Merge remote-tracking branch 'asoc/topic/mc13783' into asoc-next
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46
47 #include "usb.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53 * USB Host Controller Driver framework
54 *
55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56 * HCD-specific behaviors/bugs.
57 *
58 * This does error checks, tracks devices and urbs, and delegates to a
59 * "hc_driver" only for code (and data) that really needs to know about
60 * hardware differences. That includes root hub registers, i/o queues,
61 * and so on ... but as little else as possible.
62 *
63 * Shared code includes most of the "root hub" code (these are emulated,
64 * though each HC's hardware works differently) and PCI glue, plus request
65 * tracking overhead. The HCD code should only block on spinlocks or on
66 * hardware handshaking; blocking on software events (such as other kernel
67 * threads releasing resources, or completing actions) is all generic.
68 *
69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71 * only by the hub driver ... and that neither should be seen or used by
72 * usb client device drivers.
73 *
74 * Contributors of ideas or unattributed patches include: David Brownell,
75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 *
77 * HISTORY:
78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
79 * associated cleanup. "usb_hcd" still != "usb_bus".
80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
81 */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS 64
95 struct usb_busmap {
96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 0x01, /* __u8 bDescriptorType; Device */
156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor [18] = {
175 0x12, /* __u8 bLength; */
176 0x01, /* __u8 bDescriptorType; Device */
177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor [18] = {
198 0x12, /* __u8 bLength; */
199 0x01, /* __u8 bDescriptorType; Device */
200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
201
202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
203 0x00, /* __u8 bDeviceSubClass; */
204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
206
207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
210
211 0x03, /* __u8 iManufacturer; */
212 0x02, /* __u8 iProduct; */
213 0x01, /* __u8 iSerialNumber; */
214 0x01 /* __u8 bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor [] = {
223
224 /* one configuration */
225 0x09, /* __u8 bLength; */
226 0x02, /* __u8 bDescriptorType; Configuration */
227 0x19, 0x00, /* __le16 wTotalLength; */
228 0x01, /* __u8 bNumInterfaces; (1) */
229 0x01, /* __u8 bConfigurationValue; */
230 0x00, /* __u8 iConfiguration; */
231 0xc0, /* __u8 bmAttributes;
232 Bit 7: must be set,
233 6: Self-powered,
234 5: Remote wakeup,
235 4..0: resvd */
236 0x00, /* __u8 MaxPower; */
237
238 /* USB 1.1:
239 * USB 2.0, single TT organization (mandatory):
240 * one interface, protocol 0
241 *
242 * USB 2.0, multiple TT organization (optional):
243 * two interfaces, protocols 1 (like single TT)
244 * and 2 (multiple TT mode) ... config is
245 * sometimes settable
246 * NOT IMPLEMENTED
247 */
248
249 /* one interface */
250 0x09, /* __u8 if_bLength; */
251 0x04, /* __u8 if_bDescriptorType; Interface */
252 0x00, /* __u8 if_bInterfaceNumber; */
253 0x00, /* __u8 if_bAlternateSetting; */
254 0x01, /* __u8 if_bNumEndpoints; */
255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
256 0x00, /* __u8 if_bInterfaceSubClass; */
257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
258 0x00, /* __u8 if_iInterface; */
259
260 /* one endpoint (status change endpoint) */
261 0x07, /* __u8 ep_bLength; */
262 0x05, /* __u8 ep_bDescriptorType; Endpoint */
263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
264 0x03, /* __u8 ep_bmAttributes; Interrupt */
265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor [] = {
270
271 /* one configuration */
272 0x09, /* __u8 bLength; */
273 0x02, /* __u8 bDescriptorType; Configuration */
274 0x19, 0x00, /* __le16 wTotalLength; */
275 0x01, /* __u8 bNumInterfaces; (1) */
276 0x01, /* __u8 bConfigurationValue; */
277 0x00, /* __u8 iConfiguration; */
278 0xc0, /* __u8 bmAttributes;
279 Bit 7: must be set,
280 6: Self-powered,
281 5: Remote wakeup,
282 4..0: resvd */
283 0x00, /* __u8 MaxPower; */
284
285 /* USB 1.1:
286 * USB 2.0, single TT organization (mandatory):
287 * one interface, protocol 0
288 *
289 * USB 2.0, multiple TT organization (optional):
290 * two interfaces, protocols 1 (like single TT)
291 * and 2 (multiple TT mode) ... config is
292 * sometimes settable
293 * NOT IMPLEMENTED
294 */
295
296 /* one interface */
297 0x09, /* __u8 if_bLength; */
298 0x04, /* __u8 if_bDescriptorType; Interface */
299 0x00, /* __u8 if_bInterfaceNumber; */
300 0x00, /* __u8 if_bAlternateSetting; */
301 0x01, /* __u8 if_bNumEndpoints; */
302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
303 0x00, /* __u8 if_bInterfaceSubClass; */
304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
305 0x00, /* __u8 if_iInterface; */
306
307 /* one endpoint (status change endpoint) */
308 0x07, /* __u8 ep_bLength; */
309 0x05, /* __u8 ep_bDescriptorType; Endpoint */
310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
311 0x03, /* __u8 ep_bmAttributes; Interrupt */
312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313 * see hub.c:hub_configure() for details. */
314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319 /* one configuration */
320 0x09, /* __u8 bLength; */
321 0x02, /* __u8 bDescriptorType; Configuration */
322 0x1f, 0x00, /* __le16 wTotalLength; */
323 0x01, /* __u8 bNumInterfaces; (1) */
324 0x01, /* __u8 bConfigurationValue; */
325 0x00, /* __u8 iConfiguration; */
326 0xc0, /* __u8 bmAttributes;
327 Bit 7: must be set,
328 6: Self-powered,
329 5: Remote wakeup,
330 4..0: resvd */
331 0x00, /* __u8 MaxPower; */
332
333 /* one interface */
334 0x09, /* __u8 if_bLength; */
335 0x04, /* __u8 if_bDescriptorType; Interface */
336 0x00, /* __u8 if_bInterfaceNumber; */
337 0x00, /* __u8 if_bAlternateSetting; */
338 0x01, /* __u8 if_bNumEndpoints; */
339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
340 0x00, /* __u8 if_bInterfaceSubClass; */
341 0x00, /* __u8 if_bInterfaceProtocol; */
342 0x00, /* __u8 if_iInterface; */
343
344 /* one endpoint (status change endpoint) */
345 0x07, /* __u8 ep_bLength; */
346 0x05, /* __u8 ep_bDescriptorType; Endpoint */
347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
348 0x03, /* __u8 ep_bmAttributes; Interrupt */
349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350 * see hub.c:hub_configure() for details. */
351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
353
354 /* one SuperSpeed endpoint companion descriptor */
355 0x06, /* __u8 ss_bLength */
356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
360 };
361
362 /* authorized_default behaviour:
363 * -1 is authorized for all devices except wireless (old behaviour)
364 * 0 is unauthorized for all devices
365 * 1 is authorized for all devices
366 */
367 static int authorized_default = -1;
368 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
369 MODULE_PARM_DESC(authorized_default,
370 "Default USB device authorization: 0 is not authorized, 1 is "
371 "authorized, -1 is authorized except for wireless USB (default, "
372 "old behaviour");
373 /*-------------------------------------------------------------------------*/
374
375 /**
376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377 * @s: Null-terminated ASCII (actually ISO-8859-1) string
378 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379 * @len: Length (in bytes; may be odd) of descriptor buffer.
380 *
381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
382 * whichever is less.
383 *
384 * Note:
385 * USB String descriptors can contain at most 126 characters; input
386 * strings longer than that are truncated.
387 */
388 static unsigned
389 ascii2desc(char const *s, u8 *buf, unsigned len)
390 {
391 unsigned n, t = 2 + 2*strlen(s);
392
393 if (t > 254)
394 t = 254; /* Longest possible UTF string descriptor */
395 if (len > t)
396 len = t;
397
398 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
399
400 n = len;
401 while (n--) {
402 *buf++ = t;
403 if (!n--)
404 break;
405 *buf++ = t >> 8;
406 t = (unsigned char)*s++;
407 }
408 return len;
409 }
410
411 /**
412 * rh_string() - provides string descriptors for root hub
413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414 * @hcd: the host controller for this root hub
415 * @data: buffer for output packet
416 * @len: length of the provided buffer
417 *
418 * Produces either a manufacturer, product or serial number string for the
419 * virtual root hub device.
420 *
421 * Return: The number of bytes filled in: the length of the descriptor or
422 * of the provided buffer, whichever is less.
423 */
424 static unsigned
425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426 {
427 char buf[100];
428 char const *s;
429 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430
431 // language ids
432 switch (id) {
433 case 0:
434 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
436 if (len > 4)
437 len = 4;
438 memcpy(data, langids, len);
439 return len;
440 case 1:
441 /* Serial number */
442 s = hcd->self.bus_name;
443 break;
444 case 2:
445 /* Product name */
446 s = hcd->product_desc;
447 break;
448 case 3:
449 /* Manufacturer */
450 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
451 init_utsname()->release, hcd->driver->description);
452 s = buf;
453 break;
454 default:
455 /* Can't happen; caller guarantees it */
456 return 0;
457 }
458
459 return ascii2desc(s, data, len);
460 }
461
462
463 /* Root hub control transfers execute synchronously */
464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465 {
466 struct usb_ctrlrequest *cmd;
467 u16 typeReq, wValue, wIndex, wLength;
468 u8 *ubuf = urb->transfer_buffer;
469 unsigned len = 0;
470 int status;
471 u8 patch_wakeup = 0;
472 u8 patch_protocol = 0;
473 u16 tbuf_size;
474 u8 *tbuf = NULL;
475 const u8 *bufp;
476
477 might_sleep();
478
479 spin_lock_irq(&hcd_root_hub_lock);
480 status = usb_hcd_link_urb_to_ep(hcd, urb);
481 spin_unlock_irq(&hcd_root_hub_lock);
482 if (status)
483 return status;
484 urb->hcpriv = hcd; /* Indicate it's queued */
485
486 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
487 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
488 wValue = le16_to_cpu (cmd->wValue);
489 wIndex = le16_to_cpu (cmd->wIndex);
490 wLength = le16_to_cpu (cmd->wLength);
491
492 if (wLength > urb->transfer_buffer_length)
493 goto error;
494
495 /*
496 * tbuf should be at least as big as the
497 * USB hub descriptor.
498 */
499 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
500 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
501 if (!tbuf)
502 return -ENOMEM;
503
504 bufp = tbuf;
505
506
507 urb->actual_length = 0;
508 switch (typeReq) {
509
510 /* DEVICE REQUESTS */
511
512 /* The root hub's remote wakeup enable bit is implemented using
513 * driver model wakeup flags. If this system supports wakeup
514 * through USB, userspace may change the default "allow wakeup"
515 * policy through sysfs or these calls.
516 *
517 * Most root hubs support wakeup from downstream devices, for
518 * runtime power management (disabling USB clocks and reducing
519 * VBUS power usage). However, not all of them do so; silicon,
520 * board, and BIOS bugs here are not uncommon, so these can't
521 * be treated quite like external hubs.
522 *
523 * Likewise, not all root hubs will pass wakeup events upstream,
524 * to wake up the whole system. So don't assume root hub and
525 * controller capabilities are identical.
526 */
527
528 case DeviceRequest | USB_REQ_GET_STATUS:
529 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
530 << USB_DEVICE_REMOTE_WAKEUP)
531 | (1 << USB_DEVICE_SELF_POWERED);
532 tbuf [1] = 0;
533 len = 2;
534 break;
535 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
536 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
538 else
539 goto error;
540 break;
541 case DeviceOutRequest | USB_REQ_SET_FEATURE:
542 if (device_can_wakeup(&hcd->self.root_hub->dev)
543 && wValue == USB_DEVICE_REMOTE_WAKEUP)
544 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
545 else
546 goto error;
547 break;
548 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
549 tbuf [0] = 1;
550 len = 1;
551 /* FALLTHROUGH */
552 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
553 break;
554 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
555 switch (wValue & 0xff00) {
556 case USB_DT_DEVICE << 8:
557 switch (hcd->speed) {
558 case HCD_USB3:
559 bufp = usb3_rh_dev_descriptor;
560 break;
561 case HCD_USB25:
562 bufp = usb25_rh_dev_descriptor;
563 break;
564 case HCD_USB2:
565 bufp = usb2_rh_dev_descriptor;
566 break;
567 case HCD_USB11:
568 bufp = usb11_rh_dev_descriptor;
569 break;
570 default:
571 goto error;
572 }
573 len = 18;
574 if (hcd->has_tt)
575 patch_protocol = 1;
576 break;
577 case USB_DT_CONFIG << 8:
578 switch (hcd->speed) {
579 case HCD_USB3:
580 bufp = ss_rh_config_descriptor;
581 len = sizeof ss_rh_config_descriptor;
582 break;
583 case HCD_USB25:
584 case HCD_USB2:
585 bufp = hs_rh_config_descriptor;
586 len = sizeof hs_rh_config_descriptor;
587 break;
588 case HCD_USB11:
589 bufp = fs_rh_config_descriptor;
590 len = sizeof fs_rh_config_descriptor;
591 break;
592 default:
593 goto error;
594 }
595 if (device_can_wakeup(&hcd->self.root_hub->dev))
596 patch_wakeup = 1;
597 break;
598 case USB_DT_STRING << 8:
599 if ((wValue & 0xff) < 4)
600 urb->actual_length = rh_string(wValue & 0xff,
601 hcd, ubuf, wLength);
602 else /* unsupported IDs --> "protocol stall" */
603 goto error;
604 break;
605 case USB_DT_BOS << 8:
606 goto nongeneric;
607 default:
608 goto error;
609 }
610 break;
611 case DeviceRequest | USB_REQ_GET_INTERFACE:
612 tbuf [0] = 0;
613 len = 1;
614 /* FALLTHROUGH */
615 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
616 break;
617 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
618 // wValue == urb->dev->devaddr
619 dev_dbg (hcd->self.controller, "root hub device address %d\n",
620 wValue);
621 break;
622
623 /* INTERFACE REQUESTS (no defined feature/status flags) */
624
625 /* ENDPOINT REQUESTS */
626
627 case EndpointRequest | USB_REQ_GET_STATUS:
628 // ENDPOINT_HALT flag
629 tbuf [0] = 0;
630 tbuf [1] = 0;
631 len = 2;
632 /* FALLTHROUGH */
633 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
634 case EndpointOutRequest | USB_REQ_SET_FEATURE:
635 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
636 break;
637
638 /* CLASS REQUESTS (and errors) */
639
640 default:
641 nongeneric:
642 /* non-generic request */
643 switch (typeReq) {
644 case GetHubStatus:
645 case GetPortStatus:
646 len = 4;
647 break;
648 case GetHubDescriptor:
649 len = sizeof (struct usb_hub_descriptor);
650 break;
651 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
652 /* len is returned by hub_control */
653 break;
654 }
655 status = hcd->driver->hub_control (hcd,
656 typeReq, wValue, wIndex,
657 tbuf, wLength);
658
659 if (typeReq == GetHubDescriptor)
660 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
661 (struct usb_hub_descriptor *)tbuf);
662 break;
663 error:
664 /* "protocol stall" on error */
665 status = -EPIPE;
666 }
667
668 if (status < 0) {
669 len = 0;
670 if (status != -EPIPE) {
671 dev_dbg (hcd->self.controller,
672 "CTRL: TypeReq=0x%x val=0x%x "
673 "idx=0x%x len=%d ==> %d\n",
674 typeReq, wValue, wIndex,
675 wLength, status);
676 }
677 } else if (status > 0) {
678 /* hub_control may return the length of data copied. */
679 len = status;
680 status = 0;
681 }
682 if (len) {
683 if (urb->transfer_buffer_length < len)
684 len = urb->transfer_buffer_length;
685 urb->actual_length = len;
686 // always USB_DIR_IN, toward host
687 memcpy (ubuf, bufp, len);
688
689 /* report whether RH hardware supports remote wakeup */
690 if (patch_wakeup &&
691 len > offsetof (struct usb_config_descriptor,
692 bmAttributes))
693 ((struct usb_config_descriptor *)ubuf)->bmAttributes
694 |= USB_CONFIG_ATT_WAKEUP;
695
696 /* report whether RH hardware has an integrated TT */
697 if (patch_protocol &&
698 len > offsetof(struct usb_device_descriptor,
699 bDeviceProtocol))
700 ((struct usb_device_descriptor *) ubuf)->
701 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
702 }
703
704 kfree(tbuf);
705
706 /* any errors get returned through the urb completion */
707 spin_lock_irq(&hcd_root_hub_lock);
708 usb_hcd_unlink_urb_from_ep(hcd, urb);
709 usb_hcd_giveback_urb(hcd, urb, status);
710 spin_unlock_irq(&hcd_root_hub_lock);
711 return 0;
712 }
713
714 /*-------------------------------------------------------------------------*/
715
716 /*
717 * Root Hub interrupt transfers are polled using a timer if the
718 * driver requests it; otherwise the driver is responsible for
719 * calling usb_hcd_poll_rh_status() when an event occurs.
720 *
721 * Completions are called in_interrupt(), but they may or may not
722 * be in_irq().
723 */
724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
725 {
726 struct urb *urb;
727 int length;
728 unsigned long flags;
729 char buffer[6]; /* Any root hubs with > 31 ports? */
730
731 if (unlikely(!hcd->rh_pollable))
732 return;
733 if (!hcd->uses_new_polling && !hcd->status_urb)
734 return;
735
736 length = hcd->driver->hub_status_data(hcd, buffer);
737 if (length > 0) {
738
739 /* try to complete the status urb */
740 spin_lock_irqsave(&hcd_root_hub_lock, flags);
741 urb = hcd->status_urb;
742 if (urb) {
743 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
744 hcd->status_urb = NULL;
745 urb->actual_length = length;
746 memcpy(urb->transfer_buffer, buffer, length);
747
748 usb_hcd_unlink_urb_from_ep(hcd, urb);
749 usb_hcd_giveback_urb(hcd, urb, 0);
750 } else {
751 length = 0;
752 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
753 }
754 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
755 }
756
757 /* The USB 2.0 spec says 256 ms. This is close enough and won't
758 * exceed that limit if HZ is 100. The math is more clunky than
759 * maybe expected, this is to make sure that all timers for USB devices
760 * fire at the same time to give the CPU a break in between */
761 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
762 (length == 0 && hcd->status_urb != NULL))
763 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764 }
765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
766
767 /* timer callback */
768 static void rh_timer_func (unsigned long _hcd)
769 {
770 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
771 }
772
773 /*-------------------------------------------------------------------------*/
774
775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
776 {
777 int retval;
778 unsigned long flags;
779 unsigned len = 1 + (urb->dev->maxchild / 8);
780
781 spin_lock_irqsave (&hcd_root_hub_lock, flags);
782 if (hcd->status_urb || urb->transfer_buffer_length < len) {
783 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
784 retval = -EINVAL;
785 goto done;
786 }
787
788 retval = usb_hcd_link_urb_to_ep(hcd, urb);
789 if (retval)
790 goto done;
791
792 hcd->status_urb = urb;
793 urb->hcpriv = hcd; /* indicate it's queued */
794 if (!hcd->uses_new_polling)
795 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796
797 /* If a status change has already occurred, report it ASAP */
798 else if (HCD_POLL_PENDING(hcd))
799 mod_timer(&hcd->rh_timer, jiffies);
800 retval = 0;
801 done:
802 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
803 return retval;
804 }
805
806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
807 {
808 if (usb_endpoint_xfer_int(&urb->ep->desc))
809 return rh_queue_status (hcd, urb);
810 if (usb_endpoint_xfer_control(&urb->ep->desc))
811 return rh_call_control (hcd, urb);
812 return -EINVAL;
813 }
814
815 /*-------------------------------------------------------------------------*/
816
817 /* Unlinks of root-hub control URBs are legal, but they don't do anything
818 * since these URBs always execute synchronously.
819 */
820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
821 {
822 unsigned long flags;
823 int rc;
824
825 spin_lock_irqsave(&hcd_root_hub_lock, flags);
826 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
827 if (rc)
828 goto done;
829
830 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
831 ; /* Do nothing */
832
833 } else { /* Status URB */
834 if (!hcd->uses_new_polling)
835 del_timer (&hcd->rh_timer);
836 if (urb == hcd->status_urb) {
837 hcd->status_urb = NULL;
838 usb_hcd_unlink_urb_from_ep(hcd, urb);
839 usb_hcd_giveback_urb(hcd, urb, status);
840 }
841 }
842 done:
843 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
844 return rc;
845 }
846
847
848
849 /*
850 * Show & store the current value of authorized_default
851 */
852 static ssize_t authorized_default_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854 {
855 struct usb_device *rh_usb_dev = to_usb_device(dev);
856 struct usb_bus *usb_bus = rh_usb_dev->bus;
857 struct usb_hcd *usb_hcd;
858
859 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
860 return -ENODEV;
861 usb_hcd = bus_to_hcd(usb_bus);
862 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
863 }
864
865 static ssize_t authorized_default_store(struct device *dev,
866 struct device_attribute *attr,
867 const char *buf, size_t size)
868 {
869 ssize_t result;
870 unsigned val;
871 struct usb_device *rh_usb_dev = to_usb_device(dev);
872 struct usb_bus *usb_bus = rh_usb_dev->bus;
873 struct usb_hcd *usb_hcd;
874
875 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
876 return -ENODEV;
877 usb_hcd = bus_to_hcd(usb_bus);
878 result = sscanf(buf, "%u\n", &val);
879 if (result == 1) {
880 usb_hcd->authorized_default = val? 1 : 0;
881 result = size;
882 }
883 else
884 result = -EINVAL;
885 return result;
886 }
887 static DEVICE_ATTR_RW(authorized_default);
888
889 /* Group all the USB bus attributes */
890 static struct attribute *usb_bus_attrs[] = {
891 &dev_attr_authorized_default.attr,
892 NULL,
893 };
894
895 static struct attribute_group usb_bus_attr_group = {
896 .name = NULL, /* we want them in the same directory */
897 .attrs = usb_bus_attrs,
898 };
899
900
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905 * usb_bus_init - shared initialization code
906 * @bus: the bus structure being initialized
907 *
908 * This code is used to initialize a usb_bus structure, memory for which is
909 * separately managed.
910 */
911 static void usb_bus_init (struct usb_bus *bus)
912 {
913 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
914
915 bus->devnum_next = 1;
916
917 bus->root_hub = NULL;
918 bus->busnum = -1;
919 bus->bandwidth_allocated = 0;
920 bus->bandwidth_int_reqs = 0;
921 bus->bandwidth_isoc_reqs = 0;
922
923 INIT_LIST_HEAD (&bus->bus_list);
924 }
925
926 /*-------------------------------------------------------------------------*/
927
928 /**
929 * usb_register_bus - registers the USB host controller with the usb core
930 * @bus: pointer to the bus to register
931 * Context: !in_interrupt()
932 *
933 * Assigns a bus number, and links the controller into usbcore data
934 * structures so that it can be seen by scanning the bus list.
935 *
936 * Return: 0 if successful. A negative error code otherwise.
937 */
938 static int usb_register_bus(struct usb_bus *bus)
939 {
940 int result = -E2BIG;
941 int busnum;
942
943 mutex_lock(&usb_bus_list_lock);
944 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
945 if (busnum >= USB_MAXBUS) {
946 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
947 goto error_find_busnum;
948 }
949 set_bit (busnum, busmap.busmap);
950 bus->busnum = busnum;
951
952 /* Add it to the local list of buses */
953 list_add (&bus->bus_list, &usb_bus_list);
954 mutex_unlock(&usb_bus_list_lock);
955
956 usb_notify_add_bus(bus);
957
958 dev_info (bus->controller, "new USB bus registered, assigned bus "
959 "number %d\n", bus->busnum);
960 return 0;
961
962 error_find_busnum:
963 mutex_unlock(&usb_bus_list_lock);
964 return result;
965 }
966
967 /**
968 * usb_deregister_bus - deregisters the USB host controller
969 * @bus: pointer to the bus to deregister
970 * Context: !in_interrupt()
971 *
972 * Recycles the bus number, and unlinks the controller from usbcore data
973 * structures so that it won't be seen by scanning the bus list.
974 */
975 static void usb_deregister_bus (struct usb_bus *bus)
976 {
977 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
978
979 /*
980 * NOTE: make sure that all the devices are removed by the
981 * controller code, as well as having it call this when cleaning
982 * itself up
983 */
984 mutex_lock(&usb_bus_list_lock);
985 list_del (&bus->bus_list);
986 mutex_unlock(&usb_bus_list_lock);
987
988 usb_notify_remove_bus(bus);
989
990 clear_bit (bus->busnum, busmap.busmap);
991 }
992
993 /**
994 * register_root_hub - called by usb_add_hcd() to register a root hub
995 * @hcd: host controller for this root hub
996 *
997 * This function registers the root hub with the USB subsystem. It sets up
998 * the device properly in the device tree and then calls usb_new_device()
999 * to register the usb device. It also assigns the root hub's USB address
1000 * (always 1).
1001 *
1002 * Return: 0 if successful. A negative error code otherwise.
1003 */
1004 static int register_root_hub(struct usb_hcd *hcd)
1005 {
1006 struct device *parent_dev = hcd->self.controller;
1007 struct usb_device *usb_dev = hcd->self.root_hub;
1008 const int devnum = 1;
1009 int retval;
1010
1011 usb_dev->devnum = devnum;
1012 usb_dev->bus->devnum_next = devnum + 1;
1013 memset (&usb_dev->bus->devmap.devicemap, 0,
1014 sizeof usb_dev->bus->devmap.devicemap);
1015 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1016 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1017
1018 mutex_lock(&usb_bus_list_lock);
1019
1020 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1021 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1022 if (retval != sizeof usb_dev->descriptor) {
1023 mutex_unlock(&usb_bus_list_lock);
1024 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1025 dev_name(&usb_dev->dev), retval);
1026 return (retval < 0) ? retval : -EMSGSIZE;
1027 }
1028 if (usb_dev->speed == USB_SPEED_SUPER) {
1029 retval = usb_get_bos_descriptor(usb_dev);
1030 if (retval < 0) {
1031 mutex_unlock(&usb_bus_list_lock);
1032 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1033 dev_name(&usb_dev->dev), retval);
1034 return retval;
1035 }
1036 }
1037
1038 retval = usb_new_device (usb_dev);
1039 if (retval) {
1040 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1041 dev_name(&usb_dev->dev), retval);
1042 } else {
1043 spin_lock_irq (&hcd_root_hub_lock);
1044 hcd->rh_registered = 1;
1045 spin_unlock_irq (&hcd_root_hub_lock);
1046
1047 /* Did the HC die before the root hub was registered? */
1048 if (HCD_DEAD(hcd))
1049 usb_hc_died (hcd); /* This time clean up */
1050 }
1051 mutex_unlock(&usb_bus_list_lock);
1052
1053 return retval;
1054 }
1055
1056 /*
1057 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1058 * @bus: the bus which the root hub belongs to
1059 * @portnum: the port which is being resumed
1060 *
1061 * HCDs should call this function when they know that a resume signal is
1062 * being sent to a root-hub port. The root hub will be prevented from
1063 * going into autosuspend until usb_hcd_end_port_resume() is called.
1064 *
1065 * The bus's private lock must be held by the caller.
1066 */
1067 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069 unsigned bit = 1 << portnum;
1070
1071 if (!(bus->resuming_ports & bit)) {
1072 bus->resuming_ports |= bit;
1073 pm_runtime_get_noresume(&bus->root_hub->dev);
1074 }
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1077
1078 /*
1079 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1080 * @bus: the bus which the root hub belongs to
1081 * @portnum: the port which is being resumed
1082 *
1083 * HCDs should call this function when they know that a resume signal has
1084 * stopped being sent to a root-hub port. The root hub will be allowed to
1085 * autosuspend again.
1086 *
1087 * The bus's private lock must be held by the caller.
1088 */
1089 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1090 {
1091 unsigned bit = 1 << portnum;
1092
1093 if (bus->resuming_ports & bit) {
1094 bus->resuming_ports &= ~bit;
1095 pm_runtime_put_noidle(&bus->root_hub->dev);
1096 }
1097 }
1098 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1104 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1105 * @is_input: true iff the transaction sends data to the host
1106 * @isoc: true for isochronous transactions, false for interrupt ones
1107 * @bytecount: how many bytes in the transaction.
1108 *
1109 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1110 *
1111 * Note:
1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1113 * scheduled in software, this function is only used for such scheduling.
1114 */
1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1116 {
1117 unsigned long tmp;
1118
1119 switch (speed) {
1120 case USB_SPEED_LOW: /* INTR only */
1121 if (is_input) {
1122 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1124 } else {
1125 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1126 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1127 }
1128 case USB_SPEED_FULL: /* ISOC or INTR */
1129 if (isoc) {
1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1132 } else {
1133 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1134 return (9107L + BW_HOST_DELAY + tmp);
1135 }
1136 case USB_SPEED_HIGH: /* ISOC or INTR */
1137 // FIXME adjust for input vs output
1138 if (isoc)
1139 tmp = HS_NSECS_ISO (bytecount);
1140 else
1141 tmp = HS_NSECS (bytecount);
1142 return tmp;
1143 default:
1144 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1145 return -1;
1146 }
1147 }
1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1149
1150
1151 /*-------------------------------------------------------------------------*/
1152
1153 /*
1154 * Generic HC operations.
1155 */
1156
1157 /*-------------------------------------------------------------------------*/
1158
1159 /**
1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1161 * @hcd: host controller to which @urb was submitted
1162 * @urb: URB being submitted
1163 *
1164 * Host controller drivers should call this routine in their enqueue()
1165 * method. The HCD's private spinlock must be held and interrupts must
1166 * be disabled. The actions carried out here are required for URB
1167 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1168 *
1169 * Return: 0 for no error, otherwise a negative error code (in which case
1170 * the enqueue() method must fail). If no error occurs but enqueue() fails
1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1172 * the private spinlock and returning.
1173 */
1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176 int rc = 0;
1177
1178 spin_lock(&hcd_urb_list_lock);
1179
1180 /* Check that the URB isn't being killed */
1181 if (unlikely(atomic_read(&urb->reject))) {
1182 rc = -EPERM;
1183 goto done;
1184 }
1185
1186 if (unlikely(!urb->ep->enabled)) {
1187 rc = -ENOENT;
1188 goto done;
1189 }
1190
1191 if (unlikely(!urb->dev->can_submit)) {
1192 rc = -EHOSTUNREACH;
1193 goto done;
1194 }
1195
1196 /*
1197 * Check the host controller's state and add the URB to the
1198 * endpoint's queue.
1199 */
1200 if (HCD_RH_RUNNING(hcd)) {
1201 urb->unlinked = 0;
1202 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1203 } else {
1204 rc = -ESHUTDOWN;
1205 goto done;
1206 }
1207 done:
1208 spin_unlock(&hcd_urb_list_lock);
1209 return rc;
1210 }
1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1212
1213 /**
1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being checked for unlinkability
1217 * @status: error code to store in @urb if the unlink succeeds
1218 *
1219 * Host controller drivers should call this routine in their dequeue()
1220 * method. The HCD's private spinlock must be held and interrupts must
1221 * be disabled. The actions carried out here are required for making
1222 * sure than an unlink is valid.
1223 *
1224 * Return: 0 for no error, otherwise a negative error code (in which case
1225 * the dequeue() method must fail). The possible error codes are:
1226 *
1227 * -EIDRM: @urb was not submitted or has already completed.
1228 * The completion function may not have been called yet.
1229 *
1230 * -EBUSY: @urb has already been unlinked.
1231 */
1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1233 int status)
1234 {
1235 struct list_head *tmp;
1236
1237 /* insist the urb is still queued */
1238 list_for_each(tmp, &urb->ep->urb_list) {
1239 if (tmp == &urb->urb_list)
1240 break;
1241 }
1242 if (tmp != &urb->urb_list)
1243 return -EIDRM;
1244
1245 /* Any status except -EINPROGRESS means something already started to
1246 * unlink this URB from the hardware. So there's no more work to do.
1247 */
1248 if (urb->unlinked)
1249 return -EBUSY;
1250 urb->unlinked = status;
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1254
1255 /**
1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1257 * @hcd: host controller to which @urb was submitted
1258 * @urb: URB being unlinked
1259 *
1260 * Host controller drivers should call this routine before calling
1261 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1262 * interrupts must be disabled. The actions carried out here are required
1263 * for URB completion.
1264 */
1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1266 {
1267 /* clear all state linking urb to this dev (and hcd) */
1268 spin_lock(&hcd_urb_list_lock);
1269 list_del_init(&urb->urb_list);
1270 spin_unlock(&hcd_urb_list_lock);
1271 }
1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1273
1274 /*
1275 * Some usb host controllers can only perform dma using a small SRAM area.
1276 * The usb core itself is however optimized for host controllers that can dma
1277 * using regular system memory - like pci devices doing bus mastering.
1278 *
1279 * To support host controllers with limited dma capabilites we provide dma
1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1281 * For this to work properly the host controller code must first use the
1282 * function dma_declare_coherent_memory() to point out which memory area
1283 * that should be used for dma allocations.
1284 *
1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1286 * dma using dma_alloc_coherent() which in turn allocates from the memory
1287 * area pointed out with dma_declare_coherent_memory().
1288 *
1289 * So, to summarize...
1290 *
1291 * - We need "local" memory, canonical example being
1292 * a small SRAM on a discrete controller being the
1293 * only memory that the controller can read ...
1294 * (a) "normal" kernel memory is no good, and
1295 * (b) there's not enough to share
1296 *
1297 * - The only *portable* hook for such stuff in the
1298 * DMA framework is dma_declare_coherent_memory()
1299 *
1300 * - So we use that, even though the primary requirement
1301 * is that the memory be "local" (hence addressible
1302 * by that device), not "coherent".
1303 *
1304 */
1305
1306 static int hcd_alloc_coherent(struct usb_bus *bus,
1307 gfp_t mem_flags, dma_addr_t *dma_handle,
1308 void **vaddr_handle, size_t size,
1309 enum dma_data_direction dir)
1310 {
1311 unsigned char *vaddr;
1312
1313 if (*vaddr_handle == NULL) {
1314 WARN_ON_ONCE(1);
1315 return -EFAULT;
1316 }
1317
1318 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1319 mem_flags, dma_handle);
1320 if (!vaddr)
1321 return -ENOMEM;
1322
1323 /*
1324 * Store the virtual address of the buffer at the end
1325 * of the allocated dma buffer. The size of the buffer
1326 * may be uneven so use unaligned functions instead
1327 * of just rounding up. It makes sense to optimize for
1328 * memory footprint over access speed since the amount
1329 * of memory available for dma may be limited.
1330 */
1331 put_unaligned((unsigned long)*vaddr_handle,
1332 (unsigned long *)(vaddr + size));
1333
1334 if (dir == DMA_TO_DEVICE)
1335 memcpy(vaddr, *vaddr_handle, size);
1336
1337 *vaddr_handle = vaddr;
1338 return 0;
1339 }
1340
1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1342 void **vaddr_handle, size_t size,
1343 enum dma_data_direction dir)
1344 {
1345 unsigned char *vaddr = *vaddr_handle;
1346
1347 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1348
1349 if (dir == DMA_FROM_DEVICE)
1350 memcpy(vaddr, *vaddr_handle, size);
1351
1352 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1353
1354 *vaddr_handle = vaddr;
1355 *dma_handle = 0;
1356 }
1357
1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 {
1360 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1361 dma_unmap_single(hcd->self.controller,
1362 urb->setup_dma,
1363 sizeof(struct usb_ctrlrequest),
1364 DMA_TO_DEVICE);
1365 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1366 hcd_free_coherent(urb->dev->bus,
1367 &urb->setup_dma,
1368 (void **) &urb->setup_packet,
1369 sizeof(struct usb_ctrlrequest),
1370 DMA_TO_DEVICE);
1371
1372 /* Make it safe to call this routine more than once */
1373 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1374 }
1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1376
1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378 {
1379 if (hcd->driver->unmap_urb_for_dma)
1380 hcd->driver->unmap_urb_for_dma(hcd, urb);
1381 else
1382 usb_hcd_unmap_urb_for_dma(hcd, urb);
1383 }
1384
1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1386 {
1387 enum dma_data_direction dir;
1388
1389 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1390
1391 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1392 if (urb->transfer_flags & URB_DMA_MAP_SG)
1393 dma_unmap_sg(hcd->self.controller,
1394 urb->sg,
1395 urb->num_sgs,
1396 dir);
1397 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1398 dma_unmap_page(hcd->self.controller,
1399 urb->transfer_dma,
1400 urb->transfer_buffer_length,
1401 dir);
1402 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1403 dma_unmap_single(hcd->self.controller,
1404 urb->transfer_dma,
1405 urb->transfer_buffer_length,
1406 dir);
1407 else if (urb->transfer_flags & URB_MAP_LOCAL)
1408 hcd_free_coherent(urb->dev->bus,
1409 &urb->transfer_dma,
1410 &urb->transfer_buffer,
1411 urb->transfer_buffer_length,
1412 dir);
1413
1414 /* Make it safe to call this routine more than once */
1415 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1416 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1417 }
1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1419
1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1421 gfp_t mem_flags)
1422 {
1423 if (hcd->driver->map_urb_for_dma)
1424 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1425 else
1426 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1427 }
1428
1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1430 gfp_t mem_flags)
1431 {
1432 enum dma_data_direction dir;
1433 int ret = 0;
1434
1435 /* Map the URB's buffers for DMA access.
1436 * Lower level HCD code should use *_dma exclusively,
1437 * unless it uses pio or talks to another transport,
1438 * or uses the provided scatter gather list for bulk.
1439 */
1440
1441 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1442 if (hcd->self.uses_pio_for_control)
1443 return ret;
1444 if (hcd->self.uses_dma) {
1445 urb->setup_dma = dma_map_single(
1446 hcd->self.controller,
1447 urb->setup_packet,
1448 sizeof(struct usb_ctrlrequest),
1449 DMA_TO_DEVICE);
1450 if (dma_mapping_error(hcd->self.controller,
1451 urb->setup_dma))
1452 return -EAGAIN;
1453 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1454 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1455 ret = hcd_alloc_coherent(
1456 urb->dev->bus, mem_flags,
1457 &urb->setup_dma,
1458 (void **)&urb->setup_packet,
1459 sizeof(struct usb_ctrlrequest),
1460 DMA_TO_DEVICE);
1461 if (ret)
1462 return ret;
1463 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1464 }
1465 }
1466
1467 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1468 if (urb->transfer_buffer_length != 0
1469 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1470 if (hcd->self.uses_dma) {
1471 if (urb->num_sgs) {
1472 int n;
1473
1474 /* We don't support sg for isoc transfers ! */
1475 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1476 WARN_ON(1);
1477 return -EINVAL;
1478 }
1479
1480 n = dma_map_sg(
1481 hcd->self.controller,
1482 urb->sg,
1483 urb->num_sgs,
1484 dir);
1485 if (n <= 0)
1486 ret = -EAGAIN;
1487 else
1488 urb->transfer_flags |= URB_DMA_MAP_SG;
1489 urb->num_mapped_sgs = n;
1490 if (n != urb->num_sgs)
1491 urb->transfer_flags |=
1492 URB_DMA_SG_COMBINED;
1493 } else if (urb->sg) {
1494 struct scatterlist *sg = urb->sg;
1495 urb->transfer_dma = dma_map_page(
1496 hcd->self.controller,
1497 sg_page(sg),
1498 sg->offset,
1499 urb->transfer_buffer_length,
1500 dir);
1501 if (dma_mapping_error(hcd->self.controller,
1502 urb->transfer_dma))
1503 ret = -EAGAIN;
1504 else
1505 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1506 } else {
1507 urb->transfer_dma = dma_map_single(
1508 hcd->self.controller,
1509 urb->transfer_buffer,
1510 urb->transfer_buffer_length,
1511 dir);
1512 if (dma_mapping_error(hcd->self.controller,
1513 urb->transfer_dma))
1514 ret = -EAGAIN;
1515 else
1516 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1517 }
1518 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1519 ret = hcd_alloc_coherent(
1520 urb->dev->bus, mem_flags,
1521 &urb->transfer_dma,
1522 &urb->transfer_buffer,
1523 urb->transfer_buffer_length,
1524 dir);
1525 if (ret == 0)
1526 urb->transfer_flags |= URB_MAP_LOCAL;
1527 }
1528 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1529 URB_SETUP_MAP_LOCAL)))
1530 usb_hcd_unmap_urb_for_dma(hcd, urb);
1531 }
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1535
1536 /*-------------------------------------------------------------------------*/
1537
1538 /* may be called in any context with a valid urb->dev usecount
1539 * caller surrenders "ownership" of urb
1540 * expects usb_submit_urb() to have sanity checked and conditioned all
1541 * inputs in the urb
1542 */
1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1544 {
1545 int status;
1546 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1547
1548 /* increment urb's reference count as part of giving it to the HCD
1549 * (which will control it). HCD guarantees that it either returns
1550 * an error or calls giveback(), but not both.
1551 */
1552 usb_get_urb(urb);
1553 atomic_inc(&urb->use_count);
1554 atomic_inc(&urb->dev->urbnum);
1555 usbmon_urb_submit(&hcd->self, urb);
1556
1557 /* NOTE requirements on root-hub callers (usbfs and the hub
1558 * driver, for now): URBs' urb->transfer_buffer must be
1559 * valid and usb_buffer_{sync,unmap}() not be needed, since
1560 * they could clobber root hub response data. Also, control
1561 * URBs must be submitted in process context with interrupts
1562 * enabled.
1563 */
1564
1565 if (is_root_hub(urb->dev)) {
1566 status = rh_urb_enqueue(hcd, urb);
1567 } else {
1568 status = map_urb_for_dma(hcd, urb, mem_flags);
1569 if (likely(status == 0)) {
1570 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1571 if (unlikely(status))
1572 unmap_urb_for_dma(hcd, urb);
1573 }
1574 }
1575
1576 if (unlikely(status)) {
1577 usbmon_urb_submit_error(&hcd->self, urb, status);
1578 urb->hcpriv = NULL;
1579 INIT_LIST_HEAD(&urb->urb_list);
1580 atomic_dec(&urb->use_count);
1581 atomic_dec(&urb->dev->urbnum);
1582 if (atomic_read(&urb->reject))
1583 wake_up(&usb_kill_urb_queue);
1584 usb_put_urb(urb);
1585 }
1586 return status;
1587 }
1588
1589 /*-------------------------------------------------------------------------*/
1590
1591 /* this makes the hcd giveback() the urb more quickly, by kicking it
1592 * off hardware queues (which may take a while) and returning it as
1593 * soon as practical. we've already set up the urb's return status,
1594 * but we can't know if the callback completed already.
1595 */
1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1597 {
1598 int value;
1599
1600 if (is_root_hub(urb->dev))
1601 value = usb_rh_urb_dequeue(hcd, urb, status);
1602 else {
1603
1604 /* The only reason an HCD might fail this call is if
1605 * it has not yet fully queued the urb to begin with.
1606 * Such failures should be harmless. */
1607 value = hcd->driver->urb_dequeue(hcd, urb, status);
1608 }
1609 return value;
1610 }
1611
1612 /*
1613 * called in any context
1614 *
1615 * caller guarantees urb won't be recycled till both unlink()
1616 * and the urb's completion function return
1617 */
1618 int usb_hcd_unlink_urb (struct urb *urb, int status)
1619 {
1620 struct usb_hcd *hcd;
1621 int retval = -EIDRM;
1622 unsigned long flags;
1623
1624 /* Prevent the device and bus from going away while
1625 * the unlink is carried out. If they are already gone
1626 * then urb->use_count must be 0, since disconnected
1627 * devices can't have any active URBs.
1628 */
1629 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1630 if (atomic_read(&urb->use_count) > 0) {
1631 retval = 0;
1632 usb_get_dev(urb->dev);
1633 }
1634 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1635 if (retval == 0) {
1636 hcd = bus_to_hcd(urb->dev->bus);
1637 retval = unlink1(hcd, urb, status);
1638 usb_put_dev(urb->dev);
1639 }
1640
1641 if (retval == 0)
1642 retval = -EINPROGRESS;
1643 else if (retval != -EIDRM && retval != -EBUSY)
1644 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1645 urb, retval);
1646 return retval;
1647 }
1648
1649 /*-------------------------------------------------------------------------*/
1650
1651 static void __usb_hcd_giveback_urb(struct urb *urb)
1652 {
1653 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1654 int status = urb->unlinked;
1655 unsigned long flags;
1656
1657 urb->hcpriv = NULL;
1658 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659 urb->actual_length < urb->transfer_buffer_length &&
1660 !status))
1661 status = -EREMOTEIO;
1662
1663 unmap_urb_for_dma(hcd, urb);
1664 usbmon_urb_complete(&hcd->self, urb, status);
1665 usb_unanchor_urb(urb);
1666
1667 /* pass ownership to the completion handler */
1668 urb->status = status;
1669
1670 /*
1671 * We disable local IRQs here avoid possible deadlock because
1672 * drivers may call spin_lock() to hold lock which might be
1673 * acquired in one hard interrupt handler.
1674 *
1675 * The local_irq_save()/local_irq_restore() around complete()
1676 * will be removed if current USB drivers have been cleaned up
1677 * and no one may trigger the above deadlock situation when
1678 * running complete() in tasklet.
1679 */
1680 local_irq_save(flags);
1681 urb->complete(urb);
1682 local_irq_restore(flags);
1683
1684 atomic_dec(&urb->use_count);
1685 if (unlikely(atomic_read(&urb->reject)))
1686 wake_up(&usb_kill_urb_queue);
1687 usb_put_urb(urb);
1688 }
1689
1690 static void usb_giveback_urb_bh(unsigned long param)
1691 {
1692 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1693 struct list_head local_list;
1694
1695 spin_lock_irq(&bh->lock);
1696 bh->running = true;
1697 restart:
1698 list_replace_init(&bh->head, &local_list);
1699 spin_unlock_irq(&bh->lock);
1700
1701 while (!list_empty(&local_list)) {
1702 struct urb *urb;
1703
1704 urb = list_entry(local_list.next, struct urb, urb_list);
1705 list_del_init(&urb->urb_list);
1706 __usb_hcd_giveback_urb(urb);
1707 }
1708
1709 /* check if there are new URBs to giveback */
1710 spin_lock_irq(&bh->lock);
1711 if (!list_empty(&bh->head))
1712 goto restart;
1713 bh->running = false;
1714 spin_unlock_irq(&bh->lock);
1715 }
1716
1717 /**
1718 * usb_hcd_giveback_urb - return URB from HCD to device driver
1719 * @hcd: host controller returning the URB
1720 * @urb: urb being returned to the USB device driver.
1721 * @status: completion status code for the URB.
1722 * Context: in_interrupt()
1723 *
1724 * This hands the URB from HCD to its USB device driver, using its
1725 * completion function. The HCD has freed all per-urb resources
1726 * (and is done using urb->hcpriv). It also released all HCD locks;
1727 * the device driver won't cause problems if it frees, modifies,
1728 * or resubmits this URB.
1729 *
1730 * If @urb was unlinked, the value of @status will be overridden by
1731 * @urb->unlinked. Erroneous short transfers are detected in case
1732 * the HCD hasn't checked for them.
1733 */
1734 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1735 {
1736 struct giveback_urb_bh *bh;
1737 bool running, high_prio_bh;
1738
1739 /* pass status to tasklet via unlinked */
1740 if (likely(!urb->unlinked))
1741 urb->unlinked = status;
1742
1743 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1744 __usb_hcd_giveback_urb(urb);
1745 return;
1746 }
1747
1748 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1749 bh = &hcd->high_prio_bh;
1750 high_prio_bh = true;
1751 } else {
1752 bh = &hcd->low_prio_bh;
1753 high_prio_bh = false;
1754 }
1755
1756 spin_lock(&bh->lock);
1757 list_add_tail(&urb->urb_list, &bh->head);
1758 running = bh->running;
1759 spin_unlock(&bh->lock);
1760
1761 if (running)
1762 ;
1763 else if (high_prio_bh)
1764 tasklet_hi_schedule(&bh->bh);
1765 else
1766 tasklet_schedule(&bh->bh);
1767 }
1768 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1769
1770 /*-------------------------------------------------------------------------*/
1771
1772 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1773 * queue to drain completely. The caller must first insure that no more
1774 * URBs can be submitted for this endpoint.
1775 */
1776 void usb_hcd_flush_endpoint(struct usb_device *udev,
1777 struct usb_host_endpoint *ep)
1778 {
1779 struct usb_hcd *hcd;
1780 struct urb *urb;
1781
1782 if (!ep)
1783 return;
1784 might_sleep();
1785 hcd = bus_to_hcd(udev->bus);
1786
1787 /* No more submits can occur */
1788 spin_lock_irq(&hcd_urb_list_lock);
1789 rescan:
1790 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1791 int is_in;
1792
1793 if (urb->unlinked)
1794 continue;
1795 usb_get_urb (urb);
1796 is_in = usb_urb_dir_in(urb);
1797 spin_unlock(&hcd_urb_list_lock);
1798
1799 /* kick hcd */
1800 unlink1(hcd, urb, -ESHUTDOWN);
1801 dev_dbg (hcd->self.controller,
1802 "shutdown urb %p ep%d%s%s\n",
1803 urb, usb_endpoint_num(&ep->desc),
1804 is_in ? "in" : "out",
1805 ({ char *s;
1806
1807 switch (usb_endpoint_type(&ep->desc)) {
1808 case USB_ENDPOINT_XFER_CONTROL:
1809 s = ""; break;
1810 case USB_ENDPOINT_XFER_BULK:
1811 s = "-bulk"; break;
1812 case USB_ENDPOINT_XFER_INT:
1813 s = "-intr"; break;
1814 default:
1815 s = "-iso"; break;
1816 };
1817 s;
1818 }));
1819 usb_put_urb (urb);
1820
1821 /* list contents may have changed */
1822 spin_lock(&hcd_urb_list_lock);
1823 goto rescan;
1824 }
1825 spin_unlock_irq(&hcd_urb_list_lock);
1826
1827 /* Wait until the endpoint queue is completely empty */
1828 while (!list_empty (&ep->urb_list)) {
1829 spin_lock_irq(&hcd_urb_list_lock);
1830
1831 /* The list may have changed while we acquired the spinlock */
1832 urb = NULL;
1833 if (!list_empty (&ep->urb_list)) {
1834 urb = list_entry (ep->urb_list.prev, struct urb,
1835 urb_list);
1836 usb_get_urb (urb);
1837 }
1838 spin_unlock_irq(&hcd_urb_list_lock);
1839
1840 if (urb) {
1841 usb_kill_urb (urb);
1842 usb_put_urb (urb);
1843 }
1844 }
1845 }
1846
1847 /**
1848 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1849 * the bus bandwidth
1850 * @udev: target &usb_device
1851 * @new_config: new configuration to install
1852 * @cur_alt: the current alternate interface setting
1853 * @new_alt: alternate interface setting that is being installed
1854 *
1855 * To change configurations, pass in the new configuration in new_config,
1856 * and pass NULL for cur_alt and new_alt.
1857 *
1858 * To reset a device's configuration (put the device in the ADDRESSED state),
1859 * pass in NULL for new_config, cur_alt, and new_alt.
1860 *
1861 * To change alternate interface settings, pass in NULL for new_config,
1862 * pass in the current alternate interface setting in cur_alt,
1863 * and pass in the new alternate interface setting in new_alt.
1864 *
1865 * Return: An error if the requested bandwidth change exceeds the
1866 * bus bandwidth or host controller internal resources.
1867 */
1868 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1869 struct usb_host_config *new_config,
1870 struct usb_host_interface *cur_alt,
1871 struct usb_host_interface *new_alt)
1872 {
1873 int num_intfs, i, j;
1874 struct usb_host_interface *alt = NULL;
1875 int ret = 0;
1876 struct usb_hcd *hcd;
1877 struct usb_host_endpoint *ep;
1878
1879 hcd = bus_to_hcd(udev->bus);
1880 if (!hcd->driver->check_bandwidth)
1881 return 0;
1882
1883 /* Configuration is being removed - set configuration 0 */
1884 if (!new_config && !cur_alt) {
1885 for (i = 1; i < 16; ++i) {
1886 ep = udev->ep_out[i];
1887 if (ep)
1888 hcd->driver->drop_endpoint(hcd, udev, ep);
1889 ep = udev->ep_in[i];
1890 if (ep)
1891 hcd->driver->drop_endpoint(hcd, udev, ep);
1892 }
1893 hcd->driver->check_bandwidth(hcd, udev);
1894 return 0;
1895 }
1896 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1897 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1898 * of the bus. There will always be bandwidth for endpoint 0, so it's
1899 * ok to exclude it.
1900 */
1901 if (new_config) {
1902 num_intfs = new_config->desc.bNumInterfaces;
1903 /* Remove endpoints (except endpoint 0, which is always on the
1904 * schedule) from the old config from the schedule
1905 */
1906 for (i = 1; i < 16; ++i) {
1907 ep = udev->ep_out[i];
1908 if (ep) {
1909 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1910 if (ret < 0)
1911 goto reset;
1912 }
1913 ep = udev->ep_in[i];
1914 if (ep) {
1915 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1916 if (ret < 0)
1917 goto reset;
1918 }
1919 }
1920 for (i = 0; i < num_intfs; ++i) {
1921 struct usb_host_interface *first_alt;
1922 int iface_num;
1923
1924 first_alt = &new_config->intf_cache[i]->altsetting[0];
1925 iface_num = first_alt->desc.bInterfaceNumber;
1926 /* Set up endpoints for alternate interface setting 0 */
1927 alt = usb_find_alt_setting(new_config, iface_num, 0);
1928 if (!alt)
1929 /* No alt setting 0? Pick the first setting. */
1930 alt = first_alt;
1931
1932 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1933 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1934 if (ret < 0)
1935 goto reset;
1936 }
1937 }
1938 }
1939 if (cur_alt && new_alt) {
1940 struct usb_interface *iface = usb_ifnum_to_if(udev,
1941 cur_alt->desc.bInterfaceNumber);
1942
1943 if (!iface)
1944 return -EINVAL;
1945 if (iface->resetting_device) {
1946 /*
1947 * The USB core just reset the device, so the xHCI host
1948 * and the device will think alt setting 0 is installed.
1949 * However, the USB core will pass in the alternate
1950 * setting installed before the reset as cur_alt. Dig
1951 * out the alternate setting 0 structure, or the first
1952 * alternate setting if a broken device doesn't have alt
1953 * setting 0.
1954 */
1955 cur_alt = usb_altnum_to_altsetting(iface, 0);
1956 if (!cur_alt)
1957 cur_alt = &iface->altsetting[0];
1958 }
1959
1960 /* Drop all the endpoints in the current alt setting */
1961 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1962 ret = hcd->driver->drop_endpoint(hcd, udev,
1963 &cur_alt->endpoint[i]);
1964 if (ret < 0)
1965 goto reset;
1966 }
1967 /* Add all the endpoints in the new alt setting */
1968 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1969 ret = hcd->driver->add_endpoint(hcd, udev,
1970 &new_alt->endpoint[i]);
1971 if (ret < 0)
1972 goto reset;
1973 }
1974 }
1975 ret = hcd->driver->check_bandwidth(hcd, udev);
1976 reset:
1977 if (ret < 0)
1978 hcd->driver->reset_bandwidth(hcd, udev);
1979 return ret;
1980 }
1981
1982 /* Disables the endpoint: synchronizes with the hcd to make sure all
1983 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1984 * have been called previously. Use for set_configuration, set_interface,
1985 * driver removal, physical disconnect.
1986 *
1987 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1988 * type, maxpacket size, toggle, halt status, and scheduling.
1989 */
1990 void usb_hcd_disable_endpoint(struct usb_device *udev,
1991 struct usb_host_endpoint *ep)
1992 {
1993 struct usb_hcd *hcd;
1994
1995 might_sleep();
1996 hcd = bus_to_hcd(udev->bus);
1997 if (hcd->driver->endpoint_disable)
1998 hcd->driver->endpoint_disable(hcd, ep);
1999 }
2000
2001 /**
2002 * usb_hcd_reset_endpoint - reset host endpoint state
2003 * @udev: USB device.
2004 * @ep: the endpoint to reset.
2005 *
2006 * Resets any host endpoint state such as the toggle bit, sequence
2007 * number and current window.
2008 */
2009 void usb_hcd_reset_endpoint(struct usb_device *udev,
2010 struct usb_host_endpoint *ep)
2011 {
2012 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2013
2014 if (hcd->driver->endpoint_reset)
2015 hcd->driver->endpoint_reset(hcd, ep);
2016 else {
2017 int epnum = usb_endpoint_num(&ep->desc);
2018 int is_out = usb_endpoint_dir_out(&ep->desc);
2019 int is_control = usb_endpoint_xfer_control(&ep->desc);
2020
2021 usb_settoggle(udev, epnum, is_out, 0);
2022 if (is_control)
2023 usb_settoggle(udev, epnum, !is_out, 0);
2024 }
2025 }
2026
2027 /**
2028 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2029 * @interface: alternate setting that includes all endpoints.
2030 * @eps: array of endpoints that need streams.
2031 * @num_eps: number of endpoints in the array.
2032 * @num_streams: number of streams to allocate.
2033 * @mem_flags: flags hcd should use to allocate memory.
2034 *
2035 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2036 * Drivers may queue multiple transfers to different stream IDs, which may
2037 * complete in a different order than they were queued.
2038 *
2039 * Return: On success, the number of allocated streams. On failure, a negative
2040 * error code.
2041 */
2042 int usb_alloc_streams(struct usb_interface *interface,
2043 struct usb_host_endpoint **eps, unsigned int num_eps,
2044 unsigned int num_streams, gfp_t mem_flags)
2045 {
2046 struct usb_hcd *hcd;
2047 struct usb_device *dev;
2048 int i;
2049
2050 dev = interface_to_usbdev(interface);
2051 hcd = bus_to_hcd(dev->bus);
2052 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2053 return -EINVAL;
2054 if (dev->speed != USB_SPEED_SUPER)
2055 return -EINVAL;
2056
2057 /* Streams only apply to bulk endpoints. */
2058 for (i = 0; i < num_eps; i++)
2059 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2060 return -EINVAL;
2061
2062 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2063 num_streams, mem_flags);
2064 }
2065 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2066
2067 /**
2068 * usb_free_streams - free bulk endpoint stream IDs.
2069 * @interface: alternate setting that includes all endpoints.
2070 * @eps: array of endpoints to remove streams from.
2071 * @num_eps: number of endpoints in the array.
2072 * @mem_flags: flags hcd should use to allocate memory.
2073 *
2074 * Reverts a group of bulk endpoints back to not using stream IDs.
2075 * Can fail if we are given bad arguments, or HCD is broken.
2076 */
2077 void usb_free_streams(struct usb_interface *interface,
2078 struct usb_host_endpoint **eps, unsigned int num_eps,
2079 gfp_t mem_flags)
2080 {
2081 struct usb_hcd *hcd;
2082 struct usb_device *dev;
2083 int i;
2084
2085 dev = interface_to_usbdev(interface);
2086 hcd = bus_to_hcd(dev->bus);
2087 if (dev->speed != USB_SPEED_SUPER)
2088 return;
2089
2090 /* Streams only apply to bulk endpoints. */
2091 for (i = 0; i < num_eps; i++)
2092 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
2093 return;
2094
2095 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2096 }
2097 EXPORT_SYMBOL_GPL(usb_free_streams);
2098
2099 /* Protect against drivers that try to unlink URBs after the device
2100 * is gone, by waiting until all unlinks for @udev are finished.
2101 * Since we don't currently track URBs by device, simply wait until
2102 * nothing is running in the locked region of usb_hcd_unlink_urb().
2103 */
2104 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2105 {
2106 spin_lock_irq(&hcd_urb_unlink_lock);
2107 spin_unlock_irq(&hcd_urb_unlink_lock);
2108 }
2109
2110 /*-------------------------------------------------------------------------*/
2111
2112 /* called in any context */
2113 int usb_hcd_get_frame_number (struct usb_device *udev)
2114 {
2115 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2116
2117 if (!HCD_RH_RUNNING(hcd))
2118 return -ESHUTDOWN;
2119 return hcd->driver->get_frame_number (hcd);
2120 }
2121
2122 /*-------------------------------------------------------------------------*/
2123
2124 #ifdef CONFIG_PM
2125
2126 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2127 {
2128 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2129 int status;
2130 int old_state = hcd->state;
2131
2132 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2133 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2134 rhdev->do_remote_wakeup);
2135 if (HCD_DEAD(hcd)) {
2136 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2137 return 0;
2138 }
2139
2140 if (!hcd->driver->bus_suspend) {
2141 status = -ENOENT;
2142 } else {
2143 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2144 hcd->state = HC_STATE_QUIESCING;
2145 status = hcd->driver->bus_suspend(hcd);
2146 }
2147 if (status == 0) {
2148 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2149 hcd->state = HC_STATE_SUSPENDED;
2150
2151 /* Did we race with a root-hub wakeup event? */
2152 if (rhdev->do_remote_wakeup) {
2153 char buffer[6];
2154
2155 status = hcd->driver->hub_status_data(hcd, buffer);
2156 if (status != 0) {
2157 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2158 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2159 status = -EBUSY;
2160 }
2161 }
2162 } else {
2163 spin_lock_irq(&hcd_root_hub_lock);
2164 if (!HCD_DEAD(hcd)) {
2165 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2166 hcd->state = old_state;
2167 }
2168 spin_unlock_irq(&hcd_root_hub_lock);
2169 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2170 "suspend", status);
2171 }
2172 return status;
2173 }
2174
2175 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2176 {
2177 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2178 int status;
2179 int old_state = hcd->state;
2180
2181 dev_dbg(&rhdev->dev, "usb %sresume\n",
2182 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2183 if (HCD_DEAD(hcd)) {
2184 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2185 return 0;
2186 }
2187 if (!hcd->driver->bus_resume)
2188 return -ENOENT;
2189 if (HCD_RH_RUNNING(hcd))
2190 return 0;
2191
2192 hcd->state = HC_STATE_RESUMING;
2193 status = hcd->driver->bus_resume(hcd);
2194 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2195 if (status == 0) {
2196 struct usb_device *udev;
2197 int port1;
2198
2199 spin_lock_irq(&hcd_root_hub_lock);
2200 if (!HCD_DEAD(hcd)) {
2201 usb_set_device_state(rhdev, rhdev->actconfig
2202 ? USB_STATE_CONFIGURED
2203 : USB_STATE_ADDRESS);
2204 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2205 hcd->state = HC_STATE_RUNNING;
2206 }
2207 spin_unlock_irq(&hcd_root_hub_lock);
2208
2209 /*
2210 * Check whether any of the enabled ports on the root hub are
2211 * unsuspended. If they are then a TRSMRCY delay is needed
2212 * (this is what the USB-2 spec calls a "global resume").
2213 * Otherwise we can skip the delay.
2214 */
2215 usb_hub_for_each_child(rhdev, port1, udev) {
2216 if (udev->state != USB_STATE_NOTATTACHED &&
2217 !udev->port_is_suspended) {
2218 usleep_range(10000, 11000); /* TRSMRCY */
2219 break;
2220 }
2221 }
2222 } else {
2223 hcd->state = old_state;
2224 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2225 "resume", status);
2226 if (status != -ESHUTDOWN)
2227 usb_hc_died(hcd);
2228 }
2229 return status;
2230 }
2231
2232 #endif /* CONFIG_PM */
2233
2234 #ifdef CONFIG_PM_RUNTIME
2235
2236 /* Workqueue routine for root-hub remote wakeup */
2237 static void hcd_resume_work(struct work_struct *work)
2238 {
2239 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2240 struct usb_device *udev = hcd->self.root_hub;
2241
2242 usb_lock_device(udev);
2243 usb_remote_wakeup(udev);
2244 usb_unlock_device(udev);
2245 }
2246
2247 /**
2248 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2249 * @hcd: host controller for this root hub
2250 *
2251 * The USB host controller calls this function when its root hub is
2252 * suspended (with the remote wakeup feature enabled) and a remote
2253 * wakeup request is received. The routine submits a workqueue request
2254 * to resume the root hub (that is, manage its downstream ports again).
2255 */
2256 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2257 {
2258 unsigned long flags;
2259
2260 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2261 if (hcd->rh_registered) {
2262 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2263 queue_work(pm_wq, &hcd->wakeup_work);
2264 }
2265 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2266 }
2267 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2268
2269 #endif /* CONFIG_PM_RUNTIME */
2270
2271 /*-------------------------------------------------------------------------*/
2272
2273 #ifdef CONFIG_USB_OTG
2274
2275 /**
2276 * usb_bus_start_enum - start immediate enumeration (for OTG)
2277 * @bus: the bus (must use hcd framework)
2278 * @port_num: 1-based number of port; usually bus->otg_port
2279 * Context: in_interrupt()
2280 *
2281 * Starts enumeration, with an immediate reset followed later by
2282 * khubd identifying and possibly configuring the device.
2283 * This is needed by OTG controller drivers, where it helps meet
2284 * HNP protocol timing requirements for starting a port reset.
2285 *
2286 * Return: 0 if successful.
2287 */
2288 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2289 {
2290 struct usb_hcd *hcd;
2291 int status = -EOPNOTSUPP;
2292
2293 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2294 * boards with root hubs hooked up to internal devices (instead of
2295 * just the OTG port) may need more attention to resetting...
2296 */
2297 hcd = container_of (bus, struct usb_hcd, self);
2298 if (port_num && hcd->driver->start_port_reset)
2299 status = hcd->driver->start_port_reset(hcd, port_num);
2300
2301 /* run khubd shortly after (first) root port reset finishes;
2302 * it may issue others, until at least 50 msecs have passed.
2303 */
2304 if (status == 0)
2305 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2306 return status;
2307 }
2308 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2309
2310 #endif
2311
2312 /*-------------------------------------------------------------------------*/
2313
2314 /**
2315 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2316 * @irq: the IRQ being raised
2317 * @__hcd: pointer to the HCD whose IRQ is being signaled
2318 *
2319 * If the controller isn't HALTed, calls the driver's irq handler.
2320 * Checks whether the controller is now dead.
2321 *
2322 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2323 */
2324 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2325 {
2326 struct usb_hcd *hcd = __hcd;
2327 unsigned long flags;
2328 irqreturn_t rc;
2329
2330 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2331 * when the first handler doesn't use it. So let's just
2332 * assume it's never used.
2333 */
2334 local_irq_save(flags);
2335
2336 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2337 rc = IRQ_NONE;
2338 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2339 rc = IRQ_NONE;
2340 else
2341 rc = IRQ_HANDLED;
2342
2343 local_irq_restore(flags);
2344 return rc;
2345 }
2346 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2347
2348 /*-------------------------------------------------------------------------*/
2349
2350 /**
2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352 * @hcd: pointer to the HCD representing the controller
2353 *
2354 * This is called by bus glue to report a USB host controller that died
2355 * while operations may still have been pending. It's called automatically
2356 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 *
2358 * Only call this function with the primary HCD.
2359 */
2360 void usb_hc_died (struct usb_hcd *hcd)
2361 {
2362 unsigned long flags;
2363
2364 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369 if (hcd->rh_registered) {
2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371
2372 /* make khubd clean up old urbs and devices */
2373 usb_set_device_state (hcd->self.root_hub,
2374 USB_STATE_NOTATTACHED);
2375 usb_kick_khubd (hcd->self.root_hub);
2376 }
2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378 hcd = hcd->shared_hcd;
2379 if (hcd->rh_registered) {
2380 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2381
2382 /* make khubd clean up old urbs and devices */
2383 usb_set_device_state(hcd->self.root_hub,
2384 USB_STATE_NOTATTACHED);
2385 usb_kick_khubd(hcd->self.root_hub);
2386 }
2387 }
2388 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2389 /* Make sure that the other roothub is also deallocated. */
2390 }
2391 EXPORT_SYMBOL_GPL (usb_hc_died);
2392
2393 /*-------------------------------------------------------------------------*/
2394
2395 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2396 {
2397
2398 spin_lock_init(&bh->lock);
2399 INIT_LIST_HEAD(&bh->head);
2400 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2401 }
2402
2403 /**
2404 * usb_create_shared_hcd - create and initialize an HCD structure
2405 * @driver: HC driver that will use this hcd
2406 * @dev: device for this HC, stored in hcd->self.controller
2407 * @bus_name: value to store in hcd->self.bus_name
2408 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2409 * PCI device. Only allocate certain resources for the primary HCD
2410 * Context: !in_interrupt()
2411 *
2412 * Allocate a struct usb_hcd, with extra space at the end for the
2413 * HC driver's private data. Initialize the generic members of the
2414 * hcd structure.
2415 *
2416 * Return: On success, a pointer to the created and initialized HCD structure.
2417 * On failure (e.g. if memory is unavailable), %NULL.
2418 */
2419 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2420 struct device *dev, const char *bus_name,
2421 struct usb_hcd *primary_hcd)
2422 {
2423 struct usb_hcd *hcd;
2424
2425 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2426 if (!hcd) {
2427 dev_dbg (dev, "hcd alloc failed\n");
2428 return NULL;
2429 }
2430 if (primary_hcd == NULL) {
2431 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2432 GFP_KERNEL);
2433 if (!hcd->bandwidth_mutex) {
2434 kfree(hcd);
2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436 return NULL;
2437 }
2438 mutex_init(hcd->bandwidth_mutex);
2439 dev_set_drvdata(dev, hcd);
2440 } else {
2441 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2442 hcd->primary_hcd = primary_hcd;
2443 primary_hcd->primary_hcd = primary_hcd;
2444 hcd->shared_hcd = primary_hcd;
2445 primary_hcd->shared_hcd = hcd;
2446 }
2447
2448 kref_init(&hcd->kref);
2449
2450 usb_bus_init(&hcd->self);
2451 hcd->self.controller = dev;
2452 hcd->self.bus_name = bus_name;
2453 hcd->self.uses_dma = (dev->dma_mask != NULL);
2454
2455 init_timer(&hcd->rh_timer);
2456 hcd->rh_timer.function = rh_timer_func;
2457 hcd->rh_timer.data = (unsigned long) hcd;
2458 #ifdef CONFIG_PM_RUNTIME
2459 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2460 #endif
2461
2462 hcd->driver = driver;
2463 hcd->speed = driver->flags & HCD_MASK;
2464 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2465 "USB Host Controller";
2466 return hcd;
2467 }
2468 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2469
2470 /**
2471 * usb_create_hcd - create and initialize an HCD structure
2472 * @driver: HC driver that will use this hcd
2473 * @dev: device for this HC, stored in hcd->self.controller
2474 * @bus_name: value to store in hcd->self.bus_name
2475 * Context: !in_interrupt()
2476 *
2477 * Allocate a struct usb_hcd, with extra space at the end for the
2478 * HC driver's private data. Initialize the generic members of the
2479 * hcd structure.
2480 *
2481 * Return: On success, a pointer to the created and initialized HCD
2482 * structure. On failure (e.g. if memory is unavailable), %NULL.
2483 */
2484 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2485 struct device *dev, const char *bus_name)
2486 {
2487 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2488 }
2489 EXPORT_SYMBOL_GPL(usb_create_hcd);
2490
2491 /*
2492 * Roothubs that share one PCI device must also share the bandwidth mutex.
2493 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2494 * deallocated.
2495 *
2496 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2497 * freed. When hcd_release() is called for the non-primary HCD, set the
2498 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2499 * freed shortly).
2500 */
2501 static void hcd_release (struct kref *kref)
2502 {
2503 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2504
2505 if (usb_hcd_is_primary_hcd(hcd))
2506 kfree(hcd->bandwidth_mutex);
2507 else
2508 hcd->shared_hcd->shared_hcd = NULL;
2509 kfree(hcd);
2510 }
2511
2512 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2513 {
2514 if (hcd)
2515 kref_get (&hcd->kref);
2516 return hcd;
2517 }
2518 EXPORT_SYMBOL_GPL(usb_get_hcd);
2519
2520 void usb_put_hcd (struct usb_hcd *hcd)
2521 {
2522 if (hcd)
2523 kref_put (&hcd->kref, hcd_release);
2524 }
2525 EXPORT_SYMBOL_GPL(usb_put_hcd);
2526
2527 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2528 {
2529 if (!hcd->primary_hcd)
2530 return 1;
2531 return hcd == hcd->primary_hcd;
2532 }
2533 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2534
2535 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2536 {
2537 if (!hcd->driver->find_raw_port_number)
2538 return port1;
2539
2540 return hcd->driver->find_raw_port_number(hcd, port1);
2541 }
2542
2543 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2544 unsigned int irqnum, unsigned long irqflags)
2545 {
2546 int retval;
2547
2548 if (hcd->driver->irq) {
2549
2550 /* IRQF_DISABLED doesn't work as advertised when used together
2551 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2552 * interrupts we can remove it here.
2553 */
2554 if (irqflags & IRQF_SHARED)
2555 irqflags &= ~IRQF_DISABLED;
2556
2557 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2558 hcd->driver->description, hcd->self.busnum);
2559 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2560 hcd->irq_descr, hcd);
2561 if (retval != 0) {
2562 dev_err(hcd->self.controller,
2563 "request interrupt %d failed\n",
2564 irqnum);
2565 return retval;
2566 }
2567 hcd->irq = irqnum;
2568 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2569 (hcd->driver->flags & HCD_MEMORY) ?
2570 "io mem" : "io base",
2571 (unsigned long long)hcd->rsrc_start);
2572 } else {
2573 hcd->irq = 0;
2574 if (hcd->rsrc_start)
2575 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2576 (hcd->driver->flags & HCD_MEMORY) ?
2577 "io mem" : "io base",
2578 (unsigned long long)hcd->rsrc_start);
2579 }
2580 return 0;
2581 }
2582
2583 /**
2584 * usb_add_hcd - finish generic HCD structure initialization and register
2585 * @hcd: the usb_hcd structure to initialize
2586 * @irqnum: Interrupt line to allocate
2587 * @irqflags: Interrupt type flags
2588 *
2589 * Finish the remaining parts of generic HCD initialization: allocate the
2590 * buffers of consistent memory, register the bus, request the IRQ line,
2591 * and call the driver's reset() and start() routines.
2592 */
2593 int usb_add_hcd(struct usb_hcd *hcd,
2594 unsigned int irqnum, unsigned long irqflags)
2595 {
2596 int retval;
2597 struct usb_device *rhdev;
2598
2599 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2600
2601 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2602 if (authorized_default < 0 || authorized_default > 1)
2603 hcd->authorized_default = hcd->wireless? 0 : 1;
2604 else
2605 hcd->authorized_default = authorized_default;
2606 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2607
2608 /* HC is in reset state, but accessible. Now do the one-time init,
2609 * bottom up so that hcds can customize the root hubs before khubd
2610 * starts talking to them. (Note, bus id is assigned early too.)
2611 */
2612 if ((retval = hcd_buffer_create(hcd)) != 0) {
2613 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2614 return retval;
2615 }
2616
2617 if ((retval = usb_register_bus(&hcd->self)) < 0)
2618 goto err_register_bus;
2619
2620 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2621 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2622 retval = -ENOMEM;
2623 goto err_allocate_root_hub;
2624 }
2625 hcd->self.root_hub = rhdev;
2626
2627 switch (hcd->speed) {
2628 case HCD_USB11:
2629 rhdev->speed = USB_SPEED_FULL;
2630 break;
2631 case HCD_USB2:
2632 rhdev->speed = USB_SPEED_HIGH;
2633 break;
2634 case HCD_USB25:
2635 rhdev->speed = USB_SPEED_WIRELESS;
2636 break;
2637 case HCD_USB3:
2638 rhdev->speed = USB_SPEED_SUPER;
2639 break;
2640 default:
2641 retval = -EINVAL;
2642 goto err_set_rh_speed;
2643 }
2644
2645 /* wakeup flag init defaults to "everything works" for root hubs,
2646 * but drivers can override it in reset() if needed, along with
2647 * recording the overall controller's system wakeup capability.
2648 */
2649 device_set_wakeup_capable(&rhdev->dev, 1);
2650
2651 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2652 * registered. But since the controller can die at any time,
2653 * let's initialize the flag before touching the hardware.
2654 */
2655 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2656
2657 /* "reset" is misnamed; its role is now one-time init. the controller
2658 * should already have been reset (and boot firmware kicked off etc).
2659 */
2660 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2661 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2662 goto err_hcd_driver_setup;
2663 }
2664 hcd->rh_pollable = 1;
2665
2666 /* NOTE: root hub and controller capabilities may not be the same */
2667 if (device_can_wakeup(hcd->self.controller)
2668 && device_can_wakeup(&hcd->self.root_hub->dev))
2669 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2670
2671 /* initialize tasklets */
2672 init_giveback_urb_bh(&hcd->high_prio_bh);
2673 init_giveback_urb_bh(&hcd->low_prio_bh);
2674
2675 /* enable irqs just before we start the controller,
2676 * if the BIOS provides legacy PCI irqs.
2677 */
2678 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2679 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2680 if (retval)
2681 goto err_request_irq;
2682 }
2683
2684 hcd->state = HC_STATE_RUNNING;
2685 retval = hcd->driver->start(hcd);
2686 if (retval < 0) {
2687 dev_err(hcd->self.controller, "startup error %d\n", retval);
2688 goto err_hcd_driver_start;
2689 }
2690
2691 /* starting here, usbcore will pay attention to this root hub */
2692 if ((retval = register_root_hub(hcd)) != 0)
2693 goto err_register_root_hub;
2694
2695 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2696 if (retval < 0) {
2697 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2698 retval);
2699 goto error_create_attr_group;
2700 }
2701 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2702 usb_hcd_poll_rh_status(hcd);
2703
2704 /*
2705 * Host controllers don't generate their own wakeup requests;
2706 * they only forward requests from the root hub. Therefore
2707 * controllers should always be enabled for remote wakeup.
2708 */
2709 device_wakeup_enable(hcd->self.controller);
2710 return retval;
2711
2712 error_create_attr_group:
2713 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2714 if (HC_IS_RUNNING(hcd->state))
2715 hcd->state = HC_STATE_QUIESCING;
2716 spin_lock_irq(&hcd_root_hub_lock);
2717 hcd->rh_registered = 0;
2718 spin_unlock_irq(&hcd_root_hub_lock);
2719
2720 #ifdef CONFIG_PM_RUNTIME
2721 cancel_work_sync(&hcd->wakeup_work);
2722 #endif
2723 mutex_lock(&usb_bus_list_lock);
2724 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2725 mutex_unlock(&usb_bus_list_lock);
2726 err_register_root_hub:
2727 hcd->rh_pollable = 0;
2728 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2729 del_timer_sync(&hcd->rh_timer);
2730 hcd->driver->stop(hcd);
2731 hcd->state = HC_STATE_HALT;
2732 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2733 del_timer_sync(&hcd->rh_timer);
2734 err_hcd_driver_start:
2735 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2736 free_irq(irqnum, hcd);
2737 err_request_irq:
2738 err_hcd_driver_setup:
2739 err_set_rh_speed:
2740 usb_put_dev(hcd->self.root_hub);
2741 err_allocate_root_hub:
2742 usb_deregister_bus(&hcd->self);
2743 err_register_bus:
2744 hcd_buffer_destroy(hcd);
2745 return retval;
2746 }
2747 EXPORT_SYMBOL_GPL(usb_add_hcd);
2748
2749 /**
2750 * usb_remove_hcd - shutdown processing for generic HCDs
2751 * @hcd: the usb_hcd structure to remove
2752 * Context: !in_interrupt()
2753 *
2754 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2755 * invoking the HCD's stop() method.
2756 */
2757 void usb_remove_hcd(struct usb_hcd *hcd)
2758 {
2759 struct usb_device *rhdev = hcd->self.root_hub;
2760
2761 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2762
2763 usb_get_dev(rhdev);
2764 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2765
2766 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2767 if (HC_IS_RUNNING (hcd->state))
2768 hcd->state = HC_STATE_QUIESCING;
2769
2770 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2771 spin_lock_irq (&hcd_root_hub_lock);
2772 hcd->rh_registered = 0;
2773 spin_unlock_irq (&hcd_root_hub_lock);
2774
2775 #ifdef CONFIG_PM_RUNTIME
2776 cancel_work_sync(&hcd->wakeup_work);
2777 #endif
2778
2779 mutex_lock(&usb_bus_list_lock);
2780 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2781 mutex_unlock(&usb_bus_list_lock);
2782
2783 /*
2784 * tasklet_kill() isn't needed here because:
2785 * - driver's disconnect() called from usb_disconnect() should
2786 * make sure its URBs are completed during the disconnect()
2787 * callback
2788 *
2789 * - it is too late to run complete() here since driver may have
2790 * been removed already now
2791 */
2792
2793 /* Prevent any more root-hub status calls from the timer.
2794 * The HCD might still restart the timer (if a port status change
2795 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2796 * the hub_status_data() callback.
2797 */
2798 hcd->rh_pollable = 0;
2799 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2800 del_timer_sync(&hcd->rh_timer);
2801
2802 hcd->driver->stop(hcd);
2803 hcd->state = HC_STATE_HALT;
2804
2805 /* In case the HCD restarted the timer, stop it again. */
2806 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2807 del_timer_sync(&hcd->rh_timer);
2808
2809 if (usb_hcd_is_primary_hcd(hcd)) {
2810 if (hcd->irq > 0)
2811 free_irq(hcd->irq, hcd);
2812 }
2813
2814 usb_put_dev(hcd->self.root_hub);
2815 usb_deregister_bus(&hcd->self);
2816 hcd_buffer_destroy(hcd);
2817 }
2818 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2819
2820 void
2821 usb_hcd_platform_shutdown(struct platform_device* dev)
2822 {
2823 struct usb_hcd *hcd = platform_get_drvdata(dev);
2824
2825 if (hcd->driver->shutdown)
2826 hcd->driver->shutdown(hcd);
2827 }
2828 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2829
2830 /*-------------------------------------------------------------------------*/
2831
2832 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2833
2834 struct usb_mon_operations *mon_ops;
2835
2836 /*
2837 * The registration is unlocked.
2838 * We do it this way because we do not want to lock in hot paths.
2839 *
2840 * Notice that the code is minimally error-proof. Because usbmon needs
2841 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2842 */
2843
2844 int usb_mon_register (struct usb_mon_operations *ops)
2845 {
2846
2847 if (mon_ops)
2848 return -EBUSY;
2849
2850 mon_ops = ops;
2851 mb();
2852 return 0;
2853 }
2854 EXPORT_SYMBOL_GPL (usb_mon_register);
2855
2856 void usb_mon_deregister (void)
2857 {
2858
2859 if (mon_ops == NULL) {
2860 printk(KERN_ERR "USB: monitor was not registered\n");
2861 return;
2862 }
2863 mon_ops = NULL;
2864 mb();
2865 }
2866 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2867
2868 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.092542 seconds and 5 git commands to generate.