RW(authorized_default);
887
888 /* Group all the USB bus attributes */
889 static struct attribute *usb_bus_attrs[] = {
890 &dev_attr_authorized_default.attr,
891 NULL,
892 };
893
894 static struct attribute_group usb_bus_attr_group = {
895 .name = NULL, /* we want them in the same directory */
896 .attrs = usb_bus_attrs,
897 };
898
899
900
901 /*-------------------------------------------------------------------------*/
902
903 /**
904 * usb_bus_init - shared initialization code
905 * @bus: the bus structure being initialized
906 *
907 * This code is used to initialize a usb_bus structure, memory for which is
908 * separately managed.
909 */
910 static void usb_bus_init (struct usb_bus *bus)
911 {
912 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
913
914 bus->devnum_next = 1;
915
916 bus->root_hub = NULL;
917 bus->busnum = -1;
918 bus->bandwidth_allocated = 0;
919 bus->bandwidth_int_reqs = 0;
920 bus->bandwidth_isoc_reqs = 0;
921
922 INIT_LIST_HEAD (&bus->bus_list);
923 }
924
925 /*-------------------------------------------------------------------------*/
926
927 /**
928 * usb_register_bus - registers the USB host controller with the usb core
929 * @bus: pointer to the bus to register
930 * Context: !in_interrupt()
931 *
932 * Assigns a bus number, and links the controller into usbcore data
933 * structures so that it can be seen by scanning the bus list.
934 *
935 * Return: 0 if successful. A negative error code otherwise.
936 */
937 static int usb_register_bus(struct usb_bus *bus)
938 {
939 int result = -E2BIG;
940 int busnum;
941
942 mutex_lock(&usb_bus_list_lock);
943 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
944 if (busnum >= USB_MAXBUS) {
945 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
946 goto error_find_busnum;
947 }
948 set_bit(busnum, busmap);
949 bus->busnum = busnum;
950
951 /* Add it to the local list of buses */
952 list_add (&bus->bus_list, &usb_bus_list);
953 mutex_unlock(&usb_bus_list_lock);
954
955 usb_notify_add_bus(bus);
956
957 dev_info (bus->controller, "new USB bus registered, assigned bus "
958 "number %d\n", bus->busnum);
959 return 0;
960
961 error_find_busnum:
962 mutex_unlock(&usb_bus_list_lock);
963 return result;
964 }
965
966 /**
967 * usb_deregister_bus - deregisters the USB host controller
968 * @bus: pointer to the bus to deregister
969 * Context: !in_interrupt()
970 *
971 * Recycles the bus number, and unlinks the controller from usbcore data
972 * structures so that it won't be seen by scanning the bus list.
973 */
974 static void usb_deregister_bus (struct usb_bus *bus)
975 {
976 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
977
978 /*
979 * NOTE: make sure that all the devices are removed by the
980 * controller code, as well as having it call this when cleaning
981 * itself up
982 */
983 mutex_lock(&usb_bus_list_lock);
984 list_del (&bus->bus_list);
985 mutex_unlock(&usb_bus_list_lock);
986
987 usb_notify_remove_bus(bus);
988
989 clear_bit(bus->busnum, busmap);
990 }
991
992 /**
993 * register_root_hub - called by usb_add_hcd() to register a root hub
994 * @hcd: host controller for this root hub
995 *
996 * This function registers the root hub with the USB subsystem. It sets up
997 * the device properly in the device tree and then calls usb_new_device()
998 * to register the usb device. It also assigns the root hub's USB address
999 * (always 1).
1000 *
1001 * Return: 0 if successful. A negative error code otherwise.
1002 */
1003 static int register_root_hub(struct usb_hcd *hcd)
1004 {
1005 struct device *parent_dev = hcd->self.controller;
1006 struct usb_device *usb_dev = hcd->self.root_hub;
1007 const int devnum = 1;
1008 int retval;
1009
1010 usb_dev->devnum = devnum;
1011 usb_dev->bus->devnum_next = devnum + 1;
1012 memset (&usb_dev->bus->devmap.devicemap, 0,
1013 sizeof usb_dev->bus->devmap.devicemap);
1014 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1015 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1016
1017 mutex_lock(&usb_bus_list_lock);
1018
1019 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1020 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1021 if (retval != sizeof usb_dev->descriptor) {
1022 mutex_unlock(&usb_bus_list_lock);
1023 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 return (retval < 0) ? retval : -EMSGSIZE;
1026 }
1027 if (usb_dev->speed == USB_SPEED_SUPER) {
1028 retval = usb_get_bos_descriptor(usb_dev);
1029 if (retval < 0) {
1030 mutex_unlock(&usb_bus_list_lock);
1031 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1032 dev_name(&usb_dev->dev), retval);
1033 return retval;
1034 }
1035 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1036 }
1037
1038 retval = usb_new_device (usb_dev);
1039 if (retval) {
1040 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1041 dev_name(&usb_dev->dev), retval);
1042 } else {
1043 spin_lock_irq (&hcd_root_hub_lock);
1044 hcd->rh_registered = 1;
1045 spin_unlock_irq (&hcd_root_hub_lock);
1046
1047 /* Did the HC die before the root hub was registered? */
1048 if (HCD_DEAD(hcd))
1049 usb_hc_died (hcd); /* This time clean up */
1050 }
1051 mutex_unlock(&usb_bus_list_lock);
1052
1053 return retval;
1054 }
1055
1056 /*
1057 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1058 * @bus: the bus which the root hub belongs to
1059 * @portnum: the port which is being resumed
1060 *
1061 * HCDs should call this function when they know that a resume signal is
1062 * being sent to a root-hub port. The root hub will be prevented from
1063 * going into autosuspend until usb_hcd_end_port_resume() is called.
1064 *
1065 * The bus's private lock must be held by the caller.
1066 */
1067 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069 unsigned bit = 1 << portnum;
1070
1071 if (!(bus->resuming_ports & bit)) {
1072 bus->resuming_ports |= bit;
1073 pm_runtime_get_noresume(&bus->root_hub->dev);
1074 }
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1077
1078 /*
1079 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1080 * @bus: the bus which the root hub belongs to
1081 * @portnum: the port which is being resumed
1082 *
1083 * HCDs should call this function when they know that a resume signal has
1084 * stopped being sent to a root-hub port. The root hub will be allowed to
1085 * autosuspend again.
1086 *
1087 * The bus's private lock must be held by the caller.
1088 */
1089 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1090 {
1091 unsigned bit = 1 << portnum;
1092
1093 if (bus->resuming_ports & bit) {
1094 bus->resuming_ports &= ~bit;
1095 pm_runtime_put_noidle(&bus->root_hub->dev);
1096 }
1097 }
1098 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1104 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1105 * @is_input: true iff the transaction sends data to the host
1106 * @isoc: true for isochronous transactions, false for interrupt ones
1107 * @bytecount: how many bytes in the transaction.
1108 *
1109 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1110 *
1111 * Note:
1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1113 * scheduled in software, this function is only used for such scheduling.
1114 */
1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1116 {
1117 unsigned long tmp;
1118
1119 switch (speed) {
1120 case USB_SPEED_LOW: /* INTR only */
1121 if (is_input) {
1122 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1124 } else {
1125 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1126 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1127 }
1128 case USB_SPEED_FULL: /* ISOC or INTR */
1129 if (isoc) {
1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1132 } else {
1133 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1134 return 9107L + BW_HOST_DELAY + tmp;
1135 }
1136 case USB_SPEED_HIGH: /* ISOC or INTR */
1137 /* FIXME adjust for input vs output */
1138 if (isoc)
1139 tmp = HS_NSECS_ISO (bytecount);
1140 else
1141 tmp = HS_NSECS (bytecount);
1142 return tmp;
1143 default:
1144 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1145 return -1;
1146 }
1147 }
1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1149
1150
1151 /*-------------------------------------------------------------------------*/
1152
1153 /*
1154 * Generic HC operations.
1155 */
1156
1157 /*-------------------------------------------------------------------------*/
1158
1159 /**
1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1161 * @hcd: host controller to which @urb was submitted
1162 * @urb: URB being submitted
1163 *
1164 * Host controller drivers should call this routine in their enqueue()
1165 * method. The HCD's private spinlock must be held and interrupts must
1166 * be disabled. The actions carried out here are required for URB
1167 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1168 *
1169 * Return: 0 for no error, otherwise a negative error code (in which case
1170 * the enqueue() method must fail). If no error occurs but enqueue() fails
1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1172 * the private spinlock and returning.
1173 */
1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176 int rc = 0;
1177
1178 spin_lock(&hcd_urb_list_lock);
1179
1180 /* Check that the URB isn't being killed */
1181 if (unlikely(atomic_read(&urb->reject))) {
1182 rc = -EPERM;
1183 goto done;
1184 }
1185
1186 if (unlikely(!urb->ep->enabled)) {
1187 rc = -ENOENT;
1188 goto done;
1189 }
1190
1191 if (unlikely(!urb->dev->can_submit)) {
1192 rc = -EHOSTUNREACH;
1193 goto done;
1194 }
1195
1196 /*
1197 * Check the host controller's state and add the URB to the
1198 * endpoint's queue.
1199 */
1200 if (HCD_RH_RUNNING(hcd)) {
1201 urb->unlinked = 0;
1202 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1203 } else {
1204 rc = -ESHUTDOWN;
1205 goto done;
1206 }
1207 done:
1208 spin_unlock(&hcd_urb_list_lock);
1209 return rc;
1210 }
1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1212
1213 /**
1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being checked for unlinkability
1217 * @status: error code to store in @urb if the unlink succeeds
1218 *
1219 * Host controller drivers should call this routine in their dequeue()
1220 * method. The HCD's private spinlock must be held and interrupts must
1221 * be disabled. The actions carried out here are required for making
1222 * sure than an unlink is valid.
1223 *
1224 * Return: 0 for no error, otherwise a negative error code (in which case
1225 * the dequeue() method must fail). The possible error codes are:
1226 *
1227 * -EIDRM: @urb was not submitted or has already completed.
1228 * The completion function may not have been called yet.
1229 *
1230 * -EBUSY: @urb has already been unlinked.
1231 */
1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1233 int status)
1234 {
1235 struct list_head *tmp;
1236
1237 /* insist the urb is still queued */
1238 list_for_each(tmp, &urb->ep->urb_list) {
1239 if (tmp == &urb->urb_list)
1240 break;
1241 }
1242 if (tmp != &urb->urb_list)
1243 return -EIDRM;
1244
1245 /* Any status except -EINPROGRESS means something already started to
1246 * unlink this URB from the hardware. So there's no more work to do.
1247 */
1248 if (urb->unlinked)
1249 return -EBUSY;
1250 urb->unlinked = status;
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1254
1255 /**
1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1257 * @hcd: host controller to which @urb was submitted
1258 * @urb: URB being unlinked
1259 *
1260 * Host controller drivers should call this routine before calling
1261 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1262 * interrupts must be disabled. The actions carried out here are required
1263 * for URB completion.
1264 */
1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1266 {
1267 /* clear all state linking urb to this dev (and hcd) */
1268 spin_lock(&hcd_urb_list_lock);
1269 list_del_init(&urb->urb_list);
1270 spin_unlock(&hcd_urb_list_lock);
1271 }
1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1273
1274 /*
1275 * Some usb host controllers can only perform dma using a small SRAM area.
1276 * The usb core itself is however optimized for host controllers that can dma
1277 * using regular system memory - like pci devices doing bus mastering.
1278 *
1279 * To support host controllers with limited dma capabilites we provide dma
1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1281 * For this to work properly the host controller code must first use the
1282 * function dma_declare_coherent_memory() to point out which memory area
1283 * that should be used for dma allocations.
1284 *
1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1286 * dma using dma_alloc_coherent() which in turn allocates from the memory
1287 * area pointed out with dma_declare_coherent_memory().
1288 *
1289 * So, to summarize...
1290 *
1291 * - We need "local" memory, canonical example being
1292 * a small SRAM on a discrete controller being the
1293 * only memory that the controller can read ...
1294 * (a) "normal" kernel memory is no good, and
1295 * (b) there's not enough to share
1296 *
1297 * - The only *portable* hook for such stuff in the
1298 * DMA framework is dma_declare_coherent_memory()
1299 *
1300 * - So we use that, even though the primary requirement
1301 * is that the memory be "local" (hence addressable
1302 * by that device), not "coherent".
1303 *
1304 */
1305
1306 static int hcd_alloc_coherent(struct usb_bus *bus,
1307 gfp_t mem_flags, dma_addr_t *dma_handle,
1308 void **vaddr_handle, size_t size,
1309 enum dma_data_direction dir)
1310 {
1311 unsigned char *vaddr;
1312
1313 if (*vaddr_handle == NULL) {
1314 WARN_ON_ONCE(1);
1315 return -EFAULT;
1316 }
1317
1318 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1319 mem_flags, dma_handle);
1320 if (!vaddr)
1321 return -ENOMEM;
1322
1323 /*
1324 * Store the virtual address of the buffer at the end
1325 * of the allocated dma buffer. The size of the buffer
1326 * may be uneven so use unaligned functions instead
1327 * of just rounding up. It makes sense to optimize for
1328 * memory footprint over access speed since the amount
1329 * of memory available for dma may be limited.
1330 */
1331 put_unaligned((unsigned long)*vaddr_handle,
1332 (unsigned long *)(vaddr + size));
1333
1334 if (dir == DMA_TO_DEVICE)
1335 memcpy(vaddr, *vaddr_handle, size);
1336
1337 *vaddr_handle = vaddr;
1338 return 0;
1339 }
1340
1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1342 void **vaddr_handle, size_t size,
1343 enum dma_data_direction dir)
1344 {
1345 unsigned char *vaddr = *vaddr_handle;
1346
1347 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1348
1349 if (dir == DMA_FROM_DEVICE)
1350 memcpy(vaddr, *vaddr_handle, size);
1351
1352 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1353
1354 *vaddr_handle = vaddr;
1355 *dma_handle = 0;
1356 }
1357
1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 {
1360 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1361 dma_unmap_single(hcd->self.controller,
1362 urb->setup_dma,
1363 sizeof(struct usb_ctrlrequest),
1364 DMA_TO_DEVICE);
1365 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1366 hcd_free_coherent(urb->dev->bus,
1367 &urb->setup_dma,
1368 (void **) &urb->setup_packet,
1369 sizeof(struct usb_ctrlrequest),
1370 DMA_TO_DEVICE);
1371
1372 /* Make it safe to call this routine more than once */
1373 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1374 }
1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1376
1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378 {
1379 if (hcd->driver->unmap_urb_for_dma)
1380 hcd->driver->unmap_urb_for_dma(hcd, urb);
1381 else
1382 usb_hcd_unmap_urb_for_dma(hcd, urb);
1383 }
1384
1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1386 {
1387 enum dma_data_direction dir;
1388
1389 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1390
1391 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1392 if (urb->transfer_flags & URB_DMA_MAP_SG)
1393 dma_unmap_sg(hcd->self.controller,
1394 urb->sg,
1395 urb->num_sgs,
1396 dir);
1397 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1398 dma_unmap_page(hcd->self.controller,
1399 urb->transfer_dma,
1400 urb->transfer_buffer_length,
1401 dir);
1402 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1403 dma_unmap_single(hcd->self.controller,
1404 urb->transfer_dma,
1405 urb->transfer_buffer_length,
1406 dir);
1407 else if (urb->transfer_flags & URB_MAP_LOCAL)
1408 hcd_free_coherent(urb->dev->bus,
1409 &urb->transfer_dma,
1410 &urb->transfer_buffer,
1411 urb->transfer_buffer_length,
1412 dir);
1413
1414 /* Make it safe to call this routine more than once */
1415 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1416 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1417 }
1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1419
1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1421 gfp_t mem_flags)
1422 {
1423 if (hcd->driver->map_urb_for_dma)
1424 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1425 else
1426 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1427 }
1428
1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1430 gfp_t mem_flags)
1431 {
1432 enum dma_data_direction dir;
1433 int ret = 0;
1434
1435 /* Map the URB's buffers for DMA access.
1436 * Lower level HCD code should use *_dma exclusively,
1437 * unless it uses pio or talks to another transport,
1438 * or uses the provided scatter gather list for bulk.
1439 */
1440
1441 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1442 if (hcd->self.uses_pio_for_control)
1443 return ret;
1444 if (hcd->self.uses_dma) {
1445 urb->setup_dma = dma_map_single(
1446 hcd->self.controller,
1447 urb->setup_packet,
1448 sizeof(struct usb_ctrlrequest),
1449 DMA_TO_DEVICE);
1450 if (dma_mapping_error(hcd->self.controller,
1451 urb->setup_dma))
1452 return -EAGAIN;
1453 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1454 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1455 ret = hcd_alloc_coherent(
1456 urb->dev->bus, mem_flags,
1457 &urb->setup_dma,
1458 (void **)&urb->setup_packet,
1459 sizeof(struct usb_ctrlrequest),
1460 DMA_TO_DEVICE);
1461 if (ret)
1462 return ret;
1463 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1464 }
1465 }
1466
1467 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1468 if (urb->transfer_buffer_length != 0
1469 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1470 if (hcd->self.uses_dma) {
1471 if (urb->num_sgs) {
1472 int n;
1473
1474 /* We don't support sg for isoc transfers ! */
1475 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1476 WARN_ON(1);
1477 return -EINVAL;
1478 }
1479
1480 n = dma_map_sg(
1481 hcd->self.controller,
1482 urb->sg,
1483 urb->num_sgs,
1484 dir);
1485 if (n <= 0)
1486 ret = -EAGAIN;
1487 else
1488 urb->transfer_flags |= URB_DMA_MAP_SG;
1489 urb->num_mapped_sgs = n;
1490 if (n != urb->num_sgs)
1491 urb->transfer_flags |=
1492 URB_DMA_SG_COMBINED;
1493 } else if (urb->sg) {
1494 struct scatterlist *sg = urb->sg;
1495 urb->transfer_dma = dma_map_page(
1496 hcd->self.controller,
1497 sg_page(sg),
1498 sg->offset,
1499 urb->transfer_buffer_length,
1500 dir);
1501 if (dma_mapping_error(hcd->self.controller,
1502 urb->transfer_dma))
1503 ret = -EAGAIN;
1504 else
1505 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1506 } else {
1507 urb->transfer_dma = dma_map_single(
1508 hcd->self.controller,
1509 urb->transfer_buffer,
1510 urb->transfer_buffer_length,
1511 dir);
1512 if (dma_mapping_error(hcd->self.controller,
1513 urb->transfer_dma))
1514 ret = -EAGAIN;
1515 else
1516 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1517 }
1518 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1519 ret = hcd_alloc_coherent(
1520 urb->dev->bus, mem_flags,
1521 &urb->transfer_dma,
1522 &urb->transfer_buffer,
1523 urb->transfer_buffer_length,
1524 dir);
1525 if (ret == 0)
1526 urb->transfer_flags |= URB_MAP_LOCAL;
1527 }
1528 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1529 URB_SETUP_MAP_LOCAL)))
1530 usb_hcd_unmap_urb_for_dma(hcd, urb);
1531 }
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1535
1536 /*-------------------------------------------------------------------------*/
1537
1538 /* may be called in any context with a valid urb->dev usecount
1539 * caller surrenders "ownership" of urb
1540 * expects usb_submit_urb() to have sanity checked and conditioned all
1541 * inputs in the urb
1542 */
1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1544 {
1545 int status;
1546 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1547
1548 /* increment urb's reference count as part of giving it to the HCD
1549 * (which will control it). HCD guarantees that it either returns
1550 * an error or calls giveback(), but not both.
1551 */
1552 usb_get_urb(urb);
1553 atomic_inc(&urb->use_count);
1554 atomic_inc(&urb->dev->urbnum);
1555 usbmon_urb_submit(&hcd->self, urb);
1556
1557 /* NOTE requirements on root-hub callers (usbfs and the hub
1558 * driver, for now): URBs' urb->transfer_buffer must be
1559 * valid and usb_buffer_{sync,unmap}() not be needed, since
1560 * they could clobber root hub response data. Also, control
1561 * URBs must be submitted in process context with interrupts
1562 * enabled.
1563 */
1564
1565 if (is_root_hub(urb->dev)) {
1566 status = rh_urb_enqueue(hcd, urb);
1567 } else {
1568 status = map_urb_for_dma(hcd, urb, mem_flags);
1569 if (likely(status == 0)) {
1570 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1571 if (unlikely(status))
1572 unmap_urb_for_dma(hcd, urb);
1573 }
1574 }
1575
1576 if (unlikely(status)) {
1577 usbmon_urb_submit_error(&hcd->self, urb, status);
1578 urb->hcpriv = NULL;
1579 INIT_LIST_HEAD(&urb->urb_list);
1580 atomic_dec(&urb->use_count);
1581 atomic_dec(&urb->dev->urbnum);
1582 if (atomic_read(&urb->reject))
1583 wake_up(&usb_kill_urb_queue);
1584 usb_put_urb(urb);
1585 }
1586 return status;
1587 }
1588
1589 /*-------------------------------------------------------------------------*/
1590
1591 /* this makes the hcd giveback() the urb more quickly, by kicking it
1592 * off hardware queues (which may take a while) and returning it as
1593 * soon as practical. we've already set up the urb's return status,
1594 * but we can't know if the callback completed already.
1595 */
1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1597 {
1598 int value;
1599
1600 if (is_root_hub(urb->dev))
1601 value = usb_rh_urb_dequeue(hcd, urb, status);
1602 else {
1603
1604 /* The only reason an HCD might fail this call is if
1605 * it has not yet fully queued the urb to begin with.
1606 * Such failures should be harmless. */
1607 value = hcd->driver->urb_dequeue(hcd, urb, status);
1608 }
1609 return value;
1610 }
1611
1612 /*
1613 * called in any context
1614 *
1615 * caller guarantees urb won't be recycled till both unlink()
1616 * and the urb's completion function return
1617 */
1618 int usb_hcd_unlink_urb (struct urb *urb, int status)
1619 {
1620 struct usb_hcd *hcd;
1621 int retval = -EIDRM;
1622 unsigned long flags;
1623
1624 /* Prevent the device and bus from going away while
1625 * the unlink is carried out. If they are already gone
1626 * then urb->use_count must be 0, since disconnected
1627 * devices can't have any active URBs.
1628 */
1629 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1630 if (atomic_read(&urb->use_count) > 0) {
1631 retval = 0;
1632 usb_get_dev(urb->dev);
1633 }
1634 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1635 if (retval == 0) {
1636 hcd = bus_to_hcd(urb->dev->bus);
1637 retval = unlink1(hcd, urb, status);
1638 usb_put_dev(urb->dev);
1639 }
1640
1641 if (retval == 0)
1642 retval = -EINPROGRESS;
1643 else if (retval != -EIDRM && retval != -EBUSY)
1644 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1645 urb, retval);
1646 return retval;
1647 }
1648
1649 /*-------------------------------------------------------------------------*/
1650
1651 static void __usb_hcd_giveback_urb(struct urb *urb)
1652 {
1653 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1654 struct usb_anchor *anchor = urb->anchor;
1655 int status = urb->unlinked;
1656 unsigned long flags;
1657
1658 urb->hcpriv = NULL;
1659 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1660 urb->actual_length < urb->transfer_buffer_length &&
1661 !status))
1662 status = -EREMOTEIO;
1663
1664 unmap_urb_for_dma(hcd, urb);
1665 usbmon_urb_complete(&hcd->self, urb, status);
1666 usb_anchor_suspend_wakeups(anchor);
1667 usb_unanchor_urb(urb);
1668
1669 /* pass ownership to the completion handler */
1670 urb->status = status;
1671
1672 /*
1673 * We disable local IRQs here avoid possible deadlock because
1674 * drivers may call spin_lock() to hold lock which might be
1675 * acquired in one hard interrupt handler.
1676 *
1677 * The local_irq_save()/local_irq_restore() around complete()
1678 * will be removed if current USB drivers have been cleaned up
1679 * and no one may trigger the above deadlock situation when
1680 * running complete() in tasklet.
1681 */
1682 local_irq_save(flags);
1683 urb->complete(urb);
1684 local_irq_restore(flags);
1685
1686 usb_anchor_resume_wakeups(anchor);
1687 atomic_dec(&urb->use_count);
1688 if (unlikely(atomic_read(&urb->reject)))
1689 wake_up(&usb_kill_urb_queue);
1690 usb_put_urb(urb);
1691 }
1692
1693 static void usb_giveback_urb_bh(unsigned long param)
1694 {
1695 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1696 struct list_head local_list;
1697
1698 spin_lock_irq(&bh->lock);
1699 bh->running = true;
1700 restart:
1701 list_replace_init(&bh->head, &local_list);
1702 spin_unlock_irq(&bh->lock);
1703
1704 while (!list_empty(&local_list)) {
1705 struct urb *urb;
1706
1707 urb = list_entry(local_list.next, struct urb, urb_list);
1708 list_del_init(&urb->urb_list);
1709 bh->completing_ep = urb->ep;
1710 __usb_hcd_giveback_urb(urb);
1711 bh->completing_ep = NULL;
1712 }
1713
1714 /* check if there are new URBs to giveback */
1715 spin_lock_irq(&bh->lock);
1716 if (!list_empty(&bh->head))
1717 goto restart;
1718 bh->running = false;
1719 spin_unlock_irq(&bh->lock);
1720 }
1721
1722 /**
1723 * usb_hcd_giveback_urb - return URB from HCD to device driver
1724 * @hcd: host controller returning the URB
1725 * @urb: urb being returned to the USB device driver.
1726 * @status: completion status code for the URB.
1727 * Context: in_interrupt()
1728 *
1729 * This hands the URB from HCD to its USB device driver, using its
1730 * completion function. The HCD has freed all per-urb resources
1731 * (and is done using urb->hcpriv). It also released all HCD locks;
1732 * the device driver won't cause problems if it frees, modifies,
1733 * or resubmits this URB.
1734 *
1735 * If @urb was unlinked, the value of @status will be overridden by
1736 * @urb->unlinked. Erroneous short transfers are detected in case
1737 * the HCD hasn't checked for them.
1738 */
1739 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1740 {
1741 struct giveback_urb_bh *bh;
1742 bool running, high_prio_bh;
1743
1744 /* pass status to tasklet via unlinked */
1745 if (likely(!urb->unlinked))
1746 urb->unlinked = status;
1747
1748 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1749 __usb_hcd_giveback_urb(urb);
1750 return;
1751 }
1752
1753 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1754 bh = &hcd->high_prio_bh;
1755 high_prio_bh = true;
1756 } else {
1757 bh = &hcd->low_prio_bh;
1758 high_prio_bh = false;
1759 }
1760
1761 spin_lock(&bh->lock);
1762 list_add_tail(&urb->urb_list, &bh->head);
1763 running = bh->running;
1764 spin_unlock(&bh->lock);
1765
1766 if (running)
1767 ;
1768 else if (high_prio_bh)
1769 tasklet_hi_schedule(&bh->bh);
1770 else
1771 tasklet_schedule(&bh->bh);
1772 }
1773 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1774
1775 /*-------------------------------------------------------------------------*/
1776
1777 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1778 * queue to drain completely. The caller must first insure that no more
1779 * URBs can be submitted for this endpoint.
1780 */
1781 void usb_hcd_flush_endpoint(struct usb_device *udev,
1782 struct usb_host_endpoint *ep)
1783 {
1784 struct usb_hcd *hcd;
1785 struct urb *urb;
1786
1787 if (!ep)
1788 return;
1789 might_sleep();
1790 hcd = bus_to_hcd(udev->bus);
1791
1792 /* No more submits can occur */
1793 spin_lock_irq(&hcd_urb_list_lock);
1794 rescan:
1795 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1796 int is_in;
1797
1798 if (urb->unlinked)
1799 continue;
1800 usb_get_urb (urb);
1801 is_in = usb_urb_dir_in(urb);
1802 spin_unlock(&hcd_urb_list_lock);
1803
1804 /* kick hcd */
1805 unlink1(hcd, urb, -ESHUTDOWN);
1806 dev_dbg (hcd->self.controller,
1807 "shutdown urb %p ep%d%s%s\n",
1808 urb, usb_endpoint_num(&ep->desc),
1809 is_in ? "in" : "out",
1810 ({ char *s;
1811
1812 switch (usb_endpoint_type(&ep->desc)) {
1813 case USB_ENDPOINT_XFER_CONTROL:
1814 s = ""; break;
1815 case USB_ENDPOINT_XFER_BULK:
1816 s = "-bulk"; break;
1817 case USB_ENDPOINT_XFER_INT:
1818 s = "-intr"; break;
1819 default:
1820 s = "-iso"; break;
1821 };
1822 s;
1823 }));
1824 usb_put_urb (urb);
1825
1826 /* list contents may have changed */
1827 spin_lock(&hcd_urb_list_lock);
1828 goto rescan;
1829 }
1830 spin_unlock_irq(&hcd_urb_list_lock);
1831
1832 /* Wait until the endpoint queue is completely empty */
1833 while (!list_empty (&ep->urb_list)) {
1834 spin_lock_irq(&hcd_urb_list_lock);
1835
1836 /* The list may have changed while we acquired the spinlock */
1837 urb = NULL;
1838 if (!list_empty (&ep->urb_list)) {
1839 urb = list_entry (ep->urb_list.prev, struct urb,
1840 urb_list);
1841 usb_get_urb (urb);
1842 }
1843 spin_unlock_irq(&hcd_urb_list_lock);
1844
1845 if (urb) {
1846 usb_kill_urb (urb);
1847 usb_put_urb (urb);
1848 }
1849 }
1850 }
1851
1852 /**
1853 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1854 * the bus bandwidth
1855 * @udev: target &usb_device
1856 * @new_config: new configuration to install
1857 * @cur_alt: the current alternate interface setting
1858 * @new_alt: alternate interface setting that is being installed
1859 *
1860 * To change configurations, pass in the new configuration in new_config,
1861 * and pass NULL for cur_alt and new_alt.
1862 *
1863 * To reset a device's configuration (put the device in the ADDRESSED state),
1864 * pass in NULL for new_config, cur_alt, and new_alt.
1865 *
1866 * To change alternate interface settings, pass in NULL for new_config,
1867 * pass in the current alternate interface setting in cur_alt,
1868 * and pass in the new alternate interface setting in new_alt.
1869 *
1870 * Return: An error if the requested bandwidth change exceeds the
1871 * bus bandwidth or host controller internal resources.
1872 */
1873 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1874 struct usb_host_config *new_config,
1875 struct usb_host_interface *cur_alt,
1876 struct usb_host_interface *new_alt)
1877 {
1878 int num_intfs, i, j;
1879 struct usb_host_interface *alt = NULL;
1880 int ret = 0;
1881 struct usb_hcd *hcd;
1882 struct usb_host_endpoint *ep;
1883
1884 hcd = bus_to_hcd(udev->bus);
1885 if (!hcd->driver->check_bandwidth)
1886 return 0;
1887
1888 /* Configuration is being removed - set configuration 0 */
1889 if (!new_config && !cur_alt) {
1890 for (i = 1; i < 16; ++i) {
1891 ep = udev->ep_out[i];
1892 if (ep)
1893 hcd->driver->drop_endpoint(hcd, udev, ep);
1894 ep = udev->ep_in[i];
1895 if (ep)
1896 hcd->driver->drop_endpoint(hcd, udev, ep);
1897 }
1898 hcd->driver->check_bandwidth(hcd, udev);
1899 return 0;
1900 }
1901 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1902 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1903 * of the bus. There will always be bandwidth for endpoint 0, so it's
1904 * ok to exclude it.
1905 */
1906 if (new_config) {
1907 num_intfs = new_config->desc.bNumInterfaces;
1908 /* Remove endpoints (except endpoint 0, which is always on the
1909 * schedule) from the old config from the schedule
1910 */
1911 for (i = 1; i < 16; ++i) {
1912 ep = udev->ep_out[i];
1913 if (ep) {
1914 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1915 if (ret < 0)
1916 goto reset;
1917 }
1918 ep = udev->ep_in[i];
1919 if (ep) {
1920 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1921 if (ret < 0)
1922 goto reset;
1923 }
1924 }
1925 for (i = 0; i < num_intfs; ++i) {
1926 struct usb_host_interface *first_alt;
1927 int iface_num;
1928
1929 first_alt = &new_config->intf_cache[i]->altsetting[0];
1930 iface_num = first_alt->desc.bInterfaceNumber;
1931 /* Set up endpoints for alternate interface setting 0 */
1932 alt = usb_find_alt_setting(new_config, iface_num, 0);
1933 if (!alt)
1934 /* No alt setting 0? Pick the first setting. */
1935 alt = first_alt;
1936
1937 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1938 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1939 if (ret < 0)
1940 goto reset;
1941 }
1942 }
1943 }
1944 if (cur_alt && new_alt) {
1945 struct usb_interface *iface = usb_ifnum_to_if(udev,
1946 cur_alt->desc.bInterfaceNumber);
1947
1948 if (!iface)
1949 return -EINVAL;
1950 if (iface->resetting_device) {
1951 /*
1952 * The USB core just reset the device, so the xHCI host
1953 * and the device will think alt setting 0 is installed.
1954 * However, the USB core will pass in the alternate
1955 * setting installed before the reset as cur_alt. Dig
1956 * out the alternate setting 0 structure, or the first
1957 * alternate setting if a broken device doesn't have alt
1958 * setting 0.
1959 */
1960 cur_alt = usb_altnum_to_altsetting(iface, 0);
1961 if (!cur_alt)
1962 cur_alt = &iface->altsetting[0];
1963 }
1964
1965 /* Drop all the endpoints in the current alt setting */
1966 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1967 ret = hcd->driver->drop_endpoint(hcd, udev,
1968 &cur_alt->endpoint[i]);
1969 if (ret < 0)
1970 goto reset;
1971 }
1972 /* Add all the endpoints in the new alt setting */
1973 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1974 ret = hcd->driver->add_endpoint(hcd, udev,
1975 &new_alt->endpoint[i]);
1976 if (ret < 0)
1977 goto reset;
1978 }
1979 }
1980 ret = hcd->driver->check_bandwidth(hcd, udev);
1981 reset:
1982 if (ret < 0)
1983 hcd->driver->reset_bandwidth(hcd, udev);
1984 return ret;
1985 }
1986
1987 /* Disables the endpoint: synchronizes with the hcd to make sure all
1988 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1989 * have been called previously. Use for set_configuration, set_interface,
1990 * driver removal, physical disconnect.
1991 *
1992 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1993 * type, maxpacket size, toggle, halt status, and scheduling.
1994 */
1995 void usb_hcd_disable_endpoint(struct usb_device *udev,
1996 struct usb_host_endpoint *ep)
1997 {
1998 struct usb_hcd *hcd;
1999
2000 might_sleep();
2001 hcd = bus_to_hcd(udev->bus);
2002 if (hcd->driver->endpoint_disable)
2003 hcd->driver->endpoint_disable(hcd, ep);
2004 }
2005
2006 /**
2007 * usb_hcd_reset_endpoint - reset host endpoint state
2008 * @udev: USB device.
2009 * @ep: the endpoint to reset.
2010 *
2011 * Resets any host endpoint state such as the toggle bit, sequence
2012 * number and current window.
2013 */
2014 void usb_hcd_reset_endpoint(struct usb_device *udev,
2015 struct usb_host_endpoint *ep)
2016 {
2017 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2018
2019 if (hcd->driver->endpoint_reset)
2020 hcd->driver->endpoint_reset(hcd, ep);
2021 else {
2022 int epnum = usb_endpoint_num(&ep->desc);
2023 int is_out = usb_endpoint_dir_out(&ep->desc);
2024 int is_control = usb_endpoint_xfer_control(&ep->desc);
2025
2026 usb_settoggle(udev, epnum, is_out, 0);
2027 if (is_control)
2028 usb_settoggle(udev, epnum, !is_out, 0);
2029 }
2030 }
2031
2032 /**
2033 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2034 * @interface: alternate setting that includes all endpoints.
2035 * @eps: array of endpoints that need streams.
2036 * @num_eps: number of endpoints in the array.
2037 * @num_streams: number of streams to allocate.
2038 * @mem_flags: flags hcd should use to allocate memory.
2039 *
2040 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2041 * Drivers may queue multiple transfers to different stream IDs, which may
2042 * complete in a different order than they were queued.
2043 *
2044 * Return: On success, the number of allocated streams. On failure, a negative
2045 * error code.
2046 */
2047 int usb_alloc_streams(struct usb_interface *interface,
2048 struct usb_host_endpoint **eps, unsigned int num_eps,
2049 unsigned int num_streams, gfp_t mem_flags)
2050 {
2051 struct usb_hcd *hcd;
2052 struct usb_device *dev;
2053 int i;
2054
2055 dev = interface_to_usbdev(interface);
2056 hcd = bus_to_hcd(dev->bus);
2057 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2058 return -EINVAL;
2059 if (dev->speed != USB_SPEED_SUPER)
2060 return -EINVAL;
2061
2062 /* Streams only apply to bulk endpoints. */
2063 for (i = 0; i < num_eps; i++)
2064 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2065 return -EINVAL;
2066
2067 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2068 num_streams, mem_flags);
2069 }
2070 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2071
2072 /**
2073 * usb_free_streams - free bulk endpoint stream IDs.
2074 * @interface: alternate setting that includes all endpoints.
2075 * @eps: array of endpoints to remove streams from.
2076 * @num_eps: number of endpoints in the array.
2077 * @mem_flags: flags hcd should use to allocate memory.
2078 *
2079 * Reverts a group of bulk endpoints back to not using stream IDs.
2080 * Can fail if we are given bad arguments, or HCD is broken.
2081 *
2082 * Return: On success, the number of allocated streams. On failure, a negative
2083 * error code.
2084 */
2085 int usb_free_streams(struct usb_interface *interface,
2086 struct usb_host_endpoint **eps, unsigned int num_eps,
2087 gfp_t mem_flags)
2088 {
2089 struct usb_hcd *hcd;
2090 struct usb_device *dev;
2091 int i;
2092
2093 dev = interface_to_usbdev(interface);
2094 hcd = bus_to_hcd(dev->bus);
2095 if (dev->speed != USB_SPEED_SUPER)
2096 return -EINVAL;
2097
2098 /* Streams only apply to bulk endpoints. */
2099 for (i = 0; i < num_eps; i++)
2100 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
2101 return -EINVAL;
2102
2103 return hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2104 }
2105 EXPORT_SYMBOL_GPL(usb_free_streams);
2106
2107 /* Protect against drivers that try to unlink URBs after the device
2108 * is gone, by waiting until all unlinks for @udev are finished.
2109 * Since we don't currently track URBs by device, simply wait until
2110 * nothing is running in the locked region of usb_hcd_unlink_urb().
2111 */
2112 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2113 {
2114 spin_lock_irq(&hcd_urb_unlink_lock);
2115 spin_unlock_irq(&hcd_urb_unlink_lock);
2116 }
2117
2118 /*-------------------------------------------------------------------------*/
2119
2120 /* called in any context */
2121 int usb_hcd_get_frame_number (struct usb_device *udev)
2122 {
2123 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2124
2125 if (!HCD_RH_RUNNING(hcd))
2126 return -ESHUTDOWN;
2127 return hcd->driver->get_frame_number (hcd);
2128 }
2129
2130 /*-------------------------------------------------------------------------*/
2131
2132 #ifdef CONFIG_PM
2133
2134 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2135 {
2136 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2137 int status;
2138 int old_state = hcd->state;
2139
2140 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2141 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2142 rhdev->do_remote_wakeup);
2143 if (HCD_DEAD(hcd)) {
2144 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2145 return 0;
2146 }
2147
2148 if (!hcd->driver->bus_suspend) {
2149 status = -ENOENT;
2150 } else {
2151 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2152 hcd->state = HC_STATE_QUIESCING;
2153 status = hcd->driver->bus_suspend(hcd);
2154 }
2155 if (status == 0) {
2156 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2157 hcd->state = HC_STATE_SUSPENDED;
2158
2159 /* Did we race with a root-hub wakeup event? */
2160 if (rhdev->do_remote_wakeup) {
2161 char buffer[6];
2162
2163 status = hcd->driver->hub_status_data(hcd, buffer);
2164 if (status != 0) {
2165 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2166 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2167 status = -EBUSY;
2168 }
2169 }
2170 } else {
2171 spin_lock_irq(&hcd_root_hub_lock);
2172 if (!HCD_DEAD(hcd)) {
2173 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2174 hcd->state = old_state;
2175 }
2176 spin_unlock_irq(&hcd_root_hub_lock);
2177 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2178 "suspend", status);
2179 }
2180 return status;
2181 }
2182
2183 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2184 {
2185 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2186 int status;
2187 int old_state = hcd->state;
2188
2189 dev_dbg(&rhdev->dev, "usb %sresume\n",
2190 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2191 if (HCD_DEAD(hcd)) {
2192 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2193 return 0;
2194 }
2195 if (!hcd->driver->bus_resume)
2196 return -ENOENT;
2197 if (HCD_RH_RUNNING(hcd))
2198 return 0;
2199
2200 hcd->state = HC_STATE_RESUMING;
2201 status = hcd->driver->bus_resume(hcd);
2202 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2203 if (status == 0) {
2204 struct usb_device *udev;
2205 int port1;
2206
2207 spin_lock_irq(&hcd_root_hub_lock);
2208 if (!HCD_DEAD(hcd)) {
2209 usb_set_device_state(rhdev, rhdev->actconfig
2210 ? USB_STATE_CONFIGURED
2211 : USB_STATE_ADDRESS);
2212 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2213 hcd->state = HC_STATE_RUNNING;
2214 }
2215 spin_unlock_irq(&hcd_root_hub_lock);
2216
2217 /*
2218 * Check whether any of the enabled ports on the root hub are
2219 * unsuspended. If they are then a TRSMRCY delay is needed
2220 * (this is what the USB-2 spec calls a "global resume").
2221 * Otherwise we can skip the delay.
2222 */
2223 usb_hub_for_each_child(rhdev, port1, udev) {
2224 if (udev->state != USB_STATE_NOTATTACHED &&
2225 !udev->port_is_suspended) {
2226 usleep_range(10000, 11000); /* TRSMRCY */
2227 break;
2228 }
2229 }
2230 } else {
2231 hcd->state = old_state;
2232 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2233 "resume", status);
2234 if (status != -ESHUTDOWN)
2235 usb_hc_died(hcd);
2236 }
2237 return status;
2238 }
2239
2240 #endif /* CONFIG_PM */
2241
2242 #ifdef CONFIG_PM_RUNTIME
2243
2244 /* Workqueue routine for root-hub remote wakeup */
2245 static void hcd_resume_work(struct work_struct *work)
2246 {
2247 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2248 struct usb_device *udev = hcd->self.root_hub;
2249
2250 usb_lock_device(udev);
2251 usb_remote_wakeup(udev);
2252 usb_unlock_device(udev);
2253 }
2254
2255 /**
2256 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2257 * @hcd: host controller for this root hub
2258 *
2259 * The USB host controller calls this function when its root hub is
2260 * suspended (with the remote wakeup feature enabled) and a remote
2261 * wakeup request is received. The routine submits a workqueue request
2262 * to resume the root hub (that is, manage its downstream ports again).
2263 */
2264 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2265 {
2266 unsigned long flags;
2267
2268 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2269 if (hcd->rh_registered) {
2270 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2271 queue_work(pm_wq, &hcd->wakeup_work);
2272 }
2273 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2274 }
2275 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2276
2277 #endif /* CONFIG_PM_RUNTIME */
2278
2279 /*-------------------------------------------------------------------------*/
2280
2281 #ifdef CONFIG_USB_OTG
2282
2283 /**
2284 * usb_bus_start_enum - start immediate enumeration (for OTG)
2285 * @bus: the bus (must use hcd framework)
2286 * @port_num: 1-based number of port; usually bus->otg_port
2287 * Context: in_interrupt()
2288 *
2289 * Starts enumeration, with an immediate reset followed later by
2290 * khubd identifying and possibly configuring the device.
2291 * This is needed by OTG controller drivers, where it helps meet
2292 * HNP protocol timing requirements for starting a port reset.
2293 *
2294 * Return: 0 if successful.
2295 */
2296 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2297 {
2298 struct usb_hcd *hcd;
2299 int status = -EOPNOTSUPP;
2300
2301 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2302 * boards with root hubs hooked up to internal devices (instead of
2303 * just the OTG port) may need more attention to resetting...
2304 */
2305 hcd = container_of (bus, struct usb_hcd, self);
2306 if (port_num && hcd->driver->start_port_reset)
2307 status = hcd->driver->start_port_reset(hcd, port_num);
2308
2309 /* run khubd shortly after (first) root port reset finishes;
2310 * it may issue others, until at least 50 msecs have passed.
2311 */
2312 if (status == 0)
2313 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2314 return status;
2315 }
2316 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2317
2318 #endif
2319
2320 /*-------------------------------------------------------------------------*/
2321
2322 /**
2323 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2324 * @irq: the IRQ being raised
2325 * @__hcd: pointer to the HCD whose IRQ is being signaled
2326 *
2327 * If the controller isn't HALTed, calls the driver's irq handler.
2328 * Checks whether the controller is now dead.
2329 *
2330 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2331 */
2332 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2333 {
2334 struct usb_hcd *hcd = __hcd;
2335 irqreturn_t rc;
2336
2337 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2338 rc = IRQ_NONE;
2339 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2340 rc = IRQ_NONE;
2341 else
2342 rc = IRQ_HANDLED;
2343
2344 return rc;
2345 }
2346 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2347
2348 /*-------------------------------------------------------------------------*/
2349
2350 /**
2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352 * @hcd: pointer to the HCD representing the controller
2353 *
2354 * This is called by bus glue to report a USB host controller that died
2355 * while operations may still have been pending. It's called automatically
2356 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 *
2358 * Only call this function with the primary HCD.
2359 */
2360 void usb_hc_died (struct usb_hcd *hcd)
2361 {
2362 unsigned long flags;
2363
2364 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369 if (hcd->rh_registered) {
2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371
2372 /* make khubd clean up old urbs and devices */
2373 usb_set_device_state (hcd->self.root_hub,
2374 USB_STATE_NOTATTACHED);
2375 usb_kick_khubd (hcd->self.root_hub);
2376 }
2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378 hcd = hcd->shared_hcd;
2379 if (hcd->rh_registered) {
2380 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2381
2382 /* make khubd clean up old urbs and devices */
2383 usb_set_device_state(hcd->self.root_hub,
2384 USB_STATE_NOTATTACHED);
2385 usb_kick_khubd(hcd->self.root_hub);
2386 }
2387 }
2388 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2389 /* Make sure that the other roothub is also deallocated. */
2390 }
2391 EXPORT_SYMBOL_GPL (usb_hc_died);
2392
2393 /*-------------------------------------------------------------------------*/
2394
2395 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2396 {
2397
2398 spin_lock_init(&bh->lock);
2399 INIT_LIST_HEAD(&bh->head);
2400 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2401 }
2402
2403 /**
2404 * usb_create_shared_hcd - create and initialize an HCD structure
2405 * @driver: HC driver that will use this hcd
2406 * @dev: device for this HC, stored in hcd->self.controller
2407 * @bus_name: value to store in hcd->self.bus_name
2408 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2409 * PCI device. Only allocate certain resources for the primary HCD
2410 * Context: !in_interrupt()
2411 *
2412 * Allocate a struct usb_hcd, with extra space at the end for the
2413 * HC driver's private data. Initialize the generic members of the
2414 * hcd structure.
2415 *
2416 * Return: On success, a pointer to the created and initialized HCD structure.
2417 * On failure (e.g. if memory is unavailable), %NULL.
2418 */
2419 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2420 struct device *dev, const char *bus_name,
2421 struct usb_hcd *primary_hcd)
2422 {
2423 struct usb_hcd *hcd;
2424
2425 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2426 if (!hcd) {
2427 dev_dbg (dev, "hcd alloc failed\n");
2428 return NULL;
2429 }
2430 if (primary_hcd == NULL) {
2431 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2432 GFP_KERNEL);
2433 if (!hcd->bandwidth_mutex) {
2434 kfree(hcd);
2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436 return NULL;
2437 }
2438 mutex_init(hcd->bandwidth_mutex);
2439 dev_set_drvdata(dev, hcd);
2440 } else {
2441 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2442 hcd->primary_hcd = primary_hcd;
2443 primary_hcd->primary_hcd = primary_hcd;
2444 hcd->shared_hcd = primary_hcd;
2445 primary_hcd->shared_hcd = hcd;
2446 }
2447
2448 kref_init(&hcd->kref);
2449
2450 usb_bus_init(&hcd->self);
2451 hcd->self.controller = dev;
2452 hcd->self.bus_name = bus_name;
2453 hcd->self.uses_dma = (dev->dma_mask != NULL);
2454
2455 init_timer(&hcd->rh_timer);
2456 hcd->rh_timer.function = rh_timer_func;
2457 hcd->rh_timer.data = (unsigned long) hcd;
2458 #ifdef CONFIG_PM_RUNTIME
2459 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2460 #endif
2461
2462 hcd->driver = driver;
2463 hcd->speed = driver->flags & HCD_MASK;
2464 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2465 "USB Host Controller";
2466 return hcd;
2467 }
2468 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2469
2470 /**
2471 * usb_create_hcd - create and initialize an HCD structure
2472 * @driver: HC driver that will use this hcd
2473 * @dev: device for this HC, stored in hcd->self.controller
2474 * @bus_name: value to store in hcd->self.bus_name
2475 * Context: !in_interrupt()
2476 *
2477 * Allocate a struct usb_hcd, with extra space at the end for the
2478 * HC driver's private data. Initialize the generic members of the
2479 * hcd structure.
2480 *
2481 * Return: On success, a pointer to the created and initialized HCD
2482 * structure. On failure (e.g. if memory is unavailable), %NULL.
2483 */
2484 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2485 struct device *dev, const char *bus_name)
2486 {
2487 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2488 }
2489 EXPORT_SYMBOL_GPL(usb_create_hcd);
2490
2491 /*
2492 * Roothubs that share one PCI device must also share the bandwidth mutex.
2493 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2494 * deallocated.
2495 *
2496 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2497 * freed. When hcd_release() is called for the non-primary HCD, set the
2498 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2499 * freed shortly).
2500 */
2501 static void hcd_release (struct kref *kref)
2502 {
2503 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2504
2505 if (usb_hcd_is_primary_hcd(hcd))
2506 kfree(hcd->bandwidth_mutex);
2507 else
2508 hcd->shared_hcd->shared_hcd = NULL;
2509 kfree(hcd);
2510 }
2511
2512 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2513 {
2514 if (hcd)
2515 kref_get (&hcd->kref);
2516 return hcd;
2517 }
2518 EXPORT_SYMBOL_GPL(usb_get_hcd);
2519
2520 void usb_put_hcd (struct usb_hcd *hcd)
2521 {
2522 if (hcd)
2523 kref_put (&hcd->kref, hcd_release);
2524 }
2525 EXPORT_SYMBOL_GPL(usb_put_hcd);
2526
2527 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2528 {
2529 if (!hcd->primary_hcd)
2530 return 1;
2531 return hcd == hcd->primary_hcd;
2532 }
2533 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2534
2535 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2536 {
2537 if (!hcd->driver->find_raw_port_number)
2538 return port1;
2539
2540 return hcd->driver->find_raw_port_number(hcd, port1);
2541 }
2542
2543 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2544 unsigned int irqnum, unsigned long irqflags)
2545 {
2546 int retval;
2547
2548 if (hcd->driver->irq) {
2549
2550 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2551 hcd->driver->description, hcd->self.busnum);
2552 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2553 hcd->irq_descr, hcd);
2554 if (retval != 0) {
2555 dev_err(hcd->self.controller,
2556 "request interrupt %d failed\n",
2557 irqnum);
2558 return retval;
2559 }
2560 hcd->irq = irqnum;
2561 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2562 (hcd->driver->flags & HCD_MEMORY) ?
2563 "io mem" : "io base",
2564 (unsigned long long)hcd->rsrc_start);
2565 } else {
2566 hcd->irq = 0;
2567 if (hcd->rsrc_start)
2568 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2569 (hcd->driver->flags & HCD_MEMORY) ?
2570 "io mem" : "io base",
2571 (unsigned long long)hcd->rsrc_start);
2572 }
2573 return 0;
2574 }
2575
2576 /**
2577 * usb_add_hcd - finish generic HCD structure initialization and register
2578 * @hcd: the usb_hcd structure to initialize
2579 * @irqnum: Interrupt line to allocate
2580 * @irqflags: Interrupt type flags
2581 *
2582 * Finish the remaining parts of generic HCD initialization: allocate the
2583 * buffers of consistent memory, register the bus, request the IRQ line,
2584 * and call the driver's reset() and start() routines.
2585 */
2586 int usb_add_hcd(struct usb_hcd *hcd,
2587 unsigned int irqnum, unsigned long irqflags)
2588 {
2589 int retval;
2590 struct usb_device *rhdev;
2591
2592 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2593 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2594
2595 if (IS_ERR(phy)) {
2596 retval = PTR_ERR(phy);
2597 if (retval == -EPROBE_DEFER)
2598 return retval;
2599 } else {
2600 retval = usb_phy_init(phy);
2601 if (retval) {
2602 usb_put_phy(phy);
2603 return retval;
2604 }
2605 hcd->phy = phy;
2606 hcd->remove_phy = 1;
2607 }
2608 }
2609
2610 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2611
2612 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2613 if (authorized_default < 0 || authorized_default > 1)
2614 hcd->authorized_default = hcd->wireless ? 0 : 1;
2615 else
2616 hcd->authorized_default = authorized_default;
2617 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2618
2619 /* HC is in reset state, but accessible. Now do the one-time init,
2620 * bottom up so that hcds can customize the root hubs before khubd
2621 * starts talking to them. (Note, bus id is assigned early too.)
2622 */
2623 if ((retval = hcd_buffer_create(hcd)) != 0) {
2624 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2625 goto err_remove_phy;
2626 }
2627
2628 if ((retval = usb_register_bus(&hcd->self)) < 0)
2629 goto err_register_bus;
2630
2631 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2632 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2633 retval = -ENOMEM;
2634 goto err_allocate_root_hub;
2635 }
2636 hcd->self.root_hub = rhdev;
2637
2638 switch (hcd->speed) {
2639 case HCD_USB11:
2640 rhdev->speed = USB_SPEED_FULL;
2641 break;
2642 case HCD_USB2:
2643 rhdev->speed = USB_SPEED_HIGH;
2644 break;
2645 case HCD_USB25:
2646 rhdev->speed = USB_SPEED_WIRELESS;
2647 break;
2648 case HCD_USB3:
2649 rhdev->speed = USB_SPEED_SUPER;
2650 break;
2651 default:
2652 retval = -EINVAL;
2653 goto err_set_rh_speed;
2654 }
2655
2656 /* wakeup flag init defaults to "everything works" for root hubs,
2657 * but drivers can override it in reset() if needed, along with
2658 * recording the overall controller's system wakeup capability.
2659 */
2660 device_set_wakeup_capable(&rhdev->dev, 1);
2661
2662 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2663 * registered. But since the controller can die at any time,
2664 * let's initialize the flag before touching the hardware.
2665 */
2666 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2667
2668 /* "reset" is misnamed; its role is now one-time init. the controller
2669 * should already have been reset (and boot firmware kicked off etc).
2670 */
2671 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2672 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2673 goto err_hcd_driver_setup;
2674 }
2675 hcd->rh_pollable = 1;
2676
2677 /* NOTE: root hub and controller capabilities may not be the same */
2678 if (device_can_wakeup(hcd->self.controller)
2679 && device_can_wakeup(&hcd->self.root_hub->dev))
2680 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2681
2682 /* initialize tasklets */
2683 init_giveback_urb_bh(&hcd->high_prio_bh);
2684 init_giveback_urb_bh(&hcd->low_prio_bh);
2685
2686 /* enable irqs just before we start the controller,
2687 * if the BIOS provides legacy PCI irqs.
2688 */
2689 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2690 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2691 if (retval)
2692 goto err_request_irq;
2693 }
2694
2695 hcd->state = HC_STATE_RUNNING;
2696 retval = hcd->driver->start(hcd);
2697 if (retval < 0) {
2698 dev_err(hcd->self.controller, "startup error %d\n", retval);
2699 goto err_hcd_driver_start;
2700 }
2701
2702 /* starting here, usbcore will pay attention to this root hub */
2703 if ((retval = register_root_hub(hcd)) != 0)
2704 goto err_register_root_hub;
2705
2706 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2707 if (retval < 0) {
2708 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2709 retval);
2710 goto error_create_attr_group;
2711 }
2712 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2713 usb_hcd_poll_rh_status(hcd);
2714
2715 return retval;
2716
2717 error_create_attr_group:
2718 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2719 if (HC_IS_RUNNING(hcd->state))
2720 hcd->state = HC_STATE_QUIESCING;
2721 spin_lock_irq(&hcd_root_hub_lock);
2722 hcd->rh_registered = 0;
2723 spin_unlock_irq(&hcd_root_hub_lock);
2724
2725 #ifdef CONFIG_PM_RUNTIME
2726 cancel_work_sync(&hcd->wakeup_work);
2727 #endif
2728 mutex_lock(&usb_bus_list_lock);
2729 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2730 mutex_unlock(&usb_bus_list_lock);
2731 err_register_root_hub:
2732 hcd->rh_pollable = 0;
2733 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2734 del_timer_sync(&hcd->rh_timer);
2735 hcd->driver->stop(hcd);
2736 hcd->state = HC_STATE_HALT;
2737 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2738 del_timer_sync(&hcd->rh_timer);
2739 err_hcd_driver_start:
2740 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2741 free_irq(irqnum, hcd);
2742 err_request_irq:
2743 err_hcd_driver_setup:
2744 err_set_rh_speed:
2745 usb_put_dev(hcd->self.root_hub);
2746 err_allocate_root_hub:
2747 usb_deregister_bus(&hcd->self);
2748 err_register_bus:
2749 hcd_buffer_destroy(hcd);
2750 err_remove_phy:
2751 if (hcd->remove_phy && hcd->phy) {
2752 usb_phy_shutdown(hcd->phy);
2753 usb_put_phy(hcd->phy);
2754 hcd->phy = NULL;
2755 }
2756 return retval;
2757 }
2758 EXPORT_SYMBOL_GPL(usb_add_hcd);
2759
2760 /**
2761 * usb_remove_hcd - shutdown processing for generic HCDs
2762 * @hcd: the usb_hcd structure to remove
2763 * Context: !in_interrupt()
2764 *
2765 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2766 * invoking the HCD's stop() method.
2767 */
2768 void usb_remove_hcd(struct usb_hcd *hcd)
2769 {
2770 struct usb_device *rhdev = hcd->self.root_hub;
2771
2772 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2773
2774 usb_get_dev(rhdev);
2775 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2776
2777 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2778 if (HC_IS_RUNNING (hcd->state))
2779 hcd->state = HC_STATE_QUIESCING;
2780
2781 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2782 spin_lock_irq (&hcd_root_hub_lock);
2783 hcd->rh_registered = 0;
2784 spin_unlock_irq (&hcd_root_hub_lock);
2785
2786 #ifdef CONFIG_PM_RUNTIME
2787 cancel_work_sync(&hcd->wakeup_work);
2788 #endif
2789
2790 mutex_lock(&usb_bus_list_lock);
2791 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2792 mutex_unlock(&usb_bus_list_lock);
2793
2794 /*
2795 * tasklet_kill() isn't needed here because:
2796 * - driver's disconnect() called from usb_disconnect() should
2797 * make sure its URBs are completed during the disconnect()
2798 * callback
2799 *
2800 * - it is too late to run complete() here since driver may have
2801 * been removed already now
2802 */
2803
2804 /* Prevent any more root-hub status calls from the timer.
2805 * The HCD might still restart the timer (if a port status change
2806 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2807 * the hub_status_data() callback.
2808 */
2809 hcd->rh_pollable = 0;
2810 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2811 del_timer_sync(&hcd->rh_timer);
2812
2813 hcd->driver->stop(hcd);
2814 hcd->state = HC_STATE_HALT;
2815
2816 /* In case the HCD restarted the timer, stop it again. */
2817 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2818 del_timer_sync(&hcd->rh_timer);
2819
2820 if (usb_hcd_is_primary_hcd(hcd)) {
2821 if (hcd->irq > 0)
2822 free_irq(hcd->irq, hcd);
2823 }
2824
2825 usb_put_dev(hcd->self.root_hub);
2826 usb_deregister_bus(&hcd->self);
2827 hcd_buffer_destroy(hcd);
2828 if (hcd->remove_phy && hcd->phy) {
2829 usb_phy_shutdown(hcd->phy);
2830 usb_put_phy(hcd->phy);
2831 hcd->phy = NULL;
2832 }
2833 }
2834 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2835
2836 void
2837 usb_hcd_platform_shutdown(struct platform_device *dev)
2838 {
2839 struct usb_hcd *hcd = platform_get_drvdata(dev);
2840
2841 if (hcd->driver->shutdown)
2842 hcd->driver->shutdown(hcd);
2843 }
2844 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2845
2846 /*-------------------------------------------------------------------------*/
2847
2848 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2849
2850 struct usb_mon_operations *mon_ops;
2851
2852 /*
2853 * The registration is unlocked.
2854 * We do it this way because we do not want to lock in hot paths.
2855 *
2856 * Notice that the code is minimally error-proof. Because usbmon needs
2857 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2858 */
2859
2860 int usb_mon_register (struct usb_mon_operations *ops)
2861 {
2862
2863 if (mon_ops)
2864 return -EBUSY;
2865
2866 mon_ops = ops;
2867 mb();
2868 return 0;
2869 }
2870 EXPORT_SYMBOL_GPL (usb_mon_register);
2871
2872 void usb_mon_deregister (void)
2873 {
2874
2875 if (mon_ops == NULL) {
2876 printk(KERN_ERR "USB: monitor was not registered\n");
2877 return;
2878 }
2879 mon_ops = NULL;
2880 mb();
2881 }
2882 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2883
2884 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.106985 seconds and 5 git commands to generate.