Merge tag 'iio-fixes-for-4.5a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
84 */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list);
94 EXPORT_SYMBOL_GPL (usb_bus_list);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS 64
98 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor[18] = {
198 0x12, /* __u8 bLength; */
199 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
201
202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
203 0x00, /* __u8 bDeviceSubClass; */
204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
206
207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
210
211 0x03, /* __u8 iManufacturer; */
212 0x02, /* __u8 iProduct; */
213 0x01, /* __u8 iSerialNumber; */
214 0x01 /* __u8 bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor[] = {
223
224 /* one configuration */
225 0x09, /* __u8 bLength; */
226 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
227 0x19, 0x00, /* __le16 wTotalLength; */
228 0x01, /* __u8 bNumInterfaces; (1) */
229 0x01, /* __u8 bConfigurationValue; */
230 0x00, /* __u8 iConfiguration; */
231 0xc0, /* __u8 bmAttributes;
232 Bit 7: must be set,
233 6: Self-powered,
234 5: Remote wakeup,
235 4..0: resvd */
236 0x00, /* __u8 MaxPower; */
237
238 /* USB 1.1:
239 * USB 2.0, single TT organization (mandatory):
240 * one interface, protocol 0
241 *
242 * USB 2.0, multiple TT organization (optional):
243 * two interfaces, protocols 1 (like single TT)
244 * and 2 (multiple TT mode) ... config is
245 * sometimes settable
246 * NOT IMPLEMENTED
247 */
248
249 /* one interface */
250 0x09, /* __u8 if_bLength; */
251 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
252 0x00, /* __u8 if_bInterfaceNumber; */
253 0x00, /* __u8 if_bAlternateSetting; */
254 0x01, /* __u8 if_bNumEndpoints; */
255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
256 0x00, /* __u8 if_bInterfaceSubClass; */
257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
258 0x00, /* __u8 if_iInterface; */
259
260 /* one endpoint (status change endpoint) */
261 0x07, /* __u8 ep_bLength; */
262 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
264 0x03, /* __u8 ep_bmAttributes; Interrupt */
265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor[] = {
270
271 /* one configuration */
272 0x09, /* __u8 bLength; */
273 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
274 0x19, 0x00, /* __le16 wTotalLength; */
275 0x01, /* __u8 bNumInterfaces; (1) */
276 0x01, /* __u8 bConfigurationValue; */
277 0x00, /* __u8 iConfiguration; */
278 0xc0, /* __u8 bmAttributes;
279 Bit 7: must be set,
280 6: Self-powered,
281 5: Remote wakeup,
282 4..0: resvd */
283 0x00, /* __u8 MaxPower; */
284
285 /* USB 1.1:
286 * USB 2.0, single TT organization (mandatory):
287 * one interface, protocol 0
288 *
289 * USB 2.0, multiple TT organization (optional):
290 * two interfaces, protocols 1 (like single TT)
291 * and 2 (multiple TT mode) ... config is
292 * sometimes settable
293 * NOT IMPLEMENTED
294 */
295
296 /* one interface */
297 0x09, /* __u8 if_bLength; */
298 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
299 0x00, /* __u8 if_bInterfaceNumber; */
300 0x00, /* __u8 if_bAlternateSetting; */
301 0x01, /* __u8 if_bNumEndpoints; */
302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
303 0x00, /* __u8 if_bInterfaceSubClass; */
304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
305 0x00, /* __u8 if_iInterface; */
306
307 /* one endpoint (status change endpoint) */
308 0x07, /* __u8 ep_bLength; */
309 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
311 0x03, /* __u8 ep_bmAttributes; Interrupt */
312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313 * see hub.c:hub_configure() for details. */
314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319 /* one configuration */
320 0x09, /* __u8 bLength; */
321 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
322 0x1f, 0x00, /* __le16 wTotalLength; */
323 0x01, /* __u8 bNumInterfaces; (1) */
324 0x01, /* __u8 bConfigurationValue; */
325 0x00, /* __u8 iConfiguration; */
326 0xc0, /* __u8 bmAttributes;
327 Bit 7: must be set,
328 6: Self-powered,
329 5: Remote wakeup,
330 4..0: resvd */
331 0x00, /* __u8 MaxPower; */
332
333 /* one interface */
334 0x09, /* __u8 if_bLength; */
335 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
336 0x00, /* __u8 if_bInterfaceNumber; */
337 0x00, /* __u8 if_bAlternateSetting; */
338 0x01, /* __u8 if_bNumEndpoints; */
339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
340 0x00, /* __u8 if_bInterfaceSubClass; */
341 0x00, /* __u8 if_bInterfaceProtocol; */
342 0x00, /* __u8 if_iInterface; */
343
344 /* one endpoint (status change endpoint) */
345 0x07, /* __u8 ep_bLength; */
346 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
348 0x03, /* __u8 ep_bmAttributes; Interrupt */
349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350 * see hub.c:hub_configure() for details. */
351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
353
354 /* one SuperSpeed endpoint companion descriptor */
355 0x06, /* __u8 ss_bLength */
356 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
357 /* Companion */
358 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
359 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
360 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
361 };
362
363 /* authorized_default behaviour:
364 * -1 is authorized for all devices except wireless (old behaviour)
365 * 0 is unauthorized for all devices
366 * 1 is authorized for all devices
367 */
368 static int authorized_default = -1;
369 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
370 MODULE_PARM_DESC(authorized_default,
371 "Default USB device authorization: 0 is not authorized, 1 is "
372 "authorized, -1 is authorized except for wireless USB (default, "
373 "old behaviour");
374 /*-------------------------------------------------------------------------*/
375
376 /**
377 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
378 * @s: Null-terminated ASCII (actually ISO-8859-1) string
379 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
380 * @len: Length (in bytes; may be odd) of descriptor buffer.
381 *
382 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
383 * whichever is less.
384 *
385 * Note:
386 * USB String descriptors can contain at most 126 characters; input
387 * strings longer than that are truncated.
388 */
389 static unsigned
390 ascii2desc(char const *s, u8 *buf, unsigned len)
391 {
392 unsigned n, t = 2 + 2*strlen(s);
393
394 if (t > 254)
395 t = 254; /* Longest possible UTF string descriptor */
396 if (len > t)
397 len = t;
398
399 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
400
401 n = len;
402 while (n--) {
403 *buf++ = t;
404 if (!n--)
405 break;
406 *buf++ = t >> 8;
407 t = (unsigned char)*s++;
408 }
409 return len;
410 }
411
412 /**
413 * rh_string() - provides string descriptors for root hub
414 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
415 * @hcd: the host controller for this root hub
416 * @data: buffer for output packet
417 * @len: length of the provided buffer
418 *
419 * Produces either a manufacturer, product or serial number string for the
420 * virtual root hub device.
421 *
422 * Return: The number of bytes filled in: the length of the descriptor or
423 * of the provided buffer, whichever is less.
424 */
425 static unsigned
426 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
427 {
428 char buf[100];
429 char const *s;
430 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
431
432 /* language ids */
433 switch (id) {
434 case 0:
435 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
436 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
437 if (len > 4)
438 len = 4;
439 memcpy(data, langids, len);
440 return len;
441 case 1:
442 /* Serial number */
443 s = hcd->self.bus_name;
444 break;
445 case 2:
446 /* Product name */
447 s = hcd->product_desc;
448 break;
449 case 3:
450 /* Manufacturer */
451 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
452 init_utsname()->release, hcd->driver->description);
453 s = buf;
454 break;
455 default:
456 /* Can't happen; caller guarantees it */
457 return 0;
458 }
459
460 return ascii2desc(s, data, len);
461 }
462
463
464 /* Root hub control transfers execute synchronously */
465 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
466 {
467 struct usb_ctrlrequest *cmd;
468 u16 typeReq, wValue, wIndex, wLength;
469 u8 *ubuf = urb->transfer_buffer;
470 unsigned len = 0;
471 int status;
472 u8 patch_wakeup = 0;
473 u8 patch_protocol = 0;
474 u16 tbuf_size;
475 u8 *tbuf = NULL;
476 const u8 *bufp;
477
478 might_sleep();
479
480 spin_lock_irq(&hcd_root_hub_lock);
481 status = usb_hcd_link_urb_to_ep(hcd, urb);
482 spin_unlock_irq(&hcd_root_hub_lock);
483 if (status)
484 return status;
485 urb->hcpriv = hcd; /* Indicate it's queued */
486
487 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
488 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
489 wValue = le16_to_cpu (cmd->wValue);
490 wIndex = le16_to_cpu (cmd->wIndex);
491 wLength = le16_to_cpu (cmd->wLength);
492
493 if (wLength > urb->transfer_buffer_length)
494 goto error;
495
496 /*
497 * tbuf should be at least as big as the
498 * USB hub descriptor.
499 */
500 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
501 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
502 if (!tbuf)
503 return -ENOMEM;
504
505 bufp = tbuf;
506
507
508 urb->actual_length = 0;
509 switch (typeReq) {
510
511 /* DEVICE REQUESTS */
512
513 /* The root hub's remote wakeup enable bit is implemented using
514 * driver model wakeup flags. If this system supports wakeup
515 * through USB, userspace may change the default "allow wakeup"
516 * policy through sysfs or these calls.
517 *
518 * Most root hubs support wakeup from downstream devices, for
519 * runtime power management (disabling USB clocks and reducing
520 * VBUS power usage). However, not all of them do so; silicon,
521 * board, and BIOS bugs here are not uncommon, so these can't
522 * be treated quite like external hubs.
523 *
524 * Likewise, not all root hubs will pass wakeup events upstream,
525 * to wake up the whole system. So don't assume root hub and
526 * controller capabilities are identical.
527 */
528
529 case DeviceRequest | USB_REQ_GET_STATUS:
530 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
531 << USB_DEVICE_REMOTE_WAKEUP)
532 | (1 << USB_DEVICE_SELF_POWERED);
533 tbuf[1] = 0;
534 len = 2;
535 break;
536 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
537 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
538 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
539 else
540 goto error;
541 break;
542 case DeviceOutRequest | USB_REQ_SET_FEATURE:
543 if (device_can_wakeup(&hcd->self.root_hub->dev)
544 && wValue == USB_DEVICE_REMOTE_WAKEUP)
545 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
546 else
547 goto error;
548 break;
549 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
550 tbuf[0] = 1;
551 len = 1;
552 /* FALLTHROUGH */
553 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
554 break;
555 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
556 switch (wValue & 0xff00) {
557 case USB_DT_DEVICE << 8:
558 switch (hcd->speed) {
559 case HCD_USB31:
560 case HCD_USB3:
561 bufp = usb3_rh_dev_descriptor;
562 break;
563 case HCD_USB25:
564 bufp = usb25_rh_dev_descriptor;
565 break;
566 case HCD_USB2:
567 bufp = usb2_rh_dev_descriptor;
568 break;
569 case HCD_USB11:
570 bufp = usb11_rh_dev_descriptor;
571 break;
572 default:
573 goto error;
574 }
575 len = 18;
576 if (hcd->has_tt)
577 patch_protocol = 1;
578 break;
579 case USB_DT_CONFIG << 8:
580 switch (hcd->speed) {
581 case HCD_USB31:
582 case HCD_USB3:
583 bufp = ss_rh_config_descriptor;
584 len = sizeof ss_rh_config_descriptor;
585 break;
586 case HCD_USB25:
587 case HCD_USB2:
588 bufp = hs_rh_config_descriptor;
589 len = sizeof hs_rh_config_descriptor;
590 break;
591 case HCD_USB11:
592 bufp = fs_rh_config_descriptor;
593 len = sizeof fs_rh_config_descriptor;
594 break;
595 default:
596 goto error;
597 }
598 if (device_can_wakeup(&hcd->self.root_hub->dev))
599 patch_wakeup = 1;
600 break;
601 case USB_DT_STRING << 8:
602 if ((wValue & 0xff) < 4)
603 urb->actual_length = rh_string(wValue & 0xff,
604 hcd, ubuf, wLength);
605 else /* unsupported IDs --> "protocol stall" */
606 goto error;
607 break;
608 case USB_DT_BOS << 8:
609 goto nongeneric;
610 default:
611 goto error;
612 }
613 break;
614 case DeviceRequest | USB_REQ_GET_INTERFACE:
615 tbuf[0] = 0;
616 len = 1;
617 /* FALLTHROUGH */
618 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
619 break;
620 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
621 /* wValue == urb->dev->devaddr */
622 dev_dbg (hcd->self.controller, "root hub device address %d\n",
623 wValue);
624 break;
625
626 /* INTERFACE REQUESTS (no defined feature/status flags) */
627
628 /* ENDPOINT REQUESTS */
629
630 case EndpointRequest | USB_REQ_GET_STATUS:
631 /* ENDPOINT_HALT flag */
632 tbuf[0] = 0;
633 tbuf[1] = 0;
634 len = 2;
635 /* FALLTHROUGH */
636 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
637 case EndpointOutRequest | USB_REQ_SET_FEATURE:
638 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
639 break;
640
641 /* CLASS REQUESTS (and errors) */
642
643 default:
644 nongeneric:
645 /* non-generic request */
646 switch (typeReq) {
647 case GetHubStatus:
648 case GetPortStatus:
649 len = 4;
650 break;
651 case GetHubDescriptor:
652 len = sizeof (struct usb_hub_descriptor);
653 break;
654 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
655 /* len is returned by hub_control */
656 break;
657 }
658 status = hcd->driver->hub_control (hcd,
659 typeReq, wValue, wIndex,
660 tbuf, wLength);
661
662 if (typeReq == GetHubDescriptor)
663 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
664 (struct usb_hub_descriptor *)tbuf);
665 break;
666 error:
667 /* "protocol stall" on error */
668 status = -EPIPE;
669 }
670
671 if (status < 0) {
672 len = 0;
673 if (status != -EPIPE) {
674 dev_dbg (hcd->self.controller,
675 "CTRL: TypeReq=0x%x val=0x%x "
676 "idx=0x%x len=%d ==> %d\n",
677 typeReq, wValue, wIndex,
678 wLength, status);
679 }
680 } else if (status > 0) {
681 /* hub_control may return the length of data copied. */
682 len = status;
683 status = 0;
684 }
685 if (len) {
686 if (urb->transfer_buffer_length < len)
687 len = urb->transfer_buffer_length;
688 urb->actual_length = len;
689 /* always USB_DIR_IN, toward host */
690 memcpy (ubuf, bufp, len);
691
692 /* report whether RH hardware supports remote wakeup */
693 if (patch_wakeup &&
694 len > offsetof (struct usb_config_descriptor,
695 bmAttributes))
696 ((struct usb_config_descriptor *)ubuf)->bmAttributes
697 |= USB_CONFIG_ATT_WAKEUP;
698
699 /* report whether RH hardware has an integrated TT */
700 if (patch_protocol &&
701 len > offsetof(struct usb_device_descriptor,
702 bDeviceProtocol))
703 ((struct usb_device_descriptor *) ubuf)->
704 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
705 }
706
707 kfree(tbuf);
708
709 /* any errors get returned through the urb completion */
710 spin_lock_irq(&hcd_root_hub_lock);
711 usb_hcd_unlink_urb_from_ep(hcd, urb);
712 usb_hcd_giveback_urb(hcd, urb, status);
713 spin_unlock_irq(&hcd_root_hub_lock);
714 return 0;
715 }
716
717 /*-------------------------------------------------------------------------*/
718
719 /*
720 * Root Hub interrupt transfers are polled using a timer if the
721 * driver requests it; otherwise the driver is responsible for
722 * calling usb_hcd_poll_rh_status() when an event occurs.
723 *
724 * Completions are called in_interrupt(), but they may or may not
725 * be in_irq().
726 */
727 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728 {
729 struct urb *urb;
730 int length;
731 unsigned long flags;
732 char buffer[6]; /* Any root hubs with > 31 ports? */
733
734 if (unlikely(!hcd->rh_pollable))
735 return;
736 if (!hcd->uses_new_polling && !hcd->status_urb)
737 return;
738
739 length = hcd->driver->hub_status_data(hcd, buffer);
740 if (length > 0) {
741
742 /* try to complete the status urb */
743 spin_lock_irqsave(&hcd_root_hub_lock, flags);
744 urb = hcd->status_urb;
745 if (urb) {
746 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
747 hcd->status_urb = NULL;
748 urb->actual_length = length;
749 memcpy(urb->transfer_buffer, buffer, length);
750
751 usb_hcd_unlink_urb_from_ep(hcd, urb);
752 usb_hcd_giveback_urb(hcd, urb, 0);
753 } else {
754 length = 0;
755 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
756 }
757 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
758 }
759
760 /* The USB 2.0 spec says 256 ms. This is close enough and won't
761 * exceed that limit if HZ is 100. The math is more clunky than
762 * maybe expected, this is to make sure that all timers for USB devices
763 * fire at the same time to give the CPU a break in between */
764 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
765 (length == 0 && hcd->status_urb != NULL))
766 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
767 }
768 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
769
770 /* timer callback */
771 static void rh_timer_func (unsigned long _hcd)
772 {
773 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
774 }
775
776 /*-------------------------------------------------------------------------*/
777
778 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
779 {
780 int retval;
781 unsigned long flags;
782 unsigned len = 1 + (urb->dev->maxchild / 8);
783
784 spin_lock_irqsave (&hcd_root_hub_lock, flags);
785 if (hcd->status_urb || urb->transfer_buffer_length < len) {
786 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
787 retval = -EINVAL;
788 goto done;
789 }
790
791 retval = usb_hcd_link_urb_to_ep(hcd, urb);
792 if (retval)
793 goto done;
794
795 hcd->status_urb = urb;
796 urb->hcpriv = hcd; /* indicate it's queued */
797 if (!hcd->uses_new_polling)
798 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799
800 /* If a status change has already occurred, report it ASAP */
801 else if (HCD_POLL_PENDING(hcd))
802 mod_timer(&hcd->rh_timer, jiffies);
803 retval = 0;
804 done:
805 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
806 return retval;
807 }
808
809 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
810 {
811 if (usb_endpoint_xfer_int(&urb->ep->desc))
812 return rh_queue_status (hcd, urb);
813 if (usb_endpoint_xfer_control(&urb->ep->desc))
814 return rh_call_control (hcd, urb);
815 return -EINVAL;
816 }
817
818 /*-------------------------------------------------------------------------*/
819
820 /* Unlinks of root-hub control URBs are legal, but they don't do anything
821 * since these URBs always execute synchronously.
822 */
823 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
824 {
825 unsigned long flags;
826 int rc;
827
828 spin_lock_irqsave(&hcd_root_hub_lock, flags);
829 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
830 if (rc)
831 goto done;
832
833 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
834 ; /* Do nothing */
835
836 } else { /* Status URB */
837 if (!hcd->uses_new_polling)
838 del_timer (&hcd->rh_timer);
839 if (urb == hcd->status_urb) {
840 hcd->status_urb = NULL;
841 usb_hcd_unlink_urb_from_ep(hcd, urb);
842 usb_hcd_giveback_urb(hcd, urb, status);
843 }
844 }
845 done:
846 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
847 return rc;
848 }
849
850
851
852 /*
853 * Show & store the current value of authorized_default
854 */
855 static ssize_t authorized_default_show(struct device *dev,
856 struct device_attribute *attr, char *buf)
857 {
858 struct usb_device *rh_usb_dev = to_usb_device(dev);
859 struct usb_bus *usb_bus = rh_usb_dev->bus;
860 struct usb_hcd *hcd;
861
862 hcd = bus_to_hcd(usb_bus);
863 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
864 }
865
866 static ssize_t authorized_default_store(struct device *dev,
867 struct device_attribute *attr,
868 const char *buf, size_t size)
869 {
870 ssize_t result;
871 unsigned val;
872 struct usb_device *rh_usb_dev = to_usb_device(dev);
873 struct usb_bus *usb_bus = rh_usb_dev->bus;
874 struct usb_hcd *hcd;
875
876 hcd = bus_to_hcd(usb_bus);
877 result = sscanf(buf, "%u\n", &val);
878 if (result == 1) {
879 if (val)
880 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
881 else
882 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
883
884 result = size;
885 } else {
886 result = -EINVAL;
887 }
888 return result;
889 }
890 static DEVICE_ATTR_RW(authorized_default);
891
892 /*
893 * interface_authorized_default_show - show default authorization status
894 * for USB interfaces
895 *
896 * note: interface_authorized_default is the default value
897 * for initializing the authorized attribute of interfaces
898 */
899 static ssize_t interface_authorized_default_show(struct device *dev,
900 struct device_attribute *attr, char *buf)
901 {
902 struct usb_device *usb_dev = to_usb_device(dev);
903 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
904
905 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
906 }
907
908 /*
909 * interface_authorized_default_store - store default authorization status
910 * for USB interfaces
911 *
912 * note: interface_authorized_default is the default value
913 * for initializing the authorized attribute of interfaces
914 */
915 static ssize_t interface_authorized_default_store(struct device *dev,
916 struct device_attribute *attr, const char *buf, size_t count)
917 {
918 struct usb_device *usb_dev = to_usb_device(dev);
919 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
920 int rc = count;
921 bool val;
922
923 if (strtobool(buf, &val) != 0)
924 return -EINVAL;
925
926 if (val)
927 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
928 else
929 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
930
931 return rc;
932 }
933 static DEVICE_ATTR_RW(interface_authorized_default);
934
935 /* Group all the USB bus attributes */
936 static struct attribute *usb_bus_attrs[] = {
937 &dev_attr_authorized_default.attr,
938 &dev_attr_interface_authorized_default.attr,
939 NULL,
940 };
941
942 static struct attribute_group usb_bus_attr_group = {
943 .name = NULL, /* we want them in the same directory */
944 .attrs = usb_bus_attrs,
945 };
946
947
948
949 /*-------------------------------------------------------------------------*/
950
951 /**
952 * usb_bus_init - shared initialization code
953 * @bus: the bus structure being initialized
954 *
955 * This code is used to initialize a usb_bus structure, memory for which is
956 * separately managed.
957 */
958 static void usb_bus_init (struct usb_bus *bus)
959 {
960 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
961
962 bus->devnum_next = 1;
963
964 bus->root_hub = NULL;
965 bus->busnum = -1;
966 bus->bandwidth_allocated = 0;
967 bus->bandwidth_int_reqs = 0;
968 bus->bandwidth_isoc_reqs = 0;
969 mutex_init(&bus->usb_address0_mutex);
970
971 INIT_LIST_HEAD (&bus->bus_list);
972 }
973
974 /*-------------------------------------------------------------------------*/
975
976 /**
977 * usb_register_bus - registers the USB host controller with the usb core
978 * @bus: pointer to the bus to register
979 * Context: !in_interrupt()
980 *
981 * Assigns a bus number, and links the controller into usbcore data
982 * structures so that it can be seen by scanning the bus list.
983 *
984 * Return: 0 if successful. A negative error code otherwise.
985 */
986 static int usb_register_bus(struct usb_bus *bus)
987 {
988 int result = -E2BIG;
989 int busnum;
990
991 mutex_lock(&usb_bus_list_lock);
992 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
993 if (busnum >= USB_MAXBUS) {
994 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
995 goto error_find_busnum;
996 }
997 set_bit(busnum, busmap);
998 bus->busnum = busnum;
999
1000 /* Add it to the local list of buses */
1001 list_add (&bus->bus_list, &usb_bus_list);
1002 mutex_unlock(&usb_bus_list_lock);
1003
1004 usb_notify_add_bus(bus);
1005
1006 dev_info (bus->controller, "new USB bus registered, assigned bus "
1007 "number %d\n", bus->busnum);
1008 return 0;
1009
1010 error_find_busnum:
1011 mutex_unlock(&usb_bus_list_lock);
1012 return result;
1013 }
1014
1015 /**
1016 * usb_deregister_bus - deregisters the USB host controller
1017 * @bus: pointer to the bus to deregister
1018 * Context: !in_interrupt()
1019 *
1020 * Recycles the bus number, and unlinks the controller from usbcore data
1021 * structures so that it won't be seen by scanning the bus list.
1022 */
1023 static void usb_deregister_bus (struct usb_bus *bus)
1024 {
1025 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1026
1027 /*
1028 * NOTE: make sure that all the devices are removed by the
1029 * controller code, as well as having it call this when cleaning
1030 * itself up
1031 */
1032 mutex_lock(&usb_bus_list_lock);
1033 list_del (&bus->bus_list);
1034 mutex_unlock(&usb_bus_list_lock);
1035
1036 usb_notify_remove_bus(bus);
1037
1038 clear_bit(bus->busnum, busmap);
1039 }
1040
1041 /**
1042 * register_root_hub - called by usb_add_hcd() to register a root hub
1043 * @hcd: host controller for this root hub
1044 *
1045 * This function registers the root hub with the USB subsystem. It sets up
1046 * the device properly in the device tree and then calls usb_new_device()
1047 * to register the usb device. It also assigns the root hub's USB address
1048 * (always 1).
1049 *
1050 * Return: 0 if successful. A negative error code otherwise.
1051 */
1052 static int register_root_hub(struct usb_hcd *hcd)
1053 {
1054 struct device *parent_dev = hcd->self.controller;
1055 struct usb_device *usb_dev = hcd->self.root_hub;
1056 const int devnum = 1;
1057 int retval;
1058
1059 usb_dev->devnum = devnum;
1060 usb_dev->bus->devnum_next = devnum + 1;
1061 memset (&usb_dev->bus->devmap.devicemap, 0,
1062 sizeof usb_dev->bus->devmap.devicemap);
1063 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1064 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1065
1066 mutex_lock(&usb_bus_list_lock);
1067
1068 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1069 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1070 if (retval != sizeof usb_dev->descriptor) {
1071 mutex_unlock(&usb_bus_list_lock);
1072 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1073 dev_name(&usb_dev->dev), retval);
1074 return (retval < 0) ? retval : -EMSGSIZE;
1075 }
1076
1077 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1078 retval = usb_get_bos_descriptor(usb_dev);
1079 if (!retval) {
1080 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1081 } else if (usb_dev->speed == USB_SPEED_SUPER) {
1082 mutex_unlock(&usb_bus_list_lock);
1083 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1084 dev_name(&usb_dev->dev), retval);
1085 return retval;
1086 }
1087 }
1088
1089 retval = usb_new_device (usb_dev);
1090 if (retval) {
1091 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1092 dev_name(&usb_dev->dev), retval);
1093 } else {
1094 spin_lock_irq (&hcd_root_hub_lock);
1095 hcd->rh_registered = 1;
1096 spin_unlock_irq (&hcd_root_hub_lock);
1097
1098 /* Did the HC die before the root hub was registered? */
1099 if (HCD_DEAD(hcd))
1100 usb_hc_died (hcd); /* This time clean up */
1101 }
1102 mutex_unlock(&usb_bus_list_lock);
1103
1104 return retval;
1105 }
1106
1107 /*
1108 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1109 * @bus: the bus which the root hub belongs to
1110 * @portnum: the port which is being resumed
1111 *
1112 * HCDs should call this function when they know that a resume signal is
1113 * being sent to a root-hub port. The root hub will be prevented from
1114 * going into autosuspend until usb_hcd_end_port_resume() is called.
1115 *
1116 * The bus's private lock must be held by the caller.
1117 */
1118 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1119 {
1120 unsigned bit = 1 << portnum;
1121
1122 if (!(bus->resuming_ports & bit)) {
1123 bus->resuming_ports |= bit;
1124 pm_runtime_get_noresume(&bus->root_hub->dev);
1125 }
1126 }
1127 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1128
1129 /*
1130 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1131 * @bus: the bus which the root hub belongs to
1132 * @portnum: the port which is being resumed
1133 *
1134 * HCDs should call this function when they know that a resume signal has
1135 * stopped being sent to a root-hub port. The root hub will be allowed to
1136 * autosuspend again.
1137 *
1138 * The bus's private lock must be held by the caller.
1139 */
1140 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1141 {
1142 unsigned bit = 1 << portnum;
1143
1144 if (bus->resuming_ports & bit) {
1145 bus->resuming_ports &= ~bit;
1146 pm_runtime_put_noidle(&bus->root_hub->dev);
1147 }
1148 }
1149 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1150
1151 /*-------------------------------------------------------------------------*/
1152
1153 /**
1154 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1155 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1156 * @is_input: true iff the transaction sends data to the host
1157 * @isoc: true for isochronous transactions, false for interrupt ones
1158 * @bytecount: how many bytes in the transaction.
1159 *
1160 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1161 *
1162 * Note:
1163 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1164 * scheduled in software, this function is only used for such scheduling.
1165 */
1166 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1167 {
1168 unsigned long tmp;
1169
1170 switch (speed) {
1171 case USB_SPEED_LOW: /* INTR only */
1172 if (is_input) {
1173 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1174 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1175 } else {
1176 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1177 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1178 }
1179 case USB_SPEED_FULL: /* ISOC or INTR */
1180 if (isoc) {
1181 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1182 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1183 } else {
1184 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1185 return 9107L + BW_HOST_DELAY + tmp;
1186 }
1187 case USB_SPEED_HIGH: /* ISOC or INTR */
1188 /* FIXME adjust for input vs output */
1189 if (isoc)
1190 tmp = HS_NSECS_ISO (bytecount);
1191 else
1192 tmp = HS_NSECS (bytecount);
1193 return tmp;
1194 default:
1195 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1196 return -1;
1197 }
1198 }
1199 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1200
1201
1202 /*-------------------------------------------------------------------------*/
1203
1204 /*
1205 * Generic HC operations.
1206 */
1207
1208 /*-------------------------------------------------------------------------*/
1209
1210 /**
1211 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1212 * @hcd: host controller to which @urb was submitted
1213 * @urb: URB being submitted
1214 *
1215 * Host controller drivers should call this routine in their enqueue()
1216 * method. The HCD's private spinlock must be held and interrupts must
1217 * be disabled. The actions carried out here are required for URB
1218 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1219 *
1220 * Return: 0 for no error, otherwise a negative error code (in which case
1221 * the enqueue() method must fail). If no error occurs but enqueue() fails
1222 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1223 * the private spinlock and returning.
1224 */
1225 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1226 {
1227 int rc = 0;
1228
1229 spin_lock(&hcd_urb_list_lock);
1230
1231 /* Check that the URB isn't being killed */
1232 if (unlikely(atomic_read(&urb->reject))) {
1233 rc = -EPERM;
1234 goto done;
1235 }
1236
1237 if (unlikely(!urb->ep->enabled)) {
1238 rc = -ENOENT;
1239 goto done;
1240 }
1241
1242 if (unlikely(!urb->dev->can_submit)) {
1243 rc = -EHOSTUNREACH;
1244 goto done;
1245 }
1246
1247 /*
1248 * Check the host controller's state and add the URB to the
1249 * endpoint's queue.
1250 */
1251 if (HCD_RH_RUNNING(hcd)) {
1252 urb->unlinked = 0;
1253 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1254 } else {
1255 rc = -ESHUTDOWN;
1256 goto done;
1257 }
1258 done:
1259 spin_unlock(&hcd_urb_list_lock);
1260 return rc;
1261 }
1262 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1263
1264 /**
1265 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1266 * @hcd: host controller to which @urb was submitted
1267 * @urb: URB being checked for unlinkability
1268 * @status: error code to store in @urb if the unlink succeeds
1269 *
1270 * Host controller drivers should call this routine in their dequeue()
1271 * method. The HCD's private spinlock must be held and interrupts must
1272 * be disabled. The actions carried out here are required for making
1273 * sure than an unlink is valid.
1274 *
1275 * Return: 0 for no error, otherwise a negative error code (in which case
1276 * the dequeue() method must fail). The possible error codes are:
1277 *
1278 * -EIDRM: @urb was not submitted or has already completed.
1279 * The completion function may not have been called yet.
1280 *
1281 * -EBUSY: @urb has already been unlinked.
1282 */
1283 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1284 int status)
1285 {
1286 struct list_head *tmp;
1287
1288 /* insist the urb is still queued */
1289 list_for_each(tmp, &urb->ep->urb_list) {
1290 if (tmp == &urb->urb_list)
1291 break;
1292 }
1293 if (tmp != &urb->urb_list)
1294 return -EIDRM;
1295
1296 /* Any status except -EINPROGRESS means something already started to
1297 * unlink this URB from the hardware. So there's no more work to do.
1298 */
1299 if (urb->unlinked)
1300 return -EBUSY;
1301 urb->unlinked = status;
1302 return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1305
1306 /**
1307 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1308 * @hcd: host controller to which @urb was submitted
1309 * @urb: URB being unlinked
1310 *
1311 * Host controller drivers should call this routine before calling
1312 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1313 * interrupts must be disabled. The actions carried out here are required
1314 * for URB completion.
1315 */
1316 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1317 {
1318 /* clear all state linking urb to this dev (and hcd) */
1319 spin_lock(&hcd_urb_list_lock);
1320 list_del_init(&urb->urb_list);
1321 spin_unlock(&hcd_urb_list_lock);
1322 }
1323 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1324
1325 /*
1326 * Some usb host controllers can only perform dma using a small SRAM area.
1327 * The usb core itself is however optimized for host controllers that can dma
1328 * using regular system memory - like pci devices doing bus mastering.
1329 *
1330 * To support host controllers with limited dma capabilities we provide dma
1331 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1332 * For this to work properly the host controller code must first use the
1333 * function dma_declare_coherent_memory() to point out which memory area
1334 * that should be used for dma allocations.
1335 *
1336 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1337 * dma using dma_alloc_coherent() which in turn allocates from the memory
1338 * area pointed out with dma_declare_coherent_memory().
1339 *
1340 * So, to summarize...
1341 *
1342 * - We need "local" memory, canonical example being
1343 * a small SRAM on a discrete controller being the
1344 * only memory that the controller can read ...
1345 * (a) "normal" kernel memory is no good, and
1346 * (b) there's not enough to share
1347 *
1348 * - The only *portable* hook for such stuff in the
1349 * DMA framework is dma_declare_coherent_memory()
1350 *
1351 * - So we use that, even though the primary requirement
1352 * is that the memory be "local" (hence addressable
1353 * by that device), not "coherent".
1354 *
1355 */
1356
1357 static int hcd_alloc_coherent(struct usb_bus *bus,
1358 gfp_t mem_flags, dma_addr_t *dma_handle,
1359 void **vaddr_handle, size_t size,
1360 enum dma_data_direction dir)
1361 {
1362 unsigned char *vaddr;
1363
1364 if (*vaddr_handle == NULL) {
1365 WARN_ON_ONCE(1);
1366 return -EFAULT;
1367 }
1368
1369 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1370 mem_flags, dma_handle);
1371 if (!vaddr)
1372 return -ENOMEM;
1373
1374 /*
1375 * Store the virtual address of the buffer at the end
1376 * of the allocated dma buffer. The size of the buffer
1377 * may be uneven so use unaligned functions instead
1378 * of just rounding up. It makes sense to optimize for
1379 * memory footprint over access speed since the amount
1380 * of memory available for dma may be limited.
1381 */
1382 put_unaligned((unsigned long)*vaddr_handle,
1383 (unsigned long *)(vaddr + size));
1384
1385 if (dir == DMA_TO_DEVICE)
1386 memcpy(vaddr, *vaddr_handle, size);
1387
1388 *vaddr_handle = vaddr;
1389 return 0;
1390 }
1391
1392 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1393 void **vaddr_handle, size_t size,
1394 enum dma_data_direction dir)
1395 {
1396 unsigned char *vaddr = *vaddr_handle;
1397
1398 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1399
1400 if (dir == DMA_FROM_DEVICE)
1401 memcpy(vaddr, *vaddr_handle, size);
1402
1403 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1404
1405 *vaddr_handle = vaddr;
1406 *dma_handle = 0;
1407 }
1408
1409 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1410 {
1411 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1412 dma_unmap_single(hcd->self.controller,
1413 urb->setup_dma,
1414 sizeof(struct usb_ctrlrequest),
1415 DMA_TO_DEVICE);
1416 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1417 hcd_free_coherent(urb->dev->bus,
1418 &urb->setup_dma,
1419 (void **) &urb->setup_packet,
1420 sizeof(struct usb_ctrlrequest),
1421 DMA_TO_DEVICE);
1422
1423 /* Make it safe to call this routine more than once */
1424 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1425 }
1426 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1427
1428 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1429 {
1430 if (hcd->driver->unmap_urb_for_dma)
1431 hcd->driver->unmap_urb_for_dma(hcd, urb);
1432 else
1433 usb_hcd_unmap_urb_for_dma(hcd, urb);
1434 }
1435
1436 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1437 {
1438 enum dma_data_direction dir;
1439
1440 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1441
1442 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443 if (urb->transfer_flags & URB_DMA_MAP_SG)
1444 dma_unmap_sg(hcd->self.controller,
1445 urb->sg,
1446 urb->num_sgs,
1447 dir);
1448 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1449 dma_unmap_page(hcd->self.controller,
1450 urb->transfer_dma,
1451 urb->transfer_buffer_length,
1452 dir);
1453 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1454 dma_unmap_single(hcd->self.controller,
1455 urb->transfer_dma,
1456 urb->transfer_buffer_length,
1457 dir);
1458 else if (urb->transfer_flags & URB_MAP_LOCAL)
1459 hcd_free_coherent(urb->dev->bus,
1460 &urb->transfer_dma,
1461 &urb->transfer_buffer,
1462 urb->transfer_buffer_length,
1463 dir);
1464
1465 /* Make it safe to call this routine more than once */
1466 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1467 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1468 }
1469 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1470
1471 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1472 gfp_t mem_flags)
1473 {
1474 if (hcd->driver->map_urb_for_dma)
1475 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1476 else
1477 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1478 }
1479
1480 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1481 gfp_t mem_flags)
1482 {
1483 enum dma_data_direction dir;
1484 int ret = 0;
1485
1486 /* Map the URB's buffers for DMA access.
1487 * Lower level HCD code should use *_dma exclusively,
1488 * unless it uses pio or talks to another transport,
1489 * or uses the provided scatter gather list for bulk.
1490 */
1491
1492 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1493 if (hcd->self.uses_pio_for_control)
1494 return ret;
1495 if (hcd->self.uses_dma) {
1496 urb->setup_dma = dma_map_single(
1497 hcd->self.controller,
1498 urb->setup_packet,
1499 sizeof(struct usb_ctrlrequest),
1500 DMA_TO_DEVICE);
1501 if (dma_mapping_error(hcd->self.controller,
1502 urb->setup_dma))
1503 return -EAGAIN;
1504 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1505 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1506 ret = hcd_alloc_coherent(
1507 urb->dev->bus, mem_flags,
1508 &urb->setup_dma,
1509 (void **)&urb->setup_packet,
1510 sizeof(struct usb_ctrlrequest),
1511 DMA_TO_DEVICE);
1512 if (ret)
1513 return ret;
1514 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1515 }
1516 }
1517
1518 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1519 if (urb->transfer_buffer_length != 0
1520 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1521 if (hcd->self.uses_dma) {
1522 if (urb->num_sgs) {
1523 int n;
1524
1525 /* We don't support sg for isoc transfers ! */
1526 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1527 WARN_ON(1);
1528 return -EINVAL;
1529 }
1530
1531 n = dma_map_sg(
1532 hcd->self.controller,
1533 urb->sg,
1534 urb->num_sgs,
1535 dir);
1536 if (n <= 0)
1537 ret = -EAGAIN;
1538 else
1539 urb->transfer_flags |= URB_DMA_MAP_SG;
1540 urb->num_mapped_sgs = n;
1541 if (n != urb->num_sgs)
1542 urb->transfer_flags |=
1543 URB_DMA_SG_COMBINED;
1544 } else if (urb->sg) {
1545 struct scatterlist *sg = urb->sg;
1546 urb->transfer_dma = dma_map_page(
1547 hcd->self.controller,
1548 sg_page(sg),
1549 sg->offset,
1550 urb->transfer_buffer_length,
1551 dir);
1552 if (dma_mapping_error(hcd->self.controller,
1553 urb->transfer_dma))
1554 ret = -EAGAIN;
1555 else
1556 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1557 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1558 WARN_ONCE(1, "transfer buffer not dma capable\n");
1559 ret = -EAGAIN;
1560 } else {
1561 urb->transfer_dma = dma_map_single(
1562 hcd->self.controller,
1563 urb->transfer_buffer,
1564 urb->transfer_buffer_length,
1565 dir);
1566 if (dma_mapping_error(hcd->self.controller,
1567 urb->transfer_dma))
1568 ret = -EAGAIN;
1569 else
1570 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1571 }
1572 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1573 ret = hcd_alloc_coherent(
1574 urb->dev->bus, mem_flags,
1575 &urb->transfer_dma,
1576 &urb->transfer_buffer,
1577 urb->transfer_buffer_length,
1578 dir);
1579 if (ret == 0)
1580 urb->transfer_flags |= URB_MAP_LOCAL;
1581 }
1582 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1583 URB_SETUP_MAP_LOCAL)))
1584 usb_hcd_unmap_urb_for_dma(hcd, urb);
1585 }
1586 return ret;
1587 }
1588 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1589
1590 /*-------------------------------------------------------------------------*/
1591
1592 /* may be called in any context with a valid urb->dev usecount
1593 * caller surrenders "ownership" of urb
1594 * expects usb_submit_urb() to have sanity checked and conditioned all
1595 * inputs in the urb
1596 */
1597 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1598 {
1599 int status;
1600 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1601
1602 /* increment urb's reference count as part of giving it to the HCD
1603 * (which will control it). HCD guarantees that it either returns
1604 * an error or calls giveback(), but not both.
1605 */
1606 usb_get_urb(urb);
1607 atomic_inc(&urb->use_count);
1608 atomic_inc(&urb->dev->urbnum);
1609 usbmon_urb_submit(&hcd->self, urb);
1610
1611 /* NOTE requirements on root-hub callers (usbfs and the hub
1612 * driver, for now): URBs' urb->transfer_buffer must be
1613 * valid and usb_buffer_{sync,unmap}() not be needed, since
1614 * they could clobber root hub response data. Also, control
1615 * URBs must be submitted in process context with interrupts
1616 * enabled.
1617 */
1618
1619 if (is_root_hub(urb->dev)) {
1620 status = rh_urb_enqueue(hcd, urb);
1621 } else {
1622 status = map_urb_for_dma(hcd, urb, mem_flags);
1623 if (likely(status == 0)) {
1624 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1625 if (unlikely(status))
1626 unmap_urb_for_dma(hcd, urb);
1627 }
1628 }
1629
1630 if (unlikely(status)) {
1631 usbmon_urb_submit_error(&hcd->self, urb, status);
1632 urb->hcpriv = NULL;
1633 INIT_LIST_HEAD(&urb->urb_list);
1634 atomic_dec(&urb->use_count);
1635 atomic_dec(&urb->dev->urbnum);
1636 if (atomic_read(&urb->reject))
1637 wake_up(&usb_kill_urb_queue);
1638 usb_put_urb(urb);
1639 }
1640 return status;
1641 }
1642
1643 /*-------------------------------------------------------------------------*/
1644
1645 /* this makes the hcd giveback() the urb more quickly, by kicking it
1646 * off hardware queues (which may take a while) and returning it as
1647 * soon as practical. we've already set up the urb's return status,
1648 * but we can't know if the callback completed already.
1649 */
1650 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1651 {
1652 int value;
1653
1654 if (is_root_hub(urb->dev))
1655 value = usb_rh_urb_dequeue(hcd, urb, status);
1656 else {
1657
1658 /* The only reason an HCD might fail this call is if
1659 * it has not yet fully queued the urb to begin with.
1660 * Such failures should be harmless. */
1661 value = hcd->driver->urb_dequeue(hcd, urb, status);
1662 }
1663 return value;
1664 }
1665
1666 /*
1667 * called in any context
1668 *
1669 * caller guarantees urb won't be recycled till both unlink()
1670 * and the urb's completion function return
1671 */
1672 int usb_hcd_unlink_urb (struct urb *urb, int status)
1673 {
1674 struct usb_hcd *hcd;
1675 struct usb_device *udev = urb->dev;
1676 int retval = -EIDRM;
1677 unsigned long flags;
1678
1679 /* Prevent the device and bus from going away while
1680 * the unlink is carried out. If they are already gone
1681 * then urb->use_count must be 0, since disconnected
1682 * devices can't have any active URBs.
1683 */
1684 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1685 if (atomic_read(&urb->use_count) > 0) {
1686 retval = 0;
1687 usb_get_dev(udev);
1688 }
1689 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1690 if (retval == 0) {
1691 hcd = bus_to_hcd(urb->dev->bus);
1692 retval = unlink1(hcd, urb, status);
1693 if (retval == 0)
1694 retval = -EINPROGRESS;
1695 else if (retval != -EIDRM && retval != -EBUSY)
1696 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1697 urb, retval);
1698 usb_put_dev(udev);
1699 }
1700 return retval;
1701 }
1702
1703 /*-------------------------------------------------------------------------*/
1704
1705 static void __usb_hcd_giveback_urb(struct urb *urb)
1706 {
1707 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1708 struct usb_anchor *anchor = urb->anchor;
1709 int status = urb->unlinked;
1710 unsigned long flags;
1711
1712 urb->hcpriv = NULL;
1713 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1714 urb->actual_length < urb->transfer_buffer_length &&
1715 !status))
1716 status = -EREMOTEIO;
1717
1718 unmap_urb_for_dma(hcd, urb);
1719 usbmon_urb_complete(&hcd->self, urb, status);
1720 usb_anchor_suspend_wakeups(anchor);
1721 usb_unanchor_urb(urb);
1722 if (likely(status == 0))
1723 usb_led_activity(USB_LED_EVENT_HOST);
1724
1725 /* pass ownership to the completion handler */
1726 urb->status = status;
1727
1728 /*
1729 * We disable local IRQs here avoid possible deadlock because
1730 * drivers may call spin_lock() to hold lock which might be
1731 * acquired in one hard interrupt handler.
1732 *
1733 * The local_irq_save()/local_irq_restore() around complete()
1734 * will be removed if current USB drivers have been cleaned up
1735 * and no one may trigger the above deadlock situation when
1736 * running complete() in tasklet.
1737 */
1738 local_irq_save(flags);
1739 urb->complete(urb);
1740 local_irq_restore(flags);
1741
1742 usb_anchor_resume_wakeups(anchor);
1743 atomic_dec(&urb->use_count);
1744 if (unlikely(atomic_read(&urb->reject)))
1745 wake_up(&usb_kill_urb_queue);
1746 usb_put_urb(urb);
1747 }
1748
1749 static void usb_giveback_urb_bh(unsigned long param)
1750 {
1751 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1752 struct list_head local_list;
1753
1754 spin_lock_irq(&bh->lock);
1755 bh->running = true;
1756 restart:
1757 list_replace_init(&bh->head, &local_list);
1758 spin_unlock_irq(&bh->lock);
1759
1760 while (!list_empty(&local_list)) {
1761 struct urb *urb;
1762
1763 urb = list_entry(local_list.next, struct urb, urb_list);
1764 list_del_init(&urb->urb_list);
1765 bh->completing_ep = urb->ep;
1766 __usb_hcd_giveback_urb(urb);
1767 bh->completing_ep = NULL;
1768 }
1769
1770 /* check if there are new URBs to giveback */
1771 spin_lock_irq(&bh->lock);
1772 if (!list_empty(&bh->head))
1773 goto restart;
1774 bh->running = false;
1775 spin_unlock_irq(&bh->lock);
1776 }
1777
1778 /**
1779 * usb_hcd_giveback_urb - return URB from HCD to device driver
1780 * @hcd: host controller returning the URB
1781 * @urb: urb being returned to the USB device driver.
1782 * @status: completion status code for the URB.
1783 * Context: in_interrupt()
1784 *
1785 * This hands the URB from HCD to its USB device driver, using its
1786 * completion function. The HCD has freed all per-urb resources
1787 * (and is done using urb->hcpriv). It also released all HCD locks;
1788 * the device driver won't cause problems if it frees, modifies,
1789 * or resubmits this URB.
1790 *
1791 * If @urb was unlinked, the value of @status will be overridden by
1792 * @urb->unlinked. Erroneous short transfers are detected in case
1793 * the HCD hasn't checked for them.
1794 */
1795 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1796 {
1797 struct giveback_urb_bh *bh;
1798 bool running, high_prio_bh;
1799
1800 /* pass status to tasklet via unlinked */
1801 if (likely(!urb->unlinked))
1802 urb->unlinked = status;
1803
1804 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1805 __usb_hcd_giveback_urb(urb);
1806 return;
1807 }
1808
1809 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1810 bh = &hcd->high_prio_bh;
1811 high_prio_bh = true;
1812 } else {
1813 bh = &hcd->low_prio_bh;
1814 high_prio_bh = false;
1815 }
1816
1817 spin_lock(&bh->lock);
1818 list_add_tail(&urb->urb_list, &bh->head);
1819 running = bh->running;
1820 spin_unlock(&bh->lock);
1821
1822 if (running)
1823 ;
1824 else if (high_prio_bh)
1825 tasklet_hi_schedule(&bh->bh);
1826 else
1827 tasklet_schedule(&bh->bh);
1828 }
1829 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1830
1831 /*-------------------------------------------------------------------------*/
1832
1833 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1834 * queue to drain completely. The caller must first insure that no more
1835 * URBs can be submitted for this endpoint.
1836 */
1837 void usb_hcd_flush_endpoint(struct usb_device *udev,
1838 struct usb_host_endpoint *ep)
1839 {
1840 struct usb_hcd *hcd;
1841 struct urb *urb;
1842
1843 if (!ep)
1844 return;
1845 might_sleep();
1846 hcd = bus_to_hcd(udev->bus);
1847
1848 /* No more submits can occur */
1849 spin_lock_irq(&hcd_urb_list_lock);
1850 rescan:
1851 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1852 int is_in;
1853
1854 if (urb->unlinked)
1855 continue;
1856 usb_get_urb (urb);
1857 is_in = usb_urb_dir_in(urb);
1858 spin_unlock(&hcd_urb_list_lock);
1859
1860 /* kick hcd */
1861 unlink1(hcd, urb, -ESHUTDOWN);
1862 dev_dbg (hcd->self.controller,
1863 "shutdown urb %p ep%d%s%s\n",
1864 urb, usb_endpoint_num(&ep->desc),
1865 is_in ? "in" : "out",
1866 ({ char *s;
1867
1868 switch (usb_endpoint_type(&ep->desc)) {
1869 case USB_ENDPOINT_XFER_CONTROL:
1870 s = ""; break;
1871 case USB_ENDPOINT_XFER_BULK:
1872 s = "-bulk"; break;
1873 case USB_ENDPOINT_XFER_INT:
1874 s = "-intr"; break;
1875 default:
1876 s = "-iso"; break;
1877 };
1878 s;
1879 }));
1880 usb_put_urb (urb);
1881
1882 /* list contents may have changed */
1883 spin_lock(&hcd_urb_list_lock);
1884 goto rescan;
1885 }
1886 spin_unlock_irq(&hcd_urb_list_lock);
1887
1888 /* Wait until the endpoint queue is completely empty */
1889 while (!list_empty (&ep->urb_list)) {
1890 spin_lock_irq(&hcd_urb_list_lock);
1891
1892 /* The list may have changed while we acquired the spinlock */
1893 urb = NULL;
1894 if (!list_empty (&ep->urb_list)) {
1895 urb = list_entry (ep->urb_list.prev, struct urb,
1896 urb_list);
1897 usb_get_urb (urb);
1898 }
1899 spin_unlock_irq(&hcd_urb_list_lock);
1900
1901 if (urb) {
1902 usb_kill_urb (urb);
1903 usb_put_urb (urb);
1904 }
1905 }
1906 }
1907
1908 /**
1909 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1910 * the bus bandwidth
1911 * @udev: target &usb_device
1912 * @new_config: new configuration to install
1913 * @cur_alt: the current alternate interface setting
1914 * @new_alt: alternate interface setting that is being installed
1915 *
1916 * To change configurations, pass in the new configuration in new_config,
1917 * and pass NULL for cur_alt and new_alt.
1918 *
1919 * To reset a device's configuration (put the device in the ADDRESSED state),
1920 * pass in NULL for new_config, cur_alt, and new_alt.
1921 *
1922 * To change alternate interface settings, pass in NULL for new_config,
1923 * pass in the current alternate interface setting in cur_alt,
1924 * and pass in the new alternate interface setting in new_alt.
1925 *
1926 * Return: An error if the requested bandwidth change exceeds the
1927 * bus bandwidth or host controller internal resources.
1928 */
1929 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1930 struct usb_host_config *new_config,
1931 struct usb_host_interface *cur_alt,
1932 struct usb_host_interface *new_alt)
1933 {
1934 int num_intfs, i, j;
1935 struct usb_host_interface *alt = NULL;
1936 int ret = 0;
1937 struct usb_hcd *hcd;
1938 struct usb_host_endpoint *ep;
1939
1940 hcd = bus_to_hcd(udev->bus);
1941 if (!hcd->driver->check_bandwidth)
1942 return 0;
1943
1944 /* Configuration is being removed - set configuration 0 */
1945 if (!new_config && !cur_alt) {
1946 for (i = 1; i < 16; ++i) {
1947 ep = udev->ep_out[i];
1948 if (ep)
1949 hcd->driver->drop_endpoint(hcd, udev, ep);
1950 ep = udev->ep_in[i];
1951 if (ep)
1952 hcd->driver->drop_endpoint(hcd, udev, ep);
1953 }
1954 hcd->driver->check_bandwidth(hcd, udev);
1955 return 0;
1956 }
1957 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1958 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1959 * of the bus. There will always be bandwidth for endpoint 0, so it's
1960 * ok to exclude it.
1961 */
1962 if (new_config) {
1963 num_intfs = new_config->desc.bNumInterfaces;
1964 /* Remove endpoints (except endpoint 0, which is always on the
1965 * schedule) from the old config from the schedule
1966 */
1967 for (i = 1; i < 16; ++i) {
1968 ep = udev->ep_out[i];
1969 if (ep) {
1970 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1971 if (ret < 0)
1972 goto reset;
1973 }
1974 ep = udev->ep_in[i];
1975 if (ep) {
1976 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1977 if (ret < 0)
1978 goto reset;
1979 }
1980 }
1981 for (i = 0; i < num_intfs; ++i) {
1982 struct usb_host_interface *first_alt;
1983 int iface_num;
1984
1985 first_alt = &new_config->intf_cache[i]->altsetting[0];
1986 iface_num = first_alt->desc.bInterfaceNumber;
1987 /* Set up endpoints for alternate interface setting 0 */
1988 alt = usb_find_alt_setting(new_config, iface_num, 0);
1989 if (!alt)
1990 /* No alt setting 0? Pick the first setting. */
1991 alt = first_alt;
1992
1993 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1994 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1995 if (ret < 0)
1996 goto reset;
1997 }
1998 }
1999 }
2000 if (cur_alt && new_alt) {
2001 struct usb_interface *iface = usb_ifnum_to_if(udev,
2002 cur_alt->desc.bInterfaceNumber);
2003
2004 if (!iface)
2005 return -EINVAL;
2006 if (iface->resetting_device) {
2007 /*
2008 * The USB core just reset the device, so the xHCI host
2009 * and the device will think alt setting 0 is installed.
2010 * However, the USB core will pass in the alternate
2011 * setting installed before the reset as cur_alt. Dig
2012 * out the alternate setting 0 structure, or the first
2013 * alternate setting if a broken device doesn't have alt
2014 * setting 0.
2015 */
2016 cur_alt = usb_altnum_to_altsetting(iface, 0);
2017 if (!cur_alt)
2018 cur_alt = &iface->altsetting[0];
2019 }
2020
2021 /* Drop all the endpoints in the current alt setting */
2022 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2023 ret = hcd->driver->drop_endpoint(hcd, udev,
2024 &cur_alt->endpoint[i]);
2025 if (ret < 0)
2026 goto reset;
2027 }
2028 /* Add all the endpoints in the new alt setting */
2029 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2030 ret = hcd->driver->add_endpoint(hcd, udev,
2031 &new_alt->endpoint[i]);
2032 if (ret < 0)
2033 goto reset;
2034 }
2035 }
2036 ret = hcd->driver->check_bandwidth(hcd, udev);
2037 reset:
2038 if (ret < 0)
2039 hcd->driver->reset_bandwidth(hcd, udev);
2040 return ret;
2041 }
2042
2043 /* Disables the endpoint: synchronizes with the hcd to make sure all
2044 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2045 * have been called previously. Use for set_configuration, set_interface,
2046 * driver removal, physical disconnect.
2047 *
2048 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2049 * type, maxpacket size, toggle, halt status, and scheduling.
2050 */
2051 void usb_hcd_disable_endpoint(struct usb_device *udev,
2052 struct usb_host_endpoint *ep)
2053 {
2054 struct usb_hcd *hcd;
2055
2056 might_sleep();
2057 hcd = bus_to_hcd(udev->bus);
2058 if (hcd->driver->endpoint_disable)
2059 hcd->driver->endpoint_disable(hcd, ep);
2060 }
2061
2062 /**
2063 * usb_hcd_reset_endpoint - reset host endpoint state
2064 * @udev: USB device.
2065 * @ep: the endpoint to reset.
2066 *
2067 * Resets any host endpoint state such as the toggle bit, sequence
2068 * number and current window.
2069 */
2070 void usb_hcd_reset_endpoint(struct usb_device *udev,
2071 struct usb_host_endpoint *ep)
2072 {
2073 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2074
2075 if (hcd->driver->endpoint_reset)
2076 hcd->driver->endpoint_reset(hcd, ep);
2077 else {
2078 int epnum = usb_endpoint_num(&ep->desc);
2079 int is_out = usb_endpoint_dir_out(&ep->desc);
2080 int is_control = usb_endpoint_xfer_control(&ep->desc);
2081
2082 usb_settoggle(udev, epnum, is_out, 0);
2083 if (is_control)
2084 usb_settoggle(udev, epnum, !is_out, 0);
2085 }
2086 }
2087
2088 /**
2089 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2090 * @interface: alternate setting that includes all endpoints.
2091 * @eps: array of endpoints that need streams.
2092 * @num_eps: number of endpoints in the array.
2093 * @num_streams: number of streams to allocate.
2094 * @mem_flags: flags hcd should use to allocate memory.
2095 *
2096 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2097 * Drivers may queue multiple transfers to different stream IDs, which may
2098 * complete in a different order than they were queued.
2099 *
2100 * Return: On success, the number of allocated streams. On failure, a negative
2101 * error code.
2102 */
2103 int usb_alloc_streams(struct usb_interface *interface,
2104 struct usb_host_endpoint **eps, unsigned int num_eps,
2105 unsigned int num_streams, gfp_t mem_flags)
2106 {
2107 struct usb_hcd *hcd;
2108 struct usb_device *dev;
2109 int i, ret;
2110
2111 dev = interface_to_usbdev(interface);
2112 hcd = bus_to_hcd(dev->bus);
2113 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2114 return -EINVAL;
2115 if (dev->speed != USB_SPEED_SUPER)
2116 return -EINVAL;
2117 if (dev->state < USB_STATE_CONFIGURED)
2118 return -ENODEV;
2119
2120 for (i = 0; i < num_eps; i++) {
2121 /* Streams only apply to bulk endpoints. */
2122 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2123 return -EINVAL;
2124 /* Re-alloc is not allowed */
2125 if (eps[i]->streams)
2126 return -EINVAL;
2127 }
2128
2129 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2130 num_streams, mem_flags);
2131 if (ret < 0)
2132 return ret;
2133
2134 for (i = 0; i < num_eps; i++)
2135 eps[i]->streams = ret;
2136
2137 return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2140
2141 /**
2142 * usb_free_streams - free bulk endpoint stream IDs.
2143 * @interface: alternate setting that includes all endpoints.
2144 * @eps: array of endpoints to remove streams from.
2145 * @num_eps: number of endpoints in the array.
2146 * @mem_flags: flags hcd should use to allocate memory.
2147 *
2148 * Reverts a group of bulk endpoints back to not using stream IDs.
2149 * Can fail if we are given bad arguments, or HCD is broken.
2150 *
2151 * Return: 0 on success. On failure, a negative error code.
2152 */
2153 int usb_free_streams(struct usb_interface *interface,
2154 struct usb_host_endpoint **eps, unsigned int num_eps,
2155 gfp_t mem_flags)
2156 {
2157 struct usb_hcd *hcd;
2158 struct usb_device *dev;
2159 int i, ret;
2160
2161 dev = interface_to_usbdev(interface);
2162 hcd = bus_to_hcd(dev->bus);
2163 if (dev->speed != USB_SPEED_SUPER)
2164 return -EINVAL;
2165
2166 /* Double-free is not allowed */
2167 for (i = 0; i < num_eps; i++)
2168 if (!eps[i] || !eps[i]->streams)
2169 return -EINVAL;
2170
2171 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2172 if (ret < 0)
2173 return ret;
2174
2175 for (i = 0; i < num_eps; i++)
2176 eps[i]->streams = 0;
2177
2178 return ret;
2179 }
2180 EXPORT_SYMBOL_GPL(usb_free_streams);
2181
2182 /* Protect against drivers that try to unlink URBs after the device
2183 * is gone, by waiting until all unlinks for @udev are finished.
2184 * Since we don't currently track URBs by device, simply wait until
2185 * nothing is running in the locked region of usb_hcd_unlink_urb().
2186 */
2187 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2188 {
2189 spin_lock_irq(&hcd_urb_unlink_lock);
2190 spin_unlock_irq(&hcd_urb_unlink_lock);
2191 }
2192
2193 /*-------------------------------------------------------------------------*/
2194
2195 /* called in any context */
2196 int usb_hcd_get_frame_number (struct usb_device *udev)
2197 {
2198 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2199
2200 if (!HCD_RH_RUNNING(hcd))
2201 return -ESHUTDOWN;
2202 return hcd->driver->get_frame_number (hcd);
2203 }
2204
2205 /*-------------------------------------------------------------------------*/
2206
2207 #ifdef CONFIG_PM
2208
2209 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2210 {
2211 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2212 int status;
2213 int old_state = hcd->state;
2214
2215 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2216 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2217 rhdev->do_remote_wakeup);
2218 if (HCD_DEAD(hcd)) {
2219 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2220 return 0;
2221 }
2222
2223 if (!hcd->driver->bus_suspend) {
2224 status = -ENOENT;
2225 } else {
2226 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2227 hcd->state = HC_STATE_QUIESCING;
2228 status = hcd->driver->bus_suspend(hcd);
2229 }
2230 if (status == 0) {
2231 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2232 hcd->state = HC_STATE_SUSPENDED;
2233
2234 /* Did we race with a root-hub wakeup event? */
2235 if (rhdev->do_remote_wakeup) {
2236 char buffer[6];
2237
2238 status = hcd->driver->hub_status_data(hcd, buffer);
2239 if (status != 0) {
2240 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2241 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2242 status = -EBUSY;
2243 }
2244 }
2245 } else {
2246 spin_lock_irq(&hcd_root_hub_lock);
2247 if (!HCD_DEAD(hcd)) {
2248 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2249 hcd->state = old_state;
2250 }
2251 spin_unlock_irq(&hcd_root_hub_lock);
2252 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2253 "suspend", status);
2254 }
2255 return status;
2256 }
2257
2258 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2259 {
2260 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2261 int status;
2262 int old_state = hcd->state;
2263
2264 dev_dbg(&rhdev->dev, "usb %sresume\n",
2265 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2266 if (HCD_DEAD(hcd)) {
2267 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2268 return 0;
2269 }
2270 if (!hcd->driver->bus_resume)
2271 return -ENOENT;
2272 if (HCD_RH_RUNNING(hcd))
2273 return 0;
2274
2275 hcd->state = HC_STATE_RESUMING;
2276 status = hcd->driver->bus_resume(hcd);
2277 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2278 if (status == 0) {
2279 struct usb_device *udev;
2280 int port1;
2281
2282 spin_lock_irq(&hcd_root_hub_lock);
2283 if (!HCD_DEAD(hcd)) {
2284 usb_set_device_state(rhdev, rhdev->actconfig
2285 ? USB_STATE_CONFIGURED
2286 : USB_STATE_ADDRESS);
2287 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2288 hcd->state = HC_STATE_RUNNING;
2289 }
2290 spin_unlock_irq(&hcd_root_hub_lock);
2291
2292 /*
2293 * Check whether any of the enabled ports on the root hub are
2294 * unsuspended. If they are then a TRSMRCY delay is needed
2295 * (this is what the USB-2 spec calls a "global resume").
2296 * Otherwise we can skip the delay.
2297 */
2298 usb_hub_for_each_child(rhdev, port1, udev) {
2299 if (udev->state != USB_STATE_NOTATTACHED &&
2300 !udev->port_is_suspended) {
2301 usleep_range(10000, 11000); /* TRSMRCY */
2302 break;
2303 }
2304 }
2305 } else {
2306 hcd->state = old_state;
2307 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2308 "resume", status);
2309 if (status != -ESHUTDOWN)
2310 usb_hc_died(hcd);
2311 }
2312 return status;
2313 }
2314
2315 /* Workqueue routine for root-hub remote wakeup */
2316 static void hcd_resume_work(struct work_struct *work)
2317 {
2318 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2319 struct usb_device *udev = hcd->self.root_hub;
2320
2321 usb_remote_wakeup(udev);
2322 }
2323
2324 /**
2325 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2326 * @hcd: host controller for this root hub
2327 *
2328 * The USB host controller calls this function when its root hub is
2329 * suspended (with the remote wakeup feature enabled) and a remote
2330 * wakeup request is received. The routine submits a workqueue request
2331 * to resume the root hub (that is, manage its downstream ports again).
2332 */
2333 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2334 {
2335 unsigned long flags;
2336
2337 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2338 if (hcd->rh_registered) {
2339 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2340 queue_work(pm_wq, &hcd->wakeup_work);
2341 }
2342 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2343 }
2344 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2345
2346 #endif /* CONFIG_PM */
2347
2348 /*-------------------------------------------------------------------------*/
2349
2350 #ifdef CONFIG_USB_OTG
2351
2352 /**
2353 * usb_bus_start_enum - start immediate enumeration (for OTG)
2354 * @bus: the bus (must use hcd framework)
2355 * @port_num: 1-based number of port; usually bus->otg_port
2356 * Context: in_interrupt()
2357 *
2358 * Starts enumeration, with an immediate reset followed later by
2359 * hub_wq identifying and possibly configuring the device.
2360 * This is needed by OTG controller drivers, where it helps meet
2361 * HNP protocol timing requirements for starting a port reset.
2362 *
2363 * Return: 0 if successful.
2364 */
2365 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2366 {
2367 struct usb_hcd *hcd;
2368 int status = -EOPNOTSUPP;
2369
2370 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2371 * boards with root hubs hooked up to internal devices (instead of
2372 * just the OTG port) may need more attention to resetting...
2373 */
2374 hcd = container_of (bus, struct usb_hcd, self);
2375 if (port_num && hcd->driver->start_port_reset)
2376 status = hcd->driver->start_port_reset(hcd, port_num);
2377
2378 /* allocate hub_wq shortly after (first) root port reset finishes;
2379 * it may issue others, until at least 50 msecs have passed.
2380 */
2381 if (status == 0)
2382 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2383 return status;
2384 }
2385 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2386
2387 #endif
2388
2389 /*-------------------------------------------------------------------------*/
2390
2391 /**
2392 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2393 * @irq: the IRQ being raised
2394 * @__hcd: pointer to the HCD whose IRQ is being signaled
2395 *
2396 * If the controller isn't HALTed, calls the driver's irq handler.
2397 * Checks whether the controller is now dead.
2398 *
2399 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2400 */
2401 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2402 {
2403 struct usb_hcd *hcd = __hcd;
2404 irqreturn_t rc;
2405
2406 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2407 rc = IRQ_NONE;
2408 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2409 rc = IRQ_NONE;
2410 else
2411 rc = IRQ_HANDLED;
2412
2413 return rc;
2414 }
2415 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2416
2417 /*-------------------------------------------------------------------------*/
2418
2419 /**
2420 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2421 * @hcd: pointer to the HCD representing the controller
2422 *
2423 * This is called by bus glue to report a USB host controller that died
2424 * while operations may still have been pending. It's called automatically
2425 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2426 *
2427 * Only call this function with the primary HCD.
2428 */
2429 void usb_hc_died (struct usb_hcd *hcd)
2430 {
2431 unsigned long flags;
2432
2433 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2434
2435 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2436 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2437 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2438 if (hcd->rh_registered) {
2439 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2440
2441 /* make hub_wq clean up old urbs and devices */
2442 usb_set_device_state (hcd->self.root_hub,
2443 USB_STATE_NOTATTACHED);
2444 usb_kick_hub_wq(hcd->self.root_hub);
2445 }
2446 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2447 hcd = hcd->shared_hcd;
2448 if (hcd->rh_registered) {
2449 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2450
2451 /* make hub_wq clean up old urbs and devices */
2452 usb_set_device_state(hcd->self.root_hub,
2453 USB_STATE_NOTATTACHED);
2454 usb_kick_hub_wq(hcd->self.root_hub);
2455 }
2456 }
2457 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2458 /* Make sure that the other roothub is also deallocated. */
2459 }
2460 EXPORT_SYMBOL_GPL (usb_hc_died);
2461
2462 /*-------------------------------------------------------------------------*/
2463
2464 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2465 {
2466
2467 spin_lock_init(&bh->lock);
2468 INIT_LIST_HEAD(&bh->head);
2469 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2470 }
2471
2472 /**
2473 * usb_create_shared_hcd - create and initialize an HCD structure
2474 * @driver: HC driver that will use this hcd
2475 * @dev: device for this HC, stored in hcd->self.controller
2476 * @bus_name: value to store in hcd->self.bus_name
2477 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2478 * PCI device. Only allocate certain resources for the primary HCD
2479 * Context: !in_interrupt()
2480 *
2481 * Allocate a struct usb_hcd, with extra space at the end for the
2482 * HC driver's private data. Initialize the generic members of the
2483 * hcd structure.
2484 *
2485 * Return: On success, a pointer to the created and initialized HCD structure.
2486 * On failure (e.g. if memory is unavailable), %NULL.
2487 */
2488 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2489 struct device *dev, const char *bus_name,
2490 struct usb_hcd *primary_hcd)
2491 {
2492 struct usb_hcd *hcd;
2493
2494 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2495 if (!hcd) {
2496 dev_dbg (dev, "hcd alloc failed\n");
2497 return NULL;
2498 }
2499 if (primary_hcd == NULL) {
2500 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2501 GFP_KERNEL);
2502 if (!hcd->bandwidth_mutex) {
2503 kfree(hcd);
2504 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2505 return NULL;
2506 }
2507 mutex_init(hcd->bandwidth_mutex);
2508 dev_set_drvdata(dev, hcd);
2509 } else {
2510 mutex_lock(&usb_port_peer_mutex);
2511 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2512 hcd->primary_hcd = primary_hcd;
2513 primary_hcd->primary_hcd = primary_hcd;
2514 hcd->shared_hcd = primary_hcd;
2515 primary_hcd->shared_hcd = hcd;
2516 mutex_unlock(&usb_port_peer_mutex);
2517 }
2518
2519 kref_init(&hcd->kref);
2520
2521 usb_bus_init(&hcd->self);
2522 hcd->self.controller = dev;
2523 hcd->self.bus_name = bus_name;
2524 hcd->self.uses_dma = (dev->dma_mask != NULL);
2525
2526 init_timer(&hcd->rh_timer);
2527 hcd->rh_timer.function = rh_timer_func;
2528 hcd->rh_timer.data = (unsigned long) hcd;
2529 #ifdef CONFIG_PM
2530 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2531 #endif
2532
2533 hcd->driver = driver;
2534 hcd->speed = driver->flags & HCD_MASK;
2535 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2536 "USB Host Controller";
2537 return hcd;
2538 }
2539 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2540
2541 /**
2542 * usb_create_hcd - create and initialize an HCD structure
2543 * @driver: HC driver that will use this hcd
2544 * @dev: device for this HC, stored in hcd->self.controller
2545 * @bus_name: value to store in hcd->self.bus_name
2546 * Context: !in_interrupt()
2547 *
2548 * Allocate a struct usb_hcd, with extra space at the end for the
2549 * HC driver's private data. Initialize the generic members of the
2550 * hcd structure.
2551 *
2552 * Return: On success, a pointer to the created and initialized HCD
2553 * structure. On failure (e.g. if memory is unavailable), %NULL.
2554 */
2555 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2556 struct device *dev, const char *bus_name)
2557 {
2558 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2559 }
2560 EXPORT_SYMBOL_GPL(usb_create_hcd);
2561
2562 /*
2563 * Roothubs that share one PCI device must also share the bandwidth mutex.
2564 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2565 * deallocated.
2566 *
2567 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2568 * freed. When hcd_release() is called for either hcd in a peer set
2569 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2570 * block new peering attempts
2571 */
2572 static void hcd_release(struct kref *kref)
2573 {
2574 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2575
2576 mutex_lock(&usb_port_peer_mutex);
2577 if (usb_hcd_is_primary_hcd(hcd))
2578 kfree(hcd->bandwidth_mutex);
2579 if (hcd->shared_hcd) {
2580 struct usb_hcd *peer = hcd->shared_hcd;
2581
2582 peer->shared_hcd = NULL;
2583 if (peer->primary_hcd == hcd)
2584 peer->primary_hcd = NULL;
2585 }
2586 mutex_unlock(&usb_port_peer_mutex);
2587 kfree(hcd);
2588 }
2589
2590 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2591 {
2592 if (hcd)
2593 kref_get (&hcd->kref);
2594 return hcd;
2595 }
2596 EXPORT_SYMBOL_GPL(usb_get_hcd);
2597
2598 void usb_put_hcd (struct usb_hcd *hcd)
2599 {
2600 if (hcd)
2601 kref_put (&hcd->kref, hcd_release);
2602 }
2603 EXPORT_SYMBOL_GPL(usb_put_hcd);
2604
2605 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2606 {
2607 if (!hcd->primary_hcd)
2608 return 1;
2609 return hcd == hcd->primary_hcd;
2610 }
2611 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2612
2613 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2614 {
2615 if (!hcd->driver->find_raw_port_number)
2616 return port1;
2617
2618 return hcd->driver->find_raw_port_number(hcd, port1);
2619 }
2620
2621 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2622 unsigned int irqnum, unsigned long irqflags)
2623 {
2624 int retval;
2625
2626 if (hcd->driver->irq) {
2627
2628 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2629 hcd->driver->description, hcd->self.busnum);
2630 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2631 hcd->irq_descr, hcd);
2632 if (retval != 0) {
2633 dev_err(hcd->self.controller,
2634 "request interrupt %d failed\n",
2635 irqnum);
2636 return retval;
2637 }
2638 hcd->irq = irqnum;
2639 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2640 (hcd->driver->flags & HCD_MEMORY) ?
2641 "io mem" : "io base",
2642 (unsigned long long)hcd->rsrc_start);
2643 } else {
2644 hcd->irq = 0;
2645 if (hcd->rsrc_start)
2646 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2647 (hcd->driver->flags & HCD_MEMORY) ?
2648 "io mem" : "io base",
2649 (unsigned long long)hcd->rsrc_start);
2650 }
2651 return 0;
2652 }
2653
2654 /*
2655 * Before we free this root hub, flush in-flight peering attempts
2656 * and disable peer lookups
2657 */
2658 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2659 {
2660 struct usb_device *rhdev;
2661
2662 mutex_lock(&usb_port_peer_mutex);
2663 rhdev = hcd->self.root_hub;
2664 hcd->self.root_hub = NULL;
2665 mutex_unlock(&usb_port_peer_mutex);
2666 usb_put_dev(rhdev);
2667 }
2668
2669 /**
2670 * usb_add_hcd - finish generic HCD structure initialization and register
2671 * @hcd: the usb_hcd structure to initialize
2672 * @irqnum: Interrupt line to allocate
2673 * @irqflags: Interrupt type flags
2674 *
2675 * Finish the remaining parts of generic HCD initialization: allocate the
2676 * buffers of consistent memory, register the bus, request the IRQ line,
2677 * and call the driver's reset() and start() routines.
2678 */
2679 int usb_add_hcd(struct usb_hcd *hcd,
2680 unsigned int irqnum, unsigned long irqflags)
2681 {
2682 int retval;
2683 struct usb_device *rhdev;
2684
2685 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2686 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2687
2688 if (IS_ERR(phy)) {
2689 retval = PTR_ERR(phy);
2690 if (retval == -EPROBE_DEFER)
2691 return retval;
2692 } else {
2693 retval = usb_phy_init(phy);
2694 if (retval) {
2695 usb_put_phy(phy);
2696 return retval;
2697 }
2698 hcd->usb_phy = phy;
2699 hcd->remove_phy = 1;
2700 }
2701 }
2702
2703 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2704 struct phy *phy = phy_get(hcd->self.controller, "usb");
2705
2706 if (IS_ERR(phy)) {
2707 retval = PTR_ERR(phy);
2708 if (retval == -EPROBE_DEFER)
2709 goto err_phy;
2710 } else {
2711 retval = phy_init(phy);
2712 if (retval) {
2713 phy_put(phy);
2714 goto err_phy;
2715 }
2716 retval = phy_power_on(phy);
2717 if (retval) {
2718 phy_exit(phy);
2719 phy_put(phy);
2720 goto err_phy;
2721 }
2722 hcd->phy = phy;
2723 hcd->remove_phy = 1;
2724 }
2725 }
2726
2727 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2728
2729 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2730 if (authorized_default < 0 || authorized_default > 1) {
2731 if (hcd->wireless)
2732 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2733 else
2734 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2735 } else {
2736 if (authorized_default)
2737 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2738 else
2739 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2740 }
2741 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2742
2743 /* per default all interfaces are authorized */
2744 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2745
2746 /* HC is in reset state, but accessible. Now do the one-time init,
2747 * bottom up so that hcds can customize the root hubs before hub_wq
2748 * starts talking to them. (Note, bus id is assigned early too.)
2749 */
2750 retval = hcd_buffer_create(hcd);
2751 if (retval != 0) {
2752 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2753 goto err_create_buf;
2754 }
2755
2756 retval = usb_register_bus(&hcd->self);
2757 if (retval < 0)
2758 goto err_register_bus;
2759
2760 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2761 if (rhdev == NULL) {
2762 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2763 retval = -ENOMEM;
2764 goto err_allocate_root_hub;
2765 }
2766 mutex_lock(&usb_port_peer_mutex);
2767 hcd->self.root_hub = rhdev;
2768 mutex_unlock(&usb_port_peer_mutex);
2769
2770 switch (hcd->speed) {
2771 case HCD_USB11:
2772 rhdev->speed = USB_SPEED_FULL;
2773 break;
2774 case HCD_USB2:
2775 rhdev->speed = USB_SPEED_HIGH;
2776 break;
2777 case HCD_USB25:
2778 rhdev->speed = USB_SPEED_WIRELESS;
2779 break;
2780 case HCD_USB3:
2781 case HCD_USB31:
2782 rhdev->speed = USB_SPEED_SUPER;
2783 break;
2784 default:
2785 retval = -EINVAL;
2786 goto err_set_rh_speed;
2787 }
2788
2789 /* wakeup flag init defaults to "everything works" for root hubs,
2790 * but drivers can override it in reset() if needed, along with
2791 * recording the overall controller's system wakeup capability.
2792 */
2793 device_set_wakeup_capable(&rhdev->dev, 1);
2794
2795 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2796 * registered. But since the controller can die at any time,
2797 * let's initialize the flag before touching the hardware.
2798 */
2799 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2800
2801 /* "reset" is misnamed; its role is now one-time init. the controller
2802 * should already have been reset (and boot firmware kicked off etc).
2803 */
2804 if (hcd->driver->reset) {
2805 retval = hcd->driver->reset(hcd);
2806 if (retval < 0) {
2807 dev_err(hcd->self.controller, "can't setup: %d\n",
2808 retval);
2809 goto err_hcd_driver_setup;
2810 }
2811 }
2812 hcd->rh_pollable = 1;
2813
2814 /* NOTE: root hub and controller capabilities may not be the same */
2815 if (device_can_wakeup(hcd->self.controller)
2816 && device_can_wakeup(&hcd->self.root_hub->dev))
2817 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2818
2819 /* initialize tasklets */
2820 init_giveback_urb_bh(&hcd->high_prio_bh);
2821 init_giveback_urb_bh(&hcd->low_prio_bh);
2822
2823 /* enable irqs just before we start the controller,
2824 * if the BIOS provides legacy PCI irqs.
2825 */
2826 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2827 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2828 if (retval)
2829 goto err_request_irq;
2830 }
2831
2832 hcd->state = HC_STATE_RUNNING;
2833 retval = hcd->driver->start(hcd);
2834 if (retval < 0) {
2835 dev_err(hcd->self.controller, "startup error %d\n", retval);
2836 goto err_hcd_driver_start;
2837 }
2838
2839 /* starting here, usbcore will pay attention to this root hub */
2840 retval = register_root_hub(hcd);
2841 if (retval != 0)
2842 goto err_register_root_hub;
2843
2844 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2845 if (retval < 0) {
2846 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2847 retval);
2848 goto error_create_attr_group;
2849 }
2850 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2851 usb_hcd_poll_rh_status(hcd);
2852
2853 return retval;
2854
2855 error_create_attr_group:
2856 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2857 if (HC_IS_RUNNING(hcd->state))
2858 hcd->state = HC_STATE_QUIESCING;
2859 spin_lock_irq(&hcd_root_hub_lock);
2860 hcd->rh_registered = 0;
2861 spin_unlock_irq(&hcd_root_hub_lock);
2862
2863 #ifdef CONFIG_PM
2864 cancel_work_sync(&hcd->wakeup_work);
2865 #endif
2866 mutex_lock(&usb_bus_list_lock);
2867 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2868 mutex_unlock(&usb_bus_list_lock);
2869 err_register_root_hub:
2870 hcd->rh_pollable = 0;
2871 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2872 del_timer_sync(&hcd->rh_timer);
2873 hcd->driver->stop(hcd);
2874 hcd->state = HC_STATE_HALT;
2875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2876 del_timer_sync(&hcd->rh_timer);
2877 err_hcd_driver_start:
2878 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2879 free_irq(irqnum, hcd);
2880 err_request_irq:
2881 err_hcd_driver_setup:
2882 err_set_rh_speed:
2883 usb_put_invalidate_rhdev(hcd);
2884 err_allocate_root_hub:
2885 usb_deregister_bus(&hcd->self);
2886 err_register_bus:
2887 hcd_buffer_destroy(hcd);
2888 err_create_buf:
2889 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2890 phy_power_off(hcd->phy);
2891 phy_exit(hcd->phy);
2892 phy_put(hcd->phy);
2893 hcd->phy = NULL;
2894 }
2895 err_phy:
2896 if (hcd->remove_phy && hcd->usb_phy) {
2897 usb_phy_shutdown(hcd->usb_phy);
2898 usb_put_phy(hcd->usb_phy);
2899 hcd->usb_phy = NULL;
2900 }
2901 return retval;
2902 }
2903 EXPORT_SYMBOL_GPL(usb_add_hcd);
2904
2905 /**
2906 * usb_remove_hcd - shutdown processing for generic HCDs
2907 * @hcd: the usb_hcd structure to remove
2908 * Context: !in_interrupt()
2909 *
2910 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2911 * invoking the HCD's stop() method.
2912 */
2913 void usb_remove_hcd(struct usb_hcd *hcd)
2914 {
2915 struct usb_device *rhdev = hcd->self.root_hub;
2916
2917 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2918
2919 usb_get_dev(rhdev);
2920 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2921
2922 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2923 if (HC_IS_RUNNING (hcd->state))
2924 hcd->state = HC_STATE_QUIESCING;
2925
2926 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2927 spin_lock_irq (&hcd_root_hub_lock);
2928 hcd->rh_registered = 0;
2929 spin_unlock_irq (&hcd_root_hub_lock);
2930
2931 #ifdef CONFIG_PM
2932 cancel_work_sync(&hcd->wakeup_work);
2933 #endif
2934
2935 mutex_lock(&usb_bus_list_lock);
2936 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2937 mutex_unlock(&usb_bus_list_lock);
2938
2939 /*
2940 * tasklet_kill() isn't needed here because:
2941 * - driver's disconnect() called from usb_disconnect() should
2942 * make sure its URBs are completed during the disconnect()
2943 * callback
2944 *
2945 * - it is too late to run complete() here since driver may have
2946 * been removed already now
2947 */
2948
2949 /* Prevent any more root-hub status calls from the timer.
2950 * The HCD might still restart the timer (if a port status change
2951 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2952 * the hub_status_data() callback.
2953 */
2954 hcd->rh_pollable = 0;
2955 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2956 del_timer_sync(&hcd->rh_timer);
2957
2958 hcd->driver->stop(hcd);
2959 hcd->state = HC_STATE_HALT;
2960
2961 /* In case the HCD restarted the timer, stop it again. */
2962 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2963 del_timer_sync(&hcd->rh_timer);
2964
2965 if (usb_hcd_is_primary_hcd(hcd)) {
2966 if (hcd->irq > 0)
2967 free_irq(hcd->irq, hcd);
2968 }
2969
2970 usb_deregister_bus(&hcd->self);
2971 hcd_buffer_destroy(hcd);
2972
2973 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2974 phy_power_off(hcd->phy);
2975 phy_exit(hcd->phy);
2976 phy_put(hcd->phy);
2977 hcd->phy = NULL;
2978 }
2979 if (hcd->remove_phy && hcd->usb_phy) {
2980 usb_phy_shutdown(hcd->usb_phy);
2981 usb_put_phy(hcd->usb_phy);
2982 hcd->usb_phy = NULL;
2983 }
2984
2985 usb_put_invalidate_rhdev(hcd);
2986 }
2987 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2988
2989 void
2990 usb_hcd_platform_shutdown(struct platform_device *dev)
2991 {
2992 struct usb_hcd *hcd = platform_get_drvdata(dev);
2993
2994 if (hcd->driver->shutdown)
2995 hcd->driver->shutdown(hcd);
2996 }
2997 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2998
2999 /*-------------------------------------------------------------------------*/
3000
3001 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3002
3003 const struct usb_mon_operations *mon_ops;
3004
3005 /*
3006 * The registration is unlocked.
3007 * We do it this way because we do not want to lock in hot paths.
3008 *
3009 * Notice that the code is minimally error-proof. Because usbmon needs
3010 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3011 */
3012
3013 int usb_mon_register(const struct usb_mon_operations *ops)
3014 {
3015
3016 if (mon_ops)
3017 return -EBUSY;
3018
3019 mon_ops = ops;
3020 mb();
3021 return 0;
3022 }
3023 EXPORT_SYMBOL_GPL (usb_mon_register);
3024
3025 void usb_mon_deregister (void)
3026 {
3027
3028 if (mon_ops == NULL) {
3029 printk(KERN_ERR "USB: monitor was not registered\n");
3030 return;
3031 }
3032 mon_ops = NULL;
3033 mb();
3034 }
3035 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3036
3037 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.097989 seconds and 5 git commands to generate.