USB: make hcd.h public (drivers dependency)
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 #include <linux/mutex.h>
42 #include <linux/pm_runtime.h>
43
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46
47 #include "usb.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53 * USB Host Controller Driver framework
54 *
55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56 * HCD-specific behaviors/bugs.
57 *
58 * This does error checks, tracks devices and urbs, and delegates to a
59 * "hc_driver" only for code (and data) that really needs to know about
60 * hardware differences. That includes root hub registers, i/o queues,
61 * and so on ... but as little else as possible.
62 *
63 * Shared code includes most of the "root hub" code (these are emulated,
64 * though each HC's hardware works differently) and PCI glue, plus request
65 * tracking overhead. The HCD code should only block on spinlocks or on
66 * hardware handshaking; blocking on software events (such as other kernel
67 * threads releasing resources, or completing actions) is all generic.
68 *
69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71 * only by the hub driver ... and that neither should be seen or used by
72 * usb client device drivers.
73 *
74 * Contributors of ideas or unattributed patches include: David Brownell,
75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 *
77 * HISTORY:
78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
79 * associated cleanup. "usb_hcd" still != "usb_bus".
80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
81 */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS 64
95 struct usb_busmap {
96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128
129 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
130 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
131
132 /* usb 3.0 root hub device descriptor */
133 static const u8 usb3_rh_dev_descriptor[18] = {
134 0x12, /* __u8 bLength; */
135 0x01, /* __u8 bDescriptorType; Device */
136 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
137
138 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
139 0x00, /* __u8 bDeviceSubClass; */
140 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
141 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142
143 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
144 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
145 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
146
147 0x03, /* __u8 iManufacturer; */
148 0x02, /* __u8 iProduct; */
149 0x01, /* __u8 iSerialNumber; */
150 0x01 /* __u8 bNumConfigurations; */
151 };
152
153 /* usb 2.0 root hub device descriptor */
154 static const u8 usb2_rh_dev_descriptor [18] = {
155 0x12, /* __u8 bLength; */
156 0x01, /* __u8 bDescriptorType; Device */
157 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
158
159 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
160 0x00, /* __u8 bDeviceSubClass; */
161 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
162 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
163
164 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
165 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
166 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
167
168 0x03, /* __u8 iManufacturer; */
169 0x02, /* __u8 iProduct; */
170 0x01, /* __u8 iSerialNumber; */
171 0x01 /* __u8 bNumConfigurations; */
172 };
173
174 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
175
176 /* usb 1.1 root hub device descriptor */
177 static const u8 usb11_rh_dev_descriptor [18] = {
178 0x12, /* __u8 bLength; */
179 0x01, /* __u8 bDescriptorType; Device */
180 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
181
182 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
183 0x00, /* __u8 bDeviceSubClass; */
184 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
185 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
186
187 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
188 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
189 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
190
191 0x03, /* __u8 iManufacturer; */
192 0x02, /* __u8 iProduct; */
193 0x01, /* __u8 iSerialNumber; */
194 0x01 /* __u8 bNumConfigurations; */
195 };
196
197
198 /*-------------------------------------------------------------------------*/
199
200 /* Configuration descriptors for our root hubs */
201
202 static const u8 fs_rh_config_descriptor [] = {
203
204 /* one configuration */
205 0x09, /* __u8 bLength; */
206 0x02, /* __u8 bDescriptorType; Configuration */
207 0x19, 0x00, /* __le16 wTotalLength; */
208 0x01, /* __u8 bNumInterfaces; (1) */
209 0x01, /* __u8 bConfigurationValue; */
210 0x00, /* __u8 iConfiguration; */
211 0xc0, /* __u8 bmAttributes;
212 Bit 7: must be set,
213 6: Self-powered,
214 5: Remote wakeup,
215 4..0: resvd */
216 0x00, /* __u8 MaxPower; */
217
218 /* USB 1.1:
219 * USB 2.0, single TT organization (mandatory):
220 * one interface, protocol 0
221 *
222 * USB 2.0, multiple TT organization (optional):
223 * two interfaces, protocols 1 (like single TT)
224 * and 2 (multiple TT mode) ... config is
225 * sometimes settable
226 * NOT IMPLEMENTED
227 */
228
229 /* one interface */
230 0x09, /* __u8 if_bLength; */
231 0x04, /* __u8 if_bDescriptorType; Interface */
232 0x00, /* __u8 if_bInterfaceNumber; */
233 0x00, /* __u8 if_bAlternateSetting; */
234 0x01, /* __u8 if_bNumEndpoints; */
235 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
236 0x00, /* __u8 if_bInterfaceSubClass; */
237 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
238 0x00, /* __u8 if_iInterface; */
239
240 /* one endpoint (status change endpoint) */
241 0x07, /* __u8 ep_bLength; */
242 0x05, /* __u8 ep_bDescriptorType; Endpoint */
243 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
244 0x03, /* __u8 ep_bmAttributes; Interrupt */
245 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
246 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
247 };
248
249 static const u8 hs_rh_config_descriptor [] = {
250
251 /* one configuration */
252 0x09, /* __u8 bLength; */
253 0x02, /* __u8 bDescriptorType; Configuration */
254 0x19, 0x00, /* __le16 wTotalLength; */
255 0x01, /* __u8 bNumInterfaces; (1) */
256 0x01, /* __u8 bConfigurationValue; */
257 0x00, /* __u8 iConfiguration; */
258 0xc0, /* __u8 bmAttributes;
259 Bit 7: must be set,
260 6: Self-powered,
261 5: Remote wakeup,
262 4..0: resvd */
263 0x00, /* __u8 MaxPower; */
264
265 /* USB 1.1:
266 * USB 2.0, single TT organization (mandatory):
267 * one interface, protocol 0
268 *
269 * USB 2.0, multiple TT organization (optional):
270 * two interfaces, protocols 1 (like single TT)
271 * and 2 (multiple TT mode) ... config is
272 * sometimes settable
273 * NOT IMPLEMENTED
274 */
275
276 /* one interface */
277 0x09, /* __u8 if_bLength; */
278 0x04, /* __u8 if_bDescriptorType; Interface */
279 0x00, /* __u8 if_bInterfaceNumber; */
280 0x00, /* __u8 if_bAlternateSetting; */
281 0x01, /* __u8 if_bNumEndpoints; */
282 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
283 0x00, /* __u8 if_bInterfaceSubClass; */
284 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
285 0x00, /* __u8 if_iInterface; */
286
287 /* one endpoint (status change endpoint) */
288 0x07, /* __u8 ep_bLength; */
289 0x05, /* __u8 ep_bDescriptorType; Endpoint */
290 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
291 0x03, /* __u8 ep_bmAttributes; Interrupt */
292 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
293 * see hub.c:hub_configure() for details. */
294 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
295 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
296 };
297
298 static const u8 ss_rh_config_descriptor[] = {
299 /* one configuration */
300 0x09, /* __u8 bLength; */
301 0x02, /* __u8 bDescriptorType; Configuration */
302 0x19, 0x00, /* __le16 wTotalLength; FIXME */
303 0x01, /* __u8 bNumInterfaces; (1) */
304 0x01, /* __u8 bConfigurationValue; */
305 0x00, /* __u8 iConfiguration; */
306 0xc0, /* __u8 bmAttributes;
307 Bit 7: must be set,
308 6: Self-powered,
309 5: Remote wakeup,
310 4..0: resvd */
311 0x00, /* __u8 MaxPower; */
312
313 /* one interface */
314 0x09, /* __u8 if_bLength; */
315 0x04, /* __u8 if_bDescriptorType; Interface */
316 0x00, /* __u8 if_bInterfaceNumber; */
317 0x00, /* __u8 if_bAlternateSetting; */
318 0x01, /* __u8 if_bNumEndpoints; */
319 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
320 0x00, /* __u8 if_bInterfaceSubClass; */
321 0x00, /* __u8 if_bInterfaceProtocol; */
322 0x00, /* __u8 if_iInterface; */
323
324 /* one endpoint (status change endpoint) */
325 0x07, /* __u8 ep_bLength; */
326 0x05, /* __u8 ep_bDescriptorType; Endpoint */
327 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
328 0x03, /* __u8 ep_bmAttributes; Interrupt */
329 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
330 * see hub.c:hub_configure() for details. */
331 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
332 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
333 /*
334 * All 3.0 hubs should have an endpoint companion descriptor,
335 * but we're ignoring that for now. FIXME?
336 */
337 };
338
339 /*-------------------------------------------------------------------------*/
340
341 /**
342 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
343 * @s: Null-terminated ASCII (actually ISO-8859-1) string
344 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
345 * @len: Length (in bytes; may be odd) of descriptor buffer.
346 *
347 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
348 * buflen, whichever is less.
349 *
350 * USB String descriptors can contain at most 126 characters; input
351 * strings longer than that are truncated.
352 */
353 static unsigned
354 ascii2desc(char const *s, u8 *buf, unsigned len)
355 {
356 unsigned n, t = 2 + 2*strlen(s);
357
358 if (t > 254)
359 t = 254; /* Longest possible UTF string descriptor */
360 if (len > t)
361 len = t;
362
363 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
364
365 n = len;
366 while (n--) {
367 *buf++ = t;
368 if (!n--)
369 break;
370 *buf++ = t >> 8;
371 t = (unsigned char)*s++;
372 }
373 return len;
374 }
375
376 /**
377 * rh_string() - provides string descriptors for root hub
378 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
379 * @hcd: the host controller for this root hub
380 * @data: buffer for output packet
381 * @len: length of the provided buffer
382 *
383 * Produces either a manufacturer, product or serial number string for the
384 * virtual root hub device.
385 * Returns the number of bytes filled in: the length of the descriptor or
386 * of the provided buffer, whichever is less.
387 */
388 static unsigned
389 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
390 {
391 char buf[100];
392 char const *s;
393 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
394
395 // language ids
396 switch (id) {
397 case 0:
398 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
399 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
400 if (len > 4)
401 len = 4;
402 memcpy(data, langids, len);
403 return len;
404 case 1:
405 /* Serial number */
406 s = hcd->self.bus_name;
407 break;
408 case 2:
409 /* Product name */
410 s = hcd->product_desc;
411 break;
412 case 3:
413 /* Manufacturer */
414 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
415 init_utsname()->release, hcd->driver->description);
416 s = buf;
417 break;
418 default:
419 /* Can't happen; caller guarantees it */
420 return 0;
421 }
422
423 return ascii2desc(s, data, len);
424 }
425
426
427 /* Root hub control transfers execute synchronously */
428 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
429 {
430 struct usb_ctrlrequest *cmd;
431 u16 typeReq, wValue, wIndex, wLength;
432 u8 *ubuf = urb->transfer_buffer;
433 u8 tbuf [sizeof (struct usb_hub_descriptor)]
434 __attribute__((aligned(4)));
435 const u8 *bufp = tbuf;
436 unsigned len = 0;
437 int status;
438 u8 patch_wakeup = 0;
439 u8 patch_protocol = 0;
440
441 might_sleep();
442
443 spin_lock_irq(&hcd_root_hub_lock);
444 status = usb_hcd_link_urb_to_ep(hcd, urb);
445 spin_unlock_irq(&hcd_root_hub_lock);
446 if (status)
447 return status;
448 urb->hcpriv = hcd; /* Indicate it's queued */
449
450 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
451 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
452 wValue = le16_to_cpu (cmd->wValue);
453 wIndex = le16_to_cpu (cmd->wIndex);
454 wLength = le16_to_cpu (cmd->wLength);
455
456 if (wLength > urb->transfer_buffer_length)
457 goto error;
458
459 urb->actual_length = 0;
460 switch (typeReq) {
461
462 /* DEVICE REQUESTS */
463
464 /* The root hub's remote wakeup enable bit is implemented using
465 * driver model wakeup flags. If this system supports wakeup
466 * through USB, userspace may change the default "allow wakeup"
467 * policy through sysfs or these calls.
468 *
469 * Most root hubs support wakeup from downstream devices, for
470 * runtime power management (disabling USB clocks and reducing
471 * VBUS power usage). However, not all of them do so; silicon,
472 * board, and BIOS bugs here are not uncommon, so these can't
473 * be treated quite like external hubs.
474 *
475 * Likewise, not all root hubs will pass wakeup events upstream,
476 * to wake up the whole system. So don't assume root hub and
477 * controller capabilities are identical.
478 */
479
480 case DeviceRequest | USB_REQ_GET_STATUS:
481 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
482 << USB_DEVICE_REMOTE_WAKEUP)
483 | (1 << USB_DEVICE_SELF_POWERED);
484 tbuf [1] = 0;
485 len = 2;
486 break;
487 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
488 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
489 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
490 else
491 goto error;
492 break;
493 case DeviceOutRequest | USB_REQ_SET_FEATURE:
494 if (device_can_wakeup(&hcd->self.root_hub->dev)
495 && wValue == USB_DEVICE_REMOTE_WAKEUP)
496 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
497 else
498 goto error;
499 break;
500 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
501 tbuf [0] = 1;
502 len = 1;
503 /* FALLTHROUGH */
504 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
505 break;
506 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
507 switch (wValue & 0xff00) {
508 case USB_DT_DEVICE << 8:
509 switch (hcd->driver->flags & HCD_MASK) {
510 case HCD_USB3:
511 bufp = usb3_rh_dev_descriptor;
512 break;
513 case HCD_USB2:
514 bufp = usb2_rh_dev_descriptor;
515 break;
516 case HCD_USB11:
517 bufp = usb11_rh_dev_descriptor;
518 break;
519 default:
520 goto error;
521 }
522 len = 18;
523 if (hcd->has_tt)
524 patch_protocol = 1;
525 break;
526 case USB_DT_CONFIG << 8:
527 switch (hcd->driver->flags & HCD_MASK) {
528 case HCD_USB3:
529 bufp = ss_rh_config_descriptor;
530 len = sizeof ss_rh_config_descriptor;
531 break;
532 case HCD_USB2:
533 bufp = hs_rh_config_descriptor;
534 len = sizeof hs_rh_config_descriptor;
535 break;
536 case HCD_USB11:
537 bufp = fs_rh_config_descriptor;
538 len = sizeof fs_rh_config_descriptor;
539 break;
540 default:
541 goto error;
542 }
543 if (device_can_wakeup(&hcd->self.root_hub->dev))
544 patch_wakeup = 1;
545 break;
546 case USB_DT_STRING << 8:
547 if ((wValue & 0xff) < 4)
548 urb->actual_length = rh_string(wValue & 0xff,
549 hcd, ubuf, wLength);
550 else /* unsupported IDs --> "protocol stall" */
551 goto error;
552 break;
553 default:
554 goto error;
555 }
556 break;
557 case DeviceRequest | USB_REQ_GET_INTERFACE:
558 tbuf [0] = 0;
559 len = 1;
560 /* FALLTHROUGH */
561 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
562 break;
563 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
564 // wValue == urb->dev->devaddr
565 dev_dbg (hcd->self.controller, "root hub device address %d\n",
566 wValue);
567 break;
568
569 /* INTERFACE REQUESTS (no defined feature/status flags) */
570
571 /* ENDPOINT REQUESTS */
572
573 case EndpointRequest | USB_REQ_GET_STATUS:
574 // ENDPOINT_HALT flag
575 tbuf [0] = 0;
576 tbuf [1] = 0;
577 len = 2;
578 /* FALLTHROUGH */
579 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
580 case EndpointOutRequest | USB_REQ_SET_FEATURE:
581 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
582 break;
583
584 /* CLASS REQUESTS (and errors) */
585
586 default:
587 /* non-generic request */
588 switch (typeReq) {
589 case GetHubStatus:
590 case GetPortStatus:
591 len = 4;
592 break;
593 case GetHubDescriptor:
594 len = sizeof (struct usb_hub_descriptor);
595 break;
596 }
597 status = hcd->driver->hub_control (hcd,
598 typeReq, wValue, wIndex,
599 tbuf, wLength);
600 break;
601 error:
602 /* "protocol stall" on error */
603 status = -EPIPE;
604 }
605
606 if (status) {
607 len = 0;
608 if (status != -EPIPE) {
609 dev_dbg (hcd->self.controller,
610 "CTRL: TypeReq=0x%x val=0x%x "
611 "idx=0x%x len=%d ==> %d\n",
612 typeReq, wValue, wIndex,
613 wLength, status);
614 }
615 }
616 if (len) {
617 if (urb->transfer_buffer_length < len)
618 len = urb->transfer_buffer_length;
619 urb->actual_length = len;
620 // always USB_DIR_IN, toward host
621 memcpy (ubuf, bufp, len);
622
623 /* report whether RH hardware supports remote wakeup */
624 if (patch_wakeup &&
625 len > offsetof (struct usb_config_descriptor,
626 bmAttributes))
627 ((struct usb_config_descriptor *)ubuf)->bmAttributes
628 |= USB_CONFIG_ATT_WAKEUP;
629
630 /* report whether RH hardware has an integrated TT */
631 if (patch_protocol &&
632 len > offsetof(struct usb_device_descriptor,
633 bDeviceProtocol))
634 ((struct usb_device_descriptor *) ubuf)->
635 bDeviceProtocol = 1;
636 }
637
638 /* any errors get returned through the urb completion */
639 spin_lock_irq(&hcd_root_hub_lock);
640 usb_hcd_unlink_urb_from_ep(hcd, urb);
641
642 /* This peculiar use of spinlocks echoes what real HC drivers do.
643 * Avoiding calls to local_irq_disable/enable makes the code
644 * RT-friendly.
645 */
646 spin_unlock(&hcd_root_hub_lock);
647 usb_hcd_giveback_urb(hcd, urb, status);
648 spin_lock(&hcd_root_hub_lock);
649
650 spin_unlock_irq(&hcd_root_hub_lock);
651 return 0;
652 }
653
654 /*-------------------------------------------------------------------------*/
655
656 /*
657 * Root Hub interrupt transfers are polled using a timer if the
658 * driver requests it; otherwise the driver is responsible for
659 * calling usb_hcd_poll_rh_status() when an event occurs.
660 *
661 * Completions are called in_interrupt(), but they may or may not
662 * be in_irq().
663 */
664 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
665 {
666 struct urb *urb;
667 int length;
668 unsigned long flags;
669 char buffer[6]; /* Any root hubs with > 31 ports? */
670
671 if (unlikely(!hcd->rh_registered))
672 return;
673 if (!hcd->uses_new_polling && !hcd->status_urb)
674 return;
675
676 length = hcd->driver->hub_status_data(hcd, buffer);
677 if (length > 0) {
678
679 /* try to complete the status urb */
680 spin_lock_irqsave(&hcd_root_hub_lock, flags);
681 urb = hcd->status_urb;
682 if (urb) {
683 hcd->poll_pending = 0;
684 hcd->status_urb = NULL;
685 urb->actual_length = length;
686 memcpy(urb->transfer_buffer, buffer, length);
687
688 usb_hcd_unlink_urb_from_ep(hcd, urb);
689 spin_unlock(&hcd_root_hub_lock);
690 usb_hcd_giveback_urb(hcd, urb, 0);
691 spin_lock(&hcd_root_hub_lock);
692 } else {
693 length = 0;
694 hcd->poll_pending = 1;
695 }
696 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697 }
698
699 /* The USB 2.0 spec says 256 ms. This is close enough and won't
700 * exceed that limit if HZ is 100. The math is more clunky than
701 * maybe expected, this is to make sure that all timers for USB devices
702 * fire at the same time to give the CPU a break inbetween */
703 if (hcd->uses_new_polling ? hcd->poll_rh :
704 (length == 0 && hcd->status_urb != NULL))
705 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
706 }
707 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
708
709 /* timer callback */
710 static void rh_timer_func (unsigned long _hcd)
711 {
712 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
713 }
714
715 /*-------------------------------------------------------------------------*/
716
717 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
718 {
719 int retval;
720 unsigned long flags;
721 unsigned len = 1 + (urb->dev->maxchild / 8);
722
723 spin_lock_irqsave (&hcd_root_hub_lock, flags);
724 if (hcd->status_urb || urb->transfer_buffer_length < len) {
725 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
726 retval = -EINVAL;
727 goto done;
728 }
729
730 retval = usb_hcd_link_urb_to_ep(hcd, urb);
731 if (retval)
732 goto done;
733
734 hcd->status_urb = urb;
735 urb->hcpriv = hcd; /* indicate it's queued */
736 if (!hcd->uses_new_polling)
737 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
738
739 /* If a status change has already occurred, report it ASAP */
740 else if (hcd->poll_pending)
741 mod_timer(&hcd->rh_timer, jiffies);
742 retval = 0;
743 done:
744 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
745 return retval;
746 }
747
748 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
749 {
750 if (usb_endpoint_xfer_int(&urb->ep->desc))
751 return rh_queue_status (hcd, urb);
752 if (usb_endpoint_xfer_control(&urb->ep->desc))
753 return rh_call_control (hcd, urb);
754 return -EINVAL;
755 }
756
757 /*-------------------------------------------------------------------------*/
758
759 /* Unlinks of root-hub control URBs are legal, but they don't do anything
760 * since these URBs always execute synchronously.
761 */
762 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
763 {
764 unsigned long flags;
765 int rc;
766
767 spin_lock_irqsave(&hcd_root_hub_lock, flags);
768 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
769 if (rc)
770 goto done;
771
772 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
773 ; /* Do nothing */
774
775 } else { /* Status URB */
776 if (!hcd->uses_new_polling)
777 del_timer (&hcd->rh_timer);
778 if (urb == hcd->status_urb) {
779 hcd->status_urb = NULL;
780 usb_hcd_unlink_urb_from_ep(hcd, urb);
781
782 spin_unlock(&hcd_root_hub_lock);
783 usb_hcd_giveback_urb(hcd, urb, status);
784 spin_lock(&hcd_root_hub_lock);
785 }
786 }
787 done:
788 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
789 return rc;
790 }
791
792
793
794 /*
795 * Show & store the current value of authorized_default
796 */
797 static ssize_t usb_host_authorized_default_show(struct device *dev,
798 struct device_attribute *attr,
799 char *buf)
800 {
801 struct usb_device *rh_usb_dev = to_usb_device(dev);
802 struct usb_bus *usb_bus = rh_usb_dev->bus;
803 struct usb_hcd *usb_hcd;
804
805 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
806 return -ENODEV;
807 usb_hcd = bus_to_hcd(usb_bus);
808 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
809 }
810
811 static ssize_t usb_host_authorized_default_store(struct device *dev,
812 struct device_attribute *attr,
813 const char *buf, size_t size)
814 {
815 ssize_t result;
816 unsigned val;
817 struct usb_device *rh_usb_dev = to_usb_device(dev);
818 struct usb_bus *usb_bus = rh_usb_dev->bus;
819 struct usb_hcd *usb_hcd;
820
821 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
822 return -ENODEV;
823 usb_hcd = bus_to_hcd(usb_bus);
824 result = sscanf(buf, "%u\n", &val);
825 if (result == 1) {
826 usb_hcd->authorized_default = val? 1 : 0;
827 result = size;
828 }
829 else
830 result = -EINVAL;
831 return result;
832 }
833
834 static DEVICE_ATTR(authorized_default, 0644,
835 usb_host_authorized_default_show,
836 usb_host_authorized_default_store);
837
838
839 /* Group all the USB bus attributes */
840 static struct attribute *usb_bus_attrs[] = {
841 &dev_attr_authorized_default.attr,
842 NULL,
843 };
844
845 static struct attribute_group usb_bus_attr_group = {
846 .name = NULL, /* we want them in the same directory */
847 .attrs = usb_bus_attrs,
848 };
849
850
851
852 /*-------------------------------------------------------------------------*/
853
854 /**
855 * usb_bus_init - shared initialization code
856 * @bus: the bus structure being initialized
857 *
858 * This code is used to initialize a usb_bus structure, memory for which is
859 * separately managed.
860 */
861 static void usb_bus_init (struct usb_bus *bus)
862 {
863 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
864
865 bus->devnum_next = 1;
866
867 bus->root_hub = NULL;
868 bus->busnum = -1;
869 bus->bandwidth_allocated = 0;
870 bus->bandwidth_int_reqs = 0;
871 bus->bandwidth_isoc_reqs = 0;
872
873 INIT_LIST_HEAD (&bus->bus_list);
874 }
875
876 /*-------------------------------------------------------------------------*/
877
878 /**
879 * usb_register_bus - registers the USB host controller with the usb core
880 * @bus: pointer to the bus to register
881 * Context: !in_interrupt()
882 *
883 * Assigns a bus number, and links the controller into usbcore data
884 * structures so that it can be seen by scanning the bus list.
885 */
886 static int usb_register_bus(struct usb_bus *bus)
887 {
888 int result = -E2BIG;
889 int busnum;
890
891 mutex_lock(&usb_bus_list_lock);
892 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
893 if (busnum >= USB_MAXBUS) {
894 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
895 goto error_find_busnum;
896 }
897 set_bit (busnum, busmap.busmap);
898 bus->busnum = busnum;
899
900 /* Add it to the local list of buses */
901 list_add (&bus->bus_list, &usb_bus_list);
902 mutex_unlock(&usb_bus_list_lock);
903
904 usb_notify_add_bus(bus);
905
906 dev_info (bus->controller, "new USB bus registered, assigned bus "
907 "number %d\n", bus->busnum);
908 return 0;
909
910 error_find_busnum:
911 mutex_unlock(&usb_bus_list_lock);
912 return result;
913 }
914
915 /**
916 * usb_deregister_bus - deregisters the USB host controller
917 * @bus: pointer to the bus to deregister
918 * Context: !in_interrupt()
919 *
920 * Recycles the bus number, and unlinks the controller from usbcore data
921 * structures so that it won't be seen by scanning the bus list.
922 */
923 static void usb_deregister_bus (struct usb_bus *bus)
924 {
925 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
926
927 /*
928 * NOTE: make sure that all the devices are removed by the
929 * controller code, as well as having it call this when cleaning
930 * itself up
931 */
932 mutex_lock(&usb_bus_list_lock);
933 list_del (&bus->bus_list);
934 mutex_unlock(&usb_bus_list_lock);
935
936 usb_notify_remove_bus(bus);
937
938 clear_bit (bus->busnum, busmap.busmap);
939 }
940
941 /**
942 * register_root_hub - called by usb_add_hcd() to register a root hub
943 * @hcd: host controller for this root hub
944 *
945 * This function registers the root hub with the USB subsystem. It sets up
946 * the device properly in the device tree and then calls usb_new_device()
947 * to register the usb device. It also assigns the root hub's USB address
948 * (always 1).
949 */
950 static int register_root_hub(struct usb_hcd *hcd)
951 {
952 struct device *parent_dev = hcd->self.controller;
953 struct usb_device *usb_dev = hcd->self.root_hub;
954 const int devnum = 1;
955 int retval;
956
957 usb_dev->devnum = devnum;
958 usb_dev->bus->devnum_next = devnum + 1;
959 memset (&usb_dev->bus->devmap.devicemap, 0,
960 sizeof usb_dev->bus->devmap.devicemap);
961 set_bit (devnum, usb_dev->bus->devmap.devicemap);
962 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
963
964 mutex_lock(&usb_bus_list_lock);
965
966 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
967 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
968 if (retval != sizeof usb_dev->descriptor) {
969 mutex_unlock(&usb_bus_list_lock);
970 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
971 dev_name(&usb_dev->dev), retval);
972 return (retval < 0) ? retval : -EMSGSIZE;
973 }
974
975 retval = usb_new_device (usb_dev);
976 if (retval) {
977 dev_err (parent_dev, "can't register root hub for %s, %d\n",
978 dev_name(&usb_dev->dev), retval);
979 }
980 mutex_unlock(&usb_bus_list_lock);
981
982 if (retval == 0) {
983 spin_lock_irq (&hcd_root_hub_lock);
984 hcd->rh_registered = 1;
985 spin_unlock_irq (&hcd_root_hub_lock);
986
987 /* Did the HC die before the root hub was registered? */
988 if (hcd->state == HC_STATE_HALT)
989 usb_hc_died (hcd); /* This time clean up */
990 }
991
992 return retval;
993 }
994
995
996 /*-------------------------------------------------------------------------*/
997
998 /**
999 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1000 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1001 * @is_input: true iff the transaction sends data to the host
1002 * @isoc: true for isochronous transactions, false for interrupt ones
1003 * @bytecount: how many bytes in the transaction.
1004 *
1005 * Returns approximate bus time in nanoseconds for a periodic transaction.
1006 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1007 * scheduled in software, this function is only used for such scheduling.
1008 */
1009 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1010 {
1011 unsigned long tmp;
1012
1013 switch (speed) {
1014 case USB_SPEED_LOW: /* INTR only */
1015 if (is_input) {
1016 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1017 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1018 } else {
1019 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1020 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1021 }
1022 case USB_SPEED_FULL: /* ISOC or INTR */
1023 if (isoc) {
1024 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1025 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1026 } else {
1027 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1028 return (9107L + BW_HOST_DELAY + tmp);
1029 }
1030 case USB_SPEED_HIGH: /* ISOC or INTR */
1031 // FIXME adjust for input vs output
1032 if (isoc)
1033 tmp = HS_NSECS_ISO (bytecount);
1034 else
1035 tmp = HS_NSECS (bytecount);
1036 return tmp;
1037 default:
1038 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1039 return -1;
1040 }
1041 }
1042 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1043
1044
1045 /*-------------------------------------------------------------------------*/
1046
1047 /*
1048 * Generic HC operations.
1049 */
1050
1051 /*-------------------------------------------------------------------------*/
1052
1053 /**
1054 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1055 * @hcd: host controller to which @urb was submitted
1056 * @urb: URB being submitted
1057 *
1058 * Host controller drivers should call this routine in their enqueue()
1059 * method. The HCD's private spinlock must be held and interrupts must
1060 * be disabled. The actions carried out here are required for URB
1061 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1062 *
1063 * Returns 0 for no error, otherwise a negative error code (in which case
1064 * the enqueue() method must fail). If no error occurs but enqueue() fails
1065 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1066 * the private spinlock and returning.
1067 */
1068 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1069 {
1070 int rc = 0;
1071
1072 spin_lock(&hcd_urb_list_lock);
1073
1074 /* Check that the URB isn't being killed */
1075 if (unlikely(atomic_read(&urb->reject))) {
1076 rc = -EPERM;
1077 goto done;
1078 }
1079
1080 if (unlikely(!urb->ep->enabled)) {
1081 rc = -ENOENT;
1082 goto done;
1083 }
1084
1085 if (unlikely(!urb->dev->can_submit)) {
1086 rc = -EHOSTUNREACH;
1087 goto done;
1088 }
1089
1090 /*
1091 * Check the host controller's state and add the URB to the
1092 * endpoint's queue.
1093 */
1094 switch (hcd->state) {
1095 case HC_STATE_RUNNING:
1096 case HC_STATE_RESUMING:
1097 urb->unlinked = 0;
1098 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1099 break;
1100 default:
1101 rc = -ESHUTDOWN;
1102 goto done;
1103 }
1104 done:
1105 spin_unlock(&hcd_urb_list_lock);
1106 return rc;
1107 }
1108 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1109
1110 /**
1111 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1112 * @hcd: host controller to which @urb was submitted
1113 * @urb: URB being checked for unlinkability
1114 * @status: error code to store in @urb if the unlink succeeds
1115 *
1116 * Host controller drivers should call this routine in their dequeue()
1117 * method. The HCD's private spinlock must be held and interrupts must
1118 * be disabled. The actions carried out here are required for making
1119 * sure than an unlink is valid.
1120 *
1121 * Returns 0 for no error, otherwise a negative error code (in which case
1122 * the dequeue() method must fail). The possible error codes are:
1123 *
1124 * -EIDRM: @urb was not submitted or has already completed.
1125 * The completion function may not have been called yet.
1126 *
1127 * -EBUSY: @urb has already been unlinked.
1128 */
1129 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1130 int status)
1131 {
1132 struct list_head *tmp;
1133
1134 /* insist the urb is still queued */
1135 list_for_each(tmp, &urb->ep->urb_list) {
1136 if (tmp == &urb->urb_list)
1137 break;
1138 }
1139 if (tmp != &urb->urb_list)
1140 return -EIDRM;
1141
1142 /* Any status except -EINPROGRESS means something already started to
1143 * unlink this URB from the hardware. So there's no more work to do.
1144 */
1145 if (urb->unlinked)
1146 return -EBUSY;
1147 urb->unlinked = status;
1148
1149 /* IRQ setup can easily be broken so that USB controllers
1150 * never get completion IRQs ... maybe even the ones we need to
1151 * finish unlinking the initial failed usb_set_address()
1152 * or device descriptor fetch.
1153 */
1154 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1155 !is_root_hub(urb->dev)) {
1156 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1157 "Controller is probably using the wrong IRQ.\n");
1158 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1159 }
1160
1161 return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1164
1165 /**
1166 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1167 * @hcd: host controller to which @urb was submitted
1168 * @urb: URB being unlinked
1169 *
1170 * Host controller drivers should call this routine before calling
1171 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1172 * interrupts must be disabled. The actions carried out here are required
1173 * for URB completion.
1174 */
1175 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1176 {
1177 /* clear all state linking urb to this dev (and hcd) */
1178 spin_lock(&hcd_urb_list_lock);
1179 list_del_init(&urb->urb_list);
1180 spin_unlock(&hcd_urb_list_lock);
1181 }
1182 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1183
1184 /*
1185 * Some usb host controllers can only perform dma using a small SRAM area.
1186 * The usb core itself is however optimized for host controllers that can dma
1187 * using regular system memory - like pci devices doing bus mastering.
1188 *
1189 * To support host controllers with limited dma capabilites we provide dma
1190 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1191 * For this to work properly the host controller code must first use the
1192 * function dma_declare_coherent_memory() to point out which memory area
1193 * that should be used for dma allocations.
1194 *
1195 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1196 * dma using dma_alloc_coherent() which in turn allocates from the memory
1197 * area pointed out with dma_declare_coherent_memory().
1198 *
1199 * So, to summarize...
1200 *
1201 * - We need "local" memory, canonical example being
1202 * a small SRAM on a discrete controller being the
1203 * only memory that the controller can read ...
1204 * (a) "normal" kernel memory is no good, and
1205 * (b) there's not enough to share
1206 *
1207 * - The only *portable* hook for such stuff in the
1208 * DMA framework is dma_declare_coherent_memory()
1209 *
1210 * - So we use that, even though the primary requirement
1211 * is that the memory be "local" (hence addressible
1212 * by that device), not "coherent".
1213 *
1214 */
1215
1216 static int hcd_alloc_coherent(struct usb_bus *bus,
1217 gfp_t mem_flags, dma_addr_t *dma_handle,
1218 void **vaddr_handle, size_t size,
1219 enum dma_data_direction dir)
1220 {
1221 unsigned char *vaddr;
1222
1223 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1224 mem_flags, dma_handle);
1225 if (!vaddr)
1226 return -ENOMEM;
1227
1228 /*
1229 * Store the virtual address of the buffer at the end
1230 * of the allocated dma buffer. The size of the buffer
1231 * may be uneven so use unaligned functions instead
1232 * of just rounding up. It makes sense to optimize for
1233 * memory footprint over access speed since the amount
1234 * of memory available for dma may be limited.
1235 */
1236 put_unaligned((unsigned long)*vaddr_handle,
1237 (unsigned long *)(vaddr + size));
1238
1239 if (dir == DMA_TO_DEVICE)
1240 memcpy(vaddr, *vaddr_handle, size);
1241
1242 *vaddr_handle = vaddr;
1243 return 0;
1244 }
1245
1246 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1247 void **vaddr_handle, size_t size,
1248 enum dma_data_direction dir)
1249 {
1250 unsigned char *vaddr = *vaddr_handle;
1251
1252 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1253
1254 if (dir == DMA_FROM_DEVICE)
1255 memcpy(vaddr, *vaddr_handle, size);
1256
1257 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1258
1259 *vaddr_handle = vaddr;
1260 *dma_handle = 0;
1261 }
1262
1263 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1264 gfp_t mem_flags)
1265 {
1266 enum dma_data_direction dir;
1267 int ret = 0;
1268
1269 /* Map the URB's buffers for DMA access.
1270 * Lower level HCD code should use *_dma exclusively,
1271 * unless it uses pio or talks to another transport,
1272 * or uses the provided scatter gather list for bulk.
1273 */
1274 if (is_root_hub(urb->dev))
1275 return 0;
1276
1277 if (usb_endpoint_xfer_control(&urb->ep->desc)
1278 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1279 if (hcd->self.uses_dma) {
1280 urb->setup_dma = dma_map_single(
1281 hcd->self.controller,
1282 urb->setup_packet,
1283 sizeof(struct usb_ctrlrequest),
1284 DMA_TO_DEVICE);
1285 if (dma_mapping_error(hcd->self.controller,
1286 urb->setup_dma))
1287 return -EAGAIN;
1288 } else if (hcd->driver->flags & HCD_LOCAL_MEM)
1289 ret = hcd_alloc_coherent(
1290 urb->dev->bus, mem_flags,
1291 &urb->setup_dma,
1292 (void **)&urb->setup_packet,
1293 sizeof(struct usb_ctrlrequest),
1294 DMA_TO_DEVICE);
1295 }
1296
1297 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1298 if (ret == 0 && urb->transfer_buffer_length != 0
1299 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1300 if (hcd->self.uses_dma) {
1301 urb->transfer_dma = dma_map_single (
1302 hcd->self.controller,
1303 urb->transfer_buffer,
1304 urb->transfer_buffer_length,
1305 dir);
1306 if (dma_mapping_error(hcd->self.controller,
1307 urb->transfer_dma))
1308 return -EAGAIN;
1309 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1310 ret = hcd_alloc_coherent(
1311 urb->dev->bus, mem_flags,
1312 &urb->transfer_dma,
1313 &urb->transfer_buffer,
1314 urb->transfer_buffer_length,
1315 dir);
1316
1317 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1318 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1319 hcd_free_coherent(urb->dev->bus,
1320 &urb->setup_dma,
1321 (void **)&urb->setup_packet,
1322 sizeof(struct usb_ctrlrequest),
1323 DMA_TO_DEVICE);
1324 }
1325 }
1326 return ret;
1327 }
1328
1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330 {
1331 enum dma_data_direction dir;
1332
1333 if (is_root_hub(urb->dev))
1334 return;
1335
1336 if (usb_endpoint_xfer_control(&urb->ep->desc)
1337 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1338 if (hcd->self.uses_dma)
1339 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1340 sizeof(struct usb_ctrlrequest),
1341 DMA_TO_DEVICE);
1342 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1343 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1344 (void **)&urb->setup_packet,
1345 sizeof(struct usb_ctrlrequest),
1346 DMA_TO_DEVICE);
1347 }
1348
1349 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1350 if (urb->transfer_buffer_length != 0
1351 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1352 if (hcd->self.uses_dma)
1353 dma_unmap_single(hcd->self.controller,
1354 urb->transfer_dma,
1355 urb->transfer_buffer_length,
1356 dir);
1357 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1358 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1359 &urb->transfer_buffer,
1360 urb->transfer_buffer_length,
1361 dir);
1362 }
1363 }
1364
1365 /*-------------------------------------------------------------------------*/
1366
1367 /* may be called in any context with a valid urb->dev usecount
1368 * caller surrenders "ownership" of urb
1369 * expects usb_submit_urb() to have sanity checked and conditioned all
1370 * inputs in the urb
1371 */
1372 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1373 {
1374 int status;
1375 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1376
1377 /* increment urb's reference count as part of giving it to the HCD
1378 * (which will control it). HCD guarantees that it either returns
1379 * an error or calls giveback(), but not both.
1380 */
1381 usb_get_urb(urb);
1382 atomic_inc(&urb->use_count);
1383 atomic_inc(&urb->dev->urbnum);
1384 usbmon_urb_submit(&hcd->self, urb);
1385
1386 /* NOTE requirements on root-hub callers (usbfs and the hub
1387 * driver, for now): URBs' urb->transfer_buffer must be
1388 * valid and usb_buffer_{sync,unmap}() not be needed, since
1389 * they could clobber root hub response data. Also, control
1390 * URBs must be submitted in process context with interrupts
1391 * enabled.
1392 */
1393 status = map_urb_for_dma(hcd, urb, mem_flags);
1394 if (unlikely(status)) {
1395 usbmon_urb_submit_error(&hcd->self, urb, status);
1396 goto error;
1397 }
1398
1399 if (is_root_hub(urb->dev))
1400 status = rh_urb_enqueue(hcd, urb);
1401 else
1402 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1403
1404 if (unlikely(status)) {
1405 usbmon_urb_submit_error(&hcd->self, urb, status);
1406 unmap_urb_for_dma(hcd, urb);
1407 error:
1408 urb->hcpriv = NULL;
1409 INIT_LIST_HEAD(&urb->urb_list);
1410 atomic_dec(&urb->use_count);
1411 atomic_dec(&urb->dev->urbnum);
1412 if (atomic_read(&urb->reject))
1413 wake_up(&usb_kill_urb_queue);
1414 usb_put_urb(urb);
1415 }
1416 return status;
1417 }
1418
1419 /*-------------------------------------------------------------------------*/
1420
1421 /* this makes the hcd giveback() the urb more quickly, by kicking it
1422 * off hardware queues (which may take a while) and returning it as
1423 * soon as practical. we've already set up the urb's return status,
1424 * but we can't know if the callback completed already.
1425 */
1426 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1427 {
1428 int value;
1429
1430 if (is_root_hub(urb->dev))
1431 value = usb_rh_urb_dequeue(hcd, urb, status);
1432 else {
1433
1434 /* The only reason an HCD might fail this call is if
1435 * it has not yet fully queued the urb to begin with.
1436 * Such failures should be harmless. */
1437 value = hcd->driver->urb_dequeue(hcd, urb, status);
1438 }
1439 return value;
1440 }
1441
1442 /*
1443 * called in any context
1444 *
1445 * caller guarantees urb won't be recycled till both unlink()
1446 * and the urb's completion function return
1447 */
1448 int usb_hcd_unlink_urb (struct urb *urb, int status)
1449 {
1450 struct usb_hcd *hcd;
1451 int retval = -EIDRM;
1452 unsigned long flags;
1453
1454 /* Prevent the device and bus from going away while
1455 * the unlink is carried out. If they are already gone
1456 * then urb->use_count must be 0, since disconnected
1457 * devices can't have any active URBs.
1458 */
1459 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1460 if (atomic_read(&urb->use_count) > 0) {
1461 retval = 0;
1462 usb_get_dev(urb->dev);
1463 }
1464 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1465 if (retval == 0) {
1466 hcd = bus_to_hcd(urb->dev->bus);
1467 retval = unlink1(hcd, urb, status);
1468 usb_put_dev(urb->dev);
1469 }
1470
1471 if (retval == 0)
1472 retval = -EINPROGRESS;
1473 else if (retval != -EIDRM && retval != -EBUSY)
1474 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1475 urb, retval);
1476 return retval;
1477 }
1478
1479 /*-------------------------------------------------------------------------*/
1480
1481 /**
1482 * usb_hcd_giveback_urb - return URB from HCD to device driver
1483 * @hcd: host controller returning the URB
1484 * @urb: urb being returned to the USB device driver.
1485 * @status: completion status code for the URB.
1486 * Context: in_interrupt()
1487 *
1488 * This hands the URB from HCD to its USB device driver, using its
1489 * completion function. The HCD has freed all per-urb resources
1490 * (and is done using urb->hcpriv). It also released all HCD locks;
1491 * the device driver won't cause problems if it frees, modifies,
1492 * or resubmits this URB.
1493 *
1494 * If @urb was unlinked, the value of @status will be overridden by
1495 * @urb->unlinked. Erroneous short transfers are detected in case
1496 * the HCD hasn't checked for them.
1497 */
1498 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1499 {
1500 urb->hcpriv = NULL;
1501 if (unlikely(urb->unlinked))
1502 status = urb->unlinked;
1503 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1504 urb->actual_length < urb->transfer_buffer_length &&
1505 !status))
1506 status = -EREMOTEIO;
1507
1508 unmap_urb_for_dma(hcd, urb);
1509 usbmon_urb_complete(&hcd->self, urb, status);
1510 usb_unanchor_urb(urb);
1511
1512 /* pass ownership to the completion handler */
1513 urb->status = status;
1514 urb->complete (urb);
1515 atomic_dec (&urb->use_count);
1516 if (unlikely(atomic_read(&urb->reject)))
1517 wake_up (&usb_kill_urb_queue);
1518 usb_put_urb (urb);
1519 }
1520 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1521
1522 /*-------------------------------------------------------------------------*/
1523
1524 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1525 * queue to drain completely. The caller must first insure that no more
1526 * URBs can be submitted for this endpoint.
1527 */
1528 void usb_hcd_flush_endpoint(struct usb_device *udev,
1529 struct usb_host_endpoint *ep)
1530 {
1531 struct usb_hcd *hcd;
1532 struct urb *urb;
1533
1534 if (!ep)
1535 return;
1536 might_sleep();
1537 hcd = bus_to_hcd(udev->bus);
1538
1539 /* No more submits can occur */
1540 spin_lock_irq(&hcd_urb_list_lock);
1541 rescan:
1542 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1543 int is_in;
1544
1545 if (urb->unlinked)
1546 continue;
1547 usb_get_urb (urb);
1548 is_in = usb_urb_dir_in(urb);
1549 spin_unlock(&hcd_urb_list_lock);
1550
1551 /* kick hcd */
1552 unlink1(hcd, urb, -ESHUTDOWN);
1553 dev_dbg (hcd->self.controller,
1554 "shutdown urb %p ep%d%s%s\n",
1555 urb, usb_endpoint_num(&ep->desc),
1556 is_in ? "in" : "out",
1557 ({ char *s;
1558
1559 switch (usb_endpoint_type(&ep->desc)) {
1560 case USB_ENDPOINT_XFER_CONTROL:
1561 s = ""; break;
1562 case USB_ENDPOINT_XFER_BULK:
1563 s = "-bulk"; break;
1564 case USB_ENDPOINT_XFER_INT:
1565 s = "-intr"; break;
1566 default:
1567 s = "-iso"; break;
1568 };
1569 s;
1570 }));
1571 usb_put_urb (urb);
1572
1573 /* list contents may have changed */
1574 spin_lock(&hcd_urb_list_lock);
1575 goto rescan;
1576 }
1577 spin_unlock_irq(&hcd_urb_list_lock);
1578
1579 /* Wait until the endpoint queue is completely empty */
1580 while (!list_empty (&ep->urb_list)) {
1581 spin_lock_irq(&hcd_urb_list_lock);
1582
1583 /* The list may have changed while we acquired the spinlock */
1584 urb = NULL;
1585 if (!list_empty (&ep->urb_list)) {
1586 urb = list_entry (ep->urb_list.prev, struct urb,
1587 urb_list);
1588 usb_get_urb (urb);
1589 }
1590 spin_unlock_irq(&hcd_urb_list_lock);
1591
1592 if (urb) {
1593 usb_kill_urb (urb);
1594 usb_put_urb (urb);
1595 }
1596 }
1597 }
1598
1599 /**
1600 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1601 * the bus bandwidth
1602 * @udev: target &usb_device
1603 * @new_config: new configuration to install
1604 * @cur_alt: the current alternate interface setting
1605 * @new_alt: alternate interface setting that is being installed
1606 *
1607 * To change configurations, pass in the new configuration in new_config,
1608 * and pass NULL for cur_alt and new_alt.
1609 *
1610 * To reset a device's configuration (put the device in the ADDRESSED state),
1611 * pass in NULL for new_config, cur_alt, and new_alt.
1612 *
1613 * To change alternate interface settings, pass in NULL for new_config,
1614 * pass in the current alternate interface setting in cur_alt,
1615 * and pass in the new alternate interface setting in new_alt.
1616 *
1617 * Returns an error if the requested bandwidth change exceeds the
1618 * bus bandwidth or host controller internal resources.
1619 */
1620 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1621 struct usb_host_config *new_config,
1622 struct usb_host_interface *cur_alt,
1623 struct usb_host_interface *new_alt)
1624 {
1625 int num_intfs, i, j;
1626 struct usb_host_interface *alt = NULL;
1627 int ret = 0;
1628 struct usb_hcd *hcd;
1629 struct usb_host_endpoint *ep;
1630
1631 hcd = bus_to_hcd(udev->bus);
1632 if (!hcd->driver->check_bandwidth)
1633 return 0;
1634
1635 /* Configuration is being removed - set configuration 0 */
1636 if (!new_config && !cur_alt) {
1637 for (i = 1; i < 16; ++i) {
1638 ep = udev->ep_out[i];
1639 if (ep)
1640 hcd->driver->drop_endpoint(hcd, udev, ep);
1641 ep = udev->ep_in[i];
1642 if (ep)
1643 hcd->driver->drop_endpoint(hcd, udev, ep);
1644 }
1645 hcd->driver->check_bandwidth(hcd, udev);
1646 return 0;
1647 }
1648 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1649 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1650 * of the bus. There will always be bandwidth for endpoint 0, so it's
1651 * ok to exclude it.
1652 */
1653 if (new_config) {
1654 num_intfs = new_config->desc.bNumInterfaces;
1655 /* Remove endpoints (except endpoint 0, which is always on the
1656 * schedule) from the old config from the schedule
1657 */
1658 for (i = 1; i < 16; ++i) {
1659 ep = udev->ep_out[i];
1660 if (ep) {
1661 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1662 if (ret < 0)
1663 goto reset;
1664 }
1665 ep = udev->ep_in[i];
1666 if (ep) {
1667 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1668 if (ret < 0)
1669 goto reset;
1670 }
1671 }
1672 for (i = 0; i < num_intfs; ++i) {
1673 struct usb_host_interface *first_alt;
1674 int iface_num;
1675
1676 first_alt = &new_config->intf_cache[i]->altsetting[0];
1677 iface_num = first_alt->desc.bInterfaceNumber;
1678 /* Set up endpoints for alternate interface setting 0 */
1679 alt = usb_find_alt_setting(new_config, iface_num, 0);
1680 if (!alt)
1681 /* No alt setting 0? Pick the first setting. */
1682 alt = first_alt;
1683
1684 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1685 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1686 if (ret < 0)
1687 goto reset;
1688 }
1689 }
1690 }
1691 if (cur_alt && new_alt) {
1692 struct usb_interface *iface = usb_ifnum_to_if(udev,
1693 cur_alt->desc.bInterfaceNumber);
1694
1695 if (iface->resetting_device) {
1696 /*
1697 * The USB core just reset the device, so the xHCI host
1698 * and the device will think alt setting 0 is installed.
1699 * However, the USB core will pass in the alternate
1700 * setting installed before the reset as cur_alt. Dig
1701 * out the alternate setting 0 structure, or the first
1702 * alternate setting if a broken device doesn't have alt
1703 * setting 0.
1704 */
1705 cur_alt = usb_altnum_to_altsetting(iface, 0);
1706 if (!cur_alt)
1707 cur_alt = &iface->altsetting[0];
1708 }
1709
1710 /* Drop all the endpoints in the current alt setting */
1711 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1712 ret = hcd->driver->drop_endpoint(hcd, udev,
1713 &cur_alt->endpoint[i]);
1714 if (ret < 0)
1715 goto reset;
1716 }
1717 /* Add all the endpoints in the new alt setting */
1718 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1719 ret = hcd->driver->add_endpoint(hcd, udev,
1720 &new_alt->endpoint[i]);
1721 if (ret < 0)
1722 goto reset;
1723 }
1724 }
1725 ret = hcd->driver->check_bandwidth(hcd, udev);
1726 reset:
1727 if (ret < 0)
1728 hcd->driver->reset_bandwidth(hcd, udev);
1729 return ret;
1730 }
1731
1732 /* Disables the endpoint: synchronizes with the hcd to make sure all
1733 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1734 * have been called previously. Use for set_configuration, set_interface,
1735 * driver removal, physical disconnect.
1736 *
1737 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1738 * type, maxpacket size, toggle, halt status, and scheduling.
1739 */
1740 void usb_hcd_disable_endpoint(struct usb_device *udev,
1741 struct usb_host_endpoint *ep)
1742 {
1743 struct usb_hcd *hcd;
1744
1745 might_sleep();
1746 hcd = bus_to_hcd(udev->bus);
1747 if (hcd->driver->endpoint_disable)
1748 hcd->driver->endpoint_disable(hcd, ep);
1749 }
1750
1751 /**
1752 * usb_hcd_reset_endpoint - reset host endpoint state
1753 * @udev: USB device.
1754 * @ep: the endpoint to reset.
1755 *
1756 * Resets any host endpoint state such as the toggle bit, sequence
1757 * number and current window.
1758 */
1759 void usb_hcd_reset_endpoint(struct usb_device *udev,
1760 struct usb_host_endpoint *ep)
1761 {
1762 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1763
1764 if (hcd->driver->endpoint_reset)
1765 hcd->driver->endpoint_reset(hcd, ep);
1766 else {
1767 int epnum = usb_endpoint_num(&ep->desc);
1768 int is_out = usb_endpoint_dir_out(&ep->desc);
1769 int is_control = usb_endpoint_xfer_control(&ep->desc);
1770
1771 usb_settoggle(udev, epnum, is_out, 0);
1772 if (is_control)
1773 usb_settoggle(udev, epnum, !is_out, 0);
1774 }
1775 }
1776
1777 /* Protect against drivers that try to unlink URBs after the device
1778 * is gone, by waiting until all unlinks for @udev are finished.
1779 * Since we don't currently track URBs by device, simply wait until
1780 * nothing is running in the locked region of usb_hcd_unlink_urb().
1781 */
1782 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1783 {
1784 spin_lock_irq(&hcd_urb_unlink_lock);
1785 spin_unlock_irq(&hcd_urb_unlink_lock);
1786 }
1787
1788 /*-------------------------------------------------------------------------*/
1789
1790 /* called in any context */
1791 int usb_hcd_get_frame_number (struct usb_device *udev)
1792 {
1793 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1794
1795 if (!HC_IS_RUNNING (hcd->state))
1796 return -ESHUTDOWN;
1797 return hcd->driver->get_frame_number (hcd);
1798 }
1799
1800 /*-------------------------------------------------------------------------*/
1801
1802 #ifdef CONFIG_PM
1803
1804 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1805 {
1806 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1807 int status;
1808 int old_state = hcd->state;
1809
1810 dev_dbg(&rhdev->dev, "bus %s%s\n",
1811 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1812 if (!hcd->driver->bus_suspend) {
1813 status = -ENOENT;
1814 } else {
1815 hcd->state = HC_STATE_QUIESCING;
1816 status = hcd->driver->bus_suspend(hcd);
1817 }
1818 if (status == 0) {
1819 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1820 hcd->state = HC_STATE_SUSPENDED;
1821 } else {
1822 hcd->state = old_state;
1823 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1824 "suspend", status);
1825 }
1826 return status;
1827 }
1828
1829 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1830 {
1831 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1832 int status;
1833 int old_state = hcd->state;
1834
1835 dev_dbg(&rhdev->dev, "usb %s%s\n",
1836 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1837 if (!hcd->driver->bus_resume)
1838 return -ENOENT;
1839 if (hcd->state == HC_STATE_RUNNING)
1840 return 0;
1841
1842 hcd->state = HC_STATE_RESUMING;
1843 status = hcd->driver->bus_resume(hcd);
1844 if (status == 0) {
1845 /* TRSMRCY = 10 msec */
1846 msleep(10);
1847 usb_set_device_state(rhdev, rhdev->actconfig
1848 ? USB_STATE_CONFIGURED
1849 : USB_STATE_ADDRESS);
1850 hcd->state = HC_STATE_RUNNING;
1851 } else {
1852 hcd->state = old_state;
1853 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1854 "resume", status);
1855 if (status != -ESHUTDOWN)
1856 usb_hc_died(hcd);
1857 }
1858 return status;
1859 }
1860
1861 #endif /* CONFIG_PM */
1862
1863 #ifdef CONFIG_USB_SUSPEND
1864
1865 /* Workqueue routine for root-hub remote wakeup */
1866 static void hcd_resume_work(struct work_struct *work)
1867 {
1868 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1869 struct usb_device *udev = hcd->self.root_hub;
1870
1871 usb_lock_device(udev);
1872 usb_remote_wakeup(udev);
1873 usb_unlock_device(udev);
1874 }
1875
1876 /**
1877 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1878 * @hcd: host controller for this root hub
1879 *
1880 * The USB host controller calls this function when its root hub is
1881 * suspended (with the remote wakeup feature enabled) and a remote
1882 * wakeup request is received. The routine submits a workqueue request
1883 * to resume the root hub (that is, manage its downstream ports again).
1884 */
1885 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1886 {
1887 unsigned long flags;
1888
1889 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1890 if (hcd->rh_registered)
1891 queue_work(pm_wq, &hcd->wakeup_work);
1892 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1893 }
1894 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1895
1896 #endif /* CONFIG_USB_SUSPEND */
1897
1898 /*-------------------------------------------------------------------------*/
1899
1900 #ifdef CONFIG_USB_OTG
1901
1902 /**
1903 * usb_bus_start_enum - start immediate enumeration (for OTG)
1904 * @bus: the bus (must use hcd framework)
1905 * @port_num: 1-based number of port; usually bus->otg_port
1906 * Context: in_interrupt()
1907 *
1908 * Starts enumeration, with an immediate reset followed later by
1909 * khubd identifying and possibly configuring the device.
1910 * This is needed by OTG controller drivers, where it helps meet
1911 * HNP protocol timing requirements for starting a port reset.
1912 */
1913 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1914 {
1915 struct usb_hcd *hcd;
1916 int status = -EOPNOTSUPP;
1917
1918 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1919 * boards with root hubs hooked up to internal devices (instead of
1920 * just the OTG port) may need more attention to resetting...
1921 */
1922 hcd = container_of (bus, struct usb_hcd, self);
1923 if (port_num && hcd->driver->start_port_reset)
1924 status = hcd->driver->start_port_reset(hcd, port_num);
1925
1926 /* run khubd shortly after (first) root port reset finishes;
1927 * it may issue others, until at least 50 msecs have passed.
1928 */
1929 if (status == 0)
1930 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1931 return status;
1932 }
1933 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1934
1935 #endif
1936
1937 /*-------------------------------------------------------------------------*/
1938
1939 /**
1940 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1941 * @irq: the IRQ being raised
1942 * @__hcd: pointer to the HCD whose IRQ is being signaled
1943 *
1944 * If the controller isn't HALTed, calls the driver's irq handler.
1945 * Checks whether the controller is now dead.
1946 */
1947 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1948 {
1949 struct usb_hcd *hcd = __hcd;
1950 unsigned long flags;
1951 irqreturn_t rc;
1952
1953 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1954 * when the first handler doesn't use it. So let's just
1955 * assume it's never used.
1956 */
1957 local_irq_save(flags);
1958
1959 if (unlikely(hcd->state == HC_STATE_HALT ||
1960 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1961 rc = IRQ_NONE;
1962 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1963 rc = IRQ_NONE;
1964 } else {
1965 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1966
1967 if (unlikely(hcd->state == HC_STATE_HALT))
1968 usb_hc_died(hcd);
1969 rc = IRQ_HANDLED;
1970 }
1971
1972 local_irq_restore(flags);
1973 return rc;
1974 }
1975
1976 /*-------------------------------------------------------------------------*/
1977
1978 /**
1979 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1980 * @hcd: pointer to the HCD representing the controller
1981 *
1982 * This is called by bus glue to report a USB host controller that died
1983 * while operations may still have been pending. It's called automatically
1984 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1985 */
1986 void usb_hc_died (struct usb_hcd *hcd)
1987 {
1988 unsigned long flags;
1989
1990 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1991
1992 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1993 if (hcd->rh_registered) {
1994 hcd->poll_rh = 0;
1995
1996 /* make khubd clean up old urbs and devices */
1997 usb_set_device_state (hcd->self.root_hub,
1998 USB_STATE_NOTATTACHED);
1999 usb_kick_khubd (hcd->self.root_hub);
2000 }
2001 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2002 }
2003 EXPORT_SYMBOL_GPL (usb_hc_died);
2004
2005 /*-------------------------------------------------------------------------*/
2006
2007 /**
2008 * usb_create_hcd - create and initialize an HCD structure
2009 * @driver: HC driver that will use this hcd
2010 * @dev: device for this HC, stored in hcd->self.controller
2011 * @bus_name: value to store in hcd->self.bus_name
2012 * Context: !in_interrupt()
2013 *
2014 * Allocate a struct usb_hcd, with extra space at the end for the
2015 * HC driver's private data. Initialize the generic members of the
2016 * hcd structure.
2017 *
2018 * If memory is unavailable, returns NULL.
2019 */
2020 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
2021 struct device *dev, const char *bus_name)
2022 {
2023 struct usb_hcd *hcd;
2024
2025 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2026 if (!hcd) {
2027 dev_dbg (dev, "hcd alloc failed\n");
2028 return NULL;
2029 }
2030 dev_set_drvdata(dev, hcd);
2031 kref_init(&hcd->kref);
2032
2033 usb_bus_init(&hcd->self);
2034 hcd->self.controller = dev;
2035 hcd->self.bus_name = bus_name;
2036 hcd->self.uses_dma = (dev->dma_mask != NULL);
2037
2038 init_timer(&hcd->rh_timer);
2039 hcd->rh_timer.function = rh_timer_func;
2040 hcd->rh_timer.data = (unsigned long) hcd;
2041 #ifdef CONFIG_USB_SUSPEND
2042 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2043 #endif
2044 mutex_init(&hcd->bandwidth_mutex);
2045
2046 hcd->driver = driver;
2047 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2048 "USB Host Controller";
2049 return hcd;
2050 }
2051 EXPORT_SYMBOL_GPL(usb_create_hcd);
2052
2053 static void hcd_release (struct kref *kref)
2054 {
2055 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2056
2057 kfree(hcd);
2058 }
2059
2060 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2061 {
2062 if (hcd)
2063 kref_get (&hcd->kref);
2064 return hcd;
2065 }
2066 EXPORT_SYMBOL_GPL(usb_get_hcd);
2067
2068 void usb_put_hcd (struct usb_hcd *hcd)
2069 {
2070 if (hcd)
2071 kref_put (&hcd->kref, hcd_release);
2072 }
2073 EXPORT_SYMBOL_GPL(usb_put_hcd);
2074
2075 /**
2076 * usb_add_hcd - finish generic HCD structure initialization and register
2077 * @hcd: the usb_hcd structure to initialize
2078 * @irqnum: Interrupt line to allocate
2079 * @irqflags: Interrupt type flags
2080 *
2081 * Finish the remaining parts of generic HCD initialization: allocate the
2082 * buffers of consistent memory, register the bus, request the IRQ line,
2083 * and call the driver's reset() and start() routines.
2084 */
2085 int usb_add_hcd(struct usb_hcd *hcd,
2086 unsigned int irqnum, unsigned long irqflags)
2087 {
2088 int retval;
2089 struct usb_device *rhdev;
2090
2091 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2092
2093 hcd->authorized_default = hcd->wireless? 0 : 1;
2094 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2095
2096 /* HC is in reset state, but accessible. Now do the one-time init,
2097 * bottom up so that hcds can customize the root hubs before khubd
2098 * starts talking to them. (Note, bus id is assigned early too.)
2099 */
2100 if ((retval = hcd_buffer_create(hcd)) != 0) {
2101 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2102 return retval;
2103 }
2104
2105 if ((retval = usb_register_bus(&hcd->self)) < 0)
2106 goto err_register_bus;
2107
2108 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2109 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2110 retval = -ENOMEM;
2111 goto err_allocate_root_hub;
2112 }
2113
2114 switch (hcd->driver->flags & HCD_MASK) {
2115 case HCD_USB11:
2116 rhdev->speed = USB_SPEED_FULL;
2117 break;
2118 case HCD_USB2:
2119 rhdev->speed = USB_SPEED_HIGH;
2120 break;
2121 case HCD_USB3:
2122 rhdev->speed = USB_SPEED_SUPER;
2123 break;
2124 default:
2125 goto err_allocate_root_hub;
2126 }
2127 hcd->self.root_hub = rhdev;
2128
2129 /* wakeup flag init defaults to "everything works" for root hubs,
2130 * but drivers can override it in reset() if needed, along with
2131 * recording the overall controller's system wakeup capability.
2132 */
2133 device_init_wakeup(&rhdev->dev, 1);
2134
2135 /* "reset" is misnamed; its role is now one-time init. the controller
2136 * should already have been reset (and boot firmware kicked off etc).
2137 */
2138 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2139 dev_err(hcd->self.controller, "can't setup\n");
2140 goto err_hcd_driver_setup;
2141 }
2142
2143 /* NOTE: root hub and controller capabilities may not be the same */
2144 if (device_can_wakeup(hcd->self.controller)
2145 && device_can_wakeup(&hcd->self.root_hub->dev))
2146 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2147
2148 /* enable irqs just before we start the controller */
2149 if (hcd->driver->irq) {
2150
2151 /* IRQF_DISABLED doesn't work as advertised when used together
2152 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2153 * interrupts we can remove it here.
2154 */
2155 if (irqflags & IRQF_SHARED)
2156 irqflags &= ~IRQF_DISABLED;
2157
2158 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2159 hcd->driver->description, hcd->self.busnum);
2160 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2161 hcd->irq_descr, hcd)) != 0) {
2162 dev_err(hcd->self.controller,
2163 "request interrupt %d failed\n", irqnum);
2164 goto err_request_irq;
2165 }
2166 hcd->irq = irqnum;
2167 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2168 (hcd->driver->flags & HCD_MEMORY) ?
2169 "io mem" : "io base",
2170 (unsigned long long)hcd->rsrc_start);
2171 } else {
2172 hcd->irq = -1;
2173 if (hcd->rsrc_start)
2174 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2175 (hcd->driver->flags & HCD_MEMORY) ?
2176 "io mem" : "io base",
2177 (unsigned long long)hcd->rsrc_start);
2178 }
2179
2180 if ((retval = hcd->driver->start(hcd)) < 0) {
2181 dev_err(hcd->self.controller, "startup error %d\n", retval);
2182 goto err_hcd_driver_start;
2183 }
2184
2185 /* starting here, usbcore will pay attention to this root hub */
2186 rhdev->bus_mA = min(500u, hcd->power_budget);
2187 if ((retval = register_root_hub(hcd)) != 0)
2188 goto err_register_root_hub;
2189
2190 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2191 if (retval < 0) {
2192 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2193 retval);
2194 goto error_create_attr_group;
2195 }
2196 if (hcd->uses_new_polling && hcd->poll_rh)
2197 usb_hcd_poll_rh_status(hcd);
2198 return retval;
2199
2200 error_create_attr_group:
2201 mutex_lock(&usb_bus_list_lock);
2202 usb_disconnect(&hcd->self.root_hub);
2203 mutex_unlock(&usb_bus_list_lock);
2204 err_register_root_hub:
2205 hcd->driver->stop(hcd);
2206 err_hcd_driver_start:
2207 if (hcd->irq >= 0)
2208 free_irq(irqnum, hcd);
2209 err_request_irq:
2210 err_hcd_driver_setup:
2211 hcd->self.root_hub = NULL;
2212 usb_put_dev(rhdev);
2213 err_allocate_root_hub:
2214 usb_deregister_bus(&hcd->self);
2215 err_register_bus:
2216 hcd_buffer_destroy(hcd);
2217 return retval;
2218 }
2219 EXPORT_SYMBOL_GPL(usb_add_hcd);
2220
2221 /**
2222 * usb_remove_hcd - shutdown processing for generic HCDs
2223 * @hcd: the usb_hcd structure to remove
2224 * Context: !in_interrupt()
2225 *
2226 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2227 * invoking the HCD's stop() method.
2228 */
2229 void usb_remove_hcd(struct usb_hcd *hcd)
2230 {
2231 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2232
2233 if (HC_IS_RUNNING (hcd->state))
2234 hcd->state = HC_STATE_QUIESCING;
2235
2236 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2237 spin_lock_irq (&hcd_root_hub_lock);
2238 hcd->rh_registered = 0;
2239 spin_unlock_irq (&hcd_root_hub_lock);
2240
2241 #ifdef CONFIG_USB_SUSPEND
2242 cancel_work_sync(&hcd->wakeup_work);
2243 #endif
2244
2245 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2246 mutex_lock(&usb_bus_list_lock);
2247 usb_disconnect(&hcd->self.root_hub);
2248 mutex_unlock(&usb_bus_list_lock);
2249
2250 hcd->driver->stop(hcd);
2251 hcd->state = HC_STATE_HALT;
2252
2253 hcd->poll_rh = 0;
2254 del_timer_sync(&hcd->rh_timer);
2255
2256 if (hcd->irq >= 0)
2257 free_irq(hcd->irq, hcd);
2258 usb_deregister_bus(&hcd->self);
2259 hcd_buffer_destroy(hcd);
2260 }
2261 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2262
2263 void
2264 usb_hcd_platform_shutdown(struct platform_device* dev)
2265 {
2266 struct usb_hcd *hcd = platform_get_drvdata(dev);
2267
2268 if (hcd->driver->shutdown)
2269 hcd->driver->shutdown(hcd);
2270 }
2271 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2272
2273 /*-------------------------------------------------------------------------*/
2274
2275 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2276
2277 struct usb_mon_operations *mon_ops;
2278
2279 /*
2280 * The registration is unlocked.
2281 * We do it this way because we do not want to lock in hot paths.
2282 *
2283 * Notice that the code is minimally error-proof. Because usbmon needs
2284 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2285 */
2286
2287 int usb_mon_register (struct usb_mon_operations *ops)
2288 {
2289
2290 if (mon_ops)
2291 return -EBUSY;
2292
2293 mon_ops = ops;
2294 mb();
2295 return 0;
2296 }
2297 EXPORT_SYMBOL_GPL (usb_mon_register);
2298
2299 void usb_mon_deregister (void)
2300 {
2301
2302 if (mon_ops == NULL) {
2303 printk(KERN_ERR "USB: monitor was not registered\n");
2304 return;
2305 }
2306 mon_ops = NULL;
2307 mb();
2308 }
2309 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2310
2311 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.157956 seconds and 5 git commands to generate.