Merge branch 'acpi-lpss'
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46
47 #include "usb.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53 * USB Host Controller Driver framework
54 *
55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56 * HCD-specific behaviors/bugs.
57 *
58 * This does error checks, tracks devices and urbs, and delegates to a
59 * "hc_driver" only for code (and data) that really needs to know about
60 * hardware differences. That includes root hub registers, i/o queues,
61 * and so on ... but as little else as possible.
62 *
63 * Shared code includes most of the "root hub" code (these are emulated,
64 * though each HC's hardware works differently) and PCI glue, plus request
65 * tracking overhead. The HCD code should only block on spinlocks or on
66 * hardware handshaking; blocking on software events (such as other kernel
67 * threads releasing resources, or completing actions) is all generic.
68 *
69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71 * only by the hub driver ... and that neither should be seen or used by
72 * usb client device drivers.
73 *
74 * Contributors of ideas or unattributed patches include: David Brownell,
75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 *
77 * HISTORY:
78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
79 * associated cleanup. "usb_hcd" still != "usb_bus".
80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
81 */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS 64
95 struct usb_busmap {
96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 2.0 root hub device descriptor */
153 static const u8 usb2_rh_dev_descriptor [18] = {
154 0x12, /* __u8 bLength; */
155 0x01, /* __u8 bDescriptorType; Device */
156 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174
175 /* usb 1.1 root hub device descriptor */
176 static const u8 usb11_rh_dev_descriptor [18] = {
177 0x12, /* __u8 bLength; */
178 0x01, /* __u8 bDescriptorType; Device */
179 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
180
181 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
182 0x00, /* __u8 bDeviceSubClass; */
183 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
184 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
185
186 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
187 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
188 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
189
190 0x03, /* __u8 iManufacturer; */
191 0x02, /* __u8 iProduct; */
192 0x01, /* __u8 iSerialNumber; */
193 0x01 /* __u8 bNumConfigurations; */
194 };
195
196
197 /*-------------------------------------------------------------------------*/
198
199 /* Configuration descriptors for our root hubs */
200
201 static const u8 fs_rh_config_descriptor [] = {
202
203 /* one configuration */
204 0x09, /* __u8 bLength; */
205 0x02, /* __u8 bDescriptorType; Configuration */
206 0x19, 0x00, /* __le16 wTotalLength; */
207 0x01, /* __u8 bNumInterfaces; (1) */
208 0x01, /* __u8 bConfigurationValue; */
209 0x00, /* __u8 iConfiguration; */
210 0xc0, /* __u8 bmAttributes;
211 Bit 7: must be set,
212 6: Self-powered,
213 5: Remote wakeup,
214 4..0: resvd */
215 0x00, /* __u8 MaxPower; */
216
217 /* USB 1.1:
218 * USB 2.0, single TT organization (mandatory):
219 * one interface, protocol 0
220 *
221 * USB 2.0, multiple TT organization (optional):
222 * two interfaces, protocols 1 (like single TT)
223 * and 2 (multiple TT mode) ... config is
224 * sometimes settable
225 * NOT IMPLEMENTED
226 */
227
228 /* one interface */
229 0x09, /* __u8 if_bLength; */
230 0x04, /* __u8 if_bDescriptorType; Interface */
231 0x00, /* __u8 if_bInterfaceNumber; */
232 0x00, /* __u8 if_bAlternateSetting; */
233 0x01, /* __u8 if_bNumEndpoints; */
234 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
235 0x00, /* __u8 if_bInterfaceSubClass; */
236 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
237 0x00, /* __u8 if_iInterface; */
238
239 /* one endpoint (status change endpoint) */
240 0x07, /* __u8 ep_bLength; */
241 0x05, /* __u8 ep_bDescriptorType; Endpoint */
242 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
243 0x03, /* __u8 ep_bmAttributes; Interrupt */
244 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
246 };
247
248 static const u8 hs_rh_config_descriptor [] = {
249
250 /* one configuration */
251 0x09, /* __u8 bLength; */
252 0x02, /* __u8 bDescriptorType; Configuration */
253 0x19, 0x00, /* __le16 wTotalLength; */
254 0x01, /* __u8 bNumInterfaces; (1) */
255 0x01, /* __u8 bConfigurationValue; */
256 0x00, /* __u8 iConfiguration; */
257 0xc0, /* __u8 bmAttributes;
258 Bit 7: must be set,
259 6: Self-powered,
260 5: Remote wakeup,
261 4..0: resvd */
262 0x00, /* __u8 MaxPower; */
263
264 /* USB 1.1:
265 * USB 2.0, single TT organization (mandatory):
266 * one interface, protocol 0
267 *
268 * USB 2.0, multiple TT organization (optional):
269 * two interfaces, protocols 1 (like single TT)
270 * and 2 (multiple TT mode) ... config is
271 * sometimes settable
272 * NOT IMPLEMENTED
273 */
274
275 /* one interface */
276 0x09, /* __u8 if_bLength; */
277 0x04, /* __u8 if_bDescriptorType; Interface */
278 0x00, /* __u8 if_bInterfaceNumber; */
279 0x00, /* __u8 if_bAlternateSetting; */
280 0x01, /* __u8 if_bNumEndpoints; */
281 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
282 0x00, /* __u8 if_bInterfaceSubClass; */
283 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
284 0x00, /* __u8 if_iInterface; */
285
286 /* one endpoint (status change endpoint) */
287 0x07, /* __u8 ep_bLength; */
288 0x05, /* __u8 ep_bDescriptorType; Endpoint */
289 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
290 0x03, /* __u8 ep_bmAttributes; Interrupt */
291 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292 * see hub.c:hub_configure() for details. */
293 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
294 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
295 };
296
297 static const u8 ss_rh_config_descriptor[] = {
298 /* one configuration */
299 0x09, /* __u8 bLength; */
300 0x02, /* __u8 bDescriptorType; Configuration */
301 0x1f, 0x00, /* __le16 wTotalLength; */
302 0x01, /* __u8 bNumInterfaces; (1) */
303 0x01, /* __u8 bConfigurationValue; */
304 0x00, /* __u8 iConfiguration; */
305 0xc0, /* __u8 bmAttributes;
306 Bit 7: must be set,
307 6: Self-powered,
308 5: Remote wakeup,
309 4..0: resvd */
310 0x00, /* __u8 MaxPower; */
311
312 /* one interface */
313 0x09, /* __u8 if_bLength; */
314 0x04, /* __u8 if_bDescriptorType; Interface */
315 0x00, /* __u8 if_bInterfaceNumber; */
316 0x00, /* __u8 if_bAlternateSetting; */
317 0x01, /* __u8 if_bNumEndpoints; */
318 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
319 0x00, /* __u8 if_bInterfaceSubClass; */
320 0x00, /* __u8 if_bInterfaceProtocol; */
321 0x00, /* __u8 if_iInterface; */
322
323 /* one endpoint (status change endpoint) */
324 0x07, /* __u8 ep_bLength; */
325 0x05, /* __u8 ep_bDescriptorType; Endpoint */
326 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
327 0x03, /* __u8 ep_bmAttributes; Interrupt */
328 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329 * see hub.c:hub_configure() for details. */
330 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
331 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
332
333 /* one SuperSpeed endpoint companion descriptor */
334 0x06, /* __u8 ss_bLength */
335 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
336 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
337 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
338 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
339 };
340
341 /* authorized_default behaviour:
342 * -1 is authorized for all devices except wireless (old behaviour)
343 * 0 is unauthorized for all devices
344 * 1 is authorized for all devices
345 */
346 static int authorized_default = -1;
347 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
348 MODULE_PARM_DESC(authorized_default,
349 "Default USB device authorization: 0 is not authorized, 1 is "
350 "authorized, -1 is authorized except for wireless USB (default, "
351 "old behaviour");
352 /*-------------------------------------------------------------------------*/
353
354 /**
355 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
356 * @s: Null-terminated ASCII (actually ISO-8859-1) string
357 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
358 * @len: Length (in bytes; may be odd) of descriptor buffer.
359 *
360 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
361 * buflen, whichever is less.
362 *
363 * USB String descriptors can contain at most 126 characters; input
364 * strings longer than that are truncated.
365 */
366 static unsigned
367 ascii2desc(char const *s, u8 *buf, unsigned len)
368 {
369 unsigned n, t = 2 + 2*strlen(s);
370
371 if (t > 254)
372 t = 254; /* Longest possible UTF string descriptor */
373 if (len > t)
374 len = t;
375
376 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
377
378 n = len;
379 while (n--) {
380 *buf++ = t;
381 if (!n--)
382 break;
383 *buf++ = t >> 8;
384 t = (unsigned char)*s++;
385 }
386 return len;
387 }
388
389 /**
390 * rh_string() - provides string descriptors for root hub
391 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
392 * @hcd: the host controller for this root hub
393 * @data: buffer for output packet
394 * @len: length of the provided buffer
395 *
396 * Produces either a manufacturer, product or serial number string for the
397 * virtual root hub device.
398 * Returns the number of bytes filled in: the length of the descriptor or
399 * of the provided buffer, whichever is less.
400 */
401 static unsigned
402 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
403 {
404 char buf[100];
405 char const *s;
406 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
407
408 // language ids
409 switch (id) {
410 case 0:
411 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
412 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
413 if (len > 4)
414 len = 4;
415 memcpy(data, langids, len);
416 return len;
417 case 1:
418 /* Serial number */
419 s = hcd->self.bus_name;
420 break;
421 case 2:
422 /* Product name */
423 s = hcd->product_desc;
424 break;
425 case 3:
426 /* Manufacturer */
427 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
428 init_utsname()->release, hcd->driver->description);
429 s = buf;
430 break;
431 default:
432 /* Can't happen; caller guarantees it */
433 return 0;
434 }
435
436 return ascii2desc(s, data, len);
437 }
438
439
440 /* Root hub control transfers execute synchronously */
441 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
442 {
443 struct usb_ctrlrequest *cmd;
444 u16 typeReq, wValue, wIndex, wLength;
445 u8 *ubuf = urb->transfer_buffer;
446 /*
447 * tbuf should be as big as the BOS descriptor and
448 * the USB hub descriptor.
449 */
450 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
451 __attribute__((aligned(4)));
452 const u8 *bufp = tbuf;
453 unsigned len = 0;
454 int status;
455 u8 patch_wakeup = 0;
456 u8 patch_protocol = 0;
457
458 might_sleep();
459
460 spin_lock_irq(&hcd_root_hub_lock);
461 status = usb_hcd_link_urb_to_ep(hcd, urb);
462 spin_unlock_irq(&hcd_root_hub_lock);
463 if (status)
464 return status;
465 urb->hcpriv = hcd; /* Indicate it's queued */
466
467 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
468 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
469 wValue = le16_to_cpu (cmd->wValue);
470 wIndex = le16_to_cpu (cmd->wIndex);
471 wLength = le16_to_cpu (cmd->wLength);
472
473 if (wLength > urb->transfer_buffer_length)
474 goto error;
475
476 urb->actual_length = 0;
477 switch (typeReq) {
478
479 /* DEVICE REQUESTS */
480
481 /* The root hub's remote wakeup enable bit is implemented using
482 * driver model wakeup flags. If this system supports wakeup
483 * through USB, userspace may change the default "allow wakeup"
484 * policy through sysfs or these calls.
485 *
486 * Most root hubs support wakeup from downstream devices, for
487 * runtime power management (disabling USB clocks and reducing
488 * VBUS power usage). However, not all of them do so; silicon,
489 * board, and BIOS bugs here are not uncommon, so these can't
490 * be treated quite like external hubs.
491 *
492 * Likewise, not all root hubs will pass wakeup events upstream,
493 * to wake up the whole system. So don't assume root hub and
494 * controller capabilities are identical.
495 */
496
497 case DeviceRequest | USB_REQ_GET_STATUS:
498 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
499 << USB_DEVICE_REMOTE_WAKEUP)
500 | (1 << USB_DEVICE_SELF_POWERED);
501 tbuf [1] = 0;
502 len = 2;
503 break;
504 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
505 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
506 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
507 else
508 goto error;
509 break;
510 case DeviceOutRequest | USB_REQ_SET_FEATURE:
511 if (device_can_wakeup(&hcd->self.root_hub->dev)
512 && wValue == USB_DEVICE_REMOTE_WAKEUP)
513 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
514 else
515 goto error;
516 break;
517 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
518 tbuf [0] = 1;
519 len = 1;
520 /* FALLTHROUGH */
521 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
522 break;
523 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
524 switch (wValue & 0xff00) {
525 case USB_DT_DEVICE << 8:
526 switch (hcd->speed) {
527 case HCD_USB3:
528 bufp = usb3_rh_dev_descriptor;
529 break;
530 case HCD_USB2:
531 bufp = usb2_rh_dev_descriptor;
532 break;
533 case HCD_USB11:
534 bufp = usb11_rh_dev_descriptor;
535 break;
536 default:
537 goto error;
538 }
539 len = 18;
540 if (hcd->has_tt)
541 patch_protocol = 1;
542 break;
543 case USB_DT_CONFIG << 8:
544 switch (hcd->speed) {
545 case HCD_USB3:
546 bufp = ss_rh_config_descriptor;
547 len = sizeof ss_rh_config_descriptor;
548 break;
549 case HCD_USB2:
550 bufp = hs_rh_config_descriptor;
551 len = sizeof hs_rh_config_descriptor;
552 break;
553 case HCD_USB11:
554 bufp = fs_rh_config_descriptor;
555 len = sizeof fs_rh_config_descriptor;
556 break;
557 default:
558 goto error;
559 }
560 if (device_can_wakeup(&hcd->self.root_hub->dev))
561 patch_wakeup = 1;
562 break;
563 case USB_DT_STRING << 8:
564 if ((wValue & 0xff) < 4)
565 urb->actual_length = rh_string(wValue & 0xff,
566 hcd, ubuf, wLength);
567 else /* unsupported IDs --> "protocol stall" */
568 goto error;
569 break;
570 case USB_DT_BOS << 8:
571 goto nongeneric;
572 default:
573 goto error;
574 }
575 break;
576 case DeviceRequest | USB_REQ_GET_INTERFACE:
577 tbuf [0] = 0;
578 len = 1;
579 /* FALLTHROUGH */
580 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
581 break;
582 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
583 // wValue == urb->dev->devaddr
584 dev_dbg (hcd->self.controller, "root hub device address %d\n",
585 wValue);
586 break;
587
588 /* INTERFACE REQUESTS (no defined feature/status flags) */
589
590 /* ENDPOINT REQUESTS */
591
592 case EndpointRequest | USB_REQ_GET_STATUS:
593 // ENDPOINT_HALT flag
594 tbuf [0] = 0;
595 tbuf [1] = 0;
596 len = 2;
597 /* FALLTHROUGH */
598 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
599 case EndpointOutRequest | USB_REQ_SET_FEATURE:
600 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
601 break;
602
603 /* CLASS REQUESTS (and errors) */
604
605 default:
606 nongeneric:
607 /* non-generic request */
608 switch (typeReq) {
609 case GetHubStatus:
610 case GetPortStatus:
611 len = 4;
612 break;
613 case GetHubDescriptor:
614 len = sizeof (struct usb_hub_descriptor);
615 break;
616 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
617 /* len is returned by hub_control */
618 break;
619 }
620 status = hcd->driver->hub_control (hcd,
621 typeReq, wValue, wIndex,
622 tbuf, wLength);
623
624 if (typeReq == GetHubDescriptor)
625 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
626 (struct usb_hub_descriptor *)tbuf);
627 break;
628 error:
629 /* "protocol stall" on error */
630 status = -EPIPE;
631 }
632
633 if (status < 0) {
634 len = 0;
635 if (status != -EPIPE) {
636 dev_dbg (hcd->self.controller,
637 "CTRL: TypeReq=0x%x val=0x%x "
638 "idx=0x%x len=%d ==> %d\n",
639 typeReq, wValue, wIndex,
640 wLength, status);
641 }
642 } else if (status > 0) {
643 /* hub_control may return the length of data copied. */
644 len = status;
645 status = 0;
646 }
647 if (len) {
648 if (urb->transfer_buffer_length < len)
649 len = urb->transfer_buffer_length;
650 urb->actual_length = len;
651 // always USB_DIR_IN, toward host
652 memcpy (ubuf, bufp, len);
653
654 /* report whether RH hardware supports remote wakeup */
655 if (patch_wakeup &&
656 len > offsetof (struct usb_config_descriptor,
657 bmAttributes))
658 ((struct usb_config_descriptor *)ubuf)->bmAttributes
659 |= USB_CONFIG_ATT_WAKEUP;
660
661 /* report whether RH hardware has an integrated TT */
662 if (patch_protocol &&
663 len > offsetof(struct usb_device_descriptor,
664 bDeviceProtocol))
665 ((struct usb_device_descriptor *) ubuf)->
666 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
667 }
668
669 /* any errors get returned through the urb completion */
670 spin_lock_irq(&hcd_root_hub_lock);
671 usb_hcd_unlink_urb_from_ep(hcd, urb);
672
673 /* This peculiar use of spinlocks echoes what real HC drivers do.
674 * Avoiding calls to local_irq_disable/enable makes the code
675 * RT-friendly.
676 */
677 spin_unlock(&hcd_root_hub_lock);
678 usb_hcd_giveback_urb(hcd, urb, status);
679 spin_lock(&hcd_root_hub_lock);
680
681 spin_unlock_irq(&hcd_root_hub_lock);
682 return 0;
683 }
684
685 /*-------------------------------------------------------------------------*/
686
687 /*
688 * Root Hub interrupt transfers are polled using a timer if the
689 * driver requests it; otherwise the driver is responsible for
690 * calling usb_hcd_poll_rh_status() when an event occurs.
691 *
692 * Completions are called in_interrupt(), but they may or may not
693 * be in_irq().
694 */
695 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
696 {
697 struct urb *urb;
698 int length;
699 unsigned long flags;
700 char buffer[6]; /* Any root hubs with > 31 ports? */
701
702 if (unlikely(!hcd->rh_pollable))
703 return;
704 if (!hcd->uses_new_polling && !hcd->status_urb)
705 return;
706
707 length = hcd->driver->hub_status_data(hcd, buffer);
708 if (length > 0) {
709
710 /* try to complete the status urb */
711 spin_lock_irqsave(&hcd_root_hub_lock, flags);
712 urb = hcd->status_urb;
713 if (urb) {
714 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
715 hcd->status_urb = NULL;
716 urb->actual_length = length;
717 memcpy(urb->transfer_buffer, buffer, length);
718
719 usb_hcd_unlink_urb_from_ep(hcd, urb);
720 spin_unlock(&hcd_root_hub_lock);
721 usb_hcd_giveback_urb(hcd, urb, 0);
722 spin_lock(&hcd_root_hub_lock);
723 } else {
724 length = 0;
725 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
726 }
727 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
728 }
729
730 /* The USB 2.0 spec says 256 ms. This is close enough and won't
731 * exceed that limit if HZ is 100. The math is more clunky than
732 * maybe expected, this is to make sure that all timers for USB devices
733 * fire at the same time to give the CPU a break in between */
734 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
735 (length == 0 && hcd->status_urb != NULL))
736 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
737 }
738 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
739
740 /* timer callback */
741 static void rh_timer_func (unsigned long _hcd)
742 {
743 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
744 }
745
746 /*-------------------------------------------------------------------------*/
747
748 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
749 {
750 int retval;
751 unsigned long flags;
752 unsigned len = 1 + (urb->dev->maxchild / 8);
753
754 spin_lock_irqsave (&hcd_root_hub_lock, flags);
755 if (hcd->status_urb || urb->transfer_buffer_length < len) {
756 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
757 retval = -EINVAL;
758 goto done;
759 }
760
761 retval = usb_hcd_link_urb_to_ep(hcd, urb);
762 if (retval)
763 goto done;
764
765 hcd->status_urb = urb;
766 urb->hcpriv = hcd; /* indicate it's queued */
767 if (!hcd->uses_new_polling)
768 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
769
770 /* If a status change has already occurred, report it ASAP */
771 else if (HCD_POLL_PENDING(hcd))
772 mod_timer(&hcd->rh_timer, jiffies);
773 retval = 0;
774 done:
775 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
776 return retval;
777 }
778
779 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
780 {
781 if (usb_endpoint_xfer_int(&urb->ep->desc))
782 return rh_queue_status (hcd, urb);
783 if (usb_endpoint_xfer_control(&urb->ep->desc))
784 return rh_call_control (hcd, urb);
785 return -EINVAL;
786 }
787
788 /*-------------------------------------------------------------------------*/
789
790 /* Unlinks of root-hub control URBs are legal, but they don't do anything
791 * since these URBs always execute synchronously.
792 */
793 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
794 {
795 unsigned long flags;
796 int rc;
797
798 spin_lock_irqsave(&hcd_root_hub_lock, flags);
799 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
800 if (rc)
801 goto done;
802
803 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
804 ; /* Do nothing */
805
806 } else { /* Status URB */
807 if (!hcd->uses_new_polling)
808 del_timer (&hcd->rh_timer);
809 if (urb == hcd->status_urb) {
810 hcd->status_urb = NULL;
811 usb_hcd_unlink_urb_from_ep(hcd, urb);
812
813 spin_unlock(&hcd_root_hub_lock);
814 usb_hcd_giveback_urb(hcd, urb, status);
815 spin_lock(&hcd_root_hub_lock);
816 }
817 }
818 done:
819 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
820 return rc;
821 }
822
823
824
825 /*
826 * Show & store the current value of authorized_default
827 */
828 static ssize_t usb_host_authorized_default_show(struct device *dev,
829 struct device_attribute *attr,
830 char *buf)
831 {
832 struct usb_device *rh_usb_dev = to_usb_device(dev);
833 struct usb_bus *usb_bus = rh_usb_dev->bus;
834 struct usb_hcd *usb_hcd;
835
836 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
837 return -ENODEV;
838 usb_hcd = bus_to_hcd(usb_bus);
839 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
840 }
841
842 static ssize_t usb_host_authorized_default_store(struct device *dev,
843 struct device_attribute *attr,
844 const char *buf, size_t size)
845 {
846 ssize_t result;
847 unsigned val;
848 struct usb_device *rh_usb_dev = to_usb_device(dev);
849 struct usb_bus *usb_bus = rh_usb_dev->bus;
850 struct usb_hcd *usb_hcd;
851
852 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
853 return -ENODEV;
854 usb_hcd = bus_to_hcd(usb_bus);
855 result = sscanf(buf, "%u\n", &val);
856 if (result == 1) {
857 usb_hcd->authorized_default = val? 1 : 0;
858 result = size;
859 }
860 else
861 result = -EINVAL;
862 return result;
863 }
864
865 static DEVICE_ATTR(authorized_default, 0644,
866 usb_host_authorized_default_show,
867 usb_host_authorized_default_store);
868
869
870 /* Group all the USB bus attributes */
871 static struct attribute *usb_bus_attrs[] = {
872 &dev_attr_authorized_default.attr,
873 NULL,
874 };
875
876 static struct attribute_group usb_bus_attr_group = {
877 .name = NULL, /* we want them in the same directory */
878 .attrs = usb_bus_attrs,
879 };
880
881
882
883 /*-------------------------------------------------------------------------*/
884
885 /**
886 * usb_bus_init - shared initialization code
887 * @bus: the bus structure being initialized
888 *
889 * This code is used to initialize a usb_bus structure, memory for which is
890 * separately managed.
891 */
892 static void usb_bus_init (struct usb_bus *bus)
893 {
894 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
895
896 bus->devnum_next = 1;
897
898 bus->root_hub = NULL;
899 bus->busnum = -1;
900 bus->bandwidth_allocated = 0;
901 bus->bandwidth_int_reqs = 0;
902 bus->bandwidth_isoc_reqs = 0;
903
904 INIT_LIST_HEAD (&bus->bus_list);
905 }
906
907 /*-------------------------------------------------------------------------*/
908
909 /**
910 * usb_register_bus - registers the USB host controller with the usb core
911 * @bus: pointer to the bus to register
912 * Context: !in_interrupt()
913 *
914 * Assigns a bus number, and links the controller into usbcore data
915 * structures so that it can be seen by scanning the bus list.
916 */
917 static int usb_register_bus(struct usb_bus *bus)
918 {
919 int result = -E2BIG;
920 int busnum;
921
922 mutex_lock(&usb_bus_list_lock);
923 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
924 if (busnum >= USB_MAXBUS) {
925 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
926 goto error_find_busnum;
927 }
928 set_bit (busnum, busmap.busmap);
929 bus->busnum = busnum;
930
931 /* Add it to the local list of buses */
932 list_add (&bus->bus_list, &usb_bus_list);
933 mutex_unlock(&usb_bus_list_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_list_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 * Context: !in_interrupt()
950 *
951 * Recycles the bus number, and unlinks the controller from usbcore data
952 * structures so that it won't be seen by scanning the bus list.
953 */
954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957
958 /*
959 * NOTE: make sure that all the devices are removed by the
960 * controller code, as well as having it call this when cleaning
961 * itself up
962 */
963 mutex_lock(&usb_bus_list_lock);
964 list_del (&bus->bus_list);
965 mutex_unlock(&usb_bus_list_lock);
966
967 usb_notify_remove_bus(bus);
968
969 clear_bit (bus->busnum, busmap.busmap);
970 }
971
972 /**
973 * register_root_hub - called by usb_add_hcd() to register a root hub
974 * @hcd: host controller for this root hub
975 *
976 * This function registers the root hub with the USB subsystem. It sets up
977 * the device properly in the device tree and then calls usb_new_device()
978 * to register the usb device. It also assigns the root hub's USB address
979 * (always 1).
980 */
981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 struct device *parent_dev = hcd->self.controller;
984 struct usb_device *usb_dev = hcd->self.root_hub;
985 const int devnum = 1;
986 int retval;
987
988 usb_dev->devnum = devnum;
989 usb_dev->bus->devnum_next = devnum + 1;
990 memset (&usb_dev->bus->devmap.devicemap, 0,
991 sizeof usb_dev->bus->devmap.devicemap);
992 set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994
995 mutex_lock(&usb_bus_list_lock);
996
997 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
999 if (retval != sizeof usb_dev->descriptor) {
1000 mutex_unlock(&usb_bus_list_lock);
1001 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002 dev_name(&usb_dev->dev), retval);
1003 return (retval < 0) ? retval : -EMSGSIZE;
1004 }
1005 if (usb_dev->speed == USB_SPEED_SUPER) {
1006 retval = usb_get_bos_descriptor(usb_dev);
1007 if (retval < 0) {
1008 mutex_unlock(&usb_bus_list_lock);
1009 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1010 dev_name(&usb_dev->dev), retval);
1011 return retval;
1012 }
1013 }
1014
1015 retval = usb_new_device (usb_dev);
1016 if (retval) {
1017 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1018 dev_name(&usb_dev->dev), retval);
1019 } else {
1020 spin_lock_irq (&hcd_root_hub_lock);
1021 hcd->rh_registered = 1;
1022 spin_unlock_irq (&hcd_root_hub_lock);
1023
1024 /* Did the HC die before the root hub was registered? */
1025 if (HCD_DEAD(hcd))
1026 usb_hc_died (hcd); /* This time clean up */
1027 }
1028 mutex_unlock(&usb_bus_list_lock);
1029
1030 return retval;
1031 }
1032
1033 /*
1034 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1035 * @bus: the bus which the root hub belongs to
1036 * @portnum: the port which is being resumed
1037 *
1038 * HCDs should call this function when they know that a resume signal is
1039 * being sent to a root-hub port. The root hub will be prevented from
1040 * going into autosuspend until usb_hcd_end_port_resume() is called.
1041 *
1042 * The bus's private lock must be held by the caller.
1043 */
1044 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1045 {
1046 unsigned bit = 1 << portnum;
1047
1048 if (!(bus->resuming_ports & bit)) {
1049 bus->resuming_ports |= bit;
1050 pm_runtime_get_noresume(&bus->root_hub->dev);
1051 }
1052 }
1053 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1054
1055 /*
1056 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1059 *
1060 * HCDs should call this function when they know that a resume signal has
1061 * stopped being sent to a root-hub port. The root hub will be allowed to
1062 * autosuspend again.
1063 *
1064 * The bus's private lock must be held by the caller.
1065 */
1066 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1067 {
1068 unsigned bit = 1 << portnum;
1069
1070 if (bus->resuming_ports & bit) {
1071 bus->resuming_ports &= ~bit;
1072 pm_runtime_put_noidle(&bus->root_hub->dev);
1073 }
1074 }
1075 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1076
1077 /*-------------------------------------------------------------------------*/
1078
1079 /**
1080 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1081 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1082 * @is_input: true iff the transaction sends data to the host
1083 * @isoc: true for isochronous transactions, false for interrupt ones
1084 * @bytecount: how many bytes in the transaction.
1085 *
1086 * Returns approximate bus time in nanoseconds for a periodic transaction.
1087 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1088 * scheduled in software, this function is only used for such scheduling.
1089 */
1090 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1091 {
1092 unsigned long tmp;
1093
1094 switch (speed) {
1095 case USB_SPEED_LOW: /* INTR only */
1096 if (is_input) {
1097 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1098 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1099 } else {
1100 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1102 }
1103 case USB_SPEED_FULL: /* ISOC or INTR */
1104 if (isoc) {
1105 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1107 } else {
1108 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 return (9107L + BW_HOST_DELAY + tmp);
1110 }
1111 case USB_SPEED_HIGH: /* ISOC or INTR */
1112 // FIXME adjust for input vs output
1113 if (isoc)
1114 tmp = HS_NSECS_ISO (bytecount);
1115 else
1116 tmp = HS_NSECS (bytecount);
1117 return tmp;
1118 default:
1119 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1120 return -1;
1121 }
1122 }
1123 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1124
1125
1126 /*-------------------------------------------------------------------------*/
1127
1128 /*
1129 * Generic HC operations.
1130 */
1131
1132 /*-------------------------------------------------------------------------*/
1133
1134 /**
1135 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1136 * @hcd: host controller to which @urb was submitted
1137 * @urb: URB being submitted
1138 *
1139 * Host controller drivers should call this routine in their enqueue()
1140 * method. The HCD's private spinlock must be held and interrupts must
1141 * be disabled. The actions carried out here are required for URB
1142 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1143 *
1144 * Returns 0 for no error, otherwise a negative error code (in which case
1145 * the enqueue() method must fail). If no error occurs but enqueue() fails
1146 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1147 * the private spinlock and returning.
1148 */
1149 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1150 {
1151 int rc = 0;
1152
1153 spin_lock(&hcd_urb_list_lock);
1154
1155 /* Check that the URB isn't being killed */
1156 if (unlikely(atomic_read(&urb->reject))) {
1157 rc = -EPERM;
1158 goto done;
1159 }
1160
1161 if (unlikely(!urb->ep->enabled)) {
1162 rc = -ENOENT;
1163 goto done;
1164 }
1165
1166 if (unlikely(!urb->dev->can_submit)) {
1167 rc = -EHOSTUNREACH;
1168 goto done;
1169 }
1170
1171 /*
1172 * Check the host controller's state and add the URB to the
1173 * endpoint's queue.
1174 */
1175 if (HCD_RH_RUNNING(hcd)) {
1176 urb->unlinked = 0;
1177 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1178 } else {
1179 rc = -ESHUTDOWN;
1180 goto done;
1181 }
1182 done:
1183 spin_unlock(&hcd_urb_list_lock);
1184 return rc;
1185 }
1186 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1187
1188 /**
1189 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1190 * @hcd: host controller to which @urb was submitted
1191 * @urb: URB being checked for unlinkability
1192 * @status: error code to store in @urb if the unlink succeeds
1193 *
1194 * Host controller drivers should call this routine in their dequeue()
1195 * method. The HCD's private spinlock must be held and interrupts must
1196 * be disabled. The actions carried out here are required for making
1197 * sure than an unlink is valid.
1198 *
1199 * Returns 0 for no error, otherwise a negative error code (in which case
1200 * the dequeue() method must fail). The possible error codes are:
1201 *
1202 * -EIDRM: @urb was not submitted or has already completed.
1203 * The completion function may not have been called yet.
1204 *
1205 * -EBUSY: @urb has already been unlinked.
1206 */
1207 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1208 int status)
1209 {
1210 struct list_head *tmp;
1211
1212 /* insist the urb is still queued */
1213 list_for_each(tmp, &urb->ep->urb_list) {
1214 if (tmp == &urb->urb_list)
1215 break;
1216 }
1217 if (tmp != &urb->urb_list)
1218 return -EIDRM;
1219
1220 /* Any status except -EINPROGRESS means something already started to
1221 * unlink this URB from the hardware. So there's no more work to do.
1222 */
1223 if (urb->unlinked)
1224 return -EBUSY;
1225 urb->unlinked = status;
1226 return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1229
1230 /**
1231 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1232 * @hcd: host controller to which @urb was submitted
1233 * @urb: URB being unlinked
1234 *
1235 * Host controller drivers should call this routine before calling
1236 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1237 * interrupts must be disabled. The actions carried out here are required
1238 * for URB completion.
1239 */
1240 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1241 {
1242 /* clear all state linking urb to this dev (and hcd) */
1243 spin_lock(&hcd_urb_list_lock);
1244 list_del_init(&urb->urb_list);
1245 spin_unlock(&hcd_urb_list_lock);
1246 }
1247 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1248
1249 /*
1250 * Some usb host controllers can only perform dma using a small SRAM area.
1251 * The usb core itself is however optimized for host controllers that can dma
1252 * using regular system memory - like pci devices doing bus mastering.
1253 *
1254 * To support host controllers with limited dma capabilites we provide dma
1255 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1256 * For this to work properly the host controller code must first use the
1257 * function dma_declare_coherent_memory() to point out which memory area
1258 * that should be used for dma allocations.
1259 *
1260 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1261 * dma using dma_alloc_coherent() which in turn allocates from the memory
1262 * area pointed out with dma_declare_coherent_memory().
1263 *
1264 * So, to summarize...
1265 *
1266 * - We need "local" memory, canonical example being
1267 * a small SRAM on a discrete controller being the
1268 * only memory that the controller can read ...
1269 * (a) "normal" kernel memory is no good, and
1270 * (b) there's not enough to share
1271 *
1272 * - The only *portable* hook for such stuff in the
1273 * DMA framework is dma_declare_coherent_memory()
1274 *
1275 * - So we use that, even though the primary requirement
1276 * is that the memory be "local" (hence addressible
1277 * by that device), not "coherent".
1278 *
1279 */
1280
1281 static int hcd_alloc_coherent(struct usb_bus *bus,
1282 gfp_t mem_flags, dma_addr_t *dma_handle,
1283 void **vaddr_handle, size_t size,
1284 enum dma_data_direction dir)
1285 {
1286 unsigned char *vaddr;
1287
1288 if (*vaddr_handle == NULL) {
1289 WARN_ON_ONCE(1);
1290 return -EFAULT;
1291 }
1292
1293 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1294 mem_flags, dma_handle);
1295 if (!vaddr)
1296 return -ENOMEM;
1297
1298 /*
1299 * Store the virtual address of the buffer at the end
1300 * of the allocated dma buffer. The size of the buffer
1301 * may be uneven so use unaligned functions instead
1302 * of just rounding up. It makes sense to optimize for
1303 * memory footprint over access speed since the amount
1304 * of memory available for dma may be limited.
1305 */
1306 put_unaligned((unsigned long)*vaddr_handle,
1307 (unsigned long *)(vaddr + size));
1308
1309 if (dir == DMA_TO_DEVICE)
1310 memcpy(vaddr, *vaddr_handle, size);
1311
1312 *vaddr_handle = vaddr;
1313 return 0;
1314 }
1315
1316 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1317 void **vaddr_handle, size_t size,
1318 enum dma_data_direction dir)
1319 {
1320 unsigned char *vaddr = *vaddr_handle;
1321
1322 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1323
1324 if (dir == DMA_FROM_DEVICE)
1325 memcpy(vaddr, *vaddr_handle, size);
1326
1327 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1328
1329 *vaddr_handle = vaddr;
1330 *dma_handle = 0;
1331 }
1332
1333 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1334 {
1335 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1336 dma_unmap_single(hcd->self.controller,
1337 urb->setup_dma,
1338 sizeof(struct usb_ctrlrequest),
1339 DMA_TO_DEVICE);
1340 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1341 hcd_free_coherent(urb->dev->bus,
1342 &urb->setup_dma,
1343 (void **) &urb->setup_packet,
1344 sizeof(struct usb_ctrlrequest),
1345 DMA_TO_DEVICE);
1346
1347 /* Make it safe to call this routine more than once */
1348 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1349 }
1350 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1351
1352 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353 {
1354 if (hcd->driver->unmap_urb_for_dma)
1355 hcd->driver->unmap_urb_for_dma(hcd, urb);
1356 else
1357 usb_hcd_unmap_urb_for_dma(hcd, urb);
1358 }
1359
1360 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1361 {
1362 enum dma_data_direction dir;
1363
1364 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1365
1366 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1367 if (urb->transfer_flags & URB_DMA_MAP_SG)
1368 dma_unmap_sg(hcd->self.controller,
1369 urb->sg,
1370 urb->num_sgs,
1371 dir);
1372 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1373 dma_unmap_page(hcd->self.controller,
1374 urb->transfer_dma,
1375 urb->transfer_buffer_length,
1376 dir);
1377 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1378 dma_unmap_single(hcd->self.controller,
1379 urb->transfer_dma,
1380 urb->transfer_buffer_length,
1381 dir);
1382 else if (urb->transfer_flags & URB_MAP_LOCAL)
1383 hcd_free_coherent(urb->dev->bus,
1384 &urb->transfer_dma,
1385 &urb->transfer_buffer,
1386 urb->transfer_buffer_length,
1387 dir);
1388
1389 /* Make it safe to call this routine more than once */
1390 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1391 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1392 }
1393 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1394
1395 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1396 gfp_t mem_flags)
1397 {
1398 if (hcd->driver->map_urb_for_dma)
1399 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1400 else
1401 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1402 }
1403
1404 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1405 gfp_t mem_flags)
1406 {
1407 enum dma_data_direction dir;
1408 int ret = 0;
1409
1410 /* Map the URB's buffers for DMA access.
1411 * Lower level HCD code should use *_dma exclusively,
1412 * unless it uses pio or talks to another transport,
1413 * or uses the provided scatter gather list for bulk.
1414 */
1415
1416 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1417 if (hcd->self.uses_pio_for_control)
1418 return ret;
1419 if (hcd->self.uses_dma) {
1420 urb->setup_dma = dma_map_single(
1421 hcd->self.controller,
1422 urb->setup_packet,
1423 sizeof(struct usb_ctrlrequest),
1424 DMA_TO_DEVICE);
1425 if (dma_mapping_error(hcd->self.controller,
1426 urb->setup_dma))
1427 return -EAGAIN;
1428 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1429 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1430 ret = hcd_alloc_coherent(
1431 urb->dev->bus, mem_flags,
1432 &urb->setup_dma,
1433 (void **)&urb->setup_packet,
1434 sizeof(struct usb_ctrlrequest),
1435 DMA_TO_DEVICE);
1436 if (ret)
1437 return ret;
1438 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1439 }
1440 }
1441
1442 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443 if (urb->transfer_buffer_length != 0
1444 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1445 if (hcd->self.uses_dma) {
1446 if (urb->num_sgs) {
1447 int n;
1448
1449 /* We don't support sg for isoc transfers ! */
1450 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1451 WARN_ON(1);
1452 return -EINVAL;
1453 }
1454
1455 n = dma_map_sg(
1456 hcd->self.controller,
1457 urb->sg,
1458 urb->num_sgs,
1459 dir);
1460 if (n <= 0)
1461 ret = -EAGAIN;
1462 else
1463 urb->transfer_flags |= URB_DMA_MAP_SG;
1464 urb->num_mapped_sgs = n;
1465 if (n != urb->num_sgs)
1466 urb->transfer_flags |=
1467 URB_DMA_SG_COMBINED;
1468 } else if (urb->sg) {
1469 struct scatterlist *sg = urb->sg;
1470 urb->transfer_dma = dma_map_page(
1471 hcd->self.controller,
1472 sg_page(sg),
1473 sg->offset,
1474 urb->transfer_buffer_length,
1475 dir);
1476 if (dma_mapping_error(hcd->self.controller,
1477 urb->transfer_dma))
1478 ret = -EAGAIN;
1479 else
1480 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1481 } else {
1482 urb->transfer_dma = dma_map_single(
1483 hcd->self.controller,
1484 urb->transfer_buffer,
1485 urb->transfer_buffer_length,
1486 dir);
1487 if (dma_mapping_error(hcd->self.controller,
1488 urb->transfer_dma))
1489 ret = -EAGAIN;
1490 else
1491 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1492 }
1493 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1494 ret = hcd_alloc_coherent(
1495 urb->dev->bus, mem_flags,
1496 &urb->transfer_dma,
1497 &urb->transfer_buffer,
1498 urb->transfer_buffer_length,
1499 dir);
1500 if (ret == 0)
1501 urb->transfer_flags |= URB_MAP_LOCAL;
1502 }
1503 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1504 URB_SETUP_MAP_LOCAL)))
1505 usb_hcd_unmap_urb_for_dma(hcd, urb);
1506 }
1507 return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1510
1511 /*-------------------------------------------------------------------------*/
1512
1513 /* may be called in any context with a valid urb->dev usecount
1514 * caller surrenders "ownership" of urb
1515 * expects usb_submit_urb() to have sanity checked and conditioned all
1516 * inputs in the urb
1517 */
1518 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1519 {
1520 int status;
1521 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1522
1523 /* increment urb's reference count as part of giving it to the HCD
1524 * (which will control it). HCD guarantees that it either returns
1525 * an error or calls giveback(), but not both.
1526 */
1527 usb_get_urb(urb);
1528 atomic_inc(&urb->use_count);
1529 atomic_inc(&urb->dev->urbnum);
1530 usbmon_urb_submit(&hcd->self, urb);
1531
1532 /* NOTE requirements on root-hub callers (usbfs and the hub
1533 * driver, for now): URBs' urb->transfer_buffer must be
1534 * valid and usb_buffer_{sync,unmap}() not be needed, since
1535 * they could clobber root hub response data. Also, control
1536 * URBs must be submitted in process context with interrupts
1537 * enabled.
1538 */
1539
1540 if (is_root_hub(urb->dev)) {
1541 status = rh_urb_enqueue(hcd, urb);
1542 } else {
1543 status = map_urb_for_dma(hcd, urb, mem_flags);
1544 if (likely(status == 0)) {
1545 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1546 if (unlikely(status))
1547 unmap_urb_for_dma(hcd, urb);
1548 }
1549 }
1550
1551 if (unlikely(status)) {
1552 usbmon_urb_submit_error(&hcd->self, urb, status);
1553 urb->hcpriv = NULL;
1554 INIT_LIST_HEAD(&urb->urb_list);
1555 atomic_dec(&urb->use_count);
1556 atomic_dec(&urb->dev->urbnum);
1557 if (atomic_read(&urb->reject))
1558 wake_up(&usb_kill_urb_queue);
1559 usb_put_urb(urb);
1560 }
1561 return status;
1562 }
1563
1564 /*-------------------------------------------------------------------------*/
1565
1566 /* this makes the hcd giveback() the urb more quickly, by kicking it
1567 * off hardware queues (which may take a while) and returning it as
1568 * soon as practical. we've already set up the urb's return status,
1569 * but we can't know if the callback completed already.
1570 */
1571 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1572 {
1573 int value;
1574
1575 if (is_root_hub(urb->dev))
1576 value = usb_rh_urb_dequeue(hcd, urb, status);
1577 else {
1578
1579 /* The only reason an HCD might fail this call is if
1580 * it has not yet fully queued the urb to begin with.
1581 * Such failures should be harmless. */
1582 value = hcd->driver->urb_dequeue(hcd, urb, status);
1583 }
1584 return value;
1585 }
1586
1587 /*
1588 * called in any context
1589 *
1590 * caller guarantees urb won't be recycled till both unlink()
1591 * and the urb's completion function return
1592 */
1593 int usb_hcd_unlink_urb (struct urb *urb, int status)
1594 {
1595 struct usb_hcd *hcd;
1596 int retval = -EIDRM;
1597 unsigned long flags;
1598
1599 /* Prevent the device and bus from going away while
1600 * the unlink is carried out. If they are already gone
1601 * then urb->use_count must be 0, since disconnected
1602 * devices can't have any active URBs.
1603 */
1604 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1605 if (atomic_read(&urb->use_count) > 0) {
1606 retval = 0;
1607 usb_get_dev(urb->dev);
1608 }
1609 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1610 if (retval == 0) {
1611 hcd = bus_to_hcd(urb->dev->bus);
1612 retval = unlink1(hcd, urb, status);
1613 usb_put_dev(urb->dev);
1614 }
1615
1616 if (retval == 0)
1617 retval = -EINPROGRESS;
1618 else if (retval != -EIDRM && retval != -EBUSY)
1619 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1620 urb, retval);
1621 return retval;
1622 }
1623
1624 /*-------------------------------------------------------------------------*/
1625
1626 /**
1627 * usb_hcd_giveback_urb - return URB from HCD to device driver
1628 * @hcd: host controller returning the URB
1629 * @urb: urb being returned to the USB device driver.
1630 * @status: completion status code for the URB.
1631 * Context: in_interrupt()
1632 *
1633 * This hands the URB from HCD to its USB device driver, using its
1634 * completion function. The HCD has freed all per-urb resources
1635 * (and is done using urb->hcpriv). It also released all HCD locks;
1636 * the device driver won't cause problems if it frees, modifies,
1637 * or resubmits this URB.
1638 *
1639 * If @urb was unlinked, the value of @status will be overridden by
1640 * @urb->unlinked. Erroneous short transfers are detected in case
1641 * the HCD hasn't checked for them.
1642 */
1643 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1644 {
1645 urb->hcpriv = NULL;
1646 if (unlikely(urb->unlinked))
1647 status = urb->unlinked;
1648 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1649 urb->actual_length < urb->transfer_buffer_length &&
1650 !status))
1651 status = -EREMOTEIO;
1652
1653 unmap_urb_for_dma(hcd, urb);
1654 usbmon_urb_complete(&hcd->self, urb, status);
1655 usb_unanchor_urb(urb);
1656
1657 /* pass ownership to the completion handler */
1658 urb->status = status;
1659 urb->complete (urb);
1660 atomic_dec (&urb->use_count);
1661 if (unlikely(atomic_read(&urb->reject)))
1662 wake_up (&usb_kill_urb_queue);
1663 usb_put_urb (urb);
1664 }
1665 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1666
1667 /*-------------------------------------------------------------------------*/
1668
1669 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1670 * queue to drain completely. The caller must first insure that no more
1671 * URBs can be submitted for this endpoint.
1672 */
1673 void usb_hcd_flush_endpoint(struct usb_device *udev,
1674 struct usb_host_endpoint *ep)
1675 {
1676 struct usb_hcd *hcd;
1677 struct urb *urb;
1678
1679 if (!ep)
1680 return;
1681 might_sleep();
1682 hcd = bus_to_hcd(udev->bus);
1683
1684 /* No more submits can occur */
1685 spin_lock_irq(&hcd_urb_list_lock);
1686 rescan:
1687 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1688 int is_in;
1689
1690 if (urb->unlinked)
1691 continue;
1692 usb_get_urb (urb);
1693 is_in = usb_urb_dir_in(urb);
1694 spin_unlock(&hcd_urb_list_lock);
1695
1696 /* kick hcd */
1697 unlink1(hcd, urb, -ESHUTDOWN);
1698 dev_dbg (hcd->self.controller,
1699 "shutdown urb %p ep%d%s%s\n",
1700 urb, usb_endpoint_num(&ep->desc),
1701 is_in ? "in" : "out",
1702 ({ char *s;
1703
1704 switch (usb_endpoint_type(&ep->desc)) {
1705 case USB_ENDPOINT_XFER_CONTROL:
1706 s = ""; break;
1707 case USB_ENDPOINT_XFER_BULK:
1708 s = "-bulk"; break;
1709 case USB_ENDPOINT_XFER_INT:
1710 s = "-intr"; break;
1711 default:
1712 s = "-iso"; break;
1713 };
1714 s;
1715 }));
1716 usb_put_urb (urb);
1717
1718 /* list contents may have changed */
1719 spin_lock(&hcd_urb_list_lock);
1720 goto rescan;
1721 }
1722 spin_unlock_irq(&hcd_urb_list_lock);
1723
1724 /* Wait until the endpoint queue is completely empty */
1725 while (!list_empty (&ep->urb_list)) {
1726 spin_lock_irq(&hcd_urb_list_lock);
1727
1728 /* The list may have changed while we acquired the spinlock */
1729 urb = NULL;
1730 if (!list_empty (&ep->urb_list)) {
1731 urb = list_entry (ep->urb_list.prev, struct urb,
1732 urb_list);
1733 usb_get_urb (urb);
1734 }
1735 spin_unlock_irq(&hcd_urb_list_lock);
1736
1737 if (urb) {
1738 usb_kill_urb (urb);
1739 usb_put_urb (urb);
1740 }
1741 }
1742 }
1743
1744 /**
1745 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1746 * the bus bandwidth
1747 * @udev: target &usb_device
1748 * @new_config: new configuration to install
1749 * @cur_alt: the current alternate interface setting
1750 * @new_alt: alternate interface setting that is being installed
1751 *
1752 * To change configurations, pass in the new configuration in new_config,
1753 * and pass NULL for cur_alt and new_alt.
1754 *
1755 * To reset a device's configuration (put the device in the ADDRESSED state),
1756 * pass in NULL for new_config, cur_alt, and new_alt.
1757 *
1758 * To change alternate interface settings, pass in NULL for new_config,
1759 * pass in the current alternate interface setting in cur_alt,
1760 * and pass in the new alternate interface setting in new_alt.
1761 *
1762 * Returns an error if the requested bandwidth change exceeds the
1763 * bus bandwidth or host controller internal resources.
1764 */
1765 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1766 struct usb_host_config *new_config,
1767 struct usb_host_interface *cur_alt,
1768 struct usb_host_interface *new_alt)
1769 {
1770 int num_intfs, i, j;
1771 struct usb_host_interface *alt = NULL;
1772 int ret = 0;
1773 struct usb_hcd *hcd;
1774 struct usb_host_endpoint *ep;
1775
1776 hcd = bus_to_hcd(udev->bus);
1777 if (!hcd->driver->check_bandwidth)
1778 return 0;
1779
1780 /* Configuration is being removed - set configuration 0 */
1781 if (!new_config && !cur_alt) {
1782 for (i = 1; i < 16; ++i) {
1783 ep = udev->ep_out[i];
1784 if (ep)
1785 hcd->driver->drop_endpoint(hcd, udev, ep);
1786 ep = udev->ep_in[i];
1787 if (ep)
1788 hcd->driver->drop_endpoint(hcd, udev, ep);
1789 }
1790 hcd->driver->check_bandwidth(hcd, udev);
1791 return 0;
1792 }
1793 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1794 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1795 * of the bus. There will always be bandwidth for endpoint 0, so it's
1796 * ok to exclude it.
1797 */
1798 if (new_config) {
1799 num_intfs = new_config->desc.bNumInterfaces;
1800 /* Remove endpoints (except endpoint 0, which is always on the
1801 * schedule) from the old config from the schedule
1802 */
1803 for (i = 1; i < 16; ++i) {
1804 ep = udev->ep_out[i];
1805 if (ep) {
1806 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1807 if (ret < 0)
1808 goto reset;
1809 }
1810 ep = udev->ep_in[i];
1811 if (ep) {
1812 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1813 if (ret < 0)
1814 goto reset;
1815 }
1816 }
1817 for (i = 0; i < num_intfs; ++i) {
1818 struct usb_host_interface *first_alt;
1819 int iface_num;
1820
1821 first_alt = &new_config->intf_cache[i]->altsetting[0];
1822 iface_num = first_alt->desc.bInterfaceNumber;
1823 /* Set up endpoints for alternate interface setting 0 */
1824 alt = usb_find_alt_setting(new_config, iface_num, 0);
1825 if (!alt)
1826 /* No alt setting 0? Pick the first setting. */
1827 alt = first_alt;
1828
1829 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1830 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1831 if (ret < 0)
1832 goto reset;
1833 }
1834 }
1835 }
1836 if (cur_alt && new_alt) {
1837 struct usb_interface *iface = usb_ifnum_to_if(udev,
1838 cur_alt->desc.bInterfaceNumber);
1839
1840 if (!iface)
1841 return -EINVAL;
1842 if (iface->resetting_device) {
1843 /*
1844 * The USB core just reset the device, so the xHCI host
1845 * and the device will think alt setting 0 is installed.
1846 * However, the USB core will pass in the alternate
1847 * setting installed before the reset as cur_alt. Dig
1848 * out the alternate setting 0 structure, or the first
1849 * alternate setting if a broken device doesn't have alt
1850 * setting 0.
1851 */
1852 cur_alt = usb_altnum_to_altsetting(iface, 0);
1853 if (!cur_alt)
1854 cur_alt = &iface->altsetting[0];
1855 }
1856
1857 /* Drop all the endpoints in the current alt setting */
1858 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1859 ret = hcd->driver->drop_endpoint(hcd, udev,
1860 &cur_alt->endpoint[i]);
1861 if (ret < 0)
1862 goto reset;
1863 }
1864 /* Add all the endpoints in the new alt setting */
1865 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1866 ret = hcd->driver->add_endpoint(hcd, udev,
1867 &new_alt->endpoint[i]);
1868 if (ret < 0)
1869 goto reset;
1870 }
1871 }
1872 ret = hcd->driver->check_bandwidth(hcd, udev);
1873 reset:
1874 if (ret < 0)
1875 hcd->driver->reset_bandwidth(hcd, udev);
1876 return ret;
1877 }
1878
1879 /* Disables the endpoint: synchronizes with the hcd to make sure all
1880 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1881 * have been called previously. Use for set_configuration, set_interface,
1882 * driver removal, physical disconnect.
1883 *
1884 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1885 * type, maxpacket size, toggle, halt status, and scheduling.
1886 */
1887 void usb_hcd_disable_endpoint(struct usb_device *udev,
1888 struct usb_host_endpoint *ep)
1889 {
1890 struct usb_hcd *hcd;
1891
1892 might_sleep();
1893 hcd = bus_to_hcd(udev->bus);
1894 if (hcd->driver->endpoint_disable)
1895 hcd->driver->endpoint_disable(hcd, ep);
1896 }
1897
1898 /**
1899 * usb_hcd_reset_endpoint - reset host endpoint state
1900 * @udev: USB device.
1901 * @ep: the endpoint to reset.
1902 *
1903 * Resets any host endpoint state such as the toggle bit, sequence
1904 * number and current window.
1905 */
1906 void usb_hcd_reset_endpoint(struct usb_device *udev,
1907 struct usb_host_endpoint *ep)
1908 {
1909 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1910
1911 if (hcd->driver->endpoint_reset)
1912 hcd->driver->endpoint_reset(hcd, ep);
1913 else {
1914 int epnum = usb_endpoint_num(&ep->desc);
1915 int is_out = usb_endpoint_dir_out(&ep->desc);
1916 int is_control = usb_endpoint_xfer_control(&ep->desc);
1917
1918 usb_settoggle(udev, epnum, is_out, 0);
1919 if (is_control)
1920 usb_settoggle(udev, epnum, !is_out, 0);
1921 }
1922 }
1923
1924 /**
1925 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1926 * @interface: alternate setting that includes all endpoints.
1927 * @eps: array of endpoints that need streams.
1928 * @num_eps: number of endpoints in the array.
1929 * @num_streams: number of streams to allocate.
1930 * @mem_flags: flags hcd should use to allocate memory.
1931 *
1932 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1933 * Drivers may queue multiple transfers to different stream IDs, which may
1934 * complete in a different order than they were queued.
1935 */
1936 int usb_alloc_streams(struct usb_interface *interface,
1937 struct usb_host_endpoint **eps, unsigned int num_eps,
1938 unsigned int num_streams, gfp_t mem_flags)
1939 {
1940 struct usb_hcd *hcd;
1941 struct usb_device *dev;
1942 int i;
1943
1944 dev = interface_to_usbdev(interface);
1945 hcd = bus_to_hcd(dev->bus);
1946 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1947 return -EINVAL;
1948 if (dev->speed != USB_SPEED_SUPER)
1949 return -EINVAL;
1950
1951 /* Streams only apply to bulk endpoints. */
1952 for (i = 0; i < num_eps; i++)
1953 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1954 return -EINVAL;
1955
1956 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1957 num_streams, mem_flags);
1958 }
1959 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1960
1961 /**
1962 * usb_free_streams - free bulk endpoint stream IDs.
1963 * @interface: alternate setting that includes all endpoints.
1964 * @eps: array of endpoints to remove streams from.
1965 * @num_eps: number of endpoints in the array.
1966 * @mem_flags: flags hcd should use to allocate memory.
1967 *
1968 * Reverts a group of bulk endpoints back to not using stream IDs.
1969 * Can fail if we are given bad arguments, or HCD is broken.
1970 */
1971 void usb_free_streams(struct usb_interface *interface,
1972 struct usb_host_endpoint **eps, unsigned int num_eps,
1973 gfp_t mem_flags)
1974 {
1975 struct usb_hcd *hcd;
1976 struct usb_device *dev;
1977 int i;
1978
1979 dev = interface_to_usbdev(interface);
1980 hcd = bus_to_hcd(dev->bus);
1981 if (dev->speed != USB_SPEED_SUPER)
1982 return;
1983
1984 /* Streams only apply to bulk endpoints. */
1985 for (i = 0; i < num_eps; i++)
1986 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1987 return;
1988
1989 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1990 }
1991 EXPORT_SYMBOL_GPL(usb_free_streams);
1992
1993 /* Protect against drivers that try to unlink URBs after the device
1994 * is gone, by waiting until all unlinks for @udev are finished.
1995 * Since we don't currently track URBs by device, simply wait until
1996 * nothing is running in the locked region of usb_hcd_unlink_urb().
1997 */
1998 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1999 {
2000 spin_lock_irq(&hcd_urb_unlink_lock);
2001 spin_unlock_irq(&hcd_urb_unlink_lock);
2002 }
2003
2004 /*-------------------------------------------------------------------------*/
2005
2006 /* called in any context */
2007 int usb_hcd_get_frame_number (struct usb_device *udev)
2008 {
2009 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2010
2011 if (!HCD_RH_RUNNING(hcd))
2012 return -ESHUTDOWN;
2013 return hcd->driver->get_frame_number (hcd);
2014 }
2015
2016 /*-------------------------------------------------------------------------*/
2017
2018 #ifdef CONFIG_PM
2019
2020 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2021 {
2022 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2023 int status;
2024 int old_state = hcd->state;
2025
2026 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2027 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2028 rhdev->do_remote_wakeup);
2029 if (HCD_DEAD(hcd)) {
2030 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2031 return 0;
2032 }
2033
2034 if (!hcd->driver->bus_suspend) {
2035 status = -ENOENT;
2036 } else {
2037 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2038 hcd->state = HC_STATE_QUIESCING;
2039 status = hcd->driver->bus_suspend(hcd);
2040 }
2041 if (status == 0) {
2042 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2043 hcd->state = HC_STATE_SUSPENDED;
2044
2045 /* Did we race with a root-hub wakeup event? */
2046 if (rhdev->do_remote_wakeup) {
2047 char buffer[6];
2048
2049 status = hcd->driver->hub_status_data(hcd, buffer);
2050 if (status != 0) {
2051 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2052 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2053 status = -EBUSY;
2054 }
2055 }
2056 } else {
2057 spin_lock_irq(&hcd_root_hub_lock);
2058 if (!HCD_DEAD(hcd)) {
2059 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2060 hcd->state = old_state;
2061 }
2062 spin_unlock_irq(&hcd_root_hub_lock);
2063 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2064 "suspend", status);
2065 }
2066 return status;
2067 }
2068
2069 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2070 {
2071 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2072 int status;
2073 int old_state = hcd->state;
2074
2075 dev_dbg(&rhdev->dev, "usb %sresume\n",
2076 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2077 if (HCD_DEAD(hcd)) {
2078 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2079 return 0;
2080 }
2081 if (!hcd->driver->bus_resume)
2082 return -ENOENT;
2083 if (HCD_RH_RUNNING(hcd))
2084 return 0;
2085
2086 hcd->state = HC_STATE_RESUMING;
2087 status = hcd->driver->bus_resume(hcd);
2088 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2089 if (status == 0) {
2090 struct usb_device *udev;
2091 int port1;
2092
2093 spin_lock_irq(&hcd_root_hub_lock);
2094 if (!HCD_DEAD(hcd)) {
2095 usb_set_device_state(rhdev, rhdev->actconfig
2096 ? USB_STATE_CONFIGURED
2097 : USB_STATE_ADDRESS);
2098 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2099 hcd->state = HC_STATE_RUNNING;
2100 }
2101 spin_unlock_irq(&hcd_root_hub_lock);
2102
2103 /*
2104 * Check whether any of the enabled ports on the root hub are
2105 * unsuspended. If they are then a TRSMRCY delay is needed
2106 * (this is what the USB-2 spec calls a "global resume").
2107 * Otherwise we can skip the delay.
2108 */
2109 usb_hub_for_each_child(rhdev, port1, udev) {
2110 if (udev->state != USB_STATE_NOTATTACHED &&
2111 !udev->port_is_suspended) {
2112 usleep_range(10000, 11000); /* TRSMRCY */
2113 break;
2114 }
2115 }
2116 } else {
2117 hcd->state = old_state;
2118 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2119 "resume", status);
2120 if (status != -ESHUTDOWN)
2121 usb_hc_died(hcd);
2122 }
2123 return status;
2124 }
2125
2126 #endif /* CONFIG_PM */
2127
2128 #ifdef CONFIG_USB_SUSPEND
2129
2130 /* Workqueue routine for root-hub remote wakeup */
2131 static void hcd_resume_work(struct work_struct *work)
2132 {
2133 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2134 struct usb_device *udev = hcd->self.root_hub;
2135
2136 usb_lock_device(udev);
2137 usb_remote_wakeup(udev);
2138 usb_unlock_device(udev);
2139 }
2140
2141 /**
2142 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2143 * @hcd: host controller for this root hub
2144 *
2145 * The USB host controller calls this function when its root hub is
2146 * suspended (with the remote wakeup feature enabled) and a remote
2147 * wakeup request is received. The routine submits a workqueue request
2148 * to resume the root hub (that is, manage its downstream ports again).
2149 */
2150 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2151 {
2152 unsigned long flags;
2153
2154 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2155 if (hcd->rh_registered) {
2156 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2157 queue_work(pm_wq, &hcd->wakeup_work);
2158 }
2159 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2160 }
2161 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2162
2163 #endif /* CONFIG_USB_SUSPEND */
2164
2165 /*-------------------------------------------------------------------------*/
2166
2167 #ifdef CONFIG_USB_OTG
2168
2169 /**
2170 * usb_bus_start_enum - start immediate enumeration (for OTG)
2171 * @bus: the bus (must use hcd framework)
2172 * @port_num: 1-based number of port; usually bus->otg_port
2173 * Context: in_interrupt()
2174 *
2175 * Starts enumeration, with an immediate reset followed later by
2176 * khubd identifying and possibly configuring the device.
2177 * This is needed by OTG controller drivers, where it helps meet
2178 * HNP protocol timing requirements for starting a port reset.
2179 */
2180 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2181 {
2182 struct usb_hcd *hcd;
2183 int status = -EOPNOTSUPP;
2184
2185 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2186 * boards with root hubs hooked up to internal devices (instead of
2187 * just the OTG port) may need more attention to resetting...
2188 */
2189 hcd = container_of (bus, struct usb_hcd, self);
2190 if (port_num && hcd->driver->start_port_reset)
2191 status = hcd->driver->start_port_reset(hcd, port_num);
2192
2193 /* run khubd shortly after (first) root port reset finishes;
2194 * it may issue others, until at least 50 msecs have passed.
2195 */
2196 if (status == 0)
2197 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2198 return status;
2199 }
2200 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2201
2202 #endif
2203
2204 /*-------------------------------------------------------------------------*/
2205
2206 /**
2207 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2208 * @irq: the IRQ being raised
2209 * @__hcd: pointer to the HCD whose IRQ is being signaled
2210 *
2211 * If the controller isn't HALTed, calls the driver's irq handler.
2212 * Checks whether the controller is now dead.
2213 */
2214 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2215 {
2216 struct usb_hcd *hcd = __hcd;
2217 unsigned long flags;
2218 irqreturn_t rc;
2219
2220 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2221 * when the first handler doesn't use it. So let's just
2222 * assume it's never used.
2223 */
2224 local_irq_save(flags);
2225
2226 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2227 rc = IRQ_NONE;
2228 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2229 rc = IRQ_NONE;
2230 else
2231 rc = IRQ_HANDLED;
2232
2233 local_irq_restore(flags);
2234 return rc;
2235 }
2236 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2237
2238 /*-------------------------------------------------------------------------*/
2239
2240 /**
2241 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2242 * @hcd: pointer to the HCD representing the controller
2243 *
2244 * This is called by bus glue to report a USB host controller that died
2245 * while operations may still have been pending. It's called automatically
2246 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2247 *
2248 * Only call this function with the primary HCD.
2249 */
2250 void usb_hc_died (struct usb_hcd *hcd)
2251 {
2252 unsigned long flags;
2253
2254 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2255
2256 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2257 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2258 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2259 if (hcd->rh_registered) {
2260 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2261
2262 /* make khubd clean up old urbs and devices */
2263 usb_set_device_state (hcd->self.root_hub,
2264 USB_STATE_NOTATTACHED);
2265 usb_kick_khubd (hcd->self.root_hub);
2266 }
2267 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2268 hcd = hcd->shared_hcd;
2269 if (hcd->rh_registered) {
2270 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2271
2272 /* make khubd clean up old urbs and devices */
2273 usb_set_device_state(hcd->self.root_hub,
2274 USB_STATE_NOTATTACHED);
2275 usb_kick_khubd(hcd->self.root_hub);
2276 }
2277 }
2278 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2279 /* Make sure that the other roothub is also deallocated. */
2280 }
2281 EXPORT_SYMBOL_GPL (usb_hc_died);
2282
2283 /*-------------------------------------------------------------------------*/
2284
2285 /**
2286 * usb_create_shared_hcd - create and initialize an HCD structure
2287 * @driver: HC driver that will use this hcd
2288 * @dev: device for this HC, stored in hcd->self.controller
2289 * @bus_name: value to store in hcd->self.bus_name
2290 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2291 * PCI device. Only allocate certain resources for the primary HCD
2292 * Context: !in_interrupt()
2293 *
2294 * Allocate a struct usb_hcd, with extra space at the end for the
2295 * HC driver's private data. Initialize the generic members of the
2296 * hcd structure.
2297 *
2298 * If memory is unavailable, returns NULL.
2299 */
2300 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2301 struct device *dev, const char *bus_name,
2302 struct usb_hcd *primary_hcd)
2303 {
2304 struct usb_hcd *hcd;
2305
2306 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2307 if (!hcd) {
2308 dev_dbg (dev, "hcd alloc failed\n");
2309 return NULL;
2310 }
2311 if (primary_hcd == NULL) {
2312 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2313 GFP_KERNEL);
2314 if (!hcd->bandwidth_mutex) {
2315 kfree(hcd);
2316 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2317 return NULL;
2318 }
2319 mutex_init(hcd->bandwidth_mutex);
2320 dev_set_drvdata(dev, hcd);
2321 } else {
2322 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2323 hcd->primary_hcd = primary_hcd;
2324 primary_hcd->primary_hcd = primary_hcd;
2325 hcd->shared_hcd = primary_hcd;
2326 primary_hcd->shared_hcd = hcd;
2327 }
2328
2329 kref_init(&hcd->kref);
2330
2331 usb_bus_init(&hcd->self);
2332 hcd->self.controller = dev;
2333 hcd->self.bus_name = bus_name;
2334 hcd->self.uses_dma = (dev->dma_mask != NULL);
2335
2336 init_timer(&hcd->rh_timer);
2337 hcd->rh_timer.function = rh_timer_func;
2338 hcd->rh_timer.data = (unsigned long) hcd;
2339 #ifdef CONFIG_USB_SUSPEND
2340 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2341 #endif
2342
2343 hcd->driver = driver;
2344 hcd->speed = driver->flags & HCD_MASK;
2345 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2346 "USB Host Controller";
2347 return hcd;
2348 }
2349 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2350
2351 /**
2352 * usb_create_hcd - create and initialize an HCD structure
2353 * @driver: HC driver that will use this hcd
2354 * @dev: device for this HC, stored in hcd->self.controller
2355 * @bus_name: value to store in hcd->self.bus_name
2356 * Context: !in_interrupt()
2357 *
2358 * Allocate a struct usb_hcd, with extra space at the end for the
2359 * HC driver's private data. Initialize the generic members of the
2360 * hcd structure.
2361 *
2362 * If memory is unavailable, returns NULL.
2363 */
2364 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2365 struct device *dev, const char *bus_name)
2366 {
2367 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2368 }
2369 EXPORT_SYMBOL_GPL(usb_create_hcd);
2370
2371 /*
2372 * Roothubs that share one PCI device must also share the bandwidth mutex.
2373 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2374 * deallocated.
2375 *
2376 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2377 * freed. When hcd_release() is called for the non-primary HCD, set the
2378 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2379 * freed shortly).
2380 */
2381 static void hcd_release (struct kref *kref)
2382 {
2383 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2384
2385 if (usb_hcd_is_primary_hcd(hcd))
2386 kfree(hcd->bandwidth_mutex);
2387 else
2388 hcd->shared_hcd->shared_hcd = NULL;
2389 kfree(hcd);
2390 }
2391
2392 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2393 {
2394 if (hcd)
2395 kref_get (&hcd->kref);
2396 return hcd;
2397 }
2398 EXPORT_SYMBOL_GPL(usb_get_hcd);
2399
2400 void usb_put_hcd (struct usb_hcd *hcd)
2401 {
2402 if (hcd)
2403 kref_put (&hcd->kref, hcd_release);
2404 }
2405 EXPORT_SYMBOL_GPL(usb_put_hcd);
2406
2407 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2408 {
2409 if (!hcd->primary_hcd)
2410 return 1;
2411 return hcd == hcd->primary_hcd;
2412 }
2413 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2414
2415 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2416 {
2417 if (!hcd->driver->find_raw_port_number)
2418 return port1;
2419
2420 return hcd->driver->find_raw_port_number(hcd, port1);
2421 }
2422
2423 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2424 unsigned int irqnum, unsigned long irqflags)
2425 {
2426 int retval;
2427
2428 if (hcd->driver->irq) {
2429
2430 /* IRQF_DISABLED doesn't work as advertised when used together
2431 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2432 * interrupts we can remove it here.
2433 */
2434 if (irqflags & IRQF_SHARED)
2435 irqflags &= ~IRQF_DISABLED;
2436
2437 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2438 hcd->driver->description, hcd->self.busnum);
2439 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2440 hcd->irq_descr, hcd);
2441 if (retval != 0) {
2442 dev_err(hcd->self.controller,
2443 "request interrupt %d failed\n",
2444 irqnum);
2445 return retval;
2446 }
2447 hcd->irq = irqnum;
2448 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2449 (hcd->driver->flags & HCD_MEMORY) ?
2450 "io mem" : "io base",
2451 (unsigned long long)hcd->rsrc_start);
2452 } else {
2453 hcd->irq = 0;
2454 if (hcd->rsrc_start)
2455 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2456 (hcd->driver->flags & HCD_MEMORY) ?
2457 "io mem" : "io base",
2458 (unsigned long long)hcd->rsrc_start);
2459 }
2460 return 0;
2461 }
2462
2463 /**
2464 * usb_add_hcd - finish generic HCD structure initialization and register
2465 * @hcd: the usb_hcd structure to initialize
2466 * @irqnum: Interrupt line to allocate
2467 * @irqflags: Interrupt type flags
2468 *
2469 * Finish the remaining parts of generic HCD initialization: allocate the
2470 * buffers of consistent memory, register the bus, request the IRQ line,
2471 * and call the driver's reset() and start() routines.
2472 */
2473 int usb_add_hcd(struct usb_hcd *hcd,
2474 unsigned int irqnum, unsigned long irqflags)
2475 {
2476 int retval;
2477 struct usb_device *rhdev;
2478
2479 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2480
2481 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2482 if (authorized_default < 0 || authorized_default > 1)
2483 hcd->authorized_default = hcd->wireless? 0 : 1;
2484 else
2485 hcd->authorized_default = authorized_default;
2486 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2487
2488 /* HC is in reset state, but accessible. Now do the one-time init,
2489 * bottom up so that hcds can customize the root hubs before khubd
2490 * starts talking to them. (Note, bus id is assigned early too.)
2491 */
2492 if ((retval = hcd_buffer_create(hcd)) != 0) {
2493 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2494 return retval;
2495 }
2496
2497 if ((retval = usb_register_bus(&hcd->self)) < 0)
2498 goto err_register_bus;
2499
2500 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2501 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2502 retval = -ENOMEM;
2503 goto err_allocate_root_hub;
2504 }
2505 hcd->self.root_hub = rhdev;
2506
2507 switch (hcd->speed) {
2508 case HCD_USB11:
2509 rhdev->speed = USB_SPEED_FULL;
2510 break;
2511 case HCD_USB2:
2512 rhdev->speed = USB_SPEED_HIGH;
2513 break;
2514 case HCD_USB3:
2515 rhdev->speed = USB_SPEED_SUPER;
2516 break;
2517 default:
2518 retval = -EINVAL;
2519 goto err_set_rh_speed;
2520 }
2521
2522 /* wakeup flag init defaults to "everything works" for root hubs,
2523 * but drivers can override it in reset() if needed, along with
2524 * recording the overall controller's system wakeup capability.
2525 */
2526 device_set_wakeup_capable(&rhdev->dev, 1);
2527
2528 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2529 * registered. But since the controller can die at any time,
2530 * let's initialize the flag before touching the hardware.
2531 */
2532 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2533
2534 /* "reset" is misnamed; its role is now one-time init. the controller
2535 * should already have been reset (and boot firmware kicked off etc).
2536 */
2537 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2538 dev_err(hcd->self.controller, "can't setup\n");
2539 goto err_hcd_driver_setup;
2540 }
2541 hcd->rh_pollable = 1;
2542
2543 /* NOTE: root hub and controller capabilities may not be the same */
2544 if (device_can_wakeup(hcd->self.controller)
2545 && device_can_wakeup(&hcd->self.root_hub->dev))
2546 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2547
2548 /* enable irqs just before we start the controller,
2549 * if the BIOS provides legacy PCI irqs.
2550 */
2551 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2552 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2553 if (retval)
2554 goto err_request_irq;
2555 }
2556
2557 hcd->state = HC_STATE_RUNNING;
2558 retval = hcd->driver->start(hcd);
2559 if (retval < 0) {
2560 dev_err(hcd->self.controller, "startup error %d\n", retval);
2561 goto err_hcd_driver_start;
2562 }
2563
2564 /* starting here, usbcore will pay attention to this root hub */
2565 if ((retval = register_root_hub(hcd)) != 0)
2566 goto err_register_root_hub;
2567
2568 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2569 if (retval < 0) {
2570 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2571 retval);
2572 goto error_create_attr_group;
2573 }
2574 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2575 usb_hcd_poll_rh_status(hcd);
2576
2577 /*
2578 * Host controllers don't generate their own wakeup requests;
2579 * they only forward requests from the root hub. Therefore
2580 * controllers should always be enabled for remote wakeup.
2581 */
2582 device_wakeup_enable(hcd->self.controller);
2583 return retval;
2584
2585 error_create_attr_group:
2586 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2587 if (HC_IS_RUNNING(hcd->state))
2588 hcd->state = HC_STATE_QUIESCING;
2589 spin_lock_irq(&hcd_root_hub_lock);
2590 hcd->rh_registered = 0;
2591 spin_unlock_irq(&hcd_root_hub_lock);
2592
2593 #ifdef CONFIG_USB_SUSPEND
2594 cancel_work_sync(&hcd->wakeup_work);
2595 #endif
2596 mutex_lock(&usb_bus_list_lock);
2597 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2598 mutex_unlock(&usb_bus_list_lock);
2599 err_register_root_hub:
2600 hcd->rh_pollable = 0;
2601 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2602 del_timer_sync(&hcd->rh_timer);
2603 hcd->driver->stop(hcd);
2604 hcd->state = HC_STATE_HALT;
2605 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2606 del_timer_sync(&hcd->rh_timer);
2607 err_hcd_driver_start:
2608 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2609 free_irq(irqnum, hcd);
2610 err_request_irq:
2611 err_hcd_driver_setup:
2612 err_set_rh_speed:
2613 usb_put_dev(hcd->self.root_hub);
2614 err_allocate_root_hub:
2615 usb_deregister_bus(&hcd->self);
2616 err_register_bus:
2617 hcd_buffer_destroy(hcd);
2618 return retval;
2619 }
2620 EXPORT_SYMBOL_GPL(usb_add_hcd);
2621
2622 /**
2623 * usb_remove_hcd - shutdown processing for generic HCDs
2624 * @hcd: the usb_hcd structure to remove
2625 * Context: !in_interrupt()
2626 *
2627 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2628 * invoking the HCD's stop() method.
2629 */
2630 void usb_remove_hcd(struct usb_hcd *hcd)
2631 {
2632 struct usb_device *rhdev = hcd->self.root_hub;
2633
2634 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2635
2636 usb_get_dev(rhdev);
2637 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2638
2639 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2640 if (HC_IS_RUNNING (hcd->state))
2641 hcd->state = HC_STATE_QUIESCING;
2642
2643 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2644 spin_lock_irq (&hcd_root_hub_lock);
2645 hcd->rh_registered = 0;
2646 spin_unlock_irq (&hcd_root_hub_lock);
2647
2648 #ifdef CONFIG_USB_SUSPEND
2649 cancel_work_sync(&hcd->wakeup_work);
2650 #endif
2651
2652 mutex_lock(&usb_bus_list_lock);
2653 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2654 mutex_unlock(&usb_bus_list_lock);
2655
2656 /* Prevent any more root-hub status calls from the timer.
2657 * The HCD might still restart the timer (if a port status change
2658 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2659 * the hub_status_data() callback.
2660 */
2661 hcd->rh_pollable = 0;
2662 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2663 del_timer_sync(&hcd->rh_timer);
2664
2665 hcd->driver->stop(hcd);
2666 hcd->state = HC_STATE_HALT;
2667
2668 /* In case the HCD restarted the timer, stop it again. */
2669 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2670 del_timer_sync(&hcd->rh_timer);
2671
2672 if (usb_hcd_is_primary_hcd(hcd)) {
2673 if (hcd->irq > 0)
2674 free_irq(hcd->irq, hcd);
2675 }
2676
2677 usb_put_dev(hcd->self.root_hub);
2678 usb_deregister_bus(&hcd->self);
2679 hcd_buffer_destroy(hcd);
2680 }
2681 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2682
2683 void
2684 usb_hcd_platform_shutdown(struct platform_device* dev)
2685 {
2686 struct usb_hcd *hcd = platform_get_drvdata(dev);
2687
2688 if (hcd->driver->shutdown)
2689 hcd->driver->shutdown(hcd);
2690 }
2691 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2692
2693 /*-------------------------------------------------------------------------*/
2694
2695 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2696
2697 struct usb_mon_operations *mon_ops;
2698
2699 /*
2700 * The registration is unlocked.
2701 * We do it this way because we do not want to lock in hot paths.
2702 *
2703 * Notice that the code is minimally error-proof. Because usbmon needs
2704 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2705 */
2706
2707 int usb_mon_register (struct usb_mon_operations *ops)
2708 {
2709
2710 if (mon_ops)
2711 return -EBUSY;
2712
2713 mon_ops = ops;
2714 mb();
2715 return 0;
2716 }
2717 EXPORT_SYMBOL_GPL (usb_mon_register);
2718
2719 void usb_mon_deregister (void)
2720 {
2721
2722 if (mon_ops == NULL) {
2723 printk(KERN_ERR "USB: monitor was not registered\n");
2724 return;
2725 }
2726 mon_ops = NULL;
2727 mb();
2728 }
2729 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2730
2731 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.091577 seconds and 5 git commands to generate.